THE INTRODUCTION OF
HITACHI H8 MICROCOMPUTERS

The company names and product names contained in this manual are trademarks or registered
trademarks. The web site addresses (URLs) mentioned in this manual were confirmed to be valid
as of November 2000.

The copyright of this manual is protected by the copyright laws. Reproducing, duplicating by using,
for example, a copy machine, or inputting to electronic equipment the whole or part of this manual
without permission may infringe on the copyright laws.

Duplication of this manual is prohibited, except for the exceptions defined in the copyright laws. To
request permission to duplicate the contents of this manual, please obtain permission from the
Japan Reprographic Rights Center.

Some useful contact details are given below. We recommend contacting them by letter or fax.

Japan Reprographic Rights Center
Tel: +81-3-3401-2382
Fax: +81-3-3401-2386
3-3-7, Kita-aoyama, Minato-ku, Tokyo 107-0061
Dai-ichi Aoyama Building, 3F

Ohmsha, Ltd.
Dept. responsible for the copyright laws
Tel: +81-3-3233-0641
Fax: +81-3-3293-0641
3-3-7, Kanda-nishiki-cho, Chiyoda-ku, Tokyo 101-8460

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’'s or any third party’s

D

patent, copyright, trademark, or other intellectual property rights for information contained in

this document. Hitachi bears no responsibility for problems that may arise with third pa
rights, including intellectual property rights, in connection with use of the information
contained in this document.

Products and product specifications may be subject to change without notice. Confirm

rty’s

haty

have received the latest product standards or specifications before final design, purchase or

use.

Hitachi makes every attempt to ensure that its products are of high quality and reliability.

However, contact Hitachi’'s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may d
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nucle
power, combustion control, transportation, traffic, safety equipment or medical equipme
life support.
Design your application so that the product is used within the ranges guaranteed by Hit
particularly for maximum rating, operating supply voltage range, heat radiation characte
installation conditions and other characteristics. Hitachi bears no responsibility for failu
damage when used beyond the guaranteed ranges. Even within the guaranteed range
consider normally foreseeable failure rates or failure modes in semiconductor devices &
employ systemic measures such as fail-safes, so that the equipment incorporating Hita
product does not cause bodily injury, fire or other consequential damage due to operati
the Hitachi product.

. This product is not designed to be radiation resistant.
No one is permitted to reproduce or duplicate, in any form, the whole or part of this doc
without written approval from Hitachi.

. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

rectly
ear
nt for

achi
2ristic
re or
S,

and
chi
on of

umer

Copyrights and liability

The programs included on this CD-ROM are for evaluation purposes only, and may be used fre

of charge. The copyrights for these programs belong to Hitachi, Ltd., and to the authors of

the

programs. These programs may not be reproduced or distributed in any part, or in their entirety.

The sample programs are intended to introduce the functions of the H8/3048F, and operat
not guaranteed. Ohmsha Ltd. and the authors of these programs assume no responsibility

problems caused by using the programs contained in this manual or on the CD-ROM.

on is
for a

Preface

Nowadays, people are supported by computers in many ways in their everyday lives. Personal
computers are one type of computer, perhaps the type with which people are most familiar. A
personal computer has a computer inside it, and can be used to access the Internet and for mai
other purposes. The name of this internal computer is rarely noted, but it is used to run and cont
personal computers and many other computerized devices. This is called an “embedded”
computer. Unlike a personal computer, its programs are not available on hard disks or CD-ROM
and cannot be edited by users. It always runs using the same programs, and is used in countles
applications, among them cellular telephones, facsimile machines, printers, washing machines,
refrigerators, microwave ovens, computer game machines, automotive engines, air conditioners
and meters, to name just a few. Nearly all of these embedded computers are microcomputers tt
are marketed in chip form. The H8 by Hitachi that is discussed in this manual is a representative
type of microcomputer.

As long as the hardware is available in some finished form and programs have been installed,
personal computers can do just about anything we want them to do. The same applies to
microcomputers. As long as a chip has been installed, they can do almost anything. Because th
are no restrictions in terms of an operating system and hardware, like those that apply to persor
computers, microcomputers offer outstanding flexibility.

Numerous companies use microcomputers for system development of products, and countless
numbers of engineers are using microcomputers in their work. Not many school curricula cover
microcomputers, however, and most people who know anything about microcomputers learn it
through educational programs at work.

When microcomputers first appeared on the scene, in the 1970s and 1980s, many introductory
texts were available, and | had access to a wealth of documentation concerning products such ¢
the Z80 and MC6800. It was an ideal period for beginners to delve into the world of
microcomputers. Nowadays, however, even though microcomputers are in common use, most
textbooks assume that the reader has already acquired a fundamental knowledge of them, and
has become rather difficult to find good information at the introductory level.

This manual was designed for future engineers in mind, and explains how microcomputers are
used, based on the H8 as an example. The instructions and signal terminal operation vary from
product to another, but the basic approach to microcomputers is largely the same. The basic
material that you learn in this book through using the H8 can be applied to other microcomputer
as well.

What is important is how you use the tools you will learn here. Using the H8 as an example, this
book will teach you how to use a microcomputer. We hope you will then use that knowledge as
springboard to devising applications of your own. Japan has a strong reputation for engineering
and technology, and microcomputers are a very important and valuable part of that technology.

designing products using microcomputers, you will experience the pleasure of developing new
products, and come to realize how important that process can be.

We hope that this book will provide you with a thorough and instructional introduction to
microcomputers.

Finally, | would like to express my appreciation to Mr. Masuda, the Senior Engineer of the Systen
LSI Business Division at Hitachi, Ltd., who kindly provided me with the assembler and C
compiler used to develop the H8 microcomputer when this book was published, and to Mr.
Toyoshima, the Team Leader at Hitachi Kodaira Semiconductor Co., Ltd., who provided me with
information as a member of the Micom Car Rally Office.

November 2000

Yukiho Fujisawa

Contents

Chapter 1 What IS @ MICTOCOMPUIET?ccoiiiiiiiiiiiiieiie e 1
1.1 Microcomputers in Our EVeryday LIVES.........coiiii i iiiiieeeiis et 2
1.2 How do MicroCOMPULEIS WOTK?......ccii et e e e e e 9
1.2.1 What the MiCrOCOMPULET HOES........uiiiiiiiiiiiiiei ettt 9
1.2.2 Elements other than the Microcomputer (CPU)........ccccooiiiiiiiiiiiiiiieie e 1C
1.2.3 Types Of MICTOCOMPULETSccoiiiiiiiiee ettt 14
1.3 Memory Data and BiNary VAIUES...........cccoiiiiiiiiiiiiiiie e e e e e e e 1¢
1.3.1 Instructions and BinNary ValUESuuciiiiiiiii i 17
1.3.2 NUMETIC EXPrESSIONS ..uuvuiiiiiiii e e ettt e e e e e e e e et s e s e e e e e e e ee e eaeraaan e e as 1
G TG T O o - T = Tod 1= g @0 To [PPSR 2
1.3.4 DeCimal POINt DAA.....uuuueiiiiiiiiiieeee ettt e e s e eee e 2!
1.3.5 EXPressing NUMENC VAIUES.......cccoiiiiiiiiieiiiiiiit ettt 2:
1.3.6 MEMOIY MaPS . iiiitiiiiiiiiie ettt e e e e e e e e e e et e e e e e bba e e e e e atbnreaeenes 27
Chapter 2 H8 Microcomputers have High-Levels of Performance and
FUNCHONANITY ...eeveeiiieieeeee e 25
2.1 Whatis an H8 MICIOCOMPULET?uuiiiiieiiiiiieee ettt ettt e e e sbbre e e e e 2!
2.2 Operation Mode of the HB/B0A8Fcooiiiiiiiiiiie e 2
pA N S 1U 1110 1 = 1 Y PPN 2
A A | T |1 TN o 1 o PSRN 3(
2.2.3 MEMOrY EXPaANSION.....cccviiiiiiiie ittt e e e e 32
2.3 Configuration of Registers and Programmingccccooiiiieieeniiiieeee e iiieeee e siiieeee e 3
2.3.1 Register ConfIQUIAtiONcoiiiiiiiiiiiiieee e 3/
P2 I [151 1 U T 1T o PP 4(
P22 T T o (o o =T 0 10 11 o 5:
2.3.4 Size of the Memory and Performance in Executing an Instruction...................... 70
2.3.5 Basic Input and OULPULooeuiiiiiiiieie e e e e e e e e e e e e eeeeaens 7"
Chapter 3 Reset and INteITUPLS.......ccooiiiiiiiii e aeeaaes
3.1 Writing Programs t0 ROM........uuiiiiiiiiiii ettt e 93
I I R o =1 0 111> TSP PP PPPPP 9
I8 I o 0 To | = 0 PP 9
3.1.3 Further Premised HardWareccoocuuiiiieiiiiiiiie et 9
T 11 (=11 Vo PO PP PEPPPTTP PP 101
3.2.1 Need for INterrupt FUNCHONS........cooiiiiiiiiiee e 1C
3.2.2 Operation on Occurrence of an INtErrUPLc.eveeiiiiiiiiiiie e 1(
3.2.3 Example of INterrUPt USEiiii it e e e e 1C

Chapter 4 Internal Peripheral Functions The functions and how to use them

(Circuits and Programs)cccccceeeeeeeeeeeeeeeeeere e e e e e e e e e e, 11
4.1 AID CONVEIEIS ..creii ettt ettt et sn et e st e e st e s nnn et e e s e e s nenee s 112....
4.1.1 Overview Of the A/D CONVEIETcccciiiiiiiie it 112
4.1.2 Example of How the A/D Converter is USed..........cooouiiiiiiiiiiiiiiiiiiiiiiiieeee e 116
4.1.3 A/D Conversion Completed INtErrUPL.........ccccuuuiiiiiiiiiiiiiieieieee e 118
A B) N O] 0\ 4 (=] SO PPPPRRP 122..
4.2.1 An Overview Of the DIA CONVEIETc.eveiiiiieiiee e 122
4.2.2 Example of How the D/A Converter is USEd..........cccoovviviiiiiciiiniiiiieeieeeeeeeeee e 124
4.3 16-Bit TIMET (ITU) .oeeiiiiiieiiiiee et 126....
4.3.1 OVerview Of the ITU ... e 126
4.3.2 Example Using the Interval TIMEr...........eeeiiiiiiiia e 130
4.3.3 Example of Using Toggle OUIPUL........cccuuiiiiiiiiiiiiieeeie e 138
4.4 Serial ComMUNICALION (SCl)..eiiiiiiiiiiiiiiie ittt e e e e sbbreeeae e 141
4.4.1 OVerview Of the SCl ... 141
4.4.2 Example Using Start-Stop Synchronized Communicationccoccvveeeeennnnnen. 142
4.4.3 Example Using Clock Synchronization Communication...............ccccvveeeeeeeneannnn. 151
A5 DMA CONMIOIEI ... e et e e e e e e e e e e e e e e e 154....
4.5.1 Various Ways of SENAING Dat@l.......cccouuiiiiiiiiiiiiiiiiiiee e 15/
452 Overview Of (N DIMAC........ooii ittt 157
4.5.3 Example Using the Full ADdress MOGEcooiiiiiiiiiiiiiiiiie e 158
4.5.4 Example Using the Short ADddress Modeuueeiiiiiiiiiieeiiie e 16"
.8 VWD ittt e et e s b e e e ek Ee e e eabr et e et e e i 169
4.6.1 Overview Of (e WDT ...t 169
4.6.2 Program Example Showing Reset Using the WDTccccoeviieiiiiiiiiiiciiicceeeeee, 171
4.6.3 Example Using an Interval Timer through the WDT..........ccooiviiiiiiiiieneiiiieene. 174
Chapter 5 PROGRAMMING IN THE C LANGUAGEcoovviiiiiiiciiieeenn. 177
5.1 The C Language and the H8 MICrOCOMPULETciiiiiiiiieieaaaeee et 17
o I A = 1 o =T (o I 1 TP PRRRTRR 17
5.1.2 VANADIE SIZES ..ottt 17
5.2 Tasks Prior to Calling Mainccoiiiiiiiieeeee e e e e e e e e e e e e e e e e 17
5.2.1 RESEL PrOCESSING .cciiiiiieititiitiiete it e ettt e e ae e e e e e et e st as s s aaeeererraeaeaaaeeeesessananannnnns 1€
5.2.2 Initialization of Variables ... 181
5.3 Peripheral FUNCtioN Programmingccc..uuuuiiiiiiiiiiiiaaiae e e e 18
5.3.1 REOISIEI ACCESS ... i iiiiiiii ittt et e e e e e e e et bbb bbbt e et e e e e aaaaaaaaaaaaaeaaaaaaa 18
5.3.2 INEITUPL PrOCESSING ...ceiiiiiiiiiiiaee ettt et eeeees 18
5.4 BasiCS Of the C LANQUAGE.ccooii ittt Lo 1¢
5.4 1 OPEIALOIS....ccieiieiiie ittt ettt e e e e e e e et e s e et e et e et e e e e e e e e e e s n e 19
5.4.2 CONrOl SEAtEMENTS....ciiiiiiiiiiiii ettt e e et e e e s s sbbeeeeeeeanes 19
5.4.3 Features of Structures, Arrays, and POINtEIS..........cccccuiiiiiiiiiiiiiieieeeee e 19
544 FUNCLON CallS ...t e e e e e e e e e e e e e e 20(
5.4.5 Declarations and Storage ClaSSeS.......ccouiiiiiiiiiiiiiiiiiiiitie ettt 2(

Chapter 6 EXTERNAL MEMORY INTERFACE........ccccoiiiiiiiiiieiiiiiieeeee s 203

6.1 MeMOIY INTEITACE. ... i e e e e e e e e e e e 203.....
6.1.1 Basics of Memory CONNECHON.........ccccuuiiiiiiiiiiiice e e e e e e e e e e eea e 20
6.1.2 Memory INterface DESIGNcccoeii i 20
6.1.3 DRAM INEITACEceeiiiiiie et 21
6.1.4 Example of Application of the Refresh Timer as an Interval Timer................... 22/
6.2 Peripheral FUNCHON INTEIfACEuuiiiiiiiiieiii e 2
B.2.1 POIt EXPANSION ...ctiiiiiiiiiiiiie ettt et e et e e e e e e e e e e e e e e bbbt e e e e eeeaeas 2
6.2.2 LCD CONNECLIONueiiiiiiee ittt ettt e s nn e e nre e e s nnnee s 22
Chapter 7 Using Applications More Effectively ..., 22
7.1 Electronic organ: Using the timer to turn on the piezoelectric sounderccccccceeeeenn. 2:
7.2 Motor Control 1: Timers can be used to run stepping MOtOrS.........ccccuuvueiiieiiiiiieiieaaaaeannn. 2.
7.3 Motor Control 2: DC motor control is no problem with an encoder............cccciiiiinnnnnn. 24
7.4 Digital Recording and Playback: timed recording is a simple function.................c..c..... 25
7.5 Voice Processing: Going for the best possible vocal sound................ccccoiiiviiiiiiieeeeeeeenn. 2
APPENDIX that Comes with This Manualcccccoeoiiiiiiiiiiiiieeeee 25

vi

Chapter 1 What Is a Microcomputer?

Let’s start off by defining a microcomputer. “Micro”, of course, refers to something small and
compact, while a computer can be defined as a kind of calculator that uses semiconductors and
other electronic components to carry out all kinds of computations. Actually, the first
microcomputers were used in compact calculators. The world’s first microcomputer was made ir
the U.S., by Intel, and was called the “i4004". Its first application was in a calculator. If you think
about how a calculator works, you press keys to enter numeric values, right? This is the same w
that data is entered in a computer, using some kind of input device. The value of the input key i
displayed to indicate to the user that the value has been entered correctly. If you disassembled
calculator, you would find that the keys and the display unit are not directly connected; there is ¢
microcomputer between them. The microcomputer decides, based on the key input, what shoul
be displayed, using instructions (this is called an “operation”). A group of instructions is called a
program. After the numeric value has been input, detailed operations can be carried out, such a
the various arithmetic operations, by the operation keys. So the microcomputer uses a program
that has been stored in it in advance to execute the functions of a calculator.

Because of price considerations, however, dedicated ICs are used nowadays in calculators, ins
of microcomputers.

000 SERER /

QQ Q (opgr:a?otjunit) /Ej
sy —
LT

Switch

Instructions

(1) Confirms whether a switch
has been pressed

(2) If pressed, shifts the existing
display to the left, and displays
the new value at the right.

Memory

Figure 1.1 How a Calculator Works

So the computer is a machine that repeatedly carries out functions in response to instructions. T
same is true of a microcomputer, which is nothing but a lump of stone (semiconductors are mac
of silicon) without a program. But the program is nothing without the hardware either; both the
software and the hardware are needed in order to create a functioning unit. To put it another wa
if a different program is put into the same hardware, the hardware functions completely
differently. This is obvious if you look at a personal computer or a computer game player. For
example, if a game program is installed in a personal computer and run, the computer serves a:
game player, and if an Internet program is installed and run, the computer becomes an Internet
terminal.

|~ Memory in which
programs are stored

—

op ®®

Figure 1.2 A microcomputer Integrates Hardware and Software

One good thing about computers is that they will do the same thing over and over without ever
complaining or making a mistake. They work whenever asked to, as long as the electricity that
serves as their fuel is supplied. Microcomputers function in our everyday lives now in far more
diverse capacities than just as calculators. They are working for us from the moment we get up
until the time we go to sleep, and even while we sleep. We can’t even imagine a life without
microcomputers, and yet we rarely stop to think about these machines that do so much for us.

Let's look at how microcomputers are being used, and what they do for us.

1.1 Microcomputers in Our Everyday Lives

Most machines that we call information devices use microcomputers. Intel says in an
advertisement that microcomputers are the “heart” of the personal computer. Microcomputers are
crucial to the functioning of the personal computer. But they aren’t found just in personal
computers. Keyboards have their own separate microcomputers, while in notebook computers,
microcomputers control the power supply and battery. PDAs (Personal Digital Assistants), like
personal computers, use microcomputers. In response to instructions from the mouse and
keyboard, they run application programs, change screen displays, and carry out other functions.
Displaying the mouse cursor is another job the microcomputer does.

Computer game players work the same way as personal computers, although they use game pa
and, in some cases, bazooka guns instead of a mouse and keyboard. When you make a movem
on the game pad, the screen is constantly redrawn in rapid succession. Newer game players car
refresh the screen even faster than personal computers can.

Moves

the displayed
Reads data from

screen
- U/ a CD/DVD, etc.
=

Figure 1.3 How a Game Player Works

How often do you ever see the old, standard black telephone? Even the word “dial” is fast
becoming extinct, since no one ever “dials” a telephone anymore. Today's telephones have
microcomputers that control answering machine, redialing and other functions. Facsimile

machines and cellular phones also use microcomputers. When you press a button on a telephol
you hear a beeping sound, and the telephone number of the person you are calling is displayed
the screen, along with the elapsed time and other information. Answering machines record and

play back messages. All of these functions are done using microcomputers.

Displays information/communicates with base station

Key is pressed

Figure 1.4 How a Cellular Phone Works

1 /29
< Changes channel/turns motor
Infrared rays i:}

Receives instructions
from remote control transmitter

Figure 1.5 How a VTR Works

TVs and VTRs are controlled by microcomputers, too. They handle channel selection, and displa
the selected channel number and volume on the screen. The channel is selected among the radi
waves of a certain node being received by an antenna. In an electronic tuner, voltage is applied t
an element called a varicap (variable capacitance) diode, for channel selection. The
microcomputer is what generates the voltage that is applied to the tuner through signals from the
remote control transmitter. In a VTR, in order to carry out operations such as recording and
playback in response to instructions from a remote control transmitter or from buttons on the
VTR, the motor has to turn, so that tape winds through the heads, or recording can be
automatically started at a time specified by a timer. These are also controlled by microcomputers

You will also find microcomputers in refrigerators and microwave ovens. The refrigerator uses
more electricity than any other household appliance, because it is constantly on. But nowadays,
because of environmental concerns, manufacturers are trying to reduce power consumption, by
using an inverter to control the motor in the compressor that circulates the refrigerant, reducing tt
amount of power consumed through on/off control, and by closely controlling the temperature
inside the refrigerator. Microcomputers are used for this inverter control. The inverter frequency
and motor voltage are set to achieve maximum efficiency. Microwave ovens use a variety of
sensors to discriminate between various kinds of foods. Based on the information obtained from
the sensors, the microcomputer adjusts the volume of heat and the cooking speed for the best
results.

Large numbers of microcomputers are used in cars. The microcomputers used for engine control
determine the amount of fuel injected, carry out timing control, and control the speed at which the
engine rotates when idling. The air bags, ABS, traction control, windows, air conditioner and othe
functions are all handled by separate microcomputers. For example, in newer cars, rotation signe
from the various axes are sent to the speedometer, which is located on the meter panel. Based o
these signals, the microcomputer turns the motor and controls the position at which the needle
indicates the speed on the speedometer. This type of control is used because signals from the a
are not in a format that can be displayed on analog-type voltmeters.

Mggj - Displays optimum time
for microwave oven

[@]®)
HA 1
o A
Start Confirms switches

Confirms temperature inside oven

Figure 1.6 How a Microwave Oven Works

L] L]
)))‘ N /These turn the motor
"

Tir . .
e JUL Speed information

@ 7 Engine speed

Engine

Figure 1.7 How a Speedometer Works

So, as we have seen up to this point, microcomputers function in a diverse spectrum of machine
without needing people to run them, and carry out many functions automatically that make our
lives easier and more convenient.

Why are microcomputers used in so many different products?
The answer lies in the general-purpose nature of the microcomputer.

Microcomputers are used in the many products we have talked about so far, but certainly there
products that don’'t use them. When it comes to mechanical control, however, microcomputers

make things easier in a lot of situations. For instance, they make it possible to enter a time settil
simply by pressing a button. Also, it takes time to develop dedicated circuits, and if any mistake:
are made during the development stage, they cannot be corrected in many cases. For example,

clock, if a clockwork timer is used, a dial has to be turned by hand to set the time, and often the
indicated time does not match the real time exactly. If the clock has a microcomputer in it, the
time can be set accurately, even to the seconds unit, using a button. Also, the set time can be
viewed using a digital display, for additional reassurance. So using microcomputers can solve
many problems involved in developing and using products.

Because microcomputers are in general-purpose use, they make it is possible to buy same ones
anywhere, at any time. Conversely, same microcomputers can be incorporated into the different
product to produce completely different results, simply by changing their programs. So
microcomputers can be used instead of dedicated circuits that have been created separately. Als
programs can be put together to handle difficult and complex functions, that cannot be carried ou
by dedicated circuits. Program development requires only a personal computer and a developme
device, so costs are far lower for developing microcomputer programs than for developing the
dedicated circuits themselves. Another economic feature is that the development device can be
used repeatedly as long as the same microcomputer is used.

Time_ can be set
4 precisely

3 Sty

2 wlv=N:

1 sw T

°

Turning the dial Precise time set
by hand is not precise using oscillating circuit

Figure 1.8 Mechanical Timer and Microcomputer Timer

Personal computer, etc. ICE (in-circuit emulator) Microcomputer
Device that substitutes
for the microcomputer

s e
g/ ' Completed!
Board being made m
Programming

Input, conversion (combinations of Os and 1s that can be interpreted by the microcomputer)

ICE control

Execution of one instruction in the program
Program aborting

Confirmation of microcomputer status

Figure 1.9 Mechanical Configuration Required for Development

—o/o—o/

i O
— 0=

> B)

(1) Switches are viewed
(2) Lamp is lighted

‘4>‘

Takes time

Figure 1.10 Dedicated Circuit and Microcomputer
So you can see that using microcomputers is advantageous in countless ways.

Do microcomputers have any drawbacks? Well, one drawback is that they require more time fol
processing than dedicated circuits.

For example, let’s look at a case in which a lamp lights when two switches are pressed. If a
dedicated circuit is used, as shown in the figure below, the two switches work most effectively if
connected in a series. When the two switches are pressed, the lamp lights immediately.

Now let's use a microcomputer in the same situation. The switches and lamp are not connected
electrically. As we will explain later, the microcomputer executes instructions one at a time, in
response to a clock. As a result of instructions being executed, the lamp switch goes on if the
system can judge that both switches have been pressed. The instruction that reads the two swit
to the CPU is executed first, followed by the instruction that judges that both switches have beel
pressed, and then the instruction that turns on the lamp in response to both switches having bee
pressed. Assuming that it takegd (a millionth of a second) for one instruction to be executed, it
will take at least 31s before the lamp lights. If a person is turning on the lamp, and if the
processing is fairly simple, this is not a problem, but if the lamp is being turned on by a machine
operating at high speed, and the processing is complex, this time interval is too long. For examy
a calculation speed of 18.432 MHz (calculating at 640 x 480 pixels x 60 frames) is required to
digitally compress video images and store the data in memory. That means that one data eleme
has to be processed within 54 ns. Also, intricate processing is required for the compression,
consisting of queuing, DCT (dispersion cosine transformation), quantization, and producing the
sum of disparate absolute values. If the operation speed is too slow, frames will be dropped, an
will be impossible to watch the resulting video. The ordinary microcomputer is not configured to
execute operations at high speed like this.

So when a microcomputer is used, executing even simple operations takes time. Developers ne
to be skilled at judging whether a microcomputer or a dedicated circuit is better equipped for a
certain job, and using them accordingly.

Another option is to use a personal computer to put together a program and control various
devices. In this case, however, a board has to be incorporated into the personal computer so tha
the device and the personal computer can be connected, and a standard interface has to be
processed and connected for the personal computer. The personal computer itself is fairly large,
it cannot be incorporated into very many devices. Also, even though computers are less expensi
than they used to be, they are still comparatively high-priced, and although they offer
sophisticated processing capabilities, it is hardly feasible to incorporate one into, for example, a
refrigerator. Personal computers are restricted to certain applications for which they are well fittec
So we will focus, rather than on personal computers, on microcomputers, which can easily be
incorporated into other devices. Of course, since microcomputers are used in personal computer
we will also be learning about the inside of the personal computer as we proceed.

personal computer

[(TTTTTT 77T 777777
IIIIIIIIIIIIIII
77777777777777
IIIIIIIIIIIIIII
IIIIIIIIIIIIIII

No matter how small, a personal computer
will never fit inside a cellular phone.

Figure 1.11 Personal Computers and Microcomputers that can Fit into Other Devices

1.2 How do Microcomputers Work?

Microcomputers make our everyday lives easier and more convenient. Being able to use
microcomputers flexibly means various devices can be automated and new products can be
created. Before we can accomplish these aims, however, we need to know something about
microcomputers.

Let’s look at what goes inside a computer.

1.2.1 What the Microcomputer does

Unlike people, computers can’t think and act on their own. Combinations of instructions put
together ahead of time (programs) are retrieved one by one from a storage device (memory) an
operations executed based on those instructions.

Let's assume that, as shown in the figure, instructions have been stored in the memory (we’ll tal
later about how the instructions get stored in the memory). The first instruction is “Read data fro
switch”. The computer specifies the place in the memory in which this instruction has been store
and reads the instruction. Next, the instruction that has been read is interpreted, and the data is
read from the location where the switch exists. This completes the operation of one instruction.

The microcomputer then reads the next instruction from the memory. This instruction says,
“Confirm whether switch is on”, so the data read in response to the previous instruction is
confirmed at this point. The next instruction says, “If the switch is on, proceed to next instruction
and if not, return to switch reading instruction.”

Microcomputer

Instruction 1 Read from switch | <——— Reads instruction 1
(1) Fetch ™

Instruction 2 | Is switch on? \

Interprets instruction
If on, go to next; if off, (2) Decodes
I

go to instruction 1
| » | Executes (3)

Instruction 3

Switch information

Figure 1.12 Relationship between the Microcomputer and the Memory

In this way, the computer reads instructions from the memory and executes them. This operatio
summarized below.

Reading Instructions (Instruction Fetch)

The computer outputs an address that specifies where an instruction has been stored, and reads
instruction from the memory.

Interpreting the Instruction (Instruction Decode)

The instruction that has been read is decoded.

The computer cannot understand the instruction without decoding it.
Executing the Instruction (Instruction Execute)

The decoded instruction is executed.

Fetching, decoding, and executing the instruction comprises one cycle of operation. This cycle is
then repeated for the next instruction, and then the one after that, and so on.

Copying, arithmetic operations, comparisons, logical operations and other processing can only b
carried out on one computer instruction at a time. Instructions can be put together in combination
however, to enable complex processing to be executed.

The computer can only execute one instruction at a time. Execution of instructions proceeds bas:
on a clock. The higher the clock frequency, the shorter the execution time.

(Instructions are stored in the memory ahead of time. This type of computer is called a
“Neumann” computer, based on the name of the person who developed it. Most computers
nowadays use this method.)

1.2.2 Elements other than the Microcomputer (CPU)

The storage device is called a memory. Instructions and data are stored in the memory in binary
format. In order to retrieve this stored information, the microcomputer assigns addresses to the
locations in which the instructions are stored, and uses these addresses to control the instruction

In order to fetch an instruction, the microcomputer must know the address in which it is stored.
The memory provides the information stored at various addresses (without knowing whether it
consists of instructions or other information) to the microcomputer.

The terminal to which the microcomputer outputs addresses is called an address bus. This refers
a group of bus signals that handle address information.

The terminal that reads instructions is called a data bus. The data bus is also used to fetch
instructions, but depending on the instruction, it can also be used to move data.

10

In order to incorporate the microcomputer into a product and use it as part of a system, we neec
signal bus that connects the memory, input/output circuits, and various other elements configuri
the system. Let's look here at these other configuration elements.

