
Copyright 2015 wolfSSL Inc. All rights reserved.

1

wolfSSL User Manual
March 18, 2015

Version 3.3.0

Table of Contents

Chapter	
 1:	
 	
 Introduction
Chapter	
 2:	
 	
 Building	
 wolfSSL

2.1	
 Getting	
 wolfSSL	
 Source	
 Code
2.2	
 Building	
 on	
 *nix

	
 2.3	
 Building	
 on	
 Windows
2.4	
 Building	
 in	
 a	
 Non-­‐Standard	
 Environment

	
 2.5	
 Build	
 Options	
 (./configure	
 Options)
	
 2.6	
 Cross	
 Compiling
Chapter	
 3:	
 	
 Getting	
 Started
	
 3.1	
 General	
 Description

3.2	
 Testsuite
	
 3.3	
 Client	
 Example
	
 3.4	
 Server	
 Example
	
 3.5	
 EchoServer	
 Example
	
 3.6	
 EchoClient	
 Example
	
 3.7	
 Benchmark
	
 3.8	
 Changing	
 a	
 Client	
 Application	
 to	
 Use	
 wolfSSL
	
 3.9	
 Changing	
 a	
 Server	
 Application	
 to	
 Use	
 wolfSSL
Chapter	
 4:	
 	
 Features
	
 4.1	
 Features	
 Overview
	
 4.2	
 Protocol	
 Support
	
 4.3	
 Cipher	
 Support
	
 4.4	
 Hardware	
 Accelerated	
 Crypto
	
 4.5	
 SSL	
 Inspection
	
 4.6	
 Compression
	
 4.7	
 Pre-­‐Shared	
 Keys
	
 4.8	
 Client	
 Authentication
	
 4.9	
 Server	
 Name	
 Indication	
 (SNI)
	
 4.10	
 Handshake	
 Modifications
	
 4.11	
 Truncated	
 HMAC
Chapter	
 5:	
 	
 Portability

5.1	
 Abstraction	
 Layers

Copyright 2015 wolfSSL Inc. All rights reserved.

2

5.2	
 Supported	
 Operating	
 Systems
5.3	
 Supported	
 Chipmakers

Chapter	
 6:	
 	
 Callbacks
6.1	
 Handshake	
 Callback
6.2	
 Timeout	
 Callback

Chapter	
 7:	
 	
 Keys	
 and	
 Certificates
7.1	
 Supported	
 Formats	
 and	
 Sizes
7.2	
 Certificate	
 Loading
7.3	
 Certificate	
 Chain	
 Verification
7.4	
 Domain	
 Name	
 Check	
 for	
 Server	
 Certificates
7.5	
 No	
 File	
 System	
 and	
 Using	
 Certificates
7.6	
 Serial	
 Number	
 Retrieval
7.7	
 RSA	
 Key	
 Generation
7.8	
 Certificate	
 Generation
7.9	
 	
 Convert	
 raw	
 ECC	
 key

Chapter	
 8:	
 	
 Debugging
	
 8.1	
 Debugging	
 and	
 Logging
	
 8.2	
 Error	
 Codes
Chapter	
 9:	
 	
 Library	
 Design
	
 9.1	
 Library	
 Headers

9.2	
 Startup	
 and	
 Exit
	
 9.3	
 Structure	
 Usage
	
 9.4	
 Thread	
 Safety
	
 9.5	
 Input	
 and	
 Output	
 Buffers

9.6	
 Secure	
 Renegotiation
Chapter	
 10:	
 	
 wolfCrypt	
 Usage	
 Reference

10.1	
 Hash	
 Functions
	
 10.2	
 Keyed	
 Hash	
 Functions
	
 10.3	
 Block	
 Ciphers
	
 10.4	
 Stream	
 Ciphers
	
 10.5	
 Public	
 Key	
 Cryptography
Chapter	
 11:	
 	
 SSL	
 Tutorial
Chapter	
 12:	
 	
 Best	
 Practices	
 for	
 Embedded	
 Devices
Chapter	
 13:	
 	
 OpenSSL	
 Compatibility
Chapter	
 14:	
 	
 Licensing
Chapter	
 15:	
 	
 Support	
 and	
 Consulting
Chapter	
 16:	
 	
 wolfSSL	
 Updates
Chapter	
 17:	
 	
 wolfSSL	
 API	
 Reference

Copyright 2015 wolfSSL Inc. All rights reserved.

3

Appendix	
 A:	
 	
 SSL/TLS	
 Overview
Appendix	
 B:	
 	
 RFCs,	
 Specifications,	
 and	
 Reference
Appendix	
 C:	
 	
 Error	
 Codes

Chapter 1: Introduction

This manual is written as a technical guide to the wolfSSL, formerly CyaSSL, embedded
SSL library. It will explain how to build and get started with wolfSSL, provide an
overview of build options, features, portability enhancements, support, and much more.

Why Choose wolfSSL?

There are many reasons to choose wolfSSL as your embedded SSL solution. Some of
the top reasons include size (typical footprint sizes range from 20-100 kB), support for
the newest standards (SSL 3.0, TLS 1.0, TLS 1.1, TLS 1.2, DTLS 1.0, and DTLS 1.2),
current and progressive cipher support (including stream ciphers), multi-platform, royalty
free, and an OpenSSL compatibility API to ease porting into existing applications which
have previously used the OpenSSL package. For a complete feature list, see Section
4.1.

Copyright 2015 wolfSSL Inc. All rights reserved.

4

Chapter 2: Building wolfSSL

wolfSSL (formerly CyaSSL) was written with portability in mind, and should generally be
easy to build on most systems. If you have difficulty building wolfSSL, please don’t
hesitate to seek support through our support forums (http://www.wolfssl.com/forums)
or contact us directly at support@wolfssl.com.

This chapter explains how to build wolfSSL on Unix and Windows, and provides
guidance for building wolfSSL in a non-standard environment. You will find a getting
started guide in Chapter 3 and an SSL tutorial in Chapter 11.

When using the autoconf / automake system to build wolfSSL, wolfSSL uses a single
Makefile to build all parts and examples of the library, which is both simpler and faster
than using Makefiles recursively.

2.1 Getting wolfSSL Source Code

The most recent version of wolfSSL can be downloaded from the wolfSSL website as a
ZIP file:

http://wolfssl.com/yaSSL/download/downloadForm.php

After downloading the ZIP file, unzip the file using the “unzip” command. To use native
line endings, enable the “-a” modifier when using unzip. From the unzip man page, the
“-a” modifier functionality is described:

“The -a option causes files identified by zip as text files (those with the `t' label in zipinfo
listings, rather than `b') to be automatically extracted as such, converting line endings,
end-of-file characters and the character set itself as necessary. (For example, Unix files
use line feeds (LFs) for end-of-line (EOL) and have no end-of-file (EOF) marker; Apple
Operating Systems use carriage returns (CRs) for EOLs; and most PC operating
systems use CR+LF for EOLs and control-Z for EOF. In addition, IBM mainframes and
the Michigan Terminal System use EBCDIC rather than the more common ASCII
character set, and NT supports Unicode.)”

NOTE: Beginning with the release of wolfSSL 2.0.0rc3, the directory structure of
wolfSSL was changed as well as the standard install location. These changes were

Copyright 2015 wolfSSL Inc. All rights reserved.

5

made to make it easier for open source projects to integrate wolfSSL. For more
information on header and structure changes, please see sections 9.1 and 9.3.

2.2 Building on *nix

When building wolfSSL on Linux, *BSD, OS X, Solaris, or other *nix-like systems, use
the autoconf system. To build wolfSSL you only need to run two commands:

./configure
make

You can append any number of build options to ./configure. For a list of available build
options, please see Section 2.5 or run:

./configure --help

from the command line to see a list of possible options to pass to the ./configure script.
To build wolfSSL, run:

make

To install wolfSSL run:

make install

You may need superuser privileges to install, in which case precede the command with
sudo:

sudo make install

To test the build, run the testsuite program from the root wolfSSL source directory:

./testsuite/testsuite.test

Or use autoconf to run the testsuite as well as the standard wolfSSL API and crypto
tests:

make test

Copyright 2015 wolfSSL Inc. All rights reserved.

6

Further details about expected output of the testsuite program can be found in Section
3.2. If you want to build only the wolfSSL library and not the additional items (examples,
testsuite, benchmark app, etc.), you can run the following command from the wolfSSL
root directory:

make src/libwolfssl.la

2.3 Building on Windows

VS 2008: Solutions are included for Visual Studio 2008 in the root directory of the
install. For use with Visual Studio 2010 and later, the existing project files should be
able to be converted during the import process.

Note:
If importing to a newer version of VS you will be asked: “Do you want to overwrite the
project and its imported propery sheets?” You can avoid the following by selecting “No”.
Otherwise if you select “Yes”, you will see warnings about EDITANDCONTINUE being
ignored due to SAFESEH specification. You will need to right click on the testsuite,
sslSniffer, server, echoserver, echoclient, and client individually and modify their
Properties->Configuration Properties->Linker->Advanced (scroll all the way to the
bottom in Advanced window) Locate “Image Has Safe Exception Handlers” click the
drop down arrow on the far right and change this to No (/SAFESEH:NO) for each of the
aforementioned. The other option is to disable EDITANDCONTINUE which we have
found to be useful for debugging purposes and is therefore not recommended.

VS 2010: You will need to download Service Pack 1 to build wolfSSL solution once it
has been updated. If VS reports a linker error, clean the project then Rebuild the project
and the linker error should be taken care of.

VS 2013 (64 bit solution): You will need to download Service Pack 4 to build wolfSSL
solution once it has been updated. If VS reports a linker error, clean the project then
Rebuild the project and the linker error should be taken care of.

To test each build, choose “Build All” from the Visual Studio menu and then run the
testsuite program. To edit build options in the Visual Studio project, select your desired
project (wolfssl, echoclient, echoserver, etc.) and browse to the “Properties” panel.

Cygwin: If using Cygwin, or other toolsets for Windows that provides *nix-like
commands and functionality, please follow the instructions in section 2.2, above, for

Copyright 2015 wolfSSL Inc. All rights reserved.

7

“Building on *nix”. If building wolfSSL for Windows on a Windows development
machine, we recommend using the included Visual Studio project files to build wolfSSL.

2.4 Building in a non-standard environment

While not officially supported, we try to help users wishing to build wolfSSL in a non-
standard environment, particularly with embedded and cross-compilation systems.
Below are some notes on getting started with this.

1. The source and header files need to remain in the same directory structure as
they are in the wolfSSL download package.

2. Some build systems will want to explicitly know where the wolfSSL header files

are located, so you may need to specify that. They are located in the
<wolfssl_root>/wolfssl directory. Typically, you can add the <wolfssl_root>
directory to your include path to resolve header problems.

3. wolfSSL defaults to a little endian system unless the configure process detects

big endian. Since users building in a non-standard environment aren't using the
configure process, BIG_ENDIAN_ORDER will need to be defined if using a big
endian system.

4. wolfSSL benefits speed-wise from having a 64-bit type available. The configure

process determines if long or long long is 64 bits and if so sets up a define. So
if sizeof(long) is 8 bytes on your system, define SIZEOF_LONG 8. If it isn't but
sizeof(long long) is 8 bytes, then define SIZEOF_LONG_LONG 8.

5. Try to build the library, and let us know if you run into any problems. If you need

help, contact us at info@wolfssl.com.

6. Some defines that can modify the build are listed in the following sub-sections,
below. For more verbose descriptions of many options, please see section 2.5.1,
“Build Option Notes”.

2.4.1 Removing Features

The following defines can be used to remove features from wolfSSL. This can be
helpful if you are trying to reduce the overall library footprint size. In addition to defining

Copyright 2015 wolfSSL Inc. All rights reserved.

8

a NO_<feature-name> define, you can also remove the respective source file as well
from the build (but not the header file).

NO_WOLFSSL_CLIENT removes calls specific to the client and is for a server-
only builds. You should only use this if you want to remove a few calls for the
sake of size.

NO_WOLFSSL_SERVER likewise removes calls specific to the server side.

NO_DES3 removes the use of DES3 encryptions. DES3 is built-in by default
because some older servers still use it and it's required by SSL 3.0.

NO_DH and NO_AES are the same as the two above, they are widely used.

NO_DSA removes DSA since it's being phased out of popular use.

NO_ERROR_STRINGS disables error strings. Error strings are located in
src/internal.c for wolfSSL or wolfcrypt/src/asn.c for wolfCrypt.

NO_HMAC removes HMAC from the build.

NO_MD4 removes MD4 from the build, MD4 is broken and shouldn't be used.

NO_MD5 removes MD5 from the build.

NO_SHA256 removes SHA-256 from the build.

NO_PSK turns off the use of the pre-shared key extension. It is built-in by
default.

NO_PWDBASED disables password-based key derivation functions such
as PBKDF1, PBKDF2, and PBKDF from PKCS #12.

NO_RC4 removes the use of the ARC4 stream cipher from the build. ARC4 is
built-in by default because it is still popular and widely used.

NO_RABBIT and NO_HC128 remove stream cipher extensions from the build.

NO_SESSION_CACHE can be defined when a session cache is not needed.
This should reduce memory use by nearly 3 kB.

Copyright 2015 wolfSSL Inc. All rights reserved.

9

NO_TLS turns off TLS. We don’t recommend turning off TLS.

SMALL_SESSION_CACHE can be defined to limit the size of the SSL session
cache used by wolfSSL. This will reduce the default session cache from 33
sessions to 6 sessions and save approximately 2.5 kB.

2.4.2 Enabling Features Disabled by Default

WOLFSSL_CERT_GEN turns on wolfSSL’s certificate generation functionality.
See chapter 7 for more information.

WOLFSSL_DER_LOAD allows loading DER-formatted CA certs into the
wolfSSL context (WOLFSSL_CTX) using the function
wolfSSL_CTX_der_load_verify_locations().

WOLFSSL_DTLS turns on the use of DTLS, or datagram TLS. This isn't widely
supported or used so it is off by default.

WOLFSSL_KEY_GEN turns on wolfSSL’s RSA key generation functionality.
See chapter 7 for more information.

WOLFSSL_RIPEMD enables RIPEMD-160 support.

WOLFSSL_SHA384 enables SHA-384 support.

WOLFSSL_SHA512 enables SHA-512 support.

DEBUG_WOLFSSL builds in the ability to debug. For more information
regarding debugging wolfSSL, see Chapter 8. It is off by default.

HAVE_AESCCM enables AES-CCM support.

HAVE_AESGCM enables AES-GCM support.

HAVE_CAMELLIA enables Camellia support.

HAVE_CHACHA enables ChaCha20 support.

HAVE_POLY1305 enables Poly1305 support.

Copyright 2015 wolfSSL Inc. All rights reserved.

10

HAVE_CRL enables Certificate Revocation List (CRL) support.

HAVE_ECC enables Elliptical Curve Cryptography (ECC) support.

HAVE_LIBZ is an extension that can allow for compression of data over the
connection. It is off by default and normally shouldn't be used, see the note
below under configure notes libz.

HAVE_OCSP enables Online Certificate Status Protocol (OCSP) support.

OPENSSL_EXTRA builds even more OpenSSL compatibility into the library, and
enables the wolfSSL OpenSSL compatibility layer to ease porting wolfSSL into
existing applications which had been designed to work with OpenSSL. It is off by
default.

TEST_IPV6 turns on testing of IPv6 in the test applications. wolfSSL proper is IP
neutral, but the testing applications use IPv4 by default.

2.4.3 Customizing or Porting wolfSSL

WOLFSSL_CALLBACKS is an extension that allows debugging callbacks
through the use of signals in an environment without a debugger, it is off by
default. It can also be used to set up a timer with blocking sockets. Please see
Chapter 6 for more information.

WOLFSSL_USER_IO allows the user to remove automatic setting of the default
I/O functions EmbedSend() and EmbedReceive(). Used for custom I/O
abstraction layer (see section 5.1 for more details).

NO_FILESYSTEM is used if stdio isn't available to load certificates and key files.
This enables the use of buffer extensions to be used instead of the file ones.

NO_INLINE disables the automatic inlining of small, heavily used functions.
Turning this on will slow down wolfSSL and actually make it bigger since these
are small functions, usually much smaller than function call setup/return. You’ll
also need to add wolfcrypt/src/misc.c to the list of compiled files if you’re not
using autoconf.

Copyright 2015 wolfSSL Inc. All rights reserved.

11

NO_DEV_RANDOM disables the use of the default /dev/random random number
generator. If defined, the user needs to write an OS-specific GenerateSeed()
function (found in “wolfcrypt/src/random.c”).

NO_MAIN_DRIVER is used in the normal build environment to determine
whether a test application is called on its own or through the testsuite driver
application. You'll only need to use it with the test files: test.c, client.c, server.c,
echoclient.c, echoserver.c, and testsuite.c

NO_WRITEV disables simulation of writev() semantics.

SINGLE_THREADED is a switch that turns off the use of mutexes. wolfSSL
currently only uses one for the session cache. If your use of wolfSSL is always
single threaded you can turn this on.

USER_TICKS allows the user to define their own clock tick function if time(0) is
not wanted. Custom function needs second accuracy, but doesn’t have to be
correlated to EPOCH. See LowResTimer() function in “wolfssl_int.c”.

USER_TIME disables the use of time.h structures in the case that the user wants
(or needs) to use their own. See “wolfcrypt/src/asn.c” for implementation details.
The user will need to define and/or implement XTIME, XGMTIME, and
XVALIDATE_DATE.

USE_CERT_BUFFERS_1024 enables 1024-bit test certificate and key buffers
located in <wolfssl_root>/wolfssl/certs_test.h. Helpful when testing on and
porting to embedded systems with no filesystem.

USE_CERT_BUFFERS_2048 enables 2048-bit test certificate and key buffers
located in <wolfssl_root>/wolfssl/certs_test.h. Helpful when testing on and
porting to embedded systems with no filesystem.

2.4.4 Reducing Memory Usage

TFM_TIMING_RESISTANT can be defined when using fast math
(USE_FAST_MATH) on systems with a small stack size. This will get rid of the
large static arrays.

Copyright 2015 wolfSSL Inc. All rights reserved.

12

WOLFSSL_SMALL_STACK can be used for devices which have a small stack
size. This increases the use of dynamic memory in wolfcrypt/src/integer.c, but
can lead to slower performance.

2.4.5 Increasing Performance

WOLFSSL_AESNI enables use of AES accelerated operations which are built
into some Intel chipsets. When using this define, the aes_asm.s file must be
added to the wolfSSL build sources.

USE_FAST_MATH switches the big integer library to a faster one that uses
assembly if possible. fastmath will speed up public key operations like RSA, DH,
and DSA. The big integer library is generally the most portable and generally
easiest to get going with, but the negatives to the normal big integer library are
that it is slower and it uses a lot of dynamic memory. Because the stack memory
usage can be larger when using fastmath, we recommend defining
TFM_TIMING_RESISTANT as well when using this option.

2.4.6 Stack or Chip Specific Defines

wolfSSL can be built for a variety of platforms and TCP/IP stacks. The following defines
are located in ./wolfssl/wolfcrypt/settings.h and are commented out by default. Each
can be uncommented to enable support for the specific chip or stack referenced below.

IPHONE can be defined if building for use with iOS.

THREADX can be defined when building for use with the ThreadX RTOS
(www.rtos.com).

MICRIUM can be defined when building for Micrium’s µC/OS
(www.micrium.com).

MBED can be defined when building for the mbed prototyping platform
(www.mbed.org).

MICROCHIP_PIC32 can be defined when building for Microchip’s PIC32 platform
(www.microchip.com).

MICROCHIP_TCPIP_V5 can be defined specifically version 5 of microchip tcp/ip
stack.

Copyright 2015 wolfSSL Inc. All rights reserved.

13

MICROCHIP_TCPIP can be defined for microchip tcp/ip stack version 6 or later.

WOLFSSL_MICROCHIP_PIC32MZ can be defined for PIC32MZ hardware
cryptography engine.

FREERTOS can be defined when building for FreeRTOS (www.freertos.org). If
using LwIP, define WOLFSSL_LWIP as well.

FREERTOS_WINSIM can be defined when building for the FreeRTOS windows
simulator (www.freertos.org).

EBSNET can be defined when using EBSnet products and RTIP.

WOLFSSL_LWIP can be defined when using wolfSSL with the LwIP TCP/IP
stack (http://savannah.nongnu.org/projects/lwip/).

WOLFSSL_GAME_BUILD can be defined when building wolfSSL for a game
console.

WOLFSSL_LSR can be define if building for LSR.

FREESCALE_MQX can be defined when building for Freescale
MQX/RTCS/MFS (www.freescale.com). This in turn defines
FREESCALE_K70_RNGA to enable support for the Kinetis H/W Random
Number Generator Accelerator

WOLFSSL_STM32F2 can be defined when building for STM32F2. This define
also enables STM32F2 hardware crypto and hardware RNG support in wolfSSL.
(http://www.st.com/internet/mcu/subclass/1520.jsp)

COMVERGE can be defined if using Comverge settings.

WOLFSSL_QL can be defined if using QL SEP settings.

WOLFSSL_EROAD can be defined building for EROAD.

WOLFSSL_IAR_ARM can be defined if build for IAR EWARM.

WOLFSSL_TIRTOS can be defined when building for TI-RTOS.

Copyright 2015 wolfSSL Inc. All rights reserved.

14

2.5 Build Options (./configure Options)

The following are options which may be appended to the ./configure script to customize
how the wolfSSL library is built.

By default, wolfSSL only builds in shared mode, with static mode being disabled. This
speeds up build times by a factor of two. Either mode can be explicitly disabled or
enabled if desired.

Option Default
Value

Description

--enable-debug Disabled Enable wolfSSL debugging support

--enable-singlethreaded Disabled Enable single threaded mode, no multi
thread protections

--enable-dtls Disabled Enable wolfSSL DTLS support

--enable-opensslextra Disabled Enable extra OpenSSL API
compatibility, increases the size

--enable-ipv6 Disabled Enable testing of IPv6, wolfSSL proper
is IP neutral

--enable-bump Disabled Enable SSL Bump build

--enable-leanpsk Disabled Enable Lean PSK build

--enable-bigcache Disabled Enable a big session cache

--enable-hugecache Disabled Enable a huge session cache

--enable-smallcache Disabled Enable small session cache

--enable-savesession Disabled Enable persistent session cache

--enable-savecert Disabled Enable persistent cert cache

--enable-atomicuser Disabled Enable Atomic User Record Layer

Copyright 2015 wolfSSL Inc. All rights reserved.

15

--enable-pkcallbacks Disabled Enable Public Key Callbacks

--enable-sniffer Disabled Enable wolfSSL sniffer support

--enable-aesgcm Disabled Enable AES-GCM support

--enable-aesccm Disabled Enable AES-CCM support

--enable-aesni Disabled Enable wolfSSL Intel AES-NI support

--enable-poly1305 Disabled Enable Poly1305

--enable-camellia Disabled Enable Camellia support

--enable-md2 Disabled Enable MD2 support

--enable-nullcipher Disabled Enable wolfSSL NULL cipher support

--enable-ripemd Disabled Enable wolfSSL RIPEMD-160 support

--enable-blake2 Disabled Enable wolfSSL BLAKE2 support

--enable-sha512 Disabled Enable wolfSSL SHA-512 support

--enable-sessioncerts Disabled Enable session cert storing

--enable-keygen Disabled Enable key generation

--enable-certgen Disabled Enable cert generation

--enable-certreq Disabled Enable cert request generation

--enable-sep Disabled Enable SEP extensions

--enable-hkdf Disabled Enable HKDF (HMAC-KDF)

--enable-dsa Disabled Enable DSA

--enable-ecc Disabled Enable ECC

--enable-fpecc Disabled Enable Fixed Point cache ECC

--enable-eccencrypt Disabled Enable ECC encrypt

Copyright 2015 wolfSSL Inc. All rights reserved.

16

--enable-psk Disabled Enable PSK (Pre Shared Keys)

--enable-errorstrings Enabled Enable error strings table

--enable-oldtls Enabled Enable old TLS version < 1.2

--enable-stacksize Disabled Enable stack size info on examples

--enable-memory Enabled Enable memory callbacks

--enable-rsa Enabled Enable RSA

--enable-dh Disabled Enable DH

--enable-asn Enabled Enable ASN

--enable-aes Enabled Enable AES

--enable-coding Enabled Enable Coding base 16/64

--enable-des3 Enabled Enable DES3

--enable-arc4 Enabled Enabled ARC4

--enable-md5 Enabled Enable MD5

--enable-sha Enabled Enable SHA

--enable-md4 Disabled Enable MD4

--enable-pwdbased Disabled Enable PWDBASED

--enable-hc128 Disabled Enable streaming cipher HC-128

--enable-rabbit Disabled Enable streaming cipher RABBIT

--enable-chacha Disabled Enable ChaCha20

--enable-fips Disabled Enable FIPS 140-2

--enable-hashdrbg Disabled Enable Hash DRBG support

--enable-filesystem Enabled Enable Filesystem support

--enable-inline Enabled Enable inline functions

Copyright 2015 wolfSSL Inc. All rights reserved.

17

--enable-ocsp Disabled Enable OCSP

--enable-crl Disabled Enable CRL

--enable-crl-monitor Disabled Enable CRL Monitor

--enable-sni Disabled Enable SNI

--enable-maxfragment Disabled Enable Maximum Fragment Length

--enable-truncatedhmac Disabled Enable Truncated HMAC

--enable-renegotiation-
indication

Disabled Enable Renegotiation Indication

--enable-supportedcurves Disabled Enable Supported Elliptic Curves

--enable-tlsx Disabled Enable all TLS extensions

--enable-pkcs7 Disabled Enable PKCS#7 support

--enable-scep Disabled Enable wolfSCEP

--enable-smallstack Disabled Enable Small Stack Usage

--enable-valgrind Disabled Enable valgrind for unit tests

--enable-testcert Disabled Enable Test Cert

--enable-iopool Disabled Enable I/O Pool example

--enable-fastmath Enabled
on x86_64

Enable fast math ops

--enable-fasthugemath Disabled Enable fast math + huge code

--enable-examples Enabled Enable examples

--enable-mcapi Disabled Enable Microchip API

--enable-jobserver [=no/yes/#] yes Enable up to # make jobs
yes: enable one more than CPU count

--disable-shared Disabled Disable the building of a shared
wolfSSL library

--disable-static Disabled Disable the building of a static wolfSSL
library

Copyright 2015 wolfSSL Inc. All rights reserved.

18

--with-ntru=PATH Disabled Path to NTRU install (default /usr/)

--with-libz=PATH Disabled Optionally include libz for compression

--with-cavium=PATH Disabled Path to cavium/software dir

2.5.1 Build Option Notes

Debug - enabling debug support allows easier debugging by compiling with debug
information and defining the constant DEBUG_WOLFSSL which outputs messages to
stderr. To turn debug on at runtime, call wolfSSL_Debugging_ON(). To turn debug
logging off at runtime, call wolfSSL_Debugging_OFF(). For more information, see
Chapter 8.

Single Threaded - enabling single threaded mode turns off multi thread protection of
the session cache. Only enable single threaded mode if you know your application is
single threaded or your application is multithreaded and only one thread at a time will be
accessing the library.

DTLS - enabling DTLS support allows users of the library to also use the DTLS protocol
in addition to TLS and SSL. For more information, see Chapter 4.

OpenSSL Extra - enabling OpenSSL Extra includes a larger set of OpenSSL
compatibility functions. The basic build will enable enough functions for most TLS/SSL
needs, but if you're porting an application that uses 10s or 100s of OpenSSL calls,
enabling this will allow better support. The wolfSSL OpenSSL compatibility layer is
under active development, so if there is a function missing which you need, please
contact us and we'll try to help. For more information about the OpenSSL Compatibility
Layer, please see Chapter 13.

IPV6 - enabling IPV6 changes the test applications to use IPv6 instead of IPv4. wolfSSL
proper is IP neutral, either version can be used, but currently the test applications are IP
dependent, IPv4 by default.

leanpsk - Very small build using PSK, and eliminating many features from the library.
Approximate build size for wolfSSL on an embedded system with this enabled is 21kB.

fastmath - enabling fastmath will speed up public key operations like RSA, DH, and
DSA. By default, wolfSSL uses the normal big integer math library. This is generally

Copyright 2015 wolfSSL Inc. All rights reserved.

19

the most portable and generally easiest to get going with. The negatives to the normal
big integer library are that it is slower and it uses a lot of dynamic memory. This option
switches the big integer library to a faster one that uses assembly if possible. Assembly
inclusion is dependent on compiler and processor combinations. Some combinations
will need additional configure flags and some may not be possible. Help with optimizing
fastmath with new assembly routines is available on a consulting basis.

On ia32, for example, all of the registers need to be available so high optimization and
omitting the frame pointer needs to be taken care of. wolfSSL will add "-O3 -fomit-
frame-pointer" to GCC for non debug builds. If you're using a different compiler you may
need to add these manually to CFLAGS during configure.

OS X will also need "-mdynamic-no-pic" added to CFLAGS. In addition, if you're building
in shared mode for ia32 on OS X you'll need to pass options to LDFLAGS as well:

LDFLAGS="-Wl,-read_only_relocs,warning"

This gives warning for some symbols instead of errors.

fastmath also changes the way dynamic and stack memory is used. The normal math
library uses dynamic memory for big integers. fastmath uses fixed size buffers that hold
4096 bit integers by default, allowing for 2048 bit by 2048 bit multiplications. If you need
4096 bit by 4096 bit multiplications then change FP_MAX_BITS in
wolfssl/wolfcrypt/tfm.h. As FP_MAX_BITS is increased, this will also increase the
runtime stack usage since the buffers used in the public key operations will now be
larger. A couple of functions in the library use several temporary big integers, meaning
the stack can get relatively large. This should only come into play on embedded
systems or in threaded environments where the stack size is set to a low value. If stack
corruption occurs with fastmath during public key operations in those environments,
increase the stack size to accommodate the stack usage.

If you are enabling fastmath without using the autoconf system, you’ll need to define
USE_FAST_MATH and add tfm.c to the wolfSSL build instead of integer.c.

Since the stack memory can be large when using fastmath, we recommend defining
TFM_TIMING_RESISTANT when using the fastmath library. This will get rid of large
static arrays.

fasthugemath - enabling fasthugemath includes support for the fastmath library and
greatly increases the code size by unrolling loops for popular key sizes during public

Copyright 2015 wolfSSL Inc. All rights reserved.

20

key operations. Try using the benchmark utility before and after using fasthugemath to
see if the slight speedup is worth the increased code size.

bigcache - enabling the big session cache will increase the session cache from 33
sessions to 20,027 sessions. The default session cache size of 33 is adequate for TLS
clients and embedded servers. The big session cache is suitable for servers that aren't
under heavy load, basically allowing 200 new sessions per minute or so.

hugecache - enabling the huge session cache will increase the session cache size to
65,791 sessions. This option is for servers that are under heavy load, over 13,000 new
sessions per minute are possible or over 200 new sessions per second.

smallcache - enabling the small session cache will cause wolfSSL to only store 6
sessions. This may be useful for embedded clients or systems where the default of
nearly 3kB is too much RAM. This define uses less than 500 bytes of RAM.

savesession - enabling this option will allow an application to persist (save) and restore
the wolfSSL session cache to/from memory buffers.

savecert - enabling this option will allow an application to persist (save) and restore the
wolfSSL certificate cache to/from memory buffers.

atomicuser - enabling this option will turn on User Atomic Record Layer Processing
callbacks. This will allow the application to register its own MAC/encrypt and
decrypt/verify callbacks.

pkcallbacks - enabling this option will turn on Public Key callbacks, allowing the
application to register its own ECC sign/verify and RSA sign/verify and encrypt/decrypt
callbacks.

sniffer - enabling sniffer (SSL inspection) support will allow the collection of SSL traffic
packets as well as the ability to decrypt those packets with the correct key file.

aesgcm - enabling AES-GCM will add these cipher suites to wolfSSL. wolfSSL offers
four different implementations of AES-GCM balancing speed versus memory
consumption. If available, wolfSSL will use 64-bit or 32-bit math. For embedded
applications, there is a speedy 8-bit version that uses RAM-based lookup tables (8KB
per session) which is speed comparable to the 64-bit version and a slower 8-bit version
that doesn't take up any additional RAM. The --enable-aesgcm configure option may be
modified with the options "=word32", "=table", or "=small", i.e. "--enable-aesgcm=table".

Copyright 2015 wolfSSL Inc. All rights reserved.

21

aesccm - enabling AES-GCM will enable Counter with CBC-MAC Mode with 8�byte
authentication (CCM-8) for AES.

aesni - enabling AES-NI support will allow AES instructions to be called directly from
the chip when using an AES-NI supported chip. This provides speed increases for AES
functions. See Chapter 4 for more details regarding AES-NI.

poly1305 - enabling this option will add Poly1305 support to wolfCrypt and wolfSSL.

camellia - enabling this option will add Camellia-CBC support to wolfCrypt and
wolfSSL.

chacha - enabling this option will add ChaCha support to wolfCrypt and wolfSSL.

md2 - enabling this option adds support for the MD2 algorithm to wolfSSL. MD2 is
disabled by default due to known security vulnerabilities.

ripemd - enabling this option adds support for the RIPEMD-160 algorithm to wolfSSL.

sha512 - enabling this option adds support for the SHA-512 hash algorithm. This
algorithm needs the word64 type to be available, which is why it is disabled by default.
Some embedded system may not have this type available.

sessioncerts - enabling this option adds support for the peer’s certificate chain in the
session cache through the wolfSSL_get_peer_chain(), wolfSSL_get_chain_count(),
wolfSSL_get_chain_length(), wolfSSL_get_chain_cert(),
wolfSSL_get_chain_cert_pem(), and wolfSSL_get_sessionID() functions.

keygen - enabling support for RSA key generation allows generating keys of varying
lengths up to 4096 bits. wolfSSL provides both DER and PEM formatting.

certgen - enables support for self-signed X.509 v3 certificate generation.

certreq - enabling this option will add support for certificate request generation.

hc128 - Though we really like the speed of the HC-128 steaming cipher, it takes up
some room in the cipher union for users who aren’t using it. To keep the default build
small in as many aspects as we can, we’ve disabled this cipher by default. In order to
use this cipher or the corresponding cipher suite just turn it on, no other action is
required.

Copyright 2015 wolfSSL Inc. All rights reserved.

22

rabbit - enabling this option adds support for the RABBIT stream cipher.

psk - Pre Shared Key support is off by default since it’s not commonly used. To enable
this feature simply turn it on, no other action is required.

poly1305 - enabling this option adds support for Poly1305 to wolfcrypt and wolfSSL.

webServer - this turns on functions required over the standard build that will allow full
functionality for building with the yaSSL Embedded Web Server.

noFilesystem - this makes it easier to disable filesystem use. This option defines
NO_FILESYSTEM.

noInline - enabling this option disables function inlining in wolfSSL.

ecc - enabling this option will build ECC support and cipher suites into wolfSSL.

ocsp - enabling this option adds OCSP (Online Certificate Status Protocol) support to
wolfSSL.

crl - enabling this option adds CRL (Certificate Revocation List) support to wolfSSL.

crl-monitor - enabling this option adds the ability to have wolfSSL actively monitor a
specific CRL (Certificate Revocation List) directory.

ntru - this turns on the ability for wolfSSL to use NTRU cipher suites. NTRU is now
available under the GPLv2 from Security Innovation. The NTRU bundle may be
downloaded from the Security Innovation GitHub repository available at
https://github.com/NTRUOpenSourceProject/ntru-crypto.

sni - enabling this option will turn on the TLS Server Name Indication (SNI) extension.

maxfragment - enabling this option will turn on the TLS Maximum Fragment Length
extension.

truncatedhmac - enabling this option will turn on the TLS Truncated HMAC extension.

supportedcurves - enabling this option will turn on the TLS Supported ECC Curves
extension.

Copyright 2015 wolfSSL Inc. All rights reserved.

23

tlsx - enabling this option will turn on all TLS extensions currently supported by
wolfSSL.

valgrind - enabling this option will turn on valgrind when running the wolfSSL unit tests.
This can be useful for catching problems early on in the development cycle.

testcert - when this option is enabled, it exposes part of the ASN certificate API that is
usually not exposed. This can be useful for testing purposes, as seen in the wolfCrypt
test application (wolfcrypt/test/test.c).

examples - this option is enabled by default. When enabled, the wolfSSL example
applications will be built (client, server, echoclient, echoserver).

gcc-hardening - enabling this option will add extra compiler security checks.

jobserver - enabling this option allows “make” on computers with multiple processors to
build several files in parallel, which can significantly reduce build times. Users have the
ability to pass different arguments to this command (yes/no/#). If “yes” is used, the
configure script will tell make to use one more than the CPU count for the number of
jobs. “no” obviously disables this feature. Optionally, the user can pass in the number
of jobs as well.

disable shared - disabling the shared library build will exclude a wolfSSL shared library
from being built. By default only a shared library is built in order to save time and space.

disable static - disabling the static library build will exclude a wolfSSL static library from
being built. This options is enabled by default. A static library can be built by using the
--enable-static build option.

libz - enabling libz will allow compression support in wolfSSL from the libz library. Think
twice about including this option and using it by calling wolfSSL_set_compression() .
While compressing data before sending decreases the actual size of the messages
being sent and received, the amount of data saved by compression usually takes longer
in time to analyze than it does to send it raw on all but the slowest of networks.

2.6 Cross Compiling

Copyright 2015 wolfSSL Inc. All rights reserved.

24

Many users on embedded platforms cross compile wolfSSL for their environment. The
easiest way to cross compile the library is to use the ./configure system. It will generate
a Makefile which can then be used to build wolfSSL.

When cross compiling, you’ll need to specify the host to ./configure, such as:

./configure --host=arm-linux

You may also need to specify the compiler, linker, etc. that you want to use:

./configure --host=arm-linux CC=arm-linux-gcc AR=arm-linux-ar
RANLIB=arm-linux

There is a bug in the configure system which you might see when cross compiling and
detecting user overriding malloc. If you get an undefined reference to ‘rpl_malloc’
and/or ‘rpl_realloc’, please add the following to your ./configure line:

ac_cv_func_malloc_0_nonnull=yes ac_cv_func_realloc_0_nonnull=yes

After correctly configuring wolfSSL for cross-compilation, you should be able to follow
standard autoconf practices for building and installing the library:

make
sudo make install

If you have any additional tips or feedback about cross compiling wolfSSL, please let us
know at info@wolfssl.com.

Chapter 3 : Getting Started

3.1 General Description

wolfSSL, formerly CyaSSL, is about 10 times smaller than yaSSL and up to 20 times
smaller than OpenSSL when using the compile options described in Chapter 2. User
benchmarking and feedback also reports dramatically better performance from wolfSSL
vs. OpenSSL in the vast majority of standard SSL operations.

For instructions on the build process please see Chapter 2.

Copyright 2015 wolfSSL Inc. All rights reserved.

25

3.2 Testsuite

The testsuite program is designed to test the ability of wolfSSL and its cryptography
library, wolfCrypt, to run on the system.

wolfSSL needs all examples and tests to be run from the wolfSSL home directory. This
is because it finds certs and keys from ./certs. To run testsuite, execute:

./testsuite/testsuite.test

or

make test (when using autoconf)

On *nix or Windows the examples and testsuite will check to see if the current directory
is the source directory and if so, attempt to change to the wolfSSL home directory. This
should work in most setup cases, if not, just use the first method above and specify the
full path.

On a successful run you should see output like this, with additional output for unit tests
and cipher suite tests:

MD5 test passed!
MD4 test passed!
SHA test passed!
SHA-256 test passed!
HMAC-MD5 test passed!
HMAC-SHA test passed!
HMAC-SHA256 test passed!
ARC4 test passed!
DES test passed!
DES3 test passed!
AES test passed!
RANDOM test passed!
RSA test passed!
DH test passed!
DSA test passed!
PWDBASED test passed!
OPENSSL test passed!
peer's cert info:

Copyright 2015 wolfSSL Inc. All rights reserved.

26

 issuer :
/C=US/ST=Oregon/L=Portland/O=wolfSSL/OU=Programming/CN=www.wolfs
sl.com/emailAddress=info@yassl.com
 subject:
/C=US/ST=Oregon/L=Portland/O=wolfSSL/OU=Programming/CN=www.wolfs
sl.com/emailAddress=info@yassl.com
 serial number:87:4a:75:be:91:66:d8:3d
SSL version is TLSv1.2
SSL cipher suite is TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
peer's cert info:
 issuer :
/C=US/ST=Montana/L=Bozeman/O=Sawtooth/OU=Consulting/CN=www.yassl
.com/emailAddress=info@yassl.com
 subject:
/C=US/ST=Montana/L=Bozeman/O=wolfSSL/OU=Support/CN=www.wolfssl.c
om/emailAddress=info@wolfssl.com
 serial number:02
SSL version is TLSv1.2
SSL cipher suite is TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
Client message: hello wolfssl!
Server response: I hear you fa shizzle!
sending server shutdown command: quit!
client sent quit command: shutting down!
6cd8940c5e7229f9357cc15b202b593befbbc8ea input
6cd8940c5e7229f9357cc15b202b593befbbc8ea output

All tests passed!

This indicates that everything is configured and built correctly. If any of the tests fail,
make sure the build system was set up correctly. Likely culprits include having the
wrong endianness or not properly setting the 64-bit type. If you've set anything to the
non-default settings try removing those, rebuilding wolfSSL, and then re-testing.

3.3 Client Example

You can use the client example found in examples/client to test wolfSSL against any
SSL server. To see a list of available command line runtime options, run the client with
the “--help” argument:

Copyright 2015 wolfSSL Inc. All rights reserved.

27

./examples/client/client --help
client 3.4.6 NOTE: All files relative to wolfSSL home dir
-? Help, print this usage
-h <host> Host to connect to, default 127.0.0.1
-p <num> Port to connect on, not 0, default 11111
-v <num> SSL version [0-3], SSLv3(0) - TLS1.2(3)), default 3
-l <str> Cipher list
-c <file> Certificate file, default ./certs/client-
cert.pem
-k <file> Key file, default ./certs/client-
key.pem
-A <file> Certificate Authority file, default ./certs/ca-
cert.pem
-b <num> Benchmark <num> connections and print stats
-s Use pre Shared keys
-t Track wolfSSL memory use
-d Disable peer checks
-D Override Date Errors example
-g Send server HTTP GET
-u Use UDP DTLS, add -v 2 for DTLSv1 (default), -v 3
for DTLSv1.2
-m Match domain name in cert
-N Use Non-blocking sockets
-r Resume session
-w Wait for bidirectional shutdown
-f Fewer packets/group messages
-x Disable client cert/key loading

To test against secure gmail try the following. This is using wolfSSL compiled with the -
-enable-opensslextra build option:

./examples/client/client -h gmail.google.com -p 443 -d -g
peer's cert info:
 issuer : /C=US/O=Google Inc/CN=Google Internet Authority
 subject: /C=US/ST=California/L=Mountain View/O=Google
Inc/CN=*.google.com
 altname = *.googleapis.cn
 altname = *.gstatic.com
 altname = g.co
 altname = goo.gl
 altname = *.cloud.google.com

Copyright 2015 wolfSSL Inc. All rights reserved.

28

 altname = google-analytics.com
 altname = *.google-analytics.com
 altname = urchin.com
 altname = *.urchin.com
 altname = *.url.google.com
 altname = googlecommerce.com
 altname = *.googlecommerce.com
 altname = android.com
 altname = *.android.com
 altname = *.google.com.tr
 altname = *.google.com.vn
 altname = *.google.com.co
 altname = *.google.com.ar
 altname = *.google.com.mx
 altname = *.google.hu
 altname = *.google.co.jp
 altname = *.google.com.au
 altname = *.google.nl
 altname = *.google.pl
 altname = *.google.cl
 altname = *.google.de
 altname = *.google.it
 altname = *.google.pt
 altname = *.google.fr
 altname = *.google.ca
 altname = *.google.co.uk
 altname = *.google.es
 altname = *.google.co.in
 altname = *.google.com.br
 altname = *.ytimg.com
 altname = youtu.be
 altname = *.youtube-nocookie.com
 altname = youtube.com
 altname = *.youtube.com
 altname = google.com
 altname = *.google.com
 serial number:40:98:f6:53:00:00:00:00:68:b6
SSL version is TLSv1.2
SSL cipher suite is SSL_RSA_WITH_RC4_128_SHA
SSL connect ok, sending GET...
Server response: HTTP/1.0 302 Found

Copyright 2015 wolfSSL Inc. All rights reserved.

29

Cache-Control: private
Content-Type: text/html; charset=UTF-8
Location: http://www.google.com
Content-Length: 218
Date: Mon, 01 Oct 2012 21:17:18 GMT
Server: GFE/2.0

This tells the client to connect to gmail.google.com on the HTTPS port of 443 and sends
a generic GET. The “-d” option tells the client not to verify the server. The rest is the
initial output from the server that fits into the read buffer.

If no command line arguments are given, then the client attempts to connect to the
localhost on the wolfSSL default port of 11111. It also loads the client certificate in case
the server wants to perform client authentication.

The client is able to benchmark a connection when using the “-b <num>” argument.
When used, the client attempts to connect to the specified server/port the argument
number of times and gives the average time in milliseconds that it took to perform
SSL_connect(). For example,

./examples/client/client -b 100
SSL_connect avg took: 0.653 milliseconds

If you'd like to change the default host from localhost, or the default port from 11111,
you can change these settings in /wolfssl/test.h. The variables yasslIP and yasslPort
control these settings. Re-build all of the examples including testsuite when changing
these settings otherwise the test programs won't be able to connect to each other.

By default, the wolfSSL example client tries to connect to the specified server using TLS
1.2. The user is able to change the SSL/TLS version which the client uses by using the
“-v” command line option. The following values are available for this option:

-v 0 = SSL 3.0
-v 1 = TLS 1.0
-v 2 = TLS 1.1
-v 3 = TLS 1.2

A common error users see when using the example client is -155:

 err = -155, ASN sig error, confirm failure

Copyright 2015 wolfSSL Inc. All rights reserved.

30

This is typically caused by the wolfSSL client not being able to verify the certificate of
the server it is connecting to. By default, the wolfSSL client loads the yaSSL test CA
certificate as a trusted root certificate. This test CA certificate will not be able to verify
an external server certificate which was signed by a different CA. As such, to solve this
problem, users either need to turn off verification of the peer (server), using the “-d”
option:

./examples/client/client -h myhost.com -p 443 -d

Or load the correct CA certificate into the wolfSSL client using the “-A” command line
option:

./examples/client/client -h myhost.com -p 443 -A serverCA.pem

3.4 Server Example

The server example demonstrates a simple SSL server that optionally performs client
authentication. Only one client connection is accepted and then the server quits. The
client example in normal mode (no command line arguments) will work just fine against
the example server, but if you specify command line arguments for the client example,
then a client certificate isn't loaded and the wolfSSL_connect() will fail (unless client cert
check is disabled using the “-d” option). The server will report an error "-245, peer
didn't send cert". Like the example client, the server can be used with several
command line arguments as well:

./examples/server/server --help
server 3.4.6 NOTE: All files relative to wolfSSL home dir
-? Help, print this usage
-p <num> Port to listen on, not 0, default 11111
-v <num> SSL version [0-3], SSLv3(0) - TLS1.2(3)), default 3
-l <str> Cipher list
-c <file> Certificate file, default ./certs/server-
cert.pem
-k <file> Key file, default ./certs/server-
key.pem
-A <file> Certificate Authority file, default ./certs/client-
cert.pem
-d Disable client cert check
-b Bind to any interface instead of localhost only

Copyright 2015 wolfSSL Inc. All rights reserved.

31

-s Use pre Shared keys
-t Track wolfSSL memory use
-u Use UDP DTLS, add -v 2 for DTLSv1 (default), -v 3
for DTLSv1.2
-f Fewer packets/group messages
-r Create server ready file, for external monitor
-N Use Non-blocking sockets
-S <str> Use Host Name Indication
-w Wait for bidirectional shutdown

3.5 EchoServer Example

The echoserver example sits in an endless loop waiting for an unlimited number of
client connections. Whatever the client sends the echoserver echos back. Client
authentication isn't performed so the example client can be used against the echoserver
in all 3 modes. Four special commands aren't echoed back and instruct the echoserver
to take a different action.

1. "quit" If the echoserver receives the string "quit" it will shutdown.

2. "break" If the echoserver receives the string "break" it will stop the current
session but continue handling requests. This is particularly useful for DTLS
testing.

3. "printstats" If the echoserver receives the string "printstats" it will print out

statistics for the session cache.

