A Spreadsheet Model to Create Data-Driven
Applications Using Online Data

Kerry Shih-Ping Chang
Ph.D. Thesis Proposal
January 28th, 2015

Thesis Committee:

Brad A. Myers (chair) (HCI, CMU)

John Zimmerman (HCI and Design, CMU)
Niki Kittur (HCI, CMU)

Margaret M. Burnett (CS, Oregon State)

Abstract

The Internet is full of all kinds of open data. Being able to easily use these data in
custom ways could benefit many individuals. For example, a house buyer may want
an application that takes a location and finds the average property price using a
real-estate web service along with crime information in a CSV file downloaded from
data.gov. Another example might be a restaurant manager who wants an application
that regularly collects the restaurant’s reviews using Yelp’s web service and
visualizes the correlations between the restaurant’s weekly sales and the average
rating on Yelp. Creating such applications currently requires significant
programming to retrieve data from web databases, manipulate the collected data
into desired forms, and create interactive user interfaces to present the results.

My dissertation presents a spreadsheet tool called Gneiss that makes contributions
in significantly reducing the barriers to using online data and for creating data-
driven applications. Gneiss will include techniques to dynamically retrieve or
stream data from a variety of data sources such as REST web services, web pages
and mobile sensors, and to use the data in a spreadsheet without writing
conventional code. It extends spreadsheets to handle structured data, streaming
data and to facilitate data exploration in spreadsheets by introducing new
spreadsheet functions and interaction techniques. Moreover, Gneiss allows the user
to not only create visualizations of spreadsheet data but also to program interactive
web applications that can dynamically present or modify spreadsheet data using
only the spreadsheet language. With Gneiss, the user can create web applications
that use data from multiple web sources or turn a spreadsheet into a database to
store user input data from a web page.

Gneiss targets end-users who are knowledgeable in spreadsheet programming. It
supports all the above features using a consistent equation-based evaluation model
familiar to spreadsheet users without the need for event-based programing. As with
regular spreadsheets, Gneiss is a live programming tool and achieves a
“programming-with-example” style as users develop programs with visible example
values.

This document discusses related work that motivates the design of Gneiss, presents
the current Gneiss system and the proposed work, which includes several
extensions to Gneiss to support spreadsheet data exploration and creating mobile
web applications, and a plan for evaluation to refine and validate Gneiss’s features.

1. Introduction

Much public and personal data now exist on the Internet. While some data are
presented in the form of web pages, the increasing demand to make custom use of
these data has led more and more data sources to publish their data as
downloadable files or through web services. For example, the U.S. government
publishes over 30,000 datasets of various topics such as climate, business and
education on data.gov as XML, CSV, JSON and Excel files; Google provides web
services for finance data, places and traffic information as well as personal
calendars and social network feeds from Google+; and Fitbit provides web services
of personal activity data collected from wearable devices. These sources provide
many new opportunities for individuals who are interested in doing custom data
analysis or creating custom applications that use data from online sources.

Currently, to efficiently use online data often involves significant programming.
First, to access data through web services usually requires writing a large amount of
surprisingly intricate code that deals with asynchronous network calls which may
fail to return, often requiring complex and sometimes nested call-backs. Second,
much online data are in structured formats such as XML and JSON instead of table
formats, making it difficult to process them using spreadsheets. As a result, using
structured data often involves writing query languages such as XPath to extract the
desired parts and then other imperative languages such as Python or JavaScript to
manipulate the extracted data. Finally, to further build applications that can
dynamically use online data sources requires even more programming skills than
would be needed to create user interfaces that show static content. These barriers
limit the ability to freely use the open data on the Internet to only developers who
are familiar with web programming.

My dissertation focuses on extending the familiar spreadsheet model for the
Internet era to reduce the barriers of using online data for end-users. Conventional
spreadsheets take local, static data and manipulate it to produce local, static graphs
or charts. However, many data sources are no longer static files but dynamic data in
web databases. Further, what many people want to create are also not static
document files anymore but rather interactive websites or web applications that
they want to enable others to use [43]. While conventional spreadsheets such as
Google Sheets and Excel are being enhanced with some abilities to access web data
and share content online, the spreadsheet model presented in my thesis will make
new contributions in handling structured and real-time data from a variety of web
data sources and allowing programming full-fledged interactive web applications. It
will be a spreadsheet model that provides holistic support for interacting with data
on the Internet, from collecting and manipulating data to publishing data-driven
applications.

Fle Edt Streaming

4 Used S

5 Used S

6 Used Sk

7 Used Skis 80
Used Skis 700 Buy or wat

s o first oen(s|

9 Used Skis 700

10 Used Skis 680

11 Used Skis 620

12 Used Stis 50

13 Used Siis 550

Current price: 81.0 Price vend
o = Buy or wait? Wait! B
15 Used Skis 00 e
16 Used Skis %90
17 Used Siis 8.0
18 Used Skis. 8.0
19 Used Skis 810

20 skis 81.0

21 skis 810 dashed #A

22 skis &1.0 B8

23 skis 810

Figure 1. A screenshot of Gneiss. Gneiss bundles a spreadsheet editor (2) with a browser-like source pane for
loading online data (1), and a web interface builder where the user can create web pages using drag-and-
drop (3)

This spreadsheet model is realized in an interactive programming environment
called Gneiss! (Figure 1). Like conventional spreadsheets, Gneiss is a live
programming tool where new values are distributed throughout the program and
reflected in the output as soon as the user makes an edit. It uses a “programming-
with-example” [26] style as it allows the user to develop programs using visible
example values from real data sources.

In summary, my research will make the following contributions:

¢ Itprovides a unified model for utilizing data from a variety of sources such as
REST web services, web pages, and mobile data sources such as sensor data,
and allows the data to be retrieved or streamed to a spreadsheet and used
without writing conventional code. Gneiss contributes ways to construct
two-way data flows between arbitrary data sources and a spreadsheet: it
supports interaction techniques to extract desired data from documents
returned by these sources to a spreadsheet and provides easy ways to embed
spreadsheet cells in web API requests to dynamically send spreadsheet data
to these sources.

* Itprovides new spreadsheet functions and interface elements that extend
spreadsheets to handle structured data, live streaming data and which
facilitate data explorations and transformations. Gneiss contributes the
design of cell metadata which enables the user to view and manipulate
spreadsheet data using provenance and temporal information. It also
contributes the design for nested cells that not only allows the user to view
and manipulate structured data in spreadsheets, but together with the new

1 Gneiss (pronounced the same as “nice”) is a kind of rock. Here it stands for
Gathering Novel End-user Internet Services using Spreadsheets.

multi-output formulas for data transformations, will also assist users in
exploring spreadsheet data and constructing hierarchical data visualizations.

¢ It unifies the access to web elements with the spreadsheet model, so the user
can create web applications that dynamically use and present spreadsheet
data using the familiar spreadsheet language. Gneiss extends the spreadsheet
language syntax to let GUI element properties be referenced and used in
spreadsheet formulas like spreadsheet cells, allowing the user to program
two-way data bindings between the web application and the spreadsheet.
Instead of using event-based (“push-based”) programming, Gneiss
contributes a way to program interactivities in web applications using the
spreadsheet’s equation-based (“pull-based”) evaluation model. This allows
users to program interactive behaviors and data-related interactive
visualizations in a web application including retrieving new data from
sources, storing user data, and dynamically sorting, filtering and visualization
data, all using spreadsheet formulas.

Features of the current version of Gneiss are described by publications at
VL/HCC’14 [8], UIST’14 [7] and CHI’15 [9]. Papers and demo videos can be found at
http://www.cs.cmu.edu/~shihpinc/gneiss.html. This proposal will summarize the
current work and the proposed work, which includes new features to support
spreadsheet data exploration and creating mobile web applications, and a plan to
conduct several lab studies and a field study to refine and validate Gneiss’s
approach.

My thesis statement is:

A new spreadsheet model that supports working with data retrieved from
various data sources, manipulating and exploring the collected data, and
creating interactive, data-driven web applications that use the backend
spreadsheet data can enable end-user programmers to create their own
applications.

In the rest of the proposal, I first discuss prior literature including use cases to
motivate the design of Gneiss and systems to reiterate Gneiss’ contributions. I then
present the current Gneiss system. Lastly, I describe the proposed work and a
timeline.

2. Target users and use cases

Gneiss is targeted at intermediate spreadsheet users (users who know how to use
spreadsheet functions) who have experiences in using WYSIWIG web editors (like
Dreamweaver). While Gneiss is designed to be an end-user tool, it could be useful to
anyone who wants to quickly collect online data or create data-driven applications. I
propose to conduct a field study as part of the evaluation to collect more use cases of
Gneiss and present them in the final thesis (see Evaluation section). Here, I first

discuss three use cases described in prior literature to motivate the creation of
Gneiss.

