
Technical Report
CMU/SEI-91-TR-18
ESD-91-TR-18

Durra: A Task-Level Description
Language Reference Manual
(Version 3)

Mario R. Barbacci
Dennis L. Doubleday

Michael J. Gardner
Randall W. Lichota

Charles B. Weinstock

December 1991

Technical Report
CMU/SEI-91-TR-18

ESD-91-TR-18
December 1991

Durra: A Task-Level Description
Language Reference Manual

(Version 3)

Mario R. Barbacci
Dennis L. Doubleday

Michael J. Gardner
Randall W. Lichota

Charles B. Weinstock

Distributed Systems Project

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-91-TR-18 i

Table of Contents

1 Introduction 1

2 A Development Scenario 3
2.1 Component Creation Activities 5
2.2 Application Creation Activities 5
2.3 Application Execution Activities 6

3 Notes on Syntax 7
3.1 Comments 7
3.2 Keywords and Predefined Identifiers 7

4 Names, Values, and Expressions 9
4.1 Local and Global Names 9
4.2 Literal and Non-Literal Values 10
4.3 Expressions 11

5 Compilation Units 13
5.1 Type Declarations 13
5.2 Task and Channel Descriptions 14

6 Task and Channel Selections 17

7 Interface Information 19

8 Behavioral Information 21

9 Attributes 23
9.1 Rules for Matching Selections with Descriptions 24
9.2 Soft- and Hard-matching between Selections and Descriptions 24
9.3 Global Attributes 25

10Structural Information 27
10.1 Component Declarations 27
10.2 Cluster Declarations 28
10.3 Structure Declarations 28

10.3.1 Baseline and Delta Components 29
10.3.2 Port Bindings 30
10.3.3 Component Connections 30

10.4 Reconfigurations 32

ii CMU/SEI-91-TR-18

Appendix A Predefined Functions 35
A.1 current_atime, current_dtime, current_ptime 35
A.2 atime, dtime, ptime 35
A.3 Signal 36
A.4 Sizeof 36

Appendix B Predefined Attributes 37
B.1 Inheritance of Predefined Attributes 37
B.2 Processor Attribute 37
B.3 Package_name and Procedure_name Attributes 38
B.4 Process_Name Attribute 39

References 41

CMU/SEI-91-TR-18 1

Durra: A Task-Level Description Language Reference
Manual (Version 3)

Durra, also called “Indian millet” and “Guinea corn,” is a type of
grain sorghum with slender stalks, widely grown in warm dry
regions. Durra sounds like “durable” which isn’t a bad connotation.
Carnegie Institute personnel provided a name denoting the very
largest grain, but we respectfully declined their suggestion of
“corn.”

Abstract: Durra is a language designed to support the development of
distributed programming applications consisting of concurrent, large-grained
processes devoted to specific pieces of the application. During execution time
the application processes run on possibly separate processors, and
communicate with each other by sending messages of different types across
communication links. The application developer is responsible for prescribing
a way to manage all of these resources, called a task-level application
description. It describes the processes to be executed, the assignments of
processes to processors, and the communication channels required to transmit
messages data between processes. Durra is a task-level description language,
a notation in which to write these application descriptions.

This document is a revised version of the original reference manual1. It
describes the syntax and semantics of the language and incorporates all the
language changes introduced as a result of our experiences writing application
descriptions in Durra.

A companion document, Durra: A Task-Level Description Language User’s
Manual, describes how to use the compiler and support tools.

1 Introduction

Many computation-intensive, real-time applications require efficient concurrent execution of
multiple tasks as independent programs devoted to specific pieces of the application. Typical
tasks include sensor data collection, obstacle recognition, and global path planning in robotics
and vehicular control applications. Since the speed and throughput required of each task may
vary, these applications can best exploit a computing environment consisting of multiple spe-
cial and general purpose processors that are connected logically, though not necessarily
physically. We call this environment a heterogeneous machine.

During execution time, application programs run on possibly separate processors and com-
municate by sending messages of different types. Since the patterns of communication can
vary over time, and the speed of the individual processors can vary over a wide range, addi-

1. M.R. Barbacci and J.M. Wing, Durra: A Task-Level Description Language. Technical report (CMU/SEI-86-TR-3,
DTIC ADA178975), Software Engineering Institute, Carnegie Mellon University, December, 1986.

2 CMU/SEI-91-TR-18

tional hardware resources in the form of communication networks, gateways, and data stores
may be required in the heterogeneous machine.

The application developer is responsible for prescribing a way to manage these resources. We
call this prescription a task-level application description, which describes the component pro-
grams and the possible assignments of resources (processors, communication networks, et-
cetera) to programs. A task-level description language is a notation in which to write these
application descriptions. Durra is a task-level description language, a notation in which to write
application descriptions.

Although Durra is hardware independent and can be used on a variety of processors and com-
munication networks, we, for the purpose of explanation, will assume an abstract machine with
multiple non-homogeneous processors, a local area network to allow direct communication
between processors, and an operating system or runtime executive running on each proces-
sor and providing reliable communications facilities.

Actual experience with the implementation of the language and runtime environment and
building demonstration applications has resulted in a number of changes to the language and
these changes are reflected in the revised version of this language reference manual. The
most notable changes are the elimination of the Durra runtime executive as a separate pro-
gram in each of the network processors, and the replacement of FIFO queues by channels, a
more general communication component. A channel provides a multiple-input, multiple-output
communication link between application tasks, and can provide arbitrary routing, filtering, and
storage disciplines for messages. In the new implementation the application developer can
designate groups of processes (instances of tasks) and links (instances of channels) that are
advantageous or necessary to execute as concurrent threads of a multi-threaded program.
Message passing between components that are linked together in this fashion can be imple-
mented more efficiently than with a general purpose network protocol such as TCP/IP. The
gain in communication performance is obtained at the cost of sharing the processor and im-
posing coding conventions on the developers. We will refer to the multi-threaded program re-
sulting from linking together several component as an application cluster, or cluster.

CMU/SEI-91-TR-18 3

2 A Development Scenario

We see three distinct activities in the process of developing a distributed application using
Durra: (a) the development of components (task/channel descriptions and implementations),
(b) the development of an application description, and (c) the execution of the application.

Processors

 Description (Durra)

- Task descriptions

Durra
Compiler

- Task implementations

- Cluster implementations
- Channel implementations

Implementation (code)
library library

Application description (Durra) Application execution

N
et

w
or

k

Clusters

Tasks

Channels

L
in

k

Port

Component
development (code)

Component
description (Durra)

- Channel descriptions
- Application descriptions

4 CMU/SEI-91-TR-18

Although we will describe the activities in this order, the actual development process might in-
volve successive iterations over these steps. That is, an application is not necessarily devel-
oped bottom-up as the scenario might seem to imply. The developer could start with some
gross level decomposition of the application into subsystems, and a prototype of the applica-
tion might be developed with these high level components. Over time, these subsystems might
be further decomposed into finer components and the steps repeated as appropriate. The sce-
nario illustrated in the figure is just an illustration of the kinds of activities involved and is not a
fixed prescription.