4. "GET" If the echoserver receives the string "GET" it will handle it as an http get
and send back a simple page with the message "greeting from wolfSSL". This
allows testing of various TLS/SSL clients like Safari, IE, Firefox, gnutls, and the
like against the echoserver example.

The output of the echoserver is echoed to stdout unless NO_MAIN_DRIVER is
defined. You can redirect output through the shell or through the first command line
argument. To create a file named output.txt with the output from the echoserver run:

./examples/echoserver/echoserver output.txt

Copyright 2015 wolfSSL Inc. All rights reserved.

32

3.6 EchoClient Example

The echoclient example can be run in interactive mode or batch mode with files. To run
in interactive mode and write 3 strings "hello", "wolfssl", and "quit" results in:

./examples/echoclient/echoclient
hello
hello
wolfssl
wolfssl
quit
sending server shutdown command: quit!

To use an input file, specify the filename on the command line as the first argument. To
echo the contents of the file input.txt issue:

./examples/echoclient/echoclient input.txt

If you want the result to be written out to a file, you can specify the output file name as
an additional command line argument. The following command will echo the contents of
file input.txt and write the result from the server to output.txt:

./examples/echoclient/echoclient input.txt output.txt

The testsuite program does just that but hashes the input and output files to make sure
that the client and server were getting/sending the correct and expected results.

3.7 Benchmark

Many users are curious about how the wolfSSL embedded SSL library will perform on a
specific hardware device or in a specific environment. Because of the wide variety of
different platforms and compilers used today in embedded, enterprise, and cloud-based
environments, it is hard to give generic performance calculations across the board.

To help wolfSSL users and customers in determining SSL performance for wolfSSL /
wolfCrypt, a benchmark application is provided which is bundled with wolfSSL. wolfSSL
uses the wolfCrypt cryptography library for all crypto operations by default. Because the
underlying crypto is a very performance-critical aspect of SSL/TLS, our benchmark
application runs performance tests on wolfCrypt’s algorithms.

Copyright 2015 wolfSSL Inc. All rights reserved.

33

The benchmark utility located in wolfcrypt/benchmark may be used to benchmark the
cryptographic functionality of wolfCrypt. Typical output may look like the following (in
this output, several optional algorithms/ciphers were enabled including HC-128,
RABBIT, ECC, SHA-256, SHA-512, AES-GCM, AES-CCM, and Camellia):

./wolfcrypt/benchmark/benchmark
AES 50 megs took 0.274 seconds, 182.588 MB/s Cycles per byte = 11.99
AES-GCM 50 megs took 0.824 seconds, 60.694 MB/s Cycles per byte = 36.06
AES-CCM 50 megs took 0.517 seconds, 96.697 MB/s Cycles per byte = 22.63
Camellia 50 megs took 0.367 seconds, 136.311 MB/s Cycles per byte = 16.05
HC128 50 megs took 0.030 seconds, 1651.847 MB/s Cycles per byte = 1.32
RABBIT 50 megs took 0.110 seconds, 452.555 MB/s Cycles per byte = 4.84
CHACHA 50 megs took 0.136 seconds, 366.617 MB/s Cycles per byte = 5.97
CHA-POLY 50 megs took 0.173 seconds, 288.301 MB/s Cycles per byte = 7.59
3DES 50 megs took 1.858 seconds, 26.907 MB/s Cycles per byte = 81.33

MD5 50 megs took 0.114 seconds, 440.273 MB/s Cycles per byte = 4.97
POLY1305 50 megs took 0.043 seconds, 1153.562 MB/s Cycles per byte = 1.90
SHA 50 megs took 0.103 seconds, 484.172 MB/s Cycles per byte = 4.52
SHA-256 50 megs took 0.240 seconds, 208.581 MB/s Cycles per byte = 10.49
SHA-384 50 megs took 0.159 seconds, 313.674 MB/s Cycles per byte = 6.98
SHA-512 50 megs took 0.206 seconds, 242.518 MB/s Cycles per byte = 9.02
BLAKE2b 50 megs took 0.091 seconds, 548.120 MB/s Cycles per byte = 3.99

RSA 2048 encryption took 0.080 milliseconds, avg over 100 iterations
RSA 2048 decryption took 2.026 milliseconds, avg over 100 iterations
DH 2048 key generation 0.793 milliseconds, avg over 100 iterations
DH 2048 key agreement 0.763 milliseconds, avg over 100 iterations

ECC 256 key generation 0.426 milliseconds, avg over 100 iterations
EC-DHE key agreement 0.421 milliseconds, avg over 100 iterations
EC-DSA sign time 0.451 milliseconds, avg over 100 iterations
EC-DSA verify time 0.612 milliseconds, avg over 100 iterations

This is especially useful for comparing the public key speed before and after changing
the math library. You can test the results using the normal math library (./configure),
the fastmath library (./configure --enable-fastmath), and the fasthugemath library
(./configure --enable-fasthugemath).

For more details and benchmark results, please refer to the wolfSSL Benchmarks page:
http://www.wolfssl.com/yaSSL/benchmarks-wolfssl.html.

Copyright 2015 wolfSSL Inc. All rights reserved.

34

3.7.1 Relative Performance

Although the performance of individual ciphers and algorithms will depend on the host
platform, the following graph shows relative performance between wolfCrypt’s ciphers.
These tests were conducted on a Macbook Pro (OS X 10.6.8) running a 2.2 GHz Intel
Core i7.

If you want to use only a subset of ciphers, you can customize which specific cipher
suites and/or ciphers wolfSSL uses when making an SSL/TLS connection. For
example, to force 128-bit AES, add the following line after the call to wolfSSL_CTX_new
(SSL_CTX_new):

wolfSSL_CTX_set_cipher_list(ctx, “AES128-SHA”);

Copyright 2015 wolfSSL Inc. All rights reserved.

35

3.7.2 Benchmarking Notes

1. The processors native register size (32 vs 64-bit) can make a big difference
when doing 1000+ bit public key operations.

2. keygen (--enable-keygen) will allow you to also benchmark key generation
speeds when running the benchmark utility.

3. fastmath (--enable-fastmath) reduces dynamic memory usage and speeds up
public key operations. If you are having trouble building on 32-bit platform with
fastmath, disable shared libraries so that PIC isn’t hogging a register (also see
notes in the README)

./configure --enable-fastmath --disable-shared

make clean

make

*Note: doing a “make clean” is good practice with wolfSSL when switching
configure options.

4. By default, fastmath tries to use assembly optimizations if possible. If assembly
optimizations don’t work, you can still use fastmath without them by adding
TFM_NO_ASM to CFLAGS when building wolfSSL:

./configure --enable-fastmath CFLAGS=DTFM_NO_ASM

5. Using fasthugemath can try to push fastmath even more for users who are not

running on embedded platforms:

./configure --enable-fasthugemath

6. With the default wolfSSL build, we have tried to find a good balance between

memory usage and performance. If you are more concerned about one of the

Copyright 2015 wolfSSL Inc. All rights reserved.

36

two, please refer back to Chapter 2 for additional wolfSSL configuration options.

7. Bulk Transfers: wolfSSL by default uses 128 byte I/O buffers since about 80%
of SSL traffic falls within this size and to limit dynamic memory use. It can be
configured to use 16K buffers (the maximum SSL size) if bulk transfers are
required.

3.7.3 Benchmarking on Embedded Systems

There are several build options available to make building the benchmark application on
an embedded system easier. These include:

BENCH_EMBEDDED - enabling this define will switch the benchmark application from
using Megabytes to using Kilobytes, therefore reducing the memory usage. By default,
when using this define, ciphers and algorithms will be benchmarked with 25kB. Public
key algorithms will only be benchmarked over 1 iteration (as public key operations on
some embedded processors can be fairly slow). These can be adjusted in benchmark.c
by altering the variables “numBlocks” and “times” located inside the
BENCH_EMBEDDED define.

USE_CERT_BUFFERS_1024 - enabling this define will switch the benchmark
application from loading test keys and certificates from the file system and instead use
1024-bit key and certificate buffers located in <wolfssl_root>/wolfssl/certs_test.h. It is
useful to use this define when an embedded platform has no filesystem (used with
NO_FILESYSTEM) and a slow processor where 2048-bit public key operations may not
be reasonable.

USE_CERT_BUFFERS_2048 - enabling this define is similar to
USE_CERT_BUFFERS_1024 except that 2048-bit key and certificate buffers are used
instead of 1024-bit ones. This define is useful when the processor is fast enough to do
2048-bit public key operations but when there is no filesystem available to load keys
and certificates from files.

Copyright 2015 wolfSSL Inc. All rights reserved.

37

3.8 Changing a Client Application to Use wolfSSL

This section will explain the basic steps needed to add wolfSSL to a client application,
using the wolfSSL native API. For a server explanation, please see section 3.9. A
more complete walk-through with example code is located in the SSL Tutorial in
Chapter 11. If you want more information about the OpenSSL compatibility layer,
please see Chapter 13.

1. Include the wolfSSL header

#include <wolfssl/ssl.h>

2. Change all calls from read() (or recv()) to wolfSSL_read() so

result = read(fd, buffer, bytes);

becomes

result = wolfSSL_read(ssl, buffer, bytes);

3. Change all calls from write (or send) to wolfSSL_write() so

result = write(fd, buffer, bytes);

becomes

result = wolfSSL_write(ssl, buffer, bytes);

4. You can manually call wolfSSL_connect() but that's not even necessary, the first

call to wolfSSL_read() or wolfSSL_write() will initiate the wolfSSL_connect() if it
hasn't taken place yet.

5. Initialize wolfSSL and the WOLFSSL_CTX. You can use one WOLFSSL_CTX no

matter how many WOLFSSL objects you end up creating. Basically you'll just
need to load CA certificates to verify the server you are connecting to. Basic
initialization looks like:

wolfSSL_Init();

WOLFSSL_CTX* ctx;

Copyright 2015 wolfSSL Inc. All rights reserved.

38

if ((ctx = wolfSSL_CTX_new(wolfTLSv1_client_method())) == NULL)
{
 fprintf(stderr, "wolfSSL_CTX_new error.\n");
 exit(EXIT_FAILURE);
}

if (wolfSSL_CTX_load_verify_locations(ctx,"./ca-cert.pem",0) !=
 SSL_SUCCESS) {
 fprintf(stderr, "Error loading ./ca-cert.pem,"
 " please check the file.\n");
 exit(EXIT_FAILURE);
}

6. Create the WOLFSSL object after each TCP connect and associate the file
descriptor with the session:

// after connecting to socket fd

WOLFSSL* ssl;

if ((ssl = wolfSSL_new(ctx)) == NULL) {
 fprintf(stderr, "wolfSSL_new error.\n");
 exit(EXIT_FAILURE);
}

wolfSSL_set_fd(ssl, fd);

7. Error checking. Each wolfSSL_read() and wolfSSL_write() call will return the
number of bytes written upon success, 0 upon connection closure, and -1 for an
error, just like read() and write(). In the event of an error you can use two calls to
get more information about the error:

char errorString[80];
int err = wolfSSL_get_error(ssl, 0);
wolfSSL_ERR_error_string(err, errorString);

If you are using non-blocking sockets, you can test for errno
EAGAIN/EWOULDBLOCK or more correctly you can test the specific error code
returned by wolfSSL_get_error() for SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE.

Copyright 2015 wolfSSL Inc. All rights reserved.

39

8. Cleanup. After each WOLFSSL object is done being used you can free it up by

calling:

wolfSSL_free(ssl);

When you are completely done using SSL/TLS altogether you can free the
WOLFSSL_CTX object by calling:

wolfSSL_CTX_free(ctx);
wolfSSL_Cleanup();

For an example of a client application using wolfSSL, see the client example located in
the <wolfssl_root>/examples/client.c file.

3.9 Changing a Server Application to Use wolfSSL

This section will explain the basic steps needed to add wolfSSL to a server application
using the wolfSSL native API. For a client explanation, please see section 3.8. A more
complete walk-through, with example code, is located in the SSL Tutorial in Chapter 11.

1. Follow the instructions above for a client, except change the client method call in
step 5 to a server one, so

wolfSSL_CTX_new(wolfTLSv1ls
_client_method())

becomes

wolfSSL_CTX_new(wolfTLSv1_server_method())

or even

wolfSSL_CTX_new(wolfSSLv23_server_method())

To allow SSLv3 and TLSv1+ clients to connect to the server.

2. Add the server's certificate and key file to the initialization in step 5 above:

if (wolfSSL_CTX_use_certificate_file(ctx,"./server-cert.pem",

Copyright 2015 wolfSSL Inc. All rights reserved.

40

 SSL_FILETYPE_PEM) !=
SSL_SUCCESS) {

 fprintf(stderr, "Error loading ./server-cert.pem,"
 " please check the file.\n");
 exit(EXIT_FAILURE);
}

if (wolfSSL_CTX_use_PrivateKey_file(ctx,"./server-key.pem",
 SSL_FILETYPE_PEM) != SSL_SUCCESS)
{
 fprintf(stderr, "Error loading ./server-key.pem,"
 " please check the file.\n");
 exit(EXIT_FAILURE);
}

Copyright 2015 wolfSSL Inc. All rights reserved.

41

It is possible to load certificates and keys from buffers as well if there is no filesystem
available. In this case, see the wolfSSL_CTX_use_certificate_buffer() and
wolfSSL_CTX_use_PrivateKey_buffer() API documentation for more information.

For an example of a server application using wolfSSL, see the server example located
in the <wolfssl_root>/examples/server.c file.

Chapter 4: Features

wolfSSL (formerly CyaSSL) supports the C programming language as a primary
interface, but also supports several other host languages, including Java, PHP, Perl,
and Python (through a SWIG interface). If you have interest in hosting wolfSSL in
another programming language that is not currently supported, please contact us.

This chapter covers some of the features of wolfSSL in more depth, including Stream
Ciphers, AES-NI, IPv6 support, SSL Inspection (Sniffer) support, and more.

4.1 Features Overview

The following table lists features included in the most recent release of wolfSSL.

wolfSSL Features
(version 3.4.6) Benefits

SSL version 3 and TLS versions 1, 1.1 and 1.2
 (client and server)

Support for the most up to date standards
with backwards compatibility

DTLS 1.0, 1.2 support (client and server) Streaming Multimedia

Minimum footprint size of 20-100 kB,
depending on build options and operating
environment

Small build size for use in resource
constrained environments

Runtime memory usage between 1-36 kB
(depending on I/O buffer sizes, public key
algorithm, and key size)

Minimal dynamic memory use, perfect
for embedded systems or scalable
enterprise servers.

OpenSSL Compatibility Layer Standard API and ease of migration from

Copyright 2015 wolfSSL Inc. All rights reserved.

42

OpenSSL

OCSP and CRL support Used to confirm certificate validity

Multiple Hash Functions:
MD2, MD4, MD5, SHA-1, SHA-2 (SHA-256,
SHA-384, SHA-512), BLAKE2b, RIPEMD-
160, Poly1305

Block and Stream Ciphers:
AES (CBC, CTR, GCM, CCM-8), Camellia,
DES, 3DES, ARC4, RABBIT, HC-128,
ChaCha20

4 block ciphers, 4 stream ciphers

Public Key Options:
RSA, DSS, DH, EDH, NTRU

5 public key options

Password-based Key Derivation:
HMAC, PBKDF2, PKCS #5

3 password-based key derivation
options

ECC Support:
ECDH-ECDSA, ECDHE-ECDSA, ECDH-
RSA, ECDHE-RSA

RSA Key Generation Fast run-time key generation support

Client Authentication Support Provides ability to do mutual
authentication between client and
server, using certificates to verify
clients.

PSK (Pre-Shared Keys) Support Helpful for embedded devices lacking
resources to do public key operations.
Avoid RSA operations in limited
environments.

Simple API Easy to learn and use

zlib Compression Support Highly configurable compression support

PEM and DER certificate support No need to reconfigure certificates or
keys

X.509 v3 Signed Certificate Generation Generate your own certificates

Certificate Manager Verify certs, check CRL outside of SSL
usage

Copyright 2015 wolfSSL Inc. All rights reserved.

43

Intel AES-NI Support Super fast chip-level AES encryption

STM32F2/F4 Hardware Crypto Support Accelerate crypto on STM32
processors

Cavium NITROX Support Accelerate crypto and SSL using
Cavium NITROX.

Sniffer (SSL Inspection) Support Decode SSL encrypted packets

Abstraction Layers / Callbacks
C Standard Library, Custom I/O, Memory
hooks, Logging callbacks, User Atomic
Record Layer Processing, Public Key
(RSA,ECC) callbacks

Providing more flexibility and portability to
developers

IPv4 and IPv6 support Compatible with current and upcoming
protocols

PKCS #8 (PKCS #5, #12 formats) Private Key Encryption

MySQL Integration Wide distribution and testing

Supported Web Servers
- yaSSLEWS, GoAhead, Mongoose, Lighttpd

Multiple lightweight embedded web server
options. wolfSSL is also used in the
yaSSL Embedded Web Server.

(Table 1: wolfSSL Features)

4.1.2 AEAD Suites

wolfSSL supports AEAD suites, including AES-GCM, AES-CCM, and CHACHA-
POLY1305. The big difference between these AEAD suites and others is that they
authenticate the encrypted data. This helps with mitigating man in the middle attacks
that result in having data tampered with. AEAD suites use a combination of a block
cipher (or more recently also a stream cipher) algorithm combined with a tag produced
by a keyed hash algorithm. Combining these two algorithms is handled by the wolfSSL
encrypt and decrypt process which makes it easier for users. All that is needed for using
a specific AEAD suite is simply enabling the algorithms that are used in a supported
suite.

Copyright 2015 wolfSSL Inc. All rights reserved.

44

4.2 Protocol Support

wolfSSL supports SSL 3.0, TLS (1.0, 1.1 and 1.2), and DTLS (1.0 and 1.2). You can
easily select a protocol to use by using one of the following functions (as shown for
either the client or server). wolfSSL does not support SSL 2.0, as it has been insecure
for several years. The client and server functions below change slightly when using the
OpenSSL compatibility layer. For the OpenSSL-compatible functions, please see
Chapter 13.

4.2.1 Server Functions

wolfDTLSv1_server_method(void); // DTLS 1.0
wolfDTLSv1_2_server_method(void); // DTLS 1.2
wolfSSLv3_server_method(void); // SSL 3.0
wolfTLSv1_server_method(void); // TLS 1.0
wolfTLSv1_1_server_method(void); // TLS 1.1
wolfTLSv1_2_server_method(void); // TLS 1.2
wolfSSLv23_server_method(void); // Use highest possible version

 from SSLv3 - TLS 1.2

wolfSSL supports robust server downgrade with the wolfSSLv23_server_method()
function. See section 4.2.3 for a details.

4.2.2 Client Functions

wolfDTLSv1_client_method(void); // DTLS 1.0
wolfDTLSv1_2_client_method(void); // DTLS 1.2
wolfSSLv3_client_method(void); // SSL 3.0
wolfTLSv1_client_method(void); // TLS 1.0
wolfTLSv1_1_client_method(void); // TLS 1.1
wolfTLSv1_2_client_method(void); // TLS 1.2
wolfSSLv23_client_method(void); // Use highest possible version

 from SSLv3 - TLS 1.2

wolfSSL supports robust client downgrade with the wolfSSLv23_client_method()
function. See section 4.2.3 for a details.

For details on how to use these functions, please see the “Getting Started” Chapter. For
a comparison between SSL 3.0, TLS 1.0, 1.1, 1.2, and DTLS, please see Appendix A.

Copyright 2015 wolfSSL Inc. All rights reserved.

45

4.2.3 Robust Client and Server Downgrade

Both wolfSSL clients and servers have robust version downgrade capability. If a
specific protocol version method is used on either side, then only that version will be
negotiated or an error will be returned. For example, a client that uses TLS 1.0 and
tries to connect to a SSL 3.0 only server will fail, likewise connecting to a TLS 1.1 will
fail as well.

To resolve this issue, a client that uses the wolfSSLv23_client_method() function will
use the highest protocol version supported by the server and downgrade to TLS 1.0 if
needed. In this case, the client will be able to connect to a server running TLS 1.0 - TLS
1.2. The only versions it can't connect to is SSL 2.0 which has been insecure for years,
and SSL 3.0 which has been disabled by default.

Similarly, a server using the wolfSSLv23_server_method() function can handle clients
supporting protocol versions from TLS 1.0 - TLS 1.2. A wolfSSL server can't accept a
connection from SSLv2 because no security is provided.

4.2.4 IPv6 Support

If you are an adopter of IPv6 and want to use an embedded SSL implementation then
you may have been wondering if wolfSSL supports IPv6. The answer is yes, we do
support wolfSSL running on top of IPv6.

wolfSSL was designed as IP neutral, and will work with both IPv4 and IPv6, but the
current test applications default to IPv4 (so as to apply to a broader number of
systems). To change the test applications to IPv6, use the --enable-ipv6 option while
building wolfSSL.

Further information on IPv6 can be found here:
http://en.wikipedia.org/wiki/IPv6.

4.2.5 DTLS

wolfSSL has support for DTLS (“Datagram” TLS) for both client and server. The current
supported version is DTLS 1.0.

The TLS protocol was designed to provide a secure transport channel across a reliable
medium (such as TCP). As application layer protocols began to be developed using

Copyright 2015 wolfSSL Inc. All rights reserved.

46

UDP transport (such as SIP and various electronic gaming protocols), a need arose for
a way to provide communications security for applications which are delay sensitive.
This need lead to the creation of the DTLS protocol.

Many people believe the difference between TLS and DTLS is the same as TLS vs.
UDP. This is incorrect. UDP has the benefit of having no handshake, no tear-down, and
no delay in the middle if something gets lost (compared with TCP). DTLS on the other
hand, has an extended SSL handshake and tear-down and must implement TCP-like
behavior for the handshake. In essence, DTLS reverses the benefits that are offered by
UDP in exchange for a secure connection.

DTLS can be enabled when building wolfSSL by using the --enable-dtls build option.

4.2.6 Lightweight Internet Protocol

wolfSSL supports the lightweight internet protocol implementation out of the box. To use
this protocol all you need to do is define WOLFSSL_LWIP or navigate to the settings.h
file and uncomment the line:

 /*#define WOLFSSL_LWIP*/

The focus of lwIP is to reduce RAM usage while still providing a full TCP stack. That
focus makes lwIP great for use in embedded systems, the same area where wolfSSL is
an ideal match for SSL/TLS needs.

4.3 Cipher Support

4.3.1 Cipher Suite Strength and Choosing Proper Key Sizes

To see what ciphers are currently being used you can call the method:

wolfSSL_get_ciphers()

This function will return the currently enabled cipher suites.

Cipher suites come in a variety of strengths. Because they are made up of several
different types of algorithms (authentication, encryption, and message authentication
code (MAC)), the strength of each varies with the chosen key sizes.

Copyright 2015 wolfSSL Inc. All rights reserved.

47

There can be many methods of grading the strength of a cipher suite - the specific
method used seems to vary between different projects and companies an can include
things such as symmetric and public key algorithm key sizes, type of algorithm,
performance, and known weaknesses.

NIST (National Institute of Standards and Technology) makes recommendations on
choosing an acceptable cipher suite by providing comparable algorithm strengths for
varying key sizes of each. The strength of a cryptographic algorithm depends on the
algorithm and the key size used. The NIST Special Publication, SP800-57, states that
two algorithms are considered to be of comparable strength as follows:

"… two algorithms are considered to be of comparable strength for the given key sizes
(X and Y) if the amount of work needed to “break the algorithms” or determine the keys
(with the given key sizes) is approximately the same using a given resource. The
security strength of an algorithm for a given key size is traditionally described in terms of
the amount of work it takes to try all keys for a symmetric algorithm with a key size of
"X" that has no short cut attacks (i.e., the most efficient attack is to try all possible
keys)."

The following two tables are based off of both Table 2 (pg. 64) and Table 4 (pg. 66)
from NIST SP800-57, and shows comparable security strength between algorithms as
well as a strength measurement (based off of NIST’s suggested algorithm security
lifetimes using bits of security).

Note: In the following table “L” is the size of the public key for finite field cryptography
(FFC), “N” is the size of the private key for FFC, “k” is considered the key size for
integer factorization cryptography (IFC), and “f” is considered the key size for elliptic
curve cryptography.

Bits of
Security

Symmetric Key
Algorithms

FFC Key Size
(DSA, DH, etc.)

IFC Key Size
(RSA, etc.)

ECC Key Size
(ECDSA, etc.)

80 2TDEA, etc. L = 1024
N = 160

k = 1024 f = 160-223

128 AES-128, etc. L = 3072
N = 256

k = 3072 f = 256-383

192 AES-192, etc. L = 7680
N = 384

k = 7680 f = 384-511

Copyright 2015 wolfSSL Inc. All rights reserved.

48

256 AES-256, etc. L = 15360
N = 512

k = 15360 f = 512+

(Table 2: Relative Bit and Key Strengths)

Bits of Security Description

80 Security	
 good	
 through	
 2010

128 Security	
 good	
 through	
 2030

192 Long	
 Term	
 Protection

256 Secure	
 for	
 the	
 foreseeable	
 future

(Table 3: Bit Strength Descriptions)

Using this table as a guide, to begin to classify a cipher suite, we categorize it based on
the strength of the symmetric encryption algorithm. In doing this, a rough grade
classification can be devised to classify each cipher suite based on bits of security (only
taking into account symmetric key size):

LOW = bits of security smaller than 128 bits
MEDIUM = bits of security equal to 128 bits
HIGH = bits of security larger than 128 bits

Outside of the symmetric encryption algorithm strength, the strength of a cipher suite
will depend greatly on the key sizes of the key exchange and authentication algorithm
keys. The strength is only as good as the cipher suite’s weakest link.

Following the above grading methodology (and only basing it on symmetric encryption
algorithm strength), wolfSSL 2.0.0 currently supports a total of 0 LOW strength cipher
suites, 12 MEDIUM strength cipher suites, and 8 HIGH strength cipher suites – as listed
below. The following strength classification could change depending on the chosen key
sizes of the other algorithms involved. For a reference on hash function security
strength, see Table 3 (pg. 64) of NIST SP800-57.

In some cases, you will see ciphers referenced as “EXPORT” ciphers. These ciphers
originated from the time period in US history (as late as 1992) when it was illegal to
export software with strong encryption from the United States. Strong encryption was
classified as “Munitions” by the US Government (under the same category as Nuclear

Copyright 2015 wolfSSL Inc. All rights reserved.

49

Weapons, Tanks, and Ballistic Missiles). Because of this restriction, software being
exported included “weakened” ciphers (mostly in smaller key sizes). In the current day,
this restriction has been lifted, and as such, EXPORT ciphers are no longer a mandated
necessity.

4.3.2 Supported Cipher Suites

The following cipher suites are supported by wolfSSL. A cipher suite is a combination of
authentication, encryption, and message authentication code (MAC) algorithms which
are used during the TLS or SSL handshake to negotiate security settings for a
connection.

Each cipher suite defines a key exchange algorithm, a bulk encryption algorithm, and a
message authentication code algorithm (MAC). The key exchange algorithm (RSA,
DSS, DH, EDH) determines how the client and server will authenticate during the
handshake process. The bulk encryption algorithm (DES, 3DES, AES, ARC4,
RABBIT, HC-128), including block ciphers and stream ciphers, is used to encrypt the
message stream. The message authentication code (MAC) algorithm (MD2, MD5,
SHA-1, SHA-256, SHA-512, RIPEMD) is a hash function used to create the message
digest.

The table below matches up to the cipher suites (and categories) found in
<wolfssl_root>/wolfssl/internal.h. If you are looking for a cipher suite which is not in the
following list, please contact us to discuss getting it added to wolfSSL.

wolfSSL Cipher Suites
(version 3.4.6)

TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_NULL_SHA
TLS_PSK_WITH_AES_256_CBC_SHA
TLS_PSK_WITH_AES_128_CBC_SHA256
TLS_PSK_WITH_AES_128_CBC_SHA
TLS_PSK_WITH_NULL_SHA256
TLS_PSK_WITH_NULL_SHA
SSL_RSA_WITH_RC4_128_SHA

Copyright 2015 wolfSSL Inc. All rights reserved.

50

SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

ECC cipher suites

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_RC4_128_SHA
TLS_ECDH_ECDSA_WITH_RC4_128_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384

Static ECDH cipher suites

TLS_RSA_WITH_HC_128_CBC_MD5
TLS_RSA_WITH_HC_128_CBC_SHA
TLS_RSA_WITH_RABBIT_CBC_SHA

wolfSSL extension -
eSTREAM cipher suites

TLS_NTRU_RSA_WITH_RC4_128_SHA
TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA
TLS_NTRU_RSA_WITH_AES_128_CBC_SHA
TLS_NTRU_RSA_WITH_AES_256_CBC_SHA

wolfSSL extension - NTRU
cipher suites

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256

SHA-256 cipher suites

Copyright 2015 wolfSSL Inc. All rights reserved.

51

TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_NULL_SHA256

TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

AES-GCM cipher suites

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

ECC AES-GCM cipher
suites

TLS_RSA_WITH_AES_128_CCM_8_SHA256
TLS_RSA_WITH_AES_256_CCM_8_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8
TLS_PSK_WITH_AES_128_CCM
TLS_PSK_WITH_AES_256_CCM
TLS_PSK_WITH_AES_128_CCM_8
TLS_PSK_WITH_AES_256_CCM_8

AES-CCM cipher suites

TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256

Camellia cipher suites

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SH
A256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_
SHA256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA25
6

ChaCha cipher suites

(Table 4: wolfSSL Cipher Suites)

Copyright 2015 wolfSSL Inc. All rights reserved.

52

4.3.3 Block and Stream Ciphers

wolfSSL supports the AES, DES, 3DES, and Camellia block ciphers and the RC4,
RABBIT, HC-128 and CHACHA20 stream ciphers. AES, DES, 3DES, RC4 and
RABBIT are enabled by default. Camellia, HC-128, and ChaCha20 can be enabled
when building wolfSSL (with the --enable-hc128, --enable-camellia, and --enable-
chacha build options, respectively). The default mode of AES is CBC mode. To enable
GCM or CCM mode with AES, use the --enable-aesgcm and --enable-aesccm build
options. Please see the examples for usage and the wolfCrypt Usage Reference
(Chapter 10) for specific usage information.

SSL uses RC4 as the default stream cipher. It's a good one, though it's getting a little
old. wolfSSL has added two ciphers from the eStream project into the code base,
RABBIT and HC-128. RABBIT is nearly twice as fast as RC4 and HC-128 is about 5
times as fast! So if you've ever decided not to use SSL because of speed concerns,
using wolfSSL's stream ciphers should lessen or eliminate that performance doubt.
Recently wolfSSL also added ChaCha20. While RC4 performs about .11 times faster
then ChaCha, RC4 is generally considered less secure than ChaCha. ChaCha can put
up very nice times of it’s own with added security as a tradeoff.

To see a comparison of cipher performance, visit the wolfSSL Benchmark web page,
located here: http://wolfssl.com/yaSSL/benchmarks-wolfssl.html.

4.3.3.1 What’s the Difference?

Have you ever wondered what the difference was between a block cipher and a stream
cipher?

A block cipher has to be encrypted in chunks that are the block size for the cipher. For
example, AES has block size of 16 bytes. So if you're encrypting a bunch of small, 2 or
3 byte chunks back and forth, over 80% of the data is useless padding, decreasing the
speed of the encryption/decryption process and needlessly wasting network bandwidth
to boot. Basically block ciphers are designed for large chunks of data, have block sizes
requiring padding, and use a fixed, unvarying transformation.

Stream ciphers work well for large or small chunks of data. They are suitable for smaller
data sizes because no block size is required. If speed is a concern, stream ciphers are
your answer, because they use a simpler transformation that typically involves an xor'd
keystream. So if you need to stream media, encrypt various data sizes including small
ones, or have a need for a fast cipher then stream ciphers are your best bet.

Copyright 2015 wolfSSL Inc. All rights reserved.

53

4.3.4 Hashing Functions

wolfSSL supports several different hashing functions, including MD2, MD4, MD5, SHA-
1, SHA-2 (SHA-256, SHA-384, SHA-512), SHA-3 (BLAKE2), and RIPEMD-160.
Detailed usage of these functions can be found in the wolfCrypt Usage Reference,
Section 10.1.

4.3.5 Public Key Options

wolfSSL supports the RSA, ECC, DSA/DSS, DH, and NTRU public key options, with
support for EDH (Ephemeral Diffie-Hellman) on the wolfSSL server. Detailed usage of
these functions can be found in the wolfCrypt Usage Reference, section 10.5.

wolfSSL has support for four cipher suites utilizing NTRU:

TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA
TLS_NTRU_RSA_WITH_RC4_128_SHA
TLS_NTRU_RSA_WITH_AES_128_CBC_SHA
TLS_NTRU_RSA_WITH_AES_256_CBC_SHA

The strongest one, AES-256, is the default. If wolfSSL is enabled with NTRU and the
NTRU package is available, these cipher suites are built into the wolfSSL library. A
wolfSSL client will have these cipher suites available without any interaction needed by
the user. On the other hand, a wolfSSL server application will need to load an NTRU
private key and NTRU x509 certificate in order for those cipher suites to be available for
use.

The example servers echoserver and server both use the define HAVE_NTRU (which is
turned on by enabling NTRU) to specify whether or not to load NTRU keys and
certificates. The wolfSSL package comes with test keys and certificates in the
<wolfssl_root>/certs directory. ntru-cert.pem is the certificate and ntru-key.raw is the
private key blob.

The wolfSSL NTRU cipher suites are given the highest preference order when the
protocol picks a suite. Their exact preference order is the reverse of the above listed
suites, i.e., AES-256 will be picked first and 3DES last before moving onto the
“standard” cipher suites. Basically, if a user builds NTRU into wolfSSL and both sides of
the connection support NTRU then an NTRU cipher suite will be picked unless a user
on one side has explicitly excluded them by stating to only use different cipher suites.

Copyright 2015 wolfSSL Inc. All rights reserved.

54

Using NTRU over RSA can provide a 20 - 200X speed improvement. The improvement
increases as the size of keys increases, meaning a much larger speed benefit when
using large keys (8192-bit) versus smaller keys (1024-bit).

4.3.6 ECC Support

wolfSSL has support for Elliptic Curve Cryptography (ECC) including ECDH-ECDSA,
ECDHE-ECDSA, ECDH-RSA, and ECDHE-RSA.

wolfSSL’s ECC implementation can be found in the
<wolfssl_root>/wolfssl/wolfcrypt/ecc.h header file and the
<wolfssl_root>/wolfcrypt/src/ecc.c source file.

Supported cipher suites are shown in Table 4, above. ECC is disabled by default, but
can be turned on when building wolfSSL with the HAVE_ECC define or by using the
autoconf system:

./configure --enable-ecc
make
make check

When “make check” runs, note the numerous cipher suites that wolfSSL checks. Any of
these cipher suites can be tested individually, e.g., to try ECDH-ECDSA with AES256-
SHA, the example wolfSSL server can be started like this:

./examples/server/server -d -l ECDH-ECDSA-AES256-SHA -c
./certs/server-ecc.pem -k ./certs/ecc-key.pem

-d disables client cert check while -l specifies the cipher suite list. -c is the certificate to
use and -k is the corresponding private key to use. To have the client connect try:

./examples/client/client -A ./certs/server-ecc.pem

where -A is the CA certificate to use to verify the server.

Copyright 2015 wolfSSL Inc. All rights reserved.

55

4.3.7 PKCS Support

PKCS (Public Key Cryptography Standards) refers to a group of standards created and
published by RSA Security, Inc. wolfSSL has support for PKCS #5, PKCS #8, and
PBKD from PKCS #12.

4.3.7.1 PKCS #5, PBKDF1, PBKDF2, PKCS #12

PKCS #5 is a password based key derivation method which combines a password, a
salt, and an iteration count to generate a password-based key. wolfSSL supports both
PBKDF1 and PBKDF2 key derivation functions. A key derivation function produces a
derived key from a base key and other parameters (such as the salt and iteration count
as explained above). PBKDF1 applies a hash function (MD5, SHA1, etc) to derive keys,
where the derived key length is bounded by the length of the hash function output. With
PBKDF2, a psudorandom function is applied (such as HMAC-SHA-1) to derive the keys.
In the case of PBKDF2, the derived key length is unbounded.

wolfSSL also supports the PBKDF function from PKCS #12 in addition to PBKDF1 and
PBKDF2. The function prototypes look like this:

int PBKDF2(byte* output, const byte* passwd, int pLen,

const byte* salt,int sLen, int iterations,
int kLen, int hashType);

int PKCS12_PBKDF(byte* output, const byte* passwd, int pLen,

 const byte* salt, int sLen, int iterations,
 int kLen, int hashType, int purpose);

output contains the derived key, passwd holds the user password of length pLen, salt
holds the salt input of length sLen, iterations is the number of iterations to perform,
kLen is the desired derived key length, and hashType is the hash to use (which can be
MD5, SHA1, or SHA2).

If you are using ./configure to build wolfssl, the way enable this functionality is to
use the option --enable-pwdbased

A full example can be found in wolfcrypt/src/test.c. More information can be found on
PKCS #5, PBKDF1, and PBKDF2 from the following specifications:

PKCS#5, PBKDF1, PBKDF2: http://tools.ietf.org/html/rfc2898

Copyright 2015 wolfSSL Inc. All rights reserved.

56

4.3.7.2 PKCS #8

PKCS #8 is designed as the Private-Key Information Syntax Standard, which is used to
store private key information - including a private key for some public-key algorithm and
set of attributes.

The PKCS #8 standard has two versions which describe the syntax to store both
encrypted private keys and non-encrypted keys. wolfSSL supports both non-encrypted
and encrypted PKCS #8. Supported formats include PKCS #5 version 1 - version 2, and
PKCS#12. Types of encryption available include DES, 3DES, RC4, and AES.

PKCS#8: http://tools.ietf.org/html/rfc5208

4.3.8 Forcing the Use of a Specific Cipher

By default, wolfSSL will pick the “best” (highest security) cipher suite that both sides of
the connection can support. To force a specific cipher, such as 128 bit AES, add
something similar to:

SSL_CTX_set_cipher_list(ctx, “AES128-SHA”);

after the call to SSL_CTX_new(); so that you have:

ctx = SSL_CTX_new(method);
SSL_CTX_set_cipher_list(ctx, “AES128-SHA”);

4.4 Hardware Accelerated Crypto

wolfSSL is able to take advantage of several hardware accelerated (or “assisted”)
crypto functionalities in various processors and chips. The following sections explain
which technologies wolfSSL supports out-of-the-box.

4.4.1 Intel AES-NI

AES is a key encryption standard used by governments worldwide, which wolfSSL has
always supported. Intel has released a new set of instructions that is a faster way to
implement AES. wolfSSL is the first SSL library to fully support the new instruction set
for production environments.

Copyright 2015 wolfSSL Inc. All rights reserved.

57

Essentially, Intel has added AES instructions at the chip level that perform the
computational-intensive parts of the AES algorithm, boosting performance. For a list of
Intel’s chips that currently have support for AES-NI, you can look here:

http://ark.intel.com/search/advanced/?s=t&AESTech=true

We have added the functionality to wolfSSL to allow it to call the instructions directly
from the chip, instead of running the algorithm in software. This means that when you’re
running wolfSSL on a chipset that supports AES-NI, you can run your AES crypto 5-10
times faster!

If you are running on an AES-NI supported chipset, enable AES-NI with the --enable-
aesni build option. To build wolfSSL with AES-NI, GCC 4.4.3 or later is required to
make use of the assembly code.

References and further reading on AES-NI, ordered from general to specific, are listed
below. For information about performance gains with AES-NI, please see the third link
to the Intel Software Network page.

AES (Wikipedia) http://en.wikipedia.org/wiki/Advanced_Encryption_Standar
d

AES-NI (Wikipedia) http://en.wikipedia.org/wiki/AES_instruction_set

AES-NI (Intel Software
Network page)

http://software.intel.com/en-us/articles/intel-advanced-
encryption-standard-instructions-aes-ni/

4.4.2 STM32F2

wolfSSL is able to use the STM32F2 hardware-based cryptography and random
number generator through the STM32F2 Standard Peripheral Library.

For necessary defines, see the WOLFSSL_STM32F2 define in settings.h. The
WOLFSSL_STM32F2 define enables STM32F2 hardware crypto and RNG support by
default. The defines for enabling these individually are STM32F2_CRYPTO (for
hardware crypto support) and STM32F2_RNG (for hardware RNG support).

Copyright 2015 wolfSSL Inc. All rights reserved.

58

Documentation for the STM32F2 Standard Peripheral Library can be found in the
following document:
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATUR
E/USER_MANUAL/DM00023896.pdf

4.4.3 Cavium NITROX

wolfSSL has support for Cavium NITROX
(http://www.cavium.com/processor_security.html). To enable Cavium NITROX support
when building wolfSSL use the following configure option:

./configure --with-cavium=/home/user/cavium/software

Where the “--with-cavium=” option is pointing to your licensed cavium/software
directory. Since Cavium doesn't build a library wolfSSL pulls in the cavium_common.o
file which gives a libtool warning about the portability of this. Also, if you're using the
github source tree you'll need to remove the -Wredundant-decls warning from the
generated Makefile because the cavium headers don't conform to this warning.

Currently wolfSSL supports Cavium RNG, AES, 3DES, RC4, HMAC, and RSA directly
at the crypto layer. Support at the SSL level is partial and currently just does AES,
3DES, and RC4. RSA and HMAC are slower until the Cavium calls can be utilized in
non-blocking mode. The example client turns on cavium support as does the crypto test
and benchmark. Please see the HAVE_CAVIUM define.

4.5 SSL Inspection (Sniffer)

Beginning with the wolfSSL 1.5.0 release, wolfSSL has included a build option allowing
it to be built with SSL Sniffer (SSL Inspection) functionality. This means that you can
collect SSL traffic packets and with the correct key file, are able to decrypt them as well.
The ability to “inspect” SSL traffic can be useful for several reasons, some of which
include:

● Analyzing Network Problems
● Detecting network misuse by internal and external users
● Monitoring network usage and data in motion
● Debugging client/server communications

Copyright 2015 wolfSSL Inc. All rights reserved.

59

To enable sniffer support, build wolfSSL with the --enable-sniffer option on *nix or use
the vcproj files on Windows. You will need to have pcap installed on *nix or WinPcap
on Windows. There are five main sniffer functions which can be found in sniffer.h. They
are listed below with a short description of each:

ssl_SetPrivateKey - Sets the private key for a specific server and port.
ssl_DecodePacket - Passes in a TCP/IP packet for decoding.
ssl_Trace - Enables / Disables debug tracing to the traceFile.
ssl_InitSniffer - Initialize the overall sniffer.
ssl_FreeSniffer - Free the overall sniffer.

To look at wolfSSL's sniffer support and see a complete example, please see the
"snifftest" app in the "ssSniffer/sslSnifferTest" folder from the wolfSSL download.

Keep in mind that because the encryption keys are setup in the SSL Handshake, the
handshake needs to be decoded by the sniffer in order for future application data to be
decoded. For example, if you are using "snifftest" with the wolfSSL example echoserver
and echoclient, the snifftest application must be started before the handshake begins
between the server and client.

4.6 Compression

wolfSSL supports data compression with the zlib library. The ./configure build system
detects the presence of this library, but if you're building in some other way define the
constant HAVE_LIBZ and include the path to zlib.h for your includes.

Compression is off by default for a given cipher. To turn it on, use the function
wolfSSL_set_compression() before SSL connecting or accepting. Both the client and
server must have compression turned on in order for compression to be used.

Keep in mind that while compressing data before sending decreases the actual size of
the messages being sent and received, the amount of data saved by compression
usually takes longer in time to analyze than it does to send it raw on all but the slowest
of networks.

Copyright 2015 wolfSSL Inc. All rights reserved.

60

4.7 Pre-Shared Keys

wolfSSL has support for two ciphers with pre shared keys:

TLS_PSK_WITH_AES_256_CBC_SHA
TLS_PSK_WITH_AES_128_CBC_SHA256
TLS_PSK_WITH_AES_128_CBC_SHA
TLS_PSK_WITH_NULL_SHA256
TLS_PSK_WITH_NULL_SHA
TLS_PSK_WITH_AES_128_CCM
TLS_PSK_WITH_AES_256_CCM
TLS_PSK_WITH_AES_128_CCM_8
TLS_PSK_WITH_AES_256_CCM_8

These suites are automatically built into wolfSSL, though they can be turned off at build
time with the constant NO_PSK. To only use these ciphers at runtime use the function
wolfSSL_CTX_set_cipher_list() with the desired ciphersuite.

On the client, use the function wolfSSL_CTX_set_psk_client_callback() to setup the
callback. The client example in <wolfSSL_Home>/examples/client/client.c gives
example usage for setting up the client identity and key, though the actual callback is
implemented in wolfssl/test.h.

On the server side two additional calls are required:

wolfSSL_CTX_set_psk_server_callback()
wolfSSL_CTX_use_psk_identity_hint()

The server stores its identity hint to help the client with the 2nd call, in our server
example that's "wolfssl server". An example server psk callback can also be found in
my_psk_server_cb() in wolfssl/test.h.

wolfSSL supports identities and hints up to 128 octets and pre shared keys up to 64
octets.

Copyright 2015 wolfSSL Inc. All rights reserved.

61

4.8 Client Authentication

Client authentication is a feature which enables the server to authenticate clients by
requesting that the clients send a certificate to the server for authentication when they
connect. Client authentication requires an X.509 client certificate from a CA (or self-
signed if generated by you or someone other than a CA).

By default, wolfSSL validates all certificates that it receives - this includes both client
and server. To set up client authentication, the server must load the list of trusted CA
certificates to be used to verify the client certificate against:

wolfSSL_CTX_load_verify_locations(ctx, caCert, 0);

To turn on client verification and control its behavior, the wolfSSL_CTX_set_verify()
function is used. In the following example, SSL_VERIFY_PEER turns on a certificate
request from the server to the client. SSL_VERIFY_FAIL_IF_NO_PEER_CERT
instructs the server to fail if the client does not present a certificate to validate on the
server side. Other options to wolfSSL_CTX_set_verify() include SSL_VERIFY_NONE
and SSL_VERIFY_CLIENT_ONCE.

wolfSSL_CTX_set_verify(ctx,SSL_VERIFY_PEER |

 SSL_VERIFY_FAIL_IF_NO_PEER_CERT,0);

An example of client authentication can be found in the example server (server.c)
included in the wolfSSL download (/examples/server/server.c).

4.9 Server Name Indication

SNI is useful when a server hosts multiple ‘virtual’ servers at a single underlying
network address. It may be desirable for clients to provide the name of the server which
it is contacting. To enable SNI with wolfSSL you can simply do:

./configure --enable-sni

Using SNI on the client side requires an additional function call, which should be one of
the following functions:

Copyright 2015 wolfSSL Inc. All rights reserved.

62

wolfSSL_CTX_UseSNI()

wolfSSL_UseSNI()

wolfSSL_CTX_UseSNI() is most recommended when the client contacts the same
server multiple times. Setting the SNI extension at the context level will enable the SNI
usage in all SSL objects created from that same context from the moment of the call
forward.

wolfSSL_UseSNI() will enable SNI usage for one SSL object only, so it is recommended
to use this function when the server name changes between sessions.

On the server side one of the same function calls is required. Since the wolfSSL server
doesn't host multiple 'virtual' servers, the SNI usage is useful when the termination of
the connection is desired in the case of SNI mismatch. In this scenario,
wolfSSL_CTX_UseSNI() will be more efficient, as the server will set it only once per
context creating all subsequent SSL objects with SNI from that same context.

4.10 Handshake Modifications

4.10.1 Grouping Handshake Messages

wolfSSL has the ability to group handshake messages if the user desires. This can be
done at the context level with:

wolfSSL_CTX_set_group_messages(ctx);

or at the SSL object level with:

wolfSSL_set_group_messages(ssl);

Copyright 2015 wolfSSL Inc. All rights reserved.

63

4.11 Truncated HMAC

Currently defined TLS cipher suites use the HMAC to authenticate record-layer
communications. In TLS, the entire output of the hash function is used as the MAC tag.
However, it may be desirable in constrained environments to save bandwidth by
truncating the output of the hash function to 80 bits when forming MAC tags. To enable
the usage of Truncated HMAC at wolfSSL you can simply do:

./configure --enable-truncatedhmac

Using Truncated HMAC on the client side requires an additional function call, which
should be one of the following functions:

wolfSSL_CTX_UseTruncatedHMAC();
wolfSSL_UseTruncatedHMAC();

wolfSSL_CTX_UseTruncatedHMAC() is most recommended when the client would
like to enable Truncated HMAC for all sessions. Setting the Truncated HMAC extension
at context level will enable it in all SSL objects created from that same context from the
moment of the call forward.

wolfSSL_UseTruncatedHMAC() will enable it for one SSL object only, so it's
recommended to use this function when there is no need for Truncated HMAC on all
sessions.