Gathering and integrating online data - Van Kleek et al. [20] found that people
regularly use multiple information sources on the Internet to complete everyday
tasks. For example, people would repeatedly gather information from multiple
sources to validate the correctness or accuracy of the information, such as
comparing product reviews on multiple shopping websites. Another use case was to
reference multiple sources to help make a decision, such as Google, social network
sites and dedicated reviews websites (like Yelp). Van Kleek et al. found that to
integrate data from multiple web services was a challenge for end-users, as the
same information from different sources was often named differently or recorded in
different structures. Gneiss can help end-users easily create reusable spreadsheet
programs that get data from multiple web services. As Gneiss provides solutions to
use structured data in spreadsheets, it allows users to filter, transform, and
integrate the collected data using the familiar spreadsheet mechanisms.

Self-tracking and personal analytics — The Quantified Self [44] movement has
motivated many people to track personal behavior data for reasons such as
understanding and improving personal health. Choe et al. [10] interviewed
Quantified-Selfers and found that many activities that people wanted to see were
not supported by existing commercial applications, as 40% of the interviewees used
general editing tools like spreadsheets to store their data, and 21% created their
own applications for data collection. People also are not satisfied with the analytics
provided by existing commercial applications, as many interviewees reported using
spreadsheets (44%) and custom software (35%) to perform custom data analysis.
Gneiss will support creating web applications that run on desktop or mobile devices
and can log sensor data and the user’s manual data entries in a spreadsheet. The
users can then perform custom analyses of the logged data using conventional
spreadsheet functions, or even create a web application to visualize live analytic
results. This type of custom tracking and visualization application is also widely
used in citizen science literature for logging and analyzing environmental data.
Gneiss provides a friendlier and more flexible programming environment for
creating such applications compared with prior systems (such as [19,45]) as the
user programs using the familiar spreadsheet language and has full control of what
the web interface looks like and how the spreadsheet data is manipulated and used.

End-user web programming and web prototyping - A survey by Rosson et al. [30]
found that 49% of the web developers consider themselves as non-programmers.
The study found that these “informal developers” valued data-related features (such
as making forms, surveys and accessing online databases) as much as professional
developers did but often were not able to implement them. Gneiss can be used by
end-users to create custom web data applications for individual or small group
usage, as it allows many common data operations required by web development

(such as using web services or saving user input data) to be programmed using
spreadsheet languages.

While Gneiss is capable of creating fully-functional applications, it can also be used
as a rapid prototyping tool for web designers to create high-fidelity prototypes [37]
that use real data from databases. Current web prototyping tools such as Adobe
Fireworks and Balsamiq let designers create static user interfaces but do not
support using data sources. For example, a prototype created in Adobe Fireworks
can be saved as a HTML web page, but to further connect the web page to a database
requires a person to write additional code. This limits many designers to only being
able to create static prototypes using dummy data. Gneiss enables designers to
quickly connect web elements to real data sources and present dynamic content
using spreadsheet expressions. Gneiss exports an application as HTML and CSS files,
which the designer can easily edit to adjust the styling as needed, along with the
necessary JavaScript generated from the spreadsheet formulas.

3. Related work

The related work comes from a number of areas, including mashups, spreadsheet
tools and end-user programming.

3.1. End-user mashup tools

Mashups are applications that make custom use of data from one or multiple
sources, such as combining data from multiple websites or providing new ways to
interact with the data [39]. Much research on end-user mashup tools focuses on
helping users extract or combine data from multiple sources without writing
conventional code. A few others focus on helping users use web service data. d.mix
[15] lets users copy web service calls from pre-annotated web pages to use in
personal mashups. Marmite [40] uses a data flow approach to let users create
mashups and has several built-in web services with which users can interact using
form widgets. DataPalette [20] also uses built-in web services and focuses on
helping users merge similar data from multiple sources. An unsolved issue in all of
these systems is that although they successfully hide the complexity of using web
service data from end-users, adding a new web service to these systems requires
writing a significant amount of conventional code that is almost impossible for end-
users to do. End-users also cannot select which data to extract from the entire
return document because this is preselected by the developers when programming
the web service into the tool. While there are tools that provide more general
widgets to fetch data from a URL (such as OpenRefine [46] and Yahoo Pipes [47]), in
these tools extracting the desired parts from the returned data still requires people
to write code using query languages like XPath[48], which are not necessarily
intuitive for end-users.

In contrast, Gneiss supports using data from any REST web service that returns data
in JSON format, and allows users to demonstrate how to extract the desired data
through drag-and-drop (and proposed work expands the available sources, as

explained below). Furthermore, all the prior tools mentioned above omit structures
in the extracted data and often show them as flattened strings. In contrast, Gneiss
maintains the structure of the data using nested tables and provides new functions
for manipulating and flattening the data structures to allow further manipulation
using regular spreadsheet methods.

Many prior tools focused on algorithms to extract data from web pages. Most of
them use the structure of the web page and heuristics generated from the
characteristics of the page. For example, Sifter [17] extracts search items on a web
page using the HTML structure and scrapes subsequent web pages by examining
hyperlinks (such as “Next page”) and URL parameters. Vispedia [5] extracts
Wikipedia infoboxes using the table structure and uses the hyperlinks in an infobox
to retrieve related topics. There are also commercial web scrapers, such as Scraper
[51], a Chrome plugin for scraping similar items in web pages, and ScraperWiki [52],
which specifically targets scraping Twitter and tabular data. Gneiss will also support
retrieving data from web pages and will reuse the algorithms developed in these
prior systems.

Some other tools focus on interaction techniques for extracting web page data. They
also use the page structure to identify related items, and determine the data to be
extracted based on the user’s demonstration. Karma [33] lets users extract data
from a web page by dragging the first item to a table and then the system populates
the rest of the rows with related items, but it does not allow the table data to be
entered back to the web browser. In contrast, Gneiss supports two-way data flow
between the web data source and the spreadsheet editor, thus enabling users to
create a more reusable data extraction program. Vegemite [22] lets users extract
data by copying and pasting data from web pages to a table. It further records the
user’s activities in the browser such as entering, copying and pasting text, and
pressing buttons, to generate step-by-step scripts to reuse in the future. Different
from Vegemite, Gneiss uses the spreadsheet metaphor instead of recording user
scripts to support two-way data flow. Using the dependencies among spreadsheet
cells, Gneiss is also able to generate parallel-running data extraction programs
instead of generating sequential scripts.

While most mashup tools provide tables (e.g., [22,33,40,46]) and visualizations such
as charts and maps (e.g., [20,40]) to display the collected data, very few of them
support building web applications that provide interactive use of the collected data.
d.mix [15] lets users copy desired functionality from example applications and
recompose them in a wiki page to create their own web applications. But as
mentioned before, this approach is limited in the number of example applications
because it requires each example to be manually annotated by professional
programmers. Building a web application in a wiki page also does not support
creating interactive behaviors. Data flow language tools such as Yahoo! Pipes [47]
can let users create input objects and wire them to data manipulation modules to
accept runtime values. However, studies have found that the data flow
representation is often difficult for end-users to understand [4]. Our work here

extends the spreadsheet model, with which many end-users are already familiar [2].
Debugging is expected to be easier in our tool, as the data being manipulated are
exposed in a spreadsheet and the user can see live changes in the data as she
programs the application, in contrast to dataflow languages where the data are
usually hidden unless the user specifically looks for them (see Evaluation section).

3.2. Spreadsheet tools

Most conventional spreadsheet tools such as Google Spreadsheets and Microsoft
Excel support one-way visualizations for spreadsheet data such as graphs and
charts, but do not support building a web application where data flow between the
web interface and the spreadsheet data is bi-directional. While some spreadsheets
(like Excel) support functions or macros that access web services, they share the
same drawback as described in prior mashup tools, that to use a new data source
often requires a significant amount of coding in other languages such as XPath or
Visual Basic to create a formula or macro that communicates with the source. They
also provide very little support for using structured data, often flatting them to be
strings before storing them into cells.

Gneiss also supports streaming data from web services and web input elements
(such as textboxes) in spreadsheets. Some research tools also explore the idea of
handling streaming data in spreadsheets. Woo et al. [41] extend Excel to collect and
process sensor data. Sensor values are stored on a server and streamed to a
spreadsheet for use in formulas or visualizations. ActiveSheets [35] is another Excel
extension for streaming data. It provides more controls of how and what data
should be streamed, such as letting users pause a stream or create new streams
using formulas. However, neither system supports manipulating streaming data
using temporal information of when the data are retrieved. They also require data
sources to be hard-coded in. Conventional spreadsheet tools have pre-programmed
functions that pull real-time data from remote servers, such as the GoogleFinance
function in Google Spreadsheets. Microsoft Excel’s PivotTable can fetch data from
servers and be refreshed manually by the user or when reopened. These tools by
default do not support creating data streams - they update individual cells with
latest values from the sources but do not preserve past sequences of data.

