
Shmem Programming Manual

Quadrics Supercomputers World Ltd. Document Version 3 - June 27th 2001

The information supplied in this document is believed to be correct at the time of pub-
lication, but no liability is assumed for its use or for the infringements of the rights of
others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent
of Quadrics Supercomputers World Ltd.

Copyright 1998,1999,2000,2001 Quadrics Supercomputers World Ltd.

The specifications listed in this document are subject to change without notice.

Compaq, the Compaq logo, Alpha, AlphaServer, and Tru64 are trademarks of Compaq
Information Technologies Group, L.P. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the U.S. and other countries.

TotalView and Etnus are registered trademarks of Etnus LLC.

All other product names mentioned herein may be trademarks of their respective com-
panies.

Cray is a registered trademark of Cray Inc.

The Quadrics Supercomputers World Ltd. (Quadrics) web site can be found at:

http://www.quadrics.com/

Quadrics’ address is:

QSW Limited
One Bridewell Street
Bristol
BS1 2AA
UK

Tel: +44-(0)117-9075375
Fax: +44-(0)117-9075395

Circulation Control: None

Document Revision History
Revision Date Author Remarks

1 Dec 2000 BB Initial revision
2 Jan 2001 DR First public draft
3 June 2001 RMC Corrections for Linux release

Contents

1 Preface 1-1

1.1 Scope of Manual . 1-1

1.2 Audience . 1-1

1.3 Using this Manual . 1-1

1.4 Related Information . 1-2

1.5 Location of Online Documentation 1-2

1.6 Reader’s Comments . 1-2

1.7 Conventions . 1-2

2 The Shmem Library 2-1

2.1 Introduction . 2-1

2.2 Compiling . 2-1

2.3 Using the Shmem Library . 2-2

2.3.1 Word Lengths . 2-2

2.4 Library Function Categories . 2-2

2.5 Initialisation . 2-4

my_pe(3) . 2-5

num_pes(3) . 2-6

shmem_init(3) . 2-7

2.6 Remote Write Operations . 2-8

shmem_double_p(3) . 2-10

shmem_float_p(3) . 2-10

shmem_int_p(3) . 2-10

shmem_long_p(3) . 2-10

shmem_short_p(3) . 2-10

shmem_put(3) . 2-11

Contents i

shmem_double_put(3) . 2-11

shmem_float_put(3) . 2-11

shmem_int_put(3) . 2-11

shmem_long_put(3) . 2-11

shmem_longdouble_put(3) . 2-11

shmem_longlong_put(3) . 2-11

shmem_short_put(3) . 2-11

shmem_put32(3) . 2-11

shmem_put64(3) . 2-11

shmem_put128(3) . 2-11

shmem_putmem(3) . 2-11

shmem_iput(3) . 2-13

shmem_double_iput(3) . 2-13

shmem_float_iput(3) . 2-13

shmem_int_iput(3) . 2-13

shmem_iput32(3) . 2-13

shmem_iput64(3) . 2-13

shmem_iput128(3) . 2-13

shmem_long_iput(3) . 2-13

shmem_longdouble_iput(3) . 2-13

shmem_longlong_iput(3) . 2-13

shmem_short_iput(3) . 2-13

2.7 Remote Read Operations . 2-16

shmem_double_g(3) . 2-18

shmem_float_g(3) . 2-18

shmem_int_g(3) . 2-18

shmem_long_g(3) . 2-18

shmem_short_g(3) . 2-18

shmem_get(3) . 2-19

shmem_double_get(3) . 2-19

shmem_float_get(3) . 2-19

shmem_get32(3) . 2-19

shmem_get64(3) . 2-19

shmem_get128(3) . 2-19

shmem_getmem(3) . 2-19

shmem_int_get(3) . 2-19

ii Contents

shmem_long_get(3) . 2-19

shmem_longdouble_get(3) . 2-19

shmem_longlong_get(3) . 2-19

shmem_short_get(3) . 2-19

shmem_iget(3) . 2-21

shmem_double_iget(3) . 2-21

shmem_float_iget(3) . 2-21

shmem_iget32(3) . 2-21

shmem_iget64(3) . 2-21

shmem_iget128(3) . 2-21

shmem_int_iget(3) . 2-21

shmem_long_iget(3) . 2-21

shmem_longdouble_iget(3) . 2-21

shmem_longlong_iget(3) . 2-21

shmem_short_iget(3) . 2-21

2.8 Synchronization Operations . 2-23

barrier(3) . 2-24

shmem_barrier_all(3) . 2-24

shmem_barrier(3) . 2-25

shmem_wait(3) . 2-26

shmem_int_wait(3) . 2-26

shmem_long_wait(3) . 2-26

shmem_longlong_wait(3) . 2-26

shmem_short_wait(3) . 2-26

shmem_wait_until(3) . 2-26

shmem_int_wait_until(3) . 2-26

shmem_long_wait_until(3) . 2-26

shmem_longlong_wait_until(3) 2-26

shmem_short_wait_until(3) . 2-26

shmem_fence(3) . 2-28

shmem_quiet(3) . 2-29

2.9 Atomic Memory Operations . 2-30

shmem_swap(3) . 2-31

shmem_double_swap(3) . 2-31

shmem_float_swap(3) . 2-31

shmem_int_swap(3) . 2-31

Contents iii

shmem_long_swap(3) . 2-31

shmem_longlong_swap(3) . 2-31

shmem_short_swap(3) . 2-31

shmem_int_cswap(3) . 2-33

shmem_long_cswap(3) . 2-33

shmem_longlong_cswap(3) . 2-33

shmem_short_cswap(3) . 2-33

shmem_short_add(3) . 2-35

shmem_int_mswap(3) . 2-36

shmem_long_mswap(3) . 2-36

shmem_short_mswap(3) . 2-36

shmem_int_fadd(3) . 2-38

shmem_long_fadd(3) . 2-38

shmem_longlong_fadd(3) . 2-38

shmem_short_fadd(3) . 2-38

shmem_int_finc(3) . 2-40

shmem_long_finc(3) . 2-40

shmem_longlong_finc(3) . 2-40

shmem_short_finc(3) . 2-40

shmem_short_inc(3) . 2-42

2.10 Collective Reduction Operations . 2-43

shmem_int_and_to_all(3) . 2-45

shmem_long_and_to_all(3) . 2-45

shmem_longlong_and_to_all(3) 2-45

shmem_short_and_to_all(3) . 2-45

shmem_double_max_to_all(3) 2-47

shmem_float_max_to_all(3) . 2-47

shmem_int_max_to_all(3) . 2-47

shmem_long_max_to_all(3) . 2-47

shmem_longdouble_max_to_all(3) 2-47

shmem_longlong_max_to_all(3) 2-47

shmem_short_max_to_all(3) 2-47

shmem_double_min_to_all(3) 2-50

shmem_float_min_to_all(3) . 2-50

shmem_int_min_to_all(3) . 2-50

shmem_long_min_to_all(3) . 2-50

iv Contents

shmem_longdouble_min_to_all(3) 2-50

shmem_longlong_min_to_all(3) 2-50

shmem_short_min_to_all(3) . 2-50

shmem_int_or_to_all(3) . 2-53

shmem_long_or_to_all(3) . 2-53

shmem_longlong_or_to_all(3) 2-53

shmem_short_or_to_all(3) . 2-53

shmem_double_prod_to_all(3) 2-55

shmem_float_prod_to_all(3) . 2-55

shmem_int_prod_to_all(3) . 2-55

shmem_long_prod_to_all(3) . 2-55

shmem_longdouble_prod_to_all(3) 2-55

shmem_longlong_prod_to_all(3) 2-55

shmem_short_prod_to_all(3) 2-55

shmem_double_sum_to_all(3) 2-58

shmem_float_sum_to_all(3) . 2-58

shmem_int_sum_to_all(3) . 2-58

shmem_long_sum_to_all(3) . 2-58

shmem_longdouble_sum_to_all(3) 2-58

shmem_longlong_sum_to_all(3) 2-58

shmem_short_sum_to_all(3) 2-58

shmem_int_xor_to_all(3) . 2-61

shmem_long_xor_to_all(3) . 2-61

shmem_longlong_xor_to_all(3) 2-61

shmem_short_xor_to_all(3) . 2-61

2.11 Collective Communication . 2-63

shmem_broadcast(3) . 2-64

shmem_broadcast32(3) . 2-64

shmem_broadcast64(3) . 2-64

shmem_collect(3) . 2-66

shmem_collect32(3) . 2-66

shmem_collect64(3) . 2-66

shmem_fcollect(3) . 2-66

shmem_fcollect32(3) . 2-66

shmem_fcollect64(3) . 2-66

2.12 Address Manipulation . 2-68

Contents v

2.13 Control Data Cache . 2-68

shmem_clear_cache_inv(3) . 2-69

shmem_set_cache_inv(3) . 2-69

shmem_set_cache_line_inv(3) 2-69

shmem_udcflush(3) . 2-69

shmem_udcflush_line(3) . 2-69

3 Programming Examples 3-1

3.1 Introduction . 3-1

3.2 The Command Line Interface . 3-1

3.3 Program Output . 3-2

3.4 Header Files and Variables . 3-2

3.5 Argument Checking . 3-4

3.6 Initialization . 3-6

3.7 Establishing the Peer Group . 3-7

3.8 Writing Shared Variables . 3-7

3.9 Subsidiary Functions . 3-10

3.10 Program Listing . 3-10

Glossary Glossary-1

Index Index-1

vi Contents

List of Tables

2.1 Data Type Sizes . 2-2

2.2 Initialisation Functions . 2-4

2.3 Remote Write Functions . 2-8

2.4 Remote Read Functions . 2-16

2.5 Synchronization Functions . 2-23

2.6 Atomic Memory Operations . 2-30

2.7 Collective Reduction Operation . 2-43

2.8 Collective Communication Functions 2-63

2.9 Address Manipulation Functions . 2-68

2.10 Control Data Cache Functions . 2-68

List of Tables i

1

Preface

1.1 Scope of Manual

This manual describes the Shmem programming library. This library supports a
shared-memory programming model where cooperating processes exchange data by
performing read and write operations on logically shared variables.

1.2 Audience

This manual is intended for developers who want to develop parallel applications
using a shared-memory programming model.

The manual assumes that the reader is familiar with the following:

• UNIX operating system

• C programming language

1.3 Using this Manual

This manual contains three chapters. Their contents are as follows:

Chapter 1 (Preface)

describes the layout of the manual and the conventions used to
present information

Chapter 2 (The Shmem Library)

describes the functions in the Shmem library

Chapter 3 (Programming Examples)

contains a worked example of using the Shmem libraries

1-1

Conventions

1.4 Related Information

The following manuals provide additional information relevant to developing parallel
applications using Shmem:

• Elan Programming Manual

• RMS Reference Manual

• RMS User Manual

Programming examples are installed in the directory /usr/lib/rms/examples (or
/opt/rms/examples for Solaris) together with makefiles for compiling the programs.

1.5 Location of Online Documentation

Online documentation in HTML format is installed in the directory
/usr/lib/rms/docs/html (or /opt/rms/docs/html for Solaris) and can be
accessed from a browser at http://rmshost:8081/html/index.html. PostScript
and PDF versions of the documents are in /usr/lib/rms/docs (or /opt/rms/docs
for Solaris). Please consult your system administrator if you have difficulty accessing
the documentation.

New versions of this and other Quadrics documentation can be found on the Quadrics
web site http://www.quadrics.com.

1.6 Reader’s Comments

If you would like to make any comments on this or any other Quadrics manual, please
send them to support@quadrics.com.

1.7 Conventions

The following typographical conventions have been used in this document:

monospace type

Monospace type denotes literal text. This is used for command
descriptions, file names and examples of output.

bold monospace type

Bold monospace type indicates text that the user enters when
contrasted with on-screen computer output.

italic monospace type

Italic (slanted) monospace type denotes some meta text. This is
used most often in command or parameter descriptions to show
where a textual value is to be substituted.

1-2 Preface

http://www.quadrics.com
http://www.quadrics.com/web/support

Conventions

italic type Italic (slanted) proportional type is used in the text to introduce
new terms. It is also used when referring to labels on graphical
elements such as buttons.

Ctrl/x This symbol indicates that you hold down the Ctrl key while you
press another key or mouse button (shown here by x).

TLA Small capital letters indicate an abbreviation (see Glossary).

ls(1) A cross-reference to a reference page includes the appropriate
section number in parentheses.

A number sign represents the superuser prompt.

%, $ A percent sign represents the C shell system prompt. A dollar sign
represents the system prompt for the Bourne, Korn, and POSIX
shells.

Preface 1-3

2

The Shmem Library

2.1 Introduction

This chapter describes in detail the functions belonging to the Shmem programming
library. This library allows user to write parallel applications using a shared-memory
programming model, where all the processes can operate on a globally accessible
address space. In order to support this programming model, the Shmem routines
supply remote data transfer, work-shared broadcast and reduction, barrier
synchronization, and atomic memory operations. Furthermore the Shmem routines
minimize the overhead associated with data passing requests, maximize bandwidth,
and minimize data latency. The Shmem library can be used in conjunction with or as
a replacement for message passing routines (e.g. MPI), so that developers can
optimally mix message-passing and shared-memory programming models in the same
application.

2.2 Compiling

To use the functions in the Shmem library, programs must include the header file
shmem.h. The library functions reference header files which are, by default, installed
in the directory /usr/include (or /opt/rms/include for Solaris.

Programs must be linked with libshmem.so. An example command line to compile a
program prog.c is shown here.

cc -o prog prog.c -lshmem

Definitions for the Fortran interface to Shmem can be found in the header file
shmem.fh.

The Shmem Library 2-1

Library Function Categories

2.3 Using the Shmem Library

Shmem routines can be used in programs that perform computations in separate
address spaces and that explicitly pass data to and from different processes in the
program. The processes participating in shared memory applications will be referred
as processing elements (PEs). Typically, target or source data that reside on remote
processing elements are identified by passing the address of the corresponding data
object on the local PE. The local existence of a corresponding data object implies that a
data object is remotely accessible. The remotely accessible data object are listed below:

1. Non-stack C and C++ variables.

2. C and C++ data allocated by malloc().

3. C and C++ data allocated by elan_allocMain() or elan_gallocMain().

Warning

Note that calls to malloc(), calloc(), etc are unsynchronised and that
these functions are called from other C library routines. You should not rely
on dynamically allocated objects being at the same address in each process.

The global allocator elan_gallocMain() performs synchronised storage allocation,
see Elan Programming Manual for details.

2.3.1 Word Lengths

The Shmem library provides functions that perform the same operation for different
data types, for example, shmem_int_put, shmem_long_put and
shmem_double_put. Some types have different lengths under different operating
systems and compiler combinations and in particular they may differ from the lengths
found in the Cray Shmem implementation.

The sizes of each type (in bytes) are listed in Table 2.1:

Table 2.1: Data Type Sizes

Type Tru64 UNIX Alpha Linux Solaris Unicos
int 4 4 4 8
long 8 8 4 8
longlong 8 8 8 16
float 4 4 4 8
double 8 8 4 8
longdouble 16 8 8 16

2.4 Library Function Categories

The functions in the Shmem library, can be grouped according to the operations they
perform. These groups are:

2-2 The Shmem Library

Library Function Categories

Initialisation The initialisation functions (Section 2.5) prepare for the process to
participate in shared memory operations. Furthermore this group
of functions can be used to retrieve information such as the number
of processes elements (PEs) belonging to a shared memory
application and the PE identifier.

Remote Write Operations

The Shmem library offers a wide number of functions to perform
remote write operations (put operation) (Section 2.6) Using these
functions a processing element is able to transfer a remotely
accessible data object to a remote PE.

Remote Read Operations

The Shmem library offers a wide number of functions to perform
remote read operations (get operation) (Section 2.7). Using these
functions a processing element is able to transfer a remotely
accessible data object from a remote PE.

Synchronisation Operations

The library supplies a set of functions providing synchronisation
(Section 2.8) among the processing elements participating to a
parallel computation. In particular there are two type of
synchronisation supported: one is used to express a barrier of
groups of PE and the other one is used to notify a PE when a local
variable has been modified by a remote PE.