In describing these activities, we will use the following definitions:

channel description — a template written in Durra specifying the properties of a chan-
nel implementing a communication facility. Channel descriptions
are compiled and stored in Durra libraries.

channel implementation — code written to implement a specific communication facility
for application tasks. Channels are passive components that react
to requests from tasks. Channel implementations are compiled and
stored in object code libraries.

cluster — a group of tasks and channels linked together and executed as a multi-
threaded program. The source code for the main program unit of a
cluster is generated by the Durra compiler. Clusters are compiled
and stored in object code libraries.

link — an instance of a channel providing communications between two or more pro-
cesses.

port — a logical input or output device of a process or link. Input ports get messages
from other components; output ports send messages to other com-
ponents.

task description — a template written in Durra specifying the properties of a task im-
plementing a piece of an application. Task descriptions are com-
piled and stored in Durra libraries.

task implementation — code written to implement a piece of an application. Tasks are
active components that generate requests to the channels. Task im-
plementations are compiled and stored in object code libraries

process — an instance of a task implementing part of an application. A process can
execute as a single program (actually, a one-thread cluster) or as a
thread within a multiple-thread cluster.

CMU/SEI-91-TR-18 5

2.1 Component Creation Activities

In this phase, the developer defines the application components (tasks and channels) using
domain specific knowledge. Some components might be domain specific such as sensor pro-
cessing, map database management, route planning, etcetera. Other components might be of
a more general nature, such as sorting, array operations, etcetera. An application component
consists of a description and an implementation:

A component implementation is an executable program. For a given
task, there may be possibly many implementations, differing in pro-
gramming language (e.g., C, Ada), processor type (e.g., Motorola
68020, DEC VAX), performance characteristics, or other attributes.
The writing of a task implementation is more or less independent of
Durra and involves the coding, debugging, and testing of programs
on various machines. Available component implementations are
stored in the appropriate object code libraries.

A component description is a template specifying properties of a component implementation,
such as the types of data it produces or consumes, the ports it uses to communicate with other
tasks, formal specifications of behavior, and other attributes of the implementation.

2.2 Application Creation Activities

In this phase, the developer writes an application description that specifies the desired com-
ponents and their interconnection. Syntactically, an application description is similar to a task
description and can be stored in the library as a new component task. This allows the devel-
oper to write hierarchical application descriptions. When the application description is com-
piled, the Durra compiler identifies library task and channel descriptions that meet selection
criteria specified by the user and generates the cluster’s main units.

As described earlier, component implementations are developed, tested, and stored in object
code libraries independently of each other. To link groups of task and channel implementa-
tions into clusters, the Durra compiler generates the clusters’ main units. In the current imple-
mentation, these main units are small Ada procedures that explicitly import the specific
components of the cluster. Only these main units have to be compiled. The component imple-
mentations are retrieved from the object code library and linked with the appropriate main unit
using a suitable Ada development environment. The main units constitute an additional thread
of control within the cluster (i.e., they constitute an additional component process in the clus-
ter, albeit not one specified by the application developer). These additional tasks will be re-
ferred to as the cluster managers. The application developer can specify how component
tasks and channels are to be grouped into clusters. The extreme cases are: a) all components
are linked together as one cluster, and b) each component is a separate cluster. The applica-
tion developer can also specify what clusters run on each processor.

6 CMU/SEI-91-TR-18

2.3 Application Execution Activities

To execute an application, the developer loads and starts the clusters in the appropriate pro-
cessors. Each cluster’s main unit contains information about the structure of the other clusters
and the reconfigurations specified by the application developer. This information is used by
the cluster manager to provide communication support for the local application processes.

Application processes communicate with each other through the same interface (i.e., proce-
dure calls to the cluster manager) regardless of process location (i.e., processes within the
same cluster, processes in clusters within the same processor, and processes in clusters in
different processors communicate in the same fashion). The cluster manager implements the
port operations (a subset of the interface calls) either as local procedure calls or remote pro-
cedure calls depending on the location of the communicating processes.

CMU/SEI-91-TR-18 7

3 Notes on Syntax

To describe the syntax of Durra, we use standard Backus-Naur-Form (BNF), with the following
conventions:

• Terminal symbols are enclosed in quotation marks (”and”), but the
quotation marks do not belong to the terminal.

• No distinction is made between upper and lower case letters in terminals
and non-terminals.

• A non-terminal of the form xyz_Listcomma stands for a list of one or more
xyz’s separated by commas

• Vertical bars (“|”) separate alternative productions. Braces (‘“’“and “}”)
indicate optional components of a production.

3.1 Comments

Comments in a Durra description start with a double hyphen (“--”). Any text between the dou-
ble hyphen and the end of the line is ignored.

3.2 Keywords and Predefined Identifiers

Keywords are highlighted in normal text by writing them in bold face. Predefined identifiers
are highlighted in normal text by writing them inside quotation “marks”.

The following words are keywords in the language: and, attribute, attributes, baseline, be-
gin, behavior, bind, channel, cluster, clusters, component, components, end, enter, ex-
clude, exit, in, include, is, not, null, or, out, port, ports, previous, reconfiguration,
reconfigurations, size, structure, structures, task, to, type, union, when.

Several keywords exist in both singular and plural form and have the same meaning in either
form: attribute(s), channel(s), cluster(s), component(s), port(s), process(es), reconfigu-
ration(s), and structure(s).

The following words are predefined identifiers in the language: “atime”, “current_atime”, “cur-
rent_dtime”, “current_ptime”, “dtime”, “identifier”, “integer”, “null”, “ptime”, “package_name”
“procedure_name”, “process_name” “processor”, “real”, “signal”, “sizeof”, “string”.

8 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 9

4 Names, Values, and Expressions

4.1 Local and Global Names

Syntax:
AttributeName ::= Identifier

ChannelName ::= Identifier

ClusterName ::= Identifier

LinkName ::= Identifier { ‘“’“IntegerRange “]” }

PortName ::= Identifier { ‘““IntegerRange “]” }

ProcessName ::= Identifier { ‘“’“IntegerRange “]” }

TypeName ::= Identifier

TaskName ::= Identifier

ComponentName ::=ProcessName |

LinkName

GlobalAttributeName ::=

{ ComponentName_Listperiod“.” } AttributeName

GlobalLinkName ::= { ComponentName_Listperiod“.” } LinkName

GlobalPortName ::= { ComponentName_Listperiod “.” } PortName

GlobalComponentName::=
ComponentName_Listperiod “.” } ProcessName

ParameterName ::= Identifier

SpecificationName := Identifier

StructureName ::= Identifier

Meaning:
Identifiers are sequences of letters, digits, and underscores (“_”). An identifier must begin with
a letter and end with a letter or a digit. Consecutive underscores in the middle of an identifier
are not allowed.