The idea of using the spreadsheet metaphor to support programming data-driven
web applications was previously explored in FAR [3]. FAR uses a table to present an
e-commerce database and allows users to link a web interface to the database using
spreadsheet syntax. Gneiss makes several novel contributions over FAR. First, while
FAR only supports creating applications that connect to a single database, Gneiss
allows users to create applications that use data from multiple local or online
sources. Second, FAR uses special “query cells” to enable querying a database but
does not support other kinds of data actions such as sorting and filtering. In
contrast, Gneiss enables all spreadsheet cells and GUI element properties to be used
in formulas and by other common actions to perform searching, sorting, and
filtering of the data, just like in regular spreadsheet tools. Finally, FAR uses a mix of

10

the spreadsheet “pull” model and conventional callback (“push”) mechanisms to
handle events. While convenient sometimes, this approach could potentially lead to
confusion and bugs when the push and pull rules have conflicts and try to modify
the same cell. In contrast, Gneiss’s language uses solely the “pull” model and is able
to support more types of interactive behaviors, such as animations and dynamic
pages, than using the hybrid method in FAR. Quilt [1] is a recent system that uses
HTML attributes to connect a web page to a spreadsheet that serves as a backend
database to fetch and store data. Gneiss uses a different approach of letting users
use the spreadsheet language to create two-way bindings between GUI element
properties and spreadsheet cells. Gneiss also supports creating interactive
behaviors, and has a focus on using web data sources.

Another category of related work describes research tools that extend the
spreadsheet metaphor to support other kinds of programming activities. While
some of these support programming graphical or Ul objects, none of them support
creating applications that make interactive use of backend data. For example, C32
[27] uses a spreadsheet-like visualization for specifying user interface constraints,
but did not address handling events and did not deal with data sources. NoPumpG
[38] and Forms/3 [2] extend spreadsheet languages to help with building graphical
interfaces and support animations and events. However, both NoPumpG and
Forms/3 have unconventional spreadsheet designs that may not be intuitive for
end-users. They also do not handle data sources and do not have the notion of a
backend database. A1 [18] is a spreadsheet environment for programming system
administrator tasks such as monitoring network usage. A1’s language is similar to
conventional scripting languages and uses the callback mechanisms to handle
events. It provides one-way graphical outputs such as graphs and charts, but does
not support building arbitrary web interfaces with two-way connections to the
spreadsheet editor.

3.3. End-user web programming tools

Web interface builders and WYSIWYG web editors have been widely used in
commercial products and research projects to help end-users make web interfaces.
However, connecting a web page using a regular interface builder (like Adobe
Dreamweaver or Microsoft Visual Studio) to a data source and presenting dynamic
content still require writing extensive code. Some research tools help people use
examples to create static styles [6,21] or interactive behaviors [29] of a web page.
But they do not help users understand or reproduce how the example web pages
use and interact with the backend data sources.

4. Current work

The current Gneiss system makes contributions by introducing a generalizable
design that enables data from arbitrary web sources to be retrieved or streamed in a
spreadsheet without any preprogramming, new spreadsheet functions and interface
elements to support working with structured and streaming data, and extending the
spreadsheet language to support programming data bindings and interactive

11

File @ Setting
=) E iex | Gt
an?query={{A1}}key=AlzaSyB6hS7 A _| B el C = e — 7 o- (.~
Jazz bar New Dizzy's Cub g4 . Gt o Places to Go st
Selected (click on) rosuesb)n i fa
Solectsd (cick on e path 1o e resusis] name Qi Yoz o ow | Qs O O f5. N aise ;
United States Jazz bar New York City e
20 th Ave S, ding by rating () Sort descencing by price
2 Uitie Branch 4.3 3 New York. Nv, faise
» . cn
Uniled States: v o
C
649 E 9th St. @
649 E 9th St
3 Lois 649 42 2 New York, NY, o New Yok, | Pie Chart
United States NY, United ; sa
5 States fcaay
Garage 90 7th Ave S, bok (? ? 4 Sublie Chast
4 Restoorant & 4.1 2 New York. NV, false !) .y
Cate United States . R .
5 Jazz Standard 4.1 3 New York, NY, true | [Vi
- NY, United Mhahotta
ied Stat :
States £ &
315 W ddth T T e e,
BIROAND 4 3 ik hrugt St New York. g :
6 ™ NY, United Dizzy's Club Coca Cola TexBoxt
. States
Rating: 4.4, Price levet: ¢ Rating: 4 3 T
7 The Flation 4 s TN, eakes Piot on map! Ll
— United States i
Search
129 Macdougal Pracetoiger e
8 LaLantema di 4 2 St New Yort faise Louis 649 Garage Restaurant & here!
Vitlorio ;Va ;‘““’ Rating: 4.2, Price level: 2 Cafe Width 200px
= & P Rating: & 2 a P
R Smoke Jazz_ 4 2 Bodver. fase e
& Supper Club New York, NY, Focused falso
United States Jazz Standard BIRDLAND
Sa fue
122 € 28th St Rating: 4.1, Price levet: 3 Rating: 4, Prioseve: 3
10 BLACK DUCK 4 3 New Yok, NY, faise -
United States @ Piotonmsp! @ Piotonmso! BN ok
33 University
Knickerbocker P, New York, faige 2 = 5
1 Bar & G 39 3 NY, United . The Flatiron Room La Lanterna di Vittorio
iefes Rating: 4, Pricsleve: 3 Rating: £, Priceleve: 2

Figure 2. The Gneiss interface. (1) is the source panel where the user can load a web API in the URL box and extract
desired fields from the return data to the spreadsheet editor through drag-and-drop. (2) is the spreadsheet editor
that stores and manipulates the data to be used in the web application. (3) is the web interface builder where the user
can create a web application by dragging-and-dropping GUI elements from the toolbar on the right (4) to the output
page. The user can select a GUI element in the output page (the selected element is highlighted with a dark blue
border, which currently is the textbox at the top of the page) and view its properties in (5). Property values are cells
that can contain formulas and can be referenced by other cells.

behaviors in a web application. In this section, [will describe the key features of
Gneiss with respect to these three contributions.

Figure 2 is screenshot of the Gneiss interface. Gneiss contains three panes: at the left
(Figure 2 at 1) it is a browser-like source pane for loading external web data. At the
center (Figure 2 at 2) it is a spreadsheet editor where the user puts the data she
wants and manipulates them. At the right (Figure 2 at 3) it is a web interface builder
where the user can create web pages through dragging-and-dropping GUI web
elements.

4.1. Using data from web data sources

Gneiss currently supports arbitrary REST web services that return JSON data, the
most popular type of web services today according to ProgrammableWeb.com.
While the final version of Gneiss will support more types of data sources such as
web pages or mobile sensors, we expect most of the interactions described here to
be generalizable to other sources with a few modifications to the source pane. To
load data from a web service, the user enters an API in the URL bar in the source
pane (Figure 2 at 1). The raw JSON data returned from web services are shown
below the checkboxes in the source pane and are indented and color-coded for
readability.

4.1.1. Selecting and extracting desired data returned by the source

12

When the user hovers the mouse over 118 (_value & . D -
each field in the returned document, the s o
field is highlighted with a light blue Simamie

) . 81.0 ™ Stream Data from
background, and its corresponding path P = ——y
[49] is shown (bGIOW the URL textbox in 79.0 every 60 second(s)
Figure 2 at 1, with a yellow background). & Pause sirsaming when
The user can extract a desired field to the 700 i pasesemng
spreadsheet by first selecting the field by s Sort: | Descending by Fetched Time
clicking it and then dragging-and- 95.0 Use compuded value
dropping it to any cell in the spreadsheet. 85.0
Gneiss uses a programming-by-example 70.0 F'“ef‘»The . e
approach to facilitate extracting similar 0.0 Value (=
items in the returned documents, such as 650 @ Data fetched before
the first field of all list items. When the ’
“Extract similar fields to the spreadsheet” 620 égiﬂamzo
checkbox in the source pane (Figure 2 at1, %% Remave duplicates
the first checkbox below the yellow 55.0 Use compuied velue
rectangle) is checked, the system will let 65.0
the user drag a field to the first cell of a 99.0 Cancel Aosly
spreadsheet column and then Gneiss 9.0 L

automatically fills in the rest of the . . .
Figure 3. The column settings dialog box,

column with similar fields based on the opened by clicking the arrow button at the top
document structure. For examp]e, the user of a column. Data extracted from the same
source (in neighboring columns) by default are
c.an select and drag a place_ name froma sorted and filtered together and are highlighted
list of place search results in the source with a purple background. The column from
pane to cell B1, and the system will fill in which the dialog box is opened is highlighted

the rest of the column B with other place with a purple border.

names in the search results (see Figure 2). Note that the user can select any field in a
JSON document to extract to the spreadsheet, even a field that contains other fields
such as a JSON object or array. The Gneiss spreadsheet will dynamically render
nested tables (described in detail later) based on the field’s structure to display the
extracted data. The user can also extract fields from multiple web services in a
spreadsheet by entering a different web API in the URL bar and dragging a different
field to the spreadsheet.