Atomic Memory Operations

The Shmem library supplies programmers with a set of functions
allowing atomic operation on shared variables (Section 2.9). An
atomic memory operation is an atomic (i.e. that cannot be
interrupted) read-and-update operation on a remote data object.
The value read is guaranteed to be the value of the data object just
prior to the update. A wide range of atomic operations are
supported like swap, add, fetch-and-increment and
fetch-and-add

Collective Reduction

The shared memory reduction routines distribute work across a set
of PEs (Section 2.10). In particular these functions perform an
associative binary operation across a set of values distributed on a
set of PEs.

Collective Communication

The shared memory collective routines operate on the same data
object on multiple PEs. The Shmem library supplies routines to
broadcast a block of data from a processing element to one or more
target PEs and to concatenate data item coming from a subset of
PEs (Section 2.11).

The Shmem Library 2-3

Initialisation

Address Manipulation

The Shmem library routines that provide multi-process programs
with access a contiguous region of virtual address space
(Section 2.12) are not supported in this implementation.

Control Data Cache

These routines are supplied for compatibility with the Cray Shmem
library and they are implemented as NOPs (Section 2.13).

The following sections describe these groups of functions in more detail. Each section
starts by discussing how the functions work as a group and then the functions are
described individually.

2.5 Initialisation

The initialisation functions are listed in Table 2.2.

Table 2.2: Initialisation Functions

Name Description
start_pes Not supported in this implementation.
shmem_init Initialize a process to use the Shmem
num_pes Return the number of processes using Shmem
my_pe Return the processing element identifier

These functions are used to initialize the environment for the processes using the
features offered by the Shmem library. In particular the shmem_init expects all of
the processes to have been started by RMS. The function initialises the caller and then
synchronises the caller with the other processes. The functions num_pes and my_pe

supply the number of PEs belonging to the parallel application and the PE identifier
of the calling process respectively. The initialisation functions are described in detail
on the following pages.

The function start_pes is not supported in this implementation. Shmem programs
are started via prun, see RMS User Manual for details.

2-4 The Shmem Library

my_pe(3)

NAME

my_pe – returns the processing element number of the calling PE

SYNOPSIS

#include <shmem.h>

int my_pe(void);

DESCRIPTION

The function my_pe returns the processing element (PE) number of the calling PE.

RETURN VALUES

The function my_pe returns an integer between 0 and npes-1 where npes is the total
number of PE’s executing the current program.

SEE ALSO

num_pes(3), shmem_init(3)

The Shmem Library 2-5

num_pes(3)

NAME

num_pes – returns the number of PEs running in an application

SYNOPSIS

#include <shmem.h>

int num_pes(void);

DESCRIPTION

The function num_pes computes the number of PEs running in a parallel application.

RETURN VALUES

The function my_pe returns an integer indicating the number of PEs that are
currently allowed to cooperate using the Shmem library functions.

SEE ALSO

my_pe(3), shmem_init(3)

2-6 The Shmem Library

shmem_init(3)

NAME

shmem_init – initialise a process to use the Shmem library

SYNOPSIS

#include <shmem.h>

void shmem_init(void);

DESCRIPTION

The function shmem_init initialises the Shmem library. The shmem_init call must
me made before any other Shmem library calls. The function shmem_init should only
be called once for each process.

SEE ALSO

num_pes(3), my_pe(3)

The Shmem Library 2-7

Remote Write Operations

2.6 Remote Write Operations

The remote write functions are listed in Table 2.3.

Table 2.3: Remote Write Functions

Name Description
shmem_double_p Transfers a double data item to a PE
shmem_float_p Transfers a float data item to a PE
shmem_int_p Transfers a integer data item to a remote PE
shmem_long_p Transfers a long data item to a PE
shmem_short_p Transfers a short data item to a PE
shmem_double_put Transfers contiguous double data to a PE
shmem_float_put Transfers contiguous float data to a PE
shmem_int_put Transfers contiguous integer data to a PE
shmem_long_put Transfers contiguous long data to a remote PE
shmem_longdouble_put Transfers contiguous long double data to a PE
shmem_longlong_put Transfers contiguous long long data to a PE
shmem_short_put Transfers contiguous short data to a PE
shmem_put Transfer data type having 64 bits storage size
shmem_put32 Transfers data type having 32 bits storage size
shmem_put64 Transfers data type having 64 bits storage size
shmem_put128 Transfers data type having 128 bits storage size
shmem_putmem Transfer any contiguous data type to a remote PE
shmem_double_iput Transfer strided array of double to a remote PE
shmem_float_iput Transfer strided array of float to a remote PE
shmem_int_iput Transfer strided array of integer to a remote PE
shmem_long_iput Transfer strided array of long to a remote PE
shmem_longdouble_iput Transfer strided array of long double to a PE
shmem_longlong_iput Transfer strided array of long long to a PE
shmem_short_iput Transfer strided array of short to a remote PE
shmem_iput Transfer strided data having 64 bits storage size
shmem_iput32 Transfer strided data having 32 bits storage size
shmem_iput64 Transfer strided data having 64 bits storage size
shmem_iput128 Transfer strided data having 128 bits storage size

These functions provide low latency writes to variables in the memory of a remote PE.
The library offers a wide number of remote write functions that are optimized for most
of basic data type. In particular the remote write function can be grouped as follows:

1. Functions transferring a single data item having basic type in to the memory of a
remote PE (e.g. shmem_double_p, etc.).

2. Functions transferring contiguous data in to the memory of a remote PE (e.g.
shmem_double_put, etc.).

3. Functions transferring strided data in to the memory of a remote PE (e.g.
shmem_double_iput, etc.).

2-8 The Shmem Library

Remote Write Operations

The remote write functions are described in detail on the following pages.

The Shmem Library 2-9

shmem_double_p(3)

NAME

shmem_double_p, shmem_float_p, shmem_int_p, shmem_long_p,
shmem_short_p – transfer one data item to a remote PE

SYNOPSIS

#include <shmem.h>

void shmem_double_p(double *addr, double value, int pe);
void shmem_float_p(float *addr, float value, int pe);

void shmem_int_p(int *addr, int value, int pe);
void shmem_long_p(long *addr, long value, int pe);

void shmem_short_p(short *addr, short value, int pe);

PARAMETERS

addr The remotely accessible array element or scalar data object which
will receive the data on the remote PE.

value The value to be transferred to addr on the remote PE.

pe The number of the remote PE where value will be transferred.

DESCRIPTION

These routines provide a very low latency remote write capability for single elements
of most basic types. These functions start the remote transfer and may return before
the data is delivered to the remote PE. Use shmem_quiet() to force completion on all
remote transfers.

The function shmem_double_p() transfers a double data item to the remote PE.

The function shmem_float_p() transfers a float data item to the remote PE.

The function shmem_int_p() transfers an integer data item to the remote PE.

The function shmem_long_p() transfers a long data item to the remote PE.

The function shmem_short_p() transfers a short data item to the remote PE.

SEE ALSO

shmem_put(3), shmem_quiet(3)

2-10 The Shmem Library

shmem_put(3)

NAME

shmem_put, shmem_double_put, shmem_float_put, shmem_int_put,
shmem_long_put, shmem_longdouble_put, shmem_longlong_put,
shmem_short_put, shmem_put32, shmem_put64, shmem_put128,
shmem_putmem – transfer data to a remote PE

SYNOPSIS

#include <shmem.h>

void shmem_put(void *target, const void *source, size_t len,
int pe);

void shmem_double_put(double *target, const double *source,

size_t len, int pe);

void shmem_float_put(float *target, const float *source,
size_t len, int pe);

void shmem_int_put(int *target, const int *source, size_t len,

int pe);

void shmem_long_put(long *target, const long *source, size_t len,
int pe);

void shmem_longdouble_put(long double *target,
const long double *source, size_t len,

int pe);

void shmem_longlong_put(long long *target,
const long long *source, size_t len,

int pe);

void shmem_put32(void *target, const void *source, size_t len,
int pe);

void shmem_put64(void *target, const void *source, size_t len,

int pe);

void shmem_put128(void *target, const void *source, size_t len,
int pe);

void shmem_putmem(void *target, const void *source, size_t len,

int pe);
void shmem_short_put(short *target, const short *source,

size_t len, int pe);

PARAMETERS

target The remotely accessible array data object to be updated on the
remote PE.

source Data object containing the data to be copied on the remote PE.

len Number of elements in the target and source. len must be of

The Shmem Library 2-11

shmem_put(3)

integer type.

pe The number of the remote PE where the data object source will be
transferred.

DESCRIPTION

These routines provide the means for copying a contiguous data object from the local
PE to a contiguous data object on another PE. The routines return when the data has
been copied out of the source array on the local PE, but not necessarily before the
data has been delivered to the remote data object. Use shmem_quiet() to force
completion on all remote transfers.

The function shmem_put() writes any non character type that has a storage size
equal to 64 bits to the remote PE.

The function shmem_double_put() writes contiguous elements of double type to
the remote PE.

The function shmem_float_put() writes contiguous elements of float type to the
remote PE.

The function shmem_int_put() writes contiguous elements of type integer to the
remote PE.

The function shmem_long_put() write contiguous elements of long type to the
remote PE.

The function shmem_longdouble_put() writes contiguous elements of long
doubletype to the remote PE.

The function shmem_longlong_put() writes contiguous elements of long long

type to the remote PE.

The function shmem_short_put() writes contiguous elements of short type to the
remote PE.

The function shmem_put32() writes any non character type that has a storage size
equal to 32 bits to the remote PE.

The function shmem_put64() writes any non character type that has a storage size
equal to 64 bits to the remote PE.

The function shmem_put128() writes any non character type that has a storage size
equal to 128 bits to the remote PE.

The function shmem_putmem() writes any data type to the remote PE. len is scaled
in bytes.

SEE ALSO

shmem_iput(3), shmem_quiet(3)

2-12 The Shmem Library

shmem_iput(3)

NAME

shmem_iput, shmem_double_iput, shmem_float_iput, shmem_int_iput,
shmem_iput32, shmem_iput64, shmem_iput128, shmem_long_iput,
shmem_longdouble_iput, shmem_longlong_iput, shmem_short_iput – transfer
strided data to a remote PE

SYNOPSIS

#include <shmem.h>

void shmem_iput(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t len, int pe);

void shmem_double_iput(double *target, const double *source,

ptrdiff_t tst, ptrdiff_t sst, size_t len,

int pe);

void shmem_float_iput(float *target, const float *source,
ptrdiff_t tst, ptrdiff_t sst, size_t len,

int pe);

void shmem_int_iput(int *target, const int *source, ptrdiff_t tst,
ptrdiff_t sst, size_t len, int pe);

void shmem_iput32(void *target, const void *source, ptrdiff_t tst,

ptrdiff_t sst, size_t len, int pe);

void shmem_iput64(void *target, const void *source, ptrdiff_t tst,

ptrdiff_t sst, size_t len, int pe);

void shmem_iput128(void *target, const void *source,
ptrdiff_t tst, ptrdiff_t sst, size_t len,

int pe);

void shmem_long_iput(long *target, const long *source,
ptrdiff_t tst, ptrdiff_t sst, size_t len,

int pe);

void shmem_longdouble_iput(long double *target,

const long double *source,
ptrdiff_t tst, ptrdiff_t sst,

size_t len, int pe);

void shmem_longlong_iput(long long *target,
const long long *source, ptrdiff_t tst,

ptrdiff_t sst, size_t len, int pe);

void shmem_short_iput(short *target, const short *source,

ptrdiff_t tst, ptrdiff_t sst, size_t len,
int pe);

The Shmem Library 2-13

shmem_iput(3)

PARAMETERS

target The remotely accessible array data object to be updated on the
remote PE.

source Array containing the data to be copied on the remote PE.

tst The stride between consecutive elements of the target array. The
stride is scaled by the element size of the target array. A value of
1 indicates contiguous data. tst must be of type integer.

sst The stride between consecutive elements of the source array. The
stride is scaled by the element size of the source array. A value of
1 indicates contiguous data. sst must be of type integer.

len Number of elements in the target and source. len must be of
integer type.

pe The number of the remote PE were strided data will be stored.

DESCRIPTION

These routines provide the means for copying a strided array from the local PE to a
contiguous data object on a different PE. The routines return when the data has been
copied out of the source array on the local PE, but not necessarily before the data has
been delivered to the remote data object.

The function shmem_iput() writes strided array where each element is any non
character type that has a storage size equal to 64 bits to the remote PE.

The function shmem_double_iput() writes strided array of type double to the
remote PE.

The function shmem_float_iput() writes strided array of type float to the remote
PE.

The function shmem_int_iput() writes strided array of type integer to the remote
PE.

The function shmem_iput32() writes any non character type that has a storage size
equal to 32 bits to the remote PE.

The function shmem_iput64() writes strided array where each element is any non
character type that has a storage size equal to 64 bits to the remote PE.

The function shmem_iput128() writes strided array where each element is any non
character type that has a storage size equal to 128 bits to the remote PE.

The function shmem_long_iput() writes strided array of type long to the remote
PE.

The function shmem_longdouble_iput() writes strided array of type long double

to the remote PE.

The function shmem_longlong_iput() writes strided array of type long long to
the remote PE.

2-14 The Shmem Library

shmem_iput(3)

The function shmem_short_iput() writes strided array of type short to the remote
PE.

SEE ALSO

shmem_put(3), shmem_get(3), shmem_iget(3), shmem_quiet(3)

The Shmem Library 2-15

Remote Read Operations

2.7 Remote Read Operations

The Shmem library includes the functions shown in Table 2.4 for performing remote
read operations:

Table 2.4: Remote Read Functions

Name Description
shmem_double_g Transfers a double data item from a PE
shmem_float_g Transfers a float data item from a PE
shmem_int_g Transfers a integer data item from a PE
shmem_long_g Transfers a long data item from a PE
shmem_short_g Transfers a short data item from a PE
shmem_double_get Transfers contiguous double data from a PE
shmem_float_get Transfers contiguous float data from a PE
shmem_int_get Transfers contiguous integer data from a PE
shmem_long_get Transfers contiguous long data from a PE
shmem_longdouble_get Transfers contiguous long double data from a PE
shmem_longlong_get Transfers contiguous long long data from a PE
shmem_short_get Transfers contiguous short data from a PE
shmem_get Transfers data type having 64 bits storage size
shmem_get32 Transfers data type having 32 bits storage size
shmem_get64 Transfers data type having 64 bits storage size
shmem_get128 Transfers data type having 128 bits storage size
shmem_getmem Transfers any contiguous data type from a remote PE
shmem_double_iget Transfer strided array of double from a remote PE
shmem_float_iget Transfer strided array of float from a remote PE
shmem_int_iget Transfer strided array of integer from a remote PE
shmem_long_iget Transfer strided array of long from a remote PE
shmem_longdouble_iget Transfer strided array of long double from a remote PE
shmem_longlong_iget Transfer strided array of long long from a remote PE
shmem_short_iget Transfer strided array of short from a remote PE
shmem_iget Transfer strided data having 64 bits storage size
shmem_iget32 Transfer strided data having 32 bits storage size
shmem_iget64 Transfer strided data having 64 bits storage size
shmem_iget128 Transfer strided data having 128 bits storage size

These functions provide low latency reads of variables stored in the memory of a
remote PE. The library offers a wide number of remote read (get) functions that are
optimized for most basic data types. In particular the remote read functions can be
grouped as follows:

1. Functions reading a single data item having basic type from the memory of a
remote PE (e.g. shmem_double_g, etc.).

2. Functions reading contiguous data from from the memory of a remote PE (e.g.
shmem_double_get, etc.).

2-16 The Shmem Library

Remote Read Operations

3. Functions reading strided data from the memory of a remote PE (e.g.
shmem_double_iget, etc.).

The remote read functions are described in detail on the following pages.

The Shmem Library 2-17

shmem_double_g(3)

NAME

shmem_double_g, shmem_float_g, shmem_int_g, shmem_long_g,
shmem_short_g – transfer one data item from a remote PE

SYNOPSIS

#include <shmem.h>

double shmem_double_g(double *addr, int pe);
float shmem_float_g(float *addr, int pe);

int shmem_int_g(int *addr, int pe);
long shmem_long_g(long *addr, int pe);

short shmem_short_g(short *addr, int pe);

PARAMETERS

addr The remotely accessible array element or scalar data object.

pe The number of the remote PE on which addr resides.