10 CMU/SEI-91-TR-18

In a task or channel description the writer declares the names of ports, attributes, internal com-
ponents, etcetera. These names are local to and unique within a task or channel description.
Outside a description, these ports, attributes, and components are identified by a global name
obtained by prefixing the name of a process or link (i.e., an instance of the task or channel) to
the name of the port, attribute, or internal component. For example, p1.out2 could be the
name of port out2 declared inside a task instantiated as process p1. If necessary, multiple
process names as prefixes can be used. For example, p1.p2.c is the global name for some
attribute c inside process p2 which is inside process p1.

For convenience, the user can declare arrays of ports, links, and processes by specifying the
name of the array and the range of indices for the array elements.

4.2 Literal and Non-Literal Values

Syntax:
IntegerLiteral ::= { “+” | “-” } sequence_of_digits

RealLiteral ::= { “+” | “-”} sequence_of_digits
{ “.” {sequence_of_digits} }

StringLiteral ::= ‘“” {sequence_of_characters} ““’“{“&” StringLiteral}

IntegerValue ::= IntegerLiteral |
ParameterName |
 GlobalAttrValue |
 FunctionCall

RealValue ::= RealLiteral |
ParameterName |
 GlobalAttrValue |
 FunctionCall

StringValue ::= StringLiteral |
ParameterName |
 GlobalAttrValue |
 FunctionCall

FunctionCall ::= FunctionName { ‘“’“Expression_Listcomma “)” }

Value ::= IntegerValue |
RealValue |
StringValue |
“(” ArithmeticExpression “)”

CMU/SEI-91-TR-18 11

Meaning:

Integer and real numbers are always decimal (i.e., base 10). A real number can terminate with
a period (“.”) without a fractional part.

Strings are sequences of ASCII printable characters, enclosed in double quotation marks (“).
A double quotation mark inside a string must be written as two consecutive double quotation
marks:

“ A string with a double quotation mark, “”, inside “

Literals denote constants of the appropriate type. An IntegerLiteral is a non-empty sequence
of digits. A RealLiteral is also a non-empty sequence of digits with an embedded decimal point.
A StringLiteral is a (potentially empty) sequence of characters within quotation marks.

Each of the non-terminals IntegerValue, RealValue, and StringValue stands for (a) literals
(constants) of the appropriate kind, or (b) names of parameters (Chapter 5.2) or attributes
(Chapter 9) whose values are of the appropriate kind, or (c) calls to predefined functions (Ap-
pendix A) returning values of the appropriate kind.

4.3 Expressions

Syntax:
Expression ::= { not } Term { or Expression }

Term ::=Relation { and Term }

Relation ::= ArithmeticExpression
{ RelOp ArithmeticExpression }

RelOp ::= “=” | “/=” | “>” | “>=” | “<” | “<=”

ArithmeticExpression ::=
{ “+” | “-” } Factor { “+” | “-” Factor }

Factor ::=Value { “*” | “/” Value }

IntegerExpression ::=ArithmeticExpression

IntegerRange ::= IntegerExpression { “..” IntegerExpression }

Meaning:
Expressions can be used to specify actual parameters and attribute values in a component
selection (Chapter 6). These expressions are evaluated at compile time and their values are
used by the Durra compiler to identify component descriptions in the library.

12 CMU/SEI-91-TR-18

Expressions can be used to specify reconfiguration conditions in a task description (Section
10.4). These expressions are evaluated at execution time. These values are used by the clus-
ter managers to trigger dynamic reconfigurations of the application.

The production IntegerExpression is an arithmetic expression that permits only integer values
in some contexts. For example, the bounds of an array of ports must be an integer value.

CMU/SEI-91-TR-18 13

5 Compilation Units

There are three kinds of compilation units (i.e., separately compilable units): type declarations,
task descriptions, and channel descriptions.

Syntax:
CompilationUnit ::=TypeDeclaration |

TaskDescription |
ChannelDescription

Meaning:

Each compilation unit must be submitted to the Durra compiler as a single text file. If no errors
are detected, the unit is entered into the library.

Type declarations are treated like the other compilation units for the purposes of the
development scenario (Chapter 2). That is, a type declaration is treated as an application
“component’’ that must be described (i.e., declared), compiled, and entered into the library
before it can be used in larger components or applications.

5.1 Type Declarations

Syntax:

TypeDeclaration ::= TYPE TypeName IS ScalarStructure “;” |
TYPE TypeName IS UnionStructure “;”

ScalarStructure ::= SIZE IntegerRange |
SIZE “*”

UnionStructure ::= UNION ‘“’“TypeName_Listcomma “)’’

Examples:

type packet is size 128.. 1024;
-- Packets are of variable length

type four_packets is size 4 * sizeof(packet);
-- Type consisting of four packets

type mix is union (heads, tails);
-- Mix data could be heads or tails

Meaning:

Type declarations are compilation units that define the structure of the data produced or
consumed by the application tasks. A type declaration introduces a global name for a data
type, or a set of previously declared types, which can then be used in port declarations.

There are two kinds of type declarations. The simpler data type (SIZE) is a sequence of bits
of fixed or variable length. The length is specified by an integer value (the length is fixed), an
integer range (the length varies between two boundaries), or “*” (the length is unknown).

14 CMU/SEI-91-TR-18

More complex types are declared as a union (UNION) of a number of previously declared
types where data items moving through a process or link port could be one of any of the
member types.

Durra type declarations provide hints about the size of the messages transmitted. The channel
implementations can use this information to allocate storage for messages. No semantic
information is derived from the type declaration and the cluster manager will not attempt to
transform the data to hide data layout differences between different languages or processor
architectures.