4.1.2. Creating a data stream

The user can also stream data from a data source. An arbitrary data source can be
turned into a streaming source if the checkbox “Stream this source” (Figure 2 at 1,
the second checkbox below the yellow rectangle) is checked. The system then starts
to send the web API request every 3 seconds (configurable) and updates the source
pane with the latest return data. We use a roll-up text animation when replacing old
values in the return data to show that they have been refreshed. The last updated
time of the data is shown in a blue label next to the streaming checkbox. Unchecking
the checkbox stops the streaming.

13

To create a data stream in the spreadsheet, the user checks the “Stream this source”
checkbox and drags a desired field from the return data to the top cell of a
spreadsheet column. The system then starts to stack the column with the latest
values of the field pulled from the web service. By default the values are sorted
descending by time, so the newest value appears at the top of the column. The user
can set the sorting rule and the streaming frequency through the column setting
dialog box (see Figure 3). She can also choose to pause a stream when a given
condition is true (If the condition is not specified, the stream pauses immediately).
For example, in Figure 3 the user selects the “Pause streaming when” checkbox and
enters “E1="Pausing streaming’” as the condition, then our tool will pause streaming
from the source if cell E1 becomes “Pause streaming”, and restarts streaming when
E1 becomes any other value.

4.1.3. Two-way data flow and parallel-running programs

The user can also send spreadsheet data to a web service by replacing any part of
the web API in the URL bar with the value of a cell in the spreadsheet, using the
syntax { {cellName}} (the double brackets syntax is adopted from JavaScript
template libraries such as Handlebar.js [50]). For example, in Figure 2 at 1, the user
replaces the value of the query parameter of the API URL to be { {a1}}, causing the
value of cell A1 (“Jazz bar New York City”) to be sent to the web service as the query
string, and subsequently updating the source pane and any cell in the spreadsheet
whose value comes from this web API with the latest returned data (search results
of “Jazz bars New York City”). Moreover, as Al is now linked to a web API, every
time when A1’s value changes, the system will send a new API request with A1’s
new value. This, in turn, will again refresh the spreadsheet columns.

The features of extracting desired data to the spreadsheet by drag-and-drop and
sending spreadsheet data to the web service by embedding cell names in an API
request enable data to flow two-ways between Gneiss and the web data source. This
makes the data extraction program created in Gneiss easily reusable, as the user can
retrieve new data from a web service by simply editing spreadsheet cells. Moreover,
while the user’s demonstration and manipulation of cells are always performed
sequentially, the spreadsheet model allows Gneiss to construct a parallel-running
program using the dependencies among the spreadsheet cells. Cells that do not have
any dependencies on each other can be computed independently in parallel. This
could make a big improvement on performance, especially when extracting a large
amount of data or using multiple data sources. For example, if the user wants to
collect data using 50 shopping web services to compare prices, she can easily create
a spreadsheet that sends 50 web API requests in parallel, and get the data within
seconds. This is in contrast to other PBD web scraping programs (ex. [22]) that can
only execute sequentially in the same order as when the user demonstrated them,
and generally further require adding explicit delays to wait for data to arrive.

4.1.4. Refining the collected data through dynamic sorting and filtering

14

The regular sorting and filtering in conventional spreadsheets such as Excel only
sorts and filters the current data in a column and do not apply to future edits. For
example, after sorting a column in alphabetical order, adding new values to the
column does not reorder the cells. Because Gneiss has a focus on using dynamic data
from remote sources in spreadsheets, it allows sorting and filtering rules to be run
dynamically too to save the user’s time to reapply these rules when new data arrive.
In Gneiss once sorting and filtering are applied to a column, they are executed every
time when the data in the column change. This allows the user refine the collected
web data and also enhances the reusability of the data extraction program created
in Gneiss. For example, in Figure 2, column B-E in the spreadsheet contain search
results from a place web service. The user can get the top-rated places by sorting the
rating column (column C) in descending order and filtering to show the top three
items. By default, columns extracted from the same source are sorted and filtered
together. The sorting and filtering will execute every time to show the top-rated
places when she makes a new query and a new list of places comes in. In the next
version of Gneiss, the user will be able to specify the order of sorting and filtering
using a similar mechanism as in Excel.

To sort or filter data in a column, the user can click on the small arrow button at the
top of the column to open a dialog box (Figure 3). In the dialog box, the user can
choose to apply constant rules for sorting and filtering as in conventional
spreadsheets through a drop-down menu, or to apply a dynamic rule by checking
the “Use computed value” checkbox and entering the rule in the corresponding
textbox. This rule can use conventional spreadsheet functions, with which the user
would already be familiar. For example, for sorting, entering =1r (a1>5,
“Descending by value”, “None”) as the rule will sort the column in descending
order only when A1 is bigger than 5. The ability to apply sorting and filtering rules
based on live conditions further allows the user to create highly interactive
programs in Gneiss. For example, the user is able to create a web application that
lets people interactive sort and filter data using GUI controls such as checkboxes and
sliders, which will be explained below.

4.2. Working with structured and streaming data

4.2.1. Nested tables for structured data

As mentioned earlier, if the user selects a field that contains multiple fields (such as
an object or an array) in the source panel and drag-and-drops the data onto the
spreadsheet, the data will be shown in nested tables, rendered according to the
structure of the data (see Figure 4). For example, in Figure 4 at the right, column B
stores the abridged cast of each movie. The abridged cast for each movie is an array,
and each item in the array has three fields: the actor name, his ID in the movie
database, and an array that stores all characters he plays in the movie. The nested
table is rendered to reflect this structure. We extend the common spreadsheet cell
representation to let the user refer to any cell in the nested table, using the syntax
cell.childcell. For example, to refer to the cell with value “Ewan McGregor” in

15

abridged_cast : A v B v

[A
{= A B Cc
' 1 x
_— 1 Hayden Christensen 162652163\ i oy o ovDarth Vader
Darth Vader Star Wars A B c
1 Episode Il - A
Revenge of the | 2)
Sith 3D 1 Ewan McGregor 162652152 1 Obi-Wan Kenobi
(=
name : "Ewan McGregor”,
id : "162652152", A B c
characters : A
[= 3 1 Kenny Baker 418638213 R2-D2
'Obi-Wan Kenobi® I
]
} : A
A B c
= LAY 770699725 -
b name : "Kenny Bake 1| Matt Lanler o7z {1 Anakin Skywalker
id : "418638213",
characters : A B c
[z-p Ashley E 770799370 "
] Star Wars: The 1 Ashley Eckstein 1 Ahsoka Tano
} s Clone Wars

Figure 4. A JSON array (left) and its corresponding nested table (right, in the red box) in Gneiss.

Figure 3 at the right, the user enters
B1.A2.Al. As in many other spreadsheet
tools, instead of manually typing the cell
name, the user can also click on the
desired cell and let the system insert the Kenny Baker
appropriate cell name for her, so she does Matt Lanter
not have to count the columns and rows if
the structure gets too complicated.

0 v G v

~flatten(B.A_.A) Hayden Christensen

Ewan Mcgregor

Ashley Eckstein

James Amold Taylor

To assist the user in further manipulating Ewan Mcareaor
the data in the nested tables, our tool
provides a “flatten” function that flattens a
nested table column and stores all values in a column. To use the flatten function the
user can enter =flatten (columnName) in the top cell of a column, and then our tool
will automatically fill the cells below with the appropriate data. The syntax for
columnName is similar to referring to a cell in a nested table, which is
column.childColumn. Using Figure 4 again for example, suppose the user wants to
create a new column that stores all actors in all Star Wars movies returned from the
web service. She picks an empty column C, and enters =flatten (B.A.2) into cell C1
(B.2.ais the column that stores the actor names in each abridged cast of each
movie). The flatten function populates column C with a flattened list of actor names
(see Figure 5). The user can then apply filtering to the column to remove duplicate
names and get a clean list. The flatten function currently flattens only the first level
items of the given column. It does not flatten children structures if the given column
contains any. For example, in Figure 4 if the user enters =f1atten (B.2) into cell C1,
the system will fill in each cell in column C a nested table with three columns (name,
id and character). My proposed work will introduce other new functions to let users

Figure 5. An example of the flatten formula.

16

flatten or construct structured data in spreadsheets, such as a “deep flatten”
function that flattens the structure all the way down and other functions that let
users organize regular spreadsheet data into nested cells (see the Proposed Work
section).

4.2.2. Cell metadata for manipulating streaming data using temporal information
Another innovation in Gneiss is the introduction of “cell metadata” that describe
other attributes of a cell’s value and allow users to manipulate spreadsheet data
using these attributes. Unlike user comments in modern spreadsheets, Gneiss’ cell
metadata are automatically maintained by the system. In Gneiss, each cell has
metadata of its value’s provenance and fetched time. The design of metadata enables
users to manipulate data using not only their values but also temporal information
of when the value is retrieved. As streaming data are time-series data, supporting
manipulating them by time would be useful in many situations. For example, to view
the 5 highest values of the day, a streamed column can be filtered to show only the
data retrieved today, sort them descending by value and filter to show only the top 5
rows. As mentioned earlier, sorting and filtering rules are controlled by the column
setting dialog box (Figure 3) and are re-evaluated dynamically every time when new
data are retrieved. So in the above example, the column will update continually to
display the 5 highest values as new data arrive.