DESCRIPTION

These routines provide a very low latency remote read capability for single elements
of most basic types.

The function shmem_double_g() transfers a double data item from a remote PE.

The function shmem_float_g() transfers a float data item from a remote PE.

The function shmem_int_g() transfers a integer data item from a remote PE.

The function shmem_long_g() transfers a long data item from a remote PE.

The function shmem_short_g() transfers a short data item from a remote PE.

RETURN VALUES

These functions return the contents that had been at the target address addr on the
remote PE specified by pe.

SEE ALSO

shmem_get(3)

2-18 The Shmem Library

shmem_get(3)

NAME

shmem_get, shmem_double_get, shmem_float_get, shmem_get32,
shmem_get64, shmem_get128, shmem_getmem, shmem_int_get,
shmem_long_get, shmem_longdouble_get, shmem_longlong_get,
shmem_short_get – transfer contiguous data from a remote PE

SYNOPSIS

#include <shmem.h>

void shmem_get(void *target, const void *source, size_t len,
int pe);

void shmem_double_get(double *target, const double *source,

size_t len, int pe);

void shmem_float_get(float *target, const float *source,
size_t len, int pe);

void shmem_get32(void *target, const void *source, size_t len,
int pe);

void shmem_get64(void *target, const void *source, size_t len,

int pe);

void shmem_get128(void *target, const void *source, size_t len,
int pe);

void shmem_getmem(void *target, const void *source, size_t len,

int pe);

void shmem_int_get(int *target, const int *source, size_t len,
int pe);

void shmem_long_get(long *target, const long *source, size_t len,

int pe);
void shmem_longdouble_get(long double *target,

const long double *source, size_t len,

int pe);
void shmem_longlong_get(long long *target,

const long long *source, size_t len,

int pe);
void shmem_short_get(short *target, const short *source,

size_t len, int pe);

PARAMETERS

target Local data object to be updated.

source Data object on the PE identified by pe that contains the data to be
copied. This data object must be remotely accessible

len Number of elements in the target and source.

The Shmem Library 2-19

shmem_get(3)

pe The number of the remote PE on which source resides.

DESCRIPTION

These routines provide the means for copying a contiguous data object from a remote
PE to a contiguous data object in to the local PE. The routines return when the data
has been delivered to the target array on the local PE.

The function shmem_get() reads any non-character type that has a storage size
equal to 64 bits from a remote PE.

The function shmem_double_get() reads contiguous elements of type double from
a remote PE.

The function shmem_float_get() reads contiguous elements of type float from a
remote PE.

The function shmem_get32() reads any non-character type that has a storage size
equal to 32 bits from a remote PE.

The function shmem_get64() reads any non-character type that has a storage size
equal to 64 bits from a remote PE.

The function shmem_get128() reads any non-character type that has a storage size
equal to 128 bits from a remote PE.

The function shmem_getmem() reads any data type from a remote PE. len is scaled
in bytes.

The function shmem_int_get() reads contiguous elements of type integer from a
remote PE.

The function shmem_long_get() reads contiguous elements of type long from a
remote PE.

The function shmem_longdouble_get() reads contiguous elements of type long
double from a remote PE.

The function shmem_longlong_get() reads contiguous elements of type long long

from a remote PE.

The function shmem_short_get() reads contiguous elements of type short from a
remote PE.

SEE ALSO

shmem_iput(3), shmem_put(3), shmem_iget(3), shmem_quiet(3)

2-20 The Shmem Library

shmem_iget(3)

NAME

shmem_iget, shmem_double_iget, shmem_float_iget, shmem_iget32,
shmem_iget64, shmem_iget128, shmem_int_iget, shmem_long_iget,
shmem_longdouble_iget, shmem_longlong_iget, shmem_short_iget – transfer
strided data from a remote PE

SYNOPSIS

#include <shmem.h>

void shmem_iget(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t len, int pe);

void shmem_double_iget(double *target, const double *source,

ptrdiff_t tst, ptrdiff_t sst, size_t len,

int pe);

void shmem_float_iget(float *target, const float *source,
ptrdiff_t tst, ptrdiff_t sst, size_t len,

int pe);

void shmem_iget32(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t len, int pe);

void shmem_iget64(void *target, const void *source, ptrdiff_t tst,

ptrdiff_t sst, size_t len, int pe);

void shmem_iget128(void *target, const void *source,

ptrdiff_t tst, ptrdiff_t sst, size_t len,
int pe);

void shmem_int_iget(int *target, const int *source, ptrdiff_t tst,

ptrdiff_t sst, size_t len, int pe);

void shmem_long_iget(long *target, const long *source,
ptrdiff_t tst, ptrdiff_t sst, size_t len,

int pe);

void shmem_longdouble_iget(long double *target,

const long double *source,
ptrdiff_t tst, ptrdiff_t sst,

size_t len, int pe);

void shmem_longlong_iget(long long *target,
const long long *source, ptrdiff_t tst,

ptrdiff_t sst, size_t len, int pe);

void shmem_short_iget(short *target, const short *source,

ptrdiff_t tst, ptrdiff_t sst, size_t len,
int pe);

PARAMETERS

target Array to be updated on the local PE.

The Shmem Library 2-21

shmem_iget(3)

source Array containing the data to be copied on the remote PE.

tst The stride between consecutive elements of the target array. The
stride is scaled by the element size of the target array. A value of
1 indicates contiguous data.

sst The stride between consecutive elements of the source array. The
stride is scaled by the element size of the source array. A value of
1 indicates contiguous data.

len Number of elements in the target and source arrays.

pe The number of the remote PE on which source resides.

DESCRIPTION

These routines provide the means for copying a strided array from a remote PE to a
local strided array. The routines return when the data has been copied into the local
target array.

The function shmem_iget() reads strided array where each element is any
non-character type that has a storage size equal to 64 bits from the remote PE.

The function shmem_double_iget() reads strided array of type double from the
remote PE.

The function shmem_float_iget() reads strided array of type float from the
remote PE.

The function shmem_iget32() reads any non-character type that has a storage size
equal to 32 bits from the remote PE.

The function shmem_iget64() reads strided array where each element is any
non-character type that has a storage size equal to 64 bits from the remote PE.

The function shmem_iget128() reads strided array where each element is any
non-character type that has a storage size equal to 128 bits from the remote PE.

The function shmem_int_iget() reads strided array of type integer from the
remote PE.

The function shmem_long_iget() reads strided array of type long from the remote
PE.

The function shmem_longdouble_iget() reads strided array of type long double

from the remote PE.

The function shmem_longlong_iget() reads strided array of type long long from
the remote PE.

The function shmem_short_iget() reads strided array of type short from the
remote PE.

SEE ALSO

shmem_iput(3), shmem_put(3), shmem_get(3), shmem_quiet(3)

2-22 The Shmem Library

Synchronization Operations

2.8 Synchronization Operations

The synchronisation functions are listed in Table 2.5.

Table 2.5: Synchronization Functions

Name Description
shmem_barrier Performs a barrier operation on a subset of PEs
barrier Performs a barrier operation on all PEs
shmem_barrier_all Performs a barrier operation on all PEs
shmem_int_wait Waits for an integer variable to change on the local PE
shmem_int_wait_until Waits for an integer variable to change and satisfy a condition
shmem_long_wait Waits for a long variable to change on the local PE
shmem_long_wait_until Waits for a long variable to change and satisfy a condition
shmem_longlong_wait Waits for a long variable to change on the local PE
shmem_longlong_wait_until Waits for a long long variable to satisfy a condition
shmem_short_wait Waits for a short variable to change on the local PE
shmem_short_wait_until Waits for a short variable to change and satisfy a condition
shmem_wait Waits for a long variable to change on the local PE
shmem_short_wait Waits for a long variable to change and satisfy a condition
shmem_fence Assures ordering of delivery of puts
shmem_quiet Waits for completion of all outstanding remote writes

These functions are used to express different kinds of synchronization. The routines
barrier, shmem_barrier and shmem_barrier_all_barrier are used to
synchronize all or a subset of the processes belonging to the parallel application.

The routines like shmem_wait are used to synchronize a pair of processing elements.
The PE calling one of these functions on a local variable V is blocked until a remote
PE changes the value of V.

The function shmem_fence ensures ordering of remote write (put) operations. All put
operations issued to a particular processing element (PE) prior to the call to
shmem_fence are guaranteed to be delivered before any subsequent put operations to
the same PE which follow the call to shmem_fence.

The function shmem_quiet waits for completion of all outstanding remote writes
initiated from the current PE. The routine shmem_quiet does not return until all
data is delivered to the remote PEs memory.

The synchronization functions are described in detail on the following pages.

The Shmem Library 2-23

barrier(3)

NAME

barrier, shmem_barrier_all – register the arrival of a PE at a barrier and suspends
PE execution until all other PE arrive at the barrier

SYNOPSIS

#include <shmem.h>

void barrier(void);
void shmem_barrier_all(void);

DESCRIPTION

Barriers are a fast mechanism for synchronizing all PEs at once.

The function shmem_barrier_all() cause a PE to suspend execution until all PEs
have called shmem_barrier_all(). These barrier functions also ensure completion
of all previously issued local memory stores and remote memory updates issued via
shared memory routine calls such as shmem_put32().

SEE ALSO

shmem_barrier(3), shmem_init(3)

2-24 The Shmem Library

shmem_barrier(3)

NAME

shmem_barrier – Performs a barrier operation on a subset of processing elements
(PEs)

SYNOPSIS

#include <shmem.h>

void shmem_barrier(int PE_start, int logPE_stride, int PE_size,
long *pSync);

PARAMETERS

PE_start The lowest virtual PE number of the active set of PEs. PE_start
must be of type integer. If you are using Fortran, it must be a
default integer value.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
numbers in the active set.

PE_size The number of PEs in the active set. PE_size must be of type
integer.

pSync A symmetric work array. pSync must have size
_SHMEM_BARRIER_SYNC_SIZE. Every element of this array must
be initialized to 0 before any of the PEs in the active set enter
shmem_barrier the first time.

DESCRIPTION

The shmem_barrier is a collective synchronization routine. Control returns from
shmem_barrier after all PEs in the active set (specified by PE_start,
logPE_stride, and PE_size) have called shmem_barrier. The values of arguments
PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same work array must be passed in pSync to all PEs in the active set. The
shmem_barrier routine ensures that all previously issued local stores and previously
issued remote memory updates done by any of the PEs in the active set (by using
Shmem calls, for example shmem_put) are complete before returning. The same
pSync array may be reused on consecutive calls to shmem_barrier if the same active
PE set is used.

SEE ALSO

shmem_barrier_all(3),

The Shmem Library 2-25

shmem_wait(3)

NAME

shmem_wait, shmem_int_wait, shmem_long_wait, shmem_longlong_wait,
shmem_short_wait, shmem_wait_until, shmem_int_wait_until,
shmem_long_wait_until, shmem_longlong_wait_until,
shmem_short_wait_until – Waits for a variable on the local processing element (PE)
to change

SYNOPSIS

#include <shmem.h>

void shmem_wait(long *var, long value);

void shmem_int_wait(int *var, int value);
void shmem_long_wait(long *var, long value);

void shmem_longlong_wait(long long *var, long long value);
void shmem_short_wait(short *var, short value);

void shmem_wait_until(long *var, int cond, long value);

void shmem_int_wait_until(int *var, int cond, int value);
void shmem_long_wait_until(long *var, int cond, long value);

void shmem_longlong_wait_until(long long *var, int cond,
long long value);

void shmem_short_wait_until(short *var, int cond, short value);

PARAMETERS

var A remotely accessible integer variable that is being updated by a
remote processing element.

cond The compare operator that compares var with value. The
following cond values are supported:

SHMEM_CMP_EQ Equal operator

SHMEM_CMP_NE Not equal operator

SHMEM_CMP_GT Greater then operator

SHMEM_CMP_LE Less then or equal operator

SHMEM_CMP_LT Less then operator operator

SHMEM_CMP_GE Greater then or equal operator

value Is the value used as right operand of the compare operator cond.
The left one is the value pointed by var

DESCRIPTION

These functions wait for var to be changed by a write (put) or atomic swap issued by a
remote PE. These routines can be used for point-to-point direct synchronization and

2-26 The Shmem Library

shmem_wait(3)

offer a mechanism to notify a PE that another process element has completed some
action.

The function shmem_wait() blocks the calling PE until some remote PE writes a
long value, not equal to value, into var on the waiting PE.

The function shmem_int_wait() blocks the calling PE until some remote PE writes
an integer value, not equal to value, into var on the waiting PE.

The function shmem_long_wait() blocks the calling PE until some remote PE writes
a long value, not equal to value, into var on the waiting PE.

The function shmem_longlong_wait() blocks the calling PE until some remote PE
writes a long long value, not equal to value, into var on the waiting PE.

The function shmem_short_wait() blocks the calling PE until some remote PE
writes a short value, not equal to value, into var on the waiting PE.

The function shmem_wait_until() blocks the calling PE until some remote PE
changes the long variable var to satisfy the condition implied by comp and val.

The function shmem_int_wait_until() blocks the calling PE until some remote PE
changes the integer variable var to satisfy the condition implied by comp and val.

The function shmem_long_wait_until() blocks the calling PE until some remote
PE changes the long variable var to satisfy the condition implied by comp and val.

The function shmem_longlong_wait_until() blocks the calling PE until some
remote PE changes the long long variable var to satisfy the condition implied by
comp and val.

The function shmem_short_wait_until() blocks the calling PE until some remote
PE changes the short variable var to satisfy the condition implied by comp and val.

SEE ALSO

shmem_put(3)

The Shmem Library 2-27

shmem_fence(3)

NAME

shmem_fence – assures ordering of delivery of puts

SYNOPSIS

#include <shmem.h>

void shmem_fence(void);

DESCRIPTION

This function ensures ordering of remote write (put) operations. All put operations
issued to a particular processing element (PE) prior to the call to shmem_fence are
guaranteed to be delivered before any subsequent remote write operation to the same
PE which follows the call to shmem_fence. The shmem_quiet function should be
called if ordering of puts is desired when multiple remote PEs are involved.

SEE ALSO

shmem_quiet(3)

2-28 The Shmem Library

shmem_quiet(3)

NAME

shmem_quiet – Waits for completion of all outstanding remote writes issued by a
processing element (PE)

SYNOPSIS

#include <shmem.h>

void shmem_quiet(void);

DESCRIPTION

This function waits for completion of all outstanding remote writes initiated from the
calling PE. Remote writes are issued by calls to shmem_put() and related put
routines. When controls returns from shmem_put(), the data is delivered to the
communication circuitry but has not yet arrived to the remote PE. The shmem_quiet
function does not return until all the data is delivered to the remote PE’s memory.

SEE ALSO

shmem_put(3), shmem_fence(3), shmem_barrier(3), shmem_wait(3)

The Shmem Library 2-29

Atomic Memory Operations

2.9 Atomic Memory Operations

The atomic memory functions are listed in Table 2.6.

Table 2.6: Atomic Memory Operations

Name Description
shmem_double_swap Atomic swap to a remote double data object
shmem_float_swap Atomic swap to a remote float data object
shmem_int_swap Atomic swap to a remote integer data object
shmem_long_swap Atomic swap to a remote long data object
shmem_longlong_swap Atomic swap to a remote long long data object
shmem_short_swap Atomic swap to a remote short data object
shmem_swap Atomic swap to a remote long data object
shmem_int_cswap Atomic conditional swap to a remote integer data object
shmem_long_cswap Atomic conditional swap to a remote long data object
shmem_longlong_cswap Atomic conditional swap to a remote long long data object
shmem_short_cswap Atomic conditional swap to a remote short data object
shmem_short_add Atomic add on remote short data object
shmem_int_mswap Atomic masked swap to an integer data object
shmem_long_mswap Atomic masked swap to an long data object
shmem_short_mswap Atomic masked swap to a short data object
shmem_int_fadd Atomic fetch-and-add on an integer data object
shmem_long_fadd Atomic fetch-and-add on a long data object
shmem_longlong_fadd Atomic fetch-and-add on a longlong data object
shmem_short_fadd Atomic fetch-and-add on a short data object
shmem_int_finc Atomic fetch-and-increment on an integer data object
shmem_long_finc Atomic fetch-and-increment on a long data object
shmem_longlong_finc Atomic fetch-and-increment on a longlong data object
shmem_short_finc Atomic fetch-and-increment on a short data object
shmem_short_inc Atomic increment on a short data object

These routines are used to perform atomic read-and-update operations on a remote
data object. It is worth noting that the atomicty accessing a shared variable V is only
guaranteed if V is updated using the Shmem routines only. Thus, in order to preserve
the correct semantic of atomic operations all the processing elements, including the
one for which V is local, must refer to V using the Shmem atomic routines.