If the computer system were a human being, the CPU (Central Processing Unit) would be the
brain. We also have a memory in the brain, right? The microcomputer system also has a memol
that plays an equivalent role. There are various types of memories which are used for various
applications.

Memories can be divided into two general categories, based on their function.

One is the ROM (Read Only Memory), and the other is the RAM (Random Access Memory).

ROM

The ROM is used only for reading. But in order to read data, it has to first have been stored i
the memory, a process called “writing” or “programming”. A special technique is used to write
data to the ROM. Data cannot be written directly to the ROM by the microcomputer. A
number of products are available for this purpose, with different products being used for
different applications. Data written to the ROM will be retained even if the power is turned off

0 Masked ROM

In semiconductor manufacturing, Os and 1s are stored in the ROM. One advantage is tha
when these are manufactured in large volumes, the cost drops. You are probably familiar
with this type because it is used in game cassettes.

Masked ROMs are all the same up to the stage when the transistor that serves as its bas
created. After that, transistors are created so that the wiring is different, or even if the
wiring is the same, the characteristics can be changed using Os and 1s. Data is stored in
memory in this way. The masked ROM is a type of ROM in which, once data has been
written, it cannot be rewritten.

EPROM (Erasable and Programmable ROM) or OTPROM (One Time Programmable
ROM)

The EPROM is a ROM that can be erased, while the OTPROM is a ROM to which data
can only be written once. The same chip is used for both, but the difference is whether or
not the package has a glass window. If it has a glass window, ultraviolet rays can pass
through the window to erase the data that has been stored. If there is no window, the dat:
cannot be erased. With EPROMSs, data can be erased and programmed repeatedly, up tc
100 times.

Special programming devices are used to write data to both. Because data can be erase
from EPROMSs, these are used as the ROM when incomplete programs are being debug
or when the product is not being produced in large quantities.

EEPROM (Electrically Erasable and Programmable ROM)

This type of ROM can be electrically erased.

11

12

Unlike EPROMSs, ultraviolet rays are not used, so the data can be rewritten with the
EEPROM mounted on the PCB.

EEPROMS can be reused anywhere from 100,000 to one million times, and are used
instead of IC cards or EPROMs/OTPROMSs.

Flash Memory

Like the EEPROM, the flash memory can be electrically rewritten. It is different from the
EEPROM in that data cannot be rewritten in single-address units. Normally, it is
configured of blocks, each of which consists of between several kilobytes and several tens
of kilobytes of data, and these blocks are flashed (erased) individually to enable
information to be written. Previous information has to be deleted before new information
can be written to this type of ROM.

Flash memories can be further subdivided into OR/NOR and AND/NAND flash memories,
with OR/NOR being used in place of EPROM, OTPROM, and EEPROM memories.
Contents stored in the memory can be accessed directly, by specifying the address.
AND/NAND flash memories are used in digital cameras and MP3 players, and take the
place of a hard disk or floppy disk. With AND/NAND flash memories, when an address is
input, data is read and written serially in units of one sector (512 or 1024 bytes). This type
of memory works the same way as a cassette tape, and the target data can only be retriev
by going through the data in sequential order. Programs cannot be stored to or directly rez
from this type of memory.

Writing data this way requires a device called a ROM writer, and can be a time-consuming
process, as it is a more complex operation than reading data. All of the memory types
described above are grouped under the general name of “ROM”. One advantage of ROM |
that the contents stored in the memory are not lost when the power supply is turned off.
That's why this type of memory is used in microcomputer systems to store the first
program that is run when the power supply is turned on, and to store fixed data that does
not change. It is an essential memory in such systems.

Masked ROM EPROM/OTPROM

Factory

Data is written

|
| }Transistors are created
|
|
|

Wiring is connected Nl
} 9 —: UV lamp

l Data is erased.

Si wafer mask

(This shape is
transferred to the wafer.)

EPROMSs have a window in them.
OTPROMSs do not have a window in them.

Figure 1.13 ROM Types

RAM

The other type of memory is “RAM”, which can be used freely to read and write data. Most o
the RAMSs currently on the market are volatile, meaning that when the power supply is turnec
off, the information disappears. This RAM also comes in several types, with different types

being used for different applications.
0 SRAM (Static RAM)

With this type of RAM, the contents can be retained as long as power is being supplied.
The power supply voltage can be lowered to 2 V to reduce the power consumption, and tl
contents can still be retained even at this low voltage. This feature can be effectively use

in applications where battery backup is required.
0 DRAM (Dynamic RAM)

This type of RAM requires refreshing in order to retain the memory contents. Data cannot
be read or written while the RAM is being refreshed, so program execution is slower than
in systems using an SRAM, but the DRAM offers a memory capacity four times that of the
SRAM, and in addition is less expensive, so it is used as a memory in personal computer

and to store image data.

Currently, a type of RAM called a synchronous DRAM (Synchronous Dynamic RAM) is
used as the RAM in personal computers. With this type, operation is synchronized to a

clock.

The RAM is used to temporarily store data on which operations are being carried out, as

well as program status information.

13

>of] oo

SRAM DRAM Data is written once again
Data stored simply (refreshed) before it is lost.
by turning on power supply

Figure 1.14 RAM Types

1.2.3 Types of Microcomputers

When microcomputers were first developed, the available technology only allowed 2,000
transistors that functioned as switches to be mounted on one IC. With all the changes that have
taken place in technology, however, we can now use more than 10 million transistors. The
miniaturization of technology has advanced to the point where we can now create tiny individual
transistors. For instance, around 1985 the wiring used to connect transistors had a width of arour
2 um. By 2000, that width had shrunk to 0@, approximately one-tenth its earlier value. The
current surface area is only about 1/100th the area required in 1985, meaning that transistors ha
also shrunk proportionately, and we can now mount around 100 times as many transistors in the
same surface area as the number possible 15 years ago. More transistors means that more
operations can be carried out at the same time. Naturally, items are also being manufactured at
much smaller sizes than they were previously. Additionally, each individual transistor is much
more sophisticated and powerful, and is capable of operating at higher frequencies. Given all of
these advances, various types of microcomputers are now available, tailored to different usage
formats. Let's look at some of the different types.

Striving for Higher-Level Performance

One direction in which microcomputers are advancing is towards higher-level performance.
Products are now being developed that boost the operation capability of the microcomputer to the
maximum limits. To do this, only those transistors required for operation circuits are used. The
microcomputer contains none of the memory elements that are required for the microcomputer
system, and no peripheral functions. This type of microcomputer is comprised of a combination o
multiple chips, so it is logically called a “multi-chip microcomputer”.

The multi-chip microcomputer has an operation capability of 32 to 64 bits, and incorporates a
variety of means to achieve high-level performance. For example, some are designed to perform
operations on multiple data items using a single instruction (Single Instruction Multi Data), while
others execute multiple instructions with a single clock (Super Scalar), and still others copy part
the memory contents to a chip (Cache) in order to operate faster and more efficiently. Multi-chip
microcomputers are now being tailored for use in operating systems such as UNIX and Windows

14

and are equipped with an MMU (Memory Management Unit) that lets a hard disk be used in pla
of a memory when there is limited memory available.

Typical examples of such microcomputers are the Pentium, PowerPC, Strong-ARM, R10000, at
SuperH. These and others like them are used to achieve sophisticated mechanical control in
personal computers, workstations, network servers, sophisticated game players, and other devi

Many of these microcomputers use a system called RISC (Reduced Instruction Set Computer).
With this system, the content handled by a single instruction is simplified, so that instructions ca
be executed at a single clock. Because the instructions are simpler, internal circuits can also be
simplified. This makes the clock faster, so programs run faster. Currently, efforts are underway f
boost the clock speed to 1 GHz. Also, because the same results can be achieved even if the
instructions are executed in a different order, the execution time is not constant. Generally,
programming is done using the C language, and the execution order is left to the C compiler.

Striving for Smaller Sizes

Another direction in which development is moving is towards more compact sizes. Developers &
working to incorporate microcomputers into devices not only because of the convenience factor
but also because it makes the device smaller and more portable, so that it has a smaller surface
area and volume. Microcomputers are thus used in applications where outstanding operation
performance is not required. For example, microcomputers used in devices such as small-scale
hot-water heaters and electric cooking pots do not need to be terribly sophisticated in terms of
operation capability. They simply view information from a temperature sensor and turn on the
heater if the temperature has dropped. The volume of information for the temperature sensor
doesn’t go much beyond 100 degrees, and control does not need to be implemented in single-
degree units, so four bits are quite sufficient for this type of application. A time period of around
0.1 seconds is also fast enough to judge the temperature, since at that speed, the temperature
display appears to the user to be changing rapidly. A time frame of 0.1 seconds converted to a
frequency would be 10 Hz, and microcomputers are quite capable of processing information at
that rate. If the microcomputer were to be incorporated into the pot, however, we would need a
temperature sensor, and perhaps a temperature display as well. The temperature sensor and di
element themselves cannot be integrated on the same chip as the microcomputer, but the
peripheral functions that connect these to the CPU can be mounted on the same chip. Given thi
circumstance, integrating not only the CPU, but also the peripheral devices and memory require
by the system into the microcomputer would help minimize the size of the system as a whole.

Microcomputers developed with that end in mind are called single-chip microcomputers or one-
chip microcomputers.

Because microcomputers are developed with a specific application in mind, we end up having
microcomputers for TVs, microcomputers for air conditioners, microcomputers for telephones,
and many other types. Because there are some functions that are generally required, however,
some microcomputers are available for general-purpose use, and not for specific applications.

15

Most single-chip microcomputers have an operation capability of between four and 16 bits, and
because most are developed using an assembler rather than the C language, many can execute
complex operations with a single instruction (these are called CISCs, or Complex Instruction Set
Computers). Many microcomputers like these are designed to reduce the overall number of
instructions.

The H8 microcomputer by Hitachi is a single-chip microcomputer, but it is designed so that it can
also be used as a multi-chip microcomputer.

CPU
CPU ROM RAM

LCD ROM Periphery|

Periphery —mm
L ram
/6 Periphery
q

Signal conversion) Single _ _
&) System offers compact configuration

Multi Little room for expansion
Each is configured of an individual IC
Can be easily expanded

Figure 1.15 Multi and Single

1.3 Memory Data and Binary Values

Binary values are the basis of microcomputer operation. Let's take a moment to review what
binary calculation is all about.

In digital processing, high and low voltages are used to express the numeric values of 0 and 1. A
information is expressed in terms of combinations of Os and 1s. Because only two values are
involved, we call this “binary” processing.

In digital processing, only two states are used: high voltage and low voltage. There is nothing in
between. For this reason, even if the voltage level of the signal changes slightly, it is rarely
misjudged, meaning that this type of processing is not vulnerable to noise.

One binary digit is called a bit, and eight bits make up a byte. Other terms are also used, such as
“word”, “long word”, “quad word”, and “half word”, but there is no standard nhumber of
configuration bits as defined by JIS. This is left completely to the microcomputer and the
manufacturer, so we will not go into it here.

16

The contents stored in the memory consist of combinations of 0s and 1s (binary values), but the
can mean completely different things. Instructions, data, and text are all expressed in binary
format.

1.3.1 Instructions and Binary Values

Although microcomputers may use the same operation instructions, they use different machine
languages (the instruction format expressed in binary format). The optimum language is used fo
the microcomputer performance and application. For this reason, programs designed to run on :
personal computer will not run on a different microcomputer. In other words, programs are not
compatible. We will use the addition instructions for the H8 and Z80 microcomputers as an
example.

ADD instruction for the H8/300 series

Instruction stored in the memory (binary) Instruction when the program is put together
(Machine language) (Assembler)

1000000000000001 ADD.B #1, ROL

ADD instruction for the Z 80

1100011000000001 ADD A, 1

The H8 adds 1 to ROL, while the Z80 adds 1 to A. Both ROL and A are 8-bit memory locations
(called “registers”) in the microcomputer, and “1” is added directly to each as a result of these
instructions. The names are different, but both registers serve the same function. When express
in the binary format of the machine language, however, the instructions consist of different
combinations of Os and 1s. So programs have to be created for the specific microcomputer
involved, and programs copied from one microcomputer to another will not run.

1.3.2 Numeric Expressions

The basic instructions of microcomputers are configured so that numeric values can be treated
integers. Because the values are integers, there are no digits to the right of the decimal point.

There are two types of integer expressions: expressions that handle only positive values, and
expressions that handle both positive and negative values. Both are configured of combinations
Os and 1s. There is no bit to express the sign. The 2's complement is used to determine which t
of expression is used.

For example, if a numeric value using eight bits is expressed as 10000001, there would be a “1’
the 2 bit and the 2bit positions, so the values would be read as 128 + 1 = 129.

17

Binary‘o‘l‘l‘o‘o‘o‘l‘l‘

Bit weight ‘ 27| 25| 25| 24| 28| 22| 2t| 2°

12864 32 16 8 4 2 1
Decimal 64 + 32 +2 + 1 =299

Figure 1.16 Converting from Binary to Decimal Values

If this were expressed as data with a sign (2's complement), however, it would appear as follows:

01111110 Each bit of original data is reversed
+ 1 "1"is added
01111111 Result is data with reversed sign

1000 00O0O

T

MSB

If 1, negative

if 0, positive)This is not a + or - signal, however.

Figure 1.17 Signs and Reversed Signs

In comparison with the example showing a “1” in th&i position, this value is 1 less, so the

result would be 128 — 1 = 127, and the answer would be —127. This method of calculation can be
used when converting from negative to positive, or from positive to negative. The MSB (Most
Significant Bit) of the negative data is 1, but this 1 does not represent a negative or minus signal.
This is just the way it happens to be. For 8-bit data, the combination of Os and 1s would add up tc
256. If there is no sign, an allocation of 0 to 255 would be used, but if there were a sign, the
allocation would be from —128 to 127.

8-bit, no sign
0 255
|

|
1 1
127

|

T
-128
8-bit, with sign

Figure 1.18 Bit Allocation for Binary Values (Numeric Line)

18

Depending on whether the program is viewed as data with or without a sign, the combinations o
Os and 1s express different data.

This may seem highly imprecise, but it works extremely well for the internal circuits configuring
the CPU. The same calculation method (circuit) can be used regardless of whether or not there
sign.

As an example, let’s look at the following addition.

(Decimal display)
(Binary value display) (Without sign) (With sign)

00000011 3
+ 00001000 _8 - To
00001011 11 +11
11110010 242 -14
+11111010 250 -6
111101100 492 -20
11110000 240 -16
+ 00000001 1 +1
11110001 241 -15

Do you see how it works? The correct result can be output by the same circuit, regardless of
whether or not there is a sign.

As seen here, the same combination of 0s and 1s produces a completely different result, depen
on whether or not the value has a sign. But there is only one instruction. An addition instruction
will produce an addition, whether or not there is a sign.

Table 1.1 4- to 32-Bit Numeric Values

No. of Bits Without Sign With Sign

4 Oto 15 -8t0 +7

8 0 to 255 -128 to +127

16 0 to 65,535 -32,768 to +32,767

32 0 to 4,294,967,295 -2,147,483,648 to +2,147,483,647

19

Table 1.2 7-Bit Information Exchange Signs

bs] 0 | 0 |olo]a]1]1] 1

bs|] 0 | o |1|1]0]0|1] 1

bal o | 2 [o|l1]0]1]0] 1

\b7 bs [bs [ba|bs| b2] bi] bo 0 1 | 2[3l4]5]6] 7
olo/o|o|o[NUL|DCO[SP|O|@|P]| | p

1 olo|o| 1| 1[soMm|xON[T [1]|A|Q|al| q
3 0lo| 1| 0| 2|[EOA|DC2| " | 2|B|R|b| *
=2 ol o| 1] 1| 3|eom [x-oFF # | 3|c|s]|c]| s
§ ol 1/ o/ o] a|leoT|Dpcals|a|D|T|d]| t
01/ 0| 1| 5|WRU[ERR|%|5|E |U|e | u

01| 1| 0| 6| RUISYNC|& |6 |F|V]|f]| v

0| 1| 1| 1| 7| BEL | LEN 7/G6lw|gl| w

1o/ olol8|BS [so|(|8|H|[Xx|h| x
1lololalolHr [st |)yloli|Y|ily

1o/ 1| o|A| LF [s2 |~ Izl z

1ol 1|28 vt [s3 |+ K[[|k]|{

11| 0| o|c| FF [sa |, [<[L[\[1]]

11| ol 1]D|lcrR[s5 | -[=[M[]|ml|

11| 1| 0| E| so | s6 >IN|; [n| -

11| 11| F|l st [s7|/]2]o]<]olpEL

Other decimal values
« BCD (Binary Coded Decimal)

This is a method in which values are expressed as binary values, but a decimal digit is expresse
every four bits, so if eight bits are used, decimal values from 00 to 99 can be expressed.

In applications where data is input by human beings, such as calculators, using BCD for the
microcomputer operation is convenient. Many microcomputers are configured so that BCD
operations can be carried out using a single instruction.

(Binary value) (Decimal value seen as BCD)
00110100 34
10001001 89

20

1.3.3 Character Codes

Communication is often expressed in text format, particularly in applications such as Internet
communication. Different computers can communicate if they use the same characters. The tex
information used here consists of character codes defined by ASCII (American Standard Code f
Information Interchange) or JIS or EUC (character codes used in UNIX). Seven-bit codes are th
same in all character codes, so we will look at this type of code here (refer to table 1.2).

When data created using a microcomputer is transferred to a personal computer, or when
instructions from a personal computer are being used to run a microcomputer, these codes are
used.

Chinese characters are expressed in 16 bits. JIS defines approximately 6,300 such character cc

1.3.4 Decimal Point Data

Data operations involving data with decimal points are not often used in applications where a
microcomputer is incorporated into a device such as a household product, or in engine control.
Consequently, there is no instruction in the H8 that enables decimal point data to be calculated
with a single instruction. Because this is a standard data format, however, we will look at it here

Floating decimal point data (a method of expressing data as a mantissa and an exponent, in wh
the position of the decimal point is not fixed at a given bit position) is defined by IEEE 792, as
shown in the figure.

There are two types of data: 32-bit single precision and 64-bit double precision.

3130 22 0
\S\ exp \ fraction \ Exponent
63 62 51 0
\$\ exp \ fraction
!
Mantissa Sign

Figure 1.19 Floating Decimal Point

When data is processed by the H8, it is divided into the mantissa and the exponent, and is
calculated using an integer operation instruction.

21

(Bit no.)
(Address) 7 0
H'0000—~ 8 bits = 1 byte
H0003 + 1bi

HFFFF —
HFFFF —

Figure 1.20 Example of Memory Map

1.3.5 Expressing Numeric Values

We have talked about binary values and decimal values. If we only see the value “10”, however,
we don’t know which format is intended. If the value is binary and we convert it to decimal, it will
come out as 2, but if it is written as a decimal value, it will be 10. If we take an 8-bit value written
in binary format, it will be expressed as 10000000, which is long. So to distinguish between binar
and decimal, and to express binary values in a shorter form, many microcomputers use the
hexadecimal format. Binary values have (B’) at the beginning of the value, and hexadecimal
values have (H"). This method is used in the assembler in the H8 series.

Binary B'10000000
Decimal 128
Hexadecimal H’80

1.3.6 Memory Maps

A memory map indicates the memory space accessible by a particular microcomputer in map
format.

The microcomputer manages the memory by assigning addresses in units of eight bits. This is
common to most microcomputers, except for 4-bit microcomputers. Figure 1.20 shows a memory
map for a microcomputer that can handle 64-KB data.

If addresses are expressed in hexadecimal format, 64 KB of memory space can be expressed us
four digits (16 bits). In actuality, although we say 64 KB, it is actually 65,536 addresses. Because
the binary format is used for all of the expressions, this will be 1024 af thesRion, which we

22

call 1 K. So 1 M =1Kx 1K, but because the original 1 K is 1,024 bits, 1 M will be 1,048,576
bits.

23

24

Chapter 2 H8 Microcomputers have High-Levels of
Performance and Functionality

2.1 What is an H8 Microcomputer?

‘H8 microcomputer’ is the generic term for Hitachi's 8/16-bit microcomputers.
The H8 microcomputers are classified into two main series.

(1) H8/500 series

H8/500 series models are mainly used for industrial applications and have more substantial errc
detection functions than other models in the H8 series. It is easy to use an assembler to develo
programs, since many functions that can be executed as single instructions are available. A pal
mode is used when more than 64 Kbytes of data must be handled.

(2) H8/300, H8/300H, H8S/2000 series
These microcomputers have a common instruction set.

» HB8/300: standard 8-bit microcomputer

» H8/300L: low-power, low-cost 8-bit microcomputer

e HB8/300H: standard 16-bit microcomputer

» H8/300H Tiny: compact 16-bit microcomputer

e H8S/2000: high-performance 16-bit microcomputer
H8S/2100: Application-oriented microcomputer. High-performance version of the H8/300
or H8/300L.
H8S/2200: High-performance version of the H8/300H, equipped with peripheral functions
suitable for consumer applications.
H8S/2300: High-performance version of the H8/300H, equipped with highly functional
timers and other features.
H8S/2600: Multiply-and-accumulate instructions are included. A multiplication is
executed in a minimal three clock cycles. This series provides the highest level of
performance series of all H8S-series products.

H8/300, H8/300H, H8S/2000 series microcomputers are low-priced and are widely used for the
control of televisions and VTRs and for inverter control, under the control panels and in the
internal LANs of automobiles, in cellular phones and ink-jet printers, etc.

H8/300-series devices handle 64-Kbyte memory spaces, while H8/300H, H8S/2000-series devic
handle 16-Mbyte memory spaces. Since the instruction set of these devices is comparatively
simpler, execution speeds are faster than for H8/500-series devices.

25

H8-series microcomputers

(development of CPUSs)
H8S/2600
H8S/2300 Sand rcuit
Multiply-and-accumulate circuit incorporated

Higher speeds

H8S/2200
Upward
compatibility (_H85/2100

Low power

H8/300H

16 bits

H8/300H Tiny

H8/300
H8/300L

8 bits

Figure 2.1 H8 Families

Since the CPU functions in terms of executing instructions are common within each series,
instructions can be shared. H8/500-series, and H8/300H, H8S/2000-series devices process up t
16 bits in each single instruction of most operations, while H8/300-series devices process 8 bits.
The H8/300H series is described below.

26

Development of the H8/3048 Series (o= s

(an H8/300H-based product equipped with a 16-bit ITU) MaﬁophglrﬁaAh'\eﬂr:Iafziigms

Low-capacity memor

H8/3042 series H8/3048 series H8/3052F

64 kB/2 kB 128 kB/4 kB 256 kB/8 kB
DMAC 4 ch, TPC DMAC 4 ch, TPC > DMAC 4 ch, TPC
ITU, ADC, DAC ITU, ADC, DAC ITU, ADC, DAC

100pin High-capacity memory,
- high speeds, programming with

HB/3035 series a single 5-V power supply

256 kB/4 kB
ITU,T;;:,CADC, 80 pins |
H8/3039 series H8/3003

128 kB/4 kB No ROM/512 bytes,
ITU,TPC, ADC, 112 pins H8/3005

DAC DMAC 8 ch, No ROM/4 Kbytes,
TPC, ITU, ADC 80 pins
ITU, ADC, SCI

Figure 2.2 Configuration of the H8/300H Series

The H8/300H series is a set of many products that have been developed around the same CPU
the basis of types and storage capacities of on-chip memory, and of differences in on-chip
peripheral functions. The H8/3048F requires two power supplies, 12 and 5V, for the
programming of its on-chip flash memory. The H8/3052F is equipped with the same peripheral
functions but only a single 5-V power supply is required to program its on-chip flash memory.
The H8/3052F is recommended to those who require a microcomputer for a new project.

2.2 Operation Mode of the H8/3048F

Features of the H8/3048F as a representative H8 microcomputer are summarized below.

2.2.1 Summary

The H8/3048F is equipped with the H8/300H-series CPU. The H8/300H series was the first
product in which flash memory was used for on-chip ROM. The ‘ROM’ can thus be rewritten
even when the chip is being mounted on a board.

27

S 32 Y228 00 ~ 0w v oo oo
eeReLaaege RRL200a70
O 0O O v v u v v u ~ © W1 M N o+ O ~N © W MO N+ O
OO0 O v unu n u v un Mm M MM Mm oM O oM Do T T S S A S
> > > > > > > > > [y n W o N o o N o N s R Y [W W o W o WY o WY« W a W 0 Y
EEEEE RN EE R,
[Port 3 | Port 4 |
m m Address bus m ﬁ (—
L= P53/A19
MD, : U Data bus (upper) ‘ ‘ U D L P5,/A1g
— - o
MD1 Data bus (lower) U K & [~ P51/A17
MDo —— = P50/A16
EXTAL — —
XTAL ——= 85 > ™ P27/A15
? :5 H8/300H CPU - o1 [P
B4
STBY — 8 § K> [P25/A13
RES — = © k—1 L % [P24/A12
R 7Y I N
Vpp*/RESO M0 a 1223;211
=L —
NMI Interrupt Controller | — e % < — 0P22/A10
TR e] o — — £ 1R
P6s [WR == | | DMA controller (2] § <L [+ P20/Ag
P65/HWR == [~ — (DMAC) K g —
P64/RD == _ ROM — @ L e P17/A7
PEalAS == £ k1 [of k| | (Masked ROM. == Plo/As
g g ,
P62/BACK =] L—1 flash memory) [~ Pls/As
T L b = P14/A4
PellmiQﬂ L | Refresh X Sle
P60/WAIT | =n controller [~ < = Pls/As
_ - = P1,/A,
- RAM — . - P11/A;
184/(:500 K1 = K L Watchdog timer] L™ Plo/Ao
P83/CS1/IRQ3 =~ o k— T (WDT)
P82/CS,/IRQz =~ 5 -)
P81/CS3/IRQy =~ KT 4 integrated timer 2-channel stte_rial —
P80/RFSH/IRQ = unit (ITU k== communication
—L LK) interface
= [(sci — P95/SCK1/IRQ5
[Programmable — P9,4/SCK/IRQ4
timing pattern nin A/D converter b o PO4/RXD;
controller T 5
(TPC) D/A converter - a P9,/RxDg
& i || g i P9/TXD4
L ‘:‘i — P9o/TXDg
1 ==l [0 [
U U = U (U U U
[Port B i Port A | T T T Port 7 |
Eoasdasgs FPPILELES 888 £5222222
EoRX808% glololo 55255 72 3562325232
QL QO0O000 FYPYROOOO R ® b Y ® N oo
IFLLEEEE os<s<sEEER ZZEEERER
St 533322 Q35 ra<glg I3
neaddl e e ’:8860055 NN
x SEEEERESYS FoooQQoEWE I
QO an v ¥ o o FEEEEESRS
Q P00 DD EEEE S
rE @2 oo R S R
a L < o oo = =
= E T -EEEESS
= > b ¥ <‘E’ <‘(\‘ & &
2 S EEE:

Note: * The Vpp function is provided only for the flash memory version.

28

Figure 2.3

Internal Block Diagram

The on-chip peripheral functions mainly consist of inverter-controlled timers, a serial
communication interface for communication with a host computer, an A/D converter for the
conversion of information received from analog sensors, such as on temperature and humidity,
digital form, and a D/A converter, which can be used as an output for audio signals or to control
analog-controlled equipment.

This microcomputer is in use as the control unit of an inverter-controlled motor, as the control ur
for the motor in the outdoor unit of an inverter-controlled air conditioner, as the motor controller
of a vacuum cleaner, and in many other applications. It has also been widely adopted for use ir
cellular phones because of its low power consumption and on-chip flash memory. Even when
power is not supplied to a flash memory, the stored data is retained. New data can also be writf
to a flash memory. In cellular phones, the flash memory can thus be used to store the system
program, phone numbers and addresses, and notes.

Example: System Configuration of an Inverter-Controlled Air Conditioner with the H8/3048

- <Indoor unit> 1 <Outdoor unit>
=== IGBT module ---5

* * — _||:t? _||:§ Compressor
t a0
$ 4 .| .|
. P . .
g ‘03 I Base driver ISix phase St tor f
55 - epper motor for
c o Overcurrent controllin
8 g detection ++ ++ ++ PWM OUIpUt solenoid vlal?/es
58 | ITU _m_.@
T 0 H8/3048 l
c n
= E Outdoor | H8/300HCPU | @
air temperature Fan-motor control
Humidity = A/D converter |
: Sensor [|
: input
SCI ROM ||RAM
Communication with N
the indoor unit | /O port -

Relay/switch

Figure 2.4 System Configuration

The 16-bit integrated timer unit (ITU) generates the six pulse-width modulation (PWM) signals
(three positive-going signals and three negative-going signals) that are required to control the
inverter. A motor’s rotational frequency can be produced by the ITU, thus enabling constant-
speed rotation and stop-position control. The current in the inverter circuit is input to an A/D
converter via a current trans former (CT) or shunt resistor. This allows monitoring of whether or
not the inverter circuit is operating correctly.

29

Inverter circuits are used in many electrical appliances such as air conditioners, refrigerators,
microwave ovens, and washing machines. When power that is generated by solar energy or the
force of the wind is used along with a business or domestic power supply, the inverter is used to
send power synchronously with the frequency of the power supply from the electric power
companies.

Flash memory acts as the on-chip ROM. Since a write circuit is included, all of the data in flash
memory can be rewritten by connecting a serial communication interface and a personal computt
while the chip remains mounted on its host board. Since rewriting can be executed in units of
blocks, part of an application or data can be modified while leaving the system program
untouched.