On the server side no call is required. The server will automatically attend to the client's
request for Truncated HMAC.

All TLS extensions can also be enabled with:

./configure --enable-tlsx

Copyright 2015 wolfSSL Inc. All rights reserved.

64

Chapter 5: Portability

5.1 Abstraction Layers

5.1.1 C Standard Library Abstraction Layer

wolfSSL (formerly CyaSSL) can be built without the C standard library to provide a
higher level of portability and flexibility to developers. The user will have to map the
functions they wish to use instead of the C standard ones.

5.1.1.1 Memory Use

Most C programs use malloc() and free() for dynamic memory allocation. wolfSSL uses
XMALLOC() and XFREE() instead. By default, these point to the C runtime versions. By
defining XMALLOC_USER, the user can provide their own hooks. Each memory
function takes two additional arguments over the standard ones, a heap hint, and an
allocation type. The user is free to ignore these or use them in any way they like. You
can find the wolfSSL memory functions in wolfssl/wolfcrypt/types.h.

wolfSSL also provides the ability to register memory override functions at runtime
instead of compile time. wolfssl/wolfcrypt/memory.h is the header for this functionality
and the user can call the following function to setup the memory functions:

int wolfSSL_SetAllocators(wolfSSL_Malloc_cb malloc_function,
 wolfSSL_Free_cb free_function,
 wolfSSL_Realloc_cb realloc_function);

See the header wolfssl/wolfcrypt/memory.h for the callback prototypes and
memory.c for the implementation.

5.1.1.2 string.h

wolfSSL uses several functions that behave like string.h’s memcpy(), memset(), and
memcmp() amongst others. They are abstracted to XMEMCPY(), XMEMSET(), and
XMEMCMP() respectively. And by default, they point to the C standard library versions.
Defining XSTRING_USER allows the user to provide their own hooks in types.h. For
example, by default XMEMCPY() is:

#define XMEMCPY(d,s,l) memcpy((d),(s),(l))

Copyright 2015 wolfSSL Inc. All rights reserved.

65

After defining XSTRING_USER you could do:

#define XMEMCPY(d,s,l) my_memcpy((d),(s),(l))

Or if you prefer to avoid macros:

external void* my_memcpy(void* d, const void* s, size_t n);

to set wolfSSL’s abstraction layer to point to your version my_memcpy().

5.1.1.3 math.h

wolfSSL uses two functions that behave like math.h’s pow() and log(). They are only
required by Diffie-Hellman, so if you exclude DH from the build, then you don’t have to
provide your own. They are abstracted to XPOW() and XLOG() and found in
wolfcrypt/src/dh.c.

5.1.1.4 File System Use

By default, wolfSSL uses the system’s file system for the purpose of loading keys and
certificates. This can be turned off by defining NO_FILESYSTEM, see item V. If instead,
you’d like to use a file system but not the system one, you can use the XFILE() layer in
ssl.c to point the file system calls to the ones you’d like to use. See the example
provided by the MICRIUM define.

5.1.2 Custom Input/Output Abstraction Layer

wolfSSL provides a custom I/O abstraction layer for those who wish to have higher
control over I/O of their SSL connection or run SSL on top of a different transport
medium other than TCP/IP.

The user will need to define 2 functions:

1. The network Send function
2. The network Receive function

These two functions are prototyped by CallbackIOSend and CallbackIORecv in ssl.h:

typedef int (*CallbackIORecv)(WOLFSSL *ssl, char *buf, int sz, void *ctx);
typedef int (*CallbackIOSend)(WOLFSSL *ssl, char *buf, int sz, void *ctx);

Copyright 2015 wolfSSL Inc. All rights reserved.

66

The user needs to register these functions per WOLFSSL_CTX with
wolfSSL_SetIOSend() and wolfSSL_SetIORecv(). For example, in the default case,
CBIORecv() and CBIOSend() are registered at the bottom of io.c:

void wolfSSL_SetIORecv(WOLFSSL_CTX *ctx, CallbackIORecv CBIORecv)
{
 ctx->CBIORecv = CBIORecv;
}

void wolfSSL_SetIOSend(WOLFSSL_CTX *ctx, CallbackIOSend CBIOSend)
{
 ctx->CBIOSend = CBIOSend;
}

The user can set a context per WOLFSSL object (session) with
wolfSSL_SetIOWriteCtx() and wolfSSL_SetIOReadCtx(), as demonstrated at the
bottom of io.c. For example, if the user is using memory buffers, the context may be a
pointer to a structure describing where and how to access the memory buffers. The
default case, with no user overrides, registers the socket as the context.

The CBIORecv and CBIOSend function pointers can be pointed to your custom I/O
functions. The default Send() and Receive() functions, EmbedSend() and
EmbedReceive(), located in io.c, can be used as templates and guides.

WOLFSSL_USER_IO can be defined to remove the automatic setting of the
default I/O functions EmbedSend() and EmbedReceive().

5.1.3 Operating System Abstraction Layer

The wolfSSL OS abstraction layer helps facilitate easier porting of wolfSSL to a user’s
operating system. The wolfssl/wolfcrypt/settings.h file contains settings which end
up triggering the OS layer.

OS-specific defines are located in wolfssl/wolfcrypt/types.h for wolfCrypt and
wolfssl/internal.h for wolfSSL.

Copyright 2015 wolfSSL Inc. All rights reserved.

67

5.2 Supported Operating Systems

One factor which defines wolfSSL is its ability to be easily ported to new platforms. As
such, wolfSSL has support for a long list of operating systems out-of-the-box.
Currently-supported operating systems include:

Win32/64, Linux, Mac OS X, Solaris, ThreadX, VxWorks, FreeBSD, NetBSD,
OpenBSD, embedded Linux, WinCE, Haiku, OpenWRT, iPhone (iOS), Android,
Nintendo Wii and Gamecube through DevKitPro, QNX, MontaVista, NonStop,
TRON/ITRON/µITRON, Micrium's µC/OS, FreeRTOS, SafeRTOS, Freescale MQX,
Nucleus, TinyOS, HP/UX, TIRTOS

5.3 Supported Chipmakers

wolfSSL has support for chipsets from chipmakers, including: ARM, Intel, ST
(STM32F2/F4), Motorola, mbed, Freescale, Microchip (PIC32), Texas Instruments, and
more.

Chapter 6: Callbacks

6.1 HandShake Callback

wolfSSL (formerly CyaSSL) has an extension that allows a HandShake Callback to be
set for connect or accept. This can be useful in embedded systems for debugging
support when another debugger isn’t available and sniffing is impractical. To use
wolfSSL HandShake Callbacks, use the extended functions, wolfSSL_connect_ex()
and wolfSSL_accept_ex():

int wolfSSL_connect_ex(WOLFSSL*, HandShakeCallBack, TimeoutCallBack,
 Timeval)
int wolfSSL_accept_ex(WOLFSSL*, HandShakeCallBack, TimeoutCallBack,
 Timeval)

HandShakeCallBack is defined as:

typedef int (*HandShakeCallBack)(HandShakeInfo*);

Copyright 2015 wolfSSL Inc. All rights reserved.

68

HandShakeInfo is defined in wolfssl/callbacks.h (which should be added to a non-
standard build):

typedef struct handShakeInfo_st {

char cipherName[MAX_CIPHERNAME_SZ + 1]; /* negotiated name */
char packetNames[MAX_PACKETS_HANDSHAKE][MAX_PACKETNAME_SZ+1];

 /* SSL packet names */
int numberPackets; /* actual # of packets */
int negotiationError; /* cipher/parameter err */

} HandShakeInfo;

No dynamic memory is used since the maximum number of SSL packets in a
handshake exchange is known. Packet names can be accessed through
packetNames[idx] up to numberPackets. The callback will be called whether or not a
handshake error occured. Example usage is also in the client example.

6.2 Timeout Callback

The same extensions used with wolfSSL Handshake Callbacks can be used for
wolfSSL Timeout Callbacks as well. These extensions can be called with either, both, or
neither callbacks (Handshake and/or Timeout). TimeoutCallback is defined as:

typedef int (*TimeoutCallBack)(TimeoutInfo*);

Where TimeoutInfo looks like:

typedef struct timeoutInfo_st {

char timeoutName[MAX_TIMEOUT_NAME_SZ +1]; /*timeout Name*/
int flags; /* for future use*/
int numberPackets; /* actual # of packets */
PacketInfo packets[MAX_PACKETS_HANDSHAKE]; /* list of packets */
Timeval timeoutValue; /* timer that caused it */

} TimeoutInfo;

Again, no dynamic memory is used for this structure since a maximum number of SSL
packets is known for a handshake. Timeval is just a typedef for struct timeval.

PacketInfo is defined like this:

Copyright 2015 wolfSSL Inc. All rights reserved.

69

typedef struct packetInfo_st {
 char packetName[MAX_PACKETNAME_SZ + 1]; /* SSL name */
 Timeval timestamp; /* when it occured */
 unsigned char value[MAX_VALUE_SZ]; /* if fits, it's here */
 unsigned char* bufferValue; /* otherwise here (non 0) */
 int valueSz; /* sz of value or buffer */
} PacketInfo;

Here, dynamic memory may be used. If the SSL packet can fit in value then that's
where it's placed. valueSz holds the length and bufferValue is 0. If the packet is too big
for value, only Certificate packets should cause this, then the packet is placed in
bufferValue. valueSz still holds the size.

If memory is allocated for a Certificate packet then it is reclaimed after the callback
returns. The timeout is implemented using signals, specifically SIGALRM, and is thread
safe. If a previous alarm is set of type ITIMER_REAL then it is reset, along with the
correct handler, afterwards. The old timer will be time adjusted for any time wolfSSL
spends processing. If an existing timer is shorter than the passed timer, the existing
timer value is used. It is still reset afterwards. An existing timer that expires will be reset
if has an interval associated with it. The callback will only be issued if a timeout occurs.

See the client example for usage.

6.3 User Atomic Record Layer Processing

wolfSSL provides Atomic Record Processing callbacks for users who wish to have more
control over MAC/encrypt and decrypt/verify functionality during the SSL/TLS
connection.

The user will need to define 2 functions:

1. MAC/encrypt callback function
2. Decrypt/verify callback function

These two functions are prototyped by CallbackMacEncrypt and
CallbackDecryptVerify in ssl.h:

typedef int (*CallbackMacEncrypt)(WOLFSSL* ssl, unsigned char*
macOut,

const unsigned char* macIn, unsigned int macInSz,

Copyright 2015 wolfSSL Inc. All rights reserved.

70

int macContent, int macVerify, unsigned char* encOut,
const unsigned char* encIn, unsigned int encSz,
void* ctx);

typedef int (*CallbackDecryptVerify)(WOLFSSL* ssl,

unsigned char* decOut, const unsigned char* decIn,
unsigned int decSz, int content, int verify,
unsigned int* padSz, void* ctx);

The user needs to write and register these functions per wolfSSL context
(WOLFSSL_CTX) with wolfSSL_CTX_SetMacEncryptCb() and
wolfSSL_CTX_SetDecryptVerifyCb().

The user can set a context per WOLFSSL object (session) with
wolfSSL_SetMacEncryptCtx() and wolfSSL_SetDecryptVerifyCtx(). This context
may be a pointer to any user-specified context, which will then in turn be passed back to
the MAC/encrypt and decrypt/verify callbacks through the “void* ctx” parameter.

1. Example callbacks can be found in wolfssl/test.h, under myMacEncryptCb() and
myDecryptVerifyCb(). Usage can be seen in the wolfSSL example client
(examples/client/client.c), when using the “-U” command line option.

To use Atomic Record Layer callbacks, wolfSSL needs to be compiled using the
“--enable-atomicuser” configure option, or by defining the ATOMIC_USER
preprocessor flag.

6.4 Public Key Callbacks

wolfSSL provides Public Key callbacks for users who wish to have more control over
ECC sign/verify functionality as well as RSA sign/verify and encrypt/decrypt functionality
during the SSL/TLS connection.

The user can optionally define 6 functions:

1. ECC sign callback
2. ECC verify callback
3. RSA sign callback
4. RSA verify callback
5. RSA encrypt callback
6. RSA decrypt callback

Copyright 2015 wolfSSL Inc. All rights reserved.

71

These two functions are prototyped by CallbackEccSign, CallbackEccVerify,
CallbackRsaSign, CallbackRsaVerify, CallbackRsaEnc, and CallbackRsaDec in
ssl.h:

typedef int (*CallbackEccSign)(WOLFSSL* ssl, const unsigned
char* in,

unsigned int inSz, unsigned char* out,
unsigned int* outSz, const unsigned char* keyDer,
unsigned int keySz, void* ctx);

typedef int (*CallbackEccVerify)(WOLFSSL* ssl,

const unsigned char* sig, unsigned int sigSz,
const unsigned char* hash, unsigned int hashSz,
const unsigned char* keyDer, unsigned int keySz,
int* result, void* ctx);

typedef int (*CallbackRsaSign)(WOLFSSL* ssl,
const unsigned char* in, unsigned int inSz,
unsigned char* out, unsigned int* outSz,
const unsigned char* keyDer, unsigned int keySz,
void* ctx);

typedef int (*CallbackRsaVerify)(WOLFSSL* ssl,
unsigned char* sig, unsigned int sigSz,
unsigned char** out, const unsigned char* keyDer,
unsigned int keySz, void* ctx);

typedef int (*CallbackRsaEnc)(WOLFSSL* ssl, const unsigned char*
in,

unsigned int inSz, unsigned char* out,
unsigned int* outSz, const unsigned char* keyDer,
unsigned int keySz,
void* ctx);

typedef int (*CallbackRsaDec)(WOLFSSL* ssl, unsigned char* in,
unsigned int inSz, unsigned char** out,
const unsigned char* keyDer, unsigned int keySz,
void* ctx);

Copyright 2015 wolfSSL Inc. All rights reserved.

72

The user needs to write and register these functions per wolfSSL context
(WOLFSSL_CTX) with wolfSSL_CTX_SetEccSignCb(),
wolfSSL_CTX_SetEccVerifyCb(), wolfSSL_CTX_SetRsaSignCb(),
wolfSSL_CTX_SetRsaVerifyCb(), wolfSSL_CTX_SetRsaEncCb(), and
wolfSSL_CTX_SetRsaDecCb().

The user can set a context per WOLFSSL object (session) with
wolfSSL_SetEccSignCtx(), wolfSSL_SetEccVerifyCtx(), wolfSSL_SetRsaSignCtx(),
wolfSSL_SetRsaVerifyCtx(), wolfSSL_SetRsaEncCtx(), and
wolfSSL_SetRsaDecCtx(). These contexts may be pointers to any user-specified
context, which will then in turn be passed back to the respective public key callback
through the “void* ctx” parameter.

Example callbacks can be found in wolfssl/test.h, under myEccSignCb(),
myEccVerifyCb(), myRsaSignCb(), myRsaVerifyCb(), myRsaEncCb(), and
myRsaDecCb(). Usage can be seen in the wolfSSL example client
(examples/client/client.c), when using the “-P” command line option.

To use Atomic Record Layer callbacks, wolfSSL needs to be compiled using the
“--enable-pkcallbacks” configure option, or by defining the
HAVE_PK_CALLBACKS preprocessor flag.

Chapter 7: Keys and Certificates

For an introduction to X.509 certificates, as well as how they are used in SSL and TLS,
please see Appendix A.

7.1 Supported Formats and Sizes

wolfSSL (formerly CyaSSL) has support for PEM, and DER formats for certificates and
keys, as well as PKCS#8 private keys (with PKCS#5 or PKCS#12 encryption).

PEM, or “Privacy Enhanced Mail” is the most common format that certificates are issued
in by certificate authorities. PEM files are Base64 encoded ASCII files which can
include multiple server certificates, intermediate certificates, and private keys, and
usually have a .pem, .crt, .cer, or .key file extension. Certificates inside PEM files are
wrapped in the “-----BEGIN CERTIFICATE-----” and “-----END CERTIFICATE-----”
statements.

Copyright 2015 wolfSSL Inc. All rights reserved.

73

DER, or “Distinguished Encoding Rules”, is a binary format of a certificate. DER file
extensions can include .der and .cer, and cannot be viewed with a text editor.

7.2 Certificate Loading

Certificates are normally loaded using the file system (although loading from memory
buffers is supported as well - see section 7.5).

7.2.1 Loading CA Certificates

CA certificate files can be loaded using the wolfSSL_CTX_load_verify_locations()
function:

int wolfSSL_CTX_load_verify_locations(WOLFSSL_CTX *ctx,

 const char *CAfile,
 const char *CApath);

CA loading can also parse multiple CA certificates per file using the above function by
passing in a CAfile in PEM format with as many certs as possible. This makes
initialization easier, and is useful when a client needs to load several root CAs at
startup. This makes wolfSSL easier to port into tools that expect to be able to use a
single file for CAs.

7.2.2 Loading Client or Server Certificates

Loading single client or server certificates can be done with the
wolfSSL_CTX_use_certificate_file() function. If this function is used with a certificate
chain, only the actual, or “bottom” certificate will be sent.

int wolfSSL_CTX_use_certificate_file(WOLFSSL_CTX *ctx,

 const char *CAfile,
 int type);

CAfile is the CA certificate file, and type is the format of the certificate - such as
SSL_FILETYPE_PEM.

The server and client can send certificate chains using the
wolfSSL_CTX_use_certificate_chain_file() function. The certificate chain file must be in

Copyright 2015 wolfSSL Inc. All rights reserved.

74

PEM format and must be sorted starting with the subject's certificate (the actual client or
server cert), followed by any intermediate certificates and ending (optionally) at the root
"top" CA. The example server (/examples/server/server.c) uses this functionality.

int wolfSSL_CTX_use_certificate_chain_file(WOLFSSL_CTX *ctx,

 const char *file);

7.2.3 Loading Private Keys

Server private keys can be loaded using the wolfSSL_CTX_use_PrivateKey_file()
function.

int wolfSSL_CTX_use_PrivateKey_file(WOLFSSL_CTX *ctx,
 const char *keyFile,

 int type);

keyFile is the private key file, and type is the format of the private key (i.e.
SSL_FILETYPE_PEM).

7.3 Certificate Chain Verification

wolfSSL requires that only the top or “root” certificate in a chain to be loaded as a
trusted certificate in order to verify a certificate chain. This means that if you have a
certificate chain (A -> B -> C), where C is signed by B, and B is signed by A, wolfSSL
only requires that certificate A be loaded as a trusted certificate in order to verify the
entire chain (A->B->C).

For example, if a server certificate chain looks like:

The wolfSSL client should already have at least the root cert (A) loaded as a trusted
root. When the client receives the server cert chain, it uses the signature of A to verify

Copyright 2015 wolfSSL Inc. All rights reserved.

75

B, and if B has not been previously loaded into wolfSSL as a trusted root, B gets stored
in wolfSSL's internal cert chain (wolfSSL just stores what is necessary to verify a
certificate: common name hash, public key and key type, etc.). If B is valid, then it is
used to verify C.

Following this model, as long as root cert "A" has been loaded as a trusted root into the
wolfSSL server, the server certificate chain will still be able to be verified if the server
sends (A->B->C), or (B->C). If the server just sends (C), and not the intermediate
certificate, the chain will not be able to be verified unless the wolfSSL client has already
loaded B as a trusted root.

7.4 Domain Name Check for Server Certificates

wolfSSL has an extension on the client that automatically checks the domain of the
server certificate. In OpenSSL mode nearly a dozen function calls are needed to
perform this. wolfSSL checks that the date of the certificate is in range, verifies the
signature, and additionally verifies the domain if you call:

wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn)

before calling wolfSSL_connect(). wolfSSL will match the X509 issuer name of peer's
server certificate against dn (the expected domain name). If the names match
wolfSSL_connect() will proceed normally, however if there is a name mismatch,
wolfSSL_connect() will return a fatal error and wolfSSL_get_error() will return
DOMAIN_NAME_MISMATCH.

Checking the domain name of the certificate is an important step that verifies the server
is actually who it claims to be. This extension is intended to ease the burden of
performing the check.

7.5 No File System and using Certificates

Normally a file system is used to load private keys, certificates, and CAs. Since wolfSSL
is sometimes used in environments without a full file system an extension to use
memory buffers instead is provided. To use the extension define the constant
NO_FILESYSTEM and the following functions will be made available:

int wolfSSL_CTX_load_verify_buffer(WOLFSSL_CTX*, const unsigned char*,

Copyright 2015 wolfSSL Inc. All rights reserved.

76

 long, int)
int wolfSSL_CTX_use_certificate_buffer(WOLFSSL_CTX*, const unsigned
 char*, long, int)
int wolfSSL_CTX_use_PrivateKey_buffer(WOLFSSL_CTX*, const unsigned
 char*, long, int)
int wolfSSL_CTX_use_certificate_chain_buffer(WOLFSSL_CTX*,
 const unsigned char*,long)

Use these functions exactly like their counterparts that are named file instead of buffer.
And instead of providing a filename provide a memory buffer.

7.5.1 Test Certificate and Key Buffers

wolfSSL has come bundled with test certificate and key files in the past. Now it also
comes bundled with test certificate and key buffers for use in environments with no
filesystem available. These buffers are available in certs_test.h when defining either
USE_CERT_BUFFERS_1024 or USE_CERT_BUFFERS_2048.

7.6 Serial Number Retrieval

The serial number of an X.509 certificate can be extracted from wolfSSL using the
following function. The serial number can be of any length.

int wolfSSL_X509_get_serial_number(WOLFSSL_X509* x509,

unsigned char* buffer, int* inOutSz)

buffer will be written to with at most *inOutSz bytes on input. After the call, if successful
(return of 0), *inOutSz will hold the actual number of bytes written to buffer. A full
example is included wolfssl/test.h.

7.7 RSA Key Generation

wolfSSL supports RSA key generation of varying lengths up to 4096 bits. Key
generation is off by default but can be turned on during the ./configure process with:

--enable-keygen

Copyright 2015 wolfSSL Inc. All rights reserved.

77

or by defining WOLFSSL_KEY_GEN in Windows or non-standard environments.
Creating a key is easy, only requiring one function from rsa.h:

int MakeRsaKey(RsaKey* key, int size, long e, RNG* rng);

Where size is the length in bits and e is the public exponent, using 65537 is usually a
good choice for e. The following from wolfcrypt/test/test.c gives an example creating an
RSA key of 1024 bits:

RsaKey genKey;
RNG rng;
int ret;

InitRng(&rng);
InitRsaKey(&genKey, 0);

ret = MakeRsaKey(&genKey, 1024, 65537, &rng);
if (ret != 0)
 /* ret contains error */;

The RsaKey genKey can now be used like any other RsaKey. If you need to export the
key, wolfSSL provides both DER and PEM formatting in asn.h. Always convert the key
to DER format first, and then if you need PEM use the generic DerToPem() function like
this:

byte der[4096];
int derSz = RsaKeyToDer(&genKey, der, sizeof(der));
if (derSz < 0)
 /* derSz contains error */;

The buffer der now holds a DER format of the key. To convert the DER buffer to PEM
use the conversion function:

byte pem[4096];
int pemSz = DerToPem(der, derSz, pem, sizeof(pem),
 PRIVATEKEY_TYPE);
if (pemSz < 0)
 /* pemSz contains error */;

The last argument of DerToPem() takes a type parameter, usually either
PRIVATEKEY_TYPE or CERT_TYPE. Now the buffer pem holds the PEM format of the
key.

Copyright 2015 wolfSSL Inc. All rights reserved.

78

7.7.1 RSA Key Generation Notes

Although an RSA private key contains the public key as well, wolfSSL doesn’t currently
have the capability to generate a standalone RSA public key. The private key can be
used as both a private and public key by wolfSSL as used in test.c.

The reasoning behind the lack of individual RSA public key generation in wolfSSL is that
the private key and the public key (in the form of a certificate) is all that is typically
needed for SSL.

A separate public key can be loaded into wolfSSL manually using the
RsaPublicKeyDecode() function if need be.

7.8 Certificate Generation

wolfSSL supports X.509 v3 certificate generation. Certificate generation is off by default
but can be turned on during the ./configure process with:

--enable-certgen

or by defining WOLFSSL_CERT_GEN in Windows or non-standard environments.

Before a certificate can be generated the user needs to provide information about the
subject of the certificate. This information is contained in a structure from
wolfssl/wolfcrypt/asn_public.h named Cert:

/* for user to fill for certificate generation */
typedef struct Cert {
 int version; /* x509 version */
 byte serial[CTC_SERIAL_SIZE]; /* serial number */
 int sigType; /* signature algo type
*/
 CertName issuer; /* issuer info */
 int daysValid; /* validity days */
 int selfSigned; /* self signed flag */
 CertName subject; /* subject info */
 int isCA; /* is this going to be a
CA */

Copyright 2015 wolfSSL Inc. All rights reserved.

79

 ...
} Cert;

Where CertName looks like:

typedef struct CertName {

char country[CTC_NAME_SIZE];
 char countryEnc;
 char state[CTC_NAME_SIZE];
 char stateEnc;
 char locality[CTC_NAME_SIZE];
 char localityEnc;
 char sur[CTC_NAME_SIZE];
 char surEnc;
 char org[CTC_NAME_SIZE];
 char orgEnc;
 char unit[CTC_NAME_SIZE];
 char unitEnc;
 char commonName[CTC_NAME_SIZE];
 char commonNameEnc;
 char email[CTC_NAME_SIZE]; /* !!!! email has to be last
!!!! */
} CertName;

Before filling in the subject information an initialization function needs to be called like
this:

Cert myCert;
InitCert(&myCert);

InitCert() sets defaults for some of the variables including setting the version to 3 (0x02),
the serial number to 0 (randPomly generated), the sigType to CTC_SHAwRSA, the
daysValid to 500, and selfSigned to 1 (TRUE). Supported signature types include:

CTC_SHAwDSA
CTC_MD2wRSA
CTC_MD5wRSA
CTC_SHAwRSA
CTC_SHAwECDSA
CTC_SHA256wRSA

Copyright 2015 wolfSSL Inc. All rights reserved.

80

CTC_SHA256wECDSA
CTC_SHA384wRSA
CTC_SHA384wECDSA
CTC_SHA512wRSA
CTC_SHA512wECDSA

Now the user can initialize the subject information like this example from
wolfcrypt/test/test.c:

strncpy(myCert.subject.country, "US", CTC_NAME_SIZE);
strncpy(myCert.subject.state, "OR", CTC_NAME_SIZE);
strncpy(myCert.subject.locality, "Portland", CTC_NAME_SIZE);
strncpy(myCert.subject.org, "yaSSL", CTC_NAME_SIZE);
strncpy(myCert.subject.unit, "Development", CTC_NAME_SIZE);
strncpy(myCert.subject.commonName, "www.wolfssl.com",
CTC_NAME_SIZE);
strncpy(myCert.subject.email, "info@wolfssl.com",
CTC_NAME_SIZE);

Then, a self-signed certificate can be generated using the variables genKey and rng
from the above key generation example (of course any valid RsaKey or RNG can be
used):

byte derCert[4096];

int certSz = MakeSelfCert(&myCert, derCert, sizeof(derCert),
&key, &rng);
if (certSz < 0)
 /* certSz contains the error */;

The buffer derCert now contains a DER format of the certificate. If you need a PEM
format of the certificate you can use the generic DerToPem() function and specify the
type to be CERT_TYPE like this:

byte* pem;

int pemSz = DerToPem(derCert, certSz, pem, sizeof(pemCert),
CERT_TYPE);
if (pemCertSz < 0)
 /* pemCertSz contains error */;

Copyright 2015 wolfSSL Inc. All rights reserved.

81

Now the buffer pemCert holds the PEM format of the certificate.

If you wish to create a CA signed certificate then a couple of steps are required. After
filling in the subject information as before, you’ll need to set the issuer information from
the CA certificate. This can be done with SetIssuer() like this:

ret = SetIssuer(&myCert, “ca-cert.pem”);
if (ret < 0)
 /* ret contains error */;

Then you’ll need to perform the two-step process of creating the certificate and then
signing it (MakeSelfCert() does these both in one step). You’ll need the private keys
from both the issuer (caKey) and the subject (key). Please see the example in test.c
for complete usage.

byte derCert[4096];

int certSz = MakeCert(&myCert, derCert, sizeof(derCert), &key,
NULL,

&rng);
if (certSz < 0);
 /* certSz contains the error */;

certSz = SignCert(myCert.bodySz, myCert.sigType, derCert,

sizeof(derCert), &caKey, NULL, &rng);
if (certSz < 0);
 /* certSz contains the error */;

The buffer derCert now contains a DER format of the CA signed certificate. If you need
a PEM format of the certificate please see the self signed example above. Note that
MakeCert() and SignCert() provide function parameters for either an RSA or ECC key to
be used. The above example uses an RSA key and passes NULL for the ECC key
parameter.

Copyright 2015 wolfSSL Inc. All rights reserved.

82

7.9 Convert to raw ECC key

With our recently added support for raw ECC key import comes the ability to convert an
ecc key from PEM to DER. Use the following with the specified arguments to
accomplish this:

EccKeyToDer(ecc_key*, byte* output, word32 inLen);

Example:

 #define FOURK_BUF 4096

byte der[FOURK_BUF];
ecc_key userB;

 EccKeyToDer(&userB, der, FOURK_BUF);

Chapter 8: Debugging

8.1 Debugging and Logging

wolfSSL (formerly CyaSSL) has support for debugging through log messages in
environments where debugging is limited. To turn logging on use the function
wolfSSL_Debugging_ON() and to turn it off use wolfSSL_Deubgging_OFF(). In a
normal build (release mode) these functions will have no effect. In a debug build, define
DEBUG_WOLFSSL to ensure these functions are turned on.

As of wolfSSL 2.0, logging callback functions may be registered at runtime to provide
more flexibility with how logging is done. The logging callback can be registered with the
following function:

int wolfSSL_SetLoggingCb(wolfSSL_Logging_cb log_function);

typedef void (*wolfSSL_Logging_cb)(const int logLevel,
 const char *const logMessage);

Copyright 2015 wolfSSL Inc. All rights reserved.

83

The log levels can be found in wolfssl/wolfcrypt/logging.h, and the implementation is
located in logging.c. By default, wolfSSL logs to stderr with fprintf.

8.2 Error Codes

wolfSSL tries to provide informative error messages in order to help with debugging.

Each wolfSSL_read() and wolfSSL_write() call will return the number of bytes written
upon success, 0 upon connection closure, and -1 for an error, just like read() and
write(). In the event of an error you can use two calls to get more information about the
error.

The function wolfSSL_get_error() will return the current error code. It takes the current
WOLFSSL object, and wolfSSL_read() or wolfSSL_write() result value as an arguments
and returns the corresponding error code.

int err = wolfSSL_get_error(ssl, result);

To get a more human-readable error code description, the wolfSSL_ERR_error_string()
function can be used. It takes the return code from wolfSSL_get_error and a storage
buffer as arguments, and places the corresponding error description into the storage
buffer (errorString in the example below).

char errorString[80];
wolfSSL_ERR_error_string(err, errorString);

If you are using non blocking sockets, you can test for errno EAGAIN/EWOULDBLOCK
or more correctly you can test the specific error code for SSL_ERROR_WANT_READ
or SSL_ERROR_WANT_WRITE.

For a list of wolfSSL and wolfCrypt error codes, please see Appendix C (Error Codes).

Chapter 9: Library Design

9.1 Library Headers

Copyright 2015 wolfSSL Inc. All rights reserved.

84

With the release of wolfSSL 2.0.0 RC3, library header files are now located in the
following locations:

wolfSSL: /wolfssl
wolfCrypt: /wolfssl/wolfcrypt
wolfSSL OpenSSL Compatibility Layer: /wolfssl/openssl

When using the OpenSSL Compatibility layer (see Chapter 13), the
/wolfssl/openssl/ssl.h header is required to be included:

#include <wolfssl/openssl/ssl.h>

When using only the wolfSSL native API, only the /wolfssl/ssl.h header is required to be
included:

#include <wolfssl/ssl.h>

9.2 Startup and Exit

All applications should call wolfSSL_Init() before using the library and call
wolfSSL_Cleanup() at program termination. Currently these functions only initialize and
free the shared mutex for the session cache in multi-user mode but in the future they
may do more so it's always a good idea to use them.

9.3 Structure Usage

In addition to header file location changes, the release of wolfSSL 2.0.0 RC3 created a
more visible distinction between the native wolfSSL API and the wolfSSL OpenSSL
Compatibility Layer. With this distinction, the main SSL/TLS structures used by the
native wolfSSL API have changed names. The new structures are as follows. The
previous names are still used when using the OpenSSL Compatibility Layer (see
Chapter 13).

WOLFSSL (previously SSL)
WOLFSSL_CTX (previously SSL_CTX)
WOLFSSL_METHOD (previously SSL_METHOD)
WOLFSSL_SESSION (previously SSL_SESSION)
WOLFSSL_X509 (previously X509)

Copyright 2015 wolfSSL Inc. All rights reserved.

85

WOLFSSL_X509_NAME (previously X509_NAME)
WOLFSSL_X509_CHAIN (previously X509_CHAIN)

9.4 Thread Safety

wolfSSL (formerly CyaSSL) is thread safe by design. Multiple threads can enter the
library simultaneously without creating conflicts because wolfSSL avoids global data,
static data, and the sharing of objects. The user must still take care to avoid potential
problems in two areas.

1. A client may share an WOLFSSL object across multiple threads but access must
be synchronized, i.e., trying to read/write at the same time from two different
threads with the same SSL pointer is not supported.

wolfSSL could take a more aggressive (constrictive) stance and lock out other
users when a function is entered that cannot be shared but this level of
granularity seems counter-intuitive. All users (even single threaded ones) will pay
for the locking and multi-thread ones won't be able to re-enter the library even if
they aren't sharing objects across threads. This penalty seems much too high
and wolfSSL leaves the responsibility of synchronizing shared objects in the
hands of the user.

2. Besides sharing WOLFSSL pointers, users must also take care to completely

initialize an WOLFSSL_CTX before passing the structure to wolfSSL_new(). The
same WOLFSSL_CTX can create multiple WOLFSSL structs but the
WOLFSSL_CTX is only read during wolfSSL_new() creation and any future (or
simultaneous changes) to the WOLFSSL_CTX will not be reflected once the
WOLFSSL object is created.

Again, multiple threads should synchronize writing access to a WOLFSSL_CTX
and it is advised that a single thread initialize the WOLFSSL_CTX to avoid the
synchronization and update problem described above.

9.5 Input and Output Buffers

wolfSSL now uses dynamic buffers for input and output. They default to 0 bytes and are
controlled by the RECORD_SIZE define in wolfssl/internal.h. If an input record is

Copyright 2015 wolfSSL Inc. All rights reserved.

86

received that is greater in size than the static buffer, then a dynamic buffer is
temporarily used to handle the request and then freed. You can set the static buffer size
up to the MAX_RECORD_SIZE which is 2^16 or 16,384.

If you prefer the previous way that wolfSSL operated, with 16Kb static buffers that will
never need dynamic memory, you can still get that option by defining
LARGE_STATIC_BUFFERS.

If dynamic buffers are used and the user requests a wolfSSL_write() that is bigger than
the buffer size, then a dynamic block up to MAX_RECORD_SIZE is used to send the
data. Users wishing to only send the data in chunks of at most RECORD_SIZE size can
do this by defining STATIC_CHUNKS_ONLY. This will cause wolfSSL to use I/O
buffers which grow up to RECORD_SIZE, which is 128 bytes by default.

Copyright 2015 wolfSSL Inc. All rights reserved.

87

Chapter 10: wolfCrypt (formerly CTaoCrypt) Usage
Reference

wolfCrypt is the cryptography library primarily used by wolfSSL. It is optimized for
speed, small footprint, and portability. wolfSSL interchange with other cryptography
libraries as required.

Types used in the examples:

typedef unsigned char byte;
typedef unsigned int word32;

10.1 Hash Functions

10.1.1 MD4

NOTE: MD4 is outdated and considered broken. Please consider using a different
hashing function if possible.

To use MD4 include the MD4 header "wolfssl/wolfcrypt/md4.h". The structure to use is
Md4, which is a typedef. Before using, the hash initialization must be done with the
InitMd4() call. Use Md4Update() to update the hash and Md4Final() to retrieve the final
hash

byte md4sum[MD4_DIGEST_SIZE];
byte buffer[1024];
// fill buffer with data to hash

Md4 md4;
InitMd4(&md4);

Md4Update(&md4, buffer, sizeof(buffer)); // can be called again and
again
Md4Final(&md4, md4sum);

md4sum now contains the digest of the hashed data in buffer.

Copyright 2015 wolfSSL Inc. All rights reserved.

88

10.1.2 MD5

To use MD5 include the MD5 header "wolfssl/wolfcrypt/md5.h". The structure to use is
Md5, which is a typedef. Before using, the hash initialization must be done with the
InitMd5() call. Use Md5Update() to update the hash and Md5Final() to retrieve the final
hash

byte md5sum[MD5_DIGEST_SIZE];
byte buffer[1024];
// fill buffer with data to hash

Md5 md5;
InitMd5(&md5);

Md5Update(&md5, buffer, sizeof(buffer)); // can be called again and
again
Md5Final(&md5, md5sum);

md5sum now contains the digest of the hashed data in buffer.

10.1.3 SHA / SHA-256 / SHA-384 / SHA-512

To use SHA include the SHA header "wolfssl/wolfcrypt/sha.h". The structure to use is
Sha, which is a typedef. Before using, the hash initialization must be done with the
InitSha() call. Use ShaUpdate() to update the hash and ShaFinal() to retrieve the final
hash:

byte shaSum[SHA_DIGEST_SIZE];
byte buffer[1024];
// fill buffer with data to hash

Sha sha;
InitSha(&sha);

ShaUpdate(&sha, buffer, sizeof(buffer)); // can be called again
 // and again
ShaFinal(&sha, shaSum);

shaSum now contains the digest of the hashed data in buffer.

Copyright 2015 wolfSSL Inc. All rights reserved.

89

To use either SHA-256, SHA-384, or SHA-512, follow the same steps as shown above,
but use either the “wolfssl/wolfcrypt/sha256.h” or “wolfssl/wolfcrypt/sha512.h” (for both
SHA-384 and SHA-512). The SHA-256, SHA-384, and SHA-512 functions are named
similarly to the SHA functions.

For SHA-256, the functions InitSha256(), Sha256Update(), and Sha256Final() will be
used with the structure Sha256.

For SHA-384, the functions InitSha384(), Sha384Update(), and Sha384Final() will be
used with the structure Sha384.

For SHA-512, the functions InitSha512(), Sha512Update(), and Sha512Final() will be
used with the structure Sha512.

10.1.4 BLAKE2b

To use BLAKE2b (a SHA-3 finalist) include the BLAKE2b header
"wolfssl/wolfcrypt/blake2.h". The structure to use is Blake2b, which is a typedef. Before
using, the hash initialization must be done with the InitBlake2b() call. Use
Blake2bUpdate() to update the hash and Blake2bFinal() to retrieve the final hash:

byte digest[64];
byte input[64]; // fill input with data to hash

Blake2b b2b;
InitBlake2b(&b2b, 64);

Blake2bUpdate(&b2b, input, sizeof(input));
Blake2bFinal(&b2b, digest, 64);

The second parameter to InitBlake2b() should be the final digest size. digest now
contains the digest of the hashed data in buffer.

Example usage can be found in the wolfCrypt test application (wolfcrypt/test/test.c),
inside the blake2b_test() function.

10.1.5 RIPEMD-160

To use RIPEMD-160, include the header "wolfssl/wolfcrypt/ripemd.h". The structure to
use is RipeMd, which is a typedef. Before using, the hash initialization must be done

Copyright 2015 wolfSSL Inc. All rights reserved.

90

with the InitRipeMd() call. Use RipeMdUpdate() to update the hash and RipeMdFinal()
to retrieve the final hash

byte ripeMdSum[RIPEMD_DIGEST_SIZE];
byte buffer[1024];
// fill buffer with data to hash

RipeMd ripemd;
InitRipeMd(&ripemd);

RipeMdUpdate(&ripemd, buffer, sizeof(buffer)); // can be called again
and again
RipeMdFinal(&ripemd, ripeMdSum);

ripeMdSum now contains the digest of the hashed data in buffer.

10.2 Keyed Hash Functions

10.2.1 HMAC

wolfCrypt currently provides HMAC for message digest needs. The structure Hmac is
found in the header "wolfssl/wolfcrypt/hmac.h". HMAC initialization is done with
HmacSetKey(). 5 different types are supported with HMAC: MD5, SHA, SHA-256,
SHA-384, and SHA-512. Here's an example with SHA-256.

Hmac hmac;
byte key[24]; // fill key with keying material
byte buffer[2048]; // fill buffer with data to digest
byte hmacDigest[SHA256_DIGEST_SIZE];

HmacSetKey(&hmac, SHA256, key, sizeof(key));
HmacUpdate(&hmac, buffer, sizeof(buffer));
HmacFinal(&hmac, hmacDigest);

hmacDigest now contains the digest of the hashed data in buffer.

Copyright 2015 wolfSSL Inc. All rights reserved.

91

10.2.2 GMAC

wolfCrypt also provides GMAC for message digest needs. The structure Gmac is found
in the header "wolfssl/wolfcrypt/aes.h", as it is an application AES-GCM. GMAC
initialization is done with GmacSetKey().

Gmac gmac;
byte key[16]; // fill key with keying material
byte iv[12]; // fill iv with an initialization vector
byte buffer[2048]; // fill buffer with data to digest
byte gmacDigest[16];

GmacSetKey(&gmac, key, sizeof(key));
GmacUpdate(&gmac, iv, sizeof(iv), buffer, sizeof(buffer),

gmacDigest, sizeof(gmacDigest));

gmacDigest now contains the digest of the hashed data in buffer.

10.2.3 Poly1305

wolfCrypt also provides Poly1305 for message digest needs. The structure Poly1305 is
found in the header "wolfssl/wolfcrypt/poly1305.h". Poly1305 initialization is done with
Poly1305SetKey(). The process of setting a key in Poly1305 should be done again,
with a new key, when next using Poly1305 after Poly1305Final() has been called.

Poly1305 pmac;
byte key[32]; // fill key with keying material
byte buffer[2048]; // fill buffer with data to digest
byte pmacDigest[16];

Poly1305SetKey(&pmac, key, sizeof(key));
Poly1305Update(&pmac, buffer, sizeof(buffer));
Poly1305Final(&pmac, pmacDigest);

pmacDigest now contains the digest of the hashed data in buffer.

Copyright 2015 wolfSSL Inc. All rights reserved.

92

10.3 Block Ciphers

10.3.1 AES

wolfCrypt provides support for AES with key sizes of 16 bytes (128 bits), 24 bytes (192
bits), or 32 bytes (256 bits). Supported AES modes include CBC, CTR, GCM, and
CCM-8.

CBC mode is supported for both encryption and decryption and is provided through the
AesSetKey(), AesCbcEncrypt() and AesCbcDecrypt() functions. Please include the
header "wolfssl/wolfcrypt/aes.h" to use AES. AES has a block size of 16 bytes and the
IV should also be 16 bytes. Function usage is usually as follows:

Aes enc;
Aes dec;

const byte key[] = { // some 24 byte key };
const byte iv[] = { // some 16 byte iv };

byte plain[32]; // an increment of 16, fill with data
byte cipher[32];

// encrypt
AesSetKey(&enc, key, sizeof(key), iv, AES_ENCRYPTION);
AesCbcEncrypt(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt
AesSetKey(&dec, key, sizeof(key), iv, AES_DECRYPTION);
AesCbcDecrypt(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

wolfCrypt also supports CTR (Counter), GCM (Galois/Counter), and CCM-8 (Counter
with CBC-MAC) modes of operation for AES. When using these modes, like CBC,
include the “wolfssl/wolfcrypt/aes.h” header.

CTR mode is available for encryption through the AesCtrEncrypt() function.

Copyright 2015 wolfSSL Inc. All rights reserved.

93

GCM mode is available for both encryption and decryption through the
AesGcmSetKey(), AesGcmEncrypt(), and AesGcmDecrypt() functions. For a usage
example, see the aesgcm_test() function in <wolfssl_root>/wolfcrypt/test/test.c.

CCM-8 mode is supported for both encryption and decryption through the
AesCcmSetKey(), AesCcmEncrypt(), and AesCcmDecrypt() functions. For a usage
example, see the aesccm_test() function in <wolfssl_root>/wolfcrypt/test/test.c.

10.3.2 DES and 3DES

wolfCrypt provides support for DES and 3DES (Des3 since 3 is an invalid leading C
identifier). To use these include the header "wolfssl/wolfcrypt/des.h". The structures you
can use are Des and Des3. Initialization is done through Des_SetKey() or
Des3_SetKey(). CBC encryption/decryption is provided through Des_CbcEnrypt() /
Des_CbcDecrypt() and Des3_CbcEncrypt() / Des3_CbcDecrypt(). Des has a key
size of 8 bytes (24 for 3DES) and the block size is 8 bytes, so only pass increments of 8
bytes to encrypt/decrypt functions. If your data isn't in a block size increment you'll need
to add padding to make sure it is. Each SetKey() also takes an IV (an initialization
vector that is the same size as the key size). Usage is usually like the following:

Des3 enc;
Des3 dec;

const byte key[] = { // some 24 byte key };
const byte iv[] = { // some 24 byte iv };

byte plain[24]; // an increment of 8, fill with data
byte cipher[24];

// encrypt
Des3_SetKey(&enc, key, iv, DES_ENCRYPTION);
Des3_CbcEncrypt(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt
Des3_SetKey(&dec, key, iv, DES_DECRYPTION);
Des3_CbcDecrypt(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

Copyright 2015 wolfSSL Inc. All rights reserved.

94

10.3.3 Camellia

wolfCrypt provides support for the Camellia block cipher. To use Camellia include the
header "wolfssl/wolfcrypt/camellia.h". The structure you can use is called Camellia.
Initialization is done through CamelliaSetKey(). CBC encryption/decryption is provided
through CamelliaCbcEnrypt() and CamelliaCbcDecrypt() while direct
encryption/decryption is provided through CamelliaEncryptDirect() and
CamelliaDecryptDirect().

For usage examples please see the camellia_test() function in
<wolfssl_root>/wolfcrypt/test/test.c.

10.4 Stream Ciphers

10.4.1 ARC4

The most common stream cipher used on the Internet is ARC4. wolfCrypt supports it
through the header "wolfssl/wolfcrypt/arc4.h". Usage is simpler than block ciphers
because there is no block size and the key length can be any length. The following is a
typical usage of ARC4.

Arc4 enc;
Arc4 dec;

const byte key[] = { // some key any length};

byte plain[27]; // no size restriction, fill with data
byte cipher[27];

// encrypt
Arc4SetKey(&enc, key, sizeof(key));
Arc4Process(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt
Arc4SetKey(&dec, key, sizeof(key));
Arc4Process(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

Copyright 2015 wolfSSL Inc. All rights reserved.

95

 10.4.2 RABBIT

A newer stream cipher gaining popularity is RABBIT. This stream cipher can be used
through wolfCrypt by including the header "wolfssl/wolfcrypt/rabbit.h". RABBIT is very
fast compared to ARC4, but has key constraints of 16 bytes (128 bits) and an optional
IV of 8 bytes (64 bits). Otherwise usage is exactly like ARC4:

Rabbit enc;
Rabbit dec;

const byte key[] = { // some key 16 bytes};
const byte iv[] = { // some iv 8 bytes };

byte plain[27]; // no size restriction, fill with data
byte cipher[27];

// encrypt
RabbitSetKey(&enc, key, iv); // iv can be a NULL pointer
RabbitProcess(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt
RabbitSetKey(&dec, key, iv);
RabbitProcess(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

10.4.3 HC-128

Another stream cipher in current use is HC-128, which is even faster than RABBIT
(about 5 times faster than ARC4). To use it with wolfCrypt, please include the header
"wolfssl/wolfcrypt/hc128.h". HC-128 also uses 16 bytes keys (128 bits) but uses 16
bytes vs (128 bits) unlike RABBIT.