Routines like shmem_swap, shmem_int_cswap and shmem_int_mswap perform an
atomic swap operation, an atomic conditional swap operation and a masked atomic
swap operation to a remote data object respectively. The functions like
shmem_int_fadd, shmem_int_finc and shmem_short_add perform atomic
fetch-and-add, fetch-and-increment and atomic add on a remote data object
respectively.

The functions performing atomic memory operations are described in detail on the
following pages.

2-30 The Shmem Library

shmem_swap(3)

NAME

shmem_swap, shmem_double_swap, shmem_float_swap, shmem_int_swap,
shmem_long_swap, shmem_longlong_swap, shmem_short_swap – Perform an
atomic swap to a remote data object

SYNOPSIS

#include <shmem.h>

long shmem_swap(long *target, long value, int pe);

double shmem_double_swap(double *target, double value, int pe);
float shmem_float_swap(float *target, float value, int pe);

int shmem_int_swap(int *target, int value, int pe);

long shmem_long_swap(long *target, long value, int pe);
long long shmem_longlong_swap(long long*target, long long value,

int pe);
short shmem_short_swap(short *target, short value, int pe);

PARAMETERS

target The pointer to the remotely accessible data object to be updated on
the remote PE. The type of target should match that implied in
the SYNOPSIS section.

value Value to be atomically written to the remote PE. value is the same
type as target.

pe An integer indicating the PE number on which target is to be
updated.

DESCRIPTION

These functions perform atomic swap operations.It is worth noting that the atomic
access to a variable V is only guaranteed if V is updated solely by Shmem routines.
Thus, in order to preserve the correct semantic of atomic operations all the processing
elements, including the one for which the variable V is local, must refer V using the
Shmem atomic routines.

The shmem_swap function writes the long value value in to the variable pointed by
target on processing element pe and returns the previous contents of target as an
atomic operation.

The shmem_double_swap function writes the double value value in to the variable
pointed by target on processing element pe and returns the previous contents of
target as an atomic operation.

The Shmem Library 2-31

shmem_swap(3)

The shmem_float_swap function writes the float value value in to the variable
pointed by target on processing element pe and returns the previous contents of
target as an atomic operation.

The shmem_int_swap function writes the integer value value in to the variable
pointed by target on processing element pe and returns the previous contents of
target as an atomic operation.

The shmem_long_swap function writes the long value value in to the variable
pointed by target on processing element pe and returns the previous contents of
target as an atomic operation.

The shmem_longlong_swap function writes the longlong value value in to the
variable pointed by target on processing element pe and returns the previous
contents of target as an atomic operation.

The shmem_short_swap function writes the short value value in to the variable
pointed by target on processing element pe and returns the previous contents of
target as an atomic operation.

RETURN VALUES

These functions return the contents that had been at the target address on the remote
PE prior to the swap is returned.

SEE ALSO

shmem_put(3)

2-32 The Shmem Library

shmem_int_cswap(3)

NAME

shmem_int_cswap, shmem_long_cswap, shmem_longlong_cswap,
shmem_short_cswap – Performs an atomic conditional swap to a remote data object

SYNOPSIS

#include <shmem.h>

int shmem_int_cswap(int *target, int cond, int value, int pe);
long shmem_long_cswap(long *target, long cond, long value,

int pe);

long long shmem_longlong_cswap(long long *target, long long cond,
long long value, int pe);

short shmem_short_cswap(short *target, short cond, short value,

int pe);

PARAMETERS

target The pointer to a remotely accessible data object to be updated on
the remote PE. The data type of target should match that implied
in the SYNOPSIS section.

cond The value of cond is compared to the remote target value. If cond
and the remote target value are equal then value is swapped in
the remote target. Otherwise the remote target is unchanged. In
either case, the old value of the remote target is returned as the
function return value. The parameter cond must be of the same
data type of target.

value The value to be atomically written to the remote PE. value must
be the same data type as target.

pe An integer that indicates the PE number upon which target is to
be updated.

DESCRIPTION

The conditional swap routines conditionally update a target data object on an
arbitrary processing element (PE) and return prior contents of the data object in one
atomic operation. It is worth noting that atomic access to a variable V is only
guaranteed if V is updated solely by Shmem routines. Thus, in order to preserve the
correct semantic of atomic operations all the processing elements, including the one
for which the variable V is local, must refer to V using the Shmem atomic routines.

The function shmem_int_cswap performs an atomic conditional operation on a
remotely accessible integer data object.

The Shmem Library 2-33

shmem_int_cswap(3)

The function shmem_long_cswap performs an atomic conditional operation on a
remotely accessible long data object.

The function shmem_longlong_cswap performs an atomic conditional operation on a
remotely accessible long long data object.

The function shmem_short_cswap performs an atomic conditional operation on
remotely accessible short data object.

RETURN VALUES

These functions return the contents that had been at the target address on the remote
PE prior to the conditional swap.

SEE ALSO

shmem_swap(3)

2-34 The Shmem Library

shmem_short_add(3)

NAME

shmem_short_add – performs an atomic add operation on a remote data object

SYNOPSIS

#include <shmem.h>

void shmem_short_add(short *target, short value, int pe);

PARAMETERS

target The pointer to a remotely accessible data object to be updated on
the remote PE. The data type of target should match that implied
in the SYNOPSIS section.

value The value to be atomically added to the target.

pe An integer that indicates the PE number upon which target is to
be updated.

DESCRIPTION

The shmem_short_add routine performs an atomic add operation. It adds value to
the variable pointed by target on the processing element specified by pe. It is worth
noting that the atomic access to a variable V is only guaranteed if V is updated solely
by Shmem routines. Thus, in order to preserve the correct semantic of atomic
operations all the processing elements, including the one for which the variable V is
local, must refer to V using Shmem atomic routines.

SEE ALSO

shmem_short_cswap(3)

The Shmem Library 2-35

shmem_int_mswap(3)

NAME

shmem_int_mswap, shmem_long_mswap, shmem_short_mswap – perform an
atomic masked swap on a remote data object

SYNOPSIS

#include <shmem.h>

int shmem_int_mswap(int *target, int mask, int value, int pe);
long shmem_long_mswap(long *target, long mask, long value,

int pe);

short shmem_short_mswap(short *target, short mask, short value,
int pe);

PARAMETERS

target The pointer to a remotely accessible data object to be updated on
the remote PE. The data type of target should match that implied
in the SYNOPSIS section.

mask Identifies the bits within target that are to be updated with bits
from value. The bits set to 1 in mask indicate bits to be copied
from value into the corresponding bit location in target. The
parameter mask must be the same data type as target.

value Contains the bits to be atomically written to target on the remote
PE. The parameter mask identifies the bits to be transferred. The
parameter value must be the same data type as target.

pe An integer that indicates the PE number upon which target is to
be updated.

DESCRIPTION

The masked swap routines update a target data object on an arbitrary processing
element (PE) and return the prior content of the data object in one atomic operation.
It is worth noting that atomic access to a variable V is only guaranteed if V is updated
solely by this Shmem routines. Thus, in order to preserve the correct semantic of
atomic operations all the processing elements, including the one for which V is local,
must refer to the variable V using Shmem atomic routines.

The shmem_int_mswap routine updates atomically the integer value pointed by
target according to the bit mask specified by mask.

The shmem_long_mswap routine updates atomically the long value pointed by
target according to the bit mask specified by mask.

2-36 The Shmem Library

shmem_int_mswap(3)

The shmem_short_mswap routine updates atomically the short value pointed by
target according to the bit mask specified by mask.

RETURN VALUES

These functions return the contents that had been in the target address on the
remote PE prior to the masked swap.

SEE ALSO

shmem_int_swap(3), shmem_int_cswap(3)

The Shmem Library 2-37

shmem_int_fadd(3)

NAME

shmem_int_fadd, shmem_long_fadd, shmem_longlong_fadd,
shmem_short_fadd – perform an atomic fetch-and-add operation on a remote data
object

SYNOPSIS

#include <shmem.h>

int shmem_int_fadd(int *target, int value, int pe);

long shmem_long_fadd(long *target, long value, int pe);
long long shmem_longlong_fadd(long long *target, long long value,

int pe);

short shmem_short_fadd(short *target, short value, int pe);

PARAMETERS

target The pointer to a remotely accessible data object to be updated on
the remote PE. The data type of target should match that implied
in the SYNOPSIS section.

value The value to be atomically added to target. The type of value
should match that implied in the SYNOPSIS section.

pe An integer that indicates the PE number upon which target is to
be updated.

DESCRIPTION

These routines perform an atomic fetch-and-add operation adding value to target
on PE specified by pe and returning the previous contents of the target. It is worth
noting that the atomic access a variable V is only guaranteed if V is updated solely by
this Shmem routines. Thus, in order to preserve the correct semantic of atomic
operations all the processing elements, including the one for which the variable V is
local, must refer to V using the Shmem atomic routines.

The shmem_int_fadd operates on integer data object.

The shmem_long_fadd operates on long data object.

The shmem_longlong_fadd operates on long long data object.

The shmem_longshort_fadd operates on short data object.

RETURN VALUES

These functions return the contents that had been at the target address on the
remote PE prior to the atomic addition operation.

2-38 The Shmem Library

shmem_int_fadd(3)

SEE ALSO

shmem_int_swap(3), shmem_int_cswap(3) shmem_int_finc(3)

The Shmem Library 2-39

shmem_int_finc(3)

NAME

shmem_int_finc, shmem_long_finc, shmem_longlong_finc, shmem_short_finc
– perform an atomic fetch-and-increment operation on a remote data object

SYNOPSIS

#include <shmem.h>

int shmem_int_finc(int *target, int pe);
long shmem_long_finc(long *target, int pe);

long long shmem_longlong_finc(long long *target, int pe);
short shmem_short_finc(short *target, int pe);

PARAMETERS

target The pointer to a remotely accessible data object to be incremented
on the remote PE. The data type of target should match that
implied in the SYNOPSIS section.

pe An integer that indicates the PE number upon which target is to
be updated.

DESCRIPTION

These routines perform an atomic fetch-and-increment operation. They increment the
data objet pointed by target on PE specified by pe and return the previous contents
of target as an atomic operation. It is worth noting that the atomic access to a
variable V is only guaranteed if V is updated solely by this Shmem routines. Thus, in
order to preserve the correct semantic of atomic operations all the processing
elements, including the one for which the variable V is local, must refer to V using the
Shmem atomic routines.

The shmem_int_finc operates on integer data object.

The shmem_long_finc operates on long data object.

The shmem_longlong_finc operates on long long data object.

The shmem_longshort_finc operates on short data object.

RETURN VALUES

These functions return the contents that had been at the target address on the
remote PE prior to the atomic increment.

SEE ALSO

2-40 The Shmem Library

shmem_int_finc(3)

shmem_int_swap(3), shmem_int_cswap(3) shmem_int_fadd(3)

The Shmem Library 2-41

shmem_short_inc(3)

NAME

shmem_short_inc – perform an atomic increment operation on a remote data object

SYNOPSIS

#include <shmem.h>

void shmem_short_inc(short *target, int pe);

PARAMETERS

target The pointer to a remotely accessible data object to be incremented
on the remote PE.

pe An integer that indicates the PE number upon which target is to
be updated.

DESCRIPTION

This routine performs an atomic increment on a remote variable pointed by target
on PE specified by pe. It is worth noting that the atomic access to a variable V is only
guaranteed if V is updated solely by this Shmem routines. Thus, in order to preserve
the correct semantic of atomic operations all the processing elements, including the
one for which the variable V is local, must refer to V using the Shmem atomic
routines.

SEE ALSO

shmem_short_swap(3), shmem_short_finc(3) shmem_short_fadd(3)

2-42 The Shmem Library

Collective Reduction Operations

2.10 Collective Reduction Operations

The collective reduction functions are listed in Table 2.7.

Table 2.7: Collective Reduction Operation

Name Description
shmem_int_and_to_all Performs a logical AND function on integer

shmem_long_and_to_all Performs a logical AND reduction on long
shmem_longlong_and_to_all Performs a logical AND reduction on long long

shmem_short_and_to_all Performs a logical AND reduction on short

shmem_double_max_to_all Performs a maximum function on double
shmem_float_max_to_all Performs a maximum function on float

shmem_int_max_to_all Performs a maximum function on int
shmem_long_max_to_all Performs a maximum function on long

shmem_longdouble_max_to_all Performs a maximum function on long double

shmem_longlong_max_to_all Performs a maximum function on array of long long
shmem_short_max_to_all Performs a maximum function of short
shmem_double_min_to_all Performs a minimum function on array of double
shmem_float_min_to_all Performs a minimum function on float

shmem_int_min_to_all Performs a minimum function on int

shmem_long_min_to_all Performs a minimum function on long
shmem_longdouble_min_to_all Performs a minimum function on long double

shmem_longlong_min_to_all Performs a minimum function on long long
shmem_short_min_to_all Performs a minimum function on short

shmem_int_or_to_all Performs a logical OR function on integer
shmem_long_or_to_all Performs a logical OR function on long

shmem_longlong_or_to_all Performs a logical OR function on long long

shmem_short_or_to_all Performs a logical OR function on short
shmem_double_prod_to_all Performs a product reduction on double

shmem_float_prod_to_all Performs a product reduction on float
shmem_int_prod_to_all Performs a product reduction on int

shmem_long_prod_to_all Performs a product reduction on long

shmem_longdouble_prod_to_all Performs a product reduction on long double
shmem_longlong_prod_to_all Performs a product reduction on long long

shmem_short_prod_to_all Performs a product reduction on short
shmem_double_sum_to_all Performs a sum reduction on double

shmem_float_sum_to_all Performs a sum reduction on float

shmem_int_sum_to_all Performs a sum reduction on int
shmem_long_sum_to_all Performs a sum reduction on long

shmem_longdouble_sum_to_all Performs a sum reduction on long double
shmem_longlong_sum_to_all Performs a sum reduction on long long

shmem_short_sum_to_all Performs a sum reduction on short
shmem_int_xor_to_all Performs a logical exclusive OR on short

shmem_long_xor_to_all Performs a logical exclusive OR on array of long
shmem_longlong_xor_to_all Performs a logical exclusive OR on long long

(continued on next page)

The Shmem Library 2-43

Collective Reduction Operations

Table 2.7: Collective Reduction Operation (cont.)

Name Description
shmem_short_xor_to_all Performs a logical exclusive OR on short

The Shmem library supplies a wide number of functions to perform associative binary
operations across a set of values distributed on a set of processing elements. The
following associative binary operators are supported:

AND The logical AND function (e.g. shmem_int_and_all_to_all)

MAX The maximum function (e.g. shmem_int_max_all_to_all)

MIN The minimum function (e.g. shmem_int_min_all_to_all)

OR The logical OR function (e.g. shmem_int_or_all_to_all)

PROD The product function (e.g. shmem_int_prod_all_to_all)

SUM The sum function (e.g. shmem_int_sum_all_to_all)

XOR The logical exclusive OR function (e.g.
shmem_int_xor_all_to_all)

The collective reduction functions are described in detail on the following pages.