2.2.2 Single Chip

The H8/3048F can be used as a single-chip microcomputer. To designate single-chip operation,
the MD (mode) pins must be set. When the pins are set to seven (binary 111) and power is turne
on, single-chip operation is designated. To change the mode, turn off the power or reset the
microcomputer.

In this case, an address bus or a data bus will not connect the H8/3048F to such external module
as memory or peripheral function modules. Only the 128 Kbytes of internal flash memory, 4
Kbytes of SRAM, and the on-chip peripheral functions are available for use. Since extended
address and data bus lines are not required, more pins are available for direct use in implementir
peripheral functions.

Figure 2.5 shows the memory map when single-chip operation has been designated. The addre:
range starting at H'00000 is assigned to the flash memory. On-chip peripheral functions are
allocated to the other part of the memory map.

30

Mode 7
(single-chip advanced mode)
HO00000 T4 -1~
Vector area 3
_____________ S |2
92
' B [=]
H'000FF | ___________| .2 5|2 g
I®|®©2
. c5 |58
On-chip ROM g < é (%
HO7TFFF| | 28y
H'1FFFF
HF8000 -~~~ --"""""""""""""34 "~
v
H'FEF10 2
On-chip RAM | 3
............. -8 k=]
H'FFF00 o |8
H'FFFOF 5 |9
° 3
s |2
Q
5 |8
2 |z
H'FFF1C Q i
Internal I/0 = 3
register o
H'FFFFF © oy

Figure 2.5 Memory Map for a Single Chip

Allocation of peripheral functions as is done to the memory map on the H8/300H is called
memory-mapped I/O. Since this method allows 1/0O with the same instructions as are used for
memory operations, a variety of operations can be executed on 1/0O data. However, the space
available for memory is reduced since some of the memory is used for I/O.

In some microcomputers, on-chip peripheral functions are not allocated to the memory map and
there is a separate map for use with peripheral functions (the I/0O map). This method has a mer
that it allows more of the memory map to be allocated to memory. On the other hand, the meth
has demerits in that I/O operations absolutely require use of the instructions that are exclusively
for the I/O map, and in that the functionality provided by instructions is at too low a level.

Which method is the best depends on the final product. Both methods have both good and bad
points. Memory-mapped I/O is adopted for the H8/300H, taking into consideration the affinity of
the C language to this approach.

31

2.2.3 Memory Expansion

When the setting on the modes is any number from one to six, the expanded mode is set for the
external expansion of memory. As a matter of course, peripheral functions can be connected in
way that is much the same as the connection of memory. This mode is useful when on-chip
memory or on-chip peripheral functions are insufficient, or when a different type of memory is to
be used.

It is also possible to abandon the on-chip flash memory when the memory is expanded externally
For instance, a maintenance program may be stored in the on-chip flash memory, with the systel
program stored in the external memory space. Usually, the system program in the external
memory will be running. However, when, for example, a problem occurs after the product has
been shipped or when the product’s practical conditions of use are to be researched, the
maintenance program may be executed by simply changing the mode. If updating of the system
program is necessary, further flash memory can be connected as external memory.

The external memory space of 16 Mbytes is divided into eight 2-Mbyte units, called areas.
Memory of various types (including DRAM) and with different speeds can be managed by a
single chip in units of areas. For details, see section 6.

32

1-Mbyte mode 16-Mbyte-mode
HO00000 T4 -1 H'000000 T4 -1
Vector area -8 Vector area —®
_____________ on | Q -] on | Q
o0 |5 oV |5
= e S = 9 3>
H'O00FF L. _____| YBZ | 39| HO000FF L _________| YE8s |23
1% |82 i |cd
55 |=9 s5 |EQ
Ec |23 2|23
Q0|97 2% |53
worerF| | C 28y Yl woorFRR| | ¢ 28y
External or
External or Ho1FFFF| internal ROM
internal ROM
H'1FFFF Areald Area 0
H'20000 H1FFFFF |
HaFFFF| | Areal | 4200000
H'40000
I Areaz Area 1
H'60000 | External address Area 3 H3FFFFF____________|
H'7FFFF|____space _ |"7"=%*% H'400000
H'80000
HOFFFF| .| Aread Area 2
H'A0000 HSFFFFF|__ | __
HBFFFF| .| Aread | H600000
H'C0000 External address
HODFFFF___________| Areab P space Area 3
H'E0000 TFFFFF
Area 7 H'800000
Area 4
____________________ ___ | HOFFFFF|_ _____ L _________
H'F8000 H'A00000
H'FEFOF » Area 5
H'FEF10] & | HBFFFFF___ |
On-chip RAM*)] H'C00000
_____________ o =]
H'FFF00 2 |3 Area 6
H'FFFOF 5 @ HDFFFFH___ |
H'FFF10 S |3 | HE00000
External address Q 2
space s < Area 7
H'FFF1B S |=
H'FFF1C s |2
Internal 1/0 = S
register 2 HFEF8000| "~ " TTTTTTTT T Th T
H'FFFFF R I
H'FFEFOF «
H'FFEF10 @
On-chip RAM* 0 2
_____________ 9 |
H'FFFFO0 2 |3
H'FFFFOF 5 |e
H'FFFF10 g |3
External address | | @ 2
space = -(%
HFFFF1B g |=
H'FFFF1C] |3
Internal /O = —
register =
HFFFFFF___ Yy~ v

Note: * External addresses, can be accessed by disabling on-chip RAM.

Figure 2.6 Externally Expanded Memory Map

33

2.3 Configuration of Registers and Programming

Both hardware and software are required to use microcomputers. Let's study the software
(programs) first. With regard to hardware, a ready-made board is available for purchase and
immediate use.

231 Register Configuration

There are some temporary storage areas inside the CPU of a microcomputer. Copies of data
stored in memory or the results of operations and records of states on the way to these results ar
temporarily placed in these areas. These temporary storage areas are called registers.

Almost all microcomputers can execute operations such as addition, subtraction, multiplication,
and division. They cannot, however operate directly on data in memory.

The reasons for this are:

(1) The instructions become long so that it takes much time to read them.

(2) Operations are seldom completed by one instruction so the possibility that the same data will
be used in the next operation is high. The execution time is thus shorter when the data is
closer to the CPU than memory.

The operation of an instruction becomes complicated when the microcomputer tries to directly
handle data stored in memory or to directly store the results of its processing in memory. For
example, consider the operation of an instruction of a microcomputer that adds data in memory t
each other and stores the results in memory.

The configuration of the instruction is as follows:

ADD source data 1, source data 2, result

(Instructions for execution by a microcomputer are written in a machine language, which consists
of combinations of bits with values 0 and 1. However, it is not easy for most human beings to
read machine language, so an assembler language is used to introduce the instructions. There i
assembler-language version of every machine-language instruction.)

-,

Instructions must be read before they are executed. How many bytes does this instruction have®
If the data and results are somewhere in memory and the memory space is 16 Mbytes then the
addresses must each have 24 bits. Therefore, three bytes of information are required to indicate
the each of the three addresses for data. Nine bytes are thus required because there are three
addresses. A further two bytes are required for the ADD instruction. So the instruction takes up
11 bytes.

The CPU does not know what to do until all 11 bytes of the instruction have been read. A
microcomputer with a data width of 16 bits can only understand the instruction after having

34

fetched data from the memory six times. What a long time that takes! There is a chance that th
result of this operation will be used in the next operation. It is outrageous if the next instruction
has to directly indicate the address of this result in memory.

MOV source data 1, register 1
MOV source data 2, register 2
ADD register 1, register 2, register 3

(The MOV instruction in this example is a transfer instruction but its actual operation here is to
copy the data. The original data in the memory is unchanged.)

In this case, a total of 12 bytes is necessary, five bytes for each MOV command and two bytes f
the ADD, so the number of bytes seems to have increased. When, however, operations contint
to use the data in memory, each ADD instruction only requires two bytes, so the number of byte
taken up by instructions can be reduced. In addition, because the data used in the ADD instruc
is only a copy of the data in memory, that data remains in the memory. There is no problem if tl
copy is lost, so it is OK to put the result of the ADD instruction in register 2, in the following way.

ADD register 1, register 2

35

Structure of an instruction (without registers)

ADD Address 1 | Address 2 | Address 3

24 bits for
a memory space
of 16-M bytes

Address 1 o
Address 2 o
Address 3 |

Memory

Structure of instructions (register-based)

| mMov | Address1 | 70
| MOV I Address 2 | Address 1 o IRegister || Registerl
Address 2 @ . \/ :
ADD \Operation circuit/
L
Memory

Figure 2.7 Structures of Instructions with and without Registers
That is why it is best for the CPU to have registers.
We will now look at the registers of the H8/300H.

A register is a temporary storage area, so it must be prepared with the right size (number of bits)
for the data it is to store. In H8/300H, three sizes are available, i.e., byte sized, word sized (16 b
on this system), and long-word sized (32 bits on this system).

The names of the byte-sized registers are ROL, ROH, R1L[IRIMH.

The names of the word-sized registers are RUIBRLand EO, EME7.

The names of the long-word-sized registers are ERO[IHERY.

Note: Area RO is actually made up of ROH and ROL, area ERO is made up of EO and RO, and sc

on. If, for instance, ROL is changed, ERO will also be changed. Take care on this point.

36

These registers are called general-purpose registers. ‘General-purpose’ here indicates that all
the registers function in the same way and that any it's possible to use any of these registers for
any of various purposes in the same way. The things that can be done in or with RO are the sar
things that can be done in or with R1 and R3. As one example of the things it's possible to do ,
let’s start by looking at operations on data. In the case of

ADD.B ROL, ROH

ROL and ROH are added and the result is placed in ROH. RO is affected but EO is not. In the ca
of

ADD.W RO,R1
RO and R1 are added and the result is placed in R1. R1 is affected but E1 is not. In the case of

ADD.L ERO,ER1
ERO and ER1 are added and the results are returned to ER1.

Thus, general-purpose registers can be used to store the original data before an operation or th
results of an operation.

General-purpose registers are also used in another way, to indicate addresses of memory. For
example, the instruction to move a byte of data from memory to a general-purpose register is

MOV.B @ <address of memory>, ROL

Three bytes of information are required to indicate an address of memory with a memory space
16 Mbytes. Information that indicates the operation is naturally required as information in the
instruction, so the instruction takes up a total of six bytes. This instruction can also be used whe
data is to be transferred from the indicated location a number of times.

MOV.B @ER1, ROL

This 2-byte instruction uses general-purpose registers alone to indicate the address of memory.
The address is not input directly. Thus, there are cases in which it is best to use a general-purp
register to indicate an address.

(@ indicates that an address of memory is given to the H8 microcomputer.)

Note: The parts on the right of the instruction are called operands. This means the targets of
instruction. If there is more than one, they are separated by commas (,). The left-hand
part is called the source and the right-hand part is called the destination.

The CPU has other registers, too. These are control registers. They include the program count
(PC) and condition-code register (CCR). The program counter indicates the addresses of the
instructions that are read out from memory.

37

If a program is stored in memory and the PC is pointing to the first address as shown in the figure
the PC is incremented as each instruction is read out. The next instruction is read out, then the
instruction after that, and so on, in order.

The CCR indicates the current state of the CPU. Its behavior is strongly related to the individual
instructions, so the CCR will be introduced in the next section, along with the instructions.

General-purpose register (ERn)

15 07 07 0
ERO EO ROH ROL
ER1 E1 R1H R1L
ER2 E2 R2H R2L
ER3 E3 R3H R3L
ER4 E4 R4H R4L
ER5 ES R5H R5L
ER6 E6 R6H R6L
ER7 E7 (SP) R7H R7L

Control register (CR)
23 0
PC | |

76543210
CCR | 1|ullH|u[N]Z]V[C]

<Legend>

SP :stack pointer

PC :program counter

CCR :condition-code register
s interrupt mask bit

: user bit/interrupt mask bit
- half-carry flag

: user bit

: negative flag

: zero flag

: overflow flag

s carry flag

O<NZCIC™—

Figure 2.8 General-Purpose Registers (a)

38

BFor use as 8-bit registers

7 07 0
ROH ROL
R1H R1L
R2H R2L
R3H R3L
R4H R4L
R5H R5L
R6H R6L
R7H R7L
BFor use as 16-bit registers
15 015 0
EO RO
E1l R1
E2 R2
E3 R3
E4 R4
ES5 R5
E6 R6
E7 R7
B For use as 32-bit registers
1 0
ERO
ER1
ER2
ER3
ER4
ER5
ER6
ER7

Figure 2.8 General-Purpose Registers (b)

PC (Program Counter)

Instruction 1

< |Address containing an instruction|

Instruction 2

Counter is incremented after the instruction has been read out

Instruction 3

Instruction 4

Memory

Figure 2.9 PC and Instructions

39

2.3.2 Instruction
H8/300H has many instructions. They are listed in the table below.

It might seem as if there are too many instructions. It is possible to write most programs with
approximately 10 instructions. This is because some instructions are rarely used and it is possib
to replace some instructions with other instructions.

So, only the basic instructions will be introduced here. Further instructions will be introduced as
required after this section.

The instructions for moving data from memory to a general-purpose register will be introduced
first. Many operations between the general-purpose registers of the H8/300H are available, so tt
instructions for moving data to these registers are indispensable.

The MOV instruction is used to move data in this way. Data for MOV instructions can be
specified directly or by using general-purpose registers.

MOV.B @H'10000,ROL ; The contents of the address H'10000 are
; copied to ROL.

MOV.W RO,R1 ; The contents of RO are copied to R1.

MOV.L ERO,@H'2000 ; The contents of ERO are copied to the
; address H'2000.

MOV.W #B'10001000,R1 ; The contents of the address H'0088 are
; copied to R1.

(comments on the operations of a program are written after ;")
(one instruction can be written per line)

The data is stored in the destination written to on the right side of an operand. The MOV
instruction does not actually move data, but rather copies it.

40

Table 2.1

Instructions (all instructions in mnemonic form)

General data MOV Movement of data (copy) between memory and
movement general-purpose registers and between general-
purpose registers
EEPMOV.B . .
Block copy, .B is a 255- and .W is a 65535-byte
EEPMOV.W block
Control of a stack area PUSH Save
POP Restore
Arithmetic operations ADD, ADDX Addition, ADD X is with a carry.
ADDS ADDS is for short-address calculation
SUB, SUBX Subtraction, SUBX is with a carry
SUBS SUBS is for short-address calculation

MULXU, MULXS

Multiplication, MULXU is unsigned, MULXS is
signed.

DIVXU, DIVXS Division, DIVXU is unsigned, DIVXS is signed.

BCD operations DAA, DAS BCD-adjustment for arithmetic operations, DAA is
used after ADD and DAS is used after SUB.

Other operations CMP Data comparison

NEG Inversion of the sign (plus/minus)
EXTU, EXTS Extension of a bit, EXTU is unsigned, EXTS is
signed.

Logical operations AND Logical AND, bit by bit

OR Logical OR, bit by bit
XOR Exclusive OR, bit by bit
NOT Inversion, bit by bit

Shift/rotation SHAL, SHLL 1 bit shift to left (MSB side), SHAL is arithmetic

and SHLL is logical

SHAR, SHLR 1 bit shift to right (LSB side), SHAL is arithmetic
and SHLL is logical

ROTL, ROTXL 1 bit rotation to left (MSB side), ROTXL is with a
carry bit.

ROTR, ROTXR 1 bit rotation to right (LSB side), ROTXL is with a
carry bit.

Bit control BSET A single bit is changed to 1 (the byte is read out,
the bit is changed, and the byte is then written
back).

BCLR A single bit is changed to 0.
BNOT A single bit is inverted.
BTST Checks whether or not a single bit is 0.

41

Carry bit control BAND, BIAND The logical AND of the carry bit and a specified
single bit is taken. The results are input to the carry
bit. BIAND specifies inversion of the single bit
operation.

BOR, BIOR As above, but OR rather than AND.

BXOR, BIXOR As above, but XOR rather than OR.

BLD, BILD The specified single bit is written to the carry bit.
Otherwise as above.

BST, BIST The carry bit is loaded as a single bit. Otherwise
as above.

Unconditional branch BRA Non-return branch (PC relative)

JMP Non-return branch (absolute-indirect address)

BSR Subroutine call (PC relative)

JSR Subroutine call (absolute-indirect address)

TRAPA OS call

Return RTS Return from subroutine

RTE Return from interrupt request processing or

TRAPA instruction processing
Conditional branch BNE Branch when not equal.

BEQ Branch when equal.

BHI Branch when greater than, in terms of unsigned
data.

BCC (BHS) Branch when greater than or equal, in terms of
unsigned data.

BLS Branch when less than, in terms of unsigned data.

BCS (BLO) Branch when less than or equal, in terms of
unsigned data.

BGT Branch when greater than, in terms of signed data.

BGE Branch when greater than or equal, in terms of
signed data.

BLT Branch when less than, in terms of signed data.

BLE Branch when less than or equal, in terms of signed
data.

BPL Branch when positive or equal, in terms of signed
data.

BMI Branch when negative or equal, in terms of signed
data.

BVS Branch when an overflow is generated, in terms of
signed data.

BVC Branch when no overflow is generated, in terms of

signed data.

42

Low power SLEEP Makes the transition to sleep or standby mode.
consumption mode

Control of CCR LDC, STC Loads/stores the one-byte CCR, as a single byte.
ANDC, ORC Changes the CCR, in one-bit units.
XORC
Others NOP No operation
Endians

When data is moved between the memory and the register, it is handled as one byte over two
addresses if the memory data is one-word data, and as one byte over four addresses if it is lon
word data. Currently there are two types of microcomputers. In the H8/300H, smaller parts of &
address are in the upper side of the register (big endian).Some microcomputers such as Z80 us
different order (little endian) than that of H8/300H.

Differences of endians observed in 16-bit data storage

n+1 address | MSB n address | MSB

+
n address LSB n+1 address LsB

Little endian Big endian

Figure 1 Endians
Here we will describe operations. First, let’s look at addition.

ADD.B ROL,ROH ;ROL + ROH -> ROH
ADD.W #1000,R1 ;1000 + R1->R1
ADD.L ERO,ER1 ;ERO + ER1 -> ER1

(# is "immediate”, which directly indicates a number. Numerations other than decimal
numeration can be used.)

A carry might be generated as a result of addition. A carry is stored in the C (carry) bit in the
CCR not in a general-purpose register.

ROH after the operation is H'00 (symbol (H') before the value indicates a hexadecimal numerica
if the register values are set to ROL = H'80, ROH = H'80 before an instruction is executed.

43

In an operation of

ADD.B ROL,ROH ;ROL + ROH -> ROH

Executed instruction Data in the general-purpose register and CCR
ADD.B ROL,ROH

B'1000 0000 ROL
+) B'1000 0000 ROH

C=1 B'@OOO 0000

With a carry
from the eighth bit l Z=1 The result of the eighth bit is O

N=0
Positive in a signed data

V=1(Negative + Negative = Positive)
The data overflows from the eighth bit in signed data

Figure 2.10 Operation and CCR Changes

A carry is stored in the C bit in CCR; the carry never enters EOQ. In addition, the operation result i
0, so 1 is stored in the Z (0) bit in CCR. When this operation is carried out for signed data, the N
(negative) bit in CCR is 0 because 0 is a positive number. The answer is positive despite the
addition of a negative and a negative. However, this result cannot be recorded as 8-bit
information, therefore, 1 is stored in the V (overflow) bit in CCR. To decide whether a method for
operation must be changed as a result of a carry or overflow the content of CCR must be checke
after the addition. A method for changing processing flow will be introduced later.

Next, we’'ll look at subtraction.

SUB.B ROL,ROH ;ROH - ROL -> ROH
SUB.W #10,R1 ;R1-10->R1
SUB.L ERO,ER1 ;ER1 - ERO -> ER1
When subtracting, be careful to note the directions for subtraction.

As with addition, the CCR is changed after having confirmed the results of the operation. In this
case, the C bit stores a borrowed value.

There is an instruction that does not return the results to the general-purpose register even
subtraction is carried out in the same way.

CMP.B ROL,ROH ;ROH - ROL
This is an instruction to compare which is larger. Comparison is carried out for subtractions.

44

For another example, this instruction is used to compare the information of a sensor and a targe
value to determine whether the target value has been attained. This instruction is different from
the SUB instruction, in that the results are not returned to the general-purpose register. CCR is
changed.

The current state can be recognized by CCR and a branch instruction can be used to change th
processing flow.

CMP.B ROL,ROH ; Compares ROL and ROH and then stores the contents of ROH to CCR
BEQ TUGI ; If equal, go to the line of NEXT and if not so, go to next ADD.
ADD.B #10,ROL ; ROL + 10 -> ROL
BRA SONOTUGI ; Go to the line of AFTERNEXT unconditionally.
NEXT: SUB.B ROL,ROL ; ROL becomes 0 with RL -ROL -> ROL

AFTERNEXT: MOV.B ROL,@H'2000 ; 0 or data added by 10 is in ROL. Itis transferred to the memory
; of the H'2000 address

(Lines can be named. They are called as symbols, which are alphanumeric up to the 255th
character starting from the top and discriminating between lowercase and upper case character

The BEQ (Branch EQual) instruction means "If equal, branch.” On the contrary, " Branch if not
equal." is BNE (Branch Not Equal).

If the data is equal or can be confirmed by subtracting, the result is 0. This state is shown by Z
in CCR. That is, the BEQ instruction means both equal and "The result is 0",

The meaning of each bitin CCRA is listed in Table 2.2.

The BRA (Branch Always) instruction is an instruction to branch unconditionally. This
instruction does not refer to CCR.

Table 2.2 Each Flag Bit of CCR

N: The result is "negative" if an operation is carried out by a signed binary.

Z: The result is "0".

V: The result is "overflow" if an operation is carried by a signed binary.

C: The result is "carry" or "borrow".

Next, We describe logical operations:

Some data make sense with one bit, rather than with eight bits, for example, they are informatio
on a sensor or an actuator. Consider an electric heating pot. If a button for boiling is set, the
microcomputer must turn on the heater when that button is pushed. The boiling button can take
only two states of being: pushed or not pushed. Either of these states can be expressed by one
The state is expressed as 1 when pushed and 0 when not pushed. For a heater, the situation is
same. One hit is sufficient because there are only two states: on and off. As before, when the
button is on the state is expressed as 1 and when it is off, 0.

45

A microcomputer checks the state of a switch or a heater’s on/off controls by exchanging data
with a memory.

A microcomputer has no special instruction to handle a sensor or to control an actuator. An MO\
instruction is used for reading from the switch. The MOV instruction also operates a heater.
However, the CMP instruction is not used to judge the switch’s state because MOV cannot read ¢
one-bit instruction even though it can be read as one byte data.

State of SW
H'4000
_)
L
Memory State of SW

A 4
ROL| | |
- e
The states of bits other
than SW are unknown

Figure 2.11 Input and Output Memory Map

This is an example showing data being read by the MOV instruction. The switch information is
supposed to be in the H'4000 address.

MOV.B @H'4000,ROL ;(H'is an indication of hexadecimal.)
Certainly, the state of the switch is read in bit 0, but the states of other seven bits are unknown. |
this case, no CMP instruction can be used abruptly.

CMP.B #B'00000001, ROL

It is acceptable if all seven bits other than the switch are 0, however, other states are not accepte
Logical operational instructions are useful in this case. Unnecessary bits can be fixed to 0.

)

46

XXX X XX X@
AND) 0000000[1]
"0000000[0] WhenSWisO
Resut= 000000 o When SW s 1
Input Output
A B |AND | OR |XOR
0 0 0 0
0 1 1
1 0 1 1
I 1111 |0y
Data Inverts the data
Mask information Passes the data

Figure 2.12 Logical Operation

AND.B #B'00000001,ROL ;
CMP.B #B'00000001,ROL ;
Thus, the CMP instruction operates as desired.

Instructions are used for each purpose, for example, the OR instruction to set the unnecessary |
to 1, the XOR instruction to invert only the target bit, and the NOT instruction to invert all bits.

Only the bit for the heater can be changed to avoid influencing other bits.

MOV.B @H'4000,ROL
AND.B #H'01,ROL ; Read the sensor
CMP.B #H'01,ROL
BEQ ON ;
OFF: MOV.B @H'4001,ROH ; When the sensor is 0
AND.B #H'FE,ROH ;
MOV.B ROH,@H'4001 ; *Turn off the heater
BRA EXIT ;
ON: MOV.B @H'4001,ROH ; When the sensoris 1
OR.B #H'01,ROH
MOV.B ROH,@H'4001 ; *Turn on the heater
EXIT: BRA EXIT

As will be explained in later programming, some instructions (instructions with *) can be

combined because they are redundant.
47

MOV.B @H'4000,ROL

MOV.B @H'4001,ROH

AND.B #H'01,ROL ; Read the sensor
CMP.B #H'01,ROL

BEQ ON ;
OFF: AND.B #H'FE,ROH ;
BRA WRITE ;
ON: OR.B #HOL,ROH ;

WRITE: MOV.B ROH,@H'4001 ; Control the heater
EXIT: BRA EXIT

Two instructions were combined.

The number of instructions in a program can be reduced using subroutines to repeat the same st
at different positions in a program.

To call a subroutine program, the instruction BSR or JSR is used. However, the RTS instruction
is used for returns.

BSR SUB ; Calling
JSR @SUB ; Calling
SUB: ; Processing program in the subroutine
RTS ; Return to the next instruction that has been called

48

The state of the stack area

The difference in the two and the stack pointer
Program instructions for calling subroutines after a subroutine has been called

lies in whether @ is added or not.
SP(ER7)— | B
SUB - PC
» < B -
JSR @SUB
Next instruction » If two or more instructions are
for the same processing,
a program can be made smaller
by combining them into one.
BSR SUB
Next instruction™ RTS

The state of the stack area
and the stack pointer
before a subroutine has been called

Not used

Figure 2.13 Advantages of Subroutines

As shown, subroutines can be called repeatedly from anywhere. Naturally, the data to be returr
is the instruction following the instruction that has been called (instruction JSR or BSR). Why cz
the program return? And to the next instruction that has been called at that!

A function called "stack” is used for this operation. In fact, during the execution of an instructior
that has been called (BSR or JSR), the program counter (PC) indicates the start address of the
instruction. It is acceptable for this PC to be stored once elsewhere. The word "storage" reminc
us of registers or memory. Registers are acceptable, but their number is restricted and their
current use is unknown. Nothing is accomplished if the operation goes wrong even when the
program returns if the contents are destroyed. Therefore, most microcomputers use memory fo
data storage. This particular memory area is called the "stack area".

In H8/300H, ER7, a general-purpose register, is used to indicate the address of a stack area the
called a stack pointer (SP).

Let's look at how it is used. The CPU writes the current PC to the memory area indicated by ER
immediately when an instruction to call a subroutine is executed. Furthermore, when the RTS
instruction is executed, the instruction is read from the stack area to the PC. Thus, a mechanist
established to return to the next address called from any location.

49

Then, what is the state of ER7? The answer is "undefined." That is, the address indicated is
unknown. In this situation, if the indicated memory device is a ROM, which cannot be written to,
the program cannot be returned. The mechanism to control whether the PC has been written to |
not incorporated into the CPU. The CPU does not know whether the system is in a state to retur
and it thinks that the data has already been stored. Therefore, the PC is read by an RTS instructi
Then, the state of the PC address is unknown, so the program runs disorderly. We can identify t
RAM address to ER7 by a program.

MOV.L #H'FFFF00,ER7 ; the H'FFFF00 address has been set

A subroutine sometimes calls a smaller subroutine. This is a nested structure subroutine. This
structure is unneeded when only one stack is used. So, ER7 stores PC after having been
decremented by 4 and it is returned to PC after having been incremented by 4 by the RTS
instruction. That is, the operation works like this: the stack area extends in the direction of the
smaller parts of the address as the nest deepens and releases the area used when it is returned.

A problem arises when the number of calls and returns do not coincide and the available RAM is
exceeded. When this happens, the CPU does not recognize that something is wrong. The syste
runs disorderly. Programs must be written taking into account the estimated memory and an
estimate of stack size.

One use for a stack area is as a "saving area of the general-purpose register." A general-purpos
register has only one set of a main program or subroutine program. How a general-purpose
register is used in a main program is unknown, so a register used in a subroutine can be defined
"Start to use after having been saved." However, a general-purpose register cannot be used as
saving area for a genera-purpose register. If an unused address in RAM is known, it can be use
However, it is not efficient if it is not released for another purpose after having been used. This
job is automatically carried out in the stack area. Itis done in this way when the PC is saved. As
a stack area is always RAM, it is a desirable environment.

50

MOV.L #H'FFFF00,ER7 ; Initialization of SP

Not used

SP(ER7) —» Used

SUB1
JSR @SUB1

Next instruction 1

JSR = @SUB2 3R @SuB3

Next instruction 2‘ Next instruction 3

RTS

ER7 —»

[Instruction 1 7
[address |

ER7 —»

y(SUB3)

ER7 —=L

[Instruction 3 |
—address]

[Instruction 2 _| [Instruction 2 _|
|_address _] | address

[Instruction 1 7 [Instruction 1 7
[address | [address |

H'FFFF00

State of the stack area during the execution of each subroutine

Figure 2.14 Nest and Stack Area

MOV.L #H'FFFF00,ER7 ;Initialization of SP

SP(ER7)—»[

[Undefined |

RTS » PC is undefined and

H'FFFFO0

TS |PC
Restored from the stack
are by the RTS instruction

"the program runs disorderly "

Figure 2.15 Program Runs Disorderly

51

¢ SUB

MOV.L ERO,@-SP ; Save

MOV.L ER1,@-SP ; Save
JSR @SsuB The general-purpose register - ER1 :
. . that has been saved |]
Next instruction 1 to the stack area can be freely used. - —
»> - ERO]
| Instruction I
|-address |
MOV.L @SP+,ER1 :Restore Stack area

v MOV.L @SP+,ERO ; Restore

Note: Only word-size data or long-word-size data can be used

by general-purpose registers. Byte-size data cannot be specified.
MOV.L ERO, @-SP is the same as PUSH.L ERO.
MOV.L @SP+,ERO is the same as POP.L ERO.