HC128 enc;
HC128 dec;

const byte key[] = { // some key 16 bytes};
const byte iv[] = { // some iv 16 bytes };

byte plain[37]; // no size restriction, fill with data

Copyright 2015 wolfSSL Inc. All rights reserved.

96

byte cipher[37];

// encrypt
Hc128_SetKey(&enc, key, iv); // iv can be a NULL pointer
Hc128_Process(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt
Hc128_SetKey(&dec, key, iv);
Hc128_Process(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

10.4.4 ChaCha

ChaCha with 20 rounds is slightly faster than ARC4 while maintaining a high level of
security. To use it with wolfCrypt, please include the header
"wolfssl/wolfcrypt/chacha.h". ChaCha typically uses 32 byte keys (256 bit) but can also
use 16 byte keys (128 bits).

CHACHA enc;
CHACHA dec;

const byte key[] = { // some key 32 bytes};
const byte iv[] = { // some iv 12 bytes };

byte plain[37]; // no size restriction, fill with data
byte cipher[37];

// encrypt
Chacha_SetKey(&enc, key, keySz);
Chacha_SetIV(&enc, iv, counter); //counter is the start block

 //counter is usually set as 0
Chacha_Process(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt
Chacha_SetKey(&enc, key, keySz);

Copyright 2015 wolfSSL Inc. All rights reserved.

97

Chacha_SetIV(&enc, iv, counter);
Chacha_Process(&enc, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

Chacha_SetKey only needs to be set once but for each packet of information sent
Chacha_SetIV must be called with a new iv (nonce). Counter is set as an argument to
allow for partially decrypting/encrypting information by starting at a different block when
performing the encrypt/decrypt process, but in most cases is set to 0. ChaCha should
not be used without a mac algorithm ie Poly1305 , hmac.

10.5 Public Key Cryptography

10.5.1 RSA

wolfCrypt provides support for RSA through the header "wolfssl/wolfcrypt/rsa.h". There
are two types of RSA keys, public and private. A public key allows anyone to encrypt
something that only the holder of the private key can decrypt. It also allows the private
key holder to sign something and anyone with a public key can verify that only the
private key holder actually signed it. Usage is usually like the following:

RsaKey rsaPublicKey;

byte publicKeyBuffer[] = { // holds the raw data from the key, maybe

 from a file like RsaPublicKey.der };
word32 idx = 0; // where to start reading into the buffer

RsaPublicKeyDecode(publicKeyBuffer, &idx, &rsaPublicKey,
sizeof(publicKeyBuffer));

byte in[] = { // plain text to encrypt };
byte out[128];
RNG rng;

InitRng(&rng);

word32 outLen = RsaPublicEncrypt(in, sizeof(in), out, sizeof(out),
&rsaPublicKey, &rng);

Copyright 2015 wolfSSL Inc. All rights reserved.

98

Now ‘out’ holds the cipher text from the plain text ‘in’. RsaPublicEncrypt() will return
the length in bytes written to out or a negative number in case of an error.
RsaPublicEncrypt() needs a RNG (Random Number Generator) for the padding used
by the encryptor and it must be initialized before it can be used. To make sure that the
output buffer is large enough to pass you can first call RsaEncryptSize() which will
return the number of bytes that a successful call to RsaPublicEnrypt() will write.

In the event of an error, a negative return from RsaPublicEnrypt(), or
RsaPublicKeyDecode() for that matter, you can call wolfCryptErrorString() to get a
string describing the error that occurred.

void wolfCryptErrorString(int error, char* buffer);

Make sure that buffer is at least MAX_ERROR_SZ bytes (80).

Now to decrypt out:

RsaKey rsaPrivateKey;

byte privateKeyBuffer[] = { // hold the raw data from the key, maybe
from a file like RsaPrivateKey.der };
word32 idx = 0; // where to start reading into the buffer

RsaPrivateKeyDecode(privateKeyBuffer, &idx, &rsaPrivateKey,
sizeof(privateKeyBuffer));

byte plain[128];

word32 plainSz = RsaPrivateDecrypt(out, outLen, plain,
 sizeof(plain), &rsaPrivateKey);

Now plain will hold plainSz bytes or an error code. For complete examples of each type
in wolfCrypt please see the file wolfcrypt/test/test.c. Note that the
RsaPrivateKeyDecode function only accepts keys in raw DER format.

10.5.2 DH (Diffie-Hellman)

wolfCrypt provides support for Diffie-Hellman through the header "wolfssl/wolfrypt/dh.h".
The Diffie-Hellman key exchange algorithm allows two parties to establish a shared
secret key. Usage is usually similar to the following example, where sideA and sideB
designate the two parties.

Copyright 2015 wolfSSL Inc. All rights reserved.

99

In the following example, dhPublicKey contains the Diffie-Hellman public parameters
signed by a Certificate Authority (or self-signed). privA holds the generated private key
for sideA, pubA holds the generated public key for sideA, and agreeA holds the mutual
key that both sides have agreed on.

DhKey dhPublicKey;
word32 idx = 0; // where to start reading into the

 publicKeyBuffer
word32 pubASz, pubBSz, agreeASz;
byte tmp[1024];
RNG rng;

byte privA[128];
byte pubA[128];
byte agreeA[128];

wc_InitDhKey(&dhPublicKey);

byte publicKeyBuffer[] = { // holds the raw data from the public key
parameters, maybe from a file like dh1024.der }

wc_DhKeyDecode(tmp, &idx, &dhPublicKey, publicKeyBuffer);

wc_InitRng(&rng); // Initialize random number generator

wc_DhGenerateKeyPair() will generate a public and private DH key based on the initial
public parameters in dhPublicKey.

wc_DhGenerateKeyPair(&dhPublicKey, &rng, privA, &privASz, pubA,
&pubASz);

After sideB sends their public key (pubB) to sideA, sideA can then generate the
mutually-agreed key(agreeA) using the wc_DhAgree() function.

wc_DhAgree(&dhPublicKey, agreeA, &agreeASz, privA, privASz, pubB,
pubBSz);

Now, agreeA holds sideA’s mutually-generated key (of size agreeASz bytes). The
same process will have been done on sideB.

For a complete example of Diffie-Hellman in wolfCrypt, see the file wolfcrypt/test/test.c.

Copyright 2015 wolfSSL Inc. All rights reserved.

100

10.5.3 EDH (Ephemeral Diffie-Hellman)

 A wolfSSL server can do Ephemeral Diffie-Hellman. No build changes are needed to
add this feature, though an application will have to register the ephemeral group
parameters on the server side to enable the EDH cipher suites. A new API can be used
to do this:

int wolfSSL_SetTmpDH(WOLFSSL* ssl, unsigned char* p,

 int pSz,unsigned char* g,int gSz);

The example server and echoserver use this function from SetDH().

10.5.4 DSA (Digital Signature Algorithm)

wolfCrypt provides support for DSA and DSS through the header
"wolfssl/wolfcrypt/dsa.h". DSA allows for the creation of a digital signature based on a
given data hash. DSA uses the SHA hash algorithm to generate a hash of a block of
data, then signs that hash using the signer’s private key. Standard usage is similar to
the following.

We first declare our DSA key structure (key), initialize our initial message (message) to
be signed, and initialize our DSA key buffer (dsaKeyBuffer).

DsaKey key;
byte message[] = { // message data to sign }
byte dsaKeyBuffer[] = { // holds the raw data from the DSA key, maybe
 from a file like dsa512.der }

We then declare our SHA structure (sha), random number generator (rng), array to
store our SHA hash (hash), array to store our signature (signature), idx (to mark where
to start reading in our dsaKeyBuffer), and an int (answer) to hold our return value after
verification.

Sha sha;
RNG rng;
byte hash[SHA_DIGEST_SIZE];
byte signature[40];
word32 idx = 0;
int answer;

Copyright 2015 wolfSSL Inc. All rights reserved.

101

Set up and create the SHA hash. For more information on wolfCrypt’s SHA algorithm,
see section 10.1.3. The SHA hash of “message” is stored in the variable “hash”.

InitSha(&sha);
ShaUpdate(&sha, message, sizeof(message));
ShaFinal(&sha, hash);

Initialize the DSA key structure, populate the structure key value, and initialize the
random number generator (rng).

InitDsaKey(&key);
DsaPrivateKeyDecode(dsaKeyBuffer, &idx, &key, sizeof(dsaKeyBuffer));

InitRng(&rng);

The DsaSign() function creates a signature (signature) using the DSA private key,
hash value, and random number generator.

DsaSign(hash, signature, &key, &rng);

To verify the signature, use DsaVerify(). If verification is successful, answer will be
equal to “1”. Once finished, free the DSA key structure using FreeDsaKey().

DsaVerify(hash, signature, &key, &answer);
FreeDsaKey(&key);

Copyright 2015 wolfSSL Inc. All rights reserved.

102

Chapter 11: SSL Tutorial

11.1 Introduction

The wolfSSL (formerly CyaSSL) embedded SSL library can easily be integrated into
your existing application or device to provide enhanced communication security through
the addition of SSL and TLS. wolfSSL has been targeted at embedded and RTOS
environments, and as such, offers a minimal footprint while maintaining excellent
performance. Minimum build sizes for wolfSSL range between 20-100kB depending on
the selected build options and platform being used.

The goal of this tutorial is to walk through the integration of SSL and TLS into a simple
application. Hopefully the process of going through this tutorial will also lead to a better
understanding of SSL in general. This tutorial uses wolfSSL in conjunction with simple
echoserver and echoclient examples to keep things as simple as possible while still
demonstrating the general procedure of adding SSL support to an application. The
echoserver and echoclient examples have been taken from the popular book titled
“Unix Network Programming, Volume 1, 3rd Edition” by Richard Stevens, Bill
Fenner, and Andrew Rudoff.

This tutorial assumes that the reader is comfortable with editing and compiling C code
using the GNU GCC compiler as well as familiar with the concepts of public key
encryption. Please note that access to the Unix Network Programming book is not
required for this tutorial.

Examples Used in this Tutorial
echoclient - Figure 5.4, Page 124
echoserver - Figure 5.12, Page 139

Unix Network Programming

Copyright 2015 wolfSSL Inc. All rights reserved.

103

Volume 1, 3rd Edition
www.unpbook.com

11.2 Quick Summary of SSL/TLS

TLS (Transport Layer Security) and SSL (Secure Sockets Layer) are cryptographic
protocols that allow for secure communication across a number of different transport
protocols. The primary transport protocol used is TCP/IP. The most recent version of
SSL/TLS is TLS 1.2. wolfSSL supports SSL 3.0, TLS 1.0, 1.1, and 1.2 in addition to
DTLS 1.0 and 1.2.

SSL and TLS sit between the Transport and Application layers of the OSI model, where
any number of protocols (including TCP/IP, Bluetooth, etc.) may act as the underlying
transport medium. Application protocols are layered on top of SSL and can include
protocols such as HTTP, FTP, and SMTP. A diagram of how SSL fits into the OSI
model, as well as a simple diagram of the SSL handshake process can be found in
Appendix A.

11.3 Getting the Source Code

All of the source code used in this tutorial can be downloaded from the wolfSSL
website, specifically from the following location. The download contains both the original
and completed source code for both the echoserver and echoclient used in this tutorial.
Specific contents are listed below the link.

http://www.wolfssl.com/documentation/ssl-tutorial-2.2.zip

The downloaded ZIP file has the following structure:
/include
 (Common header file [Modified from unp.h in the book])
/lib
 (Common library functions)
/finished_src

/echoclient
 (The completed echoclient code)
 /echoserver
 (The completed echoserver code)
/original_src

Copyright 2015 wolfSSL Inc. All rights reserved.

104

 /echoclient
 (The starting echoclient code)
 /echoserver
 (The starting echoserver code)
wolfSSL_SSL_Tutorial.pdf

11.4 Base Example Modifications

This tutorial, and the source code that accompanies it, have been designed to be as
portable as possible across platforms. Because of this, and because we want to focus
on how to add SSL and TLS into an application, the base examples have been kept as
simple as possible. Several modifications have been made to the examples taken from
Unix Network Programming in order to either remove unnecessary complexity or
increase the range of platforms supported. If you believe there is something we could
do to increase the portability of this tutorial, please let us know at support@wolfssl.com.

The following is a list of modifications that were made to the original echoserver and
echoclient examples found in the above listed book.

Modifications to the echoserver (tcpserv04.c)

● Removed call to the Fork() function because fork() is not supported by Windows.

The result of this is an echoserver which only accepts one client simultaneously.
Along with this removal, Signal handling was removed.

● Moved str_echo() function from str_echo.c file into tcpserv04.c file

● Added a printf statement to view the client address and the port we have

connected through:

 printf("Connection from %s, port %d\n",
 inet_ntop(AF_INET, &cliaddr.sin_addr, buff, sizeof(buff)),
 ntohs(cliaddr.sin_port));

● Added a call to setsockopt() after creating the listening socket to eliminate the

“Address already in use” bind error.

● Minor adjustments to clean up newer compiler warnings

Copyright 2015 wolfSSL Inc. All rights reserved.

105

Modifications to the echoclient (tcpcli01.c)

● Moved str_cli() function from str_cli.c file into tcpcli01.c file

● Minor adjustments to clean up newer compiler warnings

Modifications to unp.h header

● This header was simplified to contain only what is needed for this example.

Please note that in these source code examples, certain functions will be capitalized.
For example, Fputs() and Writen(). The authors of Unix Network Programming have
written custom wrapper functions for normal functions in order to cleanly handle error
checking. For a more thorough explanation of this, please see Section 1.4 (page 11) in
the Unix Network Programming book.

11.5 Building and Installing wolfSSL

Before we begin, download the example code (echoserver and echoclient) from the
Getting the Source Code section, above. This section will explain how to download,
configure, and install the wolfSSL embedded SSL library on your system.

You will need to download and install the most recent version of wolfSSL from the
wolfSSL download page.

For a full list of available build options, see the Building wolfSSL guide. wolfSSL was
written with portability in mind, and should generally be easy to build on most systems.
If you have difficulty building wolfSSL, please feel free to ask for support on the wolfSSL
product support forums.

When building wolfSSL on Linux, *BSD, OS X, Solaris, or other *nix like systems, you
can use the autoconf system. For windows-specific instructions, please refer to the
Building wolfSSL section of the wolfSSL Manual. To configure and build wolfSSL, run
the following two commands from the terminal. Any desired build options may be
appended to ./configure (ex: ./configure –enable-opensslextra):

 ./configure
 make

Copyright 2015 wolfSSL Inc. All rights reserved.

106

To install wolfSSL, run:

 sudo make install

This will install wolfSSL headers into /usr/local/include/wolfssl and the wolfSSL libraries
into /usr/local/lib on your system. To test the build, run the testsuite application from the
wolfSSL root directory:

 ./testsuite/testsuite.test

A set of tests will be run on wolfCrypt and wolfSSL to verify it has been installed
correctly. After a successful run of the testsuite application, you should see output
similar to the following:

MD5 test passed!
SHA test passed!
SHA-256 test passed!
HMAC-MD5 test passed!
HMAC-SHA test passed!
HMAC-SHA256 test passed!
ARC4 test passed!
DES test passed!
DES3 test passed!
AES test passed!
RANDOM test passed!
RSA test passed!
DH test passed!
PWDBASED test passed!
OPENSSL test passed!
peer's cert info:
issuer :
/C=US/ST=Oregon/L=Portland/O=yaSSL/OU=Programming/CN=www.yassl.com/emailAddre
ss=info@yassl.com
subject:
/C=US/ST=Oregon/L=Portland/O=yaSSL/OU=Programming/CN=www.yassl.com/emailAddre
ss=info@yassl.com
serial number:87:4a:75:be:91:66:d8:3d
SSL version is TLSv1.2
peer's cert info:
issuer :
/C=US/ST=Montana/L=Bozeman/O=Sawtooth/OU=Consulting/CN=www.yassl.com/emailAdd
ress=info@yassl.com
subject:
/C=US/ST=Montana/L=Bozeman/O=yaSSL/OU=Support/CN=www.yassl.com/emailAddress=i
nfo@yassl.com
SSL cipher suite is TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

Copyright 2015 wolfSSL Inc. All rights reserved.

107

serial number:02
SSL version is TLSv1.2
SSL cipher suite is TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
Client message: hello wolfssl!
Server response: I hear you fa shizzle!
sending server shutdown command: quit!
client sent quit command: shutting down!
9a104af3d164e37c0dabe3316f7bc35b9be5fd771a09ea1cda478d4057f0b06e input
9a104af3d164e37c0dabe3316f7bc35b9be5fd771a09ea1cda478d4057f0b06e /tmp/output

All tests passed!

Now that wolfSSL has been installed, we can begin modifying the example code to add
SSL functionality. We will first begin by adding SSL to the echoclient and subsequently
move on to the echoserver.

11.6 Initial Compilation

11.6 Initial Compilation

To compile and run the example echoclient and echoserver code from the SSL Tutorial
source bundle, you can use the included Makefiles. Change directory (cd) to either the
echoclient or echoserver directory and run:

 make

This will compile the example code and produce an executable named either
echoserver or echoclient depending on which one is being built. The GCC command
which is used in the Makefile can be seen below. If you want to build one of the
examples without using the supplied Makefile, change directory to the example directory
and replace tcpcli01.c (echoclient) or tcpserv04.c (echoserver) in the following
command with correct source file for the example:

	
 	
 gcc	
 -­‐o	
 echoserver	
 ../lib/*.c	
 tcpserv04.c	
 -­‐I	
 ../include

This will compile the current example into an executable, creating either an “echoserver”
or “echoclient” application. To run one of the examples after it has been compiled,
change your current directory to the desired example directory and start the application.
For example, to start the echoserver use:

Copyright 2015 wolfSSL Inc. All rights reserved.

108

	
 	
 ./echoserver

You may open a second terminal window to test the echoclient on your local host and
you will need to supply the IP address of the server when starting the application, which
in our case will be 127.0.0.1. Change your current directory to the “echoclient” directory
and run the following command. Note that the echoserver must already be running:

	
 	
 ./echoclient	
 127.0.0.1

Once you have both the echoserver and echoclient running, the echoserver should
echo back any input that it receives from the echoclient. To exit either the echoserver or
echoclient, use [Ctrl + C] to quit the application. Currently, the data being echoed back
and forth between these two examples is being sent in the clear - easily allowing
anyone with a little bit of skill to inject themselves in between the client and server and
listen to your communication.

11.7 Libraries

The wolfSSL library, once compiled, is named libwolfssl, and unless otherwise
configured the wolfSSL build and install process creates only a shared library under the
following directory. Both shared and static libraries may be enabled or disabled by
using the appropriate build options:

 /usr/local/lib

The first step we need to do is link the wolfSSL library to our example applications.
Modifying the GCC command (using the echoserver as an example), gives us the
following new command. Since wolfSSL installs header files and libraries in standard
locations, the compiler should be able to find them without explicit instructions (using -l
or -L). Note that by using -lwolfssl the compiler will automatically choose the correct
type of library (static or shared):

	
 	
 gcc	
 -­‐o	
 echoserver	
 ../lib/*.c	
 tcpserv04.c	
 -­‐I	
 ../include	
 -­‐lm	
 -­‐lwolfssl

Copyright 2015 wolfSSL Inc. All rights reserved.

109

11.8 Headers

The first thing we will need to do is include the wolfSSL native API header in both the
client and the server. In the tcpcli01.c file for the client and the tcpserv04.c file for the
server add the following line near the top:

	
 	
 #include	
 <wolfssl/ssl.h>

11.9 Startup/Shutdown

Before we can use wolfSSL in our code, we need to initialize the library and the
WOLFSSL_CTX. wolfSSL is initialized by calling wolfSSL_Init(). This must be done first
before anything else can be done with the library.

The WOLFSSL_CTX structure (wolfSSL Context) contains global values for each SSL
connection, including certificate information. A single WOLFSSL_CTX can be used with
any number of WOLFSSL objects created. This allows us to load certain information,
such as a list of trusted CA certificates only once.

To create a new WOLFSSL_CTX, use wolfSSL_CTX_new(). This function requires an
argument which defines the SSL or TLS protocol for the client or server to use. There
are several options for selecting the desired protocol. wolfSSL currently supports SSL
3.0, TLS 1.0, TLS 1.1, TLS 1.2, DTLS 1.0, and DTLS 1.2. Each of these protocols have
a corresponding function that can be used as an argument to wolfSSL_CTX_new(). The
possible client and server protocol options are shown below. SSL 2.0 is not supported
by wolfSSL because it has been insecure for several years.

EchoClient:

 wolfSSLv3_client_method(); // SSL 3.0
 wolfTLSv1_client_method(); // TLS 1.0
 wolfTLSv1_1_client_method(); // TLS 1.1
 wolfTLSv1_2_client_method(); // TLS 1.2
 wolfSSLv23_client_method(); // Use highest version possible from

 SSLv3 - TLS 1.2

Copyright 2015 wolfSSL Inc. All rights reserved.

110

 wolfDTLSv1_client_method(); // DTLS 1.0
 wolfDTLSv1_2_client_method(); // DTLS 1.2

EchoServer:

 wolfSSLv3_server_methods(); // SSLv3
 wolfTLSv1_server_method(); // TLSv1
 wolfTLSv1_1_server_method(); // TLSv1.1
 wolfTLSv1_2_server_method(); // TLSv1.2
 wolfSSLv23_server_method(); // Allow clients to connect with

 SSLv3 or TLSv1+
 wolfDTLSv1_server_method(); // DTLS
 wolfDTLSv1_2_server_method(); // DTLS 1.2

We need to load our CA (Certificate Authority) certificate into the WOLFSSL_CTX so
that the when the echoclient connects to the echoserver, it is able to verify the server’s
identity. To load the CA certificates into the WOLFSSL_CTX, use
wolfSSL_CTX_load_verify_locations(). This function requires three arguments: a
WOLFSSL_CTX pointer, a certificate file, and a path value. The path value points to a
directory which should contain CA certificates in PEM format. When looking up
certificates, wolfSSL will look at the certificate file value before looking in the path
location. In this case, we don’t need to specify a certificate path because we will specify
one CA file - as such we use the value 0 for the path argument. The
wolfSSL_CTX_load_verify_locations function returns either SSL_SUCCESS or
SSL_FAILURE:

wolfSSL_CTX_load_verify_locations(WOLFSSL_CTX*	
 ctx,	
 const	
 char*	
 file,	
 const	
 char*	
 path)

Putting these things together (library initialization, protocol selection, and CA certificate),
we have the following. Here, we choose to use TLS 1.2:

EchoClient:

	
 	
 WOLFSSL_CTX*	
 ctx;

	
 	
 wolfSSL_Init();//	
 Initialize	
 wolfSSL

	
 	
 /*	
 Create	
 the	
 WOLFSSL_CTX	
 */
	
 	
 if	
 (
 (ctx	
 =	
 wolfSSL_CTX_new(wolfTLSv1_2_client_method()))	
 ==	
 NULL){

Copyright 2015 wolfSSL Inc. All rights reserved.

111

	
 	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "wolfSSL_CTX_new	
 error.\n");
	
 	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);
	
 	
 }

	
 	
 /*	
 Load	
 CA	
 certificates	
 into	
 WOLFSSL_CTX	
 */
	
 	
 if	
 (wolfSSL_CTX_load_verify_locations(ctx,"../certs/ca-­‐cert.pem",0)	
 !=
	
 	
 	
 	
 	
 	
 SSL_SUCCESS)	
 {
	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "Error	
 loading	
 ../certs/ca-­‐cert.pem,	
 please	
 check
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 the	
 file.\n");
	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);
	
 	
 }

EchoServer:

When loading certificates into the WOLFSSL_CTX, the server certificate and key file
should be loaded in addition to the CA certificate. This will allow the server to send the
client its certificate for identification verification:

	
 	
 WOLFSSL_CTX*	
 ctx;

	
 	
 wolfSSL_Init();//	
 Initialize	
 wolfSSL

	
 	
 /*	
 Create	
 the	
 WOLFSSL_CTX	
 */
	
 	
 if	
 (
 (ctx	
 =	
 wolfSSL_CTX_new(wolfTLSv1_2_server_method()))	
 ==	
 NULL){
	
 	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "wolfSSL_CTX_new	
 error.\n");
	
 	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);
	
 	
 }

	
 	
 /*	
 Load	
 CA	
 certificates	
 into	
 CYASSL_CTX	
 */
	
 	
 if	
 (wolfSSL_CTX_load_verify_locations(ctx,	
 "../certs/ca-­‐cert.pem",	
 0)	
 !=
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SSL_SUCCESS)	
 {
	
 	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "Error	
 loading	
 ../certs/ca-­‐cert.pem,	
 "
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "please	
 check	
 the	
 file.\n");
	
 	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);
	
 	
 }

	
 	
 /*	
 Load	
 server	
 certificates	
 into	
 WOLFSSL_CTX	
 */
	
 	
 if	
 (wolfSSL_CTX_use_certificate_file(ctx,"../certs/server-­‐cert.pem",
	
 	
 	
 	
 	
 	
 	
 	
 SSL_FILETYPE_PEM)	
 !=	
 SSL_SUCCESS){
	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "Error	
 loading	
 ../certs/server-­‐cert.pem,	
 please
	
 	
 	
 	
 	
 	
 	
 	
 check	
 the	
 file.\n");
	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);
	
 	
 }

	
 	
 /*	
 Load	
 keys	
 */

Copyright 2015 wolfSSL Inc. All rights reserved.

112

	
 	
 if	
 (wolfSSL_CTX_use_PrivateKey_file(ctx,"../certs/server-­‐key.pem",
	
 	
 	
 	
 	
 	
 	
 	
 SSL_FILETYPE_PEM)	
 !=	
 SSL_SUCCESS){
	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "Error	
 loading	
 ../certs/server-­‐key.pem,	
 please	
 check
	
 	
 	
 	
 	
 	
 	
 	
 the	
 file.\n");
	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);
	
 	
 }

The code shown above should be added to the beginning of tcpcli01.c and tcpserv04.c,
after both the variable definitions and the check that the user has started the client with
an IP address. A version of the finished code is included in the SSL tutorial ZIP file for
reference.

Now that wolfSSL and the WOLFSSL_CTX have been initialized, make sure that the
WOLFSSL_CTX object and the wolfSSL library are freed when the application is
completely done using SSL/TLS. In both the client and the server, the following two
lines should be placed at the end of the main() function (in the server right before the
call to exit()):

wolfSSL_CTX_free(ctx);
wolfSSL_Cleanup();

11.10 WOLFSSL Object

EchoClient

A WOLFSSL object needs to be created after each TCP Connect and the socket file
descriptor needs to be associated with the session. In the echoclient example, we will
do this after the call to Connect(), shown below:

	
 	
 /*	
 Connect	
 to	
 socket	
 file	
 descriptor	
 */
	
 	
 Connect(sockfd,	
 (SA	
 *)	
 &servaddr,	
 sizeof(servaddr));

Directly after connecting, create a new WOLFSSL object using the wolfSSL_new()
function. This function returns a pointer to the WOLFSSL object if successful or NULL in
the case of failure. We can then associate the socket file descriptor (sockfd) with the
new WOLFSSL object (ssl):

Copyright 2015 wolfSSL Inc. All rights reserved.

113

	
 	
 /*	
 Create	
 WOLFSSL	
 object	
 */
	
 	
 WOLFSSL*	
 ssl;

	
 	
 if(
 (ssl	
 =	
 wolfSSL_new(ctx))	
 ==	
 NULL)	
 {
	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "wolfSSL_new	
 error.\n");
	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);
	
 	
 }

	
 	
 wolfSSL_set_fd(ssl,	
 sockfd);

One thing to notice here is we haven’t made a call to the wolfSSL_connect() function.
wolfSSL_connect() initiates the SSL/TLS handshake with the server, and is called
during wolfSSL_read() if it hasn’t been called previously. In our case, we don’t explicitly
call wolfSSL_connect(), as we let our first wolfSSL_read() do it for us.

EchoServer

At the end of the for loop in the main method, insert the WOLFSSL object and associate
the socket file descriptor (connfd) with the WOLFSSL object (ssl), just as with the client:

	
 	
 /*	
 Create	
 WOLFSSL	
 object	
 */
	
 	
 WOLFSSL*	
 ssl;
	
 	

	
 	
 if	
 (
 (ssl	
 =	
 wolfSSL_new(ctx))	
 ==	
 NULL)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 fprintf(stderr,	
 "wolfSSL_new	
 error.\n");	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exit(EXIT_FAILURE);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 wolfSSL_set_fd(ssl,	
 connfd);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

A WOLFSSL object needs to be created after each TCP Connect and the socket file
descriptor needs to be associated with the session. In the echoclient example, we will
do this after the call to Connect(), shown below:

 /* Connect to socket file descriptor */
 Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

Create a new WOLFSSL object using the wolfSSL_new() function. This function
returns a pointer to the WOLFSSL object if successful or NULL in the case of failure.
We can then associate the socket file descriptor (sockfd) with the new WOLFSSL
object (ssl):

Copyright 2015 wolfSSL Inc. All rights reserved.

114

 /* Create WOLFSSL object */
 WOLFSSL* ssl;

 if((ssl = wolfSSL_new(ctx)) == NULL) {
 fprintf(stderr, "wolfSSL_new error.\n");
 exit(EXIT_FAILURE);
 }

 wolfSSL_set_fd(ssl, sockfd);

11.11 Sending/Receiving Data

EchoClient

The next step is to begin sending data securely. Take note that in the echoclient
example, the main() function hands off the sending and receiving work to str_cli(). The
str_cli() function is where our function replacements will be made. First we need access
to our WOLFSSL object in the str_cli() function, so we add another argument and pass
the ssl variable to str_cli(). Because the WOLFSSL object is now going to be used
inside of the str_cli() function, we remove the sockfd parameter. The new str_cli()
function signature after this modification is shown below:

	
 	
 void	
 str_cli(FILE	
 *fp,	
 WOLFSSL*	
 ssl)

In the main() function, the new argument (ssl) is passed to str_cli():

	
 	
 str_cli(stdin,	
 ssl);

Inside the str_cli() function, Writen() and Readline() are replaced with calls to
wolfSSL_write() and wolfSSL_read() functions, and the WOLFSSL object (ssl) is used
instead of the original file descriptor(sockfd). The new str_cli() function is shown below.
Notice that we now need to check if our calls to wolfSSL_write and wolfSSL_read were
successful.

The authors of the Unix Programming book wrote error checking into their Writen()
function which we must make up for after it has been replaced. We add a new int

Copyright 2015 wolfSSL Inc. All rights reserved.

115

variable, “n”, to monitor the return value of wolfSSL_read and before printing out the
contents of the buffer, recvline, the end of our read data is marked with a ‘\0’:

	
 	
 void
	
 	
 str_cli(FILE	
 *fp,	
 WOLFSSL*	
 ssl)
	
 	
 {
	
 	
 	
 	
 	
 	
 char	
 	
 sendline[MAXLINE],	
 recvline[MAXLINE];
	
 	
 	
 	
 	
 	
 int	
 	
 	
 n	
 =	
 0;

	
 	
 	
 	
 	
 	
 while	
 (Fgets(sendline,	
 MAXLINE,	
 fp)	
 !=	
 NULL)	
 {

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(wolfSSL_write(ssl,	
 sendline,	
 strlen(sendline))	
 !=
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strlen(sendline)){
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 err_sys("wolfSSL_write	
 failed");
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 ((n	
 =	
 wolfSSL_read(ssl,	
 recvline,	
 MAXLINE))	
 <=	
 0)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 err_quit("wolfSSL_read	
 error");

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 recvline[n]	
 =	
 '\0';
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Fputs(recvline,	
 stdout);
	
 	
 	
 	
 	
 	
 }
	
 	
 }

The last thing to do is free the WOLFSSL object when we are completely done with it. In
the main() function, right before the line to free the WOLFSSL_CTX, call to
wolfSSL_free():

	
 	
 str_cli(stdin,	
 ssl);

	
 	
 wolfSSL_free(ssl);	
 	
 	
 	
 	
 	
 /*	
 Free	
 WOLFSSL	
 object	
 */
	
 	
 wolfSSL_CTX_free(ctx);	
 	
 /*	
 Free	
 WOLFSSL_CTX	
 object	
 */
	
 	
 wolfSSL_Cleanup();	
 	
 	
 	
 	
 	
 /*	
 Free	
 wolfSSL	
 */

EchoServer

The echo server makes a call to str_echo() to handle reading and writing (whereas the
client made a call to str_cli()). As with the client, modify str_echo() by replacing the
sockfd parameter with an WOLFSSL object (ssl) parameter in the function signature:

	
 	
 void	
 str_echo(WOLFSSL*	
 ssl)

Copyright 2015 wolfSSL Inc. All rights reserved.

116

Replace the calls to Read() and Writen() with calls to the wolfSSL_read() and
wolfSSL_write() functions. The modified str_echo() function, including error checking of
return values, is shown below. Note that the type of the variable “n” has been changed
from ssize_t to int in order to accommodate for the change from read() to
wolfSSL_read():

	
 	
 void
	
 	
 str_echo(WOLFSSL*	
 ssl)
	
 	
 {
	
 	
 	
 	
 	
 	
 int	
 n;
	
 	
 	
 	
 	
 	
 char	
 buf[MAXLINE];

	
 	
 	
 	
 	
 	
 while	
 (
 (n	
 =	
 wolfSSL_read(ssl,	
 buf,	
 MAXLINE))	
 >	
 0)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(wolfSSL_write(ssl,	
 buf,	
 n)	
 !=	
 n)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 err_sys("wolfSSL_write	
 failed");
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 }

	
 	
 	
 	
 	
 	
 if(
 n	
 <	
 0	
)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 printf("wolfSSL_read	
 error	
 =	
 %d\n",	
 wolfSSL_get_error(ssl,n));

	
 	
 	
 	
 	
 	
 else	
 if(
 n	
 ==	
 0	
)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 printf("The	
 peer	
 has	
 closed	
 the	
 connection.\n");
	
 	
 }

In main() call the str_echo() function at the end of the for loop (soon to be changed to a
while loop). After this function, inside the loop, make calls to free the WOLFSSL object
and close the connfd socket:

str_echo(ssl);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 process	
 the	
 request	
 */	

wolfSSL_free(ssl);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 Free	
 WOLFSSL	
 object	
 */
Close(connfd);

We will free the ctx and cleanup before the call to exit.

11.12 Signal Handling

Echoclient / Echoserver

In the echoclient and echoserver, we will need to add a signal handler for when the user
closes the app by using “Ctrl+C”. The echo server is continually running in a loop.

Copyright 2015 wolfSSL Inc. All rights reserved.

117

Because of this, we need to provide a way to break that loop when the user presses
“Ctrl+C”. To do this, the first thing we need to do is change our loop to a while loop
which terminates when an exit variable (cleanup) is set to true.

First, define a new static int variable called cleanup at the top of tcpserv04.c right after
the #include statements:

	
 	
 static	
 int	
 cleanup;	
 	
 /*	
 To	
 handle	
 shutdown	
 */

Modify the echoserver loop by changing it from a for loop to a while loop:

	
 	
 while(cleanup	
 !=	
 1)
	
 	
 {
	
 	
 	
 	
 	
 	
 /*	
 echo	
 server	
 code	
 here	
 */
	
 	
 }

For the echoserver we need to disable the operating system from restarting calls which
were being executed before the signal was handled after our handler has finished. By
disabling these, the operating system will not restart calls to accept() after the signal has
been handled. If we didn’t do this, we would have to wait for another client to connect
and disconnect before the echoserver would clean up resources and exit. To define the
signal handler and turn off SA_RESTART, first define act and oact structures in the
echoserver’s main() function:

	
 	
 struct	
 sigaction	
 	
 	
 	
 	
 act,	
 oact;

Insert the following code after variable declarations, before the call to wolfSSL_Init() in
the main function:

	
 	
 /*	
 Define	
 a	
 signal	
 handler	
 for	
 when	
 the	
 user	
 closes	
 the	
 program
	
 	
 with	
 Ctrl-­‐C.	
 Also,	
 turn	
 off	
 SA_RESTART	
 so	
 that	
 the	
 OS	
 doesn't
	
 	
 restart	
 the	
 call	
 to	
 accept()after	
 the	
 signal	
 is	
 handled.	
 */

	
 	
 act.sa_handler	
 =	
 sig_handler;
	
 	
 sigemptyset(&act.sa_mask);
	
 	
 act.sa_flags	
 =	
 0;
	
 	
 sigaction(SIGINT,	
 &act,	
 &oact);

The echoserver’s sig_handler function is shown below:

Copyright 2015 wolfSSL Inc. All rights reserved.

118

	
 	
 void	
 sig_handler(const	
 int	
 sig)
	
 	
 {
	
 	
 	
 	
 	
 	
 printf("\nSIGINT	
 handled.\n");
	
 	
 	
 	
 	
 	
 cleanup	
 =	
 1;
	
 	
 	
 	
 	
 	
 return;
	
 	
 }

That’s it - the echoclient and echoserver are now enabled with TLSv1.2!!
What we did:
● Included the wolfSSL headers
● Initialized wolfSSL
● Created a WOLFSSL_CTX structure in which we chose what protocol we wanted

to use
● Created a WOLFSSL object to use for sending and receiving data
● Replaced calls to Writen() and Readline() with wolfSSL_write() and

wolfSSL_read()
● Freed WOLFSSL, WOLFSSL_CTX
● Made sure we handled client and server shutdown with signal handler

There are many more aspects and methods to configure and control the behavior of
your SSL connections. For more detailed information, please see additional wolfSSL
documentation and resources.

Once again, the completed source code can be found in the downloaded ZIP file at the
top of the page.

11.13 Certificates

For testing purposes, you may use the certificates provided by wolfSSL. These can be
found in the wolfSSL download, and specifically for this tutorial, they can be found in the
finished_src folder.

For production applications, you should obtain correct and legitimate certificates from a
trusted certificate authority.

11.14 Conclusion

Copyright 2015 wolfSSL Inc. All rights reserved.

119

This tutorial walked through the process of integrating the wolfSSL embedded SSL
library into a simple client and server application. Although this example is simple, the
same principles may be applied for adding SSL or TLS into your own application. The
wolfSSL embedded SSL library provides all the features you would need in a compact
and efficient package that has been optimized for both size and speed.

Being dual licensed under GPLv2 and standard commercial licensing, you are free to
download the wolfSSL source code directly from our website. Feel free to post to our
support forums (www.wolfssl.com/forums) with any questions or comments you might
have. If you would like more information about our products, please contact
info@wolfssl.com.

We welcome any feedback you have on this SSL tutorial. If you believe it could be
improved or enhanced in order to make it either more useful, easier to understand, or
more portable, please let us know at support@wolfssl.com.

Copyright 2015 wolfSSL Inc. All rights reserved.

120

Chapter 12: Best Practices for Embedded Devices

12.1 Creating Private Keys

Embedding a private key into firmware allows anyone to extract the key and turns an
otherwise secure connection into something nothing more secure than TCP.

We have a few ideas about creating private keys for SSL enabled devices.

1. Each device acting as a server should have a unique private key, just like in the
non-embedded world.

2. If the key can't be placed onto the device before delivery, have it generated

during setup.

3. If the device lacks the power to generate it's own key during setup, have the
client setting up the device generate the key and send it to the device.

4. If the client lacks the ability to generate a private key, have the client retrieve a

unique private key over an SSL connection from the devices known website (for
example).

wolfSSL (formerly CyaSSL) can be used in all of these steps to help ensure an
embedded device has a secure unique private key. Taking these steps will go a long
ways towards securing the SSL connection itself.

12.2 Digitally Signing and Authenticating with wolfSSL

wolfSSL is a popular tool for digitally signing applications, libraries, or files prior to
loading them on embedded devices. Most desktop and server operating systems allow
creation of this type of functionality through system libraries, but stripped down
embedded operating systems do not. The reason that embedded RTOS environments
do not include digital signature functionality is because it has historically not been a
requirement for most embedded applications. In today’s world of connected devices and
heightened security concerns, digitally signing what is loaded onto your embedded or
mobile device has become a top priority.

Copyright 2015 wolfSSL Inc. All rights reserved.

121

Examples of embedded connected devices where this requirement was not found in
years past include set top boxes, DVR’s, POS systems, both VoIP and mobile phones,
connected home, and even automobile-based computing systems. Because wolfSSL
supports the key embedded and real time operating systems, encryption standards, and
authentication functionality, it is a natural choice for embedded systems developers to
use when adding digital signature functionality.

Generally, the process for setting up code and file signing on an embedded device are
as follows:

1. The embedded systems developer will generate an RSA key pair.
2. A server-side script-based tool is developed

a. The server side tool will create a hash of the code to be loaded on the
device (with SHA-256 for example).

b. The hash is then digitally signed, also called RSA private encrypt.
c. A package is created that contains the code along with the digital

signature.
3. The package is loaded on the device along with a way to get the RSA public key.

The hash is re-created on the device then digitally verified (also called RSA
public decrypt) against the existing digital signature.

Benefits to enabling digital signatures on your device include:

1. Easily enable a secure method for allowing third parties to load files to your
device.

2. Ensure against malicious files finding their way on to your device.
3. Digitally secure firmware updates
4. Ensure against firmware updates from unauthorized parties

General information on code signing:
http://en.wikipedia.org/wiki/Code_signing

Copyright 2015 wolfSSL Inc. All rights reserved.

122

Chapter 13: OpenSSL Compatibility

13.1 Compatibility with OpenSSL

wolfSSL (formerly CyaSSL) provides an OpenSSL compatibility header,
wolfssl/openssl/ssl.h, in addition to the wolfSSL native API, to ease the transition into
using wolfSSL or to aid in porting an existing OpenSSL application over to wolfSSL. For
an overview of the OpenSSL Compatibility Layer, please continue reading below. To
view the complete set of OpenSSL functions supported by wolfSSL, please see the
wolfssl/openssl/ssl.h file.

The OpenSSL Compatibility Layer maps a subset of the most commonly-used
OpenSSL commands to wolfSSL’s native API functions. This should allow for an easy
replacement of OpenSSL by wolfSSL in your application or project without changing
much code.

Our test beds for OpenSSL compatibility are stunnel and Lighttpd, which means that we
build both of them with wolfSSL as a way to test our OpenSSL compatibility API.

13.2 Differences Between wolfSSL and OpenSSL

Many people are curious how wolfSSL compares to OpenSSL and what benefits there
are to using an SSL library that has been optimized to run on embedded platforms.
Obviously, OpenSSL is free and presents no initial costs to begin using, but we believe
that wolfSSL will provide you with more flexibility, an easier integration of SSL/TLS into
your existing platform, current standards support, and much more – all provided under a
very easy-to-use license model.

The points below outline several of the main differences between wolfSSL and
OpenSSL.

1. With a 20-100 kB build size, wolfSSL is up to 20 times smaller than OpenSSL.
wolfSSL is a better choice for resource constrained environments – where every
byte matters.

Copyright 2015 wolfSSL Inc. All rights reserved.

123

2. wolfSSL is up to date with the most current standards of TLS 1.2 with DTLS. The
yaSSL team is dedicated to continually keeping wolfSSL up-to-date with current
standards.

3. wolfSSL offers the best current ciphers and standards available today, including

ciphers for streaming media support. In addition, the recently-introduced NTRU
cipher allows speed increases of 20-200x over standard RSA.

4. wolfSSL is dual licensed under both the GPLv2 as well as a commercial license,

where OpenSSL is available only under their unique license from multiple
sources.

5. wolfSSL is backed by an outstanding company who cares about its users and

about their security, and who actively works to improve and expand wolfSSL.
The yaSSL team is based in Bozeman, MT, Portland, OR, and Seattle, WA, and
is always willing to help.

6. wolfSSL is the leading SSL library for real time, mobile, and embedded systems

by virtue of its breadth of platform support and successful implementations on
embedded environments. Chances are we’ve already been ported to your
environment. If not, let us know and we’ll be glad to help.

7. wolfSSL offers several abstraction layers to make integrating SSL into your

environment and platform as easy as possible. With an OS layer, a custom I/O
layer, and a C Standard Library abstraction layer, integration has never been so
easy.

8. wolfSSL offers several support packages for wolfSSL. Available directly through

phone, email or the yaSSL product support forums, your questions are answered
quickly and accurately to help you make progress on your project as quickly as
possible.

13.3 Supported OpenSSL Structures

SSL_METHOD holds SSL version information and is either a client or server method.
(Same as WOLFSSL_METHOD in the native wolfSSL API).

SSL_CTX holds context information including certificates. (Same as WOLFSSL_CTX in
the native wolfSSL API).

Copyright 2015 wolfSSL Inc. All rights reserved.

124

SSL holds session information for a secure connection. (Same as WOLFSSL in the
native wolfSSL API).

13.4 Supported OpenSSL Functions

The three structures shown above are usually initialized in the following way:

 SSL_METHOD* method = SSLv3_client_method();
 SSL_CTX* ctx = SSL_CTX_new(method);
 SSL* ssl = SSL_new(ctx);

This establishes a client side SSL version 3 method, creates a context based on the
method, and initializes the SSL session with the context. A server side program is no
different except that the SSL_METHOD is created using SSLv3_server_method(), or
one of the available functions. For a list of supported functions, please see section 4.2.
When using the OpenSSL Compatibility layer, the functions in 4.2 should be modified by
removing the “wolf” prefix. For example, the native wolfSSL API function:

wolfTLSv1_client_method()

Becomes

TLSv1_client_method()

When an SSL connection is no longer needed the following calls free the structures
created during initialization.

 SSL_CTX_free(ctx);
 SSL_free(ssl);

SSL_CTX_free() has the additional responsibility of freeing the associated
SSL_METHOD. Failing to use the XXX_free() functions will result in a resource leak.
Using the system's free() instead of the SSL ones results in undefined behavior.

Once an application has a valid SSL pointer from SSL_new(), the SSL handshake
process can begin. From the client's view, SSL_connect() will attempt to establish a
secure connection.

Copyright 2015 wolfSSL Inc. All rights reserved.

125

 SSL_set_fd(ssl, sockfd);
 SSL_connect(ssl);

Before the SSL_connect() can be issued, the user must supply wolfSSL with a valid
socket file descriptor, sockfd in the example above. sockfd is typically the result of the
TCP function socket() which is later established using TCP connect(). The following
creates a valid client side socket descriptor for use with a local wolfSSL server on port
11111, error handling is omitted for simplicity.

 int sockfd = socket(AF_INET, SOCK_STREAM, 0);
 sockaddr_in servaddr;
 memset(&servaddr, 0, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(11111);
 servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");
 connect(sockfd, (const sockaddr*)&servaddr, sizeof(servaddr));

Once a connection is established, the client may read and write to the server. Instead of
using the TCP functions send() and receive(), wolfSSL and yaSSL use the SSL
functions SSL_write() and SSL_read(). Here is a simple example from the client demo:

 char msg[] = "hello yassl!";
 int wrote = SSL_write(ssl, msg, sizeof(msg));
 char reply[1024];
 int read = SSL_read(ssl, reply, sizeof(reply));
 reply[read] = 0;
 printf("Server response: %s\n", reply);

The server connects in the same way except that is uses SSL_accept() instead of
SSL_connect(), analogous to the TCP API. See the server example for a complete
server demo program.

13.5 x509 Certificates

Both the server and client can provide wolfSSL with certificates in either PEM or DER.
Typical usage is like this:

 SSL_CTX_use_certificate_file(ctx, "certs/cert.pem",

SSL_FILETYPE_PEM);
 SSL_CTX_use_PrivateKey_file(ctx, "certs/key.der",

SSL_FILETYPE_ASN1);

Copyright 2015 wolfSSL Inc. All rights reserved.

126

A key file can also be presented to the Context in either format. SSL_FILETYPE_PEM
signifies the file is PEM formatted while SSL_FILETYPE_ASN1 declares the file to be in
DER format. To verify that the key file is appropriate for use with the certificate the
following function can be used:

 SSL_CTX_check_private_key(ctx);

Copyright 2015 wolfSSL Inc. All rights reserved.

127

Chapter 14: Licensing

14.1 Open Source

The founders and employees of wolfSSL (formerly CyaSSL) believe in Open Source
Software. As such, the source code for wolfSSL is available for all to use, modify, test
and enjoy under the GPL. wolfSSL may be modified to the needs of the user as long as
the user adheres to version two of the GPL License. The GPLv2 license can be found
on the gnu.org website (http://www.gnu.org/licenses/old-licenses/gpl-2.0.html).

We do not reserve features! As such, everything available in the commercial version
of wolfSSL is also available in the open source GPL version. For more information on
our licensing, please see our website or contact info@wolfssl.com.