5.2 Task and Channel Descriptions

Syntax:
TaskDescription ::=SimpleTaskDescription |

CompoundTaskDescription

SimpleTaskDescription::=
TASK TaskName
 {FormalParameterPart}
 {InterfacePart}
 {BehaviorPart}
 {AttributeDescPart}

END TaskName “;”

CompoundTaskDescription::=
TASK TaskName
 {InterfacePart}
 {BehaviorPart}
 {AttributeDescPart}
 {StructurePart}

END TaskName “;”

ChannelDescription ::= CHANNEL ChannelName
 {FormalParameterPart}
 {InterfacePart}
 {BehaviorPart}
 {AttributeDescPart}

 END ChannelName “;”

FormalParameterPart ::=
‘(’“FormalParameter_Listcomma “)”

FormalParameter ::= Identifier “:” ParameterType

ParameterType ::= “INTEGER” |
“REAL” |
“STRING” |
“IDENTIFIER”

CMU/SEI-91-TR-18 15

Meaning:

Task descriptions are compilation units that define the properties of task implementations (i.e.,
user programs). Task descriptions are used as building blocks for application and compound-
task descriptions.

Channel descriptions are compilation units that define the properties of channel
implementations. Channel descriptions are used as building blocks for application-
descriptions and compound task-descriptions.

A component description has a number of sections, most of which are optional: formal
parameters, interface information, behavioral information, attributes, and structural
information.

The parameter part consists of a list of typed parameter names used to customize a
component description. Formal parameters are not allowed in a compound task description
(i.e., only simple tasks and channels can be parameterized). Formal parameter names can be
used in the component description anywhere a value of the appropriate type is allowed. The
actual parameter value is specified during the task or channel instantiation. The parameter
types (INTEGER, REAL, STRING, and IDENTIFIER) are built into the language and can
not be specified by the user.

The interface part consists of a number of unidirectional, typed port declarations. The port
types are not built into the language, and they must be declared by the user.

The behavior part consists a list of name/value pairs denoting formal properties of the
component.

The attribute part consists of a list of name/value pairs denoting miscellaneous properties of
the component. Attributes play a central role in identification and selection of components.

The structural information describes the internal components of a compound task. This is the
only distinction between a simple and a compound task. Structural information is not allowed
in a channel description (i.e., there are no compound channels). The structural information is
divided into three sections. The component section enumerates a list of task and channel
instantiations used as internal components. The structure section describes how these
internal components are connected to each other to form a configuration. There can be one or
more of these configurations in a structure section. The reconfiguration section describes
conditional transitions between alternative configurations.

16 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 17

6 Task and Channel Selections

Syntax:

TaskSelection ::=
TASK TaskName {ActualParameterPart} “;” |
TASK TaskName {ActualParameterPart}

AttributeSelPart
END TaskName “;”

ChannelSelection ::=
CHANNEL ChannelName {ActualParameterPart} “;” |
CHANNEL ChannelName {ActualParameterPart}

AttributeSelPart
END ChannelName “;”

ActualParameterPart ::=
‘““Expression_Listcomma “)”

Meaning:

Task and channel selections are templates used to identify and retrieve task and channel
descriptions from the library. A given task or channel might have a number of different
implementations that differ along dimensions such as algorithm used, code version,
performance, or resources required. In order to select among a number of alternative
implementations, the user provides a task or channel selection as part of a component
declaration, as described in Section 10.1. This selection lists the desirable features of a
suitable implementation.

The actual parameter values (expressions) substitute the corresponding formal parameters in
the matching task or channel description anywhere the formal parameter identifiers occur in
the description. These substitutions take place after the description and the selection are
matched. Therefore, actual parameters cannot be used to identify a matching description in
the library.

The attribute selection part is an expression of attribute values evaluated in the context of the
attribute values provided in the task or channel description.

For brevity, if the attribute selection part is not provided, the closing “end name” is not required.

18 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 19

7 Interface Information

Syntax:

InterfacePart ::= PORT PortDeclaration_Listsemicolon “;’’

PortDeclaration ::= PortName_Listcomma “:” IN TypeName |

PortName_Listcomma “:’’ OUT TypeName

Examples:

ports
in1: in heads;
out1, out2: out tails;

Meaning:

The interface information describes the ports of the component tasks or channels. A
port declaration specifies the direction of the data movement and the type of data
moving through the port.

20 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 21

8 Behavioral Information

Syntax:

BehaviorPart ::= BEHAVIOR Specification_List Semicolon “;”

Specification ::= SpecificationName “=” SpecificationValue

SpecificationValue ::= identifier |
value

Meaning:

The behavior part of a component description consists of one or more formal or informal
behavioral specifications of the component. Each specification consists of a name and a value.
There may be as many specifications as desired. The syntax and semantics of specification
values are specification dependent. During compilation, these values are treated as
uninterpreted identifiers, numbers, or strings, as the case may be. The Durra language simply
provides a placeholder to capture behavioral specifications. It is up to the users to invoke
appropriate tools to interpret the specification values. For example, behavioral specifications
could be used to drive emulators, code generators, theorem provers, or other design tools.
Consult the appropriate documentation for details about supported specifications.

22 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 23

9 Attributes

Syntax:

AttributeDescPart ::= ATTRIBUTES Attribute_Listsemicolon “;’’

Attribute ::= AttributeName “=’’ Value |
AttributeName “=’’ ‘“’“Value_Listcomma “)’’

AttributeSelPart ::= ATTRIBUTES Expression “;’’

Examples:

-- Attributes in a task declaration
attributes

author = “jmw”;
color = (“red”, “white”, “blue”);
implementation = “cowcatcher”;
queue_size = 25;

-- Attributes in task selections
attributes

processor = Sun;
attributes

author = “jmw” or author = “mrb”;
attributes

(color=”red” or color=”blue”) and (author= Mr_Ed);

Meaning:

Attributes specify miscellaneous properties of a component. They are a means of indicating
pragmas or hints to the Durra compiler and the cluster managers. In a task or channel
description, the developer of a component lists the component properties and their possible
values; in a task or channel selection, the user of a component writes an expression listing the
desired name and values of the component’s properties. Attribute values used in matching
selections with descriptions must be constants, computable before execution time, i.e.,
components and their implementations are static properties of an application.

Example attributes include: author, version number, task implementation, and processor type.
There may be as many attributes as desired. The syntax and semantics of the attribute values
are attribute dependent. If the attribute is not predefined in the language, the values are
treated as uninterpreted identifiers, numbers, or strings, as the case may be, and compatibility
is based on value equality. If the attribute is predefined in the language, compatibility is
attribute dependent. See Appendix Appendix B for details about the predefined attributes.

Component selection attributes are “merged” with component description attributes to define
the set of attributes visible to the implementations and the cluster managers at runtime. See
Appendix B for special inheritance rules in the case of predefined attributes (inheritance of
user-defined attributes occurs only between a task selection and its task description.)

24 CMU/SEI-91-TR-18

9.1 Rules for Matching Selections with Descriptions

If a selection includes an attribute expression (a predicate), a matching description must
provide values that satisfy the predicate, i.e., the expression yields true when evaluated in the
context of the values declared for the attribute.

If a description provides a list of values for an attribute, a matching selection is satisfied if any
of these values satisfies the expression. For example, if a description includes an attribute
size with values (1, 3, 5) then a selection with an attribute expression of the form size > 4
is satisfied by the description because the value 5 makes the expression true.

If a selection provides a list of values, (e.g., color /= (red, green)) then all of the values
in the selection must be satisfied (i.e., the color attribute in the description must not include
red nor green).

If a selection includes an attribute expression that uses attributes not present in a description
or if a description provides attributes not used in the attribute expression of a selection, these
attributes are ignored for the purposes of matching a library component.

9.2 Soft- and Hard-matching between Selections and Descriptions

A selection can match multiple descriptions depending on what selection attributes can be
ignored because they do not appear in a given description. The following example illustrates
the situation.

Assume that the Durra library contains two tasks that share the same name (t) but differ in the
names or values of various attributes:

task t ...attributes color = “red”; version = 1;...end t;

task t
...

attributes color= “green”; version= 1; author= “mrb”;
...
end t;

The following task selections fail to yield unambiguous matches:

p1: task t attributes version= 1; end t;
p2: task t attributes version= 1 and author=”mrb”; end t;

Process p1 fails because both task descriptions in the library match the information provided
(task name t and attribute version = 1) and there is not reason to prefer one over the other.
Process p2 fails because both task descriptions match the selection. The second declaration
of task t matches the selection because it has the same attribute names and values as those
of the task selection; the first declaration of task t matches because it does not have an
author attribute and under the rules of the language, the selection author is ignored.

Clearly there is a difference between these two situations. In the case of process p1 all the
information available in the selection was used but was not enough to distinguish between the
available task descriptions. In the case of process p2 one of the matches ignored part of the

CMU/SEI-91-TR-18 25

information available in the selection while the other match used all of it. The Durra compiler
handles these two situations differently.

When a match uses all the attributes available in a selection we refer to it as a “hard attribute
match”. When a match ignores some of the attributes available in a selection we refer to it as
a “soft attribute match”. Multiple hard matches are reported as serious errors (the compilation
fails). One hard match and one or more soft matches are reported as minor errors: the
compiler selects the hard matching task description. Multiple soft matches are reported as
minor errors: the compiler selects one of the matching descriptions at random. In the absence
of serious errors, a compilation does not fail solely because of minor errors. Nevertheless, the
users should correct the selection templates to remove the ambiguities.

9.3 Global Attributes

The name of an attribute can appear in any context in which its value can appear. For instance,
if the user defines an attribute queue_size with an integer value, as in the examples above,
then the identifier queue_size can appear anywhere an integer value is expected. This
permits the user to define families of components, i.e., components that share the same value
for some attribute, as shown in the following example:

task Bedroom
attributes shape = “hexagon”; size = 25;

end Bedroom;
task Bedroom

attributes shape = “square”; size = 30;
end Bedroom;
task Kitchen attributes size = 25; end Kitchen
task Kitchen attributes size = 30; end Kitchen;

Assuming that the library contains the task descriptions shown above, the following task
selections would select the version of task Bedroom with shape =”hexagon” (and size
= 25) and the version of task Kitchen with size=25 because this is the size of the selected
bedroom:

B: task Bedroom attributes shape= “hexagon”; end Bedroom;
K: task Kitchen attributes size = B.size; end Kitchen;

26 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 27

10 Structural Information

Syntax:

StructurePart ::= ComponentClause
{ClusterClause}

 StructureClause
 {ReconfigurationClause}

ComponentClause ::= COMPONENTS
ComponentDeclaration_Listsemicolon “;”

ClusterClause ::= CLUSTERS ClusterDeclaration_Listsemicolon “;”

StructureClause ::= STRUCTURES
StructureDeclaration_Listsemicolon “;”

ReconfigurationClause::=
RECONFIGURATIONS

Reconfiguration_Listsemicolon “;”

Meaning:

The structural information of a compound task consists of four parts: a declaration of the
components (i.e., instances of internal tasks and channels), the various ways in which these
components can be connected to form alternative structures, the conditions under which
changes in structure take place, and finally, the ways these components should be grouped
together in clusters.

Channels and tasks are similar in many respects. Channel and task implementations are
stored in code libraries; channel and task descriptions are stored in Durra libraries; channels
and tasks are instantiated as components and connected in arbitrary structures. However,
channels and tasks have fundamentally different behaviors. Tasks are active components
(i.e., they initiate requests for sending or receiving messages.) Channels are passive
components (i.e., they react to requests for sending or receiving messages.) This difference
imposes restriction on the allowed connections between link and process ports to avoid
deadlocks. If two channel ports are connected, neither would initiate a message passing
operation; if two task ports are connected, neither would react to a request for a message
passing operation initiated by the other task.

10.1 Component Declarations

Syntax:

ComponentDeclaration ::=
ProcessName_Listcomma “:’’ TaskSelection |
LinkName_Listcomma “:’’ ChannelSelection

Examples:

p[1..3], px: finder;
l: merge (nports, msg_type);

28 CMU/SEI-91-TR-18

Meaning:

Component declarations specify the building blocks (internal links and processes) of a
compound task. An instance of a task or a channel is bound to each component name in the
list.

10.2 Cluster Declarations

Syntax:

ClusterDeclaration ::= ClusterName “:”
ClusterComponentName_Listcomma

ClusterComponentName::=
ComponentName |
ClusterName

Examples:

clusters
c1: p1, l1;
c2: p2;
-- Group components p1 and l1 as cluster c1.
-- Cluster c2 consists of a single component, p2.

Meaning:

A cluster declaration is a directive to the Durra compiler. It is used to specify groups of
component processes and links that must be linked together as a single program.

Component (processes and links) that are assigned to different clusters of a compound task
can not be merged into one cluster in a larger task that includes instances of the compound
task.

If a component process is an instance of a compound task and the corresponding task
declaration specified cluster declarations, the names of the component clusters must be used
instead of the name of the process (this follows from the restriction in the previous paragraph).
Clusters can “grow” by naming them as components of a larger cluster (i.e., a cluster of an
enclosing task) provided sibling clusters are never merged.

Cluster declarations specify a physical binding of components. They do not specify or suggest
any connectivity between the components of a cluster. The logical binding of components is
specified through structure declarations (Section 10.3).