Figure 2.16 Save/Restore of a General-Purpose Register

Column
JSR / BRS instructions and JMP / BRA instructions

JSR and BSR are both instructions for calling a subroutine, and the RTS instruction is for
restoring. Why are there two instructions that function in the same manner? The JSR instructior
is described as JSR @SUB and the BSR as BSR SUB. There is the slight difference of whether
@ is added. However, when instructions are assembled, the address to be jumped is specified il
the JSR instruction, in contrast, a relative distance from the current PC is specified in the BSR
instruction.

What are the differences between them?

The JSR instruction does not change its memory address after it is once translated into machine
language to be changed into a load module. However, the BSR instruction can change its addre
even after it is changed into a load module. It can change addresses to be stored freely accordir
to the situation. This form of program is called a position independent program.

The relationship between the JMP instruction and BRA instruction is the same.

In addition to this method, other methods can be adopted according to the configuration of
instructions, for example, instructions in a jump system can be branched to all memory space. A
branch using a general-purpose register or addresses to be jumped is arranged in memory. Bral

52

system instructions can use an 8-bit form as a relative address to be branched. It also has less
memory, and is faster than jump system instructions of 127 addresses ahead and 128 addresse
after. We recommend that a branch instruction be used for a nearby branch and that a jump

system be used for a distant branch or a jump table.

W Operation is started by both instructions when stored in an address estimated at the time of linkage.

Starting address which has
Call with an [JSR @SUB Call with a [BSR SuB been estimated at the time of linage
absolute address | relative address! (H'1000)
(H'1030) } (PC+H'30) |
L > " >
SUB: SUB:
RTS RTS

B The JSR instruction does not normally operate when a load module is stored in a different address.

Starting address that has been
estimated at the time of linkage.
(H'1000)
o>
Call with an
absolute address |
has failed.
Staring address when an
B JSR @suB Call with a [BSR SUB actual memory is stored.
relative address., (H'2000)
has succeeded. :
Ly
SUB: SUB:
RTS RTS
Figure 3 Differences between JSR and BSR
2.3.3 Programming

Let’s try to write a program and execute it. Although it might seem to be difficult to write a
program, it's easier than you expect.

As you can see when you look at the instruction set of the microcomputer, each instruction is or

able to do a small job. Using the microcomputer to do what you want depends on programming

O the combination of instructions. The microcomputer doesn’t have an instruction to, for

example, maintain a comfortable temperature, because each instruction only does a small job.
53

Therefore, you have to break the task down to the level of instructions for the microcomputer.
The result of your breakdown may be as follows:

» Start by reading the room temperature through a sensor (MOV),
e compare the prescribed value with that room temperature (CMP),

» calculate some value to convert the difference between the temperatures into a target frequer
for the inverter (ADD, SUB, etc.),

« then, read the external climatic parameters through a sensor (MOV),

« calculate some value for adjusting the frequency of the inverter according to the external
climate (ADD, SUB, etc.),

» then, read the room’s humidity (MOV),

« calculate some value for adjusting the frequency of the inverter according to the humidity
(ADD, SUB, etc.),

» calculate the difference between the current temperature and the room temperature that was
initially read through the sensor (MOV, CMP),

» calculate how the air conditioner is working to adjust the frequency of the inverter (ADD,
SUB, etc.),

« determine the final frequency for the inverter,

» send the frequency of the inverter to the microcomputer of the external unit of the air
conditioner (MOV).

If you can break a task down as described above, you will be able to write good programs. Itis s
easy, isn't it?

Afterwards, we will shortly ask you to execute instructions and confirm the results of their
execution. You can, of course, learn about the instructions by simply reading this book, but it is
much more effective if you prepare the instruments, execute the program instructions, and confirl
the results on your microcomputer according to the instructions in this book. You will then have ¢
much better understanding of the functions of the microcomputer.

See the section ‘Preparations for the experiments’ included on the APPENDIX so that you can
prepare the required instruments. All of the programs for development are included on the
attached APPENDIX. Please copy these programs to the hard disk of your PC.

Firstly, input the program, even if you do not understand its meaning. In programming, imitation
is a great way to learn. Enter the program in text format. If you use word-processor software su
as WordPad, be sure to keep the program code in text format.

54

<List: add, subtract, multiply and divide operation>

.CPU 300HA
.SECTION PROGRAM,CODE,LOCATE=H'FFF000
MOV.B @H'FF200,R1L
MOV.B @H'FF201,R2L
SUB.B R2H,R2H
ADD.B R1L,R2L
BCC SET_ADD
MOV.B #1,R2H
SET_ADD: MOV.W R2,@HFF202
MOV.B @H'FF201,R2L
SUB.B RILR2L
MOV.B R2L,@H'FF204
MOV.B @HFF201,R2L
MULXU.B RI1L,R2
MOV.W R2@HFF206
MOV.B @H'FF201,R2L
SUB.B R2H,R2H
DIVXU.B RIL,R2
MOV.B R2H,@H'FF208
MOV.B R2L,@H'FF209
EXIT. BRA EXIT
END

Name the file then save it. The required extension is .SRC’.
Assembly

The program that you have entered is called a source program. This is the original program. Tl
source program is just a sequence of characters and is not machine language. An assembler is
used to convert the source program to the target machine’s language. Each line of the source
program is converted into an instruction of machine language by the assembler. The result is a
object file named *.OBJ. If the source program includes some grammatical mistakes, the
assembler displays ERROR. In this case, use the text editor to modify the source program ther
assemble the source program again.

Linkage

This linkage may be slightly difficult to understand. Linkage is necessary to link files together
when software is developed in separate files by multiple programmers. The address of each
program is decided by this linkage process, so a program must be linked even when it is only
composed of a single program. In other words, the output of the assembler is relocatable objec
code that has no addressing information (this file is called a load module and is named *.ABS.)
Errors will not occur. The message ‘Complete’ indicates that linkage is completed.

Execution by debugging monitor

Let's execute and confirm your program on the H8/3048F. It is more pleasant than reading the
manual. Let's take the challenge!

55

When the program is executed, the result appears in a moment. This is no problem if the result i
correct. If it is not, what should be done? It is then necessary to confirm the operation of each o
the program’s instructions in your head. That is, you must look at the source program line-by-line
and use your head as a simulator that works in the same way as the H8/300H CPU. You may
think ‘Why do | have to simulate those instructions in my head and act as the microcomputer?’ If
the program works well on the first run, there is, of course, no problem.

We now introduce a tool for use in program development. This tool has the following functions tc
help you in debugging:

» Stopping the CPU after the execution of each instruction to confirm the contents of memory o
of general-purpose registers,

e Executing blocks of instructions until a selected instruction is executed, then stopping the CPL
after each execution of that instruction.

In other words, this tool for development makes it possible to confirm the state of the CPU during
the execution of the program, and is thus called a ‘debugging monitor.’

56

r rogram .
Source progra Creation of the source program

Any text editor that is on the market
or is freeware is suitable
Filename.SRC
Object program Assembly
01010101 A bl l A
ssembler
0111001 —
ASM38 filename (<)
Filename.OBJ > Provided by Hitachi, Ltd.
Load module I(_inkagf tion)
concatenation
Address information Q
01010101 Linkage editor J
11110000 ~—
10111001 LNK filename (&)
Filename.ABS

Transfer the object program
then execute it.

yHa 4

Figure 2.17 Flow of Program Development (Up to the Debugging Stage)

Firstly, write the debugging monitor to the on-chip flash memory of the H8/3048F on the CPU
board that you bought or made. The procedure for writing is described in the chapter
‘Preparations for the experiments.’

The debugging monitor can store the program that has been developed by the user in RAM thel
execute it. Before debugging, it is necessary to transfer files from the hard disc of the PC to the
CPU board. The file on the hard disc must be a load module file (*.ABS) rather than a source fil
The on-chip RAM with its size of 4 KB should be used first. The starting address for the prograr
is HFFF000. You have seen that address, haven't you? Yes, this address is used in the sourci
program in the following way:

57

.SECTION PROGRAM,CODE,LOCATE=H'FFF000

This line indicates that the subsequent line of program code should be placed at H'FFF00O, the
starting address for the program.

It is possible to divide the program into several units, so-called sections. The name of this sectio
is ‘PROGRAM’, and its contents are ‘CODE’ (program). These names have the same format
restrictions as other symbols. Those lines that have a period (.) in their first column are not
instructions to be executed by the microcomputer. Such lines are used to control the assembler,
and are thus called ‘assembler directives.’

Open an MS-DOS prompt then execute the HTERM program that is provided on the APPENDIX.
Turn on the CPU board’s power supply. The startup message from the debugging monitor will
soon be displayed on the screen. Communications between your PC and the CPU board can no
be started. That is, it is now possible to operate the debugging monitor according to commands
from the PC. The symbol for the prompt that shows that the debugging monitor is waiting for a
command is the colon (3).

: L filename [Enter]
Check that the file has successfully been loaded.

: DA FFF0OQO [Enter]

How is this? This is slightly different from, yet similar to, the source program. Let’'s execute the
instructions one by one, from the beginning of the program.

. .PC FFF00O0 [Enter]

: S [Enter]
How is this? It is possible to display the changes in the contents of general-purpose registers an
the PC after the execution of a single instruction.

What is done by the program will now be described below.

This program applies arithmetic operations such as addition, subtraction, multiplication and
division to data stored in the memory. There are two original data in memory at addresses
H'FFF200 and H'FFF201. The result of the addition is stored in H'FFF202, the subtraction in
H'FFF204, the multiplication in H'FFF206, the quotient in H'FFF209, and the remainder in
H'FFF208.

Use the M command to write some data to the addresses H'FFF200 and H'FFF201, by referring |
‘How to use the debugging monitor’ in the column of this book. Then, start the program from the
address H'FFF0O00 and execute the whole program to confirm its operation. The BRA instruction
is the last instruction of the program. The program will not continue after the BRA instruction
that is located at H'FFFO3C has been executed. It is now possible to confirm the results of
execution at locations after H'FFF200, by using the all-display-function of the D command.

58

<Program> (smp2_2.src)

Use a semicolon (;) to insert comments in source program. For managing
the program, it is convenient to include such information as the purpose of
- Sample program the program, the date apd time of its creation, the version, etc. Japanese

- Created on 2000.5.2 chargoters can be used in the comments; only use one-byte characters

: Created by Y.Fujisawa outside the comment portions.

.CPU 300HA —= The line starting with '.CPU' indicates the CPU name to be used.

.section PROGRAM,CODE,LOCATE=H'FFF000 One assembler can cope with all of the CPU's in the series from

mov.b @H'FFF200,R1L ;:DATAL -> R1L H8/300 through to H8S/2000. This line is used to determine

mov.b @H'FFF201,R2L ;DATA2 -> R2L whether the instructions used in the program are valid for the CPU

SUB.B r2h,r2h :0->R2L that is indicated on this line.

ADD.B R1L,R2L ;DATAL + DATA2 -> R2L

EA%(\:/ B :f;EﬁDD . ’f carry=1 Although in labels such as PROGRAMNI SET_ADD uppercase letter

. s 7 1->R2H S . S .

SET ADD: are d|st|ngunsheq from lowercase I(_etters, they are not d|st|ngu|sh_ed

MOV.W R2,@H'FF202 ‘R2 -> ADD Irhoerr;ae'i(;h;;her in program execution. Namely, they are treated in

MOV.B @H'FFF201,R2L ;DATA2 -> R2L Y-

SUB.B R1L,R2L ;DATA2 - DATAL -> R2L

MOvV.B R2L,@H'FFF204 ;R2L -> SUB

MOV.B @H'FFF201,R2L ;DATA2 -> R2L
MULXU.B RI1L,R2 ;DATAL * DATA2 -> R2
MOV.W R2,@H'FFF206 ;R2->PRO

MOvV.B @H'FFF201,R2L ;DATA2 -> R2L

SUB.B R2H,R2H ;0 -> R2H
DIVXU.B RI1L,R2 ;DATA2 / DATAL
MOV.B R2H,@H'FFF208 ;R2H -> REM
MOV.B R2L,@H'FFF209 ;R2L -> QUO A line that has no characters (empty line) has no meaning.
-« | Use empty lines to make your programs easier to read.
EXIT: BRA EXIT ;endless loop

.end —= ['Aline that starts with '.END" indicates the end of the file, and
‘ must be placed at its last line.

The purposes of memory addresses must be indicated in comments. Otherwise, when the men
address is used to store numeric data, it will be difficult to understand the program. Itis
recommended that you hame memory addresses in such cases.

59

<Program> (smp2_3.src)

.CPU 300HA
.SECTION PROGRAM,CODE,LOCATE=H'FFF000

MOV.B @DATA1,R1.~+————| DATALIis the same as H'FFF200 . @DATAIs the same as @ H'FFF200 .
MOV.B @DATA2,R2L

SUB.B R2H,R2H

ADD.B R1L,R2L

BCC SET_ADD

MOV.B #1,R2H

SET_ADD:
MOV.W R2,@ADD
MOV.B @DATA2,R2L
SUB.B R1L,R2L
MOV.B R2L,@SUB
MOV.B @DATA2,R2L
MULXU.B R1L,R2
MOV.W R2,@PRO
MOV.B @DATA2,R2L
SUB.B R2H,R2H
DIVXU.B RI1L,R2
MOV.B R2H,@REM
MOV.B R2L,@QUO

EXIT: BRA EXIT ;endless loop

.SECTION WORK,DATA,LOCATE=H'FFF200
DATA1L: .RES.B 1

DATA2: .RESB 1 The program becomes easier to understand when the data are assigned
ADD: RESW 1 names. The symbol .RES'is used to reserve the specified number of
SUB: RESB 2 - the specified unit of memory. The numeric characters after the symbol
PRO: RES.W 1 "RES' show the number of units to be reserved. Here, for example,

REM: RES.B 1 one byte is reserved as DATAL Although this is referred to as reservation,
QUO: RES.B 1 it is still possible to access the region by address rather than by name.

.END

Naming regions of memory provides further convenience, when the address of a data area must
moved. A program typically becomes larger and larger with each version of the program. As a
result, memory regions that have been in use become unusable. If the operands of the MOV
instructions of a program are written as by addresses, the address in all of the MOV instructions
must be modified. That is rather difficult to realize. In such a situation, if names have been giver
to the memory regions in use, the required modification to the program for a given region is
localized to one line; the address given for LOCATE in the .SECTION line.

Let’s improve the program a little more. In this program, the data from DATAZ2 is loaded to
register R2L several times, because the content of R2L is changed by the execution of instructior
As there are many general-purpose registers that are unused by this program, it is possible to co
the content of R2L to a vacant general-purpose register and make the program execute more
quickly than the original program that reads data from memory several times.

As the data used in the original program are all very close together in the memory, loading the
addresses of those data into the vacant general-purpose registers and using indirect addressing
an improvement, too.

60

<Program> (smp2_4.src)

.CPU 300HA
.SECTION PROGRAM,CODE,LOCATE=H'FFF000
MOV.L #H'FFF200,ERO ;set DATAL address
SUB.L ER1,ER1
MOV.L #0,ER2
MOV.L ER2,ER3
MOV.B @ERO+,R1L ;Increment ERO after reading the data
MOV.B @ERO+,R2L ;Increment ERO after reading the data
MOV.B R2L,R3L
ADD.W R1,R2
MOV.W R2,@ERO ;ADD address
ADDS #2,ERO ;SUB address
MOV.B R3L,R2L
SUB.B R1L,R2L
MOV.B R2L,@ERO
ADDS #2,ERO
MOV.B R3L,R2L
MULXU.B R1L,R2
MOV.W R2,@ERO
ADDS #2,ERO
DIVXU.B R1L,R3
MOV.W R3,@ERO
EXIT: BRA EXIT
.SECTION WORK,DATA,LOCATE=H'FFF200
DATAl: .RES.B 1
DATA2: .RES.B 1
ADD: .RES.W 1
SUB: .RES.B 2
PRO: .RES.W 1
REM: .RES.B 1
QUO: .RES.B 1
.END

The performance of the program is improved and the amount of memory it requires has been
reduced.

(Refer to the APPENDIX manual ‘The execution time and bytes of instructions.’)
Column
How to Use the Debugging Monitor

The debugging monitor offers debugging functions via SCI 1. These include the following
functions:

» Loading a user program

« Executing the user program

» Break functions

» Modifying/displaying the contents of CPU registers

* Modifying/displaying the contents of memory and peripheral function registers

61

As a result, there are few restrictions on the debugging of programs, although there are some
restrictions on debugging SCI 1. After a program’s operation has been confirmed by using the
debugging monitor, the program can be loaded into ROM and executed as it is, as is the case fol
the CPU for ‘model car rally’ is combined with the I/O board. In this case, there are no difficult
points such as modifications of addresses.

Monitor commands (use the help function for more details.)

Load the program

Alter/display the contents of memory and peripheral function registers
Displays the contents of memory in a dump format

Display the contents of CPU registers

. . Alter the contents of CPU registers

* G Execute the user program

e S Execute the user program in single-step mode

« B Setordisplay breakpoints

« H8 Display the contents of the on-chip peripheral function registers
« A Simple assembly

« DA Disassembly

e ? Help

O 0

Programming and Debugging
The CPU for ‘model car rally’ and the 1/0 board are used in the example below.
Prepare a program. The program EX1.SRC from the APPENDIX is used here as an example.

Open the program in your text editor to confirm the content of the file. This program makes each
of the eight LED’s correspond to the state of one of eight switches. These LED’s work as if they
are electrically connected to the switches, although they are not directly connected. The switche
and LED'’s are only related to each other by the execution of the program.

Assemble and link the program.

>asm38 exI[Enter]
>Ink exlI[Enter]
>HTERMI[Enter]

Load the program before debugging into the SRAM that is externally connected to the CPU, rath
than to the on-chip flash ROM of the H8/3048F. Execute the program as a trial run. It is possible
to efficiently debug the program by the use of temporary stops and by alter/displaying the conten
of memory and peripheral function registers. Refer to ‘Preparations for the experiments’ for a

remainder of how to load the debugging monitor for the 1/0 board into the on-chip flash memory.

62

Start HTERM.

The prompt that shows that the debugging monitor is waiting for commands is the colon (:).
Confirm that this prompt returns after the Enter or Return key on the keyboard is depressed. Th
channel for communications between your PC and the H8/3048F has now been established.

Load the program (from the PC to the H8/3048F).

L EXI[Enter]

transmit address=001015
Top Address=000000
End Address=001015

The range occupied by the program will be displayed after it has been loaded. Confirm that the:
addresses have the expected values. If they do not, check the source file or link the program
again.

Let's execute the program.

:G 1000[Enter]

The hexadecimal number 1000 is the starting address of the program to be executed. Confirm
starting address of the program before executing it. The communication channel between your
and the monitor program will be closed as soon as program being debugged is executed by the
monitor program. Inspect the board to confirm results during the program’s execution.

Change the positions of switches SW1 to SW8 to confirm the operation of this EX1 program.
Was the state of each switch successfully transferred to the LED? The bit position of each swit
is the same as that of the corresponding LED. An LED is lit when the corresponding switch has
been slid to its upper position and off when the switch has been slid to its lower position.

How does it work? It doesn’'t work, does it?

Yes, this program has a bug. So, debug the program. Firstly, stop the execution of the user
program. As the communication channel to your PC has been closed during the execution of th
user program, the H8/3048F's internal state is unknown. It is thus necessary to return to the
monitor program.

Press the NMI switch. The message that shows that a program has been aborted appears on tl
screen and the monitor program’s prompt will reappear.

63

Abort at PC=00100A

PC=00100A CCR=80:l....... SP=00FFFF00
ER0=00000037 ER1=00000000 ER2=00000000
ER3=00000000 ER4=00000000 ER5=00000000
ER6=00000000 ER7=00FFFF00

When a program does not work properly, execute its instructions one by one (single-step
execution). Enter the S command, to execute the program from the address that the program
counter currently points to.

:S[Enter]

PC=00100C CCR=80:l....... SP=00FFFF0000

ER0=00000037 ER1=00000000 ER2=00000000 ER3=00000000
ER4=00000000 ER5=00000000 ER6=00000000 ER7=00FFFFO0

00100A 28C7 MOV.B @HFFFFC7:8,ROL
:S[Enter]
PC=00100E CCR=80l....... SP=00FFFF00

ER0=00000037 ER1=00000000 ER2=00000000 ER3=00000000
ER4=00000000 ER5=00000000 ER6=00000000 ER7=00FFFFO0

00100C 38D6 MOV.B ROL,@H'FFFFD6:8
:S[Enter]
PC=00100A CCR=80l....... SP=00FFFF00

ER0=00000037 ER1=00000000 ER2=00000000 ER3=00000000
ER4=00000000 ER5=00000000 ER6=00000000 ER7=00FFFF00
00100E 40FA BRA 00100A:8

The contents of the general-purpose registers are displayed after the execution of each instructic
and the execution of the program is stopped.

It seems that the data is being correctly input from the switches, because general-purpose regist
ROL contains the data H'37. The writing operation also seems good, because the address
H'FFFD6 has been written to.

However, this data is not displayed.

If necessary, you can display or change the contents of memory (including of peripheral function
registers). Let’'s change the content of the data register for port B that is connected to the LEDs.

‘M FFFD6[Enter]
FFFFD6 OF ? 55[Enter]
FFFFD7 FF ? M[Enter]
FFFFD6 OF ? 77[Enter]
FFFFD7 FF ? M[Enter]
FFFFD6 OF ? 88[Enter]
FFFFD7 FF ? .[Enter]

How did that work? Has the display on the LEDs changed to reflect the expected value? It has
not changed. Moreover, the data before the change is always H'OF, so any data that has been
written was lost. It appears that the settings of the DDR, the register that decides the input/outpu
direction for the port’s pins, are wrong.

64

Now, use the M command again to change the value in the DDR. The address of the PBDDR i
H'FFFFDA4.

‘M FFFDA4[Enter]
FFFFD4 FF ? FF[Enter]
FFFFD5 FF ? .[Enter]

Although the value at the address H'FFFFD4 appears to be H'FF, this value is not the value tha
was actually set. This register cannot be read out, because it is a write-only register. Therefore
write H'FF into the register, even though the displayed value in the register is already H'FF.

What's the situation now? The states of the LEDs have been changed, haven’t they? PBDDR i
not initialized to the value H'FF by the program. The hardware of the LEDs seems to be normal
because the data is displayed well. Let’s confirm the hardware.

Take the following actions to confirm that there are no problems with the LEDs:

* Write H'FF and confirm that all of the LEDs are lit.
* Write H'00 and confirm that all of the LEDs are not lit.

Does this work well? How about the data H'AA or H'55? These two values are useful for
checking whether or not the bits are affected by their neighboring bits. Itis a good idea to checl
whether the bits are in a short-circuited state with their neighboring bits or not, as the pins of the
neighboring bits are close together.

‘M FFFD4[Enter]
FFFFD6 88 ? FF[Enter]
FFFFD7 FF ? M[Enter]
FFFFD6 FF ? OO[Enter]
FFFFD7 FF ? M[Enter]
FFFFD6 OO ? 55[Enter]
FFFFD7 FF ? M[Enter]
FFFFD6 55 ? AA[Enter]
FFFFD7 FF ? .[Enter]

How about the switches? Let's read out their values.

After the M command is issued, the state of the switches at the moment when the Return key is
depressed is read once. If the switch settings have been changed, the address H'FFFFC7 shot
be displayed anew.

The switch hardware is normal, if the displayed data changes as follows:

* The displayed data is changed to H’'FF when all bits of SW are slid to their upper positions.
e The displayed data is changed to H'00 when all bits of SW are slid to their lower positions.

Confirm that there is no interference between neighboring bits, as with the LEDs.
65

‘M FFFC7[Enter]

FFFFC7 37 ?[Enter] -> The state of the switches has changed.

FFFFC8 FF ?7[Enter]

FFFFC7 FF ?[Enter] -> The state of the switches has changed.

FFFFC8 FF ?7[Enter]

FFFFC7 OO ?[Enter] -> The state of the switches has changed.
FFFFC8 FF ?[Enter]

FFFFC7 AA ?[Enter] -> The state of the switches has changed.
FFFFC8 FF ?7[Enter]

FFFFC7 55 ?.[Enter]

Is it true that PBDDR was not set correctly? Let’s look at the program in memory. Use the DA
command for disassembly.

:DA 1000[Enter]

<ADDR> <CODE> <MNEMONIC> <OPERAND>

001000 7A0700FFFFO0 MOV.L #H'00FFFF00:32,ER7
001006 5E001010 JSR @H'001010:24
00100A 28C7 MOV.B @H'FFFFCT7:8,R0L
00100C 38D6 MOV.B ROL,@H'FFFFD6:8
00100E 40FA BRA 00100A:8

001010 F800 MOV.B #H'00:8,ROL

001012 38D4 MOV.B ROL,@H'FFFFD4:8
001014 5470 RTS

001016 FF5D MOV.B #H'5D:8,R7L
001018 FFF6 MOV.B #H'F6:8,R7L
00101A BADA SUBX #H'DA:8,R2L
00101C AC75 CMP.B #H'75:8,RAL
00101E 8AF7 ADD.B #H'F7:8,R2L

001020 6FF53ADF MOV.W R5,@(H'003ADF:16,ER7)
001024 A767 CMP.B #H'67:8,R7H

001026 FCD7 MOV.B #H'D7:8,R4L

Memory areas with addresses above H'1010 do not contain parts of this program, so the original
data after the reset are displayed here. Neglect these values, whatever is displayed here.

The MOV instructions at H'2010 and H'1012 initialize the PBDDR. As the register ROL contains
the value H'00, PBDDR becomes set for the input of data. Modify the source program and try
again.

Make the change indicated below.

IOINIT:
; MOV.B #H'00,ROL ;The bug is on this line; this data should
;be H'FF.
MOV.B #H'FF,ROL ;
MOV.B ROL,@PBDDR ;PB7-PBO0 output
RTS

Assemble and link the modified program file. Use the L command to load the file thus created,
then use the G command to execute it from the address H’1000.
66

Does the program work well now?

The debugging monitor has some convenient functions other than those described above. In sc
situations it is convenient to quickly execute a program to a prescribed address and then execu
further instructions one by one (single-step execution.) In this case, set a breakpoint at the add
from which execution will be in single steps. The command for disassembly is useful for
confirming the addresses of break points.

:DA 1000[Enter]

<ADDR> <CODE> <MNEMONIC> <OPERAND>

001000 7A0700FFFFO0 MOV.L #H'00FFFF00:32,ER7
001006 5E001010 JSR @H'001010:24
00100A 28C7 MOV.B @H'FFFFC7:8,ROL
00100C 38D6 MOV.B ROL,@H'FFFFD6:8
00100E 40FA BRA 00100A:8

001010 F800 MOV.B #H'00:8,ROL

001012 38D4 MOV.B ROL,@H'FFFFD4:8
001014 5470 RTS

001016 FF5D MOV.B #H'5D:8,R7L
001018 FFF6 MOV.B #H'F6:8,R7L

00101A BADA SUBX #H'DA:8,R2L
00101C AC75 CMP.B #H'75:8,R4L
00101E 8AF7 ADD.B #H'F7:8,R2L

001020 6FF53ADF MOV.W R5,@(H'003ADF:16,ER7)
001024 A767 CMP.B #H'67:8,R7H

001026 FCD7 MOV.B #H'D7:8,R4L

The MOV instruction at H'100A transfers the data from SW to ROL.

Let's set a break point at this instruction.

:B 100A[Enter]

Although the monitor gives no indication, the break point has been set correctly. Let’s confirm
this.

:B[Enter]
<ADDR>
00100A

These settings will make the program break at H'100A. Let’'s execute the program.

67

:G 1000[Enter]

Break at PC=00100A

PC=001012 CCR=88:l...N... SP=00FFFF00
ER0=00000000 ER1=00000000 ER2=00000000
ER3=00000000 ER4=00000000 ER5=00000000
ER6=00000000 ER7=00FFFF00

Did the program stop correctly?

The break point is, of course, located before the instruction that will change the state of the LEDs
The program counter points to the address of the instruction to be executed next.

Let's start the single step execution from the address that is indicated by the above program
counter.

:S[Enter]

PC=00100C CCR=80L....... SP=00FFFF00
ER0=00000055 ER1=00000000 ER2=00000000
ER3=00000000 ER4=00000000 ER5=00000000
ER6=00000000 ER7=00FFFF00

00100A 28C7 MOV.B @H'FFFFC7:8,ROL

Has the LED display data been changed again?
The program can thus be debugged in the way described above.

[About the break point]

It is only possible to set break points at addresses in RAM. This is because the target instruction
at the break point is replaced with JMP instruction. This forces a call to the debugging monitor
during the execution of the user program that gives the impression that the execution of the user
program has been suspended. This is why a break point cannot be set at addresses in ROM, wt
cannot be written to. The target instruction at the break point is replaced by the JMP instruction
when the G command is issued. Disassembly thus cannot be used to confirm whether or not the
replacement has taken place.