Cell metadata are by default not visible but can be exposed through spreadsheet
functions. A new function in Gneiss FETCHTIME (cel1Name) returns the retrieval time
of a streamed cell. The return value is in standard ISO 8601 format and can be used
with conventional spreadsheet date and time functions. Another function
SELECTBYTIME (startTime, endTime, range) returns an array of values in range
that are streamed between startTime and endTime (Where the times can also have
wildcards using date and time parsing libraries such as Moment.js). The
SELECTBYTIME function can be used together with many conventional spreadsheet
functions that process a set of values. For example, suppose column B in the
spreadsheet holds latest news streamed from a news data source. The formula

=COUNTIF (SELECTBYTIME (“2014-09-21 9:00”, “2014-09-21 10:00",
B:B),“*White House*")

returns the number of news articles fetched between 9- 10am on September 21st,
2014 that contain the phrase “White House”. (These functions will be further refined
and generalized in the proposed work.)

4.3. Creating interactive, data-driven web applications

In Gneiss, the user can create a web application using the web interface builder
(Figure 1 at 3). As in many commercial web interface builders, our tool lets users
create Ul elements in a web page by drag-and-drop. Gneiss supports text and image
objects, input elements (such as text boxes and buttons), lists, and visualizations. In
general, the properties of these elements include string properties (e.g., the textin a
heading, the label of a button), styling properties (e.g., color and width), link

17

properties, and interactive properties that change values as the user interacts with
the element. String and styling properties let users style GUI elements using
conventional mechanisms. A Link property turns a GUI element into a hyperlink that
goes to the value of the property, which can be a URL or the name of another page
opened in the interface builder, allowing the user to create a multi-page application.
The user can modify property values of a GUI element by selecting the element and
editing the properties from a property sheet at the lower right corner (Figure 2 at
5).

4.3.1. Creating a dynamic Ul using spreadsheet data

Gneiss extends spreadsheet language to support programming web elements. In
Gneiss, the user can edit a GUI element property just like editing a cell in the
spreadsheet editor. A GUI element property can be a constant or a dynamic value
computed from the spreadsheet data. Setting a property value to use spreadsheet
cells will cause the property be recomputed every time when these cells change
values. For example, if the user sets the “value” property of a text object to be
=CONCATENATE ("Rating: ", c1),then each time that cell C1 in the spreadsheet
editor changes, the text object will also change to show the latest value.

This feature allows the user to easily program web applications that dynamically
generate content based on the backend data. To further facilitate presenting
multiple rows of data in spreadsheets, Ul list elements in Gneiss (such as vertical
lists and grid lists) have a “Populate” property that if true will populate all items of
the list with the corresponding elements based on the user’s edits to the first item.
The number of items in a list can also be adjusted dynamically based on the
associated spreadsheet data if the “NumberOfltems” property in the list object is set
to “auto”. For example, the user can add a text label to all items in a grid list by
simply dragging a text label to the first item and let the system populate the rest. If
the user sets the text label in the first item of the grid list to be =1, the system will
automatically populate the text label in the second list to be =2, and so on (see
Figure 2). The number of items in the list will change dynamically according to how
many rows there are in column B. Alternative, the user can set “NumberOfltems” to
be a number and give the list a constant length or a length computed by a formula.
The user can also set “Populate” to false. In this case, the list object becomes a pure
layout object and the user can manually put different Ul elements in different list
items.

4.3.2. Using Ul property values in spreadsheets

In Gneiss, user inputs into the user interface can also affect the spreadsheet data,
making the data flow two-way between the web application and the spreadsheet.
The user can reference any property of a Ul element using the syntax
ElementID!PropertyName, Using a syntax similar to how a cell in another worksheet
is referenced in conventional spreadsheets. As mentioned earlier, since the data
flow between Gneiss’ spreadsheet and a connected web service can also be two-way,
the user is able to create web applications that interactively send data to web

18

services and show the return data. For example, in Figure 2, cell A1l is sent to a web
service for places as the query string. The user can set A1 to =TextBox1!value to
make A1’s value come from the value of the search text box in the web application.
Now, every time when the user enters something in the search text box (Figure 2 at
3), Al’s value will be refreshed to the value of the text box, causing the system to
make a new web API request using this value as the query string. This, in turn, will
update column B-E in the spreadsheet with the latest search results, and further
update the text labels in the grid list in the web application that are linked to these
columns.

References like this can be used not only in the spreadsheet editor but also in the
GUI property sheets in the web interface builder as well. For example, the user can
set Text2’s value property to be =Text1!value, making the two text objects display
the same content. We further added a convenient keyword TH1s to let a GUI element
property reference other properties in the same element using THIS! PropertyName.

A common feature in spreadsheet tools is “autofilling” where the user selects one or
multiple cells and drags a box in the lower right corner of the selection to fill in
additional cells with corresponding values. We extend this feature to facilitate
referencing properties of populated GUI elements in a list object. The user only
needs to enter a reference in a cell for the desired property of the Ul element in the
first list item, and then select that cell and autofill down. For example, in Figure 2
there is a checkbox in each item in the grid list in the web application. To use the
value of the checkboxes in the spreadsheet, the user types =Checkbox1 ! Checked in
cell F1, selects F1 and drags to F10. The system then fills in F2 to F10 with the
“Checked” property of the checkboxes in the second to tenth items in the grid list. In
the next version of Gneiss, the user will be able to fill in a large or variable number
of cells by using a mechanism that is already available in Excel - by entering the
formula in one cell, selecting a range of cells using expressions (could be a fixed
number of cells such as A1:A10 to select 10 cells, or a variable number of cells such
as A:A to select the whole column A based on how long A is), and pressing Ctrl-D to
fill in the range of cells.

4.3.3. Programming interactive behaviors

One of the important innovations in Gneiss is the way that users can make their web
applications interactive. Originally, I explored having Gneiss use a conventional
event-based or callback architecture like Java and JavaScript, where Ul elements
would contain actions to be performed when operated. However, it is awkward to
combine these “push” actions (where the action routine in a Ul element would set
other cells—pushing values to them) with the spreadsheet “pull” model (where cells
compute their own values with formulas by pulling in the needed values). Therefore,
[designed a novel way for the Gneiss user to define interactive behaviors without
ever needing to write any callback or event procedures.

19

Instead, I designed interactive properties of GUI elements that change values at run
time based on how the user interacts with them. Interactive properties can be used
in the spreadsheet cells to compute different data based on the user’s action.
Currently, all GUI elements have an interactive property called “State” that shows
how the mouse cursor interacts with them. Possible values for “State” include “idle”,
“hovered”, “pressed” and “clicked”. The “clicked” value stays for a few extra
milliseconds after the click event so the user can notice that it happened. Other
interactive properties are mostly for input elements, such as “Value” for text boxes
and sliders, and “Checked” for radio buttons and checkboxes. For example, entering
=IF (Textl!State="hovered”, “red”, “black”) in cell A1 will make A1l be “red“
when Text1 is hovered and “black” otherwise. A1 can then be used as the color
property of Text1 to create a simple hovering effect.

Interactive properties are not editable from the property sheet since their values
are controlled at runtime by the widgets, so their cells are shown using a grey
background, such as the value property of TextBox1 in Figure 2 at 5 (in the next
version of Gneiss, [will implement a way to let user set the initial value of a input
widget—currently the initial value is always empty). In both the spreadsheet editor
and the property sheet, values of interactive properties change dynamically in

) «“

keeping with Gneiss’s “programming-with-example” style.

To further enable more types of interactive effects to be created in our tool, we
designed a timer function TIMER (ms, condition)that starts a timer ticking every
“ms” milliseconds if “condition” is true, and turns off the timer if “condition” is false.
The function returns true for one millisecond when the timer ticks, and false
otherwise. The timer function was designed specifically to follow Gneiss’ “pull”
programming paradigm and when used together with conventional spreadsheet
functions such as 1¥ would enable timed transitions and animations in the
spreadsheet, as demonstrated below.

Constraint Evaluation and Circular Constraints

By default when a spreadsheet cell’s value changes, the cell will invalidate all other
cells that directly depend on it. This causes the dependent cells to re-compute their
values. If the value of that cell changes, then the cell continues to invalidate other
cells that directly depend on it, and so on. Otherwise (if the value stays the same),
the cell will not invalidate its dependent cells, and the propagation stops. This
increases the system’s performance and also ensures that web API requests are not
run when a parameter value is updated to the same value as before. This tends to
happen with constraints that contain IFs or other control structures, where the
constraint must be re-evaluated, but ends up calculating the same value.