2-44 The Shmem Library

shmem_int_and_to_all(3)

NAME

shmem_int_and_to_all, shmem_long_and_to_all, shmem_longlong_and_to_all,
shmem_short_and_to_all – perform a logical AND function across a set of
processing elements (PEs)

SYNOPSIS

#include <shmem.h>

void shmem_int_and_to_all(int *target, int *source, int nreduce,

int PE_start, int logPE_stride,

int PE_size, int *pWrk, long *pSync);
void shmem_long_and_to_all(long *target, long *source,

int nreduce, int PE_start,

int logPE_stride, int PE_size,
long *pWrk, long *pSync);

void shmem_longlong_and_to_all(long long *target,

long long *source, int nreduce,
int PE_start, int logPE_stride,

int PE_size, long long *pWrk,
long *pSync);

void shmem_short_and_to_all(short *target, short *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

short *pWrk, long *pSync);

PARAMETERS

target A symmetric array, of length nreduce, to receive the result of the
reduction operation. The data type of target should match that
implied in the SYNOPSIS section.

source A symmetric array, of length nreduce, that contains one element
for each separete reduction operation. The source argument must
have the same data type as target.

nreduce The number of elements in the target and source array.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
number in the active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array. The pWrk argument must have the same
data type as target. In C/C++, this contains max(nreduce/2+1,
_SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

The Shmem Library 2-45

shmem_int_and_to_all(3)

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory reduction routines compute one or more reductions across
symmetric arrays on multiple virtual PEs. A reduction performs an associative binary
operation across a set of values. The nreduce argument determines the number of
elements to perform the reduction operation on. The source array on all PEs in the
active set provides one element for each reduction. The results of the reductions are
placed in the target array on all PEs in the active set. The active set is defined by the
PE_start, logPE_stride, PE_size triplet. The source and target arrays may be
the same array, but they may not be overlapping arrays. The values of arguments
nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same target and source arrays, and the same pWrk and pSync work
arrays, must be passed to all PEs in the active set. Before any PE calls a reduction
routine, you must ensure that the following conditions exist (synchronization via a
barrier or some other method is often needed to ensure this):

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a
prior call to a collective shared memory routine.

• The target array on all PEs in the active set is ready to accept the results of the
reduction.

Upon return from a reduction routine, the following are true for the local PE:

• The target array is updated.

• The values in the pSync array are restored to the original values.

The function shmem_int_and_to_all performs a reduction applaying the logical
AND operator to integer values distributed across the PEs.

The function shmem_long_and_to_all performs a reduction applaying the logical
AND operator to long values distributed across the PEs.

The function shmem_longlong_and_to_all performs a reduction applaying the
logical AND operator to long long values distributed across the PEs.

The function shmem_short_and_to_all performs a reduction applaying the logical
AND operator to short values distributed across the PEs.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

2-46 The Shmem Library

shmem_double_max_to_all(3)

NAME

shmem_double_max_to_all, shmem_float_max_to_all, shmem_int_max_to_all,
shmem_long_max_to_all, shmem_longdouble_max_to_all,
shmem_longlong_max_to_all, shmem_short_max_to_all – performs a maximum
function reduction across a set of processing elements (PEs)

SYNOPSIS

#include <shmem.h>

void shmem_double_max_to_all(double *target, double *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,

double *pWrk, long *pSync);
void shmem_float_max_to_all(float *target, float *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

float *pWrk, long *pSync);

void shmem_int_max_to_all(int *target, int *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, int *pWrk, long *pSync);

void shmem_long_max_to_all(long *target, long *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

long *pWrk, long *pSync);

void shmem_longdouble_max_to_all(long double *target,
long double *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, long double *pWrk,

long *pSync);

void shmem_longlong_max_to_all(long long *target,
long long *source, int nreduce,

int PE_start, int logPE_stride,

int PE_size, long long *pWrk,
long *pSync);

void shmem_short_max_to_all(short *target, short *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

short *pWrk, long *pSync);

PARAMETERS

target A symmetric array, of length nreduce, to receive the result of the
reduction operations. The data type of target should match that

The Shmem Library 2-47

shmem_double_max_to_all(3)

implied in the SYNOPSIS section.

source A symmetric array, of length nreduce, that contains one element
for each separete reduction operation. The source argument must
have the same data type as target.

nreduce The number of elements in the target and source array.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
number in the active set. of type integer.

PE_size The number of PEs in the active set.

pWrk A symmetric work array. The pWrk argument must have the same
data type as target. In C/C++, this contains max(nreduce/2+1,
_SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory reduction routines compute one or more reductions across
symmetric arrays on multiple virtual PEs. A reduction performs an associative binary
operation across a set of values. The nreduce argument determines the number of
elements to perform the reduction operation on. The source array on all PEs in the
active set provides one element for each reduction. The results of the reductions are
placed in the target array on all PEs in the active set. The active set is defined by the
PE_start, logPE_stride, PE_size triplet. The source and target arrays may be
the same array, but they may not be overlapping arrays. The values of arguments
nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same target and source arrays, and the same pWrk and pSync work
arrays, must be passed to all PEs in the active set. Before any PE calls a reduction
routine, you must ensure that the following conditions exist (synchronization via a
barrier or some other method is often needed to ensure this):

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a
prior call to a collective shared memory routine.

• The target array on all PEs in the active set is ready to accept the results of the
reduction.

Upon return from a reduction routine, the following are true for the local PE:

• The target array is updated.

• The values in the pSync array are restored to the original values.

2-48 The Shmem Library

shmem_double_max_to_all(3)

The function shmem_double_max_to_all performs a reduction applaying the
maximum function to doubles values distributed across the PEs.

The function shmem_float_max_to_all performs a reduction applaying the
maximum function to float values distributed across the PEs.

The function shmem_int_max_to_all performs a reduction applaying the maximum
function to integer values distributed across the PEs.

The function shmem_long_max_to_all performs a reduction applaying the
maximum function to long values distributed across the PEs.

The function shmem_longdouble_max_to_all performs a reduction applaying the
maximum function to long double values distributed across the PEs.

The function shmem_longlong_max_to_all performs a reduction applaying the
maximum function to long long values distributed across the PEs.

The function shmem_short_max_to_all performs a reduction applaying the
maximum function to short values distributed across the PEs.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

The Shmem Library 2-49

shmem_double_min_to_all(3)

NAME

shmem_double_min_to_all, shmem_float_min_to_all, shmem_int_min_to_all,
shmem_long_min_to_all, shmem_longdouble_min_to_all,
shmem_longlong_min_to_all, shmem_short_min_to_all – performs a minimum
function reduction across a set of processing elements (PEs)

SYNOPSIS

#include <shmem.h>

void shmem_double_min_to_all(double *target, double *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,

double *pWrk, long *pSync);

void shmem_float_min_to_all(float *target, float *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,
float *pWrk, long *pSync);

void shmem_int_min_to_all(int *target, int *source, int nreduce,

int PE_start, int logPE_stride,

int PE_size, int *pWrk, long *pSync);

void shmem_long_min_to_all(long *target, long *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,
long *pWrk, long *pSync);

void shmem_longdouble_min_to_all(long double *target,

long double *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, long double *pWrk,

long *pSync);

void shmem_longlong_min_to_all(long long *target,
long long *source, int nreduce,

int PE_start, int logPE_stride,

int PE_size, long long *pWrk,
long *pSync);

void shmem_short_min_to_all(short *target, short *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

short *pWrk, long *pSync);

PARAMETERS

target A symmetric array, of length nreduce, to receive the result of the
reduction operations. The data type of target should match that

2-50 The Shmem Library

shmem_double_min_to_all(3)

implied in the SYNOPSIS section.

source A symmetric array, of length nreduce, that contains one element
for each separete reduction operation. The source argument must
have the same data type as target.

nreduce The number of elements in the target and source array

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
number in the active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array. The pWrk argument must have the same
data type as target. In C/C++, this contains max(nreduce/2 +

1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory reduction routines compute one or more reductions across
symmetric arrays on multiple virtual PEs. A reduction performs an associative binary
operation across a set of values. The nreduce argument determines the number of
elements to perform the reduction operation on. The source array on all PEs in the
active set provides one element for each reduction. The results of the reductions are
placed in the target array on all PEs in the active set. The active set is defined by the
PE_start, logPE_stride, PE_size triplet. The source and target arrays may be
the same array, but they may not be overlapping arrays. The values of arguments
nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same target and source arrays, and the same pWrk and pSync work
arrays, must be passed to all PEs in the active set. Before any PE calls a reduction
routine, you must ensure that the following conditions exist (synchronization via a
barrier or some other method is often needed to ensure this):

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a
prior call to a collective shared memory routine.

• The target array on all PEs in the active set is ready to accept the results of the
reduction.

Upon return from a reduction routine, the following are true for the local PE:

• The target array is updated.

• The values in the pSync array are restored to the original values.

The Shmem Library 2-51

shmem_double_min_to_all(3)

The function shmem_double_min_to_all performs a reduction applaying the
minimum function to doubles values distributed across the PEs.

The function shmem_float_min_to_all performs a reduction applaying the
minimum function to float values distributed across the PEs.

The function shmem_int_min_to_all performs a reduction applaying the minimum
function to integer values distributed across the PEs.

The function shmem_long_min_to_all performs a reduction applaying the
minimum function to long values distributed across the PEs.

The function shmem_longdouble_min_to_all performs a reduction applaying the
minimum function to long double values distributed across the PEs.

The function shmem_longlong_min_to_all performs a reduction applaying the
minimum function to long long values distributed across the PEs.

The function shmem_short_min_to_all performs a reduction applaying the
minimum function to short values distributed across the PEs.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

2-52 The Shmem Library

shmem_int_or_to_all(3)

NAME

shmem_int_or_to_all, shmem_long_or_to_all, shmem_longlong_or_to_all,
shmem_short_or_to_all – perform a logical OR function across a set of processing
elements (PEs)

SYNOPSIS

#include <shmem.h>

void shmem_int_or_to_all(int *target, int *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, int *pWrk, long *pSync);

void shmem_long_or_to_all(long *target, long *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, long *pWrk, long *pSync);

void shmem_longlong_or_to_all(long long *target,

long long *source, int nreduce,
int PE_start, int logPE_stride,

int PE_size, long long *pWrk,

long *pSync);
void shmem_short_or_to_all(short *target, short *source,

int nreduce, int PE_start,

int logPE_stride, int PE_size,
short *pWrk, long *pSync);

PARAMETERS

target A symmetric array, of length nreduce, to receive the result of the
reduction operation. The data type of target should match that
implied in the SYNOPSIS section.

source A symmetric array, of length nreduce, that contains one element
for each separete reduction operation. The source argument must
have the same data type as target.

nreduce The number of elements in the target and source array.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
number in the active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array. The pWrk argument must have the same
data type as target. In C/C++, this contains max(nreduce/2+1,
_SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

The Shmem Library 2-53

shmem_int_or_to_all(3)

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory reduction routines compute one or more reductions across
symmetric arrays on multiple virtual PEs. A reduction performs an associative binary
operation across a set of values. The nreduce argument determines the number of
elements to perform the reduction operation on. The source array on all PEs in the
active set provides one element for each reduction. The results of the reductions are
placed in the target array on all PEs in the active set. The active set is defined by the
PE_start, logPE_stride, PE_size triplet. The source and target arrays may be
the same array, but they may not be overlapping arrays. The values of arguments
nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same target and source arrays, and the same pWrk and pSync work
arrays, must be passed to all PEs in the active set. Before any PE calls a reduction
routine, you must ensure that the following conditions exist (synchronization via a
barrier or some other method is often needed to ensure this):

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a
prior call to a collective shared memory routine.

• The target array on all PEs in the active set is ready to accept the results of the
reduction.

Upon return from a reduction routine, the following are true for the local PE:

• The target array is updated.

• The values in the pSync array are restored to the original values.

The function shmem_int_or_to_all performs a reduction applaying the logical OR
operator on integer values distributed across the PEs.

The function shmem_long_or_to_all performs a reduction applaying the logical OR
operator on long values distributed across the PEs.

The function shmem_longlong_or_to_all performs a reduction applaying the
logical OR operator on long long values distributed across the PEs.

The function shmem_short_or_to_all performs a reduction applaying the logical
OR operator on short values distributed across the PEs.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

2-54 The Shmem Library

shmem_double_prod_to_all(3)

NAME

shmem_double_prod_to_all, shmem_float_prod_to_all,
shmem_int_prod_to_all, shmem_long_prod_to_all,
shmem_longdouble_prod_to_all, shmem_longlong_prod_to_all,
shmem_short_prod_to_all – performs a product reduction across a set of processing
elements (PEs)

SYNOPSIS

#include <shmem.h>

void shmem_double_prod_to_all(double *target, double *source,

int nreduce, int PE_start,

int logPE_stride, int PE_size,
double *pWrk, long *pSync);

void shmem_float_prod_to_all(float *target, float *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,

float *pWrk, long *pSync);

void shmem_int_prod_to_all(int *target, int *source, int nreduce,
int PE_start, int logPE_stride,

int PE_size, int *pWrk, long *pSync);

void shmem_long_prod_to_all(long *target, long *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,
long *pWrk, long *pSync);

void shmem_longdouble_prod_to_all(long double *target,

long double *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,

long double *pWrk, long *pSync);
void shmem_longlong_prod_to_all(long long *target,

long long *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, long long *pWrk,

long *pSync);

void shmem_short_prod_to_all(short *target, short *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,
short *pWrk, long *pSync);

The Shmem Library 2-55

shmem_double_prod_to_all(3)

PARAMETERS

target A symmetric array, of length nreduce, to receive the result of the
reduction operations. The data type of target should match that
implied in the SYNOPSIS section.

source A symmetric array, of length nreduce, that contains one element
for each separete reduction operation. The source argument must
have the same data type as target.

nreduce The number of elements in the target and source array.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
number in the active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array. The pWrk argument must have the same
data type as target. In C/C++, this contains max(nreduce/2 +

1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory reduction routines compute one or more reductions across
symmetric arrays on multiple virtual PEs. A reduction performs an associative binary
operation across a set of values. The nreduce argument determines the number of
separate reduction to perform. The source array on all PEs in the active set provides
one element for each reduction. The results of the reductions are placed in the target
array on all PEs in the active set. The active set is defined by the PE_start,
logPE_stride, PE_size triplet. The source and target arrays may be the same
array, but they may not be overlapping arrays. The values of arguments nreduce,
PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same target and source arrays, and the same pWrk and pSync work arrays,
must be passed to all PEs in the active set. Before any PE calls a reduction routine,
you must ensure that the following conditions exist (synchronization via a barrier or
some other method is often needed to ensure this):

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a
prior call to a collective shared memory routine.

• The target array on all PEs in the active set is ready to accept the results of the
reduction.

Upon return from a reduction routine, the following are true for the local PE:

2-56 The Shmem Library

shmem_double_prod_to_all(3)

• The target array is updated.

• The values in the pSync array are restored to the original values.

The function shmem_double_prod_to_all performs a reduction applaying the
product function to doubles values distributed across the PEs.

The function shmem_float_prod_to_all performs a reduction applaying the
product function to float values distributed across the PEs.

The function shmem_int_prod_to_alql performs a reduction applaying the product
function to integer values distributed across the PEs.

The function shmem_long_prod_to_all performs a reduction applaying the product
function to long values distributed across the PEs.

The function shmem_longdouble_prod_to_all performs a reduction applaying the
product function to long double values distributed across the PEs.

The function shmem_longlong_prod_to_all performs a reduction applaying the
product function to long long values distributed across the PEs.