The contents of the on-chip peripheral function registers can be displayed in units of functional
modules by the H8 command. For example, the contents of the I/O ports are displayed in the
following way:

68

:H8 I/O[Enter]
<REG><ADDR><CODE><7 6 5 4 3 2 1 0>
P4DDR FFC5 FF
P4DR FFC7 01010101 D7 D6 D5 D4 D3 D2 D1 DO
P4PCR FFDA 00000000
P6DDR FFC9 FF
P6DR FFCB111
P7DR FFCE 10001101 AN7 AN6 ANS5 AN4 AN3 AN2 AN1 ANO
DAl DAO
P8DDR FFCD FF
P8DR FFCF ...00000 CSs0 IRQ3 IRQ2 IRQ1 IRQO
Cs1 Cs2 CS3 RFSH
P9DDR FFDO FF
P9DR FFD2 ..111111 SCK1 SCKO RXD1 RXDO TXD1 TXDO
IRQ5 IRQ4
PADDR FFD1 FF
PADR FFD3.0000011 TP6 TP5 TP4 TP3 TP2 TP1 TPO
TIOCA2 TIOCB1 TIOCAl TIOCBO TIOCAO TEND1 TENDO
Cs4 Cs5 CSs6 TCLKD TCLKC TCLKB TCLKA
A21 A22 A23
PBDDR FFD4 FF
PBDR FFD6 00001010 TP15 TP14 TP13 TP12 TP11 TP10 TP9 TP8
DREQ1 DREQO TOCXB4 TOCXA4 TIOCB4 TIOCA4 TIOCB3 TIOCA3
ADTRG CS7

The outline of and details on these commands can be obtained by using the help command:

:?[Enter]

Monitor Vector 01A258 - 01A357

Monitor ROM 01A358 - 01FD63

Monitor RAM 01FD64 - 01FFFF

User Vector 000000 - 0000FF

:Changes contents of H8/300H registers.

A :Assembles source sentences from the
:keyboard.

B :Sets or displays or clear breakpoint(s).

D :Displays memory contents.

DA :Disassembles memory contents.

F :Fills specified memory range with data.

G :Executes real-time emulation.

H8 :Displays contents of peripheral registers.

L :Loads user program into memory from host
:system.

M :Changes memory contents.

R :Displays contents of H8/300H registers.

S :Executes single emulation(s) and displays
sinstruction and registers.

:M?[Enter]

Changes memory contents.

M <address> [;<size>] [RET]
<address> :memory address
<size> B -- byte

W -- word
L -- long word

HTERM can be terminated by depressing the ESC key.

69

Notes on using the monitor

» When the bus controller has not been initialized:
Set the best bus cycle by considering the memory performance and the frequency of the CPU
operating clock.
It is impossible for the H8/3048F to be fully utilized if the bus cycle is left in its initial state,
i.e., with the bus cycle set as 6 CPU-clock cycles.

« Interrupt handling by the monitor carries an overhead in terms of time:

The programming of interrupt handlers (including vector descriptions) is the same as on the
single chip. When an interrupt is generated, this is indicated on the display. For this to
happen, and before the interrupt is accepted, the monitor must be executed. This overhead i
why execution times become longer other than in solely ROM-access states.

 The NMI switch enables the user breaks:

After a user program is executed by the G command, control can be returned to the monitor
through a forced break (NMI interrupt).

2.34 Size of the Memory and Performance in Executing an Instruction

There are some variations in combinations of instructions that can be used to get the same resul
from the microcomputer. For example, let’s clear ERO to O.

MOV.L #0,ERO
XOR.L ERO,ERO
SUB.L ERO,ERO

Any of these instructions can be used to clear ERO to 0. The numbers of bytes and the executior
times of the instructions are, however, not the same. The #0 part of the MOV instruction takes uj
4 bytes, because this #0 means that the ‘0’ is expressed in longword format, i.e., as 32 bits. A lo
time is taken to read this instruction. The numbers of bytes and the execution times of these
instructions are as follows:

MOV.L #0,ERO ; The number of bytes in this instruction

; (hereafter called the instruction length) is 6

; bytes, and the execution time is thus at least 6

; clock cycles.
The XOR instruction executes a logical exclusive-OR operation on the bits of the two operands.
When the same register is specified as both operands for this instruction, all bits of the operand
register become 0 as a result of the instruction’s execution. This is because a logical exclusive-C
operation on two bits with the same value (1 and 1, or 0 and 0) creates a 0 in the result. Howeve
this instruction is not used extremely frequently, so the instruction is a little long.

70

XOR.L ERO,ERO ; The instruction length is 4 bytes, and the
; execution time is thus at least 4 clock cycles.

The best choice is the SUB (subtraction) instruction. When a SUB instruction is executed by
specifying the same register as both operands, all bits of that operand register will always becor
0 as a result of the instruction’s execution. This is because subtracting something from itself
leaves 0. As this instruction is used very frequently, it has a short instruction code.

SUB.L ERO,ERO ; The instruction length is 2 bytes, and the
; execution time is thus at least 2 clock cycles.

While the MOV instruction is easiest to understand, the SUB instruction has the best performan

Special care should be taken in selecting instructions, according to the purpose of the program,
order to get a good performance.

Some other points to be considered are described below.
(1) Executing multiply and divide instructions takes a long time.

Executing MULXn or DIVXn (n means S or U) instructions takes a long time, as shown below.

Instruction Execution time
MULXU.B 14
MULXU.W 22
MULXS.B 16
MULXS.W 24
DIVXU.B 14
DIVXU.W 22
DIVXS.B 16
DIVXS.W 24

On the other hand, the execution time required to obtain the second power of an operand can b
reduced by using shift instructions. This is because the second power of the operand is then
obtained in only 2 clock cycles.

71

MOV.B #2,ROL ; Executes @DATA/2 operation

MOV.W @DATA,R1 ; @DATA is data with no sign bit

DIVXU.B ROL,R1 : The execution time of a DIVXU instruction is
: 14 clock cycles

MOV.W @DATA,R1 ; The same operation executed as shift
; instructions

SHLR.W R1 : The execution time of an SHLR instruction is 2
: clock cycles

Logical shift instructions can be used for multiply or divide operations on data that has no sign bit
arithmetic shift instructions can be used on data with a sign bit. The meanings of the shift
instructions and examples of their usage are given below.

SHLL: Logical shift left

SHLR: Logical shift right

SHAL: Arithmetic shift left

SHAR: Arithmetic shift right

SHAR.L ERO ;Divide 2

SHLL.W EO ;Multiply 2
(2) Development of subroutines

Subroutines are useful to reduce memory requirements. However, it is better not to use sub-
routines when the performance of a program takes priority over memory requirements, because i
takes a long time to call sub-routines.

It takes 2 or 4 clock cycles to execute a BSR or JSR instruction and 2 clock cycles for an RTS
instruction. In the worst case, 6 clock cycles are thus required to call a sub-routine. These clock
cycles are not necessary when the sub-routine is not used. A program calling a sub-routine 10
times requires 60 clock cycles; 100 times requires 600 clock cycles. Therefore, if the program
calls the sub-routine at most several times, the performance of the program in which no sub-
routine is used is better than that of a program in which sub-routines are used.

BSR SUB ; 2 to 4 clock cycles
SuUB: .. ; processing by the sub-routine
RTS ; 2 clock cycles

The merit of using a sub-routine is that the resulting program should be easier to understand. Th
time required to debug the program can thus be shortened. Use fewer sub-routines when
execution times must be reduced.

3) Practical usage of 8-bits address

A memory space with a maximum address space of 256 bytes is called an 8-bit address space.

72

As few bits are required to specify an address within such a space, a reduction in memory
requirements can be expected. The instructions for operations on individual bits in memory can
only use the 8-bit address space. The bit number is specified as an immediate operand that is
expressed in the form #imm.

The 8-bit address space of the H8/3048F starts from H'FFFFOO0 and takes up 256 bytes. The sj
is composed of on-chip RAM, with a size of 16 bytes, and peripheral functions. The RAM regior
should be used with great care, because it consists of only 16 bytes. If this region is also used
stack region, the effectiveness of using the 8-bit address space is reduced by half.

MOV.B @H'00:8,ROL ; 2 bytes, 4 clock cycles
MOV.B @H'FF00:16,ROL ; 4 bytes, 6 clock cycles
MOV.B @H'FFFF00:24,R0OL ; 6 bytes, 8 clock cycles
HFFFFOO | A
On-chip RAM
H'FFFFOF
H'FFFF1C
@ address : 8
(the memory region
On-chip peripheral functions that is accessed
by 8-bit addresses)
H'FFFFFF v
16-MB memory space

Figure 2.18 Memory Map of the 8-Bit Address Space

73

(4)

Practical usage of the jump table

Processing by many programs variesaccording to the data to be processed. The processing by t
program becomes complicated if many CMP instructions are used to achieve this. Moreover, the
time required to process the data will vary according to the data. A jump table can be used to
solve such problems.

(In case of the use of CMP instruction)

MOV.B @DATA,ROL
CMP.B #H'00,ROL
BEQ SUB00

CMP.B #H'01,ROL
BEQ SUBO1

CMP.B #H'02,ROL
BEQ SUB02

CMP.B #H'03,ROL
BEQ SUB03

(In case of the use of the jump table)

MOV.L #JMP_TBL,ER1 ; Acquires the starting address of the table
SUB.L ERO,ERO ;
MOV.B @DATA,ROL ;

SHLL.L ERO : Converts the data to an offset address
; (multiplies by 4)

SHLL.L ERO ;
ADD.L ERO,ER1 ; Adds the offset address to the initial address
; of the table
JMP @ER1 ; Jumps
JMP_TBL:

.DATA.L SUBO00,SUB01,SUB02,SUBO3 ; Registers the target addresses
; in the jump table

DATA: .RESB 1
The performance or memory requirements of a program can thus be dramatically improved by
using the right mechanism in the program after the programmer has gotten a feel for the
characteristics of the CPU. The possibilities depend on the capabilities of the programmer. Of
course, the best programmer is the one who develops a program that works without error before
any of the others.

74

2.35 Basic Input and Output

It is not so interesting to operate on data in memory alone. This book covers the functions of th
microcomputer for you to study, so let’s try to control something. As a first step, let’'s consider tt
I/0 ports. 1/O ports are always included in single-chip microcomputers and can be used to grea
advantage. Covering this function with respect to both hardware and programming is very simp
so this function is suitable for beginners to learn.

DDR

: memory
Data written to
. —|D Q
determine the
direction of the port
(input or output) Stored the direction
for the pin
(input or output)
DR _
memory I/0 port pin

Writing of | :: I::l
data for output D Q
Stored data for
output from the port

Reading of
input data

Reading from
the address of DR

Figure 2.19 Structure of an I/O Port

Use the following as a rough guide in your thinking about 1/0O ports. There are some differences
with the approach to memory that has already been treated. Although the memory is used to h
data, an I/O port is used to send data to or receive data from the pins. The microcomputer can
made to write data to an 1/O port by using an MOV instruction, just as with writing to a location i
memory. The data written to the pins then appears as voltages on the pins. This is called an
output port.

The microcomputer is also able to read data from an I/O port. This is just like reading from the
memory. The data that is read out from the port depends on the voltages which are being appli
to the port at the instant of reading; 1 is read out when the voltage is around 5 V, 0 when itis 0\
This is called an input port (refer to the column for more details on the digital voltage.)

75

I/O is an abbreviation for input/output. The use of /O ports as both inputs and outputs is usual
because ports that are dedicated for use as either input or output provide less flexibility.

Although the description in the figure is of a single pin, the minimum data-bus width that is
available is 8 bits (1 byte), as with memory. Therefore the 1/O ports are treated as groups of 8
pins. Let's use this to turn on the LEDs by depressing the switches.

Construct the circuit shown in the figure.

Vcc
Input port
(P40) @h
GND

State of SW and input data

SW | Data
ON 0
OFF 1

Vcc

Output port
(PBO)

Data output from and the state of each LED

Data| LED
0 Lit
1 [Notlit

Figure 2.20 Switches and LEDs

The pin attached to each switch is used as an input pin. The voltage level becomes high when tt
switch is turned off and the information that is read out from the port is then 1; it becomes low
when the switch is turned on and 0O is then read out.

The resistance of a switch is very close @ @hen it is in its ‘on’ state. The voltage at the switch
is 0 V according to Ohm'’s law, because the pulling-up resistance andtheststance (switch in
its ‘on’ state) are connected in series if we assume that the resistance of the input.pdvthisn

the switch is in its ‘off’ state, the voltage at the switch is very close to 5 V according to Ohm’s
law, because the resistance of the switeh. is

The lamp is an LED (light-emitting diode). The port that is connected to the lamp is an output
port. The lamp is not lit by writing a 1 to the port; it is lit by a O.

When an output pin is at 0 V, the difference between the voltage on the pin and the power supply
voltage is 5 V. This voltage difference is enough to make an electric current run through the LELC
An LED is a kind of lamp that is switched on when an electric current is passed through it. A
voltage of around 2 V is required to switch the LED on. In other words, the voltage and electric
current are not proportional in a LED, unlike in a resistor. The LED is, after all, a diode. Of the
voltage difference of 5V, 2 V are applied to the LED, while 3 V are applied to the resistor. The
resistor is used to restrict the electric current that passes through the LED, because the LED ma)
be destroyed by excessive electric current (over 10 mA).

76

The difference between the voltage of an output pin and the power supply voltage becomes
effectively 0, when the former is close to 5 V. As this voltage difference is not enough to supply
an electric current through the LED, the LED is not illuminated. In other words, the electric
current can pass through the LED when the difference between the voltage on the output pin an
the power supply voltage exceeds 2 V, which is the threshold voltage of the LED. It is guarante
in the H8/3048F that the voltage on the output pin is set to [Vcc — 0.5] V, so the LED is certain t
be switched off.

Column
Electrical Characteristics and Absolute Maximum Ratings

There are three major electrical characteristics of any semiconductor; absolute maximum rating
DC characteristics, and AC characteristics.

Absolute maximum ratings: The semiconductor may result in permanent damage when it is use
in excess of the absolute maximum ratings (voltage, electric current, or heat). In that case, a
customer cannot ask the manufacturer to repair it under the guarantee.

DC characteristics: DC characteristics mainly consist of I/O voltages, power consumption, etc. |
designing circuitry, a customer can confirm whether or not it is possible to directly connect the
circuitry to the voltages on the I/O ports. The capacity of the power supply circuitry or
countermeasures for heat radiation can be considered by using these DC characteristics.

AC characteristics: AC characteristics indicate the behavior of signal ports in terms of the
propagation delay times, the differences in phase between clock pulses, set up times, hold time
etc., while the 1/O ports are being used within the range given by the DC characteristics.

77

Let's enter and execute the program shown below.

<Program> (smp2_5.src)

.CPU 300HA
P4DDR: .EQU H'FFFFC5
P4DR: .EQU H'FFFFC7
PBDDR: .EQU H'FFFFD4
PBDR: .EQU H'FFFFD6

.SECTION P,CODE,LOCATE=H'FFF000

MOV.B #H'FF,ROL

MOV.B ROL,@PBDDR
LOOP: MOV.B @P4DR,R0OL

MOV.B ROL,@PBDR

BRA LOOP

.END

The LEDs turn on/off according to the on/off states of the switches. This program can rotate a
motor, when a motor rather than an LED is connected to the switch. This program can also be
used to make a heater heat up, when a heater rather than an LED is connected to the switch. It |
nice to know that a program can make something move, rather than simply manipulate the
contents of memory. Moreover, it is the programmer that has the program move that something.

Look at the source code of this program. Only the MOV instruction, which is the same instructior
that operates on memory, is used in this program. That's OK. The switches or LEDs appear as
memory to the microcomputer. In other words, circuitry that allows a switch or LED to be treated
as memory has been added, because the microcomputer only has the functions to deal with
memory.

The circuitry that is used here is called an 1/0O port. The lamp is turned on by using the 1/O port tc
read the state of the switch. That is, an interface between the peripheral apparatus and the
microcomputer is established. This allows the microcomputer to receive information from the
outside or to give the result of an operation to something outside.

The 1/0O ports that are included in the H8/3048F can be configured as either inputs or outputs. T
DDR (Data Direction Register) decides whether the pins of an 1/0O port are used as inputs or

outputs. This register is different from the general-purpose registers, because it is assigned to a
memory location. This register is treated in the same way as memory by a MOV instruction. An
I/O pin is used as an output when the corresponding bit of the DDR is 1; as an input when it is 0.
The initial value of the DDR is 0; that is, the 1/O pins are used as inputs. The DDR is set to 1

when the corresponding 1/0 pin must be used as an output. As the DDR cannot be read from, it
impossible to confirm that a bit of the DDR has really been set to 1 after a 1 has been written to if

The microcomputer and memory are analogous to the human brain. A human being has hands,
legs, mouth, nose, and ears. The microcomputer cannot become a system without having hands
and legs. The I/O port is the most fundamental shape of its hands and legs. The I/O port allows

78

the microcomputer to communicate with digital apparatus (the case which the microcomputer is
connected to the outside will be described in chapter 6.)

The program shown below can reverse the state of the corresponding LED every time the switc
turned off. In other words, the LED is turned off by changing the state of the switch once, turnec
on by changing it twice, turned off by changing it three times, turned on by changing it four times
and so on.

<Program> (smp2_6.src)

.CPU 300HA
P4ADDR: .EQU H'FFFFC5
P4DR: .EQU H'FFFFC7
PBDDR: .EQU H'FFFFD4
PBDR: .EQU H'FFFFD6
.SECTION P,CODE,LOCATE=H'FFF000
MOv.8 AHFR,ROL This BTST instruction can confirm the state of a single bit. The result of
LOOP1: EA?S\{I_B E(?l@%)ESRDDR the instruction is reflected in the Z bit in the CCR. Operation of the BEQ
’ ’ and BNE instructions as branch instructions is based on the use of
SEST l;i_t((:))o@PF:’lBDR _the z bi.t. The branch condition is satisfied When. t.he Z bit i§ O ina BEQ
LOOP2: BTST #6,@P4DR instruction. On the oth_er hanq, the branch condition is satisfied when
BNE LOOP2 the Z bitis 1 in a BNE instruction.
BRA LOOP1
.END

The program, however, does not work as expected.

The cause of the malfunction is a phenomenon called jitter that arises from the structure of a
switch. This word ‘jitter’ refers to the state where the switch is repeatedly turned on and off ovel
a short period. The contact points of the switch do not touch in a sticky fashion like the suckers
an octopus. When the switch goes to its on state, a pair of solid metal plates makes contact wit
each other and bounce. Therefore, the initial signal levels repeatedly change between low and
high levels, and finally settle at the low level as is shown in the figure.

The jitter lasts for, at most, a few dozens of ms. This is a very short period from the viewpoint o
a human being. However, it is an extremely long time from the viewpoint of a microcomputer.
Over one period of 10 ms, when it is running at the clock of 16 MHz, the H8 is able to execute 8
thousands of those instructions which can be executed fastest, like the instruction for addition.
Therefore, a few dozens of ms is an extremely long time from the viewpoint of a microcomputer

The actions from the confirmation of the input port by the BTST instruction to the turning over of
the bits by the BNOT instruction are repeated 4444 times in 10 ms. The jitter appears to quickly
turn the switch on and off many times. Whether the LED repeats its turning on and off
successfully or not depends on the number of state changes due to jitter and detected by the
program is even or odd. A special care should be taken in the debugging. It is possible to remc
the effect of the jitter by using an R-S type flip-flop.

79

Vce
Input port
'
GND

OFF— ON

I ! I
v
\ / \)

Occurrence of the jitter

ON— OFF

Signal at /
the input port

|
Signal at —IWI MM_
the switch M

Signalat — ,_
the input port N

Figure 2.21 Jitter

However, costs increase because of this addition of hardware. This problem can be resolved by
programming. The answer is to simply check the state of the switch only after waiting for enougF
time. In this case, you might think that the response will become slower because of this slow
checking of the state of the switch after it has changed state. This is no problem! The response
time of a human being is not as fast as the speed of the microcomputer or the jitter. For example
can you press the button on a game controller 10 times a second? You do not press the button ¢
quickly, do you? The period taken to pressing the button is 100 ms, if you can achieve that.

Therefore, waiting 10 ms until the jitter ceases creates no problems.

80

Input port

<Program> (smp2_7.src)

P4DDR .EQU H'FFFFC5
P4DR .EQU H'FFFFC7
PBDDR .EQU H'FFFFD4
PBDR .EQU H'FFFFD6

.SECTION P,CODE

MOV.B #H'FF,ROL

MOV.B ROL,@PBDDR
LOOP1: BTST #0,@P4DR

BEQ LOOP1

MOV.L #10000,ERO ;Sets the time to wait
WAIT1: DEC.L #1,ERO ;Waits

BNE WAIT1

BNOT #0,@PBDR
LOOP2: BTST #0,@P4DR

BNE LOOP2

MOV.L #10000,ERO ;
WAIT2: DEC.L #1,ERO

BNE WAIT2

BRA LOOP1

.END

This program is not efficient. We will consider the answer to jitter in the later section on the
timer.

Summary

The microcomputer only has the ports and instructions such as those that deal with memory. T
microcomputer can communicate with the 1/0O ports that are to it as the nerves of the hands and
legs are to a human being by using the same functions used to operate on memory. The hands
legs of the microcomputer are the sensors that sense temperature, humidity, or acceleration, or
actuators such as motors or heater valves. The hands and legs of the personal computer are th
keyboard, mouse, camera, liquid-crystal display, etc. As such apparatus can be treated in the v
that has been described in the section on I/O ports, by connecting circuitry that appears, to the
microcomputer, to be equivalent to memory.

Column
Voltages and Digital Signals

The microcomputer treats digital signals as TTL or CMOS level. The output pin of an I/O port
operates at CMOS levels; input ports at TTL.

Therefore, logic circuitry that is constructed of TTL components can be directly connected to an
input port. This is also true of the output port.

In general, the input values of TTL levels are as follows:
Low level: 0.8 V or less,

High level: 2.0 V or more.
81

The input port of the H8/3048F operates on these voltage levels. The output voltage of the
circuitry that is connected should be as follows to match the two voltage levels:

Low level: 0.4 V or less (the noise marginis 0.4 V (= 0.8V - 0.4 V),
High level: 2.7 V or more (the noise marginis 0.7V (=2.7V -2.0V).

When the input voltage on the input port is 0.8 V or less, the read data becomes 0, while when tt
voltage is 2.0 V or more, the read data becomes 1. When the input voltage on the input port is
between 0.8 V and 2.0 V, the read data is unpredictable. Therefore voltages in the range betwee
0.8 V and 2.0 V cannot be used as input voltages. The electric current at the input port is close t
0.

The input values for CMOS levels are as follows:
Low level: 1.35V or less,
High level: 3.15 V or more.

The output voltage of CMOS circuitry is determined as follows so that the input voltage levels are
matched:

Low level: 0.1 V or less (the noise marginis 1.25V (= 1.35V - 0.1 V)),

High level: Vcc — 0.1 V or more (the noise margin is 1.75 V
(=Vec-0.1V-3.15V)).

The output pin of the H8/3048F has the following voltage levels.
Low level: 0.4 V or less (when 0 has been written into the data register),
High level: Vcec — 0.5 V or more (when 1 has been written into the data register).

The amount of electric current from an output pin depends on the pin. For the general purpose
pins, it is between 2 and — 2 mA. The output voltage changes when the electric current is taken
out. The output voltage levels described above are guaranteed when the output electric current |
in the range from 1.6 mA to — 2Q@\.

Ports 1, 2, 5, and B are for large electric currents. Pins on these ports can each pass 10 mA as «
maximum electric current, when they output the low-level voltage. It is convenient to use those
ports to turn on the LED, because driver circuitry can then be omitted.

82

Column
Input Circuitry and Driver Circuitry

The levels of input and output voltages of the I/O ports are TTL/ICMOS. When an input port is
used to check the state (on/off) of a switch, circuitry must be designed so as to change the inpu
voltage according to that state (on/off). The voltages of 0 V in the on state and 1 V in the off sta
can be applied to the input port, when a resistor is connected in series with the switch.

Now, let’s look at the value of this resistor. If the resistance is too small, a large electric current
will pass when the switch is turned on. When the resistance i@ 100 example, the electric

current save 0 mA with the switch in its off state and 50 mA with the switch in its on state. This
current of 50 mA is the same as the total consumption of electric current by the H8/3048F. Tha
is, to check whether a switch is in its on state or not, the same amount of electric current must b
consumed as is consumed by the microcomputer.

Vce
R lon = Vee/R
Almost all of the electric current passes through the switch.
Input port | When R =100 Q, lox becomes 50 mA.
o o ?7 This current is large because 50 mA is the same value as
i i GND the amount of electric current consumed by the H8/3048F.
v v It is better to use a pull-up resistor with a large resistance
such as several kQ, for example, to realize a low power consumption.
R t
Input port - Vorr=5X (1-e& CR))))
—74 ¢ DE When the switch is turned off, these capacitances are charged with electric current
f— f— through the pull-up resistor. If the resistance of the pull-up resistor is too large,
. v GND the transition to the high level takes a long time.
Input capacitance | Floating
papacite}pce etc. Input
in the wiring lead signal On Off

Figure 4 Pull-up Resistor

However, further problem is introduced when the value of the resistor is too large. The input po
is connected to the transistor inside the circuitry, and has an input capacitance, which is a

component of capacitor and comes from the structure of the transistor. There is a floating

capacitance, which is the component of capacitor, of the wiring leads. It is necessary to charge
these capacitors to make the resistor high level. As it takes a long time to charge these capacit
when the value of the resistor is too large, the high level is only reached at the input port a long
time after the switch is turned off. Therefore, it is not good to have too large value for the resist

83

Ports 1, 2,5, and B

i

Output port

Output port

Output port

Output port

A
—
o
o

Up to 10 mA Vcce
J Up to 50 mA
Vcc
Up to 36 mA
Open-collector IC
VAN
=
8 Up to several-hundred mA
o
' NPN Tr

PNP Tr

to be driven with low level

\4
VAN
—| When the load needs
o
QD
o
\4

Output port

Output port

Output port

I ¢Up to dozens of A

Darlington-connection
type NPN transistor

-
¢Up to dozens of A

N-ch FET

P-ch FET

Figure 5 Examples of Driver Circuitry

Vcc

Output port

Photo-coupler
(insulation by means of light)

L

Pulse transformer
(insulation by means of magnetic fields)

Figure 6 De-coupling (Photo-coupler and Pulse Transformer)

The normal value is in the range of seveltk several hundreds ofXk

84

An LED can be directly driven by an output pin, while a motor cannot, because a large electric
current cannot be drawn out of an output pin. It is necessary to connect driver circuitry to amplif
the signal level. Ports for large electric currents or circuitry that can apply 50 mA with standard
logic levels can be used for loads such as those that require small electric currents and can be
driven by 5 V. The open-collector, open-drain, or an interface of the standard logic can be used
for those loads that can be driven by 5 V or more. A transistor must be used to handle a larger
electric current or voltage. A given apparatus can thus be driven by using driver circuitry that is
externally connected to the output pin to amplify the signal level, when the electric capacity of th
output pin is not enough to drive it.

An apparatus that requires a high AC voltage, such as 100 V, must be driven after electrically
isolating the transistors that drives the apparatus from the output port. Such a structure can
prevent damage to the microcomputer even when the transistors have been destroyed. Light ol
magnetic fields are used to achieve the electrical isolation. A photo-coupler is used for electrica
isolation by means of light, and requires that the output pin supplies it with DC current. A pulse
transformer or the like achieves electrical isolation by means of magnetic fields.

The signal from the output pin must be pulse-shaped in this case, because magnetic power can
be transferred to the other side of the pulse transformer unless the magnetic power is in a state
change.

Column
1/0 Ports of the H8/3048F

The 1/0O ports can be used for the input or output of data. They are necessary for the
microcomputer to control the system, for example, for the input of data from a sensor, or the
control of actuators.

It is possible to change the direction of signals (input or output) on the 1/O ports. Signals can be
read from outside the microcomputer when an 1/O pin is set as an input. The level of a pin to
which high level (2.0 V or more) has been applied becomes 1 when the CPU reads it out by a
MOV instruction etc., while the level of a pin to which low level (0.8 V or less) has been applied
becomes 0. 1/O ports can thus handle input voltages at what is called TTL levels.

Data which has been written by the CPU with a MOV instruction etc. can be output at a port whe
the 1/0 port is set as an output. The written data can be held until the next round of writing. In
other words, the I/O port can also retain data as if it were a memory. The ‘high’ voltage level
(Vcc — 0.5 V or more) is output on a pin to which 1 has been written, while a ‘low’ level (0.4 V or
less) is output when a 0 has been written. These levels are the CMOS levels.

The addresses that are accessed by this CPU are all in a single address space that includes the
memory (the H8/3048F does not have the other I/O space than memory space, while the 80-ser
CPU have.) The addresses that are accessed by the CPU as I/O exist in a prescribed and fixec

85

range (namely, H'FFFF1C to H'FFFFFF in the memory map; the portion that is assigned to on-
chip 1/0).

There are a total of 78 ports available on the H8/3048F. However, that figure includes ports that
will in practice be used for other purposes such as for the address and data bus of the memory
interface, and for control signals. As a result, the number of available 1/O ports will be reduced
when memory is connected from the outside.