In rare cases, the user might want to re-evaluate the constraints that depend on a
cell even if the cell’s value does not change. For example, if the spreadsheet data are
extracted from a news web service, the user might want to re-run the same query to
get the latest news. We provide a function REFRESH (exp) that when used in a cell will
return the value of exp and invalidate all the children cells (causing them to be re-

20

evaluated) even if exp is the same as before. So for instance, the user can set a cell
that stores the query parameter to be =IF (TIMER (600000, B1), REFRESH (“world
cup”),“world cup”)to get news about “world cup” every 10 minutes when B1 is set
to true. Although the query cell’s value is always “world cup”, the REFRESH function
invalidates all constraints that depend on the cell, causing the web service request
to be triggered and refresh the spreadsheet columns in turn.

Like some other one-way constraint solvers [24,25,28], our spreadsheet formula
solver provides “once-around” semantics for circular constraints. We use an
example to explain how this works. Suppose the user sets Al to be 0 and A2 to be
a1+1, which makes A2 be 1. The user then sets A1l to be a2-1, which creates a
circular reference. Most spreadsheet tools will return errors in both A1 and A2. In
contrast, our system allows circular references, and always evaluates any dependent
cells exactly once when any cell in the cycle changes. Here, the system starts
computing Al by asking A2’s value. Since A2 is a1+1, it goes back to A1 and finds
that it has reached the beginning of the cycle. The system then stops the circular
reference here and returns Al’s old computed value, 0. That makes A2’s value 1
(0+1), and A1’s value stays 0 (1-1).

Supporting “once-around” circular constraints in the spreadsheet makes more types
of expressions possible. For example, a spreadsheet cell can now reference itself.
The system will return the cell’s original value before it is recomputed. Combined
with the [F statement, this allows the user to set a cell’s value to something if a
condition is true, otherwise having the cell retain its original value. This expression
is useful to handle interactive behaviors as it allows the user to set a cell’s value
when a GUI element enters a certain state, but does not change the value back when
the element enters another state. For example, suppose the user wants to change a
hyperlink text to be another color once it is pressed. Even though the “State” of the
text goes back to “idle” from “pressed” after the user releases the mouse button,
using a self-reference, the text is able to stay the same color. Another use case of
self-reference is that it allows a cell to compute its new value using its previous
value. Used together with the T1MER function, the user can set a cell to steadily
increase or decrease its value, and bind the cell to a GUI element property to create
an animation, such as expanding or shrinking the size of an element, or binding to a
color property to create a fade- in/out effect. For example, suppose the width of an
image object (Image1) is stored at cell C1. The user can set C1 to

=IF (Imagel!State="idle", IF(TIMER(15, C1>30), Cl-1, C1),
IF(TIMER (15, C1<60), Cl+1, C1))

to create an animation where the image will gradually increase from 30 pixels to 60
pixels when the mouse enters, and to go back to 30 pixels when the mouse leaves.

4.3.4. Turning the spreadsheet to a database
With Gneiss, the user is able to stream data from web input elements such as
textboxes or forms and store them in the spreadsheet, thus turning the spreadsheet

21

into a kind of database. The user can set a column to pull data from a web input
element by checking on the “Stream data from” checkbox in the column setting
dialog box (Figure 3) and setting the input element to be the streaming source. For
example, entering TextBox1 !value as the streaming source sets the column to
stream the value of TextBox1. By default, the column pulls data from an input
element when its value changes. The user can further use the “pause” mechanism
described earlier to start streaming only when certain condition is true. For
example, entering submitButton!State!="clicked” as the pause condition makes
the column stream data from TextBox1 only when submitButton is clicked. Like
spreadsheet cells storing data streamed from web services, cells storing data
streamed from web input elements also have the same metadata and can be
manipulated by retrieval time with the features described earlier. This feature also
allows our spreadsheet to be used as a database for a frontend web page, as it stores
input values as streams in the spreadsheet.

5. Proposed work

My proposed work will experiment with new ways to help users explore data
collected in a spreadsheet by supporting quick data transformation and
visualizations through formulas and creating automating scripts. [also propose to
enhance the web interface builder in Gneiss to support programming mobile web
applications, and several other extensions to improve the system’s usability. I close
this section with a plan for evaluation.

5.1 Exploring spreadsheet data

After the user collects the data she needs in a spreadsheet, she might want to
explore the collected data in order to understand and gain insights from the data.
For example, to discover the relationships among personal health factors retrieved
from different web services such as exercise, weight, body fat and calorie intake [10].
This process usually involves doing multiple data transformations to experiment
different combinations, selections and groupings of data and examine the results
through graphs and charts. In the literature, this approach is sometimes called
exploratory data analysis [34] where a data analyst examines a data set through
rapid data visualizations and transformations to understand the distributions of
data and the relationships among variables before forming hypotheses. Exploratory
data analysis has been used by a broad range of users because expertise in
mathematics or statistics is not a requirement [16].

Some special-purpose programming languages provide packages to support data
exploration by helping users quickly manipulate and visualize data, such as R and
MATLAB. However, these languages target people with programming background.
End-user data visualization tools such as ManyEyes [36] and Tableau [32] focus on
helping people create visualizations of data but lack the ability to do custom data
manipulation such as creating a new column based on existing columns.
Spreadsheet tools are popular among end-users and provide many functions for
data manipulation. However, compared with professional programming languages,

22

spreadsheets are less efficient because many common data transformations cannot
be done solely using formulas and have to be done manually or using special
widgets. For example, given a dataset containing a list of students, their department,
age and GPA, to see the average GPA by departments in Excel the user has to first
use an advanced filter in a widget to get all distinct department names in a new
column, enters an AvERAGEIF function to calculate the average GPA of the first
department, and finally does a select-and-drag gesture (also called “autofill”) to
apply the formula to other department names. Alternatively, the user has to build a
PivotTable in a special widget. However, in professional languages this can often be
done by a line of code (for example, “SELECT AVG(GPA) GROUP BY department” in
SQL). Creating visualizations in spreadsheets also requires the user to fill in dialog
boxes, whereas other languages such as R provide convenient functions to quickly
plot multiple graphs at the same time.

There are tools that allow users to run other languages in a spreadsheet to do data
selection or transformation, such as the ouery function in Google Spreadsheets that
quires spreadsheet data using the Google Visualization API Query Language (similar
to SQL), and RExcel that lets users run R statements in Excel. However, the user
would still need to learn these languages in order to use them in spreadsheets.

Another weakness of spreadsheets is that users often have to do a lot of repetitive
data analysis and manipulation tasks because writing scripts that can automate
these tasks involves programming in other languages such as Visual Basic for
creating macros in Excel and is often too difficult for end-users [12]. Prior work has
explored ways that go beyond the spreadsheet languages to automate data
transformations in spreadsheets such as programming-by-examples [13,14] or
natural languages [12].

To facilitate spreadsheet data exploration, [propose to design new features that
make data transformations and visualizations more efficient in spreadsheets:
¢ [will add support for multi-output formulas - spreadsheet formulas that

modify multiple cells at the same time - which, coupled with Gneiss’s nested
table representations, will let users do data transformations that previously
required multiple manual steps or cannot be done in spreadsheets. While
multi-output constraints have been used in prior systems [31,42] to program
user interfaces, and modern spreadsheets such as Excel have “array formulas”
that can output an array of values to multiple cells, Gneiss’s multi-output
formulas will make new contributions as they can organize data into
structured cells to provide intermediate visual feedback to the
transformation results that cannot be represented well in plain table formats,
such as grouping, joining and combining data.

For example, suppose the user is working with a spreadsheet file whose
columns A to D are respectively the university students’ name, department,
age and GPA. Suppose the user wants to group the data by department and

23

[—
w
-
(]
[—
o

>
>

John Smith 19

Ryan Miller 21

CS

21

w
©

Amy Rogers

2w
I

[«][~ 1[=1

[*]
N

Figure 6. A mockup of the result of a “grouping” formula that groups columns A to D by column B.

b

- |

: >
> >

- I

Andy Wo Eng

= |
w
3}

view the average GPA of each department. In Gneiss, she will be able to enter
a multi-output formula such as =GroupBY (B, a:D)to group column A-D by
column B (department) without requiring the user to enter rules of how to
collapse the data in columns A, B, and D. The crouprY function will be able to
transform flat spreadsheet columns to something like Figure 6.

Here, the data are grouped by column B while data in column A, C and D are
not yet processed and are shown as nested cells. The user can then use
another multi-output formulas to transform the nested cells in column D
(GPA) to an average number of the cells’ values. In conventional
spreadsheets and other languages such as SQL and R, grouping is an
intermediate step that cannot be performed without being combined with
other operations (such as sum and average) in order to output the resultas a
table. There is no intermediate feedback in a long query. Any error in the
query could lead to an empty output that is difficult to debug. In contrast,
Gneiss’s nested cell representations will enable these intermediate steps to
be done one by one in spreadsheets and will provide visual feedback for each
step.