14.2 Commercial Licensing

Businesses and enterprises who wish to incorporate wolfSSL into proprietary
appliances or other commercial software products for re-distribution must license
commercial versions. Commercial licenses for wolfSSL and yaSSL are available for
$5,000 USD per product. Licenses are generally issued for one product and include
unlimited distribution.

14.3 Support Packages

Support packages for wolfSSL are available on an annual basis directly from yaSSL.
With three different package options, you can compare them side-by-side and choose
the package that best fits your specific needs. Please see our Support Packages page
for more details (http://www.wolfssl.com/yaSSL/Support/support_tiers.php).

Copyright 2015 wolfSSL Inc. All rights reserved.

128

Chapter 15: Support and Consulting

15.1 How to Get Support

For general product support, wolfSSL (formerly CyaSSL) maintains an online forum for
the wolfSSL product family. Please post to the forums or contact wolfSSL directly with
any questions.

yaSSL Forums: http://www.wolfssl.com/forums
Email Support: support@wolfssl.com

For information regarding wolfSSL products, questions regarding licensing, or general
comments, please contact wolfSSL by emailing info@wolfssl.com. For support
packages, please see Chapter 14.

15.1.1 Bugs Reports and Support Issues

If you are submitting a bug report or asking about a problem, please include the
following information with your submission:

1. wolfSSL version number
2. Operating System version
3. Compiler version
4. The exact error you are seeing
5. A description of how we can reproduce or try to replicate this problem

With the above information, we will do our best to resolve your problems. Without this
information, it is very hard to pinpoint the source of the problem. wolfSSL values your
feedback and makes it a top priority to get back to you as soon as possible.

15.2 Consulting

wolfSSL offers both on and off site consulting - providing feature additions, porting, a
Competitive Upgrade Program, and design consulting.

15.2.1 Feature Additions and Porting

Copyright 2015 wolfSSL Inc. All rights reserved.

129

We can add additional features that you may need which are not currently offered in our
products on a contract or co-development basis. We also offer porting services on our
products to new host languages or new operating environments.

15.2.2 Competitive Upgrade Program

We will help you move from an outdated or expensive SSL library to wolfSSL with low
cost and minimal disturbance to your code base.

Program Outline:

1. You need to currently be using a commercial competitor to wolfSSL.
2. You will receive up to one week of on-site consulting to switch out your old SSL

library for wolfSSL. Travel expenses are not included.
3. Normally, up to one week is the right amount of time for us to make the

replacement in your code and do initial testing. Additional consulting on a
replacement is available as needed.

4. You will receive the standard wolfSSL royalty free license to ship with your
product.

5. The price is $10,000.

The purpose of this program is to enable users who are currently spending too much on
their embedded SSL implementation to move to wolfSSL with ease. If you are interested
in learning more, then please contact us at info@wolfssl.com.

15.2.3 Design Consulting

If your application or framework needs to be secured with SSL/TLS but you are
uncertain about how the optimal design of a secured system would be structured, we
can help!

We offer design consulting for building SSL/TLS security into devices using wolfSSL.
Our consultants can provide you with the following services:

1. Assessment: An evaluation of your current SSL/TLS implementation. We can
give you advice on your current setup and how we think you could improve upon
this by using wolfSSL.

Copyright 2015 wolfSSL Inc. All rights reserved.

130

2. Design: Looking at your system requirements and parameters, we'll work closely
with you to make recommendations on how to implement wolfSSL into your
application such that it provides you with optimal security.

If you would like to learn more about design consulting for building SSL into your
application or device, please contact info@wolfssl.com for more information.

Chapter 16: wolfSSL (formerly CyaSSL) Updates

16.1 Product Release Information

We regularly post update information on Twitter. For additional release information, you
can keep track of our projects on Freshmeat, follow us on Facebook, or follow our daily
blog.

wolfSSL on Freshmeat http://freshmeat.net/projects/wolfssl/
wolfSSL on Twitter http://twitter.com/wolfSSL
wolfSSL on Facebook http://www.facebook.com/wolfSSL
Daily Blog http://wolfssl.com/yaSSL/Blog/Blog.html

Chapter 17: wolfSSL (formerly CyaSSL) API Reference

17.1 Initialization / Shutdown

The functions in this section have to do with initializing the wolfSSL library and shutting
it down (freeing resources) after it is no longer needed by the application.

wolfSSL_Init

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_Init(void);

Copyright 2015 wolfSSL Inc. All rights reserved.

131

Description:
Initializes the wolfSSL library for use. Must be called once per application and before
any other call to the library.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_MUTEX_ERROR is an error that may be returned.

Parameters:

This function has no parameters.

Example:

int ret = 0;
ret = wolfSSL_Init();
if (ret != SSL_SUCCESS) {
 // failed to initialize wolfSSL library
}

See Also:
wolfSSL_Cleanup

wolfSSL_library_init

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_library_init(void)

Description:
This function is done internally in wolfSSL_CTX_new().

This function is a wrapper around wolfSSL_Init() and exists for OpenSSL compatibility
(SSL_library_init) when wolfSSL has been compiled with OpenSSL compatibility layer.
wolfSSL_Init() is the more typically-used wolfSSL initialization function.

Return Values:

Copyright 2015 wolfSSL Inc. All rights reserved.

132

If successful the call will return SSL_SUCCESS.

SSL_FATAL_ERROR is returned upon failure.

Parameters:

This function takes no parameters.

Example:

int ret = 0;
ret = wolfSSL_library_init();
if (ret != SSL_SUCCESS) {
 // failed to initialize wolfSSL
}
...

See Also:
wolfSSL_Init
wolfSSL_Cleanup

wolfSSL_Cleanup

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_Cleanup(void);

Description:
Un-initializes the wolfSSL library from further use. Doesn’t have to be called, though it
will free any resources used by the library.

Return Values:
No return value for this function.

Parameters:

There are no parameters for this function.

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

133

wolfSSL_Cleanup();

See Also:
wolfSSL_Init

wolfSSL_shutdown

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_shutdown(WOLFSSL* ssl);

Description:
This function shuts down an active SSL/TLS connection using the SSL session, ssl.
This function will try to send a “close notify” alert to the peer.

The calling application can choose to wait for the peer to send its “close notify” alert in
response or just go ahead and shut down the underlying connection after directly calling
wolfSSL_shutdown (to save resources). Either option is allowed by the TLS
specification. If the underlying connection will be used again in the future, the complete
two-directional shutdown procedure must be performed to keep synchronization intact
between the peers.

wolfSSL_shutdown() works with both blocking and non-blocking I/O. When the
underlying I/O is non-blocking, wolfSSL_shutdown() will return an error if the underlying
I/O could not satisfy the needs of wolfSSL_send() to continue. In this case, a call to
wolfSSL_get_error() will yield either SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. The calling process must then repeat the call to
wolfSSL_send() when the underlying I/O is ready.

Return Values:

0 - will be returned upon success.

SSL_FATAL_ERROR - will be returned upon failure. Call wolfSSL_get_error() for a
more specific error code.

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

134

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

int ret = 0;
WOLFSSL* ssl = 0;
...

ret = wolfSSL_shutdown(ssl);
if (ret != 0) {
 // failed to shut down SSL connection
}

See Also:
wolfSSL_free
wolfSSL_CTX_free

17.2 Certificates and Keys

The functions in this section have to do with loading certificates and keys into wolfSSL.

wolfSSL_CTX_load_verify_buffer

Synopsis:
int wolfSSL_CTX_load_verify_buffer(WOLFSSL_CTX* ctx, const unsigned char* in,
 long sz, int format);

Description:
This function loads a CA certificate buffer into the WOLFSSL Context. It behaves like
the non buffered version, only differing in its ability to be called with a buffer as input
instead of a file. The buffer is provided by the in argument of size sz. format specifies
the format type of the buffer; SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM. More
than one CA certificate may be loaded per buffer as long as the format is in PEM.
Please see the examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

Copyright 2015 wolfSSL Inc. All rights reserved.

135

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

BUFFER_E will be returned if a chain buffer is bigger than the receiving buffer.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

in - pointer to the CA certificate buffer

sz - size of the input CA certificate buffer, in.

format - format of the buffer certificate, either SSL_FILETYPE_ASN1 or
SSL_FILETYPE_PEM.

Example:

int ret = 0;
int sz = 0;
WOLFSSL_CTX* ctx;
byte certBuff[...];

...

ret = wolfSSL_CTX_load_verify_buffer(ctx, certBuff, sz, SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading CA certs from buffer
}

...

See Also:
wolfSSL_CTX_load_verify_locations
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_PrivateKey_buffer

Copyright 2015 wolfSSL Inc. All rights reserved.

136

wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_certificate_buffer
wolfSSL_use_PrivateKey_buffer
wolfSSL_use_certificate_chain_buffer

wolfSSL_CTX_load_verify_locations

Synopsis:
int wolfSSL_CTX_load_verify_locations(WOLFSSL_CTX* ctx, const char* file,
 const char* path);

Description:
This function loads PEM-formatted CA certificate files into the SSL context
(WOLFSSL_CTX). These certificates will be treated as trusted root certificates and
used to verify certs received from peers during the SSL handshake.

The root certificate file, provided by the file argument, may be a single certificate or a
file containing multiple certificates. If multiple CA certs are included in the same file,
wolfSSL will load them in the same order they are presented in the file. The path
argument is a pointer to the name of a directory that contains certificates of trusted root
CAs. If the value of file is not NULL, path may be specified as NULL if not needed. If
path is specified and NO_WOLFSSL_DIR was not defined when building the library,
wolfSSL will load all CA certificates located in the given directory.

Please see the examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_FAILURE will be returned if ctx is NULL, or if both file and path are NULL.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

Copyright 2015 wolfSSL Inc. All rights reserved.

137

BUFFER_E will be returned if a chain buffer is bigger than the receiving buffer.

BAD_PATH_ERROR will be returned if opendir() fails when trying to open path.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

file - pointer to name of the file containing PEM-formatted CA certificates

path - pointer to the name of a directory to load PEM-formatted certificates from.

Example:

int ret = 0;
WOLFSSL_CTX* ctx;

...

ret = wolfSSL_CTX_load_verify_locations(ctx, “./ca-cert.pem”, 0);
if (ret != SSL_SUCCESS) {
 // error loading CA certs
}

...

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_certificate_file
wolfSSL_CTX_use_PrivateKey_file
wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_CTX_use_certificate_chain_file
wolfSSL_use_certificate_file
wolfSSL_use_PrivateKey_file
wolfSSL_use_certificate_chain_file

wolfSSL_CTX_use_PrivateKey_buffer

Synopsis:

Copyright 2015 wolfSSL Inc. All rights reserved.

138

int wolfSSL_CTX_use_PrivateKey_buffer(WOLFSSL_CTX* ctx, const unsigned char*
in, long sz, int
format);

Description:
This function loads a private key buffer into the SSL Context. It behaves like the non
buffered version, only differing in its ability to be called with a buffer as input instead of a
file. The buffer is provided by the in argument of size sz. format specifies the format
type of the buffer; SSL_FILETYPE_ASN1or SSL_FILETYPE_PEM. Please see the
examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

NO_PASSWORD will be returned if the key file is encrypted but no password is
provided.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

in - the input buffer containing the private key to be loaded.

sz - the size of the input buffer.

format - the format of the private key located in the input buffer (in). Possible values
are SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Example:

int ret = 0;
int sz = 0;

Copyright 2015 wolfSSL Inc. All rights reserved.

139

WOLFSSL_CTX* ctx;
byte keyBuff[...];

...

ret = wolfSSL_CTX_use_PrivateKey_buffer(ctx, keyBuff, sz, SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading private key from buffer
}

...

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_certificate_buffer
wolfSSL_use_PrivateKey_buffer
wolfSSL_use_certificate_chain_buffer

wolfSSL_CTX_use_PrivateKey_file

Synopsis:
int wolfSSL_CTX_use_PrivateKey_file(WOLFSSL_CTX* ctx, const char* file, int
format);

Description:
This function loads a private key file into the SSL context (WOLFSSL_CTX). The file is
provided by the file argument. The format argument specifies the format type of the file
- SSL_FILETYPE_ASN1or SSL_FILETYPE_PEM. Please see the examples for proper
usage.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument
- The file doesn’t exist, can’t be read, or is corrupted

Copyright 2015 wolfSSL Inc. All rights reserved.

140

- An out of memory condition occurs
- Base16 decoding fails on the file
- The key file is encrypted but no password is provided

Example:

int ret = 0;
WOLFSSL_CTX* ctx;

...

ret = wolfSSL_CTX_use_PrivateKey_file(ctx, “./server-key.pem”,
 SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading key file
}

...

See Also:
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_use_PrivateKey_file
wolfSSL_use_PrivateKey_buffer

wolfSSL_CTX_use_certificate_buffer

Synopsis:
int wolfSSL_CTX_use_certificate_buffer(WOLFSSL_CTX* ctx, const unsigned char* in,
 long sz, int format);

Description:
This function loads a certificate buffer into the WOLFSSL Context. It behaves like the
non buffered version, only differing in its ability to be called with a buffer as input instead
of a file. The buffer is provided by the in argument of size sz. format specifies the
format type of the buffer; SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM. Please see
the examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

Copyright 2015 wolfSSL Inc. All rights reserved.

141

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

in - the input buffer containing the certificate to be loaded.

sz - the size of the input buffer.

format - the format of the certificate located in the input buffer (in). Possible values are
SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Example:

int ret = 0;
int sz = 0;
WOLFSSL_CTX* ctx;
byte certBuff[...];

...

ret = wolfSSL_CTX_use_certificate_buffer(ctx, certBuff, sz,
SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading certificate from buffer
}

...

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_certificate_buffer
wolfSSL_use_PrivateKey_buffer

Copyright 2015 wolfSSL Inc. All rights reserved.

142

wolfSSL_use_certificate_chain_buffer

wolfSSL_CTX_use_certificate_chain_buffer

Synopsis:
int wolfSSL_CTX_use_certificate_chain_buffer(WOLFSSL_CTX* ctx,

const unsigned char* in,
long sz);

Description:
This function loads a certificate chain buffer into the WOLFSSL Context. It behaves like
the non buffered version, only differing in its ability to be called with a buffer as input
instead of a file. The buffer is provided by the in argument of size sz. The buffer must
be in PEM format and start with the subject’s certificate, ending with the root certificate.
Please see the examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

BUFFER_E will be returned if a chain buffer is bigger than the receiving buffer.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

in - the input buffer containing the PEM-formatted certificate chain to be loaded.

sz - the size of the input buffer.

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

143

int ret = 0;
int sz = 0;
WOLFSSL_CTX* ctx;
byte certChainBuff[...];

...

ret = wolfSSL_CTX_use_certificate_chain_buffer(ctx, certChainBuff, sz);
if (ret != SSL_SUCCESS) {
 // error loading certificate chain from buffer
}

...

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_use_certificate_buffer
wolfSSL_use_PrivateKey_buffer
wolfSSL_use_certificate_chain_buffer

wolfSSL_CTX_use_certificate_chain_file

Synopsis:
int wolfSSL_CTX_use_certificate_chain_file(WOLFSSL_CTX* ctx, const char* file);

Description:
This function loads a chain of certificates into the SSL context (WOLFSSL_CTX). The
file containing the certificate chain is provided by the file argument, and must contain
PEM-formatted certificates. This function will process up to MAX_CHAIN_DEPTH
(default = 9, defined in internal.h) certificates, plus the subject cert.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument
- file doesn’t exist, can’t be read, or is corrupted

Copyright 2015 wolfSSL Inc. All rights reserved.

144

- an out of memory condition occurs

Parameters:

ctx - a pointer to a WOLFSSL_CTX structure, created using wolfSSL_CTX_new()

file - a pointer to the name of the file containing the chain of certificates to be loaded
into the wolfSSL SSL context. Certificates must be in PEM format.

Example:

int ret = 0;
WOLFSSL_CTX* ctx;

...

ret = wolfSSL_CTX_use_certificate_chain_file(ctx, “./cert-chain.pem”);
if (ret != SSL_SUCCESS) {
 // error loading cert file
}

...

See Also:
wolfSSL_CTX_use_certificate_file
wolfSSL_CTX_use_certificate_buffer
wolfSSL_use_certificate_file
wolfSSL_use_certificate_buffer

wolfSSL_CTX_use_certificate_file

Synopsis:
int wolfSSL_CTX_use_certificate_file(WOLFSSL_CTX* ctx, const char* file, int format);

Description:
This function loads a certificate file into the SSL context (WOLFSSL_CTX). The file is
provided by the file argument. The format argument specifies the format type of the file
- either SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM. Please see the examples for
proper usage.

Copyright 2015 wolfSSL Inc. All rights reserved.

145

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument
- file doesn’t exist, can’t be read, or is corrupted
- an out of memory condition occurs
- Base16 decoding fails on the file

Parameters:

ctx - a pointer to a WOLFSSL_CTX structure, created using wolfSSL_CTX_new()

file - a pointer to the name of the file containing the certificate to be loaded into the
wolfSSL SSL context.

format - format of the certificates pointed to by file. Possible options are
SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Example:

int ret = 0;
WOLFSSL_CTX* ctx;

...

ret = wolfSSL_CTX_use_certificate_file(ctx, “./client-cert.pem”,
 SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading cert file
}

...

See Also:
wolfSSL_CTX_use_certificate_buffer
wolfSSL_use_certificate_file
wolfSSL_use_certificate_buffer

wolfSSL_SetTmpDH

Copyright 2015 wolfSSL Inc. All rights reserved.

146

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_SetTmpDH(WOLFSSL* ssl, unsigned char* p, int pSz, unsigned char* g,

 int gSz);

Description:
Server Diffie-Hellman Ephemeral parameters setting. This function sets up the group
parameters to be used if the server negotiates a cipher suite that uses DHE.

Return Values:
If successful the call will return SSL_SUCCESS.

MEMORY_ERROR will be returned if a memory error was encountered.

SIDE_ERROR will be returned if this function is called on an SSL client instead of an
SSL server.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

p - Diffie-Hellman prime number parameter.

pSz - size of p.

g - Diffie-Hellman “generator” parameter.

gSz - size of g.

Example:

WOLFSSL* ssl;
static unsigned char p[] = {...};
static unsigned char g[] = {...};
...
wolfSSL_SetTmpDH(ssl, p, sizeof(p), g, sizeof(g));

See Also:
SSL_accept

Copyright 2015 wolfSSL Inc. All rights reserved.

147

wolfSSL_use_PrivateKey_buffer

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_PrivateKey_buffer(WOLFSSL* ssl, const unsigned char* in,
 long sz, int format);

Description:
This function loads a private key buffer into the WOLFSSL object. It behaves like the
non buffered version, only differing in its ability to be called with a buffer as input instead
of a file. The buffer is provided by the in argument of size sz. format specifies the
format type of the buffer; SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM. Please see
the examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

NO_PASSWORD will be returned if the key file is encrypted but no password is
provided.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

in - buffer containing private key to load.

sz - size of the private key located in buffer.

Copyright 2015 wolfSSL Inc. All rights reserved.

148

format - format of the private key to be loaded. Possible values are
SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Example:

int buffSz;
int ret;
byte keyBuff[...];
WOLFSSL* ssl = 0;
...

ret = wolfSSL_use_PrivateKey_buffer(ssl, keyBuff, buffSz, SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // failed to load private key from buffer
}

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_certificate_buffer
wolfSSL_use_certificate_chain_buffer

wolfSSL_use_certificate_buffer

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_certificate_buffer(WOLFSSL* ssl, const unsigned char* in,
 long sz, int format);

Description:
This function loads a certificate buffer into the WOLFSSL object. It behaves like the non
buffered version, only differing in its ability to be called with a buffer as input instead of a
file. The buffer is provided by the in argument of size sz. format specifies the format
type of the buffer; SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM. Please see the
examples for proper usage.

Return Values:

Copyright 2015 wolfSSL Inc. All rights reserved.

149

If successful the call will return SSL_SUCCESS.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

in - buffer containing certificate to load.

sz - size of the certificate located in buffer.

format - format of the certificate to be loaded. Possible values are
SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Example:

int buffSz;
int ret;
byte certBuff[...];
WOLFSSL* ssl = 0;
...

ret = wolfSSL_use_certificate_buffer(ssl, certBuff, buffSz,
SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // failed to load certificate from buffer
}

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_PrivateKey_buffer

Copyright 2015 wolfSSL Inc. All rights reserved.

150

wolfSSL_use_certificate_chain_buffer

wolfSSL_use_certificate_chain_buffer

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_certificate_chain_buffer(WOLFSSL* ssl, const unsigned char* in,
 long sz);

Description:
This function loads a certificate chain buffer into the WOLFSSL object. It behaves like
the non buffered version, only differing in its ability to be called with a buffer as input
instead of a file. The buffer is provided by the in argument of size sz. The buffer must
be in PEM format and start with the subject’s certificate, ending with the root certificate.
Please see the examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

BUFFER_E will be returned if a chain buffer is bigger than the receiving buffer.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

in - buffer containing certificate to load.

sz - size of the certificate located in buffer.

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

151

int buffSz;
int ret;
byte certChainBuff[...];
WOLFSSL* ssl = 0;
...

ret = wolfSSL_use_certificate_chain_buffer(ssl, certChainBuff, buffSz);
if (ret != SSL_SUCCESS) {
 // failed to load certificate chain from buffer
}

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_NTRUPrivateKey_file
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_certificate_buffer
wolfSSL_use_PrivateKey_buffer

wolfSSL_CTX_der_load_verify_locations

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CTX_der_load_verify_locations(WOLFSSL_CTX* ctx, const char* file,
 int format);

Description:
This function is similar to wolfSSL_CTX_load_verify_locations, but allows the loading of
DER-formatted CA files into the SSL context (WOLFSSL_CTX). It may still be used to
load PEM-formatted CA files as well. These certificates will be treated as trusted root
certificates and used to verify certs received from peers during the SSL handshake.

The root certificate file, provided by the file argument, may be a single certificate or a
file containing multiple certificates. If multiple CA certs are included in the same file,
wolfSSL will load them in the same order they are presented in the file. The format
argument specifies the format which the certificates are in - either
SSL_FILETYPE_PEM or SSL_FILETYPE_ASN1 (DER). Unlike

Copyright 2015 wolfSSL Inc. All rights reserved.

152

wolfSSL_CTX_load_verify_locations, this function does not allow the loading of CA
certificates from a given directory path.

Note that this function is only available when the wolfSSL library was compiled with
WOLFSSL_DER_LOAD defined.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned upon failure.

Parameters:

ctx - a pointer to a WOLFSSL_CTX structure, created using wolfSSL_CTX_new()

file - a pointer to the name of the file containing the CA certificates to be loaded into the
wolfSSL SSL context, with format as specified by format.

format - the encoding type of the certificates specified by file. Possible values include
SSL_FILETYPE_PEM and SSL_FILETYPE_ASN1.

Example:

int ret = 0;
WOLFSSL_CTX* ctx;

...

ret = wolfSSL_CTX_der_load_verify_locations(ctx, “./ca-cert.der”,
 SSL_FILETYPE_ASN1);
if (ret != SSL_SUCCESS) {
 // error loading CA certs
}

...

See Also:
wolfSSL_CTX_load_verify_locations
wolfSSL_CTX_load_verify_buffer

wolfSSL_CTX_use_NTRUPrivateKey_file

Copyright 2015 wolfSSL Inc. All rights reserved.

153

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CTX_use_NTRUPrivateKey_file(WOLFSSL_CTX* ctx, const char* file);

Description:
This function loads an NTRU private key file into the WOLFSSL Context. It behaves
like the normal version, only differing in its ability to accept an NTRU raw key file. This
function is needed since the format of the file is different than the normal key file (buffer)
functions. Please see the examples for proper usage.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

BUFFER_E will be returned if a chain buffer is bigger than the receiving buffer.

NO_PASSWORD will be returned if the key file is encrypted but no password is
provided.

Parameters:

ctx - a pointer to a WOLFSSL_CTX structure, created using wolfSSL_CTX_new()

file - a pointer to the name of the file containing the NTRU private key to be loaded into
the wolfSSL SSL context.

Example:

int ret = 0;
WOLFSSL_CTX* ctx;

...

ret = wolfSSL_CTX_use_NTRUPrivateKey_file(ctx, “./ntru-key.raw”);
if (ret != SSL_SUCCESS) {

Copyright 2015 wolfSSL Inc. All rights reserved.

154

 // error loading NTRU private key
}

...

See Also:
wolfSSL_CTX_load_verify_buffer
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_certificate_buffer
wolfSSL_use_PrivateKey_buffer
wolfSSL_use_certificate_chain_buffer

wolfSSL_KeepArrays

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_KeepArrays(WOLFSSL* ssl);

Description:
Normally, at the end of the SSL handshake, wolfSSL frees temporary arrays. Calling
this function before the handshake begins will prevent wolfSSL from freeing temporary
arrays. Temporary arrays may be needed for things such as wolfSSL_get_keys() or
PSK hints.

When the user is done with temporary arrays, either wolfSSL_FreeArrays() may be
called to free the resources immediately, or alternatively the resources will be freed
when the associated SSL object is freed.

Return Values:
This function has no return value.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

155

WOLFSSL* ssl;
...
wolfSSL_KeepArrays(ssl);

See Also:
wolfSSL_FreeArrays

wolfSSL_FreeArrays

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_FreeArrays(WOLFSSL* ssl);

Description:
Normally, at the end of the SSL handshake, wolfSSL frees temporary arrays. If
wolfSSL_KeepArrays() has been called before the handshake, wolfSSL will not free
temporary arrays. This function explicitly frees temporary arrays and should be called
when the user is done with temporary arrays and does not want to wait for the SSL
object to be freed to free these resources.

Return Values:
This function has no return value.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

WOLFSSL* ssl;
...
wolfSSL_FreeArrays(ssl);

See Also:
wolfSSL_KeepArrays

17.3 Context and Session Setup

Copyright 2015 wolfSSL Inc. All rights reserved.

156

The functions in this section have to do with creating and setting up SSL/TLS context
objects (WOLFSSL_CTX) and SSL/TLS session objects (WOLFSSL).

wolfSSLv3_client_method

Synopsis:
#include <wolfssl/ssl.h>

WOLFSSL_METHOD *wolfSSLv3_client_method(void);

Description:
The wolfSSLv3_client_method() function is used to indicate that the application is a
client and will only support the SSL 3.0 protocol. This function allocates memory for
and initializes a new WOLFSSL_METHOD structure to be used when creating the
SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Parameters:

This function has no parameters.

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfSSLv3_client_method();
if (method == NULL) {
 // unable to get method
}

Copyright 2015 wolfSSL Inc. All rights reserved.

157

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfTLSv1_client_method
wolfTLSv1_1_client_method
wolfTLSv1_2_client_method
wolfDTLSv1_client_method
wolfSSLv23_client_method
wolfSSL_CTX_new

wolfSSLv3_server_method

Synopsis:
#include <wolfssl/ssl.h>

WOLFSSL_METHOD *wolfSSLv3_server_method(void);

Description:
The wolfSSLv3_server_method() function is used to indicate that the application is a
server and will only support the SSL 3.0 protocol. This function allocates memory for
and initializes a new WOLFSSL_METHOD structure to be used when creating the
SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Parameters:

This function has no parameters.

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

Copyright 2015 wolfSSL Inc. All rights reserved.

158

method = wolfSSLv3_server_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfTLSv1_server_method
wolfTLSv1_1_server_method
wolfTLSv1_2_server_method
wolfDTLSv1_server_method
wolfSSLv23_server_method
wolfSSL_CTX_new

wolfSSLv23_client_method

Synopsis:
#include <wolfssl/ssl.h>

WOLFSSL_METHOD *wolfSSLv23_client_method(void);

Description:
The wolfSSLv23_client_method() function is used to indicate that the application is a
client and will support the highest protocol version supported by the server between
SSL 3.0 - TLS 1.2. This function allocates memory for and initializes a new
WOLFSSL_METHOD structure to be used when creating the SSL/TLS context with
wolfSSL_CTX_new().

Both wolfSSL clients and servers have robust version downgrade capability. If a
specific protocol version method is used on either side, then only that version will be
negotiated or an error will be returned. For example, a client that uses TLSv1 and tries
to connect to a SSLv3 only server will fail, likewise connecting to a TLSv1.1 will fail as
well.

To resolve this issue, a client that uses the wolfSSLv23_client_method() function will
use the highest protocol version supported by the server and downgrade to SSLv3 if

Copyright 2015 wolfSSL Inc. All rights reserved.

159

needed. In this case, the client will be able to connect to a server running SSLv3 -
TLSv1.2.

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Parameters:

This function has no parameters.

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfSSLv23_client_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_client_method
wolfTLSv1_client_method
wolfTLSv1_1_client_method
wolfTLSv1_2_client_method
wolfDTLSv1_client_method
wolfSSL_CTX_new

wolfSSLv23_server_method

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

160

WOLFSSL_METHOD *wolfSSLv23_server_method(void);

Description:
The wolfSSLv23_server_method() function is used to indicate that the application is a
server and will support clients connecting with protocol version from SSL 3.0 - TLS 1.2.
This function allocates memory for and initializes a new WOLFSSL_METHOD structure
to be used when creating the SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Parameters:

This function has no parameters.

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfSSLv23_server_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_server_method
wolfTLSv1_server_method
wolfTLSv1_1_server_method
wolfTLSv1_2_server_method
wolfDTLSv1_server_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

161

wolfTLSv1_client_method

Synopsis:
WOLFSSL_METHOD *wolfTLSv1_client_method(void);

Description:
The wolfTLSv1_client_method() function is used to indicate that the application is a
client and will only support the TLS 1.0 protocol. This function allocates memory for and
initializes a new WOLFSSL_METHOD structure to be used when creating the SSL/TLS
context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfTLSv1_client_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_client_method
wolfTLSv1_1_client_method
wolfTLSv1_2_client_method
wolfDTLSv1_client_method
wolfSSLv23_client_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

162

wolfTLSv1_server_method

Synopsis:
WOLFSSL_METHOD *wolfTLSv1_server_method(void);

Description:
The wolfTLSv1_server_method() function is used to indicate that the application is a
server and will only support the TLS 1.0 protocol. This function allocates memory for
and initializes a new WOLFSSL_METHOD structure to be used when creating the
SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfTLSv1_server_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_server_method
wolfTLSv1_1_server_method
wolfTLSv1_2_server_method
wolfDTLSv1_server_method
wolfSSLv23_server_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

163

wolfTLSv1_1_client_method

Synopsis:
WOLFSSL_METHOD *wolfTLSv1_1_client_method(void);

Description:
The wolfTLSv1_1_client_method() function is used to indicate that the application is a
client and will only support the TLS 1.0 protocol. This function allocates memory for and
initializes a new WOLFSSL_METHOD structure to be used when creating the SSL/TLS
context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfTLSv1_1_client_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_client_method
wolfTLSv1_client_method
wolfTLSv1_2_client_method
wolfDTLSv1_client_method
wolfSSLv23_client_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

164

wolfTLSv1_1_server_method

Synopsis:
WOLFSSL_METHOD *wolfTLSv1_1_server_method(void);

Description:
The wolfTLSv1_1_server_method() function is used to indicate that the application is a
server and will only support the TLS 1.1 protocol. This function allocates memory for
and initializes a new WOLFSSL_METHOD structure to be used when creating the
SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfTLSv1_1_server_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_server_method
wolfTLSv1_server_method
wolfTLSv1_2_server_method
wolfDTLSv1_server_method
wolfSSLv23_server_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

165

wolfTLSv1_2_client_method

Synopsis:
WOLFSSL_METHOD *wolfTLSv1_2_client_method(void);

Description:
The wolfTLSv1_2_client_method() function is used to indicate that the application is a
client and will only support the TLS 1.2 protocol. This function allocates memory for and
initializes a new WOLFSSL_METHOD structure to be used when creating the SSL/TLS
context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfTLSv1_2_client_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_client_method
wolfTLSv1_client_method
wolfTLSv1_1_client_method
wolfDTLSv1_client_method
wolfSSLv23_client_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

166

wolfTLSv1_2_server_method

Synopsis:
WOLFSSL_METHOD *wolfTLSv1_2_server_method(void);

Description:
The wolfTLSv1_2_server_method() function is used to indicate that the application is a
server and will only support the TLS 1.2 protocol. This function allocates memory for
and initializes a new WOLFSSL_METHOD structure to be used when creating the
SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfTLSv1_2_server_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_server_method
wolfTLSv1_server_method
wolfTLSv1_1_server_method
wolfDTLSv1_server_method
wolfSSLv23_server_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

167

wolfDTLSv1_client_method

Synopsis:
WOLFSSL_METHOD *wolfDTLSv1_client_method(void);

Description:
The wolfDTLSv1_client_method() function is used to indicate that the application is a
client and will only support the DTLS 1.0 protocol. This function allocates memory for
and initializes a new WOLFSSL_METHOD structure to be used when creating the
SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfDTLSv1_client_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_client_method
wolfTLSv1_client_method
wolfTLSv1_1_client_method
wolfTLSv1_2_client_method
wolfSSLv23_client_method
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

168

wolfDTLSv1_server_method

Synopsis:
#include <wolfssl/ssl.h>

WOLFSSL_METHOD *wolfDTLSv1_server_method(void);

Description:
The wolfDTLSv1_server_method() function is used to indicate that the application is a
server and will only support the DTLS 1.0 protocol. This function allocates memory for
and initializes a new WOLFSSL_METHOD structure to be used when creating the
SSL/TLS context with wolfSSL_CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created WOLFSSL_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

WOLFSSL_METHOD* method;
WOLFSSL_CTX* ctx;

method = wolfDTLSv1_server_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
...

See Also:
wolfSSLv3_server_method
wolfTLSv1_server_method
wolfTLSv1_1_server_method
wolfTLSv1_2_server_method

Copyright 2015 wolfSSL Inc. All rights reserved.

169

wolfSSLv23_server_method
wolfSSL_CTX_new

wolfSSL_new

Synopsis:
#include <wolfssl/ssl.h>

WOLFSSL* wolfSSL_new(WOLFSSL_CTX* ctx);

Description:
This function creates a new SSL session, taking an already created SSL context as
input.

Return Values:
If successful the call will return a pointer to the newly-created WOLFSSL structure.
Upon failure, NULL will be returned.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

Example:

WOLFSSL* ssl = NULL;
WOLFSSL_CTX* ctx = 0;

ctx = wolfSSL_CTX_new(method);
if (ctx == NULL) {
 // context creation failed
}

ssl = wolfSSL_new(ctx);
if (ssl == NULL) {
 // SSL object creation failed
}

See Also:
wolfSSL_CTX_new

Copyright 2015 wolfSSL Inc. All rights reserved.

170

wolfSSL_free

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_free(WOLFSSL* ssl);

Description:
This function frees an allocated WOLFSSL object.

Return Values:
No return values are used for this function.

Parameters:

ssl - pointer to the SSL object, created with wolfSSL_new().

Example:

WOLFSSL* ssl = 0;
...
wolfSSL_free(ssl);

See Also:
wolfSSL_CTX_new
wolfSSL_new
wolfSSL_CTX_free

wolfSSL_CTX_new

Synopsis:
WOLFSSL_CTX* wolfSSL_CTX_new(WOLFSSL_METHOD* method);

Description:
This function creates a new SSL context, taking a desired SSL/TLS protocol method for
input.

Return Values:
If successful the call will return a pointer to the newly-created WOLFSSL_CTX. Upon
failure, NULL will be returned.

Copyright 2015 wolfSSL Inc. All rights reserved.

171

Parameters:

method - pointer to the desired WOLFSSL_METHOD to use for the SSL context. This
is created using one of the wolfSSLvXX_XXXX_method() functions to specify
SSL/TLS/DTLS protocol level.

Example:

WOLFSSL_CTX* ctx = 0;
WOLFSSL_METHOD* method = 0;

method = wolfSSLv3_client_method();
if (method == NULL) {
 // unable to get method
}

ctx = wolfSSL_CTX_new(method);
if (ctx == NULL) {
 // context creation failed
}

See Also:
wolfSSL_new

wolfSSL_CTX_free

Synopsis:
void wolfSSL_CTX_free(WOLFSSL_CTX* ctx);

Description:
This function frees an allocated WOLFSSL_CTX object. This function decrements the
CTX reference count and only frees the context when the reference count has reached
0.

Return Values:
No return values are used for this function.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

Copyright 2015 wolfSSL Inc. All rights reserved.

172

Example:

WOLFSSL_CTX* ctx = 0;
...
wolfSSL_CTX_free(ctx);

See Also:
wolfSSL_CTX_new
wolfSSL_new
wolfSSL_free

wolfSSL_SetVersion

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_SetVersion(WOLFSSL* ssl, int version);

Description:
This function sets the SSL/TLS protocol version for the specified SSL session
(WOLFSSL object) using the version as specified by version.

This will override the protocol setting for the SSL session (ssl) - originally defined and
set by the SSL context (wolfSSL_CTX_new()) method type.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG will be returned if the input SSL object is NULL or an incorrect
protocol version is given for version.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

version - SSL/TLS protocol version. Possible values include WOLFSSL_SSLV3,
WOLFSSL_TLSV1, WOLFSSL_TLSV1_1, WOLFSSL_TLSV1_2.

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

173

int ret = 0;
WOLFSSL* ssl;
...

ret = wolfSSL_SetVersion(ssl, WOLFSSL_TLSV1);
if (ret != SSL_SUCCESS) {

// failed to set SSL session protocol version
}

See Also:
wolfSSL_CTX_new

wolfSSL_use_old_poly

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_old_poly(WOLFSSL* ssl, int flag);

Description:
Since there is some differences between the first release and newer versions of
chacha-poly AEAD construction we have added an option to communicate with servers
/ clients using the older version. By default wolfSSL uses the new version.

Return Values:
If successful the call will return 0.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

flag - whether or not to use the older version of setting up the information for poly1305.
Passing a flag value of one indicates yes use the old poly AEAD, to switch back to using
the new version pass a flag value of 0.

Example:

int ret = 0;
WOLFSSL* ssl;
...

Copyright 2015 wolfSSL Inc. All rights reserved.

174

ret = wolfSSL_use_old_poly(ssl, 1);
if (ret != 0) {

// failed to set poly1305 AEAD version
}

wolfSSL_check_domain_name

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn);

Description:
wolfSSL by default checks the peer certificate for a valid date range and a verified
signature. Calling this function before wolfSSL_connect() or wolfSSL_accept() will add
a domain name check to the list of checks to perform. dn holds the domain name to
check against the peer certificate when it’s received.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_FAILURE will be returned if a memory error was encountered.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

dn - domain name to check against the peer certificate when received.

Example:

int ret = 0;
WOLFSSL* ssl;
char* domain = (char*) “www.yassl.com”;
...

ret = wolfSSL_check_domain_name(ssl, domain);
if (ret != SSL_SUCCESS) {

// failed to enable domain name check
}

Copyright 2015 wolfSSL Inc. All rights reserved.

175

See Also:
NA

wolfSSL_set_cipher_list

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_set_cipher_list(WOLFSSL* ssl, const char* list);

Description:
This function sets cipher suite list for a given WOLFSSL object (SSL session). The
ciphers in the list should be sorted in order of preference from highest to lowest. Each
call to wolfSSL_set_cipher_list() resets the cipher suite list for the specific SSL session
to the provided list each time the function is called.

The cipher suite list, list, is a null-terminated text string, and a colon-delimited list. For
example, one value for list may be

"DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256"

Valid cipher values are the full name values from the cipher_names[] array in
src/internal.c:

RC4-SHA
RC4-MD5
DES-CBC3-SHA
AES128-SHA
AES256-SHA
NULL-SHA
NULL-SHA256
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA
PSK-AES128-CBC-SHA256
PSK-AES128-CBC-SHA
PSK-AES256-CBC-SHA
PSK-NULL-SHA256
PSK-NULL-SHA

Copyright 2015 wolfSSL Inc. All rights reserved.

176

HC128-MD5
HC128-SHA
HC128-B2B256
AES128-B2B256
AES256-B2B256
RABBIT-SHA
NTRU-RC4-SHA
NTRU-DES-CBC3-SHA
NTRU-AES128-SHA
NTRU-AES256-SHA
AES128-CCM-8
AES256-CCM-8
ECDHE-ECDSA-AES128-CCM-8
ECDHE-ECDSA-AES256-CCM-8
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES256-SHA
ECDHE-RSA-RC4-SHA
ECDHE-RSA-DES-CBC3-SHA
ECDHE-ECDSA-RC4-SHA
ECDHE-ECDSA-DES-CBC3-SHA
AES128-SHA256
AES256-SHA256
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA256
ECDH-RSA-AES128-SHA
ECDH-RSA-AES256-SHA
ECDH-ECDSA-AES128-SHA
ECDH-ECDSA-AES256-SHA
ECDH-RSA-RC4-SHA
ECDH-RSA-DES-CBC3-SHA
ECDH-ECDSA-RC4-SHA
ECDH-ECDSA-DES-CBC3-SHA
AES128-GCM-SHA256
AES256-GCM-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384

Copyright 2015 wolfSSL Inc. All rights reserved.

177

ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES256-GCM-SHA384
ECDH-ECDSA-AES128-GCM-SHA256
ECDH-ECDSA-AES256-GCM-SHA384
CAMELLIA128-SHA
DHE-RSA-CAMELLIA128-SHA
CAMELLIA256-SHA
DHE-RSA-CAMELLIA256-SHA
CAMELLIA128-SHA256
DHE-RSA-CAMELLIA128-SHA256
CAMELLIA256-SHA256
DHE-RSA-CAMELLIA256-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDH-RSA-AES256-SHA384
ECDH-ECDSA-AES256-SHA384

Return Values:

SSL_SUCCESS will be returned upon successful function completion, otherwise
SSL_FAILURE will be returned on failure.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

list - null-terminated text string and a colon-delimited list of cipher suites to use with the
specified SSL session.

Example:

int ret = 0;
WOLFSSL* ssl = 0;
...
ret = wolfSSL_set_cipher_list(ssl,
“DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256”);

Copyright 2015 wolfSSL Inc. All rights reserved.

178

if (ret != SSL_SUCCESS) {
 // failed to set cipher suite list
}

See Also:
wolfSSL_CTX_set_cipher_list
wolfSSL_new

wolfSSL_CTX_set_cipher_list

Synopsis:
int wolfSSL_CTX_set_cipher_list(WOLFSSL_CTX* ctx, const char* list);

Description:
This function sets cipher suite list for a given WOLFSSL_CTX. This cipher suite list
becomes the default list for any new SSL sessions (WOLFSSL) created using this
context. The ciphers in the list should be sorted in order of preference from highest to
lowest. Each call to wolfSSL_CTX_set_cipher_list() resets the cipher suite list for the
specific SSL context to the provided list each time the function is called.

The cipher suite list, list, is a null-terminated text string, and a colon-delimited list. For
example, one value for list may be

"DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256"

Valid cipher values are the full name values from the cipher_names[] array in
src/internal.c:

RC4-SHA
RC4-MD5
DES-CBC3-SHA
AES128-SHA
AES256-SHA
NULL-SHA
NULL-SHA256
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA
PSK-AES128-CBC-SHA256
PSK-AES128-CBC-SHA
PSK-AES256-CBC-SHA

Copyright 2015 wolfSSL Inc. All rights reserved.

179

PSK-NULL-SHA256
PSK-NULL-SHA
HC128-MD5
HC128-SHA
HC128-B2B256
AES128-B2B256
AES256-B2B256
RABBIT-SHA
NTRU-RC4-SHA
NTRU-DES-CBC3-SHA
NTRU-AES128-SHA
NTRU-AES256-SHA
AES128-CCM-8
AES256-CCM-8
ECDHE-ECDSA-AES128-CCM-8
ECDHE-ECDSA-AES256-CCM-8
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES256-SHA
ECDHE-RSA-RC4-SHA
ECDHE-RSA-DES-CBC3-SHA
ECDHE-ECDSA-RC4-SHA
ECDHE-ECDSA-DES-CBC3-SHA
AES128-SHA256
AES256-SHA256
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA256
ECDH-RSA-AES128-SHA
ECDH-RSA-AES256-SHA
ECDH-ECDSA-AES128-SHA
ECDH-ECDSA-AES256-SHA
ECDH-RSA-RC4-SHA
ECDH-RSA-DES-CBC3-SHA
ECDH-ECDSA-RC4-SHA
ECDH-ECDSA-DES-CBC3-SHA
AES128-GCM-SHA256
AES256-GCM-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384

Copyright 2015 wolfSSL Inc. All rights reserved.

180

ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES256-GCM-SHA384
ECDH-ECDSA-AES128-GCM-SHA256
ECDH-ECDSA-AES256-GCM-SHA384
CAMELLIA128-SHA
DHE-RSA-CAMELLIA128-SHA
CAMELLIA256-SHA
DHE-RSA-CAMELLIA256-SHA
CAMELLIA128-SHA256
DHE-RSA-CAMELLIA128-SHA256
CAMELLIA256-SHA256
DHE-RSA-CAMELLIA256-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDH-RSA-AES256-SHA384
ECDH-ECDSA-AES256-SHA384

Return Values:

SSL_SUCCESS will be returned upon successful function completion, otherwise
SSL_FAILURE will be returned on failure.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

list - null-terminated text string and a colon-delimited list of cipher suites to use with the
specified SSL context.

Example:

WOLFSSL_CTX* ctx = 0;

Copyright 2015 wolfSSL Inc. All rights reserved.

181

...
ret = wolfSSL_CTX_set_cipher_list(ctx,
“DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256”);
if (ret != SSL_SUCCESS) {
 // failed to set cipher suite list
}

See Also:
wolfSSL_set_cipher_list
wolfSSL_CTX_new

wolfSSL_set_compression

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_set_compression(WOLFSSL* ssl);

Description:
Turns on the ability to use compression for the SSL connection. Both sides must have
compression turned on otherwise compression will not be used. The zlib library
performs the actual data compression. To compile into the library use --with-libz for the
configure system and define HAVE_LIBZ otherwise.

Keep in mind that while compressing data before sending decreases the actual size of
the messages being sent and received, the amount of data saved by compression
usually takes longer in time to analyze than it does to send it raw on all but the slowest
of networks.

Return Values:
If successful the call will return SSL_SUCCESS.

NOT_COMPILED_IN will be returned if compression support wasn’t built into the library.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

182

int ret = 0;
WOLFSSL* ssl = 0;
...
ret = wolfSSL_set_compression(ssl);
if (ret == SSL_SUCCESS) {
 // successfully enabled compression for SSL session
}

See Also:
NA

wolfSSL_set_fd

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_set_fd(WOLFSSL* ssl, int fd);

Description:
This function assigns a file descriptor (fd) as the input/output facility for the SSL
connection. Typically this will be a socket file descriptor.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise, SSL_FAILURE will be
returned.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

fd - file descriptor to use with SSL/TLS connection.

Example:

int sockfd;
WOLFSSL* ssl = 0;
...

ret = wolfSSL_set_fd(ssl, sockfd);
if (ret != SSL_SUCCESS) {
 // failed to set SSL file descriptor

Copyright 2015 wolfSSL Inc. All rights reserved.

183

}

See Also:
wolfSSL_SetIOSend
wolfSSL_SetIORecv
wolfSSL_SetIOReadCtx
wolfSSL_SetIOWriteCtx

wolfSSL_set_group_messages

Synopsis:
int wolfSSL_set_group_messages(WOLFSSL* ssl);

Description:
This function turns on grouping of handshake messages where possible.

Return Values:

SSL_SUCCESS will be returned upon success.

BAD_FUNC_ARG will be returned if the input context is null.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

WOLFSSL* ssl = 0;
...
ret = wolfSSL_set_group_messages(ssl);
if (ret != SSL_SUCCESS) {
 // failed to set handshake message grouping
}

See Also:
wolfSSL_CTX_set_group_messages
wolfSSL_new

Copyright 2015 wolfSSL Inc. All rights reserved.

184

wolfSSL_CTX_set_group_messages

Synopsis:
int wolfSSL_CTX_set_group_messages(WOLFSSL_CTX* ctx);

Description:
This function turns on grouping of handshake messages where possible.

Return Values:

SSL_SUCCESS will be returned upon success.

BAD_FUNC_ARG will be returned if the input context is null.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

Example:

WOLFSSL_CTX* ctx = 0;
...
ret = wolfSSL_CTX_set_group_messages(ctx);
if (ret != SSL_SUCCESS) {
 // failed to set handshake message grouping
}

See Also:
wolfSSL_set_group_messages
wolfSSL_CTX_new

wolfSSL_set_session

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_set_session(WOLFSSL* ssl, WOLFSSL_SESSION* session);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

185

This function sets the session to be used when the SSL object, ssl, is used to establish
a SSL/TLS connection.