Table 1 Addresses of the 1/0 Port Registers

Register Bit Name Module
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Name
H'FFFFCO P1DDR P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR Port 1
H'FFFFC1 P2DDR P27DDR P26DDR P25DDR P24DDR P23DDR P22DDR P21DDR P20DDR Port 2
H'FFFFC2 P1DR P17 P16 P15 P14 P13 P12 P11 P10 Port 1
H'FFFFC3 P2DR P27 P26 P25 P24 P23 P22 P21 P20 Port 2
H'FFFFC4 P3DDR P37DDR P36DDR P35DDR P34DDR P33DDR P32DDR P31DDR P30DDR Port 3
H'FFFFC5 P4DDR P47DDR P46DDR P45DDR P44DDR P43DDR P42DDR P41DDR P40DDR Port 4

HFFFFC6 P3DR P37 P36 P35 P34 P33 P32 P31 P30 Port 3
HFFFFC7 P4DR P47 P46 P45 P44 P43 P42 P41 P40 Port 4
HFFFFC8 P5DDR — — — — P53DDR P52DDR P51DDR P50DDR Port5
HFFFFC9 P6DDR — P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR Port6
HFFFFCA P5D — — — — P53 P52 P51 P50 Ports
HFFFFCB P6DR — P66 P65 P64 P63 P62 P61 P60 Port6
HFFFFCC — — — — — — — — —

HFFFFCD PS8DDR — — — P84DDR P83DDR P82DDR P81DDR P8ODDR Port 8
HFFFFCE P7DR P77 P76 P75 P74 P73 P72 P71 P70 Port 7
HFFFFCF P8DR — — — P84 P83 P82 P81 P80 Port 8
HFFFFDO P9DDR — — P95DDR P94DDR P93DDR P92DDR P91DDR P90DDR Port 9
HFFFFD1 PADDR PA7DDR PA6DDR PASDDR PA4DDR PA3DDR PA2DDR PAIDDR PAODDR Port A
HFFFFD2 P9DR — — P95 P94 P93 P92 Po1 P90 Port 9
HFFFFD3 PADR PA7 PA6 PAS PA4 PA3 PA2 PAL PAO Port A
HFFFFD4 PBDDR PB7DDR PB6DDR PB5DDR PB4DDR PB3DDR PB2DDR PB1DDR PBODDR PortB
HFFFFD5 — — — — — — — — —

HFFFFD6 PBDR PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO Port B
HFFFFD7 — — — — — — — — —
HFFFFD8 P2PCR P27PCR P26PCR P25PCR P24PCR P23PCR P22PCR P21PCR P20PCR Port 2

HFFFFD9 — — — — — — — — —
HFFFFDA P4PCR P47PCR P46PCR P45PCR P44PCR P43PCR P42PCR P41PCR P40PCR Port4
HFFFFDB P5PCR — — — — P53PCR P52PCR P51PCR P50PCR Port5

Note: A bit position that is indicated as — has neither port nor memory function.
Moreover, as the ports serve both as I/0 ports and as ports for the on-chip peripheral functions, t
number of available 1/O ports will be further reduced.

An I/O port has the simple structure shown in figure 2.19, with the port controlled by two
registers; DDR (Data Direction Register) and DR (Data Register).

» DDR (Data Direction Register)
This register determines the direction of the port pins (input or output).
0: The pin is used as an input (initial value)

86

1: The pin is used as an output

* DR (Data Register)
This register handles data for the port. The meaning of this register depends on the settings
pin directions (input or output). When a pin is set as an input (DDR = 0), the input value at
TTL level can be determined by reading the DR as follows:

0: A low-level voltage has been input to the port
1: A high-level voltage has been input to the port

When it is set as an output (DDR = 1), a value at CMOS level can be output after writing to tl
DR as follows:

0: A low-level voltage is output from the port
1: A high-level voltage is output from the port

Note: These two registers represent a kind of memory function that is used to control the I/O
ports and differ from the general-purpose registers of the CPU, although they are still
called registers. They are mapped to the memory map of the H8/3048F. In other words
these registers are accessed by specifying their addresses. They are treated in the sam
way as memory.

The 1/O ports are normally treated as groups of 8 pins, because the minimum unit of the memor
in the CPU is the byte (= 8 bits). Individual I/O pin can, however, be treated as independent por

Table 1 shows the register configuration of the ports of the H8/3048F. Over 70 I/O pins are
available. The pull-up MOS control registers (PNnCR) will be explained later.

Program

Any instruction that is used to access locations in memory, such as MOV, BSET, can be used t
deal with the pairs of I/O registers.

Initialization
The direction for the pins on each 1/O port (input or output) is set in the DDR.

After a reset operation, the DDR is initialized so that all pins are set as inputs. It is thus only
necessary to alter the DDR setting when an I/O port is needed as an output port. The following
program sets all 8-bit ports as outputs.

MOV.B #H'FF,ROL
MOV.B ROL,@DDR

(The address of the DDR must be declared with the EQU directive instruction before any
reference to @DDR.)

The following program can be used to set the bits in position 0 as an output and the remaining 7
bits as inputs.

87

MOV.B #H'01,ROL
MOV.B ROL,@DDR

Instructions for bit-wise operations cannot be used on the DDR, because the DDR is write-only.
Therefore, the following usage is wrong.

BSET #1,@DDR

Although a source program that includes this line will be assembled without error, all of the
specified 1/0 ports can be changed to the output. The instruction for bit-wise operations reads 1
byte of data that includes the 1 bit that is the operand of the instruction, changes only that bit, the
finally writes back 1 byte of data that includes the 1 bit. The instruction for bit-wise operation
thus reads, modifies, and writes in a single process. The DDR is, however, write-only so the valt
set in it cannot be read. The data, which is read from the DDR that cannot be read out its value |
an instruction for bit-wise operation, is thus unpredictable. Normally, as the data bus will have
been pre-charged (‘pre-charged’ means that the data bus has been charged to half of the power-
supply voltage, and the time required to make the transition from the pre-charged to the high or
low state is less than that required for high to low or low to high), all bits will be read out as 1.
The bit position 0 of the read out data (H'FF) is then modified to 1, and the modified data (H'FF)
is then returned to the DDR. As a result, all of the specified 1/O pins including those that were
intended to be inputs, are turned into outputs.

So all of the bits have been turned into outputs, although the intention was to only switch one bit
from input to output. The program thus will not work as you might have expected. Take care on
this point.

Now, let's use a program to connect the LED and switch shown in figure 9. This program turns
on an LED when the corresponding switch has been turned on. That is, although they are not
electrically connected, the program makes them operate as if they were electrically connected.

Vee
2.7kQ
P70 °Y GND
74Lvcos A
PAO
3300

Figure 9 Example of Input and Output Circuits for the 1/0O Port

88

The program for inputting and outputting the data

The switch is connected to port 7. Port 7 is a dedicated port for input and has no corresponding
DDR. Data can only be input by reading out the value of the bit in position 0, that is, the bit
connected to the switch.

The LED is connected to port A. The corresponding bit 0 must be set as an output.

As the program has to confirm bit O of port 7 and modify bit O of the port A that is connected to
the LED, the program may have the following structure.

Memory requirements The execution time
in bytes in clock cycles
1 P7DR .EQU H'FFFFCE
2 PADDR .EQU H'FFFFD1
3 PADR .EQU H'FFFFD3
4 MOV.B #1,ROL 2 2
5 MOV.B ROL,@PADDR 2 4
6 LOOP;
7 BTST #0,@P7DR 4 6
8 BEQ LED_ON) 4
9 BSET #0,@PADR 4 8
10 BRA LOOP 2 4
11 LED_ON:
12 BCLR #0,@PADR 4 8
13 BRA LOOP ;2 4
Lines 1 to 3: define the addresses for symbols.
Lines4 and 5: initializes port A.
Line 7: uses the BTST instruction to confirm the state of the switch (the result is

reflected in the Z bit of the CCR).
Line 8: changes the flow of the process as required by a BEQ instruction.
Lines 9 and 10: turns off the LED.
Lines 11 and 12: turns on the LED.
The first improvement to the program

Although the program works well as it is, it can be simplified. The simpler the program, the
smaller the program, and the faster the execution. Generally speaking, it takes a long time to
execute the conditional branch instructions in a microcomputer. Therefore it is important to
improve the program so that no conditional branch instructions are used. In this example, the b
of port 7 that is connected to the switch and the bit of port A that is connected to the LED have t
same position, namely bit position 0, so it is possible to move the data in byte-wise fashion from
port 7 to port A, by using the MOV instruction. However, it is necessary to invert the switch date
and the LED data for this style of data transfer. In other words, a 1 must be written to turn on th

89

LED when the switch has been turned on (i.e., when the switch data is 0). This data inversion ce
be executed by using the NOT instruction, as follows:

6 LOOP:

7 MOV.B @P7DR,ROL 2 4
8 NOT.B ROL ;2 2
9 MOV.B ROL,@PADR 2 4
10 BRA LOOP 2 4

1 bit of data can be inverted by the following instruction.

BNOT #0,ROL ;2 2
XOR.B #1,ROL ;2 2

Investigate which program is better from the viewpoint of execution times of the instructions and
memory requirements of the object program.

In this example, as the bits on port A other than the LED bit are set as inputs, it is impossible to
output data from these ports, whatever the data that has been written. Although the data to be
input through these ports, other than by the switch bit, is unpredictable, the output of the result of
inversion of the input data only affects bit O of port A. Therefore, there is no problem with using &
NOT instruction to invert the whole byte.

The second improvement to the program

A modification to the hardware is necessary to further simplify the program. The NOT instruction
is unnecessary if the sense of the data from the switch is same as that for the LED. In this case,
the program can be improved as follows:

6 LOOP:

7 MOV.B @P7DR,ROL 2 4
8 MOV.B ROL,@PADR 2 4
9 BRA LOOP ;2 4

The improved circuitry is shown in figure 10. The improvement is that the polarity of the driver
circuit for the LED has been inverted.

90

Vcc
4.7kQ

P70 O_Y& GND

74Lvcos A

PAO
330Q

Figure 10 Improved Hardware

The third improvement to the program

As the operand addresses of the MOV instructions used in the programs described above belor
the 8-bit address space, this program is assembled in the addressing mode of @aa:8.

Both the memory requirement and the execution time of this program can be reduced by the
following procedures:

e The operand addresses of the MOV instructions belong to some address space other than 8
address space.

* Loading the operand addresses into general-purpose registers.
« Using the @Ern register-direct addressing mode.

The principal is that those addresses that are most frequently accessed are loaded into the gen
purpose registers.

P7DR .EQU H'FFFFCE

PADDR .EQU H'FFFFD1

PADR .EQU H'FFFFD3
MOV.B #1,ROL 2 2
MOV.B ROL,@PADDR ;2 4
MOV.L #P7DR,ER1 6 6
MOV.L #PADR,ER2 ;6 6

LOOP:
MOV.B @ER1,ROL 2 4
MOV.B ROL,@ER2 2 4
BRA LOOP 2 4

e
Nhoo~vounrwnr

The execution times for lines 9 and 10 can be reduced, although lines 6 and 7 now have been
added.

An input pull-up MOS is a transistor that acts as a pull-up resistor that is only connected with a

port when that port is used as an input port. The input pull-up MOS can be turned on and off by
the setting in the control register. When a switch that is connected to the input has been turned
the electric current that passes through the internal pull-up MOS (resistor) is in the range from 5

91

to 300pA. The equivalent resistance value of the internal pull-up MOS is in the range from 17 to
100 kQ (for more details, refer to the electric current of the pull-up MOS in the chapter on
electrical characteristics.) The capacitance of the input port is 15 pF (maximum value).

» Clear PADDR to zero. This sets all of the 8 pins of port 4 as inputs.
The ports have been set as inputs by initialization (a reset).

* Set PAPCR, if necessary.
The pull-up MOS is set in its off state by the initialization process.

» Read P4DR in order to input the data.

P4DDR: .EQU H'FFFFC5
P4DR: .EQU H'FFFFC7
P4PCR: .EQU H'FFFFDA
MOV.B #0,ROL
MOV.B ROL,@P4DDR :Clears P4DDR to zero.
MOV.B #H'FF,ROL
MOV.B ROL,@P4PCR ;Turns all of the pull-up MOS resistors on.
MOV.B @P4DR,ROL ;Moves the input data to ROL.

The bit-wise instruction may be used to determine the state of one pin (high or low) of an input
port. For example, the state of P43 can be determined by the following instructions:

BTST #3,@P4DR
BEQ symbol ; A BNE instruction can be used instead of the BEQ
; instruction.
These instructions allow the contents of the general-purpose registers to be left unchanged,
because they do not load data into the general-purpose registers.

Vcec

External circuitry that
Pull-up MOS Ve can be omitted by using
% the internal pull-up MOS

-

oog GND

Turns on when P4PCR equals to 1 \T

Port 4

Figure 11 Example of the Circuitry on an Input Port

92

Chapter 3 Reset and Interrupts

3.1 Writing Programs to ROM

The programs described up till now have been run by specifying an address for execution in the
debugging monitor. However, this is not the case in a VCR or rice cooker in which the
microcomputer is incorporated; when the power is turned on, the program starts up immediately
This chapter describes operations to cause a desired program to start up when the power is turi
on.

3.1.1 Hardware

When power is turned on, a "return to initial state" instruction must be sent to the microcompute
This instruction is applied to tfRES terminal. When this terminal is set to low level, a "return to
initial state" is executed. In the H8/3048F, even after power is turned on, this terminal must be
held at low level for 20 ms. Thereafter it is set to return to high level automatically; hence the
circuit shown below should be formed.

Power on

|

Vcc

VT+

Low-level ' High-level ™ Time

q RES reset start

There is Schmitt trigger gate VT Change in voltage of RES pin
(voltages at the boundary between
GND high and low levels)

(V1+, V1-), in @ noise-resistant

logic circuit

Fig. 3.1 Reset Circuit

There is Schmitt trigger gate which has two levels of the threshafdoltages at the boundary
between high and low levels) {VV.), in a noise-resistant logic circuit

When using a time-constant circuit consisting of a resistor and capacitBESherminal voltage
becomes unstable due to noise from the oscillator circuit and surrounding circuits, possibly
resulting in malfunctions, and so use of such circuits is not recommendeRESHerminal has

93

an internal Schmitt trigger function, and the high-level voltagg (& higher than that of other
terminals at \{.-0.5 V; further, sampling employs the system clock. In this way efforts have been
made to prevent malfunctions insofar as possible; but if possible, a reset IC should be used.

When theRES terminal voltage returns to high level, the microcomputer reads into the PC the four
bytes beginning from address 0.

H8/300H CPU

H'000000

H000001 | HO00 —

H'000002 | H'01

H'000003 H'00

H'000004

H'000005 pc[___ H00 | HOL] HoO |

RES
Address bus —-<H'OOOOXH‘OOO2>—§|HSUUC“0K
Data bus b _C>.

Read Read — Time

Reset —|«— PC initial —— Program
value read execution

width is 16 bits, 32 bits can be

Because the internal ROM bus
read in two operations.

Fig. 3.2 Reset Operation

3.1.2 Programs

Following this, instructions are read from PC addresses to run the program. This is the same as

giving a GO command from the debugging monitor. In order to run the program, it is necessary
that:

(1) The starting address of the program to be started is recorded at address 0

(2) This information at address 0, and the program to be started, are retained in memory even
when power is turned off

94

Method for recording starting address

In order to record fixed data in memory, the .DATA.L control instruction is used. In order to
record the address H'100 at the address 0, the following is used.

Here also, the program can be made more flexible for future modifications by using symbols, an
so the above is rewritten as follows.

Here the system has been prepared to start execution from the target address simply by turning
power on. Execution of such processing in which the hardware overwrites the PC is called
exception processing.

A system reset is one type of exception request. When a reset is requested, the contents of the
address to which execution jumps are read. A microcomputer which operates in this manner is
called a vector computer.

In the above program, following reset an ER7 (SP) instruction, used to call a subroutine, is set
be executed first. The reason for this is explained below; ER7 must be initialized.

The initial values of general-purpose registers, including ER7, are undefined immediately after
activation from reset. In the debugging monitor, their values are shown as 0, but this value is on
used for convenience. In addition, the I bit (interrupt mask bit) of CCR is initialized to 1.

3.1.3 Further Premised Hardware

A microcomputer consists of logic circuits called sequential circuits. Within the circuit are flip-
flops, and signals are moved in synchronization with a clock signal. Above we have discussed
only the reset circuit; below we describe the circuitry which is premised on the reset circuit.

Power supply (V.. and V)

5V and 3 V power supplies (from 2.7 to 5 V) are used. The voltage is made to conform to the
voltage of standard logic circuits and memory circuits. Power supply voltages are different for
different microcomputer products, and so care should be taken to supply the appropriate voltage
The power supply terminals are Mand V.

Note: In general there are multiple power supply terminals; if all are not connected, correct
operation is not guaranteed. Power supply terminals may include test pins used in
semiconductor manufacturing. Also, as shown in the figures, current flowing in from othe
terminals is gathered to flow into,VIf many terminals change all at once, the current
flowing into V., may change considerably; such a change in current may appear as a
voltage v=Ldi/dt for the wiring inductance (coil component) L.

95

Even when the \/terminal is at 0 V, a voltage appears internally. If for example 2.5V is
applied to the input port, this voltage exceeqdsavid so should be read as 1; but due to

the voltage appearing internally, GND is no longer at 0 V, and the input voltage - L di/dt is
read as low level, that is, as 0. In order to prevent this from occurring, the impedance of
the power supply line (the sum of the resistance component, coil component, and so on)
should be held as close to zero as possible. To this end, it is important that numgrous V
terminals be provided in a microcomputer. It is also important that the power supply line
on the printed circuit board be made thick and short, to lower the impedance. Hence a
printed circuit board with a circuit intended for high-speed operation generally has a
sandwich structure with four or more layers, with the power supply line inside the board.

Noise decoupling

In analog circuits, capacitors are used to bypass circuits in order to ensure that high-frequency
components appearing as noise are not passed on to subsequent circuits. These capacitors are
called bypass capacitors.

Similarly in digital circuits; even if a digital circuit is designed to withstand noise, it is best if
noise effects are suppressed. To this end, capacitors are used to remove ripple (high-frequency
components) included in the power supply line. In digital circuits, the removal of noise
components from signals and the power supply is called decoupling.

In microcomputer power supplies also, a layered ceramic capacitor of value apppoxadd

with good high-frequency characteristics is connected betwgeand \,, as close to the chip as
possible for noise decoupling. Depending on the noise frequency components, an electrolytic
capacitor of from 1 to 1QAF may be connected as well.

Noise causing malfunctions may originate in the microcomputer itself. The microcomputer, and
the logic circuits which operate in accordance with the microcomputer, operate according to the
clock signal. Nearly all recent circuits have a CMOS structure, so that power consumption is low;
however, there are drawbacks. When signals are driven at high speed, each time a signal chang
current suddenly flows or stops flowing. This is because the wiring has a capacitive component.
These changes in current become sources of noise. Of course the wiring is close together, so the
these changes propagate as (radio) waves. Electrostatic inductance occurs between adjacent lint
or becomes electromagnetic waves to cause interference elsewhere. Capacitors are also effectiv
for keeping noise from being generated by a microcomputer.

96

Clock oscillator circuits

If a clock signal is not supplied, the microcomputer will not function. A clock oscillator circuit is
incorporated in the H8/3048F, and so only a crystal oscillator must be connected externally.

The minimum operating frequency is 1 MHz; the maximum operating frequency is 18 MHz.
Choose an operating frequency within this range. The clock frequency becomes the basis for th
basic time of the timer and for serial communication speeds, discussed below. The clock
frequency must be determined with consideration paid to overall system requirements, and not |
to CPU processing performance.

Connection of dedicated input terminals

The H8/3048F has dedicated input terminals. If the input terminals of an IC with a CMOS
structure are left open (unconnected), internal transistors tend to be in a state of direct connecti
to the power supply and ground, and so such practices are forbidden. Among the dedicated inp
terminals of the H8/3048F, care is especially necessary with resgaBand NMI. These two
terminals must not remain unconnected.

When theSTBY terminal is in the low-active state, the hardware is put into standby mode. In
hardware standby mode, internal RAM is backed up by a small battery. If this signal goes active
the CPU, peripheral functions, and the clock oscillation circuit are stopped.

NMI is used for unmasked interrupt requests, discussed below; these are highest-priority
interrupts. If this signal goes active (in the initial state, on the falling edge), an interrupt processi
program is called. If no such program has been written, system operation cannot be guaranteed

STBY and NMI are both pulled-up to_\ By so doing, they can be used later when the need
arises. If they are connected tg.\dr V, without a resistor, they cannot be used later.

There are other dedicated input terminals as well. Normally these input terminals are always
connected to high or to low input.

97

CPU operating modes

The three terminals MDO to MD2 determine the operating mode of the CPU. On reset, the CPU
can be switched into the following modes according to the terminal states.

Table 3.1 CPU Operating Modes

Operating mode External memory Vector-fetch bus width Internal ROM
1 External expansion (1 MB) 8 bits Invalid

2 16 bits

3 External expansion (16 MB) 8 bits

4 16 bits

5 External expansion (1 MB) 16 bits (internal ROM) Valid

6 External expansion (16 MB) 16 bits (internal ROM)

7 Single-chip (1 MB) 16 bits (internal ROM)

During operation, the states of the terminals must not be changed. In order to change the operati
mode, another reset must be performed.

In order to operate the system in various modes, switches and jumpers can be used to change VM
to MD2. MD2 in particular is used to supply the program voltage=\¥2 V) when writing to

internal flash memory. In order to overwrite the internal flash memory while the microcomputer is
mounted on the printed circuit board, this terminal must not be fixed.ar\GND.

CPU internal state immediately after reset

On reset, the CPU returns to its initial state. At this time general-purpose registers are not affecte
and their states are not known. General-purpose registers are not initialized to 0. The contents of
CCR are also indeterminate, except for the interrupt mask bit (1), and are not known. Before use,
the registers must be initialized by the program.

98

Capacitor for oscillator circuit
(approx. 10 to 20 pF)

il

XTAL Crystal oscillator connected externally
(Must be positioned as close as possible to
EXTAL the oscillator circuit within the H8/3048F.)
GND
Vce

Noise-suppressing

capacitor ggg
Vcce

0.1pF Vv All power terminals connected
SS (If left unconnected, system may not operate.)
Vss
Vss
Vss
Vss
Vss
GND
Vce

MD2 Connect to determine mode
MD1 (Example shown is for mode 7 (single-chip))
MDO
RES

Output terminals | Low-level output

GNDr

ov

If many output terminals simultaneously output low
level, the internal GND level rises as indicated by
the equation, possibly resulting in malfunction.
Vss terminals must all be connected, and wiring
made thick and short so as to reduce the power

Vce supply impedance.

External driving NMI
also possible STBY

Unused dedicated input terminals must always be handled
S0 as not to go to a high-impedance state. If pulled up,
they can often be used later.

Fig. 3.3 Power Supply and Clock-Related Circuits (no onboard overwriting)

Vcc

+12V RESO/Vpp
Vcc
Vce
N
+12V——-r0 MD2
MD1
—1 MDO

Fig. 3.4 Power Supply and Clock-Related Circuits (with onboard overwriting)
Oscillator Circuit
A microcomputer is a relative, so to speak, of a logic IC based on sequential circuits.

Of course, because they are sequential circuits, a clock signal is necessary. The clock signals us
in microcomputers are often provided by crystal or ceramic oscillators; here an oscillator circuit
employing a crystal oscillator is briefly discussed.

Features of an oscillator circuit using a crystal oscillator include high frequency precision and
minimal changes with temperature and aging. In order to cause oscillation, an oscillator circuit is
necessary. There are a variety of such circuits; one simple example uses a NOT circuit.

X'tal

HEF:

~rNN T

QlO

Fig. 1. Oscillator Circuit

Many microcomputers have internal oscillator circuits, in order to reduce the system size.
However, an oscillator circuit which includes a crystal oscillator is an analog circuit. That is, it is
extremely susceptible to noise. If digital signals are present near an oscillator circuit, these signa
may disrupt the oscillator circuit. Wherever possible a circuit board layout should be adopted in
which an oscillator circuit is surrounded by a pattern at GND level, and kept far away from other
signals.

100

3.2 Interrupts

Whenever we're in the middle of something and someone calls out "hey," we turn around; when
the phone rings, we leave off what we're doing to answer it. Whether we have been studying or
working, we suspend what we were doing, and attend to these matters in the order in which the
occur.

The same is true of microcomputers; even while executing a program, they are provided with a
function which allows us to tap them on the shoulder, so to speak, to get their attention. This
function is called an "interrupt".

This so-called tapping on the shoulder is accomplished by an interrupt request. Of course, even
after someone has called "hey" and gotten our attention, after we have dealt with the matter, we
can go back to work. Although, sadly, humans often cannot immediately recall what it was they
were doing.... Microcomputers are also designed such that, if an interrupt request causes them
leave off and execute a different program, they can always return to the original program and
resume execution.

3.2.1 Need for Interrupt Functions
Why should such functions be necessary? What problems would arise if there were no interrupt
It's all about efficiency.

For example, consider a game which has a clock function. It's a game, and so up, down, left an
right buttons, say, are used to move pictures in memory which make up the screen. Here it is
sufficient for the program to monitor the buttons. Judgments as to whether buttons have been
pressed are made, and a program to draw a picture is run. After the picture has been moved,
buttons are again monitored. This operation is repeated.

If a time is displayed on the same screen, the display must be updated. However, updates are r
performed quickly, as in the game itself; at most they are performed once every second. But if
time is required to move the game screen, and the time exceeds this one second, what will hap
If the display is overwritten, the time will suddenly advance by two seconds. Such a clock is
meaningless.

It is at such times that interrupt requests are used. When one second has elapsed, an interrupt
requested. In interrupt processing, only the clock display is updated. The game program itself ce
forget about the clock. Programs can thus be separated according to function, making debuggir
easier.

It is best to use interrupts to handle events that are unrelated, and that do not occur frequently, |
that must be attended to promptly when they do occur.

101

Such execution of multiple tasks by a single system is called multitasking. In a multitasking
system, when a lot of time is required for individual tasks, timer functions can be used to set a
fixed amount of time, after which interrupt processing is used to switch to a different program
(task). By using this method, a system can be created in which several tasks appear to be execu
simultaneously, even though only a single CPU is used.

Let us now describe the underlying mechanism of interrupts.

3.2.2 Operation on Occurrence of an Interrupt

The concept is the same as that underlying reset operations, discussed above. It cannot be
predicted when there will be an interrupt request. When a request occurs, the hardware must set
the PC, and so a vector is used. However, interrupts differ from resets in that execution later
returns to the original program. How is this accomplished? The PC and CCR contents are
temporarily stored when an interrupt request occurs. The same stack area as for the subroutine i
allocated for storage of this data.

Recorded| . _] Vector determined by
|_Startind | interrupt factor

LDC #0,CCR ;Interrupt enabled Interrupt processing address |
program 7]

Exception processing
PC, CCR saved to stack)
MOV ... Interrupt disabled (1= 1) Program executed in

interrupt=disabled
state (I 1)

ADD .. \

Interrupt
request

RTE
Interrupt enabled
again (1 =0) 1=0—

sP—

RPN
0
@]
o

SP —

Fig. 3.5 Interrupt Operation (from receipt to return of execution)
When an interrupt is requested, after the instruction which was being executed is completed,

(1) PC and CCR are saved on the stack
(2) A new PC is read from the vector area

When interrupt processing is completed, an RTE instruction is executed. This instruction causes
the PC and CCR to be retrieved from the stack.

There is only one set of general-purpose registers; if these are used during interrupt processing,
they are used after their contents are saved, and after being used for interrupt processing, their
contents are restored.

102

Another issue must be remembered when handling interrupt requests. When we are tapped on:
shoulder, we may not be able to stop what we are doing at the time. Such is the case with a
microcomputer also. CCR has an | bit; when this bit is set to 1, no interrupts are accepted--they
masked. Hence in order to accept interrupts, this | bit must be cleared to 0.

The instruction to accomplish this is

LDC #0,CCR
or

ANDC #H'7F,CCR

103

Table 3.2

Vector Table

Vector number Exception factor Vector address Priority
0 Reset H'000000
1 System reserved
to
6
7 NMI H'00001C
8 TRAPA instruction TRAPA #0 H'000020
9 TRAPA #1 H'000024
10 TRAPA #2 H'000028
11 TRAPA #3 H'00002C
12 IRQ interrupt request | IRQO H'000030 High
13 IRQL H'000034
14 ITR2 H'000038
15 IRQ3 H'00003C
16 IRQ4 H'000040
17 IRQ5 H'000044
18 Reserved
19
20 Watchdog timer ‘ WOVI (overflow) H'000050
21 Refresh controller ‘ CMI (compare match) H'000054
22 Reserved
23
24 ITU channel 0 IMIAQ (compare match/input capture A0) H'000060
25 IMIBO (compare match/input capture BO) H'000064
26 QOVIO (overflow 0) H'000068
27 Reserved
28 ITU channel 1 IMIA1 (compare match/input capture A1) H'000070
29 IMIB1 (compare match/input capture B1) H'000074
30 OVI1 (overflow 1) H'000078
31 Reserved
32 ITU channel 2 IMIA2 (compare match/input capture A2) H'000080
33 IMIB2 (compare match/input capture B2) H'000084
34 OVI2 (overflow 2) H'000088
35 Reserved
36 ITU channel 3 IMIA3 (compare match/input capture A3) H'000090
37 IMIB3 (compare match/input capture B3) H'000094
38 OVI3 (overflow 3) H'000098
39 Reserved
40 ITU channel 4 IMIA4 (compare match/input capture A4) H'0000A0
41 IMIB4 (compare match/input capture B4) H'0000A4
42 OVI4 (overflow 4) H'0000A8
43 Reserved
44 DMAC DENDOA H'0000B0O
45 (transfer ended) DENDOB H'0000B4

46 DEND1A H'0000B8
47 DEND1B H'0000BC
48 Reserved

to

51

52 SCI channel 0 ERIO (receive error 0) H'0000DO
53 RXI0 (receive completion 0) H'0000D4
54 TXIO (transmit completion 0) H'0000D8
55 TEIO (transmit ended 0) H'0000DC
56 SCI channel 1 ERI1 (receive error 1) H'0000EO0
57 RXI1 (receive completion 1) H'0000E4
58 TXI1 (transmit completion 1) H'0000E8
59 TEI1 (transmit ended 1) H'0000EC
60 A/D ADI (conversion ended) H'0000F0 Low.