My hypothesis is that allowing data transformations to be performed using
the familiar formula mechanism in incremental steps and providing visual
feedback of the transformed results will be more learnable, more accessible
and less error-prone to end-users than using special widgets (like PivotTable
in Excel) or languages that can only construct long quires and do not provide
intermediate visual feedback at all (like SQL).

To support the features described above, [will design new functions to let
users do common data transformations, such as those supported in SQL, and
to manipulate structured data in various ways in addition to simply

flattening the first level of nested cells (as the current rLaTTEN function does),
such as to transform flat tables into arbitrary nested tables, to merge

24

multiple nested cells into a single value, and to be able to specify how many
levels of nested items to flatten. [will also design ways to represent data
transformation results in nested tables and refine the design through
multiple paper prototyping sessions with end-users.

* [will investigate creating hierarchical visualizations and custom interactive
behaviors in visualizations in Gneiss. As mentioned above, new functions in
Gneiss will allow users to manipulate structured data represented by nested
tables. The nested tables can be further used to create hierarchical
visualizations such as trees to help users understand the data. In Gneiss,
every web element created in the interface builder (Figure 1 at 3) has
interactive properties that reflect how the user interacts with it in the web
application. I will design new interactive properties for visualizations to
show, for example, what data point was last clicked by the user. This
property could then be used in a multi-output formula to transform the
underlying data of the visualization, such as allowing a subset of the data to
be selected using the mouse, thus creating a custom “zoom-in” effect in the
visualization. With this feature, the user would be able to create a variety of
web applications that support custom data explorations using interactive
visualizations.

Note that the features described here may run into performance problems when
operating on large data sets, such as trying to provide visual feedback to a grouping
operation for 1,000,000 rows of data. Much research by others has been done on
improving query speed on large data sets [23] or incrementally querying large data
to provide feedback in a reasonable time [11]. My thesis will not focus on handling
such ultra-large datasets.

5.2 Mobile web applications

[also propose to extend Gneiss’s support for creating mobile web applications.
Currently, Gneiss is not able to create web applications with responsive layout to fit
with various devices or window sizes. Its interface builder captures a few events -
namely, hovering, clicking and pressing the enter key. [will integrate Gneiss with
responsive CSS frameworks like Bootstrap so the created application can adjust its
layout based on screen size. [will extend the interface builder to support more types
of events such as common touch events like swiping and dragging. This may involve
adding more interactive properties to the Ul elements, or allowing users to define
custom events by combining multiple events together. Sensor events will also be
supported to allow users to stream sensor data such as GPS or accelerometer
readings in the spreadsheet.

[will also create a mechanism for people to test and deploy their applications on
mobile devices. While the full Gneiss editor is designed to run on regular size
computer screens, the user will be able connect a mobile device to the Gneiss’ server
and mirror the content in the web interface builder to the mobile device. Events

25

captured at the mobile end will be sent to the server and reflected live in the Gneiss
editor.

5.3 Other features

[will expend Gneiss to support more types of data sources, such as allowing users to
import CSV or Excel files to use in Gneiss’ spreadsheets, and to collect data from web
pages in the source pane. | will work towards making Gneiss more usable, such as
allowing multiple tabs in the source pane and spreadsheet editor, adding visual cues
about cell dependencies as in conventional spreadsheets, and supporting more
types of GUI elements in the interface builder. These features are not expected to be
contributions of the Gneiss system and will use mechanisms from previous systems
such as Excel. They are being added primarily to demonstrate the range of Gneiss’s
innovations.

5.4 Evaluations

[plan to conduct multiple user studies to evaluate and refine the design of Gneiss.
Before the studies, I will create tutorial materials for Gneiss, such as tutorial videos.
I will also write the online documentation for the new functions in Gneiss.

[plan to run a number of lab studies. The first lab study will be a between-subjects
A/B test that evaluates new features in Gneiss that help users explore spreadsheet
data, namely the multi-output formulas and nested cell representations for doing
data transformations (section 5.1). I will recruit spreadsheet users of different
expertise and assign them in a balanced way into two groups. One group will use
Gneiss and the other group will use Google Spreadsheets that has PivotTable and a
QUERY function that lets users use SQL statements to select spreadsheet data. The
participants are free to use any online resources they want. Both groups will be
asked to complete the same tasks about exploring a given spreadsheet file to answer
a few questions given by the experimenter. Before starting the task, all participants
will receive a tutorial of the tool, using either the official Google tutorial for Google
Spreadsheets or the tutorial I created for Gneiss. During the study, [will measure
the task completion time and observe the data exploration process such as if the
participant makes any errors or what online resources other than the given tutorial
she uses. Through this study, | hope to answer the following questions:

* (Can participants learn to use Gneiss’s multi-output formulas?

* (Can participants understand Gneiss’s nested cell representations for data
transformation results?

* Compared with using conventional spreadsheet mechanisms, what are the
strengths and weaknesses of using the new formulas in Gneiss to do data
selection and transformation?

* Will providing visual feedback of intermediate data transformation results
help user understand spreadsheet data?

After the first lab study, [will refine the multi-output formulas and the nested cell
representations based on the user’s feedback.

26

For the second lab study, I will recruit both professional web programmers and end-
users who are knowledgeable about spreadsheets but are not proficient web
programmers (i.e., do not program in JavaScript). I will ask the participants to
complete one or several tasks about creating interactive web applications that make
dynamic use of backend data, such as visualizing query results from an online
database or making a simple discussion forum. The tasks will require the user to use
most of the features in Gneiss, such as interacting with web services, manipulating
and transforming data in spreadsheets, and creating interactive web pages and
visualizations that use the spreadsheet data.

Both studies with professional programmers and end-users will be between-subject
A/B tests. For professional web programmers, half of the people will use Gneiss, and
the other half will use any conventional programming languages and libraries they
want. Participants using Gneiss will receive a tutorial of the tool before starting the
programming task. All participants are free to use any online resources they want. |
will measure the task completion time and observe the learning and coding process
to look for breakdowns such as errors created. [will also do a short post-study
interview to collect feedback on Gneiss or to clarify some questions I have while
observing the participant. Through the study with professional programmers, I hope
to answer the following questions:
* Is Gneiss learnable by professional programmers?
* (Can Gneiss help programmers work more efficiently on the tasks compared
with using conventional programming languages?
* What are some features that professional programmers like or find useful?
* What are some features that professional programmers do not like or find
difficult to use?
* Compared with conventional programming languages, what are the strengths
and weaknesses of Gneiss?
* What are some other features that professional programmers would want to
have in Gneiss?
* What are some scenarios that professional programmers would want to use
Gneiss in real life?

For end-users, half of the people will use Gneiss, and the other half will use Yahoo
Pipes [47], an end-user tool that uses the data-flow model to allow people to
program mashups. The study will follow similar procedures as described above.
Participants using Yahoo Pipes will also receive a tutorial of the tool, using the
official tutorial on Yahoo’s website. Through the study with end-users, | hope to
answer the following questions:

* (Can end-users understand the new spreadsheets concepts introduced in
Gneiss, such as the nested cells, the multi-output formulas, and the once-
around circular evaluation?

* (Can end-users successfully complete the tasks using Gneiss?

* What are some challenges that end-users encounter when learning Gneiss?

27

* Compared with Yahoo Pipes, what are the strengths and weaknesses of
Gneiss?

* What are some features that end-users like or find useful?

e What are some features that end-users do not like or find difficult to use?

* What are some other features that end-users would want to have in Gneiss?

* What are some scenarios that end-users would want to use Gneiss in real life?

Based on participants’ feedback from the lab studies, I will refine Gneiss, its
documentation and the tutorial materials. After that, I plan to run a field study
where I give Gneiss to a group of people to see what they will create with it. [will try
to coordinate with the TAs of GUI PUI Lab and SUI Web Lab to introduce Gneiss to
MHCI and BHCI students to recruit participants. Many MHCI and BHCI students are
web designers and programmers. I expect to collect a variety of web applications
created in Gneiss to be included in the final thesis to demonstrate the range of
Gneiss. For all participants I will also send out a survey for their feedback on Gneiss.

6. Timeline

February and March 2015: developing features for helping users explore
spreadsheet data, including multi-output formulas and nested tables to
enable data transformations; fixing bugs in the system.

April 2015: submitting a UIST paper about data exploration features (April 16),
releasing a beta version of Gneiss online before CHI (April 18), presenting
Gneiss at CHI

May and June 2015: developing the features to support mobile web applications,
adding usability features, fixing bugs

July 2015: Creating documentations and tutorials for Gneiss, designing the lab
studies and running pilot tests

August 2015: Running lab studies

September 2015: Submitting a CHI paper about the new features and the lab study
results

October 2015: Refining Gneiss, its documentation and tutorial based on the lab
study results, releasing another version of Gneiss online, designing the field
study and recruiting participants

November 2015: Running the field study

December 2015 - February 2016: Writing the thesis

April 2016: Defense!

References

1. Benson, E., Zhang, A., and Karger, D.R. Spreadsheet-Driven Web Applications.
ACM symposium on User interface software and technology, ACM (2014), To
appear.

10.

11.

12.

28

Burnett, M., Atwood, J., Walpole Djang, R., Reichwein,]., Gottfried, H., and
Yang, S. Forms/3: A First-order Visual Language to Explore the Boundaries of
the Spreadsheet Paradigm. J. Funct. Program. 11,2 (2001), 155-206.

Burnett, M., Chekka, S.K,, and Pandey, R. FAR: an end-user language to support
cottage e-services. Human-Centric Computing Languages and Environments,
2001. Proceedings IEEE Symposia on, (2001), 195-202.

Cao,], Rector, K, Park, T.H., Fleming, S.D., Burnett, M., and Wiedenbeck, S. A
Debugging Perspective on End-User Mashup Programming. Visual Languages
and Human-Centric Computing (VL/HCC), 2010 IEEE Symposium on, (2010),
149-156.

Chan, B., Wu, L., Talbot, J., Cammarano, M., and Hanrahan, P. Vispedia:
Interactive Visual Exploration of Wikipedia Data via Search-Based Integration.
IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1213-
1220.

Chang, K.S.-P. and Myers, B.A. WebCrystal: Understanding and Reusing
Examples in Web Authoring. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2012), 3205-3214.

Chang, K.S.-P. and Myers, B.A. Creating Interactive Web Data Applications with
Spreadsheets. Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, ACM (2014), 87-96.

Chang, K.S.-P. and Myers, B.A. A spreadsheet model for using web service data.
Visual Languages and Human-Centric Computing (VL/HCC), 2014 IEEE
Symposium on, (2014), 169-176.

Chang, K.S.-P. and Myers, B.A. A Spreadsheet Model for Handling Streaming
Data. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM (2015), To appear.

Choe, EK,, Lee, N.B,, Lee, B., Pratt, W., and Kientz,].A. Understanding
Quantified-selfers’ Practices in Collecting and Exploring Personal Data.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ACM (2014), 1143-1152.

Fisher, D., Popov, I, Drucker, S., and Schraefel, M. c. Trust Me, I'M Partially
Right: Incremental Visualization Lets Analysts Explore Large Datasets Faster.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ACM (2012), 1673-1682.

Gulwani, S. and Marron, M. NLyze: Interactive Programming by Natural
Language for Spreadsheet Data Analysis and Manipulation. Proceedings of the

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

29

2014 ACM SIGMOD International Conference on Management of Data, ACM
(2014), 803-814.

Guo, P.J,, Kandel, S., Hellerstein,].M., and Heer,]. Proactive Wrangling: Mixed-
initiative End-user Programming of Data Transformation Scripts. Proceedings
of the 24th Annual ACM Symposium on User Interface Software and Technology,
ACM (2011), 65-74.

Harris, W.R. and Gulwani, S. Spreadsheet Table Transformations from
Examples. Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ACM (2011), 317-328.

Hartmann, B., Wy, L., Collins, K., and Klemmer, S.R. Programming by a sample:
rapidly creating web applications with d.mix. Proceedings of the 20th annual
ACM symposium on User interface software and technology, ACM (2007), 241-
250.

Hartwig, F. and Dearing, B.E. Exploratory data analysis. Sage, 1979.

Huynh, D.F., Miller, R.C., and Karger, D.R. Enabling Web Browsers to Augment
Web Sites’ Filtering and Sorting Functionalities. Proceedings of the 19th
Annual ACM Symposium on User Interface Software and Technology, ACM
(2006), 125-134.

Kandogan, E., Haber, E., Barrett, R., Cypher, A., Maglio, P., and Zhao, H. A1:
End-user Programming for Web-based System Administration. Proceedings of
the 18th Annual ACM Symposium on User Interface Software and Technology,
ACM (2005), 211-220.

Kim, S., Mankoff, J., and Paulos, E. Sensr: evaluating a flexible framework for
authoring mobile data-collection tools for citizen science. Proceedings of the
2013 conference on Computer supported cooperative work, ACM (2013), 1453-
1462.

Van Kleek, M., Smith, D.A., Packer, H.S., Skinner,]., and Shadbolt, N.R.
Carpé Data: Supporting Serendipitous Data Integration in Personal
Information Management. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2013), 2339-2348.

Kumar, R, Talton,].0., Ahmad, S., and Klemmer, S.R. Bricolage: Example-based
Retargeting for Web Design. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2011), 2197-2206.

Lin, J., Wong,]., Nichols, |., Cypher, A., and Lau, T.A. End-user programming of
mashups with vegemite. Proceedings of the 14th international conference on
Intelligent user interfaces, ACM (2009), 97-106.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

30

Melnik, S., Gubarev, A., Long,].J., et al. Dremel: Interactive Analysis of Web-
scale Datasets. Proc. VLDB Endow. 3, 1-2 (2010), 330-339.

Myers, B.A,, Giuse, D.A., Dannenberg, R.B., et al. Garnet: Comprehensive
Support for Graphical, Highly Interactive User Interfaces. Computer 23,11
(1990), 71-85.

Myers, B.A., McDaniel, R.G., Miller, R.C,, et al. The Amulet Environment: New
Models for Effective User Interface Software Development. IEEE Trans. Softw.
Eng. 23,6 (1997), 347-365.

Myers, B.A. Visual Programming, Programming by Example, and Program
Visualization: A Taxonomy. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (1986), 59-66.

Myers, B.A. Graphical Techniques in a Spreadsheet for Specifying User
Interfaces. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (1991), 243-249.

Oney, S., Myers, B., and Brandt,]. Constraint]S: Programming Interactive
Behaviors for the Web by Integrating Constraints and States. Proceedings of
the 25th Annual ACM Symposium on User Interface Software and Technology,
ACM (2012), 229-238.

Oney, S. and Myers, B. FireCrystal: Understanding Interactive Behaviors in
Dynamic Web Pages. Proceedings of the 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), IEEE Computer Society
(2009), 105-108.

Rosson, M.B,, Ballin, |., and Rode,]. Who, what, and how: a survey of informal
and professional Web developers. Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on, (2005), 199-206.

Sannella, M. Skyblue: A Multi-way Local Propagation Constraint Solver for
User Interface Construction. Proceedings of the 7th Annual ACM Symposium on
User Interface Software and Technology, ACM (1994), 137-146.

Tableau Software. Tableau. 2014. http://www.tableausoftware.com/.
Tuchinda, R, Szekely, P., and Knoblock, C.A. Building Mashups by example.
Proceedings of the 13th international conference on Intelligent user interfaces,

ACM (2008), 139-148.

Tukey,].W. Exploratory Data Analysis. (1977).

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

31

Vaziri, M., Tardieu, O., Rabbah, R,, Suter, P., and Hirzel, M. Stream Processing
with a Spreadsheet. In R. Jones, ed., ECOOP 2014 - Object-Oriented
Programming SE - 15. Springer Berlin Heidelberg, 2014, 360-384.

Viegas, F.B., Wattenberg, M., van Ham, F,, Kriss,]., and McKeon, M. ManyEyes: a
Site for Visualization at Internet Scale. Visualization and Computer Graphics,
IEEE Transactionson 13,6 (2007),1121-1128.

Walker, M., Takayama, L., and Landay, J.A. High-fidelity or low-fidelity, paper
or computer? Choosing attributes when testing web prototypes. Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, (2002), 661-
665.

Wilde, N. and Lewis, C. Spreadsheet-based Interactive Graphics: From
Prototype to Tool. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (1990), 153-160.

Wong, J. and Hong,]. What do we “mashup” when we make mashups?
Proceedings of the 4th international workshop on End-user software
engineering, ACM (2008), 35-39.

Wong,]. and Hong, J.I. Making mashups with marmite: towards end-user
programming for the web. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2007), 1435-1444.

Woo, A, Seth, S., Olson, T, Liy, J., and Zhao, F. A spreadsheet approach to
programming and managing sensor networks. Information Processing in
Sensor Networks, 2006. IPSN 2006. The Fifth International Conference on,
(2006), 424-431.

Vander Zanden, B. An Incremental Algorithm for Satisfying Hierarchies of
Multiway Dataflow Constraints. ACM Trans. Program. Lang. Syst. 18,1 (1996),
30-72.

Zang, N., Rosson, M.B., and Nasser, V. Mashups: who? what? why? CHI 08
Extended Abstracts on Human Factors in Computing Systems, ACM (2008),
3171-3176.

Quantified Self. http://quantifiedself.com/.

Open Data Kit. http://opendatakit.org/.

OpenRefine. http://openrefine.org/.

Yahoo Pipes. http://pipes.yahoo.com/.

48.

49,

50.

51.

52.

XPath. http://www.w3.org/TR/xpath/.

JSONPath - XPath for JSON. goessner.net/articles/JsonPath/.

Handlebar.js. http://handlebarsjs.com/.
Scraper. 2010. http://mnmldave.github.io/scraper/.

ScraperWiki. 2014. https://scraperwiki.com/.

32