For session resumption, before calling wolfSSL_shutdown() with your session object, an
application should save the session ID from the object with a call to
wolfSSL_get_session(), which returns a pointer to the session. Later, the application
should create a new WOLFSSL object and assign the saved session with
wolfSSL_set_session(). At this point, the application may call wolfSSL_connect() and
wolfSSL will try to resume the session. The wolfSSL server code allows session
resumption by default.

Return Values:

SSL_SUCCESS will be returned upon successfully setting the session.

SSL_FAILURE will be returned on failure. This could be caused by the session cache
being disabled, or if the session has timed out.

Parameters:

ssl - pointer to the SSL object, created with wolfSSL_new().

session - pointer to the WOLFSSL_SESSION used to set the session for ssl.

Example:

int ret = 0;
WOLFSSL* ssl = 0;
WOLFSSL_SESSION* session;
...

ret = wolfSSL_get_session(ssl, session);
if (ret != SSL_SUCCESS) {
 // failed to set the SSL session
}
...

See Also:
wolfSSL_get_session

wolfSSL_CTX_set_session_cache_mode

Copyright 2015 wolfSSL Inc. All rights reserved.

186

Synopsis:
long wolfSSL_CTX_set_session_cache_mode(WOLFSSL_CTX* ctx, long mode);

Description:
This function enables or disables SSL session caching. Behavior depends on the value
used for mode. The following values for mode are available:

SSL_SESS_CACHE_OFF
 - disable session caching. Session caching is turned on by default.

SSL_SESS_CACHE_NO_AUTO_CLEAR

- Disable auto-flushing of the session cache. Auto-flushing is turned on by
default.

Return Values:

SSL_SUCCESS will be returned upon success.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

mode - modifier used to change behavior of the session cache.

Example:

WOLFSSL_CTX* ctx = 0;
...
ret = wolfSSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF);
if (ret != SSL_SUCCESS) {
 // failed to turn SSL session caching off
}

See Also:
wolfSSL_flush_sessions
wolfSSL_get_session
wolfSSL_set_session
wolfSSL_get_sessionID
wolfSSL_CTX_set_timeout

Copyright 2015 wolfSSL Inc. All rights reserved.

187

wolfSSL_set_timeout

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_set_timeout(WOLFSSL* ssl, unsigned int to);

Description:
This function sets the SSL session timeout value in seconds.

Return Values:

SSL_SUCCESS will be returned upon successfully setting the session.

BAD_FUNC_ARG will be returned if ssl is NULL.

Parameters:

ssl - pointer to the SSL object, created with wolfSSL_new().

to - value, in seconds, used to set the SSL session timeout.

Example:

int ret = 0;
WOLFSSL* ssl = 0;
...

ret = wolfSSL_set_timeout(ssl, 500);
if (ret != SSL_SUCCESS) {
 // failed to set session timeout value
}
...

See Also:
wolfSSL_get_session
wolfSSL_set_session

wolfSSL_CTX_set_timeout

Copyright 2015 wolfSSL Inc. All rights reserved.

188

Synopsis:
int wolfSSL_CTX_set_timeout(WOLFSSL_CTX* ctx, unsigned int to);

Description:
This function sets the timeout value for SSL sessions, in seconds, for the specified SSL
context.

Return Values:

SSL_SUCCESS will be returned upon success.

BAD_FUNC_ARG will be returned when the input context (ctx) is null.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

to - session timeout value in seconds

Example:

WOLFSSL_CTX* ctx = 0;
...
ret = wolfSSL_CTX_set_timeout(ctx, 500);
if (ret != SSL_SUCCESS) {
 // failed to set session timeout value
}

See Also:
wolfSSL_flush_sessions
wolfSSL_get_session
wolfSSL_set_session
wolfSSL_get_sessionID
wolfSSL_CTX_set_session_cache_mode

wolfSSL_set_using_nonblock

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

189

void wolfSSL_set_using_nonblock(WOLFSSL* ssl, int nonblock);

Description:
This function informs the WOLFSSL object that the underlying I/O is non-blocking.

After an application creates a WOLFSSL object, if it will be used with a non-blocking
socket, call wolfSSL_set_using_nonblock() on it. This lets the WOLFSSL object know
that receiving EWOULDBLOCK means that the recvfrom call would block rather than
that it timed out.

Return Values:

This function does not have a return value.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

nonblock - value used to set non-blocking flag on WOLFSSL object. Use 1 to specify
non-blocking, otherwise 0.

Example:

WOLFSSL* ssl = 0;
...

wolfSSL_set_using_nonblock(ssl, 1);

See Also:
wolfSSL_get_using_nonblock
wolfSSL_dtls_got_timeout
wolfSSL_dtls_get_current_timeout

wolfSSL_set_verify

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_set_verify(WOLFSSL* ssl, int mode, VerifyCallback vc);

Copyright 2015 wolfSSL Inc. All rights reserved.

190

typedef int (*VerifyCallback)(int, WOLFSSL_X509_STORE_CTX*);

Description:
This function sets the verification method for remote peers and also allows a verify
callback to be registered with the SSL session. The verify callback will be called only
when a verification failure has occurred. If no verify callback is desired, the NULL
pointer can be used for verify_callback.

The verification mode of peer certificates is a logically OR’d list of flags. The possible
flag values include:

SSL_VERIFY_NONE

Client mode: the client will not verify the certificate received from the server and
the handshake will continue as normal.

Server mode: the server will not send a certificate request to the client. As
such, client verification will not be enabled.

SSL_VERIFY_PEER

Client mode: the client will verify the certificate received from the server during
the handshake. This is turned on by default in wolfSSL, therefore, using this
option has no effect.

Server mode: the server will send a certificate request to the client and verify the
client certificate received.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT

Client mode: no effect when used on the client side.

Server mode: the verification will fail on the server side if the client fails to send
a certificate when requested to do so (when using SSL_VERIFY_PEER on the
SSL server).

Return Values:

This function has no return value.

Copyright 2015 wolfSSL Inc. All rights reserved.

191

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

mode - session timeout value in seconds

verify_callback - callback to be called when verification fails. If no callback is desired,
the NULL pointer can be used for verify_callback.

Example:

WOLFSSL* ssl = 0;
...

wolfSSL_set_verify(ssl, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
0);

See Also:
wolfSSL_CTX_set_verify

wolfSSL_CTX_set_verify

Synopsis:
void wolfSSL_CTX_set_verify(WOLFSSL_CTX* ctx, int mode,
 VerifyCallback vc);

typedef int (*VerifyCallback)(int, WOLFSSL_X509_STORE_CTX*);

Description:
This function sets the verification method for remote peers and also allows a verify
callback to be registered with the SSL context. The verify callback will be called only
when a verification failure has occurred. If no verify callback is desired, the NULL
pointer can be used for verify_callback.

The verification mode of peer certificates is a logically OR’d list of flags. The possible
flag values include:

SSL_VERIFY_NONE

Copyright 2015 wolfSSL Inc. All rights reserved.

192

Client mode: the client will not verify the certificate received from the server and
the handshake will continue as normal.

Server mode: the server will not send a certificate request to the client. As
such, client verification will not be enabled.

SSL_VERIFY_PEER

Client mode: the client will verify the certificate received from the server during
the handshake. This is turned on by default in wolfSSL, therefore, using this
option has no effect.

Server mode: the server will send a certificate request to the client and verify the
client certificate received.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT

Client mode: no effect when used on the client side.

Server mode: the verification will fail on the server side if the client fails to send
a certificate when requested to do so (when using SSL_VERIFY_PEER on the
SSL server).

Return Values:

This function has no return value.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

mode - session timeout value in seconds

verify_callback - callback to be called when verification fails. If no callback is desired,
the NULL pointer can be used for verify_callback.

Example:

WOLFSSL_CTX* ctx = 0;
...

Copyright 2015 wolfSSL Inc. All rights reserved.

193

wolfSSL_CTX_set_verify(ctx, SSL_VERIFY_PEER |
 SSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0);

See Also:
wolfSSL_set_verify

17.4 Callbacks

The functions in this section have to do with callbacks which the application is able to
set in relation to wolfSSL.

wolfSSL_SetIOReadCtx

Synopsis:
void wolfSSL_SetIOReadCtx(WOLFSSL* ssl, void *rctx);

Description:
This function registers a context for the SSL session’s receive callback function. By
default, wolfSSL sets the file descriptor passed to wolfSSL_set_fd() as the context when
wolfSSL is using the system’s TCP library. If you’ve registered your own receive
callback you may want to set a specific context for the session. For example, if you’re
using memory buffers the context may be a pointer to a structure describing where and
how to access the memory buffers.

Return Values:
No return values are used for this function.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

rctx - pointer to the context to be registered with the SSL session’s (ssl) receive
callback function.

Example:

int sockfd;

Copyright 2015 wolfSSL Inc. All rights reserved.

194

WOLFSSL* ssl = 0;
...
// Manually setting the socket fd as the receive CTX, for example
wolfSSL_SetIOReadCtx(ssl, &sockfd);
...

See Also:
wolfSSL_SetIORecv
wolfSSL_SetIOSend
wolfSSL_SetIOWriteCtx

wolfSSL_SetIOWriteCtx

Synopsis:
void wolfSSL_SetIOWriteCtx(WOLFSSL* ssl, void *wctx);

Description:
This function registers a context for the SSL session’s send callback function. By
default, wolfSSL sets the file descriptor passed to wolfSSL_set_fd() as the context when
wolfSSL is using the system’s TCP library. If you’ve registered your own send callback
you may want to set a specific context for the session. For example, if you’re using
memory buffers the context may be a pointer to a structure describing where and how to
access the memory buffers.

Return Values:
No return values are used for this function.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

wctx - pointer to the context to be registered with the SSL session’s (ssl) send callback
function.

Example:

int sockfd;
WOLFSSL* ssl = 0;
...
// Manually setting the socket fd as the send CTX, for example
wolfSSL_SetIOSendCtx(ssl, &sockfd);

Copyright 2015 wolfSSL Inc. All rights reserved.

195

...

See Also:
wolfSSL_SetIORecv
wolfSSL_SetIOSend
wolfSSL_SetIOReadCtx

wolfSSL_SetIOReadFlags

Synopsis:
void wolfSSL_SetIOReadFlags(WOLFSSL* ssl, int flags);

Description:
This function sets the flags for the receive callback to use for the given SSL session.
The receive callback could be either the default wolfSSL EmbedReceive callback, or a
custom callback specified by the user (see wolfSSL_SetIORecv). The default flag value
is set internally by wolfSSL to the value of 0.

The default wolfSSL receive callback uses the recv() function to receive data from the
socket. From the recv() man page:

“The flags argument to a recv() function is formed by or'ing one or more of the values:

MSG_OOB process out-of-band data
MSG_PEEK peek at incoming message
MSG_WAITALL wait for full request or error

The MSG_OOB flag requests receipt of out-of-band data that would not be received in
the normal data stream. Some protocols place expedited data at the head of the normal
data queue, and thus this flag cannot be used with such protocols. The MSG_PEEK
flag causes the receive operation to return data from the beginning of the receive queue
without removing that data from the queue. Thus, a subsequent receive call will return
the same data. The MSG_WAITALL flag requests that the operation block until the full
request is satisfied. However, the call may still return less data than requested if a
signal is caught, an error or disconnect occurs, or the next data to be received is of a
different type than that returned.”

Return Values:
No return values are used for this function.

Copyright 2015 wolfSSL Inc. All rights reserved.

196

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

flags - value of the I/O read flags for the specified SSL session (ssl).

Example:

WOLFSSL* ssl = 0;
...
// Manually setting recv flags to 0
wolfSSL_SetIOReadFlags(ssl, 0);
...

See Also:
wolfSSL_SetIORecv
wolfSSL_SetIOSend
wolfSSL_SetIOReadCtx

wolfSSL_SetIOWriteFlags

Synopsis:
void wolfSSL_SetIOWriteFlags(WOLFSSL* ssl, int flags);

Description:
This function sets the flags for the send callback to use for the given SSL session. The
send callback could be either the default wolfSSL EmbedSend callback, or a custom
callback specified by the user (see wolfSSL_SetIOSend). The default flag value is set
internally by wolfSSL to the value of 0.

The default wolfSSL send callback uses the send() function to send data from the
socket. From the send() man page:

“The flags parameter may include one or more of the following:

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_DONTROUTE 0x4 /* bypass routing, use direct interface */

Copyright 2015 wolfSSL Inc. All rights reserved.

197

The flag MSG_OOB is used to send ``out-of-band'' data on sockets that support this
notion (e.g. SOCK_STREAM); the underlying protocol must also support ``out-of-band''
data. MSG_DONTROUTE is usually used only by diagnostic or routing programs.”

Return Values:
No return values are used for this function.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

flags - value of the I/O send flags for the specified SSL session (ssl).

Example:

WOLFSSL* ssl = 0;
...
// Manually setting send flags to 0
wolfSSL_SetIOSendFlags(ssl, 0);
...

See Also:
wolfSSL_SetIORecv
wolfSSL_SetIOSend
wolfSSL_SetIOReadCtx

wolfSSL_SetIORecv

Synopsis:
void wolfSSL_SetIORecv(WOLFSSL_CTX* ctx, CallbackIORecv CBIORecv);

typedef int (*CallbackIORecv)(char *buf, int sz, void *ctx);

Description:
This function registers a receive callback for wolfSSL to get input data. By default,
wolfSSL uses EmbedReceive() as the callback which uses the system’s TCP recv()
function. The user can register a function to get input from memory, some other
network module, or from anywhere. Please see the EmbedReceive() function in
src/io.c as a guide for how the function should work and for error codes. In particular,

Copyright 2015 wolfSSL Inc. All rights reserved.

198

IO_ERR_WANT_READ should be returned for non blocking receive when no data is
ready.

Return Values:
No return values are used for this function.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

callback - function to be registered as the receive callback for the wolfSSL context, ctx.
The signature of this function must follow that as shown above in the Synopsis section.

Example:

WOLFSSL_CTX* ctx = 0;

// Receive callback prototype
int MyEmbedReceive(WOLFSSL *ssl, char *buf, int sz, void *ctx);

// Register the custom receive callback with wolfSSL
wolfSSL_SetIORecv(ctx, MyEmbedReceive);

int MyEmbedReceive(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
 // custom EmbedReceive function
}

See Also:
wolfSSL_SetIOSend
wolfSSL_SetIOReadCtx
wolfSSL_SetIOWriteCtx

wolfSSL_SetIOSend

Synopsis:
void wolfSSL_SetIOSend(WOLFSSL_CTX* ctx, CallbackIOSend CBIOSend);

typedef int (*CallbackIOSend)(char *buf, int sz, void *ctx);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

199

This function registers a send callback for wolfSSL to write output data. By default,
wolfSSL uses EmbedSend() as the callback which uses the system’s TCP send()
function. The user can register a function to send output to memory, some other
network module, or to anywhere. Please see the EmbedSend() function in src/io.c as a
guide for how the function should work and for error codes. In particular,
IO_ERR_WANT_WRITE should be returned for non blocking send when the action
cannot be taken yet.

Return Values:
No return values are used for this function.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

callback - function to be registered as the send callback for the wolfSSL context, ctx.
The signature of this function must follow that as shown above in the Synopsis section.

Example:

WOLFSSL_CTX* ctx = 0;

// Receive callback prototype
int MyEmbedSend(WOLFSSL *ssl, char *buf, int sz, void *ctx);

// Register the custom receive callback with wolfSSL
wolfSSL_SetIOSend(ctx, MyEmbedSend);

int MyEmbedSend(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
 // custom EmbedSend function
}

See Also:
wolfSSL_SetIORecv
wolfSSL_SetIOReadCtx
wolfSSL_SetIOWriteCtx

wolfSSL_CTX_set_TicketEncCb

Copyright 2015 wolfSSL Inc. All rights reserved.

200

Synopsis:
#include <wolfssl/ssl.h>

typedef int (*SessionTicketEncCb)(WOLFSSL*,
 unsigned char key_name[WOLFSSL_TICKET_NAME_SZ],
 unsigned char iv[WOLFSSL_TICKET_IV_SZ],
 unsigned char mac[WOLFSSL_TICKET_MAC_SZ],
 int enc, unsigned char* ticket, int inLen, int* outLen);

int wolfSSL_CTX_set_TicketEncCb(WOLFSSL_CTX* ctx, SessionTicketEncCb);

Description:
This function sets the session ticket key encrypt callback function for a server to support
session tickets as specified in RFC 5077.

Return Values:

SSL_SUCCESS will be returned upon successfully setting the session.

BAD_FUNC_ARG will be returned on failure. This is caused by passing invalid
arguments to the function.

Parameters:

ctx - pointer to the WOLFSSL_CTX object, created with wolfSSL_CTX_new().

cb - user callback function to encrypt/decrypt session tickets

Callback Parameters:

ssl - pointer to the WOLFSSL object, created with wolfSSL_new()

key_name - unique key name for this ticket context, should be randomly generated

iv - unique IV for this ticket, up to 128 bits, should be randomly generated

mac - up to 256 bit mac for this ticket

Copyright 2015 wolfSSL Inc. All rights reserved.

201

enc - if this encrypt parameter is true the user should fill in key_name, iv, mac, and
encrypt the ticket in-place of length inLen and set the resulting output length in *outLen.
Returning WOLFSSL_TICKET_RET_OK tells wolfSSL that the encryption was
successful. If this encrypt parameter is false, the user should perform a decrypt of the
ticket in-place of length inLen using key_name, iv, and mac. The resulting decrypt
length should be set in *outLen. Returning WOLFSSL_TICKET_RET_OK tells wolfSSL
to proceed using the decrypted ticket. Returning WOLFSSL_TICKET_RET_CREATE
tells wolfSSL to use the decrypted ticket but also to generate a new one to send to the
client, helpful if recently rolled keys and don’t want to force a full handshake. Returning
WOLFSSL_TICKET_RET_REJECT tells wolfSSL to reject this ticket, perform a full
handshake, and create a new standard session ID for normal session resumption.
Returning WOLFSSL_TICKET_RET_FATAL tells wolfSSL to end the connection
attempt with a fatal error.

ticket - the input/output buffer for the encrypted ticket. See the enc parameter

inLen - the input length of the ticket parameter

outLen - the resulting output length of the ticket parameter

Example:

See wolfssl/test.h myTicketEncCb() used by the example server and example
echoserver.

See Also:
wolfSSL_CTX_set_TicketHint

wolfSSL_CTX_set_TicketHint

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint);

Description:
This function sets the session ticket hint relayed to the client. For server side use.

Return Values:

Copyright 2015 wolfSSL Inc. All rights reserved.

202

SSL_SUCCESS will be returned upon successfully setting the session.

BAD_FUNC_ARG will be returned on failure. This is caused by passing invalid
arguments to the function.

Parameters:

ctx - pointer to the WOLFSSL_CTX object, created with wolfSSL_CTX_new().

hint - number of seconds the ticket might be valid for. Hint to client.

See Also:
wolfSSL_CTX_set_TicketEncCb()

wolfSSL_CTX_SetCACb

Synopsis:
void wolfSSL_CTX_SetCACb(WOLFSSL_CTX* ctx, CallbackCACache cb);

typedef void (*CallbackCACache)(unsigned char* der, int sz, int type);

Description:
This function registers a callback with the SSL context (WOLFSSL_CTX) to be called
when a new CA certificate is loaded into wolfSSL. The callback is given a buffer with
the DER-encoded certificate.

Return Values:
This function has no return value.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

callback - function to be registered as the CA callback for the wolfSSL context, ctx. The
signature of this function must follow that as shown above in the Synopsis section.

Copyright 2015 wolfSSL Inc. All rights reserved.

203

Example:

WOLFSSL_CTX* ctx = 0;

// CA callback prototype
int MyCACallback(unsigned char *der, int sz, int type);

// Register the custom CA callback with the SSL context
wolfSSL_CTX_SetCACb(ctx, MyCACallback);

int MyCACallback(unsigned char* der, int sz, int type)
{
 /* custom CA callback function, DER-encoded cert
 located in “der” of size “sz” with type “type” */
}

See Also:
wolfSSL_CTX_load_verify_locations

wolfSSL_connect_ex

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_connect_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,

 TimeoutCallBack toCb,
 Timeval timeout);

typedef int (*HandShakeCallBack)(HandShakeInfo*);
typedef int (*TimeoutCallBack)(TimeoutInfo*);

typedef struct timeval Timeval;

typedef struct handShakeInfo_st {

char cipherName[MAX_CIPHERNAME_SZ + 1]; /* negotiated
name */

char
packetNames[MAX_PACKETS_HANDSHAKE][MAX_PACKETNAME_SZ+1];

 /* SSL packet
names */

Copyright 2015 wolfSSL Inc. All rights reserved.

204

int numberPackets; /* actual # of
packets */

int negotiationError; /* cipher/parameter
err */
} HandShakeInfo;

typedef struct timeoutInfo_st {

char timeoutName[MAX_TIMEOUT_NAME_SZ +1]; /*timeout
Name*/

int flags; /* for future
use*/

int numberPackets; /* actual # of
packets */

PacketInfo packets[MAX_PACKETS_HANDSHAKE]; /* list of
packets */

Timeval timeoutValue; /* timer that caused
it */
} TimeoutInfo;

typedef struct packetInfo_st {
 char packetName[MAX_PACKETNAME_SZ + 1]; /* SSL name
*/
 Timeval timestamp; /* when it occured
 */
 unsigned char value[MAX_VALUE_SZ]; /* if fits, it's here
*/
 unsigned char* bufferValue; /* otherwise here (non 0)
*/
 int valueSz; /* sz of value or buffer
*/
} PacketInfo;

Description:
wolfSSL_connect_ex() is an extension that allows a HandShake Callback to be set.
This can be useful in embedded systems for debugging support when a debugger isn’t
available and sniffing is impractical. The HandShake Callback will be called whether or
not a handshake error occurred. No dynamic memory is used since the maximum

Copyright 2015 wolfSSL Inc. All rights reserved.

205

number of SSL packets is known. Packet names can be accessed through
packetNames[].

The connect extension also allows a Timeout Callback to be set along with a timeout
value. This is useful if the user doesn’t want to wait for the TCP stack to timeout.

This extension can be called with either, both, or neither callbacks.

Return Values:
If successful the call will return SSL_SUCCESS.

GETTIME_ERROR will be returned if gettimeofday() encountered an error.

SETITIMER_ERROR will be returned if setitimer() encountered an error.

SIGACT_ERROR will be returned if sigaction() encountered an error.

SSL_FATAL_ERROR will be returned if the underlying SSL_connect() call encountered
an error.

See Also:
wolfSSL_accept_ex

wolfSSL_accept_ex

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_accept_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,

 TimeoutCallBack toCb,
 Timeval timeout);

typedef int (*HandShakeCallBack)(HandShakeInfo*);
typedef int (*TimeoutCallBack)(TimeoutInfo*);

typedef struct timeval Timeval;

typedef struct handShakeInfo_st {

Copyright 2015 wolfSSL Inc. All rights reserved.

206

char cipherName[MAX_CIPHERNAME_SZ + 1]; /* negotiated
name */

char
packetNames[MAX_PACKETS_HANDSHAKE][MAX_PACKETNAME_SZ+1];

 /* SSL packet
names */

int numberPackets; /* actual # of
packets */

int negotiationError; /* cipher/parameter
err */
} HandShakeInfo;

typedef struct timeoutInfo_st {

char timeoutName[MAX_TIMEOUT_NAME_SZ +1]; /*timeout
Name*/

int flags; /* for future
use*/

int numberPackets; /* actual # of
packets */

PacketInfo packets[MAX_PACKETS_HANDSHAKE]; /* list of
packets */

Timeval timeoutValue; /* timer that caused
it */
} TimeoutInfo;

typedef struct packetInfo_st {
 char packetName[MAX_PACKETNAME_SZ + 1]; /* SSL name
*/
 Timeval timestamp; /* when it occured
 */
 unsigned char value[MAX_VALUE_SZ]; /* if fits, it's here
*/
 unsigned char* bufferValue; /* otherwise here (non 0)
*/
 int valueSz; /* sz of value or buffer
*/
} PacketInfo;

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

207

wolfSSL_accept_ex() is an extension that allows a HandShake Callback to be set. This
can be useful in embedded systems for debugging support when a debugger isn’t
available and sniffing is impractical. The HandShake Callback will be called whether or
not a handshake error occurred. No dynamic memory is used since the maximum
number of SSL packets is known. Packet names can be accessed through
packetNames[].

The connect extension also allows a Timeout Callback to be set along with a timeout
value. This is useful if the user doesn’t want to wait for the TCP stack to timeout.

This extension can be called with either, both, or neither callbacks.

Return Values:
If successful the call will return SSL_SUCCESS.

GETTIME_ERROR will be returned if gettimeofday() encountered an error.

SETITIMER_ERROR will be returned if setitimer() encountered an error.

SIGACT_ERROR will be returned if sigaction() encountered an error.

SSL_FATAL_ERROR will be returned if the underlying SSL_accept() call encountered
an error.

See Also:
wolfSSL_connect_ex

wolfSSL_SetLoggingCb

Synopsis:
#include <wolfssl/wolfcrypt/logging.h>

int wolfSSL_SetLoggingCb(wolfSSL_Logging_cb log_function);

typedef void (*wolfSSL_Logging_cb)(const int logLevel, const char *const logMessage);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

208

This function registers a logging callback that will be used to handle the wolfSSL log
message. By default, if the system supports it fprintf() to stderr is used but by using
this function anything can be done by the user.

Return Values:
If successful this function will return 0.

BAD_FUNC_ARG is the error that will be returned if a function pointer is not provided.

Parameters:

log_function - function to register as a logging callback. Function signature must
follow the above prototype.

Example:

int ret = 0;

// Logging callback prototype
void MyLoggingCallback(const int logLevel, const char* const logMessage);

// Register the custom logging callback with wolfSSL
ret = wolfSSL_SetLoggingCb(myLogCallback);
if (ret != 0) {
 // failed to set logging callback
}

void MyLoggingCallback(const int logLevel, const char* const logMessage)
{
 // custom logging function
}

See Also:
wolfSSL_Debugging_ON
wolfSSL_Debugging_OFF

wolfSSL_SetTlsHmacInner

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

209

int wolfSSL_SetTlsHmacInner(WOLFSSL* ssl, byte* inner, word32 sz,
 int content, int verify);

Description:
Allows caller to set the Hmac Inner vector for message sending/receiving. The result is
written to inner which should be at least wolfSSL_GetHmacSize() bytes. The size of
the message is specified by sz, content is the type of message, and verify specifies
whether this is a verification of a peer message. Valid for cipher types excluding
WOLFSSL_AEAD_TYPE.

Return Values:
If successful the call will return 1.

BAD_FUNC_ARG will be returned for an error state.

See Also:
wolfSSL_GetBulkCipher()
wolfSSL_GetHmacType()

wolfSSL_CTX_SetMacEncryptCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetMacEncryptCb(WOLFSSL_CTX*, CallbackMacEncrypt);

typedef int (*CallbackMacEncrypt)(WOLFSSL* ssl, unsigned char* macOut,
 const unsigned char* macIn, unsigned int macInSz, int macContent,
 int macVerify, unsigned char* encOut, const unsigned char* encIn,
 unsigned int encSz, void* ctx);

Description:
Allows caller to set the Atomic User Record Processing Mac/Encrypt Callback. The
callback should return 0 for success or < 0 for an error. The ssl and ctx pointers are
available for the users convenience. macOut is the output buffer where the result of the
mac should be stored. macIn is the mac input buffer and macInSz notes the size of the
buffer. macContent and macVerify are needed for wolfSSL_SetTlsHmacInner() and
be passed along as is. encOut is the output buffer where the result on the encryption

Copyright 2015 wolfSSL Inc. All rights reserved.

210

should be stored. encIn is the input buffer to encrypt while encSz is the size of the
input. An example callback can be found wolfssl/test.h myMacEncryptCb().

Return Values:
NA

See Also:
wolfSSL_SetMacEncryptCtx()
wolfSSL_GetMacEncryptCtx()

wolfSSL_SetMacEncryptCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetMacEncryptCtx(WOLFSSL*, void* ctx);

Description:
Allows caller to set the Atomic User Record Processing Mac/Encrypt Callback Context
to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetMacEncryptCb()
wolfSSL_GetMacEncryptCtx()

wolfSSL_GetMacEncryptCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetMacEncryptCtx(WOLFSSL*);

Description:
Allows caller to retrieve the Atomic User Record Processing Mac/Encrypt Callback
Context previously stored with wolfSSL_SetMacEncryptCtx().

Copyright 2015 wolfSSL Inc. All rights reserved.

211

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetMacEncryptCb()
wolfSSL_SetMacEncryptCtx()

wolfSSL_CTX_SetDecryptVerifyCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetDecryptVerifyCb(WOLFSSL_CTX*, CallbackDecryptVerify);

typedef int (*CallbackDecryptVerify)(WOLFSSL* ssl,
 unsigned char* decOut, const unsigned char* decIn,
 unsigned int decSz, int content, int verify, unsigned int* padSz,
 void* ctx);

Description:
Allows caller to set the Atomic User Record Processing Decrypt/Verify Callback. The
callback should return 0 for success or < 0 for an error. The ssl and ctx pointers are
available for the users convenience. decOut is the output buffer where the result of the
decryption should be stored. decIn is the encrypted input buffer and decInSz notes the
size of the buffer. content and verify are needed for wolfSSL_SetTlsHmacInner() and
be passed along as is. padSz is an output variable that should be set with the total
value of the padding. That is, the mac size plus any padding and pad bytes. An
example callback can be found wolfssl/test.h myDecryptVerifyCb().

Return Values:
NA

See Also:
wolfSSL_SetMacEncryptCtx()
wolfSSL_GetMacEncryptCtx()

Copyright 2015 wolfSSL Inc. All rights reserved.

212

wolfSSL_SetDecryptVerifyCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetDecryptVerifyCtx(WOLFSSL*, void* ctx);

Description:
Allows caller to set the Atomic User Record Processing Decrypt/Verify Callback Context
to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetDecryptVerifyCb()
wolfSSL_GetDecryptVerifyCtx()

wolfSSL_GetDecryptVerifyCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetDecryptVerifyCtx(WOLFSSL*);

Description:
Allows caller to retrieve the Atomic User Record Processing Decrypt/Verify Callback
Context previously stored with wolfSSL_SetDecryptVerifyCtx().

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetDecryptVerifyCb()
wolfSSL_SetDecryptVerifyCtx()

Copyright 2015 wolfSSL Inc. All rights reserved.

213

wolfSSL_CTX_SetEccSignCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetEccSignCb(WOLFSSL_CTX*, CallbackEccSign);

typedef int (*CallbackEccSign)(WOLFSSL* ssl,
 const unsigned char* in, unsigned int inSz,
 unsigned char* out, unsigned int* outSz,
 const unsigned char* keyDer, unsigned int keySz,
 void* ctx);

Description:
Allows caller to set the Public Key Callback for ECC Signing. The callback should
return 0 for success or < 0 for an error. The ssl and ctx pointers are available for the
users convenience. in is the input buffer to sign while inSz denotes the length of the
input. out is the output buffer where the result of the signature should be stored. outSz
is an input/output variable that specifies the size of the output buffer upon invocation
and the actual size of the signature should be stored there before returning. keyDer is
the ECC Private key in ASN1 format and keySz is the length of the key in bytes. An
example callback can be found wolfssl/test.h myEccSign().

Return Values:
NA

See Also:
wolfSSL_SetEccSignCtx()
wolfSSL_GetEccSignCtx()

wolfSSL_SetEccSignCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetEccSignCtx(WOLFSSL*, void* ctx);

Copyright 2015 wolfSSL Inc. All rights reserved.

214

Description:
Allows caller to set the Public Key Ecc Signing Callback Context to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetEccSignCb()
wolfSSL_GetEccSignCtx()

wolfSSL_GetEccSignCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetEccSignCtx(WOLFSSL*);

Description:
Allows caller to retrieve the Public Key Ecc Signing Callback Context previously stored
with wolfSSL_SetEccSignCtx().

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetEccSignCb()
wolfSSL_SetEccSignCtx()

wolfSSL_CTX_SetEccVerifyCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetEccVerifyCb(WOLFSSL_CTX*, CallbackEccVerify);

typedef int (*CallbackEccVerify)(WOLFSSL* ssl,

Copyright 2015 wolfSSL Inc. All rights reserved.

215

 const unsigned char* sig, unsigned int sigSz,
 const unsigned char* hash, unsigned int hashSz,
 const unsigned char* keyDer, unsigned int keySz,
 int* result, void* ctx);

Description:
Allows caller to set the Public Key Callback for ECC Verification. The callback should
return 0 for success or < 0 for an error. The ssl and ctx pointers are available for the
users convenience. sig is the signature to verify and sigSz denotes the length of the
signature. hash is an input buffer containing the digest of the message and hashSz
denotes the length in bytes of the hash. result is an output variable where the result of
the verification should be stored, 1 for success and 0 for failure. keyDer is the ECC
Private key in ASN1 format and keySz is the length of the key in bytes. An example
callback can be found wolfssl/test.h myEccVerify().

Return Values:
NA

See Also:
wolfSSL_SetEccVerifyCtx()
wolfSSL_GetEccVerifyCtx()

wolfSSL_SetEccVerifyCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetEccVerifyCtx(WOLFSSL*, void* ctx);

Description:
Allows caller to set the Public Key Ecc Verification Callback Context to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetEccVerifyCb()
wolfSSL_GetEccVerifyCtx()

Copyright 2015 wolfSSL Inc. All rights reserved.

216

wolfSSL_GetEccVerifyCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetEccVerifyCtx(WOLFSSL*);

Description:
Allows caller to retrieve the Public Key Ecc Verification Callback Context previously
stored with wolfSSL_SetEccVerifyCtx().

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetEccVerifyCb()
wolfSSL_SetEccVerifyCtx()

wolfSSL_CTX_SetRsaSignCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetEccRsaCb(WOLFSSL_CTX*, CallbackRsaSign);

typedef int (*CallbackRsaSign)(WOLFSSL* ssl,
 const unsigned char* in, unsigned int inSz,
 unsigned char* out, unsigned int* outSz,
 const unsigned char* keyDer, unsigned int keySz,
 void* ctx);

Description:
Allows caller to set the Public Key Callback for RSA Signing. The callback should
return 0 for success or < 0 for an error. The ssl and ctx pointers are available for the
users convenience. in is the input buffer to sign while inSz denotes the length of the
input. out is the output buffer where the result of the signature should be stored. outSz

Copyright 2015 wolfSSL Inc. All rights reserved.

217

is an input/output variable that specifies the size of the output buffer upon invocation
and the actual size of the signature should be stored there before returning. keyDer is
the RSA Private key in ASN1 format and keySz is the length of the key in bytes. An
example callback can be found wolfssl/test.h myRsaSign().

Return Values:
NA

See Also:
wolfSSL_SetRsaSignCtx()
wolfSSL_GetRsaSignCtx()

wolfSSL_SetRsaSignCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetRsaSignCtx(WOLFSSL*, void* ctx);

Description:
Allows caller to set the Public Key RSA Signing Callback Context to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetRsaSignCb()
wolfSSL_GetRsaSignCtx()

wolfSSL_GetRsaSignCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetRsaSignCtx(WOLFSSL*);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

218

Allows caller to retrieve the Public Key RSA Signing Callback Context previously stored
with wolfSSL_SetRsaSignCtx().

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetRsaSignCb()
wolfSSL_SetRsaSignCtx()

wolfSSL_CTX_SetRsaVerifyCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetRsaVerifyCb(WOLFSSL_CTX*, CallbackRsaVerify);

typedef int (*CallbackRsaVerify)(WOLFSSL* ssl,
 unsigned char* sig, unsigned int sigSz,
 unsigned char** out,
 const unsigned char* keyDer, unsigned int keySz,
 void* ctx);

Description:
Allows caller to set the Public Key Callback for RSA Verification. The callback should
return the number of plaintext bytes for success or < 0 for an error. The ssl and ctx
pointers are available for the users convenience. sig is the signature to verify and
sigSz denotes the length of the signature. out should be set to the beginning of the
verification buffer after the decryption process and any padding. keyDer is the RSA
Public key in ASN1 format and keySz is the length of the key in bytes. An example
callback can be found wolfssl/test.h myRsaVerify().

Return Values:
NA

See Also:
wolfSSL_SetRsaVerifyCtx()

Copyright 2015 wolfSSL Inc. All rights reserved.

219

wolfSSL_GetRsaVerifyCtx()

wolfSSL_SetRsaVerifyCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetRsaVerifyCtx(WOLFSSL*, void* ctx);

Description:
Allows caller to set the Public Key RSA Verification Callback Context to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetRsaVerifyCb()
wolfSSL_GetRsaVerifyCtx()

wolfSSL_GetRsaVerifyCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetRsaVerifyCtx(WOLFSSL*);

Description:
Allows caller to retrieve the Public Key RSA Verification Callback Context previously
stored with wolfSSL_SetRsaVerifyCtx().

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetRsaVerifyCb()
wolfSSL_SetRsaVerifyCtx()

Copyright 2015 wolfSSL Inc. All rights reserved.

220

wolfSSL_CTX_SetRsaEncCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetRsaEncCb(WOLFSSL_CTX*, CallbackRsaEnc);

typedef int (*CallbackRsaEnc)(WOLFSSL* ssl,
 const unsigned char* in, unsigned int inSz,
 unsigned char* out, unsigned int* outSz,
 const unsigned char* keyDer, unsigned int keySz,
 void* ctx);

Description:
Allows caller to set the Public Key Callback for RSA Public Encrypt. The callback
should return 0 for success or < 0 for an error. The ssl and ctx pointers are available
for the users convenience. in is the input buffer to encrypt while inSz denotes the
length of the input. out is the output buffer where the result of the encryption should be
stored. outSz is an input/output variable that specifies the size of the output buffer
upon invocation and the actual size of the encryption should be stored there before
returning. keyDer is the RSA Public key in ASN1 format and keySz is the length of the
key in bytes. An example callback can be found wolfssl/test.h myRsaEnc().

Return Values:
NA

See Also:
wolfSSL_SetRsaEncCtx()
wolfSSL_GetRsaEncCtx()

wolfSSL_SetRsaEncCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetRsaEncCtx(WOLFSSL*, void* ctx);

Copyright 2015 wolfSSL Inc. All rights reserved.

221

Description:
Allows caller to set the Public Key RSA Public Encrypt Callback Context to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetRsaEncCb()
wolfSSL_GetRsaEncCtx()

wolfSSL_GetRsaEncCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetRsaEncCtx(WOLFSSL*);

Description:
Allows caller to retrieve the Public Key RSA Public Encrypt Callback Context previously
stored with wolfSSL_SetRsaEncCtx().

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetRsaEncCb()
wolfSSL_SetRsaEncCtx()

wolfSSL_CTX_SetRsaDecCb

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SetRsaDecCb(WOLFSSL_CTX*, CallbackRsaDec);

typedef int (*CallbackRsaDec)(WOLFSSL* ssl,

Copyright 2015 wolfSSL Inc. All rights reserved.

222

 unsigned char* in, unsigned int inSz,
 unsigned char** out,
 const unsigned char* keyDer, unsigned int keySz,
 void* ctx);

Description:
Allows caller to set the Public Key Callback for RSA Private Decrypt. The callback
should return the number of plaintext bytes for success or < 0 for an error. The ssl and
ctx pointers are available for the users convenience. in is the input buffer to decrypt
and inSz denotes the length of the input. out should be set to the beginning of the
decryption buffer after the decryption process and any padding. keyDer is the RSA
Private key in ASN1 format and keySz is the length of the key in bytes. An example
callback can be found wolfssl/test.h myRsaDec().

Return Values:
NA

See Also:
wolfSSL_SetRsaDecCtx()
wolfSSL_GetRsaDecCtx()

wolfSSL_SetRsaDecCtx

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SetRsaDecCtx(WOLFSSL*, void* ctx);

Description:
Allows caller to set the Public Key RSA Private Decrypt Callback Context to ctx.

Return Values:
NA

See Also:
wolfSSL_CTX_SetRsaDecCb()
wolfSSL_GetRsaDecCtx()

Copyright 2015 wolfSSL Inc. All rights reserved.

223

wolfSSL_GetRsaDecCtx

Synopsis:
#include <wolfssl/ssl.h>

void* wolfSSL_GetRsaDecCtx(WOLFSSL*);

Description:
Allows caller to retrieve the Public Key RSA Private Decrypt Callback Context
previously stored with wolfSSL_SetRsaDecCtx().

Return Values:
If successful the call will return a valid pointer to the context.

NULL will be returned for a blank context.

See Also:
wolfSSL_CTX_SetRsaDecCb()
wolfSSL_SetRsaDecCtx()

17.5 Error Handling and Debugging

The functions in this section have to do with printing and handling errors as well as
enabling and disabling debugging in wolfSSL.

wolfSSL_ERR_error_string

Synopsis:
#include <wolfssl/ssl.h>

char* wolfSSL_ERR_error_string(unsigned long errNumber, char* data);

Description:
This function converts an error code returned by wolfSSL_get_error() into a more
human-readable error string. errNumber is the error code returned by

Copyright 2015 wolfSSL Inc. All rights reserved.

224

wolfSSL_get_error() and data is the storage buffer which the error string will be placed
in.

The maximum length of data is 80 characters by default, as defined by
MAX_ERROR_SZ is wolfssl/wolfcrypt/error.h.

Return Values:
On successful completion, this function returns the same string as is returned in data.
Upon failure, this function returns a string with the appropriate failure reason.

Parameters:

errNumber - error code returned by wolfSSL_get_error().

data - output buffer containing human-readable error string matching errNumber.

Example:

int err = 0;
WOLFSSL* ssl;
char buffer[80];
...
err = wolfSSL_get_error(ssl, 0);
wolfSSL_ERR_error_string(err, buffer);
printf(“err = %d, %s\n”, err, buffer);

See Also:
wolfSSL_get_error
wolfSSL_ERR_error_string_n
wolfSSL_ERR_print_errors_fp
wolfSSL_load_error_strings

wolfSSL_ERR_error_string_n

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

225

This function is a version of wolfSSL_ERR_error_string() where len specifies the
maximum number of characters that may be written to buf. Like
wolfSSL_ERR_error_string(), this function converts an error code returned from
wolfSSL_get_error() into a more human-readable error string. The human-readable
string is placed in buf.

Return Values:
This function has no return value.

Parameters:

e - error code returned by wolfSSL_get_error().

buff - output buffer containing human-readable error string matching e.

len - maximum length in characters which may be written to buf.

Example:

int err = 0;
WOLFSSL* ssl;
char buffer[80];
...
err = wolfSSL_get_error(ssl, 0);
wolfSSL_ERR_error_string_n(err, buffer, 80);
printf(“err = %d, %s\n”, err, buffer);

See Also:
wolfSSL_get_error
wolfSSL_ERR_error_string
wolfSSL_ERR_print_errors_fp
wolfSSL_load_error_strings

wolfSSL_ERR_print_errors_fp

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_ERR_print_errors_fp(FILE* fp, int err);

Copyright 2015 wolfSSL Inc. All rights reserved.

226

Description:
This function converts an error code returned by wolfSSL_get_error() into a more
human-readable error string and prints that string to the output file - fp. err is the error
code returned by wolfSSL_get_error() and fp is the file which the error string will be
placed in.

Return Values:
This function has no return value.

Parameters:

fp - output file for human-readable error string to be written to.

e - error code returned by wolfSSL_get_error().

Example:

int err = 0;
WOLFSSL* ssl;
FILE* fp = ...
...
err = wolfSSL_get_error(ssl, 0);
wolfSSL_ERR_print_errors_fp(fp, err);

See Also:
wolfSSL_get_error
wolfSSL_ERR_error_string
wolfSSL_ERR_error_string_n
wolfSSL_load_error_strings

wolfSSL_get_error

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_get_error(WOLFSSL* ssl, int ret);

Description:
This function returns a unique error code describing why the previous API function call
(wolfSSL_connect, wolfSSL_accept, wolfSSL_read, wolfSSL_write, etc.) resulted in an

Copyright 2015 wolfSSL Inc. All rights reserved.

227

error return code (SSL_FAILURE). The return value of the previous function is passed
to wolfSSL_get_error through ret.

After wolfSSL_get_error is called and returns the unique error code,
wolfSSL_ERR_error_string() may be called to get a human-readable error string. See
wolfSSL_ERR_error_string() for more information.

Return Values:
On successful completion, this function will return the unique error code describing why
the previous API function failed.

SSL_ERROR_NONE will be returned if ret > 0.

Parameters:

ssl - pointer to the SSL object, created with wolfSSL_new().

ret - return value of the previous function that resulted in an error return code.

Example:

int err = 0;
WOLFSSL* ssl;
char buffer[80];
...
err = wolfSSL_get_error(ssl, 0);
wolfSSL_ERR_error_string(err, buffer);
printf(“err = %d, %s\n”, err, buffer);

See Also:
wolfSSL_ERR_error_string
wolfSSL_ERR_error_string_n
wolfSSL_ERR_print_errors_fp
wolfSSL_load_error_strings

wolfSSL_load_error_strings

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

228

void wolfSSL_load_error_strings(void);

Description:
This function is for OpenSSL compatibility (SSL_load_error_string) only and takes no
action.

Return Values:
This function has no return value.

Parameters:

This function takes no parameters.

Example:

wolfSSL_load_error_strings();

See Also:
wolfSSL_get_error
wolfSSL_ERR_error_string
wolfSSL_ERR_error_string_n
wolfSSL_ERR_print_errors_fp
wolfSSL_load_error_strings

wolfSSL_want_read

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_want_read(WOLFSSL* ssl)

Description:
This function is similar to calling wolfSSL_get_error() and getting
SSL_ERROR_WANT_READ in return. If the underlying error state is
SSL_ERROR_WANT_READ, this function will return 1, otherwise, 0.

Return Values:

Copyright 2015 wolfSSL Inc. All rights reserved.

229

1 - wolfSSL_get_error() would return SSL_ERROR_WANT_READ, the underlying I/O
has data available for reading.

0 - There is no SSL_ERROR_WANT_READ error state.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

int ret;
WOLFSSL* ssl = 0;
...

ret = wolfSSL_want_read(ssl);
if (ret == 1) {
 // underlying I/O has data available for reading (SSL_ERROR_WANT_READ)
}

See Also:
wolfSSL_want_write
wolfSSL_get_error

wolfSSL_want_write

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_want_write(WOLFSSL* ssl)

Description:
This function is similar to calling wolfSSL_get_error() and getting
SSL_ERROR_WANT_WRITE in return. If the underlying error state is
SSL_ERROR_WANT_WRITE, this function will return 1, otherwise, 0.

Return Values:

Copyright 2015 wolfSSL Inc. All rights reserved.

230

1 - wolfSSL_get_error() would return SSL_ERROR_WANT_WRITE, the underlying I/O
needs data to be written in order for progress to be made in the underlying SSL
connection.

0 - There is no SSL_ERROR_WANT_WRITE error state.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

int ret;
WOLFSSL* ssl = 0;
...

ret = wolfSSL_want_write(ssl);
if (ret == 1) {
 // underlying I/O needs data to be written (SSL_ERROR_WANT_WRITE)
}

See Also:
wolfSSL_want_read
wolfSSL_get_error

wolfSSL_Debugging_ON

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_Debugging_ON(void);

Description:
If logging has been enabled at build time this function turns on logging at runtime. To
enable logging at build time use --enable-debug or define DEBUG_WOLFSSL

Return Values:
If successful this function will return 0.

Copyright 2015 wolfSSL Inc. All rights reserved.

231

NOT_COMPILED_IN is the error that will be returned if logging isn’t enabled for this
build.

Parameters:

This function has no parameters.

Example:

wolfSSL_Debugging_ON();

See Also:
wolfSSL_Debugging_OFF
wolfSSL_SetLoggingCb

wolfSSL_Debugging_OFF

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_Debugging_OFF(void);

Description:
This function turns off runtime logging messages. If they’re already off, no action is
taken.

Return Values:
No return values are returned by this function.

Parameters:

This function has no parameters.

Example:

wolfSSL_Debugging_OFF();

See Also:
wolfSSL_Debugging_ON

Copyright 2015 wolfSSL Inc. All rights reserved.