104

3.2.3 Example of Interrupt Use
Let's try using an interrupt.

Prepare the circuit shown in Fig. 3.6. The switch is used to request an interrupt. The main progr
counts up the number displayed by lamps, with time inserted between increments. When the
switch is used to request an interrupt, the count is returned to O.

Vcc %

IRQ3/P83/CS1

ﬁgtﬁrminal is used for multiple functions.

? Only one function can be used at a time.
\

When used as the terminal IRQ3, CST
cannot be used. In order to be used as
IRQS3, IER (interrupt enable register) must
Qe set accordingly.

Fig. 3.6 Interrupt Request Circuit

This terminal is used for multiple functions. Only one function can be used at a time. When usec
as the termindlRQ3, CS1 cannot be used. In order to be usetR&33, IER (interrupt enable
register) must be set accordingly.

The INC instruction is used to increment the count; but if this is executed continuously, operatio
is too fast for the eye to follow, and so one million is inserted in ER1, and the DEC instruction is
used to decrement this by one each time. When ERL1 reaches 0, the count is incremented by on
using the INC instruction.

105

Program

; IRQ3 sample
; interrupt : falling edge
. main :increment LEDs 3048equ.h is a file which defines the addresses of
; internal peripheral functions. Source programs no longer
CPU 300HA need to include definitions, which are contained in a single file,
INCLUDE "3048equ.h" —-— | and read using the INCLUDE "3048equ.h" directive.
vector

.SECTION C,DATA,LOCATE=0
.DATA.L MAIN

.ORG H'3C

.DATA.L IRQ3

e main program -------------------
.SECTION P,CODE,LOCATE=H"1000

MAIN:
MOV.L #H'FFFF00,SP ; Set SP(ER7)
BSR @IOINIT
BSR @IRQ
LDC #0,CCR ; Enable interrupt
LOOP:
MOV.L #1000000,ER1 ; Set wait counter
WAIT:
DEC.L #1,ER1 ; Decrement wait counter
BNE WAIT ;
MOV.B @PBDR,ROL ;
INC ROL ; Increment LED counter
MOV.B ROL,@PBDR
BRA LOOP
jmmmee- IRQ setting -------------------
IRQ:
BSET #3,@ISCR ; Enable falling edge
BSET #3,@IER ; Enable IRQ3
RTS
R 1/O initialize sub -------------
IOINIT!

MOV.B #H'FF,ROL
MOV.B ROL,@PBDDR ; PB7-PBO output

PUSH.W RO ;
SUB.B ROL,ROL ;
MOV.B ROL,@PBD ; LED clear

POP.W RO ;
RTE
.END

Either edge or low-level triggering can be selected for the interrupt request terminal. Use
whichever is more convenient. If a switch is used to request an interrupt, edge triggering is better
If level triggering is used, an interrupt is requested during the entire time that the switch is
depressed, making it appear that numerous interrupts have been requested even though the swi
is pressed only once.

106

0 |Level request
1 \Falling edge request

i 0|Terminal is other than IRQ3 |SCR ‘

! 1|Terminal is TRQ3 |

! ER IRQ3SC ‘ CCR
IRQ3E [T

- ‘ ‘ L Interrupt request
IRQ3/P83/CS1 1 | Edge/level : Dﬁ received

detection

Interrupt controller | CPU

Fig. 3.7 Receiving an Interrupt Request

Interrupt requests can be generated by internal peripheral functions, discussed below, as well a
from terminals.

Vectors have been shown in the table for reset and for interrupt factors (table 3.2). The vector
address for aiRQ3 interrupt request is H'3C.

Another interrupt request type is an "unmaskable interrupt request”. "Maskable interrupt reques
can be ignored (receipt can be deferred) by setting the CCR | bit. On the other hand, "unmaskal
interrupt requests" are, in the H8, called NMI interrupt requests, and are received even if the CC
| bitis set to 1.

107

M Edge

IRQnN terminal Q! /

CPU operation Normal program)t E\xception processing

19-41 clocks
(in a single-chip case)

H Level

IRQn terminal \

Request awaited until exception
processing begins

Note: n=0to5

Normally request
stopped by program

......................... /

Fig. 3.8 Edge Requests and Level Requests

The interrupt request terminal is the NMI terminal.

NMI may be connected to an emergency stop button and used as a function for safely halting the
system, or may be used for suspend and resume functions, in which when a power button is
pressed a low-power state is initiated and the microcomputer is put into an inactive state while
preserving memory contents; when the button is again pressed, the immediately preceding state

restored.

0| Falling edge
1] Rising edge

SYSCR

NMI Edge

CCR

detection

Interrupt controller

CPU

L[

Interrupt request
always accepted

Fig. 3.9 NMI Terminal Settings and Receipt of Interrupt Requests

108

About the OS (Operating System)

The above sections have explained how interrupts can be used to switch between programs (ta
Such a program able to manage program execution is itself an OS (operating system). Of cours
the H8 microcomputer cannot be used for program startup with the mouse or for moving windov
about in an attractive manner, as in the Windows operating system; but the microcomputer
nonetheless itself functions as an OS. The H8 also has an OS, called ITRON (Industrial The Re
time Operating system Nucleus). The hardware is not fixed, as in the case of a personal compu
and so the OS is designed to start, terminate, and switch between tasks, and to perform
communications between tasks. The user can add external communication functions and displa
functions as necessary. This OS can rapidly switch between tasks, and so is referred to as a
realtime OS.

Although an OS, ITRON is not widely known like the Windows OS. However, you may know of
it in its guise as the OS used in IMODE cellydaone terminals.

* |TRON is an abbreviation for Industrial TRON.

* TRON is an acronym of The Real Time Operating System Nucleus, developed under the
guidance of Dr. Ken Sakamura of The University of Tokyo.

* Windows is a registered trademark of Microsoft Corp.
* iMODE is a registered trademark of NTT Docomo.

109

110

Chapter 4 Internal Peripheral Functions
The functions and how to use them (circuits and programs

In this chapter, we will try installing various inputs and outputs on the microcomputer.

At the end of Chapter 2, in the section introducing programs, we talked briefly about sending
simple input and output through an I/O port. If there is an I/O port, it can be used to make LED
lamps flash, or to confirm switch status. If we substitute a circuit that handles large volumes of
current, such as a relay, a power transistor, or a TRIAC for the LED lamp, we can run a device
such as the actuator of a motor or an electromagnetic bulb. If the LED lamp is changed to an
ultraviolet ray, it is less vulnerable to influence from light bulbs and solar light, so we can then u:
it in combination with a light-receiving element to detect objects, or as the remote control
transmitter for a TV or other device. The switch can be changed to a light-receiving element anc
touch sensor to handle sensor information. So as you see here, various types of input and outpt
can be handled simply by having an 1/0O port. There are a number of functions (peripheral
functions), however, that play a useful role in the system configuration in terms of input and
output, and we will look at these functions here.

Peripheral devices require various signal protocols and voltage levels, each suited to that partici
device. Microcomputers, on the other hand, do not support such various signals and voltage lev
In order for a microcomputer to run peripheral devices or to obtain the device status, the signals
have to be converted. This signal conversion is one of the peripheral functions that we just
mentioned.

Peripheral function CPU

Handled the same
Signal way as the memory;
Sensor conversion enables access to
sensors

Figure 4-1. Peripheral Function (Signal Conversion)

111

41 A/D Converters

Many of the phenomena that take place around us, such as changes in temperature, humidity, ar
acceleration, are carried out using analog, not digital, processing. In many cases, sensors also u
analog processing. In order for a microcomputer to handle these analog signals, the signals mus
be converted to digital signals. This function is called A/D conversion. Using A/D conversion
allows us to work with temperatures, voices, and other types of data.

41.1 Overview of the A/D Converter

The performance specifications for the A/D converter in the H8/3048F are as follows.

Conversion method Successive comparison

Resolution 10 bits

Input voltage 0to 5V (up to Y. voltage)

Conversion time 134 clocks (when running at 119.4 kHz @ 16 MHz per channel)
Input terminals 8

Start Program oADTRG terminal

Automatic conversion channel Continuous on 1 up to 4 (max.), or 1 individual channel
Interrupt request When conversion is completed on specified channel

Conversion precision +4 LSB (absolute conversion precision)

112

Conversion Module data bus Internal data bus
results
registers

K>
K>

aoepalul sng

Analog power supply
AVge —»

Reference voltage)
Vege — = 10-bit D/A - L

ADCSR
ADCR

ADDRB
ADDRC
ADDRD

AVSS —=

| 1o1s1Bal uosiredwod snisseoong
ADDRA

Control and
\ status registers

ANO —
3
AN, — = >_>
RS L
AN, —> 3 -~ g/8

% | Comparator

Input | ANz —=

i < Control circuit
terminals 3 an, —»|

Jaxa|dninw Gojeuy

Sample &
ANg —* hold circuit le—— /16
ANg —
_AN; —

-

\—> ADI

interrupt signal

External trigger terminal
ADTRG

(Explanation of symbols)

ADCR :A/D control register
ADCSR :A/D control/status register
ADDRA :A/D data register A
ADDRB :A/D data register B
ADDRC :A/D data register C
ADDRD :A/D data register D

Figure 4-2 A/D Block Diagram

A/D converters use a variety of conversion methods, among them parallel, serial-parallel,
successive)z, and integrating types. The H8/3048F uses the successive comparison type, whic
is relatively fast and involves a small circuit scale. Unlike the parallel and serial-parallel methods
it cannot handle signals up to video bandwidths, and it does not boost precisior\asutite
integrating methods do. However, it still offers good performance. Because it is not a stand-alor
A/D converter IC, though, the absolute precision is arahtdSB, so caution is required when
using it. The upper eight bits are accurate, but there is potential for error in the lower two bits.

AJ/D conversion uses voltage from 0 tg.V The maximum V., value is the same as that of AV
which in turn is the same as yYwhich is up to 5 V. If 0 V is input, the digital value following
conversion will be H’'000, and if 5 V is input, the value will be the maximum value of H'3 FF

113

(H'FFCO because it is stored from the MSB). Because the resolution is ten bits, the digital value
changes by 1 if the analog voltage is changed by approximately 5 mV.

Only one converter is used. Conversion can be carried out continuously by changing the input
terminal, but the time required for conversion will be the conversion time for one channel
multiplied by the number of channels. The results for the four channels can be saved in
succession, without going through a program. The results for the individual terminals will be
stored in ADDRA to ADDRD. The relationship between the input terminals and the results
registers is fixed.

ANO or AN4 > ADDRA

114

Bit: 7 6 5 4 3 2 1 0
Address:H'FFFFES | ADF ‘ ADIE ‘ADST ‘ SCAN ‘ CKS ‘ CH2 ‘ CH1 ‘ CHO | ADCSR
Initial value: 0 0 0 0 0 0 0 0
RW: R/W)' RW RW RW RW RW RW RW

Clock selection
0 | Conversion time = 266 clocks (max)

1 | Conversion time = 134 clocks (max)
(The clock is the CPU operation clack.)

Scan Mode
0 | Single mode

1 | Scan mode

A/D Start
0 | A/D conversion stops
1 AID conversion starts
1: Single mode
Automatically cleared to "0" after conversion
has been completed.
2: Scan mode
Carries out conversion on the selected channel
as required until ADST is cleared to "0" by the CPU.
A/D Interrupt Enable Channel Selection
0 Interrupt requests at completion of A/D conversion inhibited Channel selection Description
1 Interrupt requests at completion of A/D conversion enabled CH2 | CH1 | CHO |Single mode| Scan mode
0 0 0 ANO ANO
A/D End Flag 0] o] 1] AN1 [ANOtoANL
Read 0 | Conversion in progress or stopped 0 1 0 AN2 | ANO to AN2
1 | Conversion completed 0 1 1 AN3 | ANO to AN3
Single mode: 1 specified channel 1 0 0 AN4 AN4
_ Scan mode: All specified channels 1 0 1 AN5 | AN4 to ANS
Write 0 |Flag .cleared (after reading) 1 1 0 ANG | AN4 to AN6
1 [Invalid 1] 1] 1] AN7 |ANdtoAN7
The CPU can only clear the flag to "0". It cannot set the flag to "1".
Bit: 7 6 5 4 3 2 1 0
Address:H'FFFFE9 | TRGE ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — | ADCR
Initial value: 0 1 1 1 1 1 1 1

rRW: RW . .

N

Trigger Enable

O | Inhibits the initiation of A/D conversion in response to external trigger input.

1 | Initiates A/D conversion at fall of external trigger terminal (ADTRG) signal.
(ADCSR.ADST bit may remain 0.)

Figure 4-3 A/D Registers

115

AN1 or AN5 > ADDRB
AN2 or AN6 > ADDRC

AN3 or AN7-> ADDRD

41.2 Example of How the A/D Converter is Used

Here, we will look at an application in which conversion is started in response to a request from
the ADTRG terminal, and the conversion results are output to a lamp.

If a falling edge (a shift from high level to low level) is applied toA¥IRG terminal, a
conversion will start.

<Program> (\sec 4\ program \smp_ad 1.src)

If operation involves only one bit, the peripheral function should use a bit name

) that indicates the meaning of the bit, if possible. This makes debugging easier.
; A-D sample . We will use .EQU and register only the name as our method in this example.
; start : ADTRG terminal ADF: .EQU 7
; mode :single , 266 state , ANO BTST $ADF, @ADCSR ; If ADF=0 wait

-CPU 300HA The .BEQU directive can be used to define the bit name and the register name

.INCLUDE "3048equ.h" at the same time.
ADF: ‘EQU 7 TRGE: .BEQU 7, ADCR
TRGE: .BEQU 7TADCR BSET TRGE ; use ADTRG

vector In some cases, this method is easier to understand.
.SECTION C,DATA,LOCATE=0

.DATA.L MAIN
e main program -------------------
.SECTION P,CODE,LOCATE=1000

MAIN
MOV.L #H'FFFFO0,SP ; Set SP(ER7)
JSR @IOINIT
JSR @ADINIT

WAIT_ADF:
BTST #ADF,@ADCSR ; If ADF=0 wait
BEQ WAIT_ADF ; else next
MOV.B @ADDRA,ROL ; VR -> LED
MOV.B ROL,@PBDR ;
BCLR #ADF,@ADCSR ; clear ADF
BRA WAIT_ADF

jommmeeee- I/O initialize sub -------------

IOINIT:
MOV.B #H'FF,ROL ;
MOV.B ROL,@PBDDR ; PB7-PBO output
RTS

e A-D initialize sub -------------

ADINIT:
SUB.B ROL,ROL H
MOV.B ROL,@ADCSR ; ANO,266state,Single,

; No-interrupt

BSET TRGE:8 ; use ADTRG
RTS
.END

This program outputs the uppermost eight bits of the conversion results to the LED of Port B.

The table shows the operation modes, the start of conversion, and the operation following
conversion.

116

Mode Conversion Start Stop

Single mode Only 1 specified channel ADST = 1 or falling edge of Stops automatically

ADTRG after conversion
Scan mode Repeated conversion for ADST =1 or falling edge of When ADST =0 is
up to 4 specified ADTRG written by the program

channels

The terminal to which the analog signal undergoing A/D conversion is input is shared with port 7
The functions of port 7 cannot be used while analog data is being input. If a data register is reac
the analog voltage being input at that time will be read as a digital value.

When theADTRG terminal is used, the functions of the port B7 / TPDREQI1, which is shared
with this terminal, cannot be used. Input to the port, TPC and DMA should be stopped (initial
status), or the terminal should not be used.

A/D conversion ends when 134 clocks or 266 clocks have elapsed. When the ADF bit is set to 1
indicates that the conversion has been completed. Please be aware that the ADF bit is not clear
automatically to O; it must be cleared in the program.

117

M Single mode (Program Start, CH = 0)

ADCSR.ADST bit _| |

ADDRA X Conversion results (ANO)

ADCSR.ADF bit |

134 or 266 clocks T
Conversion starts Conversion ends or is stopped

ADTRG terminal | I

The ADCSR.ADST bit is automatically set by the external trigger.

B Scan mode (Program Start, CH = 1)

ADCSR.ADST bit

ADDRA X Conversion results (ANO) X

ADDRB X Conversion results (AN1)

ADCSR.ADF bit |

134 or 266 clocks 134 or 266 clocks T

Conversion starts Conversion ends or is stopped

Figure 4-4 Conversion Modes

41.3 A/D Conversion Completed Interrupt

An interrupt request (ADI) can be generated when conversion has been completed (ADF = 1) by
setting the ADIE bit.

Let's look at a program in which the conversion completed interrupt (ADI) is used.

118

<Program> (cmp_ad 2. src)

; A-D interrupt sample
; start : ADTRG
; interrupt : ADI enable

; process : ADDRA -> PortB(7 segment LED)
.CPU 300HA
INCLUDE "3048equ.h"

ADF: .BEQ 7,ADCSR

TRGE: .BEQ 7,ADCR

; vector

.SECTION C,DATA,LOCATE=0
.DATA.L MAIN
.ORG H'FO
.DATA.L ADI
jmmmmmeme- main program -------------------
.SECTION P,CODE,LOCATE=H"1000

MAIN
MOV.L #H'FFFFO0,SP ; Set SP(ER7)
JSR @IOINIT
JSR @ADINIT
LDC #0,CCR ; Enable interrupt
LOOP:
SLEEP
BRA LOOP
jrmmmmme A-D initialize sub -------------
ADINIT:
MOV.B #H'40,ROL ; ANO,Single,ADI Enable
MOV.B ROL,@ADCSR
BSET TRGE ; Enable ADTRG terminal
RTS
jemmmmmaen I/O initialize sub -------=-----
IOINIT:
MOV.B #H'08,ROL H
MOV.B ROL,@PADDR ; PA3 output
MOV.B #H'7F,ROL ;
MOV.B ROL,@PBDDR ; PB6-PBO output
BSET #3,@PADR ; PA3 is High level
RTS
R ADI interrupt ------------------
ADI:
PUSH.L ERO
BCLR ADF ; Clear ADF,stop interrupt request
MOV.W @ADDRA,E0
ORC #1,CCR ; Set C bit
ROTXR.W EO ; 6bit data shift right
SHAR.W EO
SHAR.W EO
SHAR.W EO
SHAR.W EO
SHAR.W EO
NOT.W EO ; Invert data
MOV.W #200,R0 /200
DIVXU.B ROL,EO
MOV.W EO,RO
EXTU.W RO ; Change offset address
EXTU.L ERO
ADD.L #PTN,ERO ; Change LED pattern address
MOV.B @ERO,ROL ; Get LED pattern
MOV.B ROL,@PBDR ; Set 7 segment LED
POP.L ERO
RTE
PTN: 54 3 2 10

.DATA.B H'6D,H'66,H'4F,H'5B,H'06,H'3F
.END

The ADIE bit and ADFbit produce the ADI interrupt request. One or the other
of these bits must be cleared to 0 in the interrupt processing program in order
to return from the program. Usually, the ADFbit is cleared. This enables an

interrupt to be requested again after the next conversion has been completed.

-]

The data registered by PTNin the program is the display pattern for
the 7-segment LED. H'6D displays 0, and the subsequent values
correspond to the 1, 2, 3, 4, and 5 patterns.

119

A/D converter CPU
(Request flag) (Interrupt mask)
Atend of conversion (Enabled) : Canceled
ngyi_ynn e : nprygn
ADCSR | ADF | ADE | ! CCR
Lﬁ : Interrupt
} : request received

ADF bits _ ,: _ H0000FO[- Ap|
"0" a"1": Conversion completed (A/D converter is automatically set) |]
"1"a"0": CPU processing ("0" written after reading) | vector _|

Figure 4-5 Interrupt Request and Reception

How A/D conversion is carried out

A/D conversion can be carried out in a number of ways. We will look here at how conversion is
done using the successive comparison A/D converter in the H8/3048F.

The following operations are carried out based on the clock.

(1) Input data is held by the hold circuit to prevent it from being out of synch with the clock
during conversion.

(2) The output from the D/A converter is adjusted so it is the same as the held data.
(3) The output from the D/A converter serves as the result of the A/D conversion.

For instance, if a voltage of 3.0 V is being input to ANO, first let’s output half (2.5 V) of the
voltage (0 to A\, except that AY. = V.= 5 V) applied to the reference voltagge Mrom the

D/A converter. At this point, the D/A converter is using H'8000 as the data. The results compared
with a comparator capable of comparing voltages are fed back to the D/A converter. Because the
result is higher than 2.5 V with this input voltage, H'8000 is left as it is.

You can see from the above that the Bit 1 of the MSB will be 1.

What will happen with the next bit? Because we have an input voltage in the range of 2.5V to 5.(
V, it will next be compared to H'C000. The output voltage from the D/A converter is 3.75 V (2.5

+ 1.25). This time the input resulting from the comparison made by the comparator is smaller, so
this bit will be 0.

120

With an A/D converter that uses successive comparison, the bits are compared one at a time in
way, and the results are confirmed for each individual bit.

With the H8/3048F, it takes about 30 clocks for the sample and hold operation. Successive
comparison is carried out for another 100 clocks or so, so the conversion is completed in a total
134 clocks. The conversion speed and precision are about an intermediate level with this metha

If higher-speed conversion is required, for instance as with video signals, parallel conversion is
used, with the number of comparators matched to the number of bits (1,024 for 10 bits). If highe
conversion precision is required, thE type is used.

1st time 2nd time 3rd time
AVcc=Vcc
=VRer=5V I
Compared
I with 3.75V Compared
) with 3.125 V
ANO terminal=3V
Compared
with 2.5V Low
Low
High
AVss=Vss=0V / / /
Successive comparison register | 100 - |
ADDRA {100 - - (000000]
Sent to ADDRA at end of conversion «—
Lower 6 bits are always 0

Figure 1 Conversion process
Precautions concerning the above information

» The voltage input to the ANn terminal should not exceed AV
Particular attention is required if an amplifier has been installed externally.
Normally, a clamp circuit is connected.
» If the ADF bit is not read, it cannot be cleared to 0.
+ Ifthe ADTRG terminal is being used, the ADST bit does not need to be used for starting.
* The absolute precision ig} LSB.
The lower two bits represent the error margin.

121

The characteristics are largely linear, so compensation is possible.
e The input impedance is 1@k
» There is no ANn terminal switching function.
Reading is possible using this terminal as a dedicated constant-input port.

ADDRnN
[Note] nis Ato D

(This is H'FFCO if ADDRn is used)
H'3FF Full-scale error

Non-linearity -7 ~\Exganding nalog
error / -
»\\5\\" Digital
g§ &
&

Quantizing error

SP4E
?S\’ B\
0
VReg Analog voltage
Offset error
The total error (absolute precision) is + 4 LSB.
ADDRA | MSB LSB/ 000000

Figure 4-6 Conversion precision

4.2 D/A Converter

The D/A converter is the reverse of the A/D converter. This is used to return data processed
digitally in the microcomputer to analog signals.

421 An Overview of the D/A Converter
The performance specifications for the D/A converter in the H8/3048F are as follows.
Resolution 8 bits
Output voltage 0 to 5V (up top), voltage)
Conversion time 1@s (100 kHz)
Output terminals 2
Port 7 is used in common with the output terminal of D/A conversion and the A/D conversion

terminal. When these terminals are being used by the D/A converter, they cannot be used for an
other functions.

122

Port 7 is used in common with
the output terminal of D/A conversion
and the A/D conversion terminal

o | Internal
& | databus
Power supply is Data g
same as A/D converter registers < Module data bus =] >
]
Veer —— U W |E
AVee —
Terminals DA] | ol o
bit D/A c|3 <
8-bit
DAy < —<|< <
o e Control
AVgg register

Control circuit

(Explanation of symbols)

DACR : A/D control register
DADRO : D/A data register O
DADR1 :D/A data register 1

Figure 4-7 DI/A block diagram

D/A data registers |

D/A output

Figure 4-8 Resistance Ladder Circuit

123

4.2.2 Example of How the D/A Converter is Used

Let’s look at a program in which the results which underwent A/D conversion are now undergoing
D/A conversion and being output.

<Program> (smp_da. src)

; D-A sample
; A-D ->D-A
.CPU 300HA
.INCLUDE "3048EQU.H"
ADF: .BEQU 7,ADCSR
TRGE: .BEQU 7,ADCR
; vector
.SECTION C,DATA
.DATA.L MAIN
.ORG H'FO
.DATA.L ADI

jrmmmmmann main program ----------------
.SECTION P,CODE,LOCATE=H'1000

MAIN
MOV.L #H'FFFFO0,SP ;Set SP
JSR @ADDAINIT ;Initialize A-D(single mode),D-A
LDC #0,CCR ;

LOOP:
BRA LOOP

jmmmmmmmnen A-D initialize sub -------------

ADDAINIT:
MOV.B #H'40,ROL ;single, ANO
MOV.B ROL,@ADCSR ;
BSET TRGE ;
MOV.B #H'40,ROL ;enable DAO
MOV.B ROL,@DACR ;
RTS

jrmmmmmnan A-D end interrupt -----=--=-----

ADI:

PUSHW RO ;

BCLR ADF ;stop ADI request
MOV.B @ADDRA,ROL ;ADDRA -> DADRO
MOV.B ROL,@DADRO ;

POP.W RO ;

RTE

.END

124

Bit: 7 6 5 4 3 2 1 0

AddressHFFFFDE | DAOEL [DAoE0 | paAe | — | — | — [— [— | pacr
Initial value: 0 0 0 1 1 1 1 1
RW RW RW RW — — — — —

\; D/A Enable

DAE |DAOEL |DAOEO
0 0 0 D/A conversion inhibited on channels 0 and 1

1 D/A conversion enabled on channels 0 and 1
1 0 D/A conversion enabled on channel 1 only
1 D/A conversion enabled on channels 0 and 1
1 0 0 D/A conversion inhibited on channels 0 and 1
1 — D/A conversion enabled on channels 0 and 1

— 1

Note: If DAE=1, the current consumption for the analog current will
be the amount consumed during operation.

Bit: 7 6 5 4 3 2 1 0
AddressHFFFFsC | — | — | — | — | — | — | — | DASTE| DAsTCR
Initial valge: 1 1 1 1 1 1 1 0
R/W: _ _ — — —_ — — R/W
|
Reserve bit

D/A Standby Enable

This bit enables or inhibits
D/A output in the software
standby mode.

Figure 4-9 DI/A Registers

There are no interrupt requests, as there are with the A/D converter. This function only takes the
values written to the data registers, just as they are, and outputs them as analog voltage.

Precautions regarding usage

» Output is assured at a load resistance of 2 t&¥ M
A buffer is always required.

125

DAN

Voltage follower

Figure 4-10 Buffer circuit

4.3 16-Bit Timer (ITU)

The timer function is used when the user wants to be notified following the number of clocks
specified by the timer. It is not a clock function that counts hours, minutes, and seconds. If a
program is created, a clock function and chronograph function can be provided. In most cases, tf
clock functions provided in VTRs and TVs use are realized by using the timer function we will be
discussing here in the program.

43.1 Overview of the ITU

The 16-bit counters are main units of the timer. There are five of these counters, all of which
function independently, and which increment in synch with the system clock run by the CPU.
When the counter reaches H'FFFF, it returns to 0 and starts incrementing again. There are two
general registers linked to each counter, for a total of ten general registers. The general registers
are compared to the counters, and if they match, an interrupt request is generated, making it
possible to change the status of the terminal. The counters are used for the following purposes:

Interval timer When a given time period has elapsed, notification is made in the
form of an interrupt request.

One-shot pulse output When a given time period has elapsed, the terminal changes only
once.

Toggle output When a given time period has elapsed, the output terminal is
reversed.

The above function sets the time in the general registers.

PWM (pulse width modulation) output ~ The timing and width of output pulses are controlled
and used for D/A conversion.

126

One general register contains the time setting for the interval, and the other contains the time
setting for the pulse width.

The general registers are also used to store the numeric values for the timer counters.
Input capture This measures the intervals and pulse widths of pulses generated externall

The general registers are used to store the values of the timer counters when the external signe
changed.

127

MBasic operation of the 16-bit timer counter

H'FFFF

H'0000

Timer counter (TCNT) value

.

| N1 |

N

N-1

>

WVarious operation modes of the 16-bit timer (ITU)

— aTime

(a) Interval timer

H'FFFF

Set time
(GRA/B)

H'0000

|7

Interrupt requests
generated

(c) Toggle output
H'FFFF

Set time
(GRA/B)

H'0000

Timer output terminal

(e) Input capture

Timer output terminal

Timer output terminal

@(CPU clock)

(b) One-shot pulse output
H'FFFF

TCNT: Timer counter
GRA: General register A
GRB: General register B

H'0000

(d) PWM output
H'FFFF

H'0000 7

L

Pulse width = Stored (2) - Stored (1)
The pulse width is calculated by the number of counts.

The result is unsigned data.

H'FFFF

Timer counter value

automatically stored

in memory — | Stored (1)
(GRA/B)
—/ —— Stored (2)

H'0000
Timer input channel

7

Capture requests generated

Set time (GRA/B)

Interval (GRB)

Pulse width (GRA)

Figure 4-11 Timer Operation

128

Pulses can be calculated by comparing the value with the previous value.

Also, if an external clock is specified as the timer counter clock, the timer counter can be used f
the following purposes:

External event count The number of events occurring externally (changes in signals)
can be counted.

Phase coefficient The count is incremented or decremented based on the phase
differential between the two clocks.