The function shmem_short_prod_to_all performs a reduction applaying the
product function to short values distributed across the PEs.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

The Shmem Library 2-57

shmem_double_sum_to_all(3)

NAME

shmem_double_sum_to_all, shmem_float_sum_to_all, shmem_int_sum_to_all,
shmem_long_sum_to_all, shmem_longdouble_sum_to_all,
shmem_longlong_sum_to_all, shmem_short_sum_to_all – performs a product
reduction across a set of processing elements (PEs)

SYNOPSIS

#include <shmem.h>

void shmem_double_sum_to_all(double *target, double *source,
int nreduce, int PE_start,

int logPE_stride, int PE_size,

double *pWrk, long *pSync);
void shmem_float_sum_to_all(float *target, float *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

float *pWrk, long *pSync);

void shmem_int_sum_to_all(int *target, int *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, int *pWrk, long *pSync);

void shmem_long_sum_to_all(long *target, long *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

long *pWrk, long *pSync);

void shmem_longdouble_sum_to_all(long double *target,
long double *source, int nreduce,

int PE_start, int logPE_stride,
int PE_size, long double *pWrk,

long *pSync);

void shmem_longlong_sum_to_all(long long *target,
long long *source, int nreduce,

int PE_start, int logPE_stride,

int PE_size, long long *pWrk,
long *pSync);

void shmem_short_sum_to_all(short *target, short *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

short *pWrk, long *pSync);

PARAMETERS

target A symmetric array, of length nreduce, to receive the result of the
reduction operations. The data type of target should match that

2-58 The Shmem Library

shmem_double_sum_to_all(3)

implied in the SYNOPSIS section.

source A symmetric array, of length nreduce, that contains one element
for each separete reduction operation. The source argument must
have the same data type as target.

nreduce The number of elements in the target and source array.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
number in the active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array. The pWrk argument must have the same
data type as target. In C/C++, this contains max(nreduce/2 +

1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory reduction routines compute one or more reductions across
symmetric arrays on multiple virtual PEs. A reduction performs an associative binary
operation across a set of values. The nreduce argument determines the number of
separate reduction to perform. The source array on all PEs in the active set provides
one element for each reduction. The results of the reductions are placed in the target
array on all PEs in the active set. The active set is defined by the PE_start,
logPE_stride, PE_size triplet. The source and target arrays may be the same
array, but they may not be overlapping arrays. The values of arguments nreduce,
PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same target and source arrays, and the same pWrk and pSync work arrays,
must be passed to all PEs in the active set. Before any PE calls a reduction routine,
you must ensure that the following conditions exist (synchronization via a barrier or
some other method is often needed to ensure this):

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a
prior call to a collective shared memory routine.

• The target array on all PEs in the active set is ready to accept the results of the
reduction.

Upon return from a reduction routine, the following are true for the local PE:

• The target array is updated.

• The values in the pSync array are restored to the original values.

The Shmem Library 2-59

shmem_double_sum_to_all(3)

The function shmem_double_sum_to_all performs a reduction applaying the sum
function to doubles values distributed across the PEs.

The function shmem_float_sum_to_all performs a reduction applaying the sum
function to float values distributed across the PEs.

The function shmem_int_sum_to_alql performs a reduction applaying the sum
function to integer values distributed across the PEs.

The function shmem_long_sum_to_all performs a reduction applaying the sum
function to long values distributed across the PEs.

The function shmem_longdouble_sum_to_all performs a reduction applaying the
sum function to long double values distributed across the PEs.

The function shmem_longlong_sum_to_all performs a reduction applaying the
sum function to long long values distributed across the PEs.

The function shmem_short_sum_to_all performs a reduction applaying the sum
function to short values distributed across the PEs.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

2-60 The Shmem Library

shmem_int_xor_to_all(3)

NAME

shmem_int_xor_to_all, shmem_long_xor_to_all, shmem_longlong_xor_to_all,
shmem_short_xor_to_all – perform a logical exclusive OR function across a set of
processing elements (PEs)

SYNOPSIS

#include <shmem.h>

void shmem_int_xor_to_all(int *target, int *source, int nreduce,

int PE_start, int logPE_stride,

int PE_size, int *pWrk, long *pSync);
void shmem_long_xor_to_all(long *target, long *source,

int nreduce, int PE_start,

int logPE_stride, int PE_size,
long *pWrk, long *pSync);

void shmem_longlong_xor_to_all(long long *target,

long long *source, int nreduce,
int PE_start, int logPE_stride,

int PE_size, long long *pWrk,
long *pSync);

void shmem_short_xor_to_all(short *target, short *source,

int nreduce, int PE_start,
int logPE_stride, int PE_size,

short *pWrk, long *pSync);

PARAMETERS

target A symmetric array, of length nreduce, to receive the result of the
reduction operation. The data type of target should match that
implied in the SYNOPSIS section.

source A symmetric array, of length nreduce, that contains one element
for each separete reduction operation. The source argument must
have the same data type as target.

nreduce The number of elements in the target and source array.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
number in the active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array. The pWrk argument must have the same
data type as target. In C/C++, this contains max(nreduce/2+1,
_SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

The Shmem Library 2-61

shmem_int_xor_to_all(3)

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory reduction routines compute one or more reductions across
symmetric arrays on multiple virtual PEs. A reduction performs an associative binary
operation across a set of values. The nreduce argument determines the number of
separate reduction to perform. The source array on all PEs in the active set provides
one element for each reduction. The results of the reductions are placed in the target
array on all PEs in the active set. The active set is defined by the PE_start,
logPE_stride, PE_size triplet. The source and target arrays may be the same
array, but they may not be overlapping arrays. The values of arguments nreduce,
PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same target and source arrays, and the same pWrk and pSync work arrays,
must be passed to all PEs in the active set. Before any PE calls a reduction routine,
you must ensure that the following conditions exist (synchronization via a barrier or
some other method is often needed to ensure this):

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a
prior call to a collective shared memory routine.

• The target array on all PEs in the active set is ready to accept the results of the
reduction.

Upon return from a reduction routine, the following are true for the local PE:

• The target array is updated.

• The values in the pSync array are restored to the original values.

The function shmem_int_xor_to_all performs a reduction applaying the logical
exclusive OR operator on integer values distributed across the PEs.

The function shmem_long_xor_to_all performs a reduction applaying the logical
exclusive OR operator on long values distributed across the PEs.

The function shmem_longlong_xor_to_all performs a reduction applaying the
logical exclusive OR operator on long long values distributed across the PEs.

The function shmem_short_xor_to_all performs a reduction applaying the logical
exclusive OR operator on short values distributed across the PEs.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

2-62 The Shmem Library

Collective Communication

2.11 Collective Communication

The collective communication functions are listed in Table 2.8.

Table 2.8: Collective Communication Functions

Name Description
shmem_broadcast Broadcasts a block of data having 64 bit storage class
shmem_broadcast32 Broadcasts a block of data having 32 bit storage class
shmem_broadcast64 Broadcasts a block of data having 64 bit storage class
shmem_collect Concatenates blocks of data having 64 bit storage class
shmem_collect32 Concatenates blocks of data having 32 bit storage class
shmem_collect64 Concatenates blocks of data having 64 bit storage class
shmem_fcollect Concatenates blocks of data having 64 bit storage class
shmem_fcollect32 Concatenates blocks of data having 32 bit storage class
shmem_fcollect64 Concatenates blocks of data having 64 bit storage class

Collective communication routines operate on the same data object on multiple PE.
The Shmem supports two different type of collective communication as explained
below:

• Broadcast routines (i.e. shmem_broadcast) that are used to broadcast a block of
data from one processing element (named the root of the operation) to a set of PEs.

• Concatenation routines (i.e. shmem_collect) that are used to concatenate data
items distributed over a set of PEs.

The collective communication functions are described in detail on the following pages.

The Shmem Library 2-63

shmem_broadcast(3)

NAME

shmem_broadcast, shmem_broadcast32, shmem_broadcast64 – broadcasts a
block of data from one processing element (PE) to one or more target PEs

SYNOPSIS

#include <shmem.h>

void shmem_broadcast(void *target, void *source, int nlong,
int PE_root, int PE_start, int logPE_stride,

int PE_size, long *pSync);

void shmem_broadcast32(void *target, void *source, int nlong,
int PE_root, int PE_start,

int logPE_stride, int PE_size,
long *pSync);

void shmem_broadcast64(void *target, void *source, int nlong,

int PE_root, int PE_start,
int logPE_stride, int PE_size,

long *pSync);

PARAMETERS

target A symmetric data object used to receive the data broadcasted by the
processing element specified by PE_start. For shmem_broadcast
and shmem_broadcast64 the data type of target can be any type
that has an element size of 64 bits.

source A symmetric data object that can be of any data type that is
permissible for the target argument.

nlong The number of elements in source. For shmem_broadcast and
shmem_broadcast64, this is the number of 64-bit words. For
shmem_broadcast32 this is the number of 32-bit halfwords.

PE_root Zero-based ordinal of the PE, with respect to the active set, from
which the data is copied. Must be greater than or equal to 0 and
less than PE_size.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE
numbers in the active set.

PE_size The number of PEs in the active set.

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array

2-64 The Shmem Library

shmem_broadcast(3)

must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory broadcast routines are collective routines. They copy data object
source on the processor specified by PE_root and store the values at target on the
other PEs specified by the triplet PE_start, logPE_stride, PE_size. The data is
not copied to the target area on the root PE. The values of arguments PE_root,
PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same target and source data objects and the same pSync work array must be
passed to all PEs in the active set. Before any PE calls a broadcast routine, you must
ensure that the following conditions exist (synchronization via a barrier or some other
method is often needed to ensure this):

• The pSync arrays on all PEs in the active set is not still in use from a prior call to
a broadcast routine.

• The target array on all PEs in the active set is ready to accept the broadcast data.

Upon return from a broadcast routine, the following are true for the local PE:

• If the current PE is not the root PE, the target data object is updated.

• The values in the pSync array are restored to the original values.

SEE ALSO

shmem_barrier(3) shmem_barrier_all(3)

The Shmem Library 2-65

shmem_collect(3)

NAME

shmem_collect, shmem_collect32, shmem_collect64, shmem_fcollect,
shmem_fcollect32, shmem_fcollect64 – concatenates blocks of data from multiple
processing elements (PEs) to an array in every PE

SYNOPSIS

#include <shmem.h>

void shmem_collect(void *target, void *source, int nlong,

int PE_start, int logPE_stride, int PE_size,
long *pSync);

void shmem_collect32(void *target, void *source, int nlong,

int PE_start, int logPE_stride, int PE_size,
long *pSync);

void shmem_collect64(void *target, void *source, int nlong,
int PE_start, int logPE_stride, int PE_size,

long *pSync);

void shmem_fcollect(void *target, void *source, int nlong,
int PE_start, int logPE_stride, int PE_size,

long *pSync);

void shmem_fcollect32(void *target, void *source, int nlong,
int PE_start, int logPE_stride, int PE_size,

long *pSync);

void shmem_fcollect64(void *target, void *source, int nlong,
int PE_start, int logPE_stride, int PE_size,

long *pSync);

PARAMETERS

target A symmetric array. The target argument must be large enough to
accept the concatenation of the source arrays on all PEs. For
shmem_collect, shmem_collect64, shmem_fcollect and
shmem_fcollect64, the data type of target can be any type that
has an element size of 64 bits.

source A symmetric data object that can be of any data type that is
permissible for the target argument.

nlong The number of elements in the source array. The nlong argument
must be equal on all PEs for shmem_collect64,
shmem_fcollect, shmem_fcollect32, and shmem_fcollect64.
The nlong argument can be different across PEs for
shmem_collect and shmem_collect32.

PE_start The lowest virtual PE number of the active set of PEs.

2-66 The Shmem Library

shmem_collect(3)

logPE_stride The log (base 2) of the stride between consecutive virtual PE
numbers in the active set.

PE_size The number of PEs in the active set.

pSync A symmetric work array. In C/C++, pSync must be of type long
and size _SHMEM_REDUCE_SYNC_SIZE. Every element of this array
must be initialized with the value _SHMEM_SYNC_VALUE before any
of the PEs in the active set enter the reduction routine.

DESCRIPTION

The shared memory collective routines concatenate nlong 64-bit or 32-bit data items
from the source array into the target array, over the set of PEs defined by
PE_start, log2PE_stride, and PE_size, in processor number order. The resultant
target array contains the contribution from PE PE_start first, then the
contribution from PE PE_start + PE_stride second, and so on. The collected
result is written to the target array for all PEs in the active set. The values of
arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same target and source array and the same pSync work array must
be passed to all PEs in the active set.

Upon return from a collective routine, the following are true for the local PE:

• The target data object is updated.

• The values in the pSync array are restored to the original values.

SEE ALSO

shmem_broadcast(3)

The Shmem Library 2-67

Control Data Cache

2.12 Address Manipulation

The address manipulation functions listed in Table 2.9 are not supported in this
implementation.

Table 2.9: Address Manipulation Functions

Name Description
shmem_ptr Returns a pointer to a data object on a remote PE
shmem_stack Makes a stack address remotely accessible

Entry points for these functions are provided in the library. The functions will
generate an exception if called.

2.13 Control Data Cache

The functions for controls data cache cache are listed in Table 2.10.

Table 2.10: Control Data Cache Functions

Name Description
shmem_clear_cache_inv Disables automatic cache coherency mode
shmem_set_cache_inv Enables automatic cache coherency mode
shmem_set_cache_line_inv Enables automatic line cache coherency mode
shmem_udcflush Makes the entire user data cache coherent.
shmem_udcflush_line Makes coherent a cache line

These routines are supplied for compatibility with the Cray Shmem library. They
perform no operations and returns to the caller successfully. The control data cache
functions are described in detail on the following pages.

2-68 The Shmem Library

shmem_cache(3)

NAME

shmem_clear_cache_inv, shmem_set_cache_inv, shmem_set_cache_line_inv,
shmem_udcflush, shmem_udcflush_line – controls data cache utilities

SYNOPSIS

#include <shmem.h>

void shmem_clear_cache_inv(void);
void shmem_set_cache_inv(void);

void shmem_set_cache_line_inv(void *target);
void shmem_udcflush(void);

void shmem_udcflush_line(void *target);

DESCRIPTION

These routines are suplied for compatibility with the Cray Shmem library. They
perform NULL operations and return to the caller successfully.

The Shmem Library 2-69

3

Programming Examples

3.1 Introduction

This chapter contains a programming example which makes use of the facilities of the
Shmem library. This programming example implements a multiprocess version of the
UNIX program ping using the Shmem routines.

ping sends packets across the network to elicit a response from a specified network
host and prints out timing statistics for the round-trip (sending a packet and getting a
response).

The example program extends ping to work on multiple network hosts by running
processes in parallel on a number of processors. The processes form pairs and each
process in the pair pings the other. After a user specified number of pings, one of the
processes in each pair prints its timing statistics.

The following sections describe how the program is implemented. The complete
program listing is given in Section 3.10.

3.2 The Command Line Interface

This is the command line interface for the program, sping.

sping -n number[k|K|m|M] -eh nwords [maxWords [incWords]]

The options for the programs are:

-n number[k|K|m|M]

Specifies the number of times to ping. The number may have a k or
an m appended to it (or their upper case equivalents) to denote
multiples of 1024 and 1,048,576 respectively. By default, the
program pings 10,000 times.

-e Instructs every process to print their timing statistics.

Programming Examples 3-1

Header Files and Variables

-h Displays the list of options.

nwords [maxWords [incWords]]

nwords specifies to sping how many words there are in each
packet. If maxWords is given, it specifies a maximum number of
words to send in each packet and invokes the following behavior.
After each n repetitions (as specified with the -n option), the packet
size is increased by incWords (the default is a doubling in size) and
another set of repetitions is performed until the packet size exceeds
maxWords. This means that if neither of the optional parameters
are specified, only one set of repetitions is performed.

3.3 Program Output

At the start of the program, if printing has been enabled for all processes with the -e
option, a message like this is displayed by each process.

1(8): Shmem PING reps 250000 minWords 64 maxWords 128 incWords 32

where 1 is the process’s identity number (i.e. the processing element or PE number)
and 8 gives the number of processes running in parallel.

After each set of repetitions, timing statistics are displayed like this:

1 pinged 0: 64 words 10.14 uSec 50.49 MB/s

This indicates that process 1 pinged process 0 with 64 word packets. The pinging took
10.14 microseconds giving a rate of 50.49MBytes per second.

If printing has been enabled for all processes with the -e option, this message is
displayed by each process. By default, only one process in each pair displays the
message.

3.4 Header Files and Variables

The header files and variables used by the program are shown here. The variables are
declared in main.

#include <stdio.h> 1
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/time.h>

#include <shmem.h>

int main (int argc, char *argv[])
{

double t,tv[2]; 2

int reps = 10000; 3

3-2 Programming Examples

Header Files and Variables

int minWords = 1;
int maxWords = 1;
int incWords;

int proc; 4
int peer;
int nproc;

long *rbuf; 5
long *tbuf;

int doprint = 0; 6
char *progName;
int nwords, c, r, i;
...

}

The header files and variables are described here.

1 Besides the standard C header files, the shmem.h header file is
required for the Shmem libraries.

2 The two time variables are used to time each set of repetitions of
writing and reading a shared variable. The tv array is used to
record two times using the function gettimeofday:

1. The time before the set of repetitions begins.

2. The time after the set of repetitions has ended.

The variable t is used to hold the difference between these two
readings. All the time values are expressed in microseconds.

3 This group of variables is used to control how many times the
process pings its opposite number and the size of packets sent. The
variable reps is set to the number of repetitions requested with the
-n option. It has a default setting of 10,000.

The next three variables hold the minimum, maximum and
increment values for the packet size. They are used when more
than one set of repetitions is requested. The variable incWords is
used to iterate from minWords to maxWords during a set of
repetitions.

4 These variables are used to identify by means of their PE number
the process and its peer or opposite number to which it write a
shared variable, and to hold the total number of processing
elements.

5 The variable rbuf is a pointer to a shared buffer. A processing
element uses this buffer pointer to write data in the memory of its
peer. The variable tbuf is a pointer to a buffer containing the data
used to fill the shared buffer rbuf.

Programming Examples 3-3

Argument Checking

6 The variable doprint is used to enable (1) or disable (0) the
printing of results by all the processes.

The progName variable is used to extract the name of the program
for use with the standard UNIX style -h option and Usage message
which is displayed when the program is called with the wrong
arguments.

The remaining four variables are general purpose iteration
variables.

3.5 Argument Checking

The first section of main is concerned with checking the arguments passed to the
program on the command line.

int main(int argc, char *argv[]) {
...
for (progName = argv[0] + strlen (argv[0]); 1

progName > argv[0] && *(progName - 1) != ’/’;
progName--)
;

while ((c = getopt (argc, argv, "n:eh")) != -1) 2
switch (c) {
case ’n’:

if ((reps = getSize (optarg)) <= 0)
usage (progName);

break;

case ’e’:
doprint++;
break;

case ’h’:
help (progName);

default:
usage (progName);

}

if (optind == argc) 3
minWords = 1;

else if ((minWords = getSize (argv[optind++])) <= 0)
usage (progName);

if (optind == argc)
maxWords = minWords;

else if ((maxWords = getSize (argv[optind++])) < minWords)
usage (progName);

if (optind == argc)
incWords = 0;

else if ((incWords = getSize (argv[optind++])) < 0)
usage (progName);

...
}

3-4 Programming Examples

Initialization

1 The program name is passed in as argv[0], the first string on the
command line. This string may take the form of a pathname, such
as /opt/rms/example/sping. The progname variable is set to
point to the end of the program name. The loop then steps the
variable backwards, one character at a time, until either a filename
separator (/) or the beginning of the name is reached. This leaves
progname pointing at the start of the program name.

2 The while loop steps through the options given on the command
line.

• If the -n option has been used, the variable reps is set to the
requested number of repetitions after a check that the number is
greater than 0. If the number is invalid, the usage function is
called. This merely displays the command line syntax for the
program and then exits.

• If the -e option has been used, the variable doprint is
incremented. This variable is used later to enable or disable the
printing of statistics.

• The -h option calls the help function which displays the
command line syntax for the program and explains the meaning
of the various options (or flags), like this.
Usage: sping [flags] nwords [maxWords] [incWords]

Flags may be any of
-n number repetitions to time
-e everyone print timing info
-h print this info

Numbers may be postfixed with ’k’ or ’m’

• If any other options beside the three mentioned here are given,
the function usage is called to display the correct command line
syntax and then exit.

3 The three if statements determine whether the optional
arguments for specifying a varying packet size have been set. The
variable optind is defined externally and included by the header
files at the start of the program. After stepping through all the
options with the while loop, optind indexes the first argument in
argv.

The first argument should be nwords, the number of words in each
packet. If the user has not specified this argument, the program
continues rather than exiting but assumes a value of 1. Note that
the value is assigned to minWords rather than to the variable
nwords. Later on, the value is transferred to nwords when it acts
as an iteration variable.

Programming Examples 3-5

Establishing the Peer Group

3.6 Initialization

The next section of main is concerned with initializing the process to use the Shmem
library and setting up a target shared variable.

int main (int argc, char *argv[]) {
...
if (!(rbuf = (long *)malloc(maxWords * sizeof(long)))) 1

{
perror ("Failed memory allocation");
exit (1);

}

if (!(tbuf = (long *)malloc(maxWords * sizeof(long))))
{

perror ("Failed memory allocation");
exit (1);

}

for (i = 0; i < maxWords; i++)
tbuf[i] = 1000 + (i & 255);

memset (rbuf, 0, maxWords * sizeof (long));

shmem_init(); 2

proc = my_pe(); 3
nproc = num_pes();

if (nproc == 1)
exit (0);

...
}

The initialization process is as follows.

1 The process allocates memory for the two message buffers rbuf
and tbuf using the malloc function. The buffers are used as the
destination and source in the Shmem remote write operation.
Pointers to them are passed to the Shmem library functions.

If a maximum number of words for the packet size is specified on
the command line to sping, the process allocates a buffer of this
size. By default, the buffers are 8 bytes (1 word). The transmit
buffer tbuf is initialized by writing a sequence of numbers to it.
The remote buffer rbuf is initialized to zero.

2 The process calls shmem_init to initialize itself to use the Shmem
library.

3 The process calls the functions my_pe and num_pes to determinate
its PE number and to find out how many processes are running in
parallel. If it is the only process, it exits as there is no-one for it to
ping.

3-6 Programming Examples

Writing Shared Variables

3.7 Establishing the Peer Group

Before starting the first (and possibly only) set of repetitions, the processes must
synchronize and group themselves into pairs.

int main(int argc, char *argv[]) {
...
if (doprint) 1

printf ("%d(%d): Shmem PING reps %d
minWords %d maxWords %d incWords %d\n",
proc, nproc, reps, minWords, maxWords, incWords);

shmem_barrier_all(); 2

peer = proc ˆ 1; 3
if (peer >= nproc)

doprint = 0;
...

}

1 If all the processes have been enabled for printing with the -e
option, each prints a message to confirm its identity, the number of
processes in the program and the program parameters.

2 Before starting to ping each other, the processes synchronize, that
is to say, each waits in the call to shmem_barrier_all until all
have made the call. This guarantees that all the processes are
initialized and ready to write and read shared variables before any
one of them starts to ping another.

3 In order to ping each other, the processes split up into pairs. Each
process determines its opposite number or peer simply by an
exclusive-OR of its own PE number identifier with the constant 1.
The processes have PE identifier numbered from 0 to nproc-1,
where nproc is the number of processes in the program. With an
uneven number of processes, one will have no peer. This can be
determined by checking that the peer’s PE number is in the range
of valid PEs identifiers. This singleton is disabled from printing.

3.8 Writing Shared Variables

In the final section of main, the process pings its peer a given number of times using
the Shmem functions.

int main(int argc, char *argv[]) {
...
for (nwords = minWords;

nwords <= maxWords;
nwords = incWords ? nwords + incWords : nwords ? 2 * nwords : 1) { 1

r = reps;

shmem_barrier_all(); 2

Programming Examples 3-7

Writing Shared Variables

tv[0] = gettime();

if (peer < nproc) { 3
if (proc & 1)
{

r--;
shmem_wait(&rbuf[nwords-1], 0);
rbuf[nwords-1] = 0;

}

while (r-- > 0) 4
{

shmem_put(rbuf, tbuf, nwords, peer);
shmem_wait(&rbuf[nwords-1], 0);
rbuf[nwords-1] = 0;

}

if (proc & 1)
shmem_put(rbuf, tbuf, nwords, peer);

}

tv[1] = gettime(); 5

t = dt (&tv[1], &tv[0]) / (2 * reps);

shmem_barrier_all();

printStats (proc, peer, doprint, nwords, t);
}

shmem_barrier_all(); 6
exit (0);

}

The Shmem library functions to access a shared variable are described here.

1 The for loop controls how many sets of repetitions are performed.
In each set of repetitions, a message containing nwords words is
written from one process to its peer for the number of times
specified by reps.

The first time through the loop, nwords is set to minWords. This
was initialized earlier (see Section 3.5) to the value the user
entered for nwords on the command line (by default, 1).

On subsequent iterations, the value of nwords is incremented by
the value of incWords. If no value was specified for incWords on
the command line, the original value of nword is doubled or, if
nwords was unspecified, it is set to 1.

If the user specified maxWords, the for loop is iterated until
nwords exceeds the value of maxWords. If not, the loop is only
executed once.

2 Before the processes begin to time how long the ping operation
takes, they synchronize using shmem_barrier_all. This ensures

3-8 Programming Examples

Writing Shared Variables

that they are all ready to start sending and receiving messages at
the same time.

The timing is done by calling twice the function gettime: one
before the remote writes start and one when they have finished.

3 After testing that the process has a peer (this test has to be
repeated in here since all the processes must participate in the
synchronization), the read/write operations on shared variables can
begin. The odd numbered processes (proc & 1) start first by
waiting that the shared variable is modified by the peer.

The call to shmem_wait blocks the process until the value stored in
the nwords-1 postion of the buffer rbuf is modified by the peer.
The call to shmem_wait specifies:

• The address of a remotely accessible variable that is being
updated by a remote processing element.

• The value V to be compared with the value S stored in the
remotely accessible variable. The process blocks until S and V

remain equal, that is until a remote processing element write a
different value in the shared variable.

The buffer rbuf was initialised erlier to 0 (see Section 3.6) and
thus the process blocks until the peer writes the shared buffer with
a value different from 0. When the process returns from the
function shmem_wait it sets the (nwords-1)-th position of the
shared buffer to 0 preparing the next iteration.

4 In the while loop both the odd and even numbered processes write
the shared variable and then wait that the peer executed the
remote write. The number of repetitions r is decremented each
time. The call to shmem_put specifies:

• The address of the remote variable to the be updated on the
remote PE (i.e. rbuf)

• The address of the local variable containing the data to be copied
on the remote variable (i.e. tbuf)

• The number of elements in the local and remote variables (i.e.
nwords)

• The PE number of the remote processing element where the
local variable will be copied.

When the process has written the remote variable rbuf it waits
until the peer performs a write on the its local buffer. This is done
calling the shmem_wait function. Once that the process returns
from this function it sets the (nwords-1)-th element of the shared
buffer to 0 preparing for the next iteration.

Finally, the odd numbered process performs the final write on the
remote buffer. By making the odd numbered processes wait for a

Programming Examples 3-9

Program Listing

remote write to begin with while the even numbered processes
write the remote target, deadlock is avoided.

5 After the set of repetitions, the process calls the function gettime

again. It calculates the time taken for one ping in each direction
(the difference between the two timer readings divided by the
number of repetitions). This value, expressed in microseconds, is
halved to get the value for a ping in one direction.

Before the processes print the results, they synchronise again. This
means that all the results are displayed at roughly the same time
and the printing does not interfere with the network performance.

6 When the process has come out of the for loop, it synchronises with
its peers again before exiting.

3.9 Subsidiary Functions

The subsidiary functions make no use of the Shmem library.

getSize This function checks whether the user has suffixed the number of
repetitions, specified on the command line with the -n option, with
either a k or K (for kilobytes) or m or M (for megabytes). If it finds a
suffix, it multiplies the number as appropriate (a left shift by one
place multiplies by 2).

dt This function returns the difference between its two arguments.

usage This function prints out the command line syntax for the program
and then exits.

help This function prints out the command line syntax for the program
and enumerates the various options before exiting.

printStats This functions displays the timing statistics generated during each
set of repetitions. Unless printing is enabled for all processes with
the -e option, only the odd numbered processes have their
statistics displayed.

3.10 Program Listing

This section shows the program in its entirety.

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/time.h>

#include <shmem.h>

3-10 Programming Examples

Program Listing

int getSize (char *str)
{

int size;
char mod[32];

switch (sscanf (str, "%d%1[mMkK]", &size, mod))
{
case 1:

return (size);

case 2:
switch (*mod)
{
case ’m’:
case ’M’:

return (size << 20);

case ’k’:
case ’K’:

return (size << 10);

default:
return (size);

}

default:
return (-1);

}
}

double gettime()
{

struct timeval tv;
gettimeofday(&tv, 0);
return (tv.tv_sec * 1000000 + tv.tv_usec);

}

double dt (double *tv1, double *tv2)
{

return (*tv1 - *tv2);
}

void usage (char *name)
{

fprintf (stderr, "Usage: %s [flags] nwords [maxWords] [incWords]\n", name);
fprintf (stderr, " %s -h\n", name);
exit (1);

}

void help (char *name)
{

printf ("Usage: %s [flags] nwords [maxWords] [incWords]\n", name);
printf ("\n");
printf (" Flags may be any of\n");
printf (" -n number repititions to time\n");
printf (" -e everyone print timing info\n");
printf (" -h print this info\n");
printf ("\n");
printf (" Numbers may be postfixed with ’k’ or ’m’\n");

Programming Examples 3-11

Program Listing

printf ("\n");
exit (0);

}

void printStats (int proc, int peer, int doprint, int now, double t)
{

if (doprint || (proc & 1))
printf("%3d pinged %3d: %8d words %9.2f uSec %8.2f MB/s\n",

proc, peer, now, t, sizeof(long)*now/(t));
}

int main (int argc, char *argv[])
{

double t,tv[2];

int reps = 10000;
int doprint = 0;
char *progName;
int minWords = 1;
int maxWords = 1;
int incWords;
int nwords;
int nproc;
int proc;
int peer;
int c;
int r;
int i;
long *rbuf;
long *tbuf;

for (progName = argv[0] + strlen(argv[0]);
progName > argv[0] && *(progName - 1) != ’/’;
progName--)

;

while ((c = getopt (argc, argv, "n:eh")) != -1)
switch (c)
{
case ’n’:

if ((reps = getSize (optarg)) <= 0)
usage (progName);

break;

case ’e’:
doprint++;
break;

case ’h’:
help (progName);

default:
usage (progName);

}

if (optind == argc)
minWords = 1;

else if ((minWords = getSize (argv[optind++])) <= 0)
usage (progName);

3-12 Programming Examples

Program Listing

if (optind == argc)
maxWords = minWords;

else if ((maxWords = getSize (argv[optind++])) < minWords)
usage (progName);

if (optind == argc)
incWords = 0;

else if ((incWords = getSize (argv[optind++])) < 0)
usage (progName);

if (!(rbuf = (long *)malloc(maxWords * sizeof(long))))
{

perror ("Failed memory allocation");
exit (1);

}
memset (rbuf, 0, maxWords * sizeof (long));

if (!(tbuf = (long *)malloc(maxWords * sizeof(long))))
{

perror ("Failed memory allocation");
exit (1);

}

shmem_init();
proc = my_pe();
nproc = num_pes();

if (nproc == 1)
exit (0);

for (i = 0; i < maxWords; i++)
tbuf[i] = 1000 + (i & 255);

if (doprint)
printf ("%d(%d): Shmem PING reps

%d minWords %d maxWords %d incWords %d\n",
proc, nproc, reps, minWords, maxWords, incWords);

shmem_barrier_all();

peer = proc ˆ 1;
if (peer >= nproc)

doprint = 0;

for (nwords = minWords;
nwords <= maxWords;
nwords = incWords ? nwords + incWords : nwords ? 2 * nwords : 1)

{
r = reps;

shmem_barrier_all();

tv[0] = gettime();

if (peer < nproc)
{

if (proc & 1)

Programming Examples 3-13

Program Listing

{
r--;
shmem_wait(&rbuf[nwords-1], 0);
rbuf[nwords-1] = 0;

}

while (r-- > 0)
{
shmem_put(rbuf, tbuf, nwords, peer);
shmem_wait(&rbuf[nwords-1], 0);
rbuf[nwords-1] = 0;

}

if (proc & 1)
shmem_put(rbuf, tbuf, nwords, peer);

}

tv[1] = gettime();

t = dt (&tv[1], &tv[0]) / (2 * reps);

shmem_barrier_all();

printStats (proc, peer, doprint, nwords, t);
}

shmem_barrier_all();
exit (0);

}

3-14 Programming Examples

Glossary

Abbreviations

API Application Program Interface — specification of interface to
software package (library).

CFS Cluster File System — the file system for Tru64 UNIX clusters.

CGI Common Gateway Interface — a standard method for generating
HTML pages dynamically from an application so that a Web server
and a Web browser can exchange information. A CGI script can be
written in any language and can access various types of data, for
example, a SQL database.

CPU Central Processing Unit — the part of the computer that executes
the machine instructions that make up the various user and system
programs.

CRC Cyclic Redundancy Check — a method of error detection.

CVS Concurrent Versions System — a revision control utility for
managing software releases and controlling the concurrent editing
of files by multiple software developers.

DIMM Dual In-Line Memory Module.

DMA Direct Memory Access — high performance I/O technique where
peripherals read/write memory directly and not through a CPU.

GNU GNU’s Not UNIX — A UNIX-like development effort of the Free
Software Foundation, headed by Richard Stallman.

HTML HyperText Markup Language — a generic markup language,
comprising a set of tags, that enables structured documents to be
delivered over the World Wide Web and viewed by a browser.

Glossary-1

HTTP HyperText Transfer Protocol — a communications protocol
commonly used between a Web server and a Web browser together
with a URL (Uniform Resource Locator).

LED Light-Emitting Diode.

MIMD Multiple Instruction, Multiple Data — parallel processing
computer architecture characterised as having multiple processors
each (potentially) executing a different instruction sequence on
different data.

MMU Memory Management Unit — part of CPU that provides protection
between user processes and support for virtual memory.

MPI Message Passing Interface — parallel processing API.

MPP Massively Parallel Processing — processing that involves the use of
a large number of processors in a coordinated fashion.

PCI Peripheral Component Interconnect — the Elan is connected to a
node through this interface.

PDF Portable Document Format — the page description language used
by Adobe Acrobat, derived from PostScript, for displaying pages on
the screen.

PTE Page Table Entry — an entry in the page table which maps the base
address of a page to physical memory.

RISC Reduced Instruction Set Computer — a computer whose machine
instructions represent relatively simple operations that can be
executed very quickly.

RMS Resource Management System — Quadrics software for managing
clusters of UNIX nodes.

SDRAM Synchronous Dynamic Random Access Memory — high
performance computer memory architecture.

Shmem A one-sided (put/get) inter-process communication interface used on
high-performance parallel systems.

SMP Symmetric MultiProcessor — a computer whose main memory is
shared by more than one processor.

SNMP Simple Network Management Protocol — a protocol used to
monitor and control devices on the Internet.

SQL Structured Query Language — a database language.

Glossary-2

TLB Translation Lookaside Buffer — part of the MMU that caches the
result of virtual to physical address translations to minimise
translation times in subsequent accesses to the same page.

URL Uniform Resource Locator — a standard protocol for addressing
information on the World Wide Web.

UTC Coordinated Universal Time1 — on UNIX systems it is represented
as the time elapsed in seconds since January 1st, 1970 at 00:00:00.

Terms

barrier A synchronisation point in a parallel computation that all of the
processes must reach before they are allowed to continue.

bisectional bandwidth

The worst case bandwidth across the diameter of the network.

block A thread that blocks without relinquishing the processor until a
specified event occurs.

critical section A section of program statements that can yield incorrect results if
more than one thread tries to execute the section at the same time.

Elan memory The SDRAM on the Elan card.

event A parallel-processing synchronisation primitive implemented by
the Elan card.

Flit A communications cycle unit of information.

HTTP cookies Cookies provide a general mechanism that HTTP server-side
connections use to store and to retrieve information on the client
side of the connection.

main memory The memory normally associated with the main processor, that is to
say, memory on the CPU’s high speed memory bus.

main processor The main CPU (or CPUs for a multi-processor) of a node, typically
an Alpha 21264.

management network

A private network used by the RMS daemons for control and
diagnostics.

1Used to be called GMT.

Glossary-3

multirail system

A system that has more than one Elan card connected to each node,
each Elan card being connected to a different switch network.

multi-threaded program

A multi-threaded program is one that is constructed such that,
during its execution, multiple sequences of instructions are
executed concurrently (possibly by different CPUs). Each thread of
execution has a separate stack but otherwise they all share the
same address space.

node A system with memory, one or more CPUs and one or more Elan
cards running an instance of the operating system.

poll Loop and check on each loop whether a specified event has occurred.

rank An integer value that identifies a single process from a set of
parallel processes.

reduce Combine the results of a parallel computation into a single value.

remote memory The memory (Elan card or main) of a node when accessed by
another node over the network.

resource A set of CPUs allocated to a user to run one or more parallel jobs.

slice A local copy of a global object.

switch network The network constructed from the Elan cards and Elite cards.

thread An independent sequence of execution. Every host process has at
least one thread.

virtual memory A feature provided by the operating system, in conjunction with the
MMU, that provides each process with a private address space that
may be larger than the amount of physical memory accessible to
the CPU.

virtual process A (possibly multi-threaded) component of a parallel program
executing on a node.

word A 32-bit value.

Glossary-4

Index

B

barrier, 2-24

D

documentation
feedback, 1-2
online, 1-2

M

my_pe, 2-5

N

num_pes, 2-6

S

shmem_barrier, 2-25
shmem_barrier_all, 2-24
shmem_broadcast, 2-64
shmem_broadcast32, 2-64
shmem_broadcast64, 2-64
shmem_clear_cache_inv,

shmem_set_cache_inv,
shmem_set_cache_line_inv,
shmem_udcflush,
shmem_udcflush_line, 2-69

shmem_collect, 2-66
shmem_collect32, 2-66
shmem_collect64, 2-66
shmem_double_g, 2-18
shmem_double_get, 2-19
shmem_double_iget, 2-21
shmem_double_iput, 2-13
shmem_double_max_to_all, 2-47

shmem_double_min_to_all, 2-50
shmem_double_p, 2-10
shmem_double_prod_to_all, 2-55
shmem_double_put, 2-11
shmem_double_sum_to_all, 2-58
shmem_double_swap, 2-31
shmem_fcollect, 2-66
shmem_fcollect32, 2-66
shmem_fcollect64, 2-66
shmem_fence, 2-28
shmem_float_g, 2-18
shmem_float_get, 2-19
shmem_float_iget, 2-21
shmem_float_iput, 2-13
shmem_float_max_to_all, 2-47
shmem_float_min_to_all, 2-50
shmem_float_p, 2-10
shmem_float_prod_to_all, 2-55
shmem_float_put, 2-11
shmem_float_sum_to_all, 2-58
shmem_float_swap, 2-31
shmem_get, 2-19
shmem_get128, 2-19
shmem_get32, 2-19
shmem_get64, 2-19
shmem_getmem, 2-19
shmem_iget, 2-21
shmem_iget128, 2-21
shmem_iget32, 2-21
shmem_iget64, 2-21
shmem_init, 2-7
shmem_int_and_to_all, 2-45
shmem_int_cswap, 2-33
shmem_int_fadd, 2-38
shmem_int_finc, 2-40
shmem_int_g, 2-18
shmem_int_get, 2-19

Index-1

shmem_int_iget, 2-21
shmem_int_iput, 2-13
shmem_int_max_to_all, 2-47
shmem_int_min_to_all, 2-50
shmem_int_mswap, 2-36
shmem_int_or_to_all, 2-53
shmem_int_p, 2-10
shmem_int_prod_to_all, 2-55
shmem_int_put, 2-11
shmem_int_sum_to_all, 2-58
shmem_int_swap, 2-31
shmem_int_wait, 2-26
shmem_int_wait_until, 2-26
shmem_int_xor_to_all, 2-61
shmem_iput, 2-13
shmem_iput128, 2-13
shmem_iput32, 2-13
shmem_iput64, 2-13
shmem_long_and_to_all, 2-45
shmem_long_cswap, 2-33
shmem_long_fadd, 2-38
shmem_long_finc, 2-40
shmem_long_g, 2-18
shmem_long_get, 2-19
shmem_long_iget, 2-21
shmem_long_iput, 2-13
shmem_long_max_to_all, 2-47
shmem_long_min_to_all, 2-50
shmem_long_mswap, 2-36
shmem_long_or_to_all, 2-53
shmem_long_p, 2-10
shmem_long_prod_to_all, 2-55
shmem_long_put, 2-11
shmem_long_sum_to_all, 2-58
shmem_long_swap, 2-31
shmem_long_wait, 2-26
shmem_long_wait_until, 2-26
shmem_long_xor_to_all, 2-61
shmem_longdouble_get, 2-19
shmem_longdouble_iget, 2-21
shmem_longdouble_iput, 2-13
shmem_longdouble_max_to_all, 2-47
shmem_longdouble_min_to_all, 2-50
shmem_longdouble_prod_to_all, 2-55
shmem_longdouble_put, 2-11
shmem_longdouble_sum_to_all, 2-58
shmem_longlong_and_to_all, 2-45

shmem_longlong_cswap, 2-33
shmem_longlong_fadd, 2-38
shmem_longlong_finc, 2-40
shmem_longlong_get, 2-19
shmem_longlong_iget, 2-21
shmem_longlong_iput, 2-13
shmem_longlong_max_to_all, 2-47
shmem_longlong_min_to_all, 2-50
shmem_longlong_or_to_all, 2-53
shmem_longlong_prod_to_all, 2-55
shmem_longlong_put, 2-11
shmem_longlong_sum_to_all, 2-58
shmem_longlong_swap, 2-31
shmem_longlong_wait, 2-26
shmem_longlong_wait_until, 2-26
shmem_longlong_xor_to_all, 2-61
shmem_put, 2-11
shmem_put128, 2-11
shmem_put32, 2-11
shmem_put64, 2-11
shmem_putmem, 2-11
shmem_quiet, 2-29
shmem_short_add, 2-35
shmem_short_and_to_all, 2-45
shmem_short_cswap, 2-33
shmem_short_fadd, 2-38
shmem_short_finc, 2-40
shmem_short_g, 2-18
shmem_short_get, 2-19
shmem_short_iget, 2-21
shmem_short_inc, 2-42
shmem_short_iput, 2-13
shmem_short_max_to_all, 2-47
shmem_short_min_to_all, 2-50
shmem_short_mswap, 2-36
shmem_short_or_to_all, 2-53
shmem_short_p, 2-10, 2-11
shmem_short_prod_to_all, 2-55
shmem_short_sum_to_all, 2-58
shmem_short_swap, 2-31
shmem_short_wait, 2-26
shmem_short_wait_until, 2-26
shmem_short_xor_to_all, 2-61
shmem_swap, 2-31
shmem_wait, 2-26
shmem_wait_until, 2-26

Index-2

	Title Page
	Contents
	List of Tables
	Preface
	Scope of Manual
	Audience
	Using this Manual
	Related Information
	Location of Online Documentation
	Reader's Comments
	Conventions

	The Shmem Library
	Introduction
	Compiling
	Using the Shmem Library
	Word Lengths

	Library Function Categories
	Initialisation
	my_pe(3)
	num_pes(3)
	shmem_init(3)

	Remote Write Operations
	shmem_double_p(3)
	shmem_float_p(3)
	shmem_int_p(3)
	shmem_long_p(3)
	shmem_short_p(3)
	shmem_put(3)
	shmem_double_put(3)
	shmem_float_put(3)
	shmem_int_put(3)
	shmem_long_put(3)
	shmem_longdouble_put(3)
	shmem_longlong_put(3)
	shmem_short_put(3)
	shmem_put32(3)
	shmem_put64(3)
	shmem_put128(3)
	shmem_putmem(3)
	shmem_iput(3)
	shmem_double_iput(3)
	shmem_float_iput(3)
	shmem_int_iput(3)
	shmem_iput32(3)
	shmem_iput64(3)
	shmem_iput128(3)
	shmem_long_iput(3)
	shmem_longdouble_iput(3)
	shmem_longlong_iput(3)
	shmem_short_iput(3)

	Remote Read Operations
	shmem_double_g(3)
	shmem_float_g(3)
	shmem_int_g(3)
	shmem_long_g(3)
	shmem_short_g(3)
	shmem_get(3)
	shmem_double_get(3)
	shmem_float_get(3)
	shmem_get32(3)
	shmem_get64(3)
	shmem_get128(3)
	shmem_getmem(3)
	shmem_int_get(3)
	shmem_long_get(3)
	shmem_longdouble_get(3)
	shmem_longlong_get(3)
	shmem_short_get(3)
	shmem_iget(3)
	shmem_double_iget(3)
	shmem_float_iget(3)
	shmem_iget32(3)
	shmem_iget64(3)
	shmem_iget128(3)
	shmem_int_iget(3)
	shmem_long_iget(3)
	shmem_longdouble_iget(3)
	shmem_longlong_iget(3)
	shmem_short_iget(3)

	Synchronization Operations
	barrier(3)
	shmem_barrier_all(3)
	shmem_barrier(3)
	shmem_wait(3)
	shmem_int_wait(3)
	shmem_long_wait(3)
	shmem_longlong_wait(3)
	shmem_short_wait(3)
	shmem_wait_until(3)
	shmem_int_wait_until(3)
	shmem_long_wait_until(3)
	shmem_longlong_wait_until(3)
	shmem_short_wait_until(3)
	shmem_fence(3)
	shmem_quiet(3)

	Atomic Memory Operations
	shmem_swap(3)
	shmem_double_swap(3)
	shmem_float_swap(3)
	shmem_int_swap(3)
	shmem_long_swap(3)
	shmem_longlong_swap(3)
	shmem_short_swap(3)
	shmem_int_cswap(3)
	shmem_long_cswap(3)
	shmem_longlong_cswap(3)
	shmem_short_cswap(3)
	shmem_short_add(3)
	shmem_int_mswap(3)
	shmem_long_mswap(3)
	shmem_short_mswap(3)
	shmem_int_fadd(3)
	shmem_long_fadd(3)
	shmem_longlong_fadd(3)
	shmem_short_fadd(3)
	shmem_int_finc(3)
	shmem_long_finc(3)
	shmem_longlong_finc(3)
	shmem_short_finc(3)
	shmem_short_inc(3)

	Collective Reduction Operations
	shmem_int_and_to_all(3)
	shmem_long_and_to_all(3)
	shmem_longlong_and_to_all(3)
	shmem_short_and_to_all(3)
	shmem_double_max_to_all(3)
	shmem_float_max_to_all(3)
	shmem_int_max_to_all(3)
	shmem_long_max_to_all(3)
	shmem_longdouble_max_to_all(3)
	shmem_longlong_max_to_all(3)
	shmem_short_max_to_all(3)
	shmem_double_min_to_all(3)
	shmem_float_min_to_all(3)
	shmem_int_min_to_all(3)
	shmem_long_min_to_all(3)
	shmem_longdouble_min_to_all(3)
	shmem_longlong_min_to_all(3)
	shmem_short_min_to_all(3)
	shmem_int_or_to_all(3)
	shmem_long_or_to_all(3)
	shmem_longlong_or_to_all(3)
	shmem_short_or_to_all(3)
	shmem_double_prod_to_all(3)
	shmem_float_prod_to_all(3)
	shmem_int_prod_to_all(3)
	shmem_long_prod_to_all(3)
	shmem_longdouble_prod_to_all(3)
	shmem_longlong_prod_to_all(3)
	shmem_short_prod_to_all(3)
	shmem_double_sum_to_all(3)
	shmem_float_sum_to_all(3)
	shmem_int_sum_to_all(3)
	shmem_long_sum_to_all(3)
	shmem_longdouble_sum_to_all(3)
	shmem_longlong_sum_to_all(3)
	shmem_short_sum_to_all(3)
	shmem_int_xor_to_all(3)
	shmem_long_xor_to_all(3)
	shmem_longlong_xor_to_all(3)
	shmem_short_xor_to_all(3)

	Collective Communication
	shmem_broadcast(3)
	shmem_broadcast32(3)
	shmem_broadcast64(3)
	shmem_collect(3)
	shmem_collect32(3)
	shmem_collect64(3)
	shmem_fcollect(3)
	shmem_fcollect32(3)
	shmem_fcollect64(3)

	Address Manipulation
	Control Data Cache
	shmem_clear_cache_inv(3)
	shmem_set_cache_inv(3)
	shmem_set_cache_line_inv(3)
	shmem_udcflush(3)
	shmem_udcflush_line(3)

	Programming Examples
	Introduction
	The Command Line Interface
	Program Output
	Header Files and Variables
	Argument Checking
	Initialization
	Establishing the Peer Group
	Writing Shared Variables
	Subsidiary Functions
	Program Listing

	Glossary
	Index