10.3 Structure Declarations

Syntax:

StructureDeclaration ::=
StructureName “:”
 BEGIN
 {BaselineComponents}

CMU/SEI-91-TR-18 29

 {ExternalPortBindings}
 {ComponentConnection_Listsemicolon “;”}
 {NestedStructureDeclaration_Listsemicolon “;”}
 END StructureName

NestedStructureDeclaration::=
StructureName “:”
 BEGIN
 {DeltaIncludeComponents}
 {DeltaExcludeComponents}
 {ExternalPortBindings}
 {ComponentConnection_Listsemicolon “;”}
 {NestedStructureDeclaration_Listsemicolon “;”}
 END StructureName

Meaning:

A structure declaration specifies the (subset of) internal components to be used in a particular
configuration of a compound task and how these components are connected to each other.
To avoid repeating entire structure declarations when alternative configurations differ only in
a few details, structure declarations can be nested and only the changes to the set of
components currently in use need to be specified in the inner structure. Each structure
declaration has a name. These names must be unique throughout the entire task description
(i.e., nesting of structure declarations is not a name scoping mechanism).

Structure declarations specify a logical binding of components. They do not specify or suggest
the grouping of components in clusters. The physical binding of components is specified
through cluster declarations (Section 10.2).

10.3.1 Baseline and Delta Components

Syntax:
BaselineComponents ::=

BASELINE ComponentName_Listcomma “;”

DeltaExcludeComponents::=
EXCLUDE ComponentName_Listcomma “;”

DeltaIncludeComponents::=
INCLUDE ComponentName_Listcomma “;”

Meaning:
The list of components used in a top level structure declaration constitutes a baseline
configuration. These components are listed following the keyword BASELINE.

For convenience, if all the components are considered to be part of the configuration then the
baseline list can be omitted.

A list of components listed in a nested structure declaration constitutes a modification to the
enclosing baseline configuration. A modification could be a list of components to be removed

30 CMU/SEI-91-TR-18

from (EXCLUDE), or added to (INCLUDE) the enclosing baseline. The result is the baseline
configuration for any inner structure declarations.

The ability to define structures that differ only in minor details, through modifications to an
enclosing baseline structure, is provided as a convenience to the user. All structures could be
specified as “top level” i.e., non-nested structures, using the baseline construct to list all the
component without regard for what components any other structure might use. Nesting of
structures is just a way to simplify writing lists of components. There is no other meaning
attached to the nesting.

10.3.2 Port Bindings

Syntax:
ExternalPortBindings ::= BIND PortBind_Listcomma “;”

PortBind ::= PortName “=” PortName

Meaning:
When a task description specifies internal processes, the structure declarations must specify
which of the internal process ports implements a port of the outer task. This is specified via a
BIND declaration.

The left hand side of a port bind declaration is the name of an outer task port. The right hand
side of a port bind declaration is the name of an inner process port. The bindings between
internal and external ports are not permanent and can be replaced in alternative or nested
structures.

Notice that port bindings are restricted to tasks and instances of tasks (i.e., processes) only.
A port of a compound task cannot be implemented by a port of an internal channel.

10.3.3 Component Connections

Syntax:

ComponentConnection::=
 LinkName “:”
 SourcePortName_Listcomma
 “>>”
 DestinationPortName_Listcomma

SourcePortName ::= GlobalPortName | NULL

DestinationPortName ::= GlobalPortName | NULL

Examples:

l1: p1.output > > p2.input;
-- Link l1 is used to connect an output port of process
-- p1 to an input port of process p2.
-- l1 must be an instance of a channel and p1, p2

CMU/SEI-91-TR-18 31

-- must be instances of tasks

l3: p1.output > > NULL;
-- a link used to connect an output port of process p1
-- to a NULL port.

Meaning:

A component connection specifies a link, a set of source ports, and a list of destination ports.
The link transmits data from the source ports to the destination ports. The connection remains
in effect while the application retains its structure. However, the same components could be
connected in a different way in an alternative structure definition.

The source ports, listed to the left of the “>>”, must be compatible with the link input ports. That
is, source ports must be the output ports of some components and their types must be
compatible with the types of the link input ports. Similarly, the destination ports, listed to the
right of the “>>”, must be compatible with the link output ports. That is, they must be declared
as the input ports of some components and their types must be compatible with the types of
the link output ports.

In principle, the source and destination ports named in a component connection should always
be process ports, never link ports. However, it is often convenient to describe application
structures in which links feed messages to other links. Strict adherence to the rules would
require instantiating auxiliary, intermediate processes as the active components between two
link ports. These processes would have exactly one input port and one output port and their
behavior would be to loop receiving messages from the input port and transmitting them
through the output port.

The Durra compiler simplifies the writing of an application description by providing implicit
declarations of these auxiliary processes. These are instances of a “generic” task,
parameterized with the appropriate message type. These processes, however, are not visible
to the application developer and can not be named in baselines, cluster declarations, etc.
Thus, it is legal to include link ports in the source and destination lists of a component
connection statement, provided of course that the port directions and types are otherwise
compatible.

The matching of source and destination ports with the link ports depends on the order in which
the link ports are declared. The first source port must be type-compatible with the first link input
port, the second source port must be type-compatible with the second link input port, and so
on. All the link ports must be accounted for in this fashion.

The predefined name NULL can be used as a source or destination port for unused link ports.
This feature should be used with care because an application task could be inadvertently
blocked if it tries to receive data from a NULL port or send data to a NULL port. There is no
process or link at the other end.

Nonunion types are compatible if they have the same name. A union source type requires a
union link type and, in addition, the source type must be a subset of the corresponding link
type. A union destination type must be a superset of the corresponding link output type. A
nonunion source type must be equal to or, a subset of the corresponding link type. A nonunion
destination type requires a nonunion link type and both types must have the same name.

32 CMU/SEI-91-TR-18

Intuitively, these rules simply state that a message arriving on a source port can be received
by the corresponding link input port, and that a message leaving a link output port can be
received by the corresponding destination port.

10.4 Reconfigurations

Syntax:

Reconfiguration ::= FromStructure “=>’’ ToStructure
WHEN Expression |

ENTER “=>’’ StructureName {WHEN Expression}

FromStructure ::= StructureName |
‘“* ’’

ToStructure ::= StructureName |
EXIT |
PREVIOUS |
ENTER

Meaning:

A reconfiguration statement is a directive to the cluster managers. It is used to specify changes
in the current structure of the application and the conditions under which these changes take
effect. The reconfiguration condition is a Boolean expression involving signals from application
components and information available to the cluster managers at run time.

If there is only one structure defined and there is no reconfiguration condition to delay the start
of the application, the reconfiguration statement can be omitted.

The reconfiguration conditions are tested by the cluster managers concurrently. If more than
one of these conditions becomes true at the same time, the cluster managers select one of
the reconfiguration statements. This choice of alternative structure is non-deterministic.

The predefined structure name ENTER represents the empty, componentless structure before
the start of the application. There can be any number of reconfiguration statements specifying
ENTER as the previous structure. The conditional expression in a reconfiguration statement
specifying the initial application structure is optional. This is the only case in which the
conditional expression can be omitted.

 If a reconfiguration condition is specified for the initial application structure, the start of the
application is delayed until the condition is met. If there are several of these reconfiguration
statements and more than one of the reconfiguration conditions becomes true at the same
time, the cluster managers select one of the reconfiguration statements. This choice of initial
structure is non-deterministic.

The predefined structure name EXIT represents the empty structure at the end of the
application. There can be any number of reconfiguration statements specifying EXIT as the
next structure.

The predefined structure name PREVIOUS represents the structure before the application
adopted the current structure. There can be any number of reconfiguration statements

CMU/SEI-91-TR-18 33

specifying PREVIOUS as the next structure. It is a convenient way to specify the return to a
previous configuration after a temporary structure change.

If the current structure is the initial configuration, a return to the previous configuration is a
return to the empty, componentless structure denoted by the predefined structure name
ENTER.

The symbol “ * ” represents the set of all structure names and is a shorthand for specifying a
transition from any structure to the same next structure. There can be any number of
reconfiguration statements specifying “ * ” as the previous structure.

34 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 35

Appendix A Predefined Functions
Syntax:

FunctionName ::= current_dtime |
current_atime |
current_ptime ‘“’“GlobalComponentName “)’’ |
atime ‘“’“ArithmeticExpression “)’’ |
dtime ‘“’“ArithmeticExpression “)’’ |
ptime ‘“’“GlobalComponentName “,’’

 ArithmeticExpression “)’’ |
signal ‘“’“GlobalComponentName “,’’

ArithmeticExpression ‘“)” |
sizeof ‘“’“TypeName “)’’

Meaning:

The predefined functions are used to build expressions involving time values and type sizes
(sizeof). Calls to the predefined functions can appear anywhere a value of the same kind as
the return value can appear.

The values of time returned by the various functions described in this section are generated
by a “global clock” implemented by a suitable synchronization protocol. Which protocol is used
is an implementation detail that will vary from system to system. Application developers should
consult the appropriate implementation notes for additional details.

Example:

current_ptime(p1)
-- The amount of time component p1 has executed.

type msg is size 4 * sizeof(block);
-- The size of a new type (msg) is a function of the
-- size of a previously declared type (block).

A.1 current_atime, current_dtime, current_ptime

The function current_atime returns the number of seconds (a real value) from the start of
the application.The function call current_dtime returns the number of seconds from the
start of the current day (returns a value between 0.0 and 86,400.0). The function
current_ptime(component_name) returns the elapsed time in seconds since the start of a
given component (process or link) in the current configuration.

A.2 atime, dtime, ptime

The function atime(duration), dtime(duration), and ptime(component_name, duration) return
the value or point in time duration seconds after the start of the application, the start of the
current day, and the start of a component in the current configuration, respectively. The
parameter to dtime can exceed 86,400.0 when computing future values of time.

36 CMU/SEI-91-TR-18

A.3 Signal

The function signal(component_name, integer_value) returns true if the last signal raised by
a component had a given value and returns false if no signals have been raised so far by the
component or if the last signal raised had a different value.

Signal values are integer numbers that have no predefined meaning in the language. It is up
to the application and component developers to adopt the appropriate interpretation and
convention for signal values. See the Durra User’s Manual for details about signal raising and
other means of communication between the application components (processes and links)
and the cluster managers.

A.4 Sizeof

The function call sizeof(type_name) is evaluated at compile time and returns the size, in bits,
of the specified Durra type name in IntegerRange format:

type Byte is size 8;
type Stream is size *;
type My_Record is size 20.. 30;
type Four_Bytes is size 4 * sizeof(Byte);
type Byte_String is union (Byte, Stream);

sizeof(Byte) => 8
sizeof(Stream) => *
sizeof(My_Record) => 20.. 30;
sizeof(Four_Bytes) => 32;
sizeof(Byte_Stream) => *

CMU/SEI-91-TR-18 37

Appendix B Predefined Attributes
The following attributes are predefined in the language: “package_name”, “procedure_name”,
“process_name”, and “processor”.

B.1 Inheritance of Predefined Attributes

As described in Section 9, the component selection attributes are merged with the component
description attributes to define the set of attributes visible to the component implementation at
runtime. In addition to the merging of attributes between component selections and
descriptions, predefined attributes are also inherited through multiple levels of component
declarations, as illustrated in the following example:

-- Primitive components
task t11

attributes processor = “y”; cluster = “c1”;
end t11;

task t12 attributes cluster = “c2”; end t12;

-- Intermediate component
task t components p11: task t11; p12: task t12; end t;

-- Top level description
task example

components
p: task t attributes processor = “x”; end t;

end example;

Process P in the top level description is declared as an instance of task T, and the task
selection specifies a value for the processor attribute (“x’’). This value of the attribute is used
as a default processor attribute in all processes and links declared inside T and these
components in turn pass the attribute down to their internal processes and links.

Inheritance chains terminate when the inner component has an explicit definition of the
attribute. In this example, process p.p11, an internal components of task t will have
processor attribute “y” while process p.p12, the other component of task t will inherit
processor attribute “x”.

B.2 Processor Attribute

Syntax
ProcessorAttribute ::= “PROCESSOR” “=” StringValue

Examples:

Processor = “sun”;

38 CMU/SEI-91-TR-18

Processor = “sun1”;

Meaning
The value of the processor attribute is the logical name of a processor or processor class on
which a component implementation can execute

The value of the processor attribute can vary in specificity by using a processor class name or
an individual processor name. For example, SUN could mean any SUN processor; SUN1
could mean a specific SUN processor. If the user specifies the name of a class of processors
as the value of the processor attribute, any member of the class can be used to execute the
component.

Since cluster declarations (Section 10.2) determine how components are grouped together
into a single program, the processor attribute of the components, if specified, must be
identical. The Durra compiler will issue an error message if a cluster would contain
components meant to execute of different processors.

B.3 Package_name and Procedure_name Attributes

Syntax:
Package_NameAttribute::=

“PACKAGE_NAME” “=” StringValue

Procedure_NameAtribute::=
“PROCEDURE_NAME” “=” StringValue

Examples:

package_name = “broadcast”;

Meaning:
The value of the package_name attribute is the name of the Ada package that implements a
channel. The value of the procedure_name attribute is the name of the Ada procedure that
implements a task. In both cases this is the Ada unit name, not the file name. These two
attributes are mutually incompatible. At most one of them must be provided for a component:

1. Channels are always implemented as Ada packages and a link (instance of a
channel) must specify a package_name attribute either in the channel selec-
tion or the channel description.

2. Simple tasks are always instantiated as Ada procedures and a process
instantiated from a simple task must specify a procedure_name attribute
(either in the channel selection or the channel description).

3. Compound tasks do not have implementations and a process instantiated
from a compound task can not have either attribute.

Although the location and naming conventions of the Ada libraries may vary with the users
environment, only the names of the units implementing the tasks and channels are needed for
the Durra compiler to generate the cluster’s main unit.

CMU/SEI-91-TR-18 39

The steps necessary to compile and link the various units and clusters are Ada implementation
specific and outside the scope of this manual. See the Durra User’s Manual for additional
details.

B.4 Process_Name Attribute

Syntax:
Process_NameAttribute::=

“PROCESS_NAME” “=” StringValue

Examples:

process_name = “lan[3].simulator[4].pdu_generator”;

Meaning:
The value of the process_name attribute is an arbitrary string that can be used by a task
implementation to identify itself. For example, it could be used to differentiate terminal output
printed by concurrent tasks.

This attribute is special in that the Durra compiler will provide a default value for it. The default
value will be the full name of the process i.e., the concatenation of component names starting
with the application task description name down through the chain of process names leading
to the specific process.

40 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 41

References

[1] M.R. Barbacci and J.M. Wing. Durra: A Task-Level Description Language.
Technical report, CMU/SEI-86-TR-3 (DTIC: ADA178975), Software
Engineering Institute, Carnegie Mellon University, December, 1986.

[2] M.R. Barbacci, C.B. Weinstock, and J.M. Wing. "Programming at the
Processor-Memory-Switch Level." Proceedings of the 10th International
Conference on Software Engineering. Singapore, April, 1988.

[3] M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock. The Durra Runtime
Environment. Technical report, CMU/SEI-88-TR-18 (DTIC: ADA199480),
Software Engineering Institute, Carnegie Mellon University, July, 1988.

[4] M.R. Barbacci, D.L. Doubleday, C.B. Weinstock, S.L. Baur, D.C. Bixler, M.T.
Heins. Command, Control, Communications, and Intelligence Node: A Durra
Application Example. Technical report, CMU/SEI-89-TR-9 (DTIC:
ADA206575), Software Engineering Institute, Carnegie Mellon University,
February, 1989.

[5] M.R. Barbacci and J.M. Wing. "A Language for Distributed Applications."
Proceedings of the International Conference on Computer Languages. IEEE
Computer Society, New Orleans, Louisiana, March, 1990.

[6] M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock, “Application-Level
Programming.” Proceedings of the 10th International Conference on
Distributed Computing Systems, May, 1990, Paris, France.

42 CMU/SEI-91-TR-18

CMU/SEI-91-TR-18 43

Index

- 10, 11

" 10, 11
* 11, 13
+ 10, 11
/ 11
/= 11
= 11
> 11
>= 11
{ 7
| 7
} 7
‘‘ 7

ActualParameterPart 17
application description 2, 5
ArithExpression 11
Attribute 23
AttributeDescPart 23
AttributeName 9
AttributeSelPart 23

BaselineComponents 29
BehaviorPart 21

channel description 4
channel implementation 4
ChannelDescription 14
ChannelName 9
ChannelSelection 17
cluster 2, 4
cluster manager 5, 6, 32
ClusterClause 27
ClusterComponentName 28
ClusterDeclaration 28
ClusterName 9
CompilationUnit 13
ComponentClause 27
ComponentConnection 30
ComponentDeclaration 27

ComponentName 9
CompoundTaskDescription 14

DeltaExcludeComponents 29
DeltaIncludeComponents 29
DestinationPortName 30

ENTER structure name 32
EXIT structure name 32
Expression 11
ExternalPortBindings 30

Factor 11
FormalParameter 14
FormalParameterPart 14
FromStructure 32
FunctionCall 10
FunctionName 35

GlobalAttributeName 9
GlobalComponentName 9
GlobalLinkName 9
GlobalPortName 9

identifier 9
identifier parameter 14, 15
integer 11
integer parameter 14, 15
IntegerExpression 11
IntegerLiteral 10
IntegerRange 11
IntegerValue 10
InterfacePart 19

link 4
LinkName 9

NestedStructureDeclaration 29
null port 31

44 CMU/SEI-91-TR-18

Package_NameAttribute 38
ParameterName 9
ParameterType 14
port 4
PortBind 30
PortDeclaration 19
PortName 9
PREVIOUS structure name 32
Procedure_NameAtribute 38
process 4
Process_NameAttribute 39
ProcessName 9
ProcessorAttribute 37

real 11
real parameter 14, 15
RealLiteral 10
RealValue 10
Reconfiguration 32
ReconfigurationClause 27
Relation 11
RelOp 11

ScalarStructure 13
SimpleTaskDescription 14
SourcePortName 30
Specification 21
SpecificationName 9
SpecificationValue 21
string 11
string parameter 14, 15
StringLiteral 10
StringValue 10
StructureClause 27
StructureDeclaration 28
StructureName 9
StructurePart 27

task description 4
task implementation 4
TaskDescription 14
TaskName 9
TaskSelection 17

Term 11
ToStructure 32
TypeDeclaration 13
TypeName 9

UnionStructure 13

Value 10

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESD/AVS (SEI)
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESD/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

63756E N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-91-TR-18 ESD-91-TR-18

Durra: A Task-Level Description Language Reference Manual (Version 3)

December 1991 49

 Distributed programming, Distributed systems,

 task-description languages

Durra is a language designed to support the development of distributed programming applications
consisting of concurrent, large-grained processes devoted to specific pieces of the application. Dur-
ing execution time the application processes run on possibly separate processors, and communicate
with each other by sending messages of different types across communication links. The application
developer is responsible for prescribing a way to manage all of these resources, called a task-level
application description. It describes the processes to be executed, the assignments of processes to
processors, and the communication channels required to transmit messages data between pro-
cesses. Durra is a task-level description language, a notation in which to write these application

Mario R. Barbacci

ABSTRACT —continued from page one, block 19

descriptions.

This document is a revised version of the original reference manual1. It describes the syntax and
semantics of the language and incorporates all the language changes introduced as a result of
our experiences writing application descriptions in Durra.

A companion document, Durra: A Task-Level Description Language User’s Manual, describes
how to use the compiler and support tools.

1. M.R. Barbacci and J.M. Wing, Durra: A Task-Level Description Language. Technical reptort (CMU/SEI-86-TR-3,
DTIC: ADA178975), Software Engineering Institute, Carnegie Mellon University, December, 1986.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