The counter value is the measurement result.

(a) External event count (b) Phase coefficient
Clock input terminal Clock A |
Clock B J I] I I

Figure 4-12 Timer Operation

Timer functions (1 channel)

Clock o, @2, @4, @8, external (TCLKA, TCLKB, TCLKC, TCLKD)
General registers 2

Buffer registers 2 (channels 3 and 4 only)

Interrupt requests Compare match, input capture, overflow

DMA transmission request Possible

Pulse outputs 2 (one-shot, toggle, PWM)
Total of six complementary PWMs and reset PWMs on channels 3
and 4

Output stop function Yes

Pulse inputs 2 (rising edge, falling edge, both edges)

129

4.3.2 Example Using the Interval Timer
Here, we look at a program in which the interval timer function is used to make a lamp flash.

If the lamp were simply to flash at a given time interval, there would be no need to use interrupts,
so let’'s make it flash at two different intervals. If the lamp only flashed once, we could configure
the program without using the interval timer. All we would have to do is wait a certain period of
time and then invert the lamp status. That is why we have to use interrupts in order to make the
two lamps flash at two different times.

130

<Program: Clearing method on channels 0 and 1> (smp_itu 1. src)

; ITU interval timer sample

; 2 chanel
; CPU clock = 16MHz
; ITUO : 20ms
; ITUL:30ms
.CPU 300HA

INCLUDE "3048EQU.H"

.SECTION C,DATA,LOCATE=0

Set stack

;Clear interrupt mask bit

; PB7-PBO output

; Clear GRA comparematch,1/8 clock
; Clear GRA comparematch,1/8 clock

; No use output pin
; No use output pin

; Enable IMIA interrupt
; Enable IMIA interrupt
;62.5*8=0.5us

; 40000 * 0.5us = 20ms cycle
;62.5*8 =0.5us

; 60000 * 0.5us = 30ms cycle

; Start ITU ch0,chl

; Clear IMFA flag
; reverse LED

; Clear IMFA flag
; reverse LED

.DATA.L MAIN
.ORG H'60
.DATA.L IMIAO
.ORG H'70
.DATA.L IMIAL
.SECTION P,CODE,LOCATE=H"'1000
MAIN:
MOV.L #H'FFFFOO,SP ;
JSR @IOINIT
JSR @ITUINIT
LDC #0,CCR
LOOP:
SLEEP
BRA LOOP
jmmmmmes 1/O initialize sub -------------
I0INIT
MOV.B #H'FF,ROL ;
MOV.B ROL,@PBDDR
RTS
jmmmmm—eees 1/O initialize sub -------------
ITUINIT:
MOV.B #H'23,ROL
MOV.B ROL,@TCRO
MOV.B ROL,@TCR1
SUB.B ROL,ROL
MOV.B ROL,@TIORO
MOV.B ROL,@TIOR1
MOV.B #H'01,ROL
MOV.B ROL,@TIERO
MOV.B ROL,@TIERL
MOV.W #39999,R0O
MOV.W R0O,@GRAO
MOV.W #59999,R0O
MOV.W RO,@GRAL
MOV.B #H'03,ROL ;
MOV.B ROL,@TSTR
RTS
jmmmmmemeen IMIAO interrupt -------------
IMIAO:
BCLR #0,@TSRO
BNOT #0,@PBDR
RTE
jmmmmmeeee IMIAL interrupt -------------
IMIAL:
BCLR #0,@TSR1
BNOT #1,@PBDR
RTE
.END

If method (1) is used, either GRA or GRB may be used.
The count is set to 40,000. Because 0 is also counted as
one count, the count should be set to 39,999.

b

The IMFA bit of the TSR is cleared to 0 in the interrupt processing
program. This is because the IMFA bit of the TSR is used for

the interrupt request. Interrupt requests from the timer are enabled
by setting the IMIEA bit of the TIER to 1. If the IMFA bit is set to 1
as the result of a compare match in the enabled state, an interrupt
request is generated. The interrupt request is generated using these
two bits in combination. The interrupt request cannot be disabled
unless one of the two bits is cleared to 0. Normally, the IMFA bit is
cleared. This generates an interrupt request at the next compare
match.

131

Clock input
; TCLKA to TCLKD IMIAO to IMIA4
terminals — Clock selection > IMIBO to IMIB4
@.9/2. agl4. 8/8 > OVIO to OVI4
. . TOCXA4. TOCXB4 < Control logic
Timer input
terminals TIOCAO to TIOCA4 Shared
TIOCBO to TIOCB4 : : : : : control registers ——
<_| TOER K>
Slla||5]]5]|5
Each channel has TCNT, & & & g g <__| TOCR K_ >
GRA/B, and various control = | = =12 = ©
registers EARERRERRERRE <] TSTR KL ¢
— | 2] o [@ =
stislislislls <] TSNC KT 2K >
N ERE -
alla||al|2]|]|a <_| TMDR K_ > @
» w N (= o
<_| TFCR K_ >
Module data bus

(Explanation of symbols)

TOER
TOCR
TSTR
TSNC
TMDR
TFCR

: Timer output master enable register
: Timer output control register

: Timer start register

: Timer synchro register

: Timer mode register

: Timer function control register

Interrupt
requests

Internal data bus

132

Figure 4-13

ITU Block

Bit: 7 6 5 4 3 2 1 0
Address:H'FFFFSO‘ — ‘ — ‘ — ‘ STR4 ‘ STR3 ‘ STR2 ‘ STR1 ‘ STRO ‘ TSTR
Initial value: 1 1 1 0 0 0 0 0
RIW: — — — R/W R/W R/W R/W R/W
Counter Start n
0 | TCNTn operation is stopped
1 | TCNTn counting starts
n is the channel number (0 to 4).
Bit: 7 6 5 2
Address:H'FFFF62 ‘ — MDF ‘ FDIR ‘ PWM4 ‘ PWM3 ‘ PWM2 ‘ PWM1 ‘ PWMO ‘ TMDR
Initial value: 1 0 0 0 0 0 0 0
RW: RW RW RIW RIW RIW RIW RIW
PWM Mode

0 | Channel nis in normal operation

1 | Channel nis in PWM mode

Flag Direction

nisO0to 4

0

OVF is set to "1" if there is an overflow or underflow for TCNT2

1

OVF is set to "1" if there is an overflow for TCNT2

Phase Count Mode

0

Channel 2 is in normal operation

[

Channel 2 is in phase coefficient mode

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only)

133

Bit: 7 6 5 4 3 2 1 0
Address:H‘FFFF63‘ — ‘ ‘ CMD1 ‘ CMDO ‘ BFB4 ‘ BFA4 BFB3 ‘ BFA3 ‘ TFCR

Initial value: 1 1 0 0 0 0 0 0

RIW: — — R/W R/W R/W R/W R/W R/W

Relationship between GRA/B and BRA/B
Bit name | General register | Buffer
BFA3 GRA3 BRA3
BFB3 GRB3 BRB3
BFA4 GRA4 | BRA4
BFB4 GRB4 | BRB4

Buffer operation
0 | GRA/B is operating normally
1 | Buffer operation is taking place for GRA/B and BRA/B

Combination modes 0 and 1

Bit5 | Bit4 _
CMD1 | cMDO Channel 3 and 4 operation modes
0 0
1 Channels 3 and 4 are in normal operation
1 0 Channels 3 and 4 are operating in complementary PWM mode, in combination
1 Channels 3 and 4 are operating in reset interval PWM mode, in combination
Bit: 7 6 5 4
Address:H'FFFF64 ‘ — ‘ CCLR1 ‘ CCLRO ‘ CKEG1 ‘ CKEGO ‘ TPSC2 ‘ TPSC1 ‘ TPSCO ‘ TCRn
Initial value: 1 0 0 0 0 0 0 0 (n=0to 4)
RIW: — RIW RIW R/W RIW RIW RIW RIW

Timer pre-scaler 2 to 0

TPSC2 | TPSC1 | TPSCO | TCNT count clock
0 0 0 2]
1 a/2
1 0 ol4
1 2/8
1 0 0 Counts on TCLKA terminal input
1 Counts on TCLKB terminal input
1 0 Counts on TCLKC terminal input
1 Counts on TCLKD terminal input

@ indicates the CPU clock.
Clock edges 1 and 0

CKEG1|CKEGO| External clock detection edge
0 0 Counts at rising edge

1 Counts at falling edge

1 —_ Counts at both edges

Counter Clear 1 and 0
CCLR1 | CCLRO Resources for clearing TCNT
0 0 Inhibits clearing of TCNT

Clears TCNT at GRA compare match or input capture

1
1 0 Clears TCNT at GRB compare match or input capture
1

Synchronous clear. TCNT is cleared in synch with the clearing
of other timer counters during synchronized operation.

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only) (cont)

134

Bit: 7 6 5 4 3 2 1 0
Address:H'FFFF65 ‘ — ‘ 10B2 ‘ 10B1 ‘ 10B0O ‘ — ‘ I0A2 ‘ I0A1 ‘ I0A0 ‘ TIORN
Initial value: 1 0 0 0 1 0 0 0 (n=0to 4)
Rw: RW RW RW — RIW RW RW
Selection of GRB function Selection of GRA function
1/0 control
I0A2 | I0A1 | IOAO Selection of GRA function
10B2 | IOB1 | I0BO Selection of GRB function
0 0 0 GRA/B is output Terminal output based on compare match inhibited
1 compare register. "0" output at compare match of GRA/B
1 0 "1" output at compare match of GRA/B
1 Toggle output at compare match of GRA/B*
1 0 0 GRA/B is input Input capture to GRA/B at rising edge
1 capture register. Input capture to GRA/B at falling edge
1 0
1 Input capture to GRA/B at both edges
Note * 1 output for channel 2 only.
Bit: 7 6 5 4 3 2 1 0
Address:H'FFFF67 ‘ — ‘ — ‘ — ‘ — ‘ — ‘ OVF ‘ IMFB ‘ IMFA ‘ TSRn
Initial value: 1 1 1 1 1 0 0 0 (n=0to 4)

R/W: —

— RIW)Y RIW)* RI(W)

Input capture / Compare match A

Read | 0 |Input capture, compare match not generated by GRA

[N

Compare match generated by GRA (TCNT = GRA), or input capture generated
(specified edge is input to TIOCA terminal, and TCNT a GRA)

Write

o

Flag cleared (after reading)

.

Invalid

Input capture / Compare match B

Read | 0 |Input capture, compare match not generated by GRB

1 | Compare match generated by GRB (TCNT = GRB), or input capture generated
(specified edge is input to TIOCB terminal, and TCNT a GRB)

Wirite 0 |Flag cleared (after reading)

1 |Invalid

Overflow Flag

Read | 0 |Buffer overflow not generated

Overflow (H'FFFF a H'0000) generated

1
Write 0 |Flag cleared (after reading)
1 |Invalid

* 0" can also be written to clear the flag.

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only) (cont)

135

Bit: 7 6 5 4 3 2 1 0
Address:H'FFFFGB‘ — ‘ — ‘ — ‘ — ‘ ‘ OVIE ‘ IMIEB ‘ IMIEA ‘ TIERn
Initial value: 1 1 1 1 1 0 0 0 (n=0to 4)
RIW: _ — — — — R/W R/W R/W

Input capture / Compare match interrupt enable A

o

Interrupt (IMIA) request in response to IMFA flag inhibited

i

Interrupt (IMIA) request in response to IMFA flag enabled

Input capture / Compare match interrupt enable B

o

Interrupt (IMIB) request in response to IMFB flag inhibited

i

Interrupt (IMIB) request in response to IMFB flag enabled

Overflow interrupt enable

o

Interrupt (OVI) request in response to OVF flag inhibited

[

Interrupt (OVI) request in response to OVF flag enabled

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only) (cont)
Setting the time
There are two ways to set the timer time:

(1) The timer counter can be returned (cleared) to O when the time is up, so that the counts starts
over again.

(2) The general register can be reset to the next time when the currently set time is up.

If method (1) is used, only one time setting can be set for one timer counter. If method (2) is usec
two different times can be set in the two general registers for one timer counter.

The following approach is used to set the time.
Time to be set/ 1 clock cycle = No. of counts

If the time to be set is 20 ms and the clock cycle is 62.5 ns (16 MHz), the number of counts is
320,000. However, this count exceeds the range of the 16 bits.

A function is available that makes it possible for the ITU to divide the clock cycles in advance anc
then reduce the frequency, so let’s use this method.

320000 / 2 = 160000 This doesn’t work, either.
320000/ 4 = 80000 This still doesn’t work.

320000/ 8 = 40000 This will work.

136

(a) Clearing the counter (b) Adding GRAO
H'FFFF H'FFFF
i S GRAl1 GRBO -/~ |
R . ! GRB0+30ms / _
- GRAD GRAO :]
ard / 3 GRA0+20ms
ol :
20ms 20ms 20ms 20ms
30ms 30ms ‘
Two timer channels are necessary Two different times can be set using
in order to set two different times. only one timer channel.

Figure 4-15 Configuration of the Two Interval Timers

Since the last formula will work, we will set the 40000 count in the general register and the
division of clock cycles by 8 in the TCR (timer status register). The TCR is also used to specify
whether or not the counter is to be cleared.

This completes the counter preparation. All that is left is to set the interrupt request to be
generated when the time has elapsed. There is an interrupt enable bit in the TIER (timer interru
enable register), and in the TSR (timer start register) there is a flag bit that provides notification
when the time has elapsed. An interrupt request is generated when both bits are 1. These shou
set to match the general registers being used.

137

<Program: Addition method channel 0> (smp_itu 2. src)

PUSH.W
BCLR
MOV.W

PUSH.W
BCLR
MOV.W
ADD.W
MOV.W
BNOT
POP.W
RTE
.END

#H'03,ROL

ROL,@TCRO

ROL,@TCR1
ROL,ROL
ROL,@TIORO
ROL,@TIOR1
#H'01,ROL
ROL,@TIERO
ROL,@TIER1
#39999,R0O
RO,@GRAO
#59999,R0O
RO,@GRAO
#H'03,ROL
ROL,@TSTR

RO
#0,@TSRO
@GRAO,RO
#40000,RO
RO,@GRAO
#0,@PBDR
RO

RO
#0,@TSR1
@GRA1,RO
#60000,RO
RO,@GRA1
#1,@PBDR
RO

’

; Clear GRA comparematch,1/8 clock
; Not clear,1/8 clock

; No use output pin
; No use output pin

; Enable IMIA interrupt
; Enable IMIA interrupt
62.5*8 =0.5us
; 40000 * 0.5us = 20ms cycle
62.5*8 =0.5us
; 60000 * 0.5us = 30ms cycle

; Start ITU ch0,chl

; Clear IMFA flag

; <—{ If method (2) is used, 40,000 is added here.

; Clear IMFA flag

; <—‘ If the time is 30 ms, the count value is 60,000 by division of cycles by 8.

4.3.3 Example of Using Toggle Output

The ITU timer has a function that reverses the status of the output terminal when the time has
elapsed. This is called toggle output. If the output port is reversed in the interrupt processing
program for the interval timer, pulses can be output in the same way, but because the exception
processing time varies, pulses cannot be output at accurate times. Using the ITU timer enables
accurate output, and requires no time for interrupt processing, so it boosts the performance of the

system as a whole. (See Chapter 7 of the APPENDIX.)

In the following program, a buzzer is attached to the timer output terminal and a 1 kHz sound
produced. With this program, a switch is connected to bit 3 of port 8, and the program is structure

so that toggle output is produced only when this switch goes on.

138

<Program> (smp_itu 3. src)

ITU toggle output sample

.CPU 300HA
INCLUDE "3048EQU.H"

; vector
.SECTION C,DATA,LOCATE=0
.DATA.L MAIN

jmmmmmeees main program -------------------
.SECTION P,CODE,LOCATE=H"1000

MAIN
MOV.L #H'FFFFO0,SP ; Set SP(ER7)
JSR @ITUINIT ;
LOOP:
BTST.B #3,@P8DR ; Check toriger SW (ON?)
BNE LOOP
BSET.B #0,@TSTR ; ITU ch3 start
LOOP2:
BTST.B #3,@P8DR ; Check toriger SW (OFF?)
BEQ LOOP2
BCLR.B #0,@TSTR ; ITU ch3 stop
BRA LOOP ;
R ITU3 initialize sub -------=-----
ITUINIT:
MOV.B #H'23,ROL)
MOV.B ROL,@TCRO ; Clear GRA comparematch,1/8 clock

MOV.B #H'03,ROL
MOV.B ROL,@TIORO ; Toggle output(TIOCAO) <—‘ Low-level output from the TIOCAO terminal.

MOvV.W #999,R0 ; 2kHz = 16MHz / 8 /(999+1)
MOvV.wW RO,@GRAO ; 0.5ms

RTS

.END

The timer is set by setting TIOR to toggle output. All other settings are the same as those for the
interval timer.

H'FFFF

Compare match
at 2 kHz

Timer output terminal | | |

1 kHz output

Figure 4-16 Timer Operation Diagram (Relationship between Toggle Frequency and
Timer Cycles)

Let’s try running the program and stop it while the buzzer is sounding. If you are using a
debugging monitor, input NMI. The CPU waits for a command to be input, but the buzzer

139

continues to sound, right? The timer continues to output pulses on its own (although actually the
pulse output was started by the CPU). The CPU and the timer are completely separate. Dividing
up the work this way makes it possible to configure a system that runs highly efficiently.

Precautions concerning usage

» If a compare match is generated at the same timing that data is being written to GRA/GRB, th
compare match cannot be executed.

¢ The duty for the PWM output cannot be either 0% or 100%.
» The initial value for the timer output is low level.
» Word access must be used for the 16-bit registers of GRA, GRB, and TCNT.

4.4 Serial Communication (SCI)

Exchanging data between the microcomputer and a personal computer is simpler and more relial
if the same method is always used. The personal computer has a COM port and an internal
communication function. Many ports are designed for a modem to be connected, but the
H8/3048F has two functions that are the same as a modem connection. One (channel 1) has a
connection with the personal computer already set up in advance so that data can be written to tl
internal flash memory. The debugging monitor also uses this function to send the current status t
the personal computer and to receive commands, so this function was already at work, without y
knowing it, when the programs we worked with earlier were being debugged. Figure 4-17 shows
the Start-Stop synchronous method of transmitting and receiving data.

CPU Write

!

| Transmission Data Register (TDR) |

— TxD terminal
| Transmission Shift Register (TSR) If—>

Start bit
Output from terminal 1 bit at a time Idle status (
['| paa |]| Data
Input grouped as 8 bits .
RxD terminal Stop bit
| Reception Shift Register (RSR) |.77 P

| Received Data Register (RDR) |

/

CPU Read

Figure 4-17 SCI Operation

140

441

Overview of the SCI

The EIA-232 D (RS-232 C) is a physical standard used when information is exchanged. It does
not govern anything concerning the content of the information. The SCI of the H8/3048F can be
connected to the EIA-232 D simply by exchanging the voltage.

What the SCI can do

» Transmission modes
O Start-Stop synchronization, clock synchronization, smart card (channel 0 only)
0 When using the Start-Stop synchronization method

Data bit length 7/8
Stop bits 1/2
Parity bit Even, odd, none, multiprocessor
Transmission direction LSB or MSB first (this is fixed at LSB first for
channel 1)
Interrupt requests Transmission end / transmission completed / reception

completed / reception error

DMA transmission requests Interrupt requests possible on channel 0 only
(transmission completed / reception completed)

Transmission speed Internal / external (16-times clock to SCK terminal)
O When using clock synchronization
Data 8
Transmission direction LSB or MSB first (this is fixed at LSB first for
channel 1)
Interrupt requests Transmission end / transmission completed / reception

completed / reception error

DMA transmission requests Interrupt requests possible (transmission completed /
reception completed)

Transmission speed Internal / external (1-time clock to SCK terminal)

O When using a smart card (channel 0 only)

Same as for the Start-Stop synchronization method
The data terminals (TxD and RxD) can be shorted externally to form one terminal.

141

Internal data bus

Module data bus

|

Bus interface

RDR [TDR SSR | BRR
N ¢—Uf .
SMR Baud rate |«
Sending/ RO | RSR TSR . enerator o
receiving Sen@ng/ 9 l«— @/16
data terminals %D receiving control e gl64
X
Parity generation { Clock
Parity check
Clock External clock
input/output TEI
terminal TX1 \Unterrupt

(Explanation of symbols)

: Receive shift register
: Receive data register
: Transmit shift registe
: Transmit data registe
: Serial mode register
: Serial control register
. Serial status register
: Bit rate register

RX| [requests

r
r

ERI

Figure 4-18 SCI Block

Here, we will look at Start-Stop synchronization and clock synchronization.

4472

Let’s try carrying out communication with a personal computer using Start-Stop synchronization.
In terms of hardware, the debugging monitor is already running, so we don’t need to do anything

else.

Example Using Start-Stop Synchronized Communication

What we have to be careful of is connecting pull-up resistors to the TxD terminal and RxD

terminal. Without this, the terminal status will be indefinite from the time when the reset is carried
out until the initialization of the SCI, and the personal computer may end up displaying illogical

displays or hanging up the communication software.

Settings should be entered in the following order:

(1) Stop the SCI function.
(2) Determine the transmission speed.
(3) Wait an interval of at least one bit.

142

(4) Boot the SCI function.

If this order is not observed, indefinite data may be output from the transmit data terminal (TxD)
or the first bit received may be result in an error.

Bit: 7 6 5 4 3 2 1 0
Addl’ess:H'FFFFBOl C/A ‘ CHR ‘ PE ‘ OfE ‘STOP‘ MP ‘ CKSI‘ CKSOl SMRn
. . (n=0,1)
Initial value: 0 0 0 0 0 0 0
RIW: RW RW RW RW RW RW RW RW
Stop Bit Length
[o [asopor]
Parity Mode Multiprocessor Mode
[o[Evenparity] [0] functon nited_|
‘ 1 ‘ Odd parity ‘ ‘ 1 ‘ Selection of \uunal‘
Parity Enable
[0 [Addition of parity bit and check inhibited |
‘ 1 ‘ Addition of parity bit and check enabled ‘
Character Length Clock Selection
[o] sbitdata | cks1]ckso| Clock
0 0 2]
o 0 1 o0l4
Communication Mode 1 0 016
Bit: 7 6 5 4 3 2 1 0
Address:H'FFFFB2 | TIE ‘ RIE ‘ TE ‘ RE ‘ MPIE ‘ TEIE ‘ CKEI‘ CKEOl SCRn
Initial value: 0 0 0 0 0 0 0 o (oY
RW: RW RW RW RW RW RW RW RW
Clock Enable 1, 0
ICKE1| CKEQ | Start-Stop syr mode
0 0 |[Internal clock/SCK terminal = input port
1 |Internal clock/SCK terminal = clock output
1 - |External clock/SCK terminal = clock input
CKE1| CKEO| Clock syr mode
0 - |Intemal clock/SCK terminal = synchronized clock out
1 - | External clock/SCK terminal = synchronized clock input

Transmit End Interrupt Enable
‘ 0 ‘\mevmp[requesta\endn(uansm\ssmnUEND\)mmmled ‘

|2 [meruprequestaend fansmison (TEND) enaled_|

Multiprocessor Interrupt Enable

0| Multiprocessor interrupt requests inhibited
(normal reception operation carried out)
1 | Multiprocessor interrupt requests enabled

Receive Enable
[0 Reception operation inibted, terminal s 10 port |
‘ 1 ‘ Reception operation enabled, terminal is RxD ‘

Transmit Enable
‘ 0‘ Tvansm\ss\onuperauon\nmb\ted‘tevmmahs\/Opur\‘
|2 | Transmission operaion enaled, erminal s 1D

Receive Interrupt Enable
‘ 0 ‘ Reception data full interrupt (RXI) requests, reception error interrupt (ERI) requests inhibited ‘
|2 | Receptionceta ful merupt (RX) reqests, fecepin eror interupt(ER) requests encbled |

Transmit Interrupt Enable
0 ‘ Interupt request at completion of ransmission (TX) inhbited ‘

1 ‘ Intemupt request at completion of ransmission (TXI) enabled ‘

Figure 4-19 SCI Registers

143

14MHz 14.7456MHz 16MHz
Bit rate | SMR.CKS [BRR | Error (%) |SMR.CKS|BRR | Error (%) | SMR.CKS|BRR | Error (%)
110 2 248 -0.17 2 64 0.70 3 70 0.03
150 2 181 0.16 2 191 0 2 207 0.16
300 1 90 0.16 2 95 0 2 103 0.16
600 1 181 0.16 1 191 0 1 207 0.16
1200 0 90 0.16 1 95 0 1 103 0.16
2400 0 181 0.16 0 191 0 0 207 0.16
4800 0 90 0.16 0 95 0 0 103 0.16
9600 0 45 -0.93 0 47 0 0 51 0.16
19200 0 15 -0.93 0 23 0 0 25 0.16
31250 0 9 0 0 14 -1.70 0 15 0
38400 0 7 3.57 0 11 0 0 12 0.16

Bit: 7 6 5 4 3 2 1 0

Address:H'FFFFB4 | TDRE ‘ RDRF ‘ ORER ‘ FER ‘ PER ‘ TEND ‘ MPB ‘ MPBT | SSRn
Initial value: 1 0 0 0 0 1 0 0 (n=0,1)

R/W: R/(W) R/(W) R/(W) R/(W) R/(W) R R R/W

Multiprocessor Bit Transfer
‘ 0 ‘ Data transferred where multiprocessor bit \S"O"‘

‘ 1 ‘ Data transferred where multiprocessor bit s "1"

Multiprocessor Bit
‘ 0 ‘ Data received where multiprocessor bitis "0"

\
‘ 1 ‘ Data received where bitis"1" ‘

Transmit End

‘ 0 ‘ Transmission in progress ‘

‘ 1 ‘ Transmission completed (no data left in TDR or TSR) ‘

Parity Error

Read

0 | No parity errors in reception

Parity hits different in Start-Stop synchronization

Write

1
0 | Flag cleared (after reading), error processing completed
1 |Invalid

Framing Error

Read 0 | No framing errors in reception
1 | Stop bits different in Start-Stop synchronization
Write 0 | Flag cleared (after reading), error processing completed
1 |lInvalid

Overrun Error

Read 0 | No overrun errors in reception

1 | Next data received when previously received data is still in RDR (SSR, RDRF = 1)
Write 0 |Flag cleared (after reading), error processing completed

1 |Invalid

Receive Data Register Full

Read

0 |No received data

Received data exists in RDR

Write

1
0 | Flag cleared (after reading), error processing completed
1 |Invalid

Transmit Data Register Empty

Read 0 | Data exists in TDR prior to transmission; data cannot be written

Data can be written to TDR

Inval

id

1
Write 0 | Flag cleared (after reading), error processing completed
1

The flag can only be cleared to "0" from the CPU; it cannot be set to "1" from the CPU.

144

Figure 4-19 SCI Registers (cont)

This is done to make
the terminal go to the High-Z
state following a reset.
Vcc
MAX232 (RS-232C Personal computer
% line driver / receiver) COM port
P91/TxD1 1 [>O 14 XD
PO3/RXD1 2l o] |® RXD
L] [L
T |bcbC | T
_[|converter|—]
T | | T

Figure 4-20 EIA-232D Circuit Diagram

SCl is stopped (SCR = 0)
|
Transmission/reception speed is determined.
Internal: SCR, SKE, BRR, SMR, CKS
External: SCR, SKE (16 times input to SCK)

\
|Other communication modes are determined (SMR, etc.)l

Waits an interval of 1 bit l

Transmission and reception enabled
(SCR.TE=SCR.RE =1)

End

Figure 4-21 Initialization Flowchart

At (1), the TE and RE bits in the SCR (serial control register) are cleared to 0. Next, let's decide

the clock source for CKE 1 and 0. (After a reset, the SCI is not used, so this processing is not
necessary.)

At (2), if an internal clock is being used, the CKS 1,0 and BRR (bit rate register) for the SMR

(serial mode register) are also specified. If an external clock is being used, begin the clock input
BRR does not need to be specified. Set the communication mode to SMR.

145

At (3), the system waits. The time does not have to be precise. Also, if there are no other urgent
tasks that have to be carried out in parallel to this waiting time, let’s wait for the program to
repeat. Initialization of registers other than the SCI may be carried out during this time if you like.

At (4), The TE and RE bits of the SCR are setto 1.

Sending and receiving of data are carried out while confirming the status indicated by the SSR
(serial status register).

Sending data without using interrupts

Before sending data, check the transmission data register to see if there is any data left that has
been processed. The TDRE (transmit data register empty) bit of the SSR indicates the status of t
transmission data register. If this bit is 1, the next data item can be written.

When the data has been written to the transmission data register, the TDRE bit is cleared. Pleas
be aware that the bit must be cleared in order for the data to be sent.

The SSR also has a TEND bit that indicates that there is no data left which has not yet been sent
If you are going to use the energy-saving mode and shut down the line driver / receiver, make su
that this bit is set to 1 first.

(Transmission of 1 byte) (Reception of 1 byte)

Has an error been received?

Is TDR empty?
(SSR, ORER, FER, PER = 1?)

(SSR and TDRE = 1?)

Clear the error flag.
(SSR, ORER, FER, PER =0)

| Write data to be sent to TDR |

| Transmission begins (SSR and TDRE = 0) |

Is there any data in RDR?
(SSR and RDRF = 1?)

End | Read received data from RDR. |

| Data processing is concluded. (SSR and RDRF = 0) |

End

Figure 4-22 Sending and Receiving Flowchart

146

Receiving data without using interrupts

Receiving data without using interrupts is more complicated than sending it, because there is thi
possibility of an error occurