CHEM 206 section 01	
LECTURE #25	Wed. April 9, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	18.1-18.2
NEXT CLASS:	finish Ch.18 (up to 18.5)

(1)

18.2 Buffer solutions resist changes in pH...

- Compare how pH changes when add 5 mL of dilute HCl (0.01 M)
- Both beakers contain alizarin = indicator that is pink at neutral pH but yellow in acidic solution
- Use pH meter: monitor pH ⇒ verify cause of indicator's response

How does a buffer resist changes in pH?

A BUFFER = solution containing a mixture of a weak acid/base & its salt *i.e.,* a weak acid-base conjugate pair together in solution!

- Weak acid HA = proton donor ⇒ consumes added base
- Conjugate base A⁻ = "proton sink" ⇒ consumes added acid
- Solution's pH only changes significantly if HA or A⁻ runs out...

 $CH_{3}COOH(aq) + H_{2}O(l) \implies CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$

Understanding buffers: AN EFFECTIVE BUFFER HAS...

- 1. Roughly 1:1 ratio of weak conjugate A/B pair (
 - Want ability to react with random additions of acid or base
 - [HA]: [A⁻] from $10:1 \rightarrow 1:10$ works very well
 - Implication: a buffer will maintain a pH close to HA's $pK_{a...}$ $pK_{a} \pm 1-2$ pH units

HA & A⁻ BH⁺ & B:

2. Relatively large concentrations of both HA & A⁻

- So that do not run out of either HA or A⁻
- Usually see concentrations in $10^{-2} \rightarrow 1 \text{ M}$ range
- Provides high buffer capacity to counteract added acid/base
 amount of strong HA or B needed to change pH of 1L by 1 unit

3. No reactivity/toxicity towards substances/organisms you are trying to study!

(6)

Ex.1:	What is the	e pH of this	s buffer? (th	e long way)
Imagine you prepare a buffer by adding 0.125 mol of ammonium chloride to 500.mL of 0.500M aqueous ammonia (NH ₄ + K_a = 5.6×10 ⁻¹⁰).				
$NH_4^+(aq) + H_2O(1) \stackrel{K_a}{\longleftarrow} NH_3(aq) + H_3O^+(aq)$				
Initial	0.250 M	built into K_{α}	0.500 M	0
Change	- x		+ X	+ x
Eqm	0.250-x		0.500+x	+ x
$\mathcal{K}_{\alpha} = \left[\right]$	$\zeta_{a} = \frac{[NH_{3}][H_{3}O^{+}]}{[NH_{4}^{+}]} \longrightarrow 5.6 \times 10^{-10} = \frac{(0.500 + x)x}{0.250 - x}$			<u>)+x)x</u> -x
pH = -log][H ₃ O⁺]	K << 1000× s ⇒ double a	maller than BOTF pproximation (top	l large initial []'s & bottom!)
= -log = 9.5	(1.18×10 ⁻⁵)] 5 <i>(2SF)</i>	So: 5.6	$\times 10^{-10} \approx \frac{0.500}{0.250}$	×
Adding H will chan only very	H₃O⁺ or OH⁻ ge pH ⁄ <u>SLIGHTLY</u>		x = (0.250 x 5.6) x = 2.80x10 ⁻¹⁰ N	×10 ⁻¹⁰)/0.500 \ = [H ₃ O ⁺]

Estimating the pH of a BUFFER: the Henderson-Hasselbalch Eq'n **IF SOLUTION CONTAINS:** $HA(aq) + H_2O(l) \implies A^-(aq) + H_3O^+(aq)$ 1) Weak acid & conj.base $\frac{\text{double}}{\text{approx'n}} \stackrel{K_a}{\longrightarrow} \frac{[A^-]_0 [H_3 O^+]_{eq}}{[HA]_0}$ 2) High concentrations 3) [HA] ≈ [A⁻] THEN: it is a buffer double approx'n works $|H_3O^+| \approx K_a [HA]_0$ Flip quotient Henderson-Hasselbalch Eq'n to reverse → -log[H₃O⁺] ≈ -logK_a + -log[HA]₀ log's sign $pH = pK_a + \log[A^-]_0$ [A-] [HA] User's manual for Henderson-Hasselbalch equation: • HOW: use initial [A-]:[HA] ratio (= double approximation) • WHEN: if $[A^{-}]_{0}$: $[HA]_{0}$ = 10:1 \rightarrow 1:10... (but not outside this range) • NOTE: do NOT use for other solutions (must be ~1:1 weak conj. pair...)

(8)

(b) Calculate the pH of the buffer after rxn with HCl						
1 st : s	toichiometry:	rxn of	strong acid	with con	j.base: NH ₃	
	HCl(aq)	+	NH3(aq)	\rightarrow	NH₄Cl(aq)	
Initial: 100% r	#n _{HCl} = 0.010 9xn: - 0.010	00 mol 00	#n _{NH3} = 0.25 + 0.0	500 mol 100	#n _{NH4+} = 0.125 + 0.010	5 mol 10
After i	rxn: 0		= 0.24	100 mol	= 0.13	5 mol
2 nd : new analysis of buffer's pH (eqm calc. or using H-H eqn)			qn)			
	NH4 ⁺ (aq)	+ H ₂ O($(h) \stackrel{K_a}{\longleftarrow} NF$	┨ ₃ (<i>aq</i>) +	H ₃ O ⁺ (<i>aq</i>)	
pH = pK _a + log <u>[A-]</u>						
			= 9.252 + 0 = 9.50 <i>(25F</i>	.250) <i>SLIGH</i> <i>pH 9.55</i>	TLY more acid before HCl ac	l ic dded
(10)	Note: if we'd pH would have	added changed	the same # o by same amo (to becom	of moles of unt, but in ne very slig	of strong base opposite direc ghtly more alka	:: ction aline)

Summary: Attacking quantitative buffer problems

TO CALCULATE pH OF BUFFER: two acceptable approaches...

- Full equilibrium calculation: using $HA + H_2O \rightleftharpoons A^- + H_3O^+$
- Henderson-Hasselbalch eq'n (double approximation short-cut)

For calculations: simplest to consider conj. A/B pair as HA & $A^ \Rightarrow$ use acid-dissociation rxn (eqm constant K_a) even for basic buffers:

 $NH_4^+(aq) + H_2O(l) \stackrel{K_a}{\longrightarrow} NH_3(aq) + H_3O^+(aq)$

TO CALCULATE pH AFTER ADDING ACID/BASE:

1. Deal with stoichiometry 1st: using $HA + OH^- \rightarrow A^- + H_2O$ $OR \quad A^- + H_3O^+ \rightarrow HA + H_2O$

to determine new starting concentrations of HA & A⁻

2. Then "allow system to come to eqm": $HA + H_2O \rightleftharpoons A^- + H_3O^+$ or use Henderson-Hasselbalch eq'n

(11)

A buffer is used when your system is sensitive to pH

Biological molecules only work properly at pH they evolved at!

- Gaining or losing a H⁺ affects molecule's:
 - charge, # lone pairs, e⁻s location (localized/resonance-delocalized)
 ⇒ influences interactions with other molecules!!
- If studying an enzyme-catalyzed rxn, in vivo organisms, etc...
- & acid or base may be released into your system
 - in a living system: most metabolism releases H⁺
 - solution exposed to air: CO_2 dissolves to yield $H_2CO_{3...}$ $\therefore H^*$

Blood is naturally buffered by bicarbonate/carbonate

Constant amount of CO₂ dissolved in blood from air/metabolism

$$\Rightarrow$$
 H₂CO₃(aq) pK_a = 6.4

Blood pH 7.4 ⇔ [HCO₃-]:[H₂CO₃] ≈ 10.8 : 1

SOME SIMPLE BUFFERS USED IN BIOLOGY LABS:

- H_2CO_3 / HCO_3^- pH ~ 6.4 with 1:1 initial ratio
- $H_2PO_4^-$ / HPO_4^{2-} pH ~ 7.2 with 1:1 initial ratio

(12)

How to choose & prepare a buffer

Table 18.1 • Some Commonly Used Buffer Systems

Weak Acid	Conjugate Base	на′s pK _a	Useful pH Range
Phthalic acid, C ₆ H ₄ (CO ₂ H) ₂	Hydrogen phthalate ion $C_6H_4(CO_2H)(CO_2)^-$	(2.89)	1.9-3.9
Acetic acid, CH ₃ CO ₂ H	Acetate ion, CH ₃ CO ₂	(4.74)	3.7-5.7
Dihydrogen phosphate ion, H ₂ PO ₄ -	Hydrogen phosphate ion, HP042-	(7.21)	6.2-8.2
Hydrogen phosphate ion, HPO42-	Phosphate ion, PO43-	(12.44	11.3-13.3

DECIDING ON A BUFFER SYSTEM TO USE:

- 1. Select acid with pK_a near required pH: maintain pH of $pK_a \pm 1-2$
- 2. Acid & salt must be highly soluble:

3. For biological applications:

- high conc. ~0.1 < [] < 10 M minimize toxicity *etc...*
- PREPARATION OF A BUFFER IN THE LAB:
 - 1. Calculate $[A^-]/[HA]$ ratio needed for desired pH ensure within 1:10 \rightarrow 10:1 working range...
 - 2. Dissolve appropriate quantities of acid & salt
 - 3. Accurately measure pH with pH meter
- LAB BOOK
- 4. Adjust to exact pH by adding strong acid or base (13)

Ex.3: Choosing & understanding a buffer...

Which pair would be best to keep a solution at pH ~ 3?

- (a) HCl and NaCl
- (b) NH_3 and NH_4Cl
- (c) CH_3COOH and CH_3COONa
- (d) Na_3PO_4 and NaH_2PO_4
- (e) NaH_2PO_4 and Na_2HPO_4
- (f) NaH_2PO_4 and H_3PO_4

<u>DATA:</u>	<u>K</u> a
NH₄⁺	5.5x10 ⁻¹⁰
CH3COOH	1.8×10 ⁻⁵
H ₃ PO₄	7.5x10 ⁻³
H₂PO₄ ⁻	6.2x10 ⁻⁸
HPO42-	4.8×10 ⁻¹³

For this buffer: (on your own)

Describe how to prepare 1.0 L of buffer that is 1.00M in both species, & estimate (by calculation) its pH. Then determine the pH after you add 25mL of...

- (a) 0.20M HCl
- (b) 0.20M NaOH
- Strategy:
 - 1. Identify initial [HA] & [A^{-}], and pH
 - 2. Deal with 100% rxn with H^+ or OH^-
 - 3. Calculate pH for new [HA]:[A⁻] ratio

(14)

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: sections 18.1-18.2

Practice: identifying buffer solutions calculating pH of buffers calculating pH changes if add acid/base

Review: ionic compound solubilities from Ch.5

+ WORK ON Problems from Ch.17 & 18.1-18.3

(15)