232

wolfSSL_SetLoggingCb

17.6 OCSP and CRL

The functions in this section have to do with using OCSP (Online Certificate Status
Protocol) and CRL (Certificate Revocation List) with wolfSSL.

wolfSSL_CTX_EnableOCSP

Synopsis:
long wolfSSL_CTX_EnableOCSP(WOLFSSL_CTX* ctx, int options);

Description:
This function sets options to configure behavior of OCSP functionality in wolfSSL. The
value of options if formed by or’ing one or more of the following options:

 WOLFSSL_OCSP_ENABLE

- enable OCSP lookups

 WOLFSSL_OCSP_URL_OVERRIDE

- use the override URL instead of the URL in certificates.

The override URL is specified using the wolfSSL_CTX_SetOCSP_OverrideURL()
function.

This function only sets the OCSP options when wolfSSL has been compiled with OCSP
support (--enable-ocsp, #define HAVE_OCSP).

Return Values:

SSL_SUCCESS is returned upon success

SSL_FAILURE is returned upon failure

NOT_COMPILED_IN is returned when this function has been called, but OCSP support
was not enabled when wolfSSL was compiled.

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

233

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

options - value used to set the OCSP options.

Example:

WOLFSSL_CTX* ctx = 0;
...
wolfSSL_CTX_OCSP_set_options(ctx, WOLFSSL_OCSP_ENABLE);

See Also:
wolfSSL_CTX_OCSP_set_override_url

wolfSSL_CTX_SetOCSP_OverrideURL

Synopsis:
int wolfSSL_CTX_SetOCSP_OverrideURL(WOLFSSL_CTX* ctx, const char* url);

Description:
This function manually sets the URL for OCSP to use. By default, OCSP will use the
URL found in the individual certificate unless the WOLFSSL_OCSP_URL_OVERRIDE
option is set using the wolfSSL_CTX_EnableOCSP.

Return Values:

SSL_SUCCESS is returned upon success

SSL_FAILURE is returned upon failure

NOT_COMPILED_IN is returned when this function has been called, but OCSP support
was not enabled when wolfSSL was compiled.

Parameters:

ctx - pointer to the SSL context, created with wolfSSL_CTX_new().

url - pointer to the OCSP URL for wolfSSL to use.

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

234

WOLFSSL_CTX* ctx = 0;
...
wolfSSL_CTX_OCSP_set_override_url(ctx, “custom-url-here”);

See Also:
wolfSSL_CTX_OCSP_set_options

17.7 Informational

The functions in this section are informational. They allow the application to gather
some kind of information about the current status or setup of wolfSSL.

wolfSSL_GetObjectSize

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetObjectSize(void);

Description:
This function returns the size of the WOLFSSL object and will be dependent on build
options and settings. If SHOW_SIZES has been defined when building wolfSSL, this
function will also print the sizes of individual objects within the WOLFSSL object (Suites,
Ciphers, etc.) to stdout.

Return Values:
This function returns the size of the WOLFSSL object.

Parameters:

This function has no parameters.

Example:

int size = 0;
size = wolfSSL_GetObjectSize();
printf(“sizeof(WOLFSSL) = %d\n”, size);

Copyright 2015 wolfSSL Inc. All rights reserved.

235

See Also:
wolfSSL_new();

wolfSSL_GetMacSecret

Synopsis:
#include <wolfssl/ssl.h>

const unsigned char* wolfSSL_GetMacSecret(WOLFSSL* ssl, int verify);

Description:
Allows retrieval of the Hmac/Mac secret from the handshake process. The verify
parameter specifies whether this is for verification of a peer message.

Return Values:
If successful the call will return a valid pointer to the secret. The size of the secret can
be obtained from wolfSSL_GetHmacSize().

NULL will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

verify - specifies whether this is for verification of a peer message.

See Also:
wolfSSL_GetHmacSize()

wolfSSL_GetClientWriteKey

Synopsis:
#include <wolfssl/ssl.h>

const unsigned char* wolfSSL_GetClientWriteKey(WOLFSSL* ssl);

Description:
Allows retrieval of the client write key from the handshake process.

Copyright 2015 wolfSSL Inc. All rights reserved.

236

Return Values:
If successful the call will return a valid pointer to the key. The size of the key can be
obtained from wolfSSL_GetKeySize().

NULL will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetKeySize()
wolfSSL_GetClientWriteIV()

wolfSSL_GetClientWriteIV

Synopsis:
#include <wolfssl/ssl.h>

const unsigned char* wolfSSL_GetClientWriteIV(WOLFSSL* ssl);

Description:
Allows retrieval of the client write IV (initialization vector) from the handshake process.

Return Values:
If successful the call will return a valid pointer to the IV. The size of the IV can be
obtained from wolfSSL_GetCipherBlockSize().

NULL will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetCipherBlockSize()
wolfSSL_GetClientWriteKey()

Copyright 2015 wolfSSL Inc. All rights reserved.

237

wolfSSL_GetServerWriteKey

Synopsis:
#include <wolfssl/ssl.h>

const unsigned char* wolfSSL_GetServerWriteKey(WOLFSSL* ssl);

Description:
Allows retrieval of the server write key from the handshake process.

Return Values:
If successful the call will return a valid pointer to the key. The size of the key can be
obtained from wolfSSL_GetKeySize().

NULL will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetKeySize()
wolfSSL_GetServerWriteIV()

wolfSSL_GetServerWriteIV

Synopsis:
#include <wolfssl/ssl.h>

const unsigned char* wolfSSL_GetServerWriteIV(WOLFSSL* ssl);

Description:
Allows retrieval of the server write IV (initialization vector) from the handshake process.

Return Values:
If successful the call will return a valid pointer to the IV. The size of the IV can be
obtained from wolfSSL_GetCipherBlockSize().

Copyright 2015 wolfSSL Inc. All rights reserved.

238

NULL will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetCipherBlockSize()
wolfSSL_GetClientWriteKey()

wolfSSL_GetKeySize

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetKeySize(WOLFSSL* ssl);

Description:
Allows retrieval of the key size from the handshake process.

Return Values:
If successful the call will return the key size in bytes.

BAD_FUNC_ARG will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetClientWriteKey()
wolfSSL_GetServerWriteKey()

wolfSSL_GetSide

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

239

int wolfSSL_GetSide(WOLFSSL* ssl);

Description:
Allows retrieval of the side of this WOLFSSL connection.

Return Values:
If successful the call will return either WOLFSSL_SERVER_END or
WOLFSSL_CLIENT_END depending on the side of WOLFSSL object.

BAD_FUNC_ARG will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetClientWriteKey()
wolfSSL_GetServerWriteKey()

wolfSSL_IsTLSv1_1

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_IsTLSV1_1(WOLFSSL* ssl);

Description:
Allows caller to determine if the negotiated protocol version is at least TLS version 1.1
or greater.

Return Values:
If successful the call will return 1 for true or 0 for false.

BAD_FUNC_ARG will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

Copyright 2015 wolfSSL Inc. All rights reserved.

240

See Also:
wolfSSL_GetSide()

wolfSSL_GetBulkCipher

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetBulkCipher(WOLFSSL* ssl);

Description:
Allows caller to determine the negotiated bulk cipher algorithm from the handshake.

Return Values:
If successful the call will return one of the following:

wolfssl_cipher_null
wolfssl_des
wolfssl_triple_des
wolfssl_aes
wolfssl_aes_gcm
wolfssl_aes_ccm
wolfssl_camellia
wolfssl_hc128
wolfssl_rabbit

BAD_FUNC_ARG will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetCipherBlockSize()
wolfSSL_GetKeySize()

wolfSSL_GetCipherBlockSize

Copyright 2015 wolfSSL Inc. All rights reserved.

241

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetCipherBlockSize(WOLFSSL* ssl);

Description:
Allows caller to determine the negotiated cipher block size from the handshake.

Return Values:
If successful the call will return the size in bytes of the cipher block size.

BAD_FUNC_ARG will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetBulkCipher()
wolfSSL_GetKeySize()

wolfSSL_GetAeadMacSize

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetAeadMacSize(WOLFSSL* ssl);

Description:
Allows caller to determine the negotiated aead mac size from the handshake. For
cipher type WOLFSSL_AEAD_TYPE.

Return Values:
If successful the call will return the size in bytes of the aead mac size.

BAD_FUNC_ARG will be returned for an error state.

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

242

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetBulkCipher()
wolfSSL_GetKeySize()

wolfSSL_GetHmacSize

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetHmacSize(WOLFSSL* ssl);

Description:
Allows caller to determine the negotiated (h)mac size from the handshake. For cipher
types except WOLFSSL_AEAD_TYPE.

Return Values:
If successful the call will return the size in bytes of the (h)mac size.

BAD_FUNC_ARG will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetBulkCipher()
wolfSSL_GetHmacType()

wolfSSL_GetHmacType

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetHmacType(WOLFSSL* ssl);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

243

Allows caller to determine the negotiated (h)mac type from the handshake. For cipher
types except WOLFSSL_AEAD_TYPE.

Return Values:
If successful the call will return one of the following:

MD5
SHA
SHA256
SHA384

BAD_FUNC_ARG or SSL_FATAL_ERROR will be returned for an error state.

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetBulkCipher()
wolfSSL_GetHmacSize()

wolfSSL_GetCipherType

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_GetCipherType(WOLFSSL* ssl);

Description:
Allows caller to determine the negotiated cipher type from the handshake.

Return Values:
If successful the call will return one of the following:

WOLFSSL_BLOCK_TYPE
WOLFSSL_STREAM_TYPE
WOLFSSL_AEAD_TYPE

BAD_FUNC_ARG will be returned for an error state.

Copyright 2015 wolfSSL Inc. All rights reserved.

244

Parameters:

ssl - a pointer to a WOLFSSL object, created using wolfSSL_new().

See Also:
wolfSSL_GetBulkCipher()
wolfSSL_GetHmacType()

17.8 Connection, Session, and I/O

The functions in this section deal with setting up the SSL/TLS connection, managing
SSL sessions, and input/output.

wolfSSL_accept

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_accept(WOLFSSL* ssl);

Description:
This function is called on the server side and waits for an SSL client to initiate the
SSL/TLS handshake. When this function is called, the underlying communication
channel has already been set up.

wolfSSL_accept() works with both blocking and non-blocking I/O. When the underlying
I/O is non-blocking, wolfSSL_accept() will return when the underlying I/O could not
satisfy the needs of of wolfSSL_accept to continue the handshake. In this case, a call
to wolfSSL_get_error() will yield either SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. The calling process must then repeat the call to
wolfSSL_accept when data is available to read and wolfSSL will pick up where it left off.
When using a non-blocking socket, nothing needs to be done, but select() can be used
to check for the required condition.

If the underlying I/O is blocking, wolfSSL_accept() will only return once the handshake
has been finished or an error occurred.

Copyright 2015 wolfSSL Inc. All rights reserved.

245

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_FATAL_ERROR will be returned if an error occurred. To get a more detailed error
code, call wolfSSL_get_error().

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

int ret = 0;
int err = 0;
WOLFSSL* ssl;
char buffer[80];
...

ret = wolfSSL_accept(ssl);
if (ret != SSL_SUCCESS) {

err = wolfSSL_get_error(ssl, ret);
printf(“error = %d, %s\n”, err, wolfSSL_ERR_error_string(err, buffer));

}

See Also:
wolfSSL_get_error
wolfSSL_connect

wolfSSL_connect

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_connect(WOLFSSL* ssl);

Description:
This function is called on the client side and initiates an SSL/TLS handshake with a
server. When this function is called, the underlying communication channel has already
been set up.

Copyright 2015 wolfSSL Inc. All rights reserved.

246

wolfSSL_connect() works with both blocking and non-blocking I/O. When the
underlying I/O is non-blocking, wolfSSL_connect() will return when the underlying I/O
could not satisfy the needs of of wolfSSL_connect to continue the handshake. In this
case, a call to wolfSSL_get_error() will yield either SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. The calling process must then repeat the call to
wolfSSL_connect() when the underlying I/O is ready and wolfSSL will pick up where it
left off. When using a non-blocking socket, nothing needs to be done, but select() can
be used to check for the required condition.

If the underlying I/O is blocking, wolfSSL_connect() will only return once the handshake
has been finished or an error occurred.

wolfSSL takes a different approach to certificate verification than OpenSSL does. The
default policy for the client is to verify the server, this means that if you don't load CAs to
verify the server you'll get a connect error, unable to verify (-155). It you want to mimic
OpenSSL behavior of having SSL_connect succeed even if verifying the server fails and
reducing security you can do this by calling:

SSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, 0);

before calling SSL_new(); Though it's not recommended.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_FATAL_ERROR will be returned if an error occurred. To get a more detailed error
code, call wolfSSL_get_error().

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

int ret = 0;
int err = 0;
WOLFSSL* ssl;
char buffer[80];
...

Copyright 2015 wolfSSL Inc. All rights reserved.

247

ret = wolfSSL_connect(ssl);
if (ret != SSL_SUCCESS) {

err = wolfSSL_get_error(ssl, ret);
printf(“error = %d, %s\n”, err, wolfSSL_ERR_error_string(err, buffer));

}

See Also:
wolfSSL_get_error
wolfSSL_accept

wolfSSL_connect_cert

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_connect_cert(WOLFSSL* ssl);

Description:
This function is called on the client side and initiates an SSL/TLS handshake with a
server only long enough to get the peer’s certificate chain. When this function is called,
the underlying communication channel has already been set up.

wolfSSL_connect_cert() works with both blocking and non-blocking I/O. When the
underlying I/O is non-blocking, wolfSSL_connect_cert() will return when the underlying
I/O could not satisfy the needs of of wolfSSL_connect_cert() to continue the handshake.
In this case, a call to wolfSSL_get_error() will yield either SSL_ERROR_WANT_READ
or SSL_ERROR_WANT_WRITE. The calling process must then repeat the call to
wolfSSL_connect_cert() when the underlying I/O is ready and wolfSSL will pick up
where it left off. When using a non-blocking socket, nothing needs to be done, but
select() can be used to check for the required condition.

If the underlying I/O is blocking, wolfSSL_connect_cert() will only return once the peer’s
certificate chain has been received.

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_FAILURE will be returned if the SSL session parameter is NULL.

Copyright 2015 wolfSSL Inc. All rights reserved.

248

SSL_FATAL_ERROR will be returned if an error occurred. To get a more detailed error
code, call wolfSSL_get_error().

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

int ret = 0;
int err = 0;
WOLFSSL* ssl;
char buffer[80];
...

ret = wolfSSL_connect_cert(ssl);
if (ret != SSL_SUCCESS) {

err = wolfSSL_get_error(ssl, ret);
printf(“error = %d, %s\n”, err, wolfSSL_ERR_error_string(err, buffer));

}

See Also:
wolfSSL_get_error
wolfSSL_connect
wolfSSL_accept

wolfSSL_get_fd

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_get_fd(const WOLFSSL* ssl);

Description:
This function returns the file descriptor (fd) used as the input/output facility for the SSL
connection. Typically this will be a socket file descriptor.

Return Values:
If successful the call will return the SSL session file descriptor.

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

249

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

int sockfd;
WOLFSSL* ssl = 0;
...
sockfd = wolfSSL_get_fd(ssl);
...

See Also:
wolfSSL_set_fd

wolfSSL_get_session

Synopsis:
#include <wolfssl/ssl.h>

WOLFSSL_SESSION* wolfSSL_get_session(WOLFSSL* ssl);

Description:
This function returns a pointer to the current session (WOLFSSL_SESSION) used in
ssl. The WOLFSSL_SESSION pointed to contains all the necessary information
required to perform a session resumption and reestablish the connection without a new
handshake.

For session resumption, before calling wolfSSL_shutdown() with your session object, an
application should save the session ID from the object with a call to
wolfSSL_get_session(), which returns a pointer to the session. Later, the application
should create a new WOLFSSL object and assign the saved session with
wolfSSL_set_session(). At this point, the application may call wolfSSL_connect() and
wolfSSL will try to resume the session. The wolfSSL server code allows session
resumption by default.

Return Values:
If successful the call will return a pointer to the the current SSL session object.

NULL will be returned if ssl is NULL, the SSL session cache is disabled, wolfSSL
doesn’t have the Session ID available, or mutex functions fail.

Copyright 2015 wolfSSL Inc. All rights reserved.

250

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

WOLFSSL* ssl = 0;
WOLFSSL_SESSION* session = 0;
...
session = wolfSSL_get_session(ssl);
if (session == NULL) {
 // failed to get session pointer
}
...

See Also:
wolfSSL_set_session

wolfSSL_get_using_nonblock

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_get_using_nonblock(WOLFSSL* ssl);

Description:
This function allows the application to determine if wolfSSL is using non-blocking I/O. If
wolfSSL is using non-blocking I/O, this function will return 1, otherwise 0.

After an application creates a WOLFSSL object, if it will be used with a non-blocking
socket, call wolfSSL_set_using_nonblock() on it. This lets the WOLFSSL object know
that receiving EWOULDBLOCK means that the recvfrom call would block rather than
that it timed out.

Return Values:

0 - underlying I/O is blocking.

1 - underlying I/O is non-blocking

Copyright 2015 wolfSSL Inc. All rights reserved.

251

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

int ret = 0;
WOLFSSL* ssl = 0;
...
ret = wolfSSL_get_using_nonblock(ssl);
if (ret == 1) {
 // underlying I/O is non-blocking
}
...

See Also:
wolfSSL_set_session

wolfSSL_flush_sessions

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_flush_sessions(WOLFSSL_CTX *ctx, long tm);

Description:
This function flushes session from the session cache which have expired. The time, tm,
is used for the time comparison.

Note that wolfSSL currently uses a static table for sessions, so no flushing is needed.
As such, this function is currently just a stub. This function provides OpenSSL
compatibility (SSL_flush_sessions) when wolfSSL is compiled with the OpenSSL
compatibility layer.

Return Values:
This function does not have a return value.

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

252

ctx - a pointer to a WOLFSSL_CTX structure, created using wolfSSL_CTX_new().

tm - time used in session expiration comparison.

Example:

WOLFSSL_CTX* ssl;
...

wolfSSL_flush_sessions(ctx, time(0));

See Also:
wolfSSL_get_session
wolfSSL_set_session

wolfSSL_negotiate

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_negotiate(WOLFSSL* ssl);

Description:
Performs the actual connect or accept based on the side of the SSL method. If called
from the client side then an wolfSSL_connect() is done while a wolfSSL_accept() is
performed if called from the server side.

Return Values:
SSL_SUCCESS will be returned if successful. (Note, older versions will return 0.)

SSL_FATAL_ERROR will be returned if the underlying call resulted in an error. Use
wolfSSL_get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:
int ret = SSL_FATAL_ERROR;
WOLFSSL* ssl = 0;

Copyright 2015 wolfSSL Inc. All rights reserved.

253

...
ret = wolfSSL_negotiate(ssl);
if (ret == SSL_FATAL_ERROR) {
 // SSL establishment failed
 int error_code = wolfSSL_get_error(ssl);
 ...
}
...

See Also:
SSL_connect
SSL_accept

wolfSSL_peek

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_peek(WOLFSSL* ssl, void* data, int sz);

Description:
This function copies sz bytes from the SSL session (ssl) internal read buffer into the
buffer data. This function is identical to wolfSSL_read() except that the data in the
internal SSL session receive buffer is not removed or modified.

If necessary, like wolfSSL_read(), wolfSSL_peek() will negotiate an SSL/TLS session if
the handshake has not already been performed yet by wolfSSL_connect() or
wolfSSL_accept().

The SSL/TLS protocol uses SSL records which have a maximum size of 16kB (the max
record size can be controlled by the MAX_RECORD_SIZE define in
<wolfssl_root>/wolfssl/internal.h). As such, wolfSSL needs to read an entire SSL record
internally before it is able to process and decrypt the record. Because of this, a call to
wolfSSL_peek() will only be able to return the maximum buffer size which has been
decrypted at the time of calling. There may be additional not-yet-decrypted data waiting
in the internal wolfSSL receive buffer which will be retrieved and decrypted with the next
call to wolfSSL_peek() / wolfSSL_read().

Copyright 2015 wolfSSL Inc. All rights reserved.

254

If sz is larger than the number of bytes in the internal read buffer, SSL_peek() will return
the bytes available in the internal read buffer. If no bytes are buffered in the internal
read buffer yet, a call to wolfSSL_peek() will trigger processing of the next record.

Return Values:

>0 - the number of bytes read upon success.

0 - will be returned upon failure. This may be caused by a either a clean (close notify
alert) shutdown or just that the peer closed the connection. Call wolfSSL_get_error() for
the specific error code.

SSL_FATAL_ERROR - will be returned upon failure when either an error occurred or,
when using non-blocking sockets, the SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE error was received and and the application needs to call
wolfSSL_peek() again. Use wolfSSL_get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

data - buffer where wolfSSL_peek() will place data read.

sz - number of bytes to read into data.

Example:

WOLFSSL* ssl = 0;
char reply[1024];
...

input = wolfSSL_peek(ssl, reply, sizeof(reply));
if (input > 0) {
 // “input” number of bytes returned into buffer “reply”
}

See Also:
wolfSSL_read

Copyright 2015 wolfSSL Inc. All rights reserved.

255

wolfSSL_pending

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_pending(WOLFSSL* ssl);

Description:
This function returns the number of bytes which are buffered and available in the SSL
object to be read by wolfSSL_read().

Return Values:

This function returns the number of bytes pending.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

Example:

int pending = 0;
WOLFSSL* ssl = 0;
...

pending = wolfSSL_pending(ssl);
printf(“There are %d bytes buffered and available for reading”, pending);

See Also:
wolfSSL_recv
wolfSSL_read
wolfSSL_peek

wolfSSL_read

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_read(WOLFSSL* ssl, void* data, int sz);

Copyright 2015 wolfSSL Inc. All rights reserved.

256

Description:
This function reads sz bytes from the SSL session (ssl) internal read buffer into the
buffer data. The bytes read are removed from the internal receive buffer.

If necessary wolfSSL_read() will negotiate an SSL/TLS session if the handshake has
not already been performed yet by wolfSSL_connect() or wolfSSL_accept().

The SSL/TLS protocol uses SSL records which have a maximum size of 16kB (the max
record size can be controlled by the MAX_RECORD_SIZE define in
<wolfssl_root>/wolfssl/internal.h). As such, wolfSSL needs to read an entire SSL record
internally before it is able to process and decrypt the record. Because of this, a call to
wolfSSL_read() will only be able to return the maximum buffer size which has been
decrypted at the time of calling. There may be additional not-yet-decrypted data waiting
in the internal wolfSSL receive buffer which will be retrieved and decrypted with the next
call to wolfSSL_read().

If sz is larger than the number of bytes in the internal read buffer, SSL_read() will return
the bytes available in the internal read buffer. If no bytes are buffered in the internal
read buffer yet, a call to wolfSSL_read() will trigger processing of the next record.

Return Values:

>0 - the number of bytes read upon success.

0 - will be returned upon failure. This may be caused by a either a clean (close notify
alert) shutdown or just that the peer closed the connection. Call wolfSSL_get_error() for
the specific error code.

SSL_FATAL_ERROR - will be returned upon failure when either an error occurred or,
when using non-blocking sockets, the SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE error was received and and the application needs to call
wolfSSL_read() again. Use wolfSSL_get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

data - buffer where wolfSSL_read() will place data read.

Copyright 2015 wolfSSL Inc. All rights reserved.

257

sz - number of bytes to read into data.

Example:

WOLFSSL* ssl = 0;
char reply[1024];
...

input = wolfSSL_read(ssl, reply, sizeof(reply));
if (input > 0) {
 // “input” number of bytes returned into buffer “reply”
}

See wolfSSL examples (client, server, echoclient, echoserver) for more complete
examples of wolfSSL_read().

See Also:
wolfSSL_recv
wolfSSL_write
wolfSSL_peek
wolfSSL_pending

wolfSSL_recv

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_recv(WOLFSSL* ssl, void* data, int sz, int flags);

Description:
This function reads sz bytes from the SSL session (ssl) internal read buffer into the
buffer data using the specified flags for the underlying recv operation. The bytes read
are removed from the internal receive buffer. This function is identical to
wolfSSL_read() except that it allows the application to set the recv flags for the
underlying read operation.

If necessary wolfSSL_recv() will negotiate an SSL/TLS session if the handshake has
not already been performed yet by wolfSSL_connect() or wolfSSL_accept().

Copyright 2015 wolfSSL Inc. All rights reserved.

258

The SSL/TLS protocol uses SSL records which have a maximum size of 16kB (the max
record size can be controlled by the MAX_RECORD_SIZE define in
<wolfssl_root>/wolfssl/internal.h). As such, wolfSSL needs to read an entire SSL record
internally before it is able to process and decrypt the record. Because of this, a call to
wolfSSL_recv() will only be able to return the maximum buffer size which has been
decrypted at the time of calling. There may be additional not-yet-decrypted data waiting
in the internal wolfSSL receive buffer which will be retrieved and decrypted with the next
call to wolfSSL_recv().

If sz is larger than the number of bytes in the internal read buffer, SSL_recv() will return
the bytes available in the internal read buffer. If no bytes are buffered in the internal
read buffer yet, a call to wolfSSL_recv() will trigger processing of the next record.

Return Values:

>0 - the number of bytes read upon success.

0 - will be returned upon failure. This may be caused by a either a clean (close notify
alert) shutdown or just that the peer closed the connection. Call wolfSSL_get_error() for
the specific error code.

SSL_FATAL_ERROR - will be returned upon failure when either an error occurred or,
when using non-blocking sockets, the SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE error was received and and the application needs to call
wolfSSL_recv() again. Use wolfSSL_get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

data - buffer where wolfSSL_recv() will place data read.

sz - number of bytes to read into data.

flags - the recv flags to use for the underlying recv operation.

Example:

WOLFSSL* ssl = 0;

Copyright 2015 wolfSSL Inc. All rights reserved.

259

char reply[1024];
int flags = ... ;
...

input = wolfSSL_recv(ssl, reply, sizeof(reply), flags);
if (input > 0) {
 // “input” number of bytes returned into buffer “reply”
}

See Also:
wolfSSL_read
wolfSSL_write
wolfSSL_peek
wolfSSL_pending

wolfSSL_send

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_send(WOLFSSL* ssl, const void* data, int sz, int flags);

Description:
This function writes sz bytes from the buffer, data, to the SSL connection, ssl, using the
specified flags for the underlying write operation.

If necessary wolfSSL_send() will negotiate an SSL/TLS session if the handshake has
not already been performed yet by wolfSSL_connect() or wolfSSL_accept().

wolfSSL_send() works with both blocking and non-blocking I/O. When the underlying
I/O is non-blocking, wolfSSL_send() will return when the underlying I/O could not satisfy
the needs of of wolfSSL_send to continue. In this case, a call to wolfSSL_get_error()
will yield either SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The
calling process must then repeat the call to wolfSSL_send() when the underlying I/O is
ready.

If the underlying I/O is blocking, wolfSSL_send() will only return once the buffer data of
size sz has been completely written or an error occurred.

Return Values:

Copyright 2015 wolfSSL Inc. All rights reserved.

260

>0 - the number of bytes written upon success.

0 - will be returned upon failure. Call wolfSSL_get_error() for the specific error code.

SSL_FATAL_ERROR - will be returned upon failure when either an error occurred or,
when using non-blocking sockets, the SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE error was received and and the application needs to call
wolfSSL_send() again. Use wolfSSL_get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

data - data buffer to send to peer.

sz - size, in bytes, of data to be sent to peer.

flags - the send flags to use for the underlying send operation.

Example:

WOLFSSL* ssl = 0;
char msg[64] = “hello wolfssl!”;
int msgSz = (int)strlen(msg);
int flags = ... ;
...

input = wolfSSL_send(ssl, msg, msgSz, flags);
if (input != msgSz) {
 // wolfSSL_send() failed
}

See Also:
wolfSSL_write
wolfSSL_read
wolfSSL_recv

wolfSSL_write

Copyright 2015 wolfSSL Inc. All rights reserved.

261

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_write(WOLFSSL* ssl, const void* data, int sz);

Description:
This function writes sz bytes from the buffer, data, to the SSL connection, ssl.

If necessary, wolfSSL_write() will negotiate an SSL/TLS session if the handshake has
not already been performed yet by wolfSSL_connect() or wolfSSL_accept().

wolfSSL_write() works with both blocking and non-blocking I/O. When the underlying
I/O is non-blocking, wolfSSL_write() will return when the underlying I/O could not satisfy
the needs of of wolfSSL_write() to continue. In this case, a call to wolfSSL_get_error()
will yield either SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The
calling process must then repeat the call to wolfSSL_write() when the underlying I/O is
ready.

If the underlying I/O is blocking, wolfSSL_write() will only return once the buffer data of
size sz has been completely written or an error occurred.

Return Values:

>0 - the number of bytes written upon success.

0 - will be returned upon failure. Call wolfSSL_get_error() for the specific error code.

SSL_FATAL_ERROR - will be returned upon failure when either an error occurred or,
when using non-blocking sockets, the SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE error was received and and the application needs to call
wolfSSL_write() again. Use wolfSSL_get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

data - data buffer which will be sent to peer.

sz - size, in bytes, of data to send to the peer (data).

Copyright 2015 wolfSSL Inc. All rights reserved.

262

Example:

WOLFSSL* ssl = 0;
char msg[64] = “hello wolfssl!”;
int msgSz = (int)strlen(msg);
int flags;
int ret;
...

ret = wolfSSL_write(ssl, msg, msgSz);
if (ret <= 0) {
 // wolfSSL_write() failed, call wolfSSL_get_error()
}

See wolfSSL examples (client, server, echoclient, echoserver) for more more detailed
examples of wolfSSL_write().

See Also:
wolfSSL_send
wolfSSL_read
wolfSSL_recv

wolfSSL_writev

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_writev(WOLFSSL* ssl, const struct iovec* iov, int iovcnt);

Description:
Simulates writev semantics but doesn’t actually do block at a time because of
SSL_write() behavior and because front adds may be small. Makes porting into
software that uses writev easier.

Return Values:

>0 - the number of bytes written upon success.

0 - will be returned upon failure. Call wolfSSL_get_error() for the specific error code.

MEMORY_ERROR will be returned if a memory error was encountered.

Copyright 2015 wolfSSL Inc. All rights reserved.

263

SSL_FATAL_ERROR - will be returned upon failure when either an error occurred or,
when using non-blocking sockets, the SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE error was received and and the application needs to call
wolfSSL_write() again. Use wolfSSL_get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfSSL_new().

iov - array of I/O vectors to write

iovcnt - number of vectors in iov array.

Example:

WOLFSSL* ssl = 0;
char *bufA = “hello\n”;
char *bufB = “hello world\n”;
int iovcnt;
struct iovec iov[2];

iov[0].iov_base = buffA;
iov[0].iov_len = strlen(buffA);
iov[1].iov_base = buffB;
iov[1].iov_len = strlen(buffB);
iovcnt = 2;
...

ret = wolfSSL_writev(ssl, iov, iovcnt);
// wrote “ret” bytes, or error if <= 0.

See Also:
wolfSSL_write

17.9 DTLS Specific

The functions in this section are specific to using DTLS with wolfSSL.

Copyright 2015 wolfSSL Inc. All rights reserved.

264

wolfSSL_dtls

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_dtls(WOLFSSL* ssl);

Description:
This function is used to determine if the SSL session has been configured to use DTLS.

Return Values:
If the SSL session (ssl) has been configured to use DTLS, this function will return 1,
otherwise 0.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

int ret = 0;
WOLFSSL* ssl;
...

ret = wolfSSL_dtls(ssl);
if (ret) {
 // SSL session has been configured to use DTLS
}

See Also:
wolfSSL_dtls_get_current_timeout
wolfSSL_dtls_get_peer
wolfSSL_dtls_got_timeout
wolfSSL_dtls_set_peer

wolfSSL_dtls_get_current_timeout

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

265

wolfSSL_dtls_get_current_timeout(WOLFSSL* ssl);

Description:
This function returns the current timeout value in seconds for the WOLFSSL object.
When using non-blocking sockets, something in the user code needs to decide when to
check for available recv data and how long it has been waiting. The value returned by
this function indicates how long the application should wait.

Return Values:
The current DTLS timeout value in seconds, or NOT_COMPILED_IN if wolfSSL was not
built with DTLS support.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

int timeout = 0;
WOLFSSL* ssl;
...

timeout = wolfSSL_get_dtls_current_timeout(ssl);
printf(“DTLS timeout (sec) = %d\n”, timeout);

See Also:
wolfSSL_dtls
wolfSSL_dtls_get_peer
wolfSSL_dtls_got_timeout
wolfSSL_dtls_set_peer

wolfSSL_dtls_get_peer

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_dtls_get_peer(WOLFSSL* ssl, void* peer, unsigned int* peerSz);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

266

This function gets the sockaddr_in (of size peerSz) of the current DTLS peer. The
function will compare peerSz to the actual DTLS peer size stored in the SSL session. If
the peer will fit into peer, the peer’s sockaddr_in will be copied into peer, with peerSz
set to the size of peer.

Return Values:

SSL_SUCCESS will be returned upon success.

SSL_FAILURE will be returned upon failure.

SSL_NOT_IMPLEMENTED will be returned if wolfSSL was not compiled with DTLS
support.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

peer - pointer to memory location to store peer’s sockaddr_in structure.

peerSz - input/output size. As input, the size of the allocated memory pointed to by
peer. As output, the size of the actual sockaddr_in structure pointed to by peer.

Example:

int ret = 0;
WOLFSSL* ssl;
sockaddr_in addr;
...

ret = wolfSSL_dtls_get_peer(ssl, &addr, sizeof(addr));
if (ret != SSL_SUCCESS) {
 // failed to get DTLS peer
}

See Also:
wolfSSL_dtls_get_current_timeout
wolfSSL_dtls_got_timeout
wolfSSL_dtls_set_peer
wolfSSL_dtls

Copyright 2015 wolfSSL Inc. All rights reserved.

267

wolfSSL_dtls_got_timeout

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_dtls_got_timeout(WOLFSSL* ssl);

Description:
When using non-blocking sockets with DTLS, this function should be called on the
WOLFSSL object when the controlling code thinks the transmission has timed out. It
performs the actions needed to retry the last transmit, including adjusting the timeout
value. If it has been too long, this will return a failure.

Return Values:

SSL_SUCCESS will be returned upon success

SSL_FATAL_ERROR will be returned if there have been too many
retransmissions/timeouts without getting a response from the peer.

NOT_COMPILED_IN will be returned if wolfSSL was not compiled with DTLS support.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

Example:

See the following files for usage examples:
<wolfssl_root>/examples/client/client.c
<wolfssl_root>/examples/server/server.c

See Also:
wolfSSL_dtls_get_current_timeout
wolfSSL_dtls_get_peer
wolfSSL_dtls_set_peer
wolfSSL_dtls

Copyright 2015 wolfSSL Inc. All rights reserved.

268

wolfSSL_dtls_set_peer

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_dtls_set_peer(WOLFSSL* ssl, void* peer, unsigned int peerSz);

Description:
This function sets the DTLS peer, peer (sockaddr_in) with size of peerSz.

Return Values:

SSL_SUCCESS will be returned upon success.

SSL_FAILURE will be returned upon failure.

SSL_NOT_IMPLEMENTED will be returned if wolfSSL was not compiled with DTLS
support.

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new().

peer - pointer to peer’s sockaddr_in structure.

peerSz - size of the sockaddr_in structure pointed to by peer.

Example:

int ret = 0;
WOLFSSL* ssl;
sockaddr_in addr;
...

ret = wolfSSL_dtls_set_peer(ssl, &addr, sizeof(addr));
if (ret != SSL_SUCCESS) {
 // failed to set DTLS peer
}

See Also:
wolfSSL_dtls_get_current_timeout

Copyright 2015 wolfSSL Inc. All rights reserved.

269

wolfSSL_dtls_get_peer
wolfSSL_dtls_got_timeout
wolfSSL_dtls

17.10 Memory Abstraction Layer

The functions in this section are used when an application sets its own memory
handling functions by using the wolfSSL memory abstraction layer.

wolfSSL_Malloc

Synopsis:
#include <wolfssl/wolfcrypt/memory.h>

void* wolfSSL_Malloc(size_t size)

Description:
This function is similar to malloc(), but calls the memory allocation function which
wolfSSL has been configured to use. By default, wolfSSL uses malloc(). This can be
changed using the wolfSSL memory abstraction layer - see wolfSSL_SetAllocators().

Return Values:
If successful, this function returns a pointer to allocated memory. If there is an error,
NULL will be returned. Specific return values may be dependent on the underlying
memory allocation function being used (if not using the default malloc()).

Parameters:

size - number of bytes to allocate.

Example:

char* buffer;

buffer = (char*) wolfSSL_Malloc(20);
if (buffer == NULL) {
 // failed to allocate memory
}

Copyright 2015 wolfSSL Inc. All rights reserved.

270

See Also:
wolfSSL_Free
wolfSSL_Realloc
wolfSSL_SetAllocators

wolfSSL_Realloc

Synopsis:
#include <wolfssl/wolfcrypt/memory.h>

void* wolfSSL_Realloc(void *ptr, size_t size)

Description:
This function is similar to realloc(), but calls the memory re-allocation function which
wolfSSL has been configured to use. By default, wolfSSL uses realloc(). This can be
changed using the wolfSSL memory abstraction layer - see wolfSSL_SetAllocators().

Return Values:
If successful, this function returns a pointer to re-allocated memory. This may be the
same pointer as ptr, or a new pointer location. If there is an error, NULL will be
returned. Specific return values may be dependent on the underlying memory re-
allocation function being used (if not using the default realloc()).

Parameters:

ptr - pointer to the previously-allocated memory, to be reallocated.

size - number of bytes to allocate.

Example:

char* buffer;

buffer = (char*) wolfSSL_Realloc(30);
if (buffer == NULL) {
 // failed to re-allocate memory
}

See Also:

Copyright 2015 wolfSSL Inc. All rights reserved.

271

wolfSSL_Free
wolfSSL_Malloc
wolfSSL_SetAllocators

wolfSSL_Free

Synopsis:
#include <wolfssl/wolfcrypt/memory.h>

void wolfSSL_Free(void* ptr)

Description:
This function is similar to free(), but calls the memory free function which wolfSSL has
been configured to use. By default, wolfSSL uses free(). This can be changed using
the wolfSSL memory abstraction layer - see wolfSSL_SetAllocators().

Return Values:

This function does not have a return value.

Parameters:

ptr - pointer to the memory to be freed.

Example:

char* buffer;
...

wolfSSL_Free(buffer);

See Also:
wolfSSL_Alloc
wolfSSL_Realloc
wolfSSL_SetAllocators

wolfSSL_SetAllocators

Synopsis:

Copyright 2015 wolfSSL Inc. All rights reserved.

272

#include <wolfssl/wolfcrypt/memory.h>

int wolfSSL_SetAllocators(wolfSSL_Malloc_cb malloc_function,
 wolfSSL_Free_cb free_function,
 wolfSSL_Realloc_cb realloc_function);

typedef void *(*wolfSSL_Malloc_cb)(size_t size);
typedef void (*wolfSSL_Free_cb)(void *ptr);
typedef void *(*wolfSSL_Realloc_cb)(void *ptr, size_t size);

Description:
This function registers the allocation functions used by wolfSSL. By default, if the
system supports it, malloc/free and realloc are used. Using this function allows the user
at runtime to install their own memory handlers.

Return Values:
If successful this function will return 0.

BAD_FUNC_ARG is the error that will be returned if a function pointer is not provided.

Parameters:

malloc_function - memory allocation function for wolfSSL to use. Function signature
must match wolfSSL_Malloc_cb prototype, above.

free_function - memory free function for wolfSSL to use. Function signature must
match wolfSSL_Free_cb prototype, above.

realloc_function - memory re-allocation function for wolfSSL to use. Function
signature must match wolfSSL_Realloc_cb prototype, above.

Example:

int ret = 0;

// Memory function prototypes
void* MyMalloc(size_t size);
void MyFree(void* ptr);
void* MyRealloc(void* ptr, size_t size);

Copyright 2015 wolfSSL Inc. All rights reserved.

273

// Register custom memory functions with wolfSSL
ret = wolfSSL_SetAllocators(MyMalloc, MyFree, MyRealloc);
if (ret != 0) {
 // failed to set memory functions
}

void* MyMalloc(size_t size)
{
 // custom malloc function
}

void MyFree(void* ptr)
{
 // custom free function
}

void* MyRealloc(void* ptr, size_t size)
{
 // custom realloc function
}

See Also:
NA

17.11 Certificate Manager

The functions in this section are part of the wolfSSL Certificate Manager. The
Certificate Manager allows applications to load and verify certificates external to the
SSL/TLS connection.

wolfSSL_CertManagerDisableCRL

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CertManagerDisableCRL(WOLFSSL_CERT_MANGER* cm);

Description:
Turns off Certificate Revocation List checking when verifying certificates with the
Certificate Manager. By default, CRL checking is off. You can use this function to

Copyright 2015 wolfSSL Inc. All rights reserved.

274

temporarily or permanently disable CRL checking with this Certificate Manager context
that previously had CRL checking enabled.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned if a function pointer is not provided.

Parameters:

cm - a pointer to a WOLFSSL_CERT_MANAGER structure, created using
wolfSSL_CertManagerNew().

Example:

int ret = 0;
WOLFSSL_CERT_MANAGER* cm;

...

ret = wolfSSL_CertManagerDisableCRL(cm);
if (ret != SSL_SUCCESS) {
 // error disabling cert manager
}

...

See Also:
wolfSSL_CertManagerEnableCRL

wolfSSL_CertManagerEnableCRL

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CertManagerEnableCRL(WOLFSSL_CERT_MANGER* cm, int options);

Description:
Turns on Certificate Revocation List checking when verifying certificates with the
Certificate Manager. By default, CRL checking is off. options include

Copyright 2015 wolfSSL Inc. All rights reserved.

275

WOLFSSL_CRL_CHECKALL which performs CRL checking on each certificate in the
chain versus the Leaf certificate only which is the default.

Return Values:
If successful the call will return SSL_SUCCESS.

NOT_COMPILED_IN will be returned if wolfSSL was not built with CRL enabled.

MEMORY_E will be returned if an out of memory condition occurs.

BAD_FUNC_ARG is the error that will be returned if a pointer is not provided.

SSL_FAILURE will be returned if the CRL context cannot be initialized properly.

Parameters:

cm - a pointer to a WOLFSSL_CERT_MANAGER structure, created using
wolfSSL_CertManagerNew().

options - options to use when enabling the Certification Manager, cm.

Example:

int ret = 0;
WOLFSSL_CERT_MANAGER* cm;
...

ret = wolfSSL_CertManagerEnableCRL(cm, 0);
if (ret != SSL_SUCCESS) {
 // error enabling cert manager
}

...

See Also:
wolfSSL_CertManagerDisableCRL

wolfSSL_CertManagerFree

Synopsis:

Copyright 2015 wolfSSL Inc. All rights reserved.

276

#include <wolfssl/ssl.h>

void wolfSSL_CertManagerFree(WOLFSSL_CERT_MANGER* cm);

Description:
Frees all resources associated with the Certificate Manager context. Call this when you
no longer need to use the Certificate Manager.

Return Values:
No return value is used.

Parameters:

cm - a pointer to a WOLFSSL_CERT_MANAGER structure, created using
wolfSSL_CertManagerNew().

Example:

WOLFSSL_CERT_MANAGER* cm;
...

wolfSSL_CertManagerFree(cm);

See Also:
wolfSSL_CertManagerNew

wolfSSL_CertManagerLoadCA

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CertManagerLoadCA(WOLFSSL_CERT_MANGER* cm, const char*
CAfile,
 const char* CApath);

Description:
Specifies the locations for CA certificate loading into the manager context. The PEM
certificate CAfile may contain several trusted CA certificates. If CApath is not NULL it
specifies a directory containing CA certificates in PEM format.

Copyright 2015 wolfSSL Inc. All rights reserved.

277

Return Values:
If successful the call will return SSL_SUCCESS.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

BAD_FUNC_ARG is the error that will be returned if a pointer is not provided.

Parameters:

cm - a pointer to a WOLFSSL_CERT_MANAGER structure, created using
wolfSSL_CertManagerNew().

CAfile - pointer to the name of the file containing CA certificates to load.

CApath - pointer to the name of a directory path containing CA certificates to load. The
NULL pointer may be used if no certificate directory is desired.

Example:

int ret = 0;
WOLFSSL_CERT_MANAGER* cm;
...

ret = wolfSSL_CertManagerLoadCA(cm, “path/to/cert-file.pem”, 0);
if (ret != SSL_SUCCESS) {
 // error loading CA certs into cert manager
}

See Also:
wolfSSL_CertManagerVerify

wolfSSL_CertManagerNew

Synopsis:

Copyright 2015 wolfSSL Inc. All rights reserved.

278

#include <wolfssl/ssl.h>

WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew(void);

Description:
Allocates and initializes a new Certificate Manager context. This context be used
independent of SSL needs. It may be used to load certificates, verify certificates, and
check the revocation status.

Return Values:
If successful the call will return a valid WOLFSSL_CERT_MANAGER pointer.

NULL will be returned for an error state.

Parameters:

There are no parameters for this function.

Example:

WOLFSSL_CERT_MANAGER* cm;

cm = wolfSSL_CertManagerNew();
if (cm == NULL) {
 // error creating new cert manager
}

See Also:
wolfSSL_CertManagerFree

wolfSSL_CertManagerVerify

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CertManagerVerify(WOLFSSL_CERT_MANGER* cm, const char* cert,

 int format);

Description:

Copyright 2015 wolfSSL Inc. All rights reserved.

279

Specifies the certificate to verify with the Certificate Manager context. The format can
be SSL_FILETYPE_PEM or SSL_FILETYPE_ASN1.

Return Values:
If successful the call will return SSL_SUCCESS.

ASN_SIG_CONFIRM_E will be returned if the signature could not be verified.

ASN_SIG_OID_E will be returned if the signature type is not supported.

CRL_CERT_REVOKED is an error that is returned if this certificate has been revoked.

CRL_MISSING is an error that is returned if a current issuer CRL is not available.

ASN_BEFORE_DATE_E will be returned if the current date is before the before date.

ASN_AFTER_DATE_E will be returned if the current date is after the after date.

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

BAD_FUNC_ARG is the error that will be returned if a pointer is not provided.

Parameters:

cm - a pointer to a WOLFSSL_CERT_MANAGER structure, created using
wolfSSL_CertManagerNew().

cert - pointer to the name of the file containing the certificates to verify.

format - format of the certificate to verify - either SSL_FILETYPE_ASN1 or
SSL_FILETYPE_PEM.

Example:

Copyright 2015 wolfSSL Inc. All rights reserved.

280

int ret = 0;
WOLFSSL_CERT_MANAGER* cm;
...

ret = wolfSSL_CertManagerVerify(cm, “path/to/cert-file.pem”,
SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error verifying certificate
}

See Also:
wolfSSL_CertManagerLoadCA
wolfSSL_CertManagerVerifyBuffer

wolfSSL_CertManagerVerifyBuffer

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CertManagerVerify(WOLFSSL_CERT_MANGER* cm,

 const unsigned char* buff, int sz, int format);

Description:
Specifies the certificate buffer to verify with the Certificate Manager context. The format
can be SSL_FILETYPE_PEM or SSL_FILETYPE_ASN1.

Return Values:
If successful the call will return SSL_SUCCESS.

ASN_SIG_CONFIRM_E will be returned if the signature could not be verified.

ASN_SIG_OID_E will be returned if the signature type is not supported.

CRL_CERT_REVOKED is an error that is returned if this certificate has been revoked.

CRL_MISSING is an error that is returned if a current issuer CRL is not available.

ASN_BEFORE_DATE_E will be returned if the current date is before the before date.

ASN_AFTER_DATE_E will be returned if the current date is after the after date.

Copyright 2015 wolfSSL Inc. All rights reserved.

281

SSL_BAD_FILETYPE will be returned if the file is the wrong format.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

ASN_INPUT_E will be returned if Base16 decoding fails on the file.

BAD_FUNC_ARG is the error that will be returned if a pointer is not provided.

Parameters:

cm - a pointer to a WOLFSSL_CERT_MANAGER structure, created using
wolfSSL_CertManagerNew().

buff - buffer containing the certificates to verify.

sz - size of the buffer, buf.

format - format of the certificate to verify, located in buf - either SSL_FILETYPE_ASN1
or SSL_FILETYPE_PEM.

Example:

int ret = 0;
int sz = 0;
WOLFSSL_CERT_MANAGER* cm;
byte certBuff[...];
...

ret = wolfSSL_CertManagerVerifyBuffer(cm, certBuff, sz, SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error verifying certificate
}

See Also:
wolfSSL_CertManagerLoadCA
wolfSSL_CertManagerVerify

Copyright 2015 wolfSSL Inc. All rights reserved.

282

17.12 OpenSSL Compatibility Layer

The functions in this section are part of wolfSSL’s OpenSSL Compatibility Layer. These
functions are only available when wolfSSL has been compiled with the
OPENSSL_EXTRA define.

wolfSSL_X509_get_serial_number

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_X509_get_serial_number(WOLFSSL_X509* x509, unsigned char* in,

 int* inOutSz);

Description:
Retrieves the peer’s certificate serial number. The serial number buffer (in) should be
at least 32 bytes long and be provided as the *inOutSz argument as input. After calling
the function *inOutSz will hold the actual length in bytes written to the in buffer.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG will be returned if a bad function argument was encountered.

See Also:
SSL_get_peer_certificate

wolfSSL_get_sessionID

Synopsis:
#include <wolfssl/ssl.h>

const unsigned char* wolfSSL_get_sessionID(const WOLFSSL_SESSION* session);

Description:
Retrieves the session’s ID. The session ID is always 32 bytes long.

Copyright 2015 wolfSSL Inc. All rights reserved.

283

Return Values:
The session ID.

See Also:
SSL_get_session()

wolfSSL_get_peer_chain

Synopsis:
#include <wolfssl/ssl.h>

X509_CHAIN* wolfSSL_get_peer_chain(WOLFSSL* ssl);

Description:
Retrieves the peer’s certificate chain.

Return Values:
If successful the call will return the peer’s certificate chain.

0 will be returned if an invalid WOLFSSL pointer is passed to the function.

See Also:
wolfSSL_get_chain_count
wolfSSL_get_chain_length
wolfSSL_get_chain_cert
wolfSSL_get_chain_cert_pem

wolfSSL_get_chain_count

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_get_chain_count(WOLFSSL_X509_CHAIN* chain);

Description:
Retrieves the peer’s certificate chain count.

Return Values:

Copyright 2015 wolfSSL Inc. All rights reserved.

284

If successful the call will return the peer’s certificate chain count.

0 will be returned if an invalid chain pointer is passed to the function.

See Also:
wolfSSL_get_peer_chain
wolfSSL_get_chain_length
wolfSSL_get_chain_cert
wolfSSL_get_chain_cert_pem

wolfSSL_get_chain_length

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_get_chain_length(WOLFSSL_X509_CHAIN* chain, int idx);

Description:
Retrieves the peer’s ASN1.DER certificate length in bytes at index (idx).

Return Values:
If successful the call will return the peer’s certificate length in bytes by index.

0 will be returned if an invalid chain pointer is passed to the function.

See Also:
wolfSSL_get_peer_chain
wolfSSL_get_chain_count
wolfSSL_get_chain_cert
wolfSSL_get_chain_cert_pem

wolfSSL_get_chain_cert

Synopsis:
#include <wolfssl/ssl.h>

unsigned char* wolfSSL_get_chain_cert(WOLFSSL_X509_CHAIN* chain, int idx);

Copyright 2015 wolfSSL Inc. All rights reserved.

285

Description:
Retrieves the peer’s ASN1.DER certificate at index (idx).

Return Values:
If successful the call will return the peer’s certificate by index.

0 will be returned if an invalid chain pointer is passed to the function.

See Also:
wolfSSL_get_peer_chain
wolfSSL_get_chain_count
wolfSSL_get_chain_length
wolfSSL_get_chain_cert_pem

wolfSSL_get_chain_cert_pem

Synopsis:
#include <wolfssl/ssl.h>

unsigned char* wolfSSL_get_chain_cert_pem(WOLFSSL_X509_CHAIN* chain, int idx);

Description:
Retrieves the peer’s PEM certificate at index (idx).

Return Values:
If successful the call will return the peer’s certificate by index.

0 will be returned if an invalid chain pointer is passed to the function.

See Also:
wolfSSL_get_peer_chain
wolfSSL_get_chain_count
wolfSSL_get_chain_length
wolfSSL_get_chain_cert

wolfSSL_PemCertToDer

Synopsis:

Copyright 2015 wolfSSL Inc. All rights reserved.

286

#include <wolfssl/ssl.h>

int wolfSSL_PemCertToDer(const char* fileName, unsigned char* derBuffer, int derSz);

Description:
Loads the PEM certificate from fileName and converts it into DER format, placing the
result into derBuffer which is of size derSz.

Return Values:
If successful the call will return the number of bytes written to derBuffer.

SSL_BAD_FILE will be returned if the file doesn’t exist, can’t be read, or is corrupted.

MEMORY_E will be returned if an out of memory condition occurs.

SSL_NO_PEM_HEADER will be returned if the PEM certificate header can’t be found.

BUFFER_E will be returned if a chain buffer is bigger than the receiving buffer.

Parameters:

filename - pointer to the name of the PEM-formatted certificate for conversion.

derBuffer - the buffer for which the converted PEM certificate will be placed in DER
format.

derSz - size of derBuffer.

Example:

int derSz;
byte derBuf[...];

derSz = wolfSSL_PemCertToDer(“./cert.pem”, derBuf, sizeof(derBuf));

See Also:
SSL_get_peer_certificate

wolfSSL_CTX_use_RSAPrivateKey_file

Copyright 2015 wolfSSL Inc. All rights reserved.

287

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CTX_use_RSAPrivateKey_file(WOLFSSL_CTX* ctx,const char* file,
 int format);

Description:
This function loads the private RSA key used in the SSL connection into the SSL
context (WOLFSSL_CTX). This function is only available when wolfSSL has been
compiled with the OpenSSL compatibility layer enabled (--enable-opensslExtra, #define
OPENSSL_EXTRA), and is identical to the more-typically used
wolfSSL_CTX_use_PrivateKey_file() function.

The file argument contains a pointer to the RSA private key file, in the format specified
by format.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The input key file is in the wrong format, or the wrong format has been given using the
“format” argument
- file doesn’t exist, can’t be read, or is corrupted
- an out of memory condition occurs

Parameters:

ctx - a pointer to a WOLFSSL_CTX structure, created using wolfSSL_CTX_new()

file - a pointer to the name of the file containing the RSA private key to be loaded into
the wolfSSL SSL context, with format as specified by format.

format - the encoding type of the RSA private key specified by file. Possible values
include SSL_FILETYPE_PEM and SSL_FILETYPE_ASN1.

Example:

int ret = 0;
WOLFSSL_CTX* ctx;

Copyright 2015 wolfSSL Inc. All rights reserved.

288

...

ret = wolfSSL_CTX_use_RSAPrivateKey_file(ctx, “./server-key.pem”,
 SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading private key file
}

...

See Also:
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_PrivateKey_file
wolfSSL_use_RSAPrivateKey_file
wolfSSL_use_PrivateKey_buffer
wolfSSL_use_PrivateKey_file

wolfSSL_use_certificate_file

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_certificate_file(WOLFSSL* ssl, const char* file, int format);

Description:
This function loads a certificate file into the SSL session (WOLFSSL structure). The
certificate file is provided by the file argument. The format argument specifies the
format type of the file - either SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument
- file doesn’t exist, can’t be read, or is corrupted
- an out of memory condition occurs
- Base16 decoding fails on the file

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

289

ssl - a pointer to a WOLFSSL structure, created with wolfSSL_new().

file - a pointer to the name of the file containing the certificate to be loaded into the
wolfSSL SSL session, with format as specified by format.

format - the encoding type of the certificate specified by file. Possible values include
SSL_FILETYPE_PEM and SSL_FILETYPE_ASN1.

Example:

int ret = 0;
WOLFSSL* ssl;

...

ret = wolfSSL_use_certificate_file(ssl, “./client-cert.pem”,
 SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading cert file
}

...

See Also:
wolfSSL_CTX_use_certificate_buffer
wolfSSL_CTX_use_certificate_file
wolfSSL_use_certificate_buffer

wolfSSL_use_PrivateKey_file

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_PrivateKey_file(WOLFSSL* ssl, const char* file, int format);

Description:
This function loads a private key file into the SSL session (WOLFSSL structure). The
key file is provided by the file argument. The format argument specifies the format
type of the file - SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Copyright 2015 wolfSSL Inc. All rights reserved.

290

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument
- The file doesn’t exist, can’t be read, or is corrupted
- An out of memory condition occurs
- Base16 decoding fails on the file
- The key file is encrypted but no password is provided

Parameters:

ssl - a pointer to a WOLFSSL structure, created with wolfSSL_new().

file - a pointer to the name of the file containing the key file to be loaded into the
wolfSSL SSL session, with format as specified by format.

format - the encoding type of the key specified by file. Possible values include
SSL_FILETYPE_PEM and SSL_FILETYPE_ASN1.

Example:

int ret = 0;
WOLFSSL* ssl;

...

ret = wolfSSL_use_PrivateKey_file(ssl, “./server-key.pem”,
 SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading key file
}

...

See Also:
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_PrivateKey_file
wolfSSL_use_PrivateKey_buffer

Copyright 2015 wolfSSL Inc. All rights reserved.

291

wolfSSL_use_certificate_chain_file

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_certificate_chain_file(WOLFSSL* ssl, const char* file);

Description:
This function loads a chain of certificates into the SSL session (WOLFSSL structure).
The file containing the certificate chain is provided by the file argument, and must
contain PEM-formatted certificates. This function will process up to
MAX_CHAIN_DEPTH (default = 9, defined in internal.h) certificates, plus the subject
certificate.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument
- file doesn’t exist, can’t be read, or is corrupted
- an out of memory condition occurs

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new()

file - a pointer to the name of the file containing the chain of certificates to be loaded
into the wolfSSL SSL session. Certificates must be in PEM format.

Example:

int ret = 0;
WOLFSSL* ctx;

...

ret = wolfSSL_use_certificate_chain_file(ssl, “./cert-chain.pem”);
if (ret != SSL_SUCCESS) {
 // error loading cert file
}

Copyright 2015 wolfSSL Inc. All rights reserved.

292

...

See Also:
wolfSSL_CTX_use_certificate_chain_file
wolfSSL_CTX_use_certificate_chain_buffer
wolfSSL_use_certificate_chain_buffer

wolfSSL_use_RSAPrivateKey_file

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_use_RSAPrivateKey_file(WOLFSSL* ssl,const char* file, int format);

Description:
This function loads the private RSA key used in the SSL connection into the SSL
session (WOLFSSL structure). This function is only available when wolfSSL has been
compiled with the OpenSSL compatibility layer enabled (--enable-opensslExtra, #define
OPENSSL_EXTRA), and is identical to the more-typically used
wolfSSL_use_PrivateKey_file() function.

The file argument contains a pointer to the RSA private key file, in the format specified
by format.

Return Values:
If successful the call will return SSL_SUCCESS, otherwise SSL_FAILURE will be
returned. If the function call fails, possible causes might include:

- The input key file is in the wrong format, or the wrong format has been given using the
“format” argument
- file doesn’t exist, can’t be read, or is corrupted
- an out of memory condition occurs

Parameters:

ssl - a pointer to a WOLFSSL structure, created using wolfSSL_new()

Copyright 2015 wolfSSL Inc. All rights reserved.

293

file - a pointer to the name of the file containing the RSA private key to be loaded into
the wolfSSL SSL session, with format as specified by format.

format - the encoding type of the RSA private key specified by file. Possible values
include SSL_FILETYPE_PEM and SSL_FILETYPE_ASN1.

Example:

int ret = 0;
WOLFSSL* ssl;

...

ret = wolfSSL_use_RSAPrivateKey_file(ssl, “./server-key.pem”,
 SSL_FILETYPE_PEM);
if (ret != SSL_SUCCESS) {
 // error loading private key file
}

...

See Also:
wolfSSL_CTX_use_RSAPrivateKey_file
wolfSSL_CTX_use_PrivateKey_buffer
wolfSSL_CTX_use_PrivateKey_file
wolfSSL_use_PrivateKey_buffer
wolfSSL_use_PrivateKey_file

17.13 TLS Extensions

The functions in this section are specific to supported TLS extensions.

wolfSSL_CTX_UseSNI

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

294

int wolfSSL_CTX_UseSNI(WOLFSSL_CTX* ctx, unsigned char type, const void* data,
unsigned short size);

Description:
This function enables the use of Server Name Indication for SSL objects created from
the SSL context passed in the 'ctx' parameter. It means that the SNI extension will be
sent on ClientHello by wolfSSL clients and wolfSSL servers will respond ClientHello +
SNI with either ServerHello + blank SNI or alert fatal in case of SNI mismatch.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ctx is NULL
 * data is NULL
 * type is a unknown value. (see below)

MEMORY_E is the error returned when there is not enough memory.

Parameters:

ctx - pointer to a SSL context, created with wolfSSL_CTX_new().

type - indicates which type of server name is been passed in data. The known types
are:
 enum {
 WOLFSSL_SNI_HOST_NAME = 0
 };

data - pointer to the server name data.

size - size of the server name data.

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {

Copyright 2015 wolfSSL Inc. All rights reserved.

295

 // context creation failed
}

ret = wolfSSL_CTX_UseSNI(ctx, WOLFSSL_SNI_HOST_NAME, "www.yassl.com",
strlen("www.yassl.com"));

if (ret != 0) {
 // sni usage failed
}

See Also:
wolfSSL_CTX_new
wolfSSL_UseSNI

wolfSSL_UseSNI

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_UseSNI(WOLFSSL* ssl, unsigned char type, const void* data, unsigned
short size);

Description:
This function enables the use of Server Name Indication in the SSL object passed in the
'ssl' parameter. It means that the SNI extension will be sent on ClientHello by wolfSSL
client and wolfSSL server will respond ClientHello + SNI with either ServerHello + blank
SNI or alert fatal in case of SNI mismatch.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ssl is NULL
 * data is NULL
 * type is a unknown value. (see below)

MEMORY_E is the error returned when there is not enough memory.

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

296

ssl - pointer to a SSL object, created with wolfSSL_new().

type - indicates which type of server name is been passed in data. The known types
are:
 enum {
 WOLFSSL_SNI_HOST_NAME = 0
 };

data - pointer to the server name data.

size - size of the server name data.

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ssl = wolfSSL_new(ctx);

if (ssl == NULL) {
 // ssl creation failed
}

ret = wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, "www.yassl.com",
strlen("www.yassl.com"));

if (ret != 0) {
 // sni usage failed
}

See Also:
wolfSSL_new
wolfSSL_CTX_UseSNI

wolfSSL_CTX_SNI_SetOptions

Copyright 2015 wolfSSL Inc. All rights reserved.

297

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_CTX_SNI_SetOptions(WOLFSSL_CTX* ctx, unsigned char type,
unsigned char options);

Description:
This function is called on the server side to configure the behavior of the SSL sessions
using Server Name Indication for SSL objects created from the SSL context passed in
the 'ctx' parameter. The options are explained below.

Return Values:
This function does not have a return value.

Parameters:

ctx - pointer to a SSL context, created with wolfSSL_CTX_new().

type - indicates which type of server name is been passed in data. The known types
are:
 enum {
 WOLFSSL_SNI_HOST_NAME = 0
 };

options - a bitwise semaphore with the chosen options. The available options are:
 enum {
 WOLFSSL_SNI_CONTINUE_ON_MISMATCH = 0x01,
 WOLFSSL_SNI_ANSWER_ON_MISMATCH = 0x02
 };

Normally the server will abort the handshake by sending a fatal-level
unrecognized_name(112) alert if the hostname provided by the client mismatch with the
servers.

WOLFSSL_SNI_CONTINUE_ON_MISMATCH - With this option set, the server will not
send a SNI response instead of aborting the session.

WOLFSSL_SNI_ANSWER_ON_MISMATCH - With this option set, the server will send
a SNI response as if the host names match instead of aborting the session.

Copyright 2015 wolfSSL Inc. All rights reserved.

298

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ret = wolfSSL_CTX_UseSNI(ctx, 0, "www.yassl.com", strlen("www.yassl.com"));

if (ret != 0) {
 // sni usage failed
}

wolfSSL_CTX_SNI_SetOptions(ctx, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_CONTINUE_ON_MISMATCH);

See Also:
wolfSSL_CTX_new
wolfSSL_CTX_UseSNI
wolfSSL_SNI_SetOptions

wolfSSL_SNI_SetOptions

Synopsis:
#include <wolfssl/ssl.h>

void wolfSSL_SNI_SetOptions(WOLFSSL* ssl, unsigned char type, unsigned char
options);

Description:
This function is called on the server side to configure the behavior of the SSL session
using Server Name Indication in the SSL object passed in the 'ssl' parameter. The
options are explained below.

Return Values:
This function does not have a return value.

Copyright 2015 wolfSSL Inc. All rights reserved.

299

Parameters:

ssl - pointer to a SSL object, created with wolfSSL_new().

type - indicates which type of server name is been passed in data. The known types
are:
 enum {
 WOLFSSL_SNI_HOST_NAME = 0
 };

options - a bitwise semaphore with the chosen options. The available options are:
 enum {
 WOLFSSL_SNI_CONTINUE_ON_MISMATCH = 0x01,
 WOLFSSL_SNI_ANSWER_ON_MISMATCH = 0x02
 };

Normally the server will abort the handshake by sending a fatal-level
unrecognized_name(112) alert if the hostname provided by the client mismatch with the
servers.

WOLFSSL_SNI_CONTINUE_ON_MISMATCH - With this option set, the server will not
send a SNI response instead of aborting the session.

WOLFSSL_SNI_ANSWER_ON_MISMATCH - With this option set, the server will send
a SNI response as if the host names match instead of aborting the session.

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ssl = wolfSSL_new(ctx);

if (ssl == NULL) {

Copyright 2015 wolfSSL Inc. All rights reserved.

300

 // ssl creation failed
}

ret = wolfSSL_UseSNI(ssl, 0, "www.yassl.com", strlen("www.yassl.com"));

if (ret != 0) {
 // sni usage failed
}

wolfSSL_SNI_SetOptions(ssl, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_CONTINUE_ON_MISMATCH);

See Also:
wolfSSL_new
wolfSSL_UseSNI
wolfSSL_CTX_SNI_SetOptions

wolfSSL_SNI_GetRequest

Synopsis:
#include <wolfssl/ssl.h>

unsigned short wolfSSL_SNI_GetRequest(WOLFSSL *ssl, unsigned char type, void**
data);

Description:
This function is called on the server side to retrieve the Server Name Indication
provided by the client in a SSL session.

Return Values:
The size of the provided SNI data.

Parameters:

ssl - pointer to a SSL object, created with wolfSSL_new().

type - indicates which type of server name is been retrieved in data. The known types
are:
 enum {
 WOLFSSL_SNI_HOST_NAME = 0

Copyright 2015 wolfSSL Inc. All rights reserved.

301

 };

data - pointer to the data provided by the client.

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ssl = wolfSSL_new(ctx);

if (ssl == NULL) {
 // ssl creation failed
}

ret = wolfSSL_UseSNI(ssl, 0, "www.yassl.com", strlen("www.yassl.com"));

if (ret != 0) {
 // sni usage failed
}

if (wolfSSL_accept(ssl) == SSL_SUCCESS) {
 void *data = NULL;
 unsigned short size = wolfSSL_SNI_GetRequest(ssl, 0, &data);
}

See Also:
wolfSSL_UseSNI
wolfSSL_CTX_UseSNI

wolfSSL_SNI_GetFromBuffer

Synopsis:
#include <wolfssl/ssl.h>

Copyright 2015 wolfSSL Inc. All rights reserved.

302

WOLFSSL_API int wolfSSL_SNI_GetFromBuffer(const unsigned char* clientHello,
unsigned int helloSz, unsigned char type, unsigned char* sni, unsigned int* inOutSz);

Description:
This function is called on the server side to retrieve the Server Name Indication
provided by the client from the Client Hello message sent by the client to start a
session. It does not requires context or session setup to retrieve the SNI.

Return Values:
If successful the call will return SSL_SUCCESS;
If there is no SNI extension in the client hello, the call will return 0.

BAD_FUNC_ARG is the error that will be returned in one of this cases:
 * buffer is NULL
 * bufferSz <= 0
 * sni is NULL
 * inOutSz is NULL or <= 0

BUFFER_ERROR is the error returned when there is a malformed Client Hello
message.

INCOMPLETE_DATA is the error returned when there is not enough data to complete
the extraction.

Parameters:

buffer - pointer to the data provided by the client (Client Hello).

bufferSz - size of the Client Hello message.

type - indicates which type of server name is been retrieved from the buffer. The known
types are:
 enum {
 WOLFSSL_SNI_HOST_NAME = 0
 };

sni - pointer to where the output is going to be stored.

Copyright 2015 wolfSSL Inc. All rights reserved.

303

inOutSz - pointer to the output size, this value will be updated to MIN("SNI's length",
inOutSz).

Example:

unsigned char buffer[1024] = {0};
unsigned char result[32] = {0};
int length = 32;

// read Client Hello to buffer...

ret = wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer), 0, result, &length));

if (ret != SSL_SUCCESS) {
 // sni retrieve failed
}

See Also:
wolfSSL_UseSNI
wolfSSL_CTX_UseSNI
wolfSSL_SNI_GetRequest

wolfSSL_CTX_UseMaxFragment

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CTX_UseMaxFragment(WOLFSSL_CTX* ctx, unsigned char mfl);

Description:
This function is called on the client side to enable the use of Maximum Fragment Length
for SSL objects created from the SSL context passed in the 'ctx' parameter. It means
that the Maximum Fragment Length extension will be sent on ClientHello by wolfSSL
clients.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ctx is NULL

Copyright 2015 wolfSSL Inc. All rights reserved.

304

 * mfl is out of range.

MEMORY_E is the error returned when there is not enough memory.

Parameters:

ctx - pointer to a SSL context, created with wolfSSL_CTX_new().

mfl - indicates which is the Maximum Fragment Length requested for the session. The
available options are:
 enum {
 WOLFSSL_MFL_2_9 = 1, /* 512 bytes */
 WOLFSSL_MFL_2_10 = 2, /* 1024 bytes */
 WOLFSSL_MFL_2_11 = 3, /* 2048 bytes */
 WOLFSSL_MFL_2_12 = 4, /* 4096 bytes */
 WOLFSSL_MFL_2_13 = 5 /* 8192 bytes *//* wolfSSL ONLY!!! */
 };

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ret = wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_11);

if (ret != 0) {
 // max fragment usage failed
}

See Also:
wolfSSL_CTX_new
wolfSSL_UseMaxFragment

wolfSSL_UseMaxFragment

Copyright 2015 wolfSSL Inc. All rights reserved.

305

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_UseMaxFragment(WOLFSSL* ssl, unsigned char mfl);

Description:
This function is called on the client side to enable the use of Maximum Fragment Length
in the SSL object passed in the 'ssl' parameter. It means that the Maximum Fragment
Length extension will be sent on ClientHello by wolfSSL clients.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ssl is NULL
 * mfl is out of range.

MEMORY_E is the error returned when there is not enough memory.

Parameters:

ssl - pointer to a SSL object, created with wolfSSL_new().

mfl - indicates witch is the Maximum Fragment Length requested for the session. The
available options are:
 enum {
 WOLFSSL_MFL_2_9 = 1, /* 512 bytes */
 WOLFSSL_MFL_2_10 = 2, /* 1024 bytes */
 WOLFSSL_MFL_2_11 = 3, /* 2048 bytes */
 WOLFSSL_MFL_2_12 = 4, /* 4096 bytes */
 WOLFSSL_MFL_2_13 = 5 /* 8192 bytes *//* wolfSSL ONLY!!! */
 };

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;

ctx = wolfSSL_CTX_new(method);

Copyright 2015 wolfSSL Inc. All rights reserved.

306

if (ctx == NULL) {
 // context creation failed
}

ssl = wolfSSL_new(ctx);

if (ssl == NULL) {
 // ssl creation failed
}

ret = wolfSSL_UseMaxFragment(ssl, WOLFSSL_MFL_2_11);

if (ret != 0) {
 // max fragment usage failed
}

See Also:
wolfSSL_new
wolfSSL_CTX_UseMaxFragment

wolfSSL_CTX_UseTruncatedHMAC

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CTX_UseTruncatedHMAC(WOLFSSL_CTX* ctx);

Description:
This function is called on the client side to enable the use of Truncated HMAC for SSL
objects created from the SSL context passed in the 'ctx' parameter. It means that the
Truncated HMAC extension will be sent on ClientHello by wolfSSL clients.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ctx is NULL

MEMORY_E is the error returned when there is not enough memory.

Parameters:

Copyright 2015 wolfSSL Inc. All rights reserved.

307

ctx - pointer to a SSL context, created with wolfSSL_CTX_new().

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ret = wolfSSL_CTX_UseTruncatedHMAC(ctx);

if (ret != 0) {
 // truncated HMAC usage failed
}

See Also:
wolfSSL_CTX_new
wolfSSL_UseMaxFragment

wolfSSL_UseTruncatedHMAC

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_UseTruncatedHMAC(WOLFSSL* ssl);

Description:
This function is called on the client side to enable the use of Truncated HMAC in the
SSL object passed in the 'ssl' parameter. It means that the Truncated HMAC extension
will be sent on ClientHello by wolfSSL clients.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ssl is NULL

Copyright 2015 wolfSSL Inc. All rights reserved.

308

MEMORY_E is the error returned when there is not enough memory.

Parameters:

ssl - pointer to a SSL object, created with wolfSSL_new().

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ssl = wolfSSL_new(ctx);

if (ssl == NULL) {
 // ssl creation failed
}

ret = wolfSSL_UseTruncatedHMAC(ssl);

if (ret != 0) {
 // truncated HMAC usage failed
}

See Also:
wolfSSL_new
wolfSSL_CTX_UseMaxFragment

wolfSSL_CTX_UseSupportedCurve

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_CTX_UseSupportedCurve(WOLFSSL_CTX* ctx, unsigned short name);

Copyright 2015 wolfSSL Inc. All rights reserved.

309

Description:
This function is called on the client side to enable the use of Supported Elliptic Curves
Extension for SSL objects created from the SSL context passed in the 'ctx' parameter. It
means that the supported curves enabled will be sent on ClientHello by wolfSSL clients.
This function can be called more than one time to enable multiple curves.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ctx is NULL
 * name is a unknown value. (see below)

MEMORY_E is the error returned when there is not enough memory.

Parameters:

ctx - pointer to a SSL context, created with wolfSSL_CTX_new().

name - indicates which curve will be supported for the session. The available options
are:
 enum {
 WOLFSSL_ECC_SECP160R1 = 0x10,
 WOLFSSL_ECC_SECP192R1 = 0x13,
 WOLFSSL_ECC_SECP224R1 = 0x15,
 WOLFSSL_ECC_SECP256R1 = 0x17,
 WOLFSSL_ECC_SECP384R1 = 0x18,
 WOLFSSL_ECC_SECP521R1 = 0x19
 };

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

Copyright 2015 wolfSSL Inc. All rights reserved.

310

ret = wolfSSL_CTX_UseSupportedCurve(ctx, WOLFSSL_ECC_SECP256R1);

if (ret != 0) {
 // Elliptic Curve Extension usage failed
}

See Also:
wolfSSL_CTX_new
wolfSSL_UseSupportedCurve

wolfSSL_UseSupportedCurve

Synopsis:
#include <wolfssl/ssl.h>

int wolfSSL_UseSupportedCurve(WOLFSSL* ssl, unsigned short name);

Description:
This function is called on the client side to enable the use of Supported Elliptic Curves
Extension in the SSL object passed in the 'ssl' parameter. It means that the supported
curves enabled will be sent on ClientHello by wolfSSL clients. This function can be
called more than one time to enable multiple curves.

Return Values:
If successful the call will return SSL_SUCCESS.

BAD_FUNC_ARG is the error that will be returned in one of these cases:
 * ssl is NULL
 * name is a unknown value. (see below)

MEMORY_E is the error returned when there is not enough memory.

Parameters:

ssl - pointer to a SSL object, created with wolfSSL_new().

name - indicates which curve will be supported for the session. The available options
are:
 enum {
 WOLFSSL_ECC_SECP160R1 = 0x10,

Copyright 2015 wolfSSL Inc. All rights reserved.

311

 WOLFSSL_ECC_SECP192R1 = 0x13,
 WOLFSSL_ECC_SECP224R1 = 0x15,
 WOLFSSL_ECC_SECP256R1 = 0x17,
 WOLFSSL_ECC_SECP384R1 = 0x18,
 WOLFSSL_ECC_SECP521R1 = 0x19
 };

Example:

int ret = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;

ctx = wolfSSL_CTX_new(method);

if (ctx == NULL) {
 // context creation failed
}

ssl = wolfSSL_new(ctx);

if (ssl == NULL) {
 // ssl creation failed
}

ret = wolfSSL_UseSupportedCurve(ssl, WOLFSSL_ECC_SECP256R1);

if (ret != 0) {
 // Elliptic Curve Extension usage failed
}

See Also:
wolfSSL_CTX_new
wolfSSL_CTX_UseSupportedCurve

Appendix A: SSL/TLS Overview

A.1 General Architecture

Copyright 2015 wolfSSL Inc. All rights reserved.

312

The wolfSSL (formerly CyaSSL) embedded SSL library implements SSL 3.0, TLS 1.0,
TLS 1.1 and TLS 1.2 protocols. TLS 1.2 is currently the most secure and up to date
version of the standard. wolfSSL does not support SSL 2.0 due to the fact that it has
been insecure for several years.

The TLS protocol in wolfSSL is implemented as defined in RFC 5246
(http://tools.ietf.org/html/rfc5246). Two record layer protocols exist within SSL - the
message layer and the handshake layer. Handshake messages are used to negotiate a
common cipher suite, create secrets, and enable a secure connection. The message
layer encapsulates the handshake layer while also supporting alert processing and
application data transfer.

A general diagram of how the SSL protocol fits into existing protocols can be seen in
Figure 1. SSL sits in between the Transport and Application layers of the OSI model,
where any number of protocols (including TCP/IP, Bluetooth, etc.) may act as the
transport medium. Application protocols are layered on top of SSL (such as HTTP,
FTP, and SMTP).

(Figure 1: SSL Protocol Diagram)

A.2 SSL Handshake

The SSL handshake involves several steps, some of which are optional depending on
what options the SSL client and server have been configured with. Below, in Figure 2,
you will find a simplified diagram of the SSL handshake process.

Copyright 2015 wolfSSL Inc. All rights reserved.

313

(Figure 2: SSL Handshake Diagram)

A.3 Differences between SSL and TLS Protocol Versions

SSL (Secure Socket Layer) and TLS (Transport Security Layer) are both cryptographic
protocols which provide secure communication over networks. These two protocols
(and the several version of each) are in widespread use today in applications ranging

Copyright 2015 wolfSSL Inc. All rights reserved.

314

from web browsing to e-mail to instant messaging and VoIP. Each protocol, and the
underlying versions of each, are slightly different from the other.

Below you will find both an explanation of and the major differences between the
different SSL and TLS protocol versions. For specific details about each protocol,
please reference the RFC specification mentioned.

SSL 3.0
This protocol was released in 1996 but began with the creation of SSL 1.0 developed by
Netscape. Version 1.0 wasn't released, and version 2.0 had a number of security flaws,
thus leading to the release of SSL 3.0. Some major improvements of SSL 3.0 over SSL
2.0 are:

● Separation of the transport of data from the message layer
● Use of a full 128 bits of keying material even when using the Export cipher
● Ability of the client and server to send chains of certificates, thus allowing

organizations to use certificate hierarchy which is more than two certificates
deep.

● Implementing a generalized key exchange protocol, allowing Diffie-Hellman and
Fortezza key exchanges as well as non-RSA certificates.

● Allowing for record compression and decompression
● Ability to fall back to SSL 2.0 when a 2.0 client is encountered

TLS 1.0
This protocol was first defined in RFC 2246 in January of 1999. This was an upgrade
from SSL 3.0 and the differences were not dramatic, but they are significant enough that
SSL 3.0 and TLS 1.0 don't interoperate. Some of the major differences between SSL
3.0 and TLS 1.0 are:

● Key derivation functions are different
● MACs are different - SSL 3.0 uses a modification of an early HMAC while TLS

1.0 uses HMAC.
● The Finished messages are different
● TLS has more alerts
● TLS requires DSS/DH support

TLS 1.1
This protocol was defined in RFC 4346 in April of 2006, and is an update to TLS 1.0.
The major changes are:

Copyright 2015 wolfSSL Inc. All rights reserved.

315

● The Implicit Initialization Vector (IV) is replaced with an explicit IV to protect
against Cipher block chaining (CBC) attacks.

● Handling of padded errors is changed to use the bad_record_mac alert rather
than the decryption_failed alert to protect against CBC attacks.

● IANA registries are defined for protocol parameters
● Premature closes no longer cause a session to be non-resumable.

TLS 1.2
This protocol was defined in RFC 5246 in August of 2008. Based on TLS 1.1, TLS 1.2
contains improved flexibility. The major differences include:

● The MD5/SHA-1 combination in the pseudorandom function (PRF) was replaced

with cipher-suite-specified PRFs.
● The MD5/SHA-1 combination in the digitally-signed element was replaced with a

single hash. Signed elements include a field explicitly specifying the hash
algorithm used.

● There was substantial cleanup to the client's and server's ability to specify which
hash and signature algorithms they will accept.

● Addition of support for authenticated encryption with additional data modes.
● TLS Extensions definition and AES Cipher Suites were merged in.
● Tighter checking of EncryptedPreMasterSecret version numbers.
● Many of the requirements were tightened
● Verify_data length depends on the cipher suite
● Description of Bleichenbacher/Dlima attack defenses cleaned up.

Appendix B: RFCs, Specifications, and Reference

B.1 Protocols
 SSL v3.0 http://tools.ietf.org/id/draft-ietf-tls-ssl-version3-00.txt

TLS v1.0 http://www.ietf.org/rfc/rfc2246.txt
TLS v1.1 http://www.ietf.org/rfc/rfc4346.txt
TLS v1.2 http://www.ietf.org/rfc/rfc5246.txt
DTLS http://tools.ietf.org/html/rfc4347
 http://crypto.stanford.edu/~nagendra/papers/dtls.pdf
IPv4 http://en.wikipedia.org/wiki/IPv4
IPv6 http://en.wikipedia.org/wiki/IPv6

B.2 Stream Ciphers
 Stream Cipher http://en.wikipedia.org/wiki/Stream_cipher
 HC-128 http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf

Copyright 2015 wolfSSL Inc. All rights reserved.

316

 RABBIT http://cr.yp.to/streamciphers/rabbit/desc.pdf
 RC4 / ARC4 http://tools.ietf.org/id/draft-kaukonen-cipher-arcfour-03.txt

http://en.wikipedia.org/wiki/Rc4

B.3 Block Ciphers
 Block Cipher http://en.wikipedia.org/wiki/Block_cipher
 AES http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
 AES-GCM
 http://www.csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/
gcm-revised-spec.pdf
 AES-NI Intel Software Network
 DES/3DES http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

http://en.wikipedia.org/wiki/Data_Encryption_Standard

B.4 Hashing Functions

SHA http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://en.wikipedia.org/wiki/SHA_hash_functions

 MD4 http://tools.ietf.org/html/rfc1320
 MD5 http://tools.ietf.org/html/rfc1321
 RIPEMD-160 http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

B.5 Public Key Cryptography
 Diffie-Hellman http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
 RSA http://people.csail.mit.edu/rivest/Rsapaper.pdf

http://en.wikipedia.org/wiki/RSA
 DSA/DSS http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
 NTRU http://securityinnovation.com/cryptolab/

 X.509 http://www.ietf.org/rfc/rfc3279.txt
 ASN.1 http://luca.ntop.org/Teaching/Appunti/asn1.html

http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
 PSK http://tools.ietf.org/html/rfc4279

B.6 Other
 PKCS#5, PBKDF1, PBKDF2 http://tools.ietf.org/html/rfc2898
 PKCS#8 http://tools.ietf.org/html/rfc5208
 PKCS#12 http://www.rsa.com/rsalabs/node.asp?id=2138

Appendix C: Error Codes

Copyright 2015 wolfSSL Inc. All rights reserved.

317

C.1 wolfSSL Error Codes

wolfSSL (formerly CyaSSL) error codes can be found in wolfssl/ssl.h. For detailed
descriptions of the following errors, see the OpenSSL man page for SSL_get_error
(man SSL_get_error).

Error Code Enum Error Code Error Description

SSL_ERROR_WANT_READ 2

SSL_ERROR_WANT_WRITE 3

SSL_ERROR_WANT_CONNECT 7

SSL_ERROR_WANT_ACCEPT 8

SSL_ERROR_SYSCALL 5

SSL_ERROR_WANT_X509_LOOKU
P

83

SSL_ERROR_ZERO_RETURN 6

SSL_ERROR_SSL 85

Additional wolfSSL error codes can be found in wolfssl/error-ssl.h

Error Code Enum Error Code Error Description

PREFIX_ERROR -302 bad index to key rounds

MEMORY_ERROR -303 out of memory

VERIFY_FINISHED_ERROR -304 verify problem on finished

VERIFY_MAC_ERROR -305 verify mac problem

PARSE_ERROR -306 parse error on header

UNKNOWN_HANDSHAKE_TYPE -307 weird handshake type

SOCKET_ERROR_E -308 error state on socket

SOCKET_NODATA -309 expected data, not there

INCOMPLETE_DATA -310 don't have enough data to complete task

Copyright 2015 wolfSSL Inc. All rights reserved.

318

UNKNOWN_RECORD_TYPE -311 unknown type in record hdr

DECRYPT_ERROR -312 error during decryption

FATAL_ERROR -313 revcd alert fatal error

ENCRYPT_ERROR -314 error during encryption

FREAD_ERROR -315 fread problem

NO_PEER_KEY -316 need peer's key

NO_PRIVATE_KEY -317 need the private key

RSA_PRIVATE_ERROR -318 error during rsa priv op

NO_DH_PARAMS -319 server missing DH params

BUILD_MSG_ERROR -320 build message failure

BAD_HELLO -321 client hello malformed

DOMAIN_NAME_MISMATCH -322 peer subject name mismatch

WANT_READ -323 want read, call again

NOT_READY_ERROR -324 handshake layer not ready

PMS_VERSION_ERROR -325 pre m secret version error

VERSION_ERROR -326 record layer version error

WANT_WRITE -327 want write, call again

BUFFER_ERROR -328 malformed buffer input

VERIFY_CERT_ERROR -329 verify cert error

VERIFY_SIGN_ERROR -330 verify sign error

CLIENT_ID_ERROR -331 psk client identity error

SERVER_HINT_ERROR -332 psk server hint error

PSK_KEY_ERROR -333 psk key error

ZLIB_INIT_ERROR -334 zlib init error

ZLIB_COMPRESS_ERROR -335 zlib compression error

ZLIB_DECOMPRESS_ERROR -336 zlib decompression error

GETTIME_ERROR -337 gettimeofday failed ???

GETITIMER_ERROR -338 getitimer failed ???

Copyright 2015 wolfSSL Inc. All rights reserved.

319

SIGACT_ERROR -339 sigaction failed ???

SETITIMER_ERROR -340 setitimer failed ???

LENGTH_ERROR -341 record layer length error

PEER_KEY_ERROR -342 cant decode peer key

ZERO_RETURN -343 peer sent close notify

SIDE_ERROR -344 wrong client/server type

NO_PEER_CERT -345 peer didn't send key

NTRU_KEY_ERROR -346 NTRU key error

NTRU_DRBG_ERROR -347 NTRU drbg error

NTRU_ENCRYPT_ERROR -348 NTRU encrypt error

NTRU_DECRYPT_ERROR -349 NTRU decrypt error

ECC_CURVETYPE_ERROR -350 Bad ECC Curve Type

ECC_CURVE_ERROR -351 Bad ECC Curve

ECC_PEERKEY_ERROR -352 Bad Peer ECC Key

ECC_MAKEKEY_ERROR -353 Bad Make ECC Key

ECC_EXPORT_ERROR -354 Bad ECC Export Key

ECC_SHARED_ERROR -355 Bad ECC Shared Secret

NOT_CA_ERROR -357 Not CA cert error

BAD_PATH_ERROR -358 Bad path for opendir

BAD_CERT_MANAGER_ERROR -359 Bad Cert Manager

OCSP_CERT_REVOKED -360 OCSP Certificate revoked

CRL_CERT_REVOKED -361 CRL Certificate revoked

CRL_MISSING -362 CRL Not loaded

MONITOR_RUNNING_E -363 CRL Monitor already running

THREAD_CREATE_E -364 Thread Create Error

OCSP_NEED_URL -365 OCSP need an URL for lookup

OCSP_CERT_UNKNOWN -366 OCSP responder doesn’t know

OCSP_LOOKUP_FAIL -367 OCSP lookup not successful

Copyright 2015 wolfSSL Inc. All rights reserved.

320

MAX_CHAIN_ERROR -368 max chain depth exceeded

COOKIE_ERROR -369 dtls cookie error

SEQUENCE_ERROR -370 dtls sequence error

SUITES_ERROR -371 suites pointer error

SSL_NO_PEM_HEADER -372 no PEM header found

OUT_OF_ORDER_E -373 out of order message

BAD_KEA_TYPE_E -374 bad KEA type found

SANITY_CIPHER_E -375 sanity check on cipher error

RECV_OVERFLOW_E -376 RXCB returned more than rqed

GEN_COOKIE_E -377 Generate Cookie Error

NO_PEER_VERIFY -378 Need peer cert verify Error

FWRITE_ERROR -379 fwrite problem

CACHE_MATCH_ERROR -380 cache hrd match error

UNKNOWN_SNI_HOST_NAME_E -381 Unrecognized host name Error

UNKNOWN_MAX_FRAG_LEN_E -382 Unrecognized max frag len Error

KEYUSE_SIGNATURE_E -383 KeyUse digSignature error

KEYUSE_ENCIPHER_E -385 KeyUse KeyEncipher error

EXTKEYUSE_AUTH_E -386 ExtKeyUse server|client_auth

SEND_OOB_READ_E -387 Send Cb out of bounds read

UNSUPPORTED_SUITE -390 unsupported cipher suite

MATCH_SUITE_ERROR -391 can't match cipher suite

C.2 wolfCrypt Error Codes

wolfCrypt error codes can be found in wolfssl/wolfcrypt/error.h.

Error Code Enum Error

Code
Error Description

Copyright 2015 wolfSSL Inc. All rights reserved.

321

OPEN_RAN_E -101 opening random device error

READ_RAN_E -102 reading random device error

WINCRYPT_E -103 windows crypt init error

CRYPTGEN_E -104 windows crypt generation error

RAN_BLOCK_E -105 reading random device would block

BAD_MUTEX_E -106 Bad mutex operation

MP_INIT_E -110 mp_init error state

MP_READ_E -111 mp_read error state

MP_EXPTMOD_E -112 mp_exptmod error state

MP_TO_E -113 mp_to_xxx error state, can't convert

MP_SUB_E -114 mp_sub error state, can't subtract

MP_ADD_E -115 mp_add error state, can't add

MP_MUL_E -116 mp_mul error state, can't multiply

MP_MULMOD_E -117 mp_mulmod error state, can't multiply mod

MP_MOD_E -118 mp_mod error state, can't mod

MP_INVMOD_E -119 mp_invmod error state, can't inv mod

MP_CMP_E -120 mp_cmp error state

MP_ZERO_E -121 got a mp zero result, not expected

MEMORY_E -125 out of memory error

RSA_WRONG_TYPE_E -130 RSA wrong block type for RSA function

RSA_BUFFER_E -131 RSA buffer error, output too small or input too large

BUFFER_E -132 output buffer too small or input too large

ALGO_ID_E -133 setting algo id error

PUBLIC_KEY_E -134 setting public key error

DATE_E -135 setting date validity error

SUBJECT_E -136 setting subject name error

ISSUER_E -137 setting issuer name error

CA_TRUE_E -138 setting CA basic constraint true error

Copyright 2015 wolfSSL Inc. All rights reserved.

322

EXTENSIONS_E -139 setting extensions error

ASN_PARSE_E -140 ASN parsing error, invalid input

ASN_VERSION_E -141 ASN version error, invalid number

ASN_GETINT_E -142 ASN get big int error, invalid data

ASN_RSA_KEY_E -143 ASN key init error, invalid input

ASN_OBJECT_ID_E -144 ASN object id error, invalid id

ASN_TAG_NULL_E -145 ASN tag error, not null

ASN_EXPECT_0_E -146 ASN expect error, not zero

ASN_BITSTR_E -147 ASN bit string error, wrong id

ASN_UNKNOWN_OID_E -148 ASN oid error, unknown sum id

ASN_DATE_SZ_E -149 ASN date error, bad size

ASN_BEFORE_DATE_E -150 ASN date error, current date before

ASN_AFTER_DATE_E -151 ASN date error, current date after

ASN_SIG_OID_E -152 ASN signature error, mismatched oid

ASN_TIME_E -153 ASN time error, unknown time type

ASN_INPUT_E -154 ASN input error, not enough data

ASN_SIG_CONFIRM_E -155 ASN sig error, confirm failure

ASN_SIG_HASH_E -156 ASN sig error, unsupported hash type

ASN_SIG_KEY_E -157 ASN sig error, unsupported key type

ASN_DH_KEY_E -158 ASN key init error, invalid input

ASN_NTRU_KEY_E -159 ASN ntru key decode error, invalid input

ASN_CRIT_EXT_E -160 ASN unsupported critical extension

ECC_BAD_ARG_E -170 ECC input argument of wrong type

ASN_ECC_KEY_E -171 ASN ECC bad input

ECC_CURVE_OID_E -172 Unsupported ECC OID curve type

BAD_FUNC_ARG -173 Bad function argument provided

NOT_COMPILED_IN -174 Feature not compiled in

UNICODE_SIZE_E -175 Unicode password too big

Copyright 2015 wolfSSL Inc. All rights reserved.

323

NO_PASSWORD -176 no password provided by user

ALT_NAME_E -177 alt name size problem, too big

AES_GCM_AUTH_E -180 AES-GCM Authentication check failure

AES_CCM_AUTH_E -181 AES-CCM Authentication check failure

CAVIUM_INIT_E -182 Cavium Init type error

COMPRESS_INIT_E -183 Compress init error

COMPRESS_E -184 Compress error

DECOMPRESS_INIT_E -185 DeCompress init error

DECOMPRESS_E -186 DeCompress error

BAD_ALIGN_E -187 Bad alignment for operation, no alloc

ASN_NO_SIGNER_E -188 ASN sig error, no CA signer to verify certificate

ASN_CRL_CONFIRM_E -189 ASN CRL no signer to confirm failure

ASN_CRL_NO_SIGNER_E -190 ASN CRL no signer to confirm failure

ASN_OCSP_CONFIRM_E -191 ASN OCSP signature confirm failure

BAD_ENC_STATE_E -192 Bad ecc enc state operation

BAD_PADDING_E -193 Bad padding, msg not correct length

REQ_ATTRIBUTE_E -194 setting cert request attributes error

PKCS7_OID_E -195 PKCS#7, mismatched OID error

PKCS7_RECIP_E -196 PKCS#7, recipient error

FIPS_NOT_ALLOWED_E -197 FIPS not allowed error

ASN_NAME_INVALID_E -198 ASN name constraint error

RNG_FAILURE_E -199 RNG Failed, Reinitialize

HMAC_MIN_KEYLEN_E -200 FIPS Mode HMAC Minimum Key Length error

RSA_PAD_E -201 RSA Padding Error

MIN_CODE_E -300 errors -101 - -299

C.3 Common Error Codes and their Solution

Copyright 2015 wolfSSL Inc. All rights reserved.

324

There are several error codes that commonly happen when getting an application up
and running with wolfSSL.

ASN_NO_SIGNER_E (-188)
This error occurs when using a certificate and the signing CA certificate was not loaded.
This can be seen using the wolfSSL example server or client against another client or
server, for example connecting to Google using the wolfSSL example client:

$./examples/client/client -g -h www.google.com -p 443
This fails with error -188 because Google’s CA certificate wasn’t loaded with the “-A”
command line option.

WANT_READ (-323)
The WANT_READ error happens often when using non-blocking sockets, and isn’t
actually an error when using non-blocking sockets, but it is passed up to the caller as an
error. When a call to receive data from the I/O callback would block as there isn’t data
currently available to receive, the I/O callback returns WANT_READ. The caller should
wait and try receiving again later. This is usually seen from calls to wolfSSL_read(),
wolfSSL_negotiate(), wolfSSL_accept(), and wolfSSL_connect(). The example client
and server will indicate the WANT_READ incidents when debugging is enabled.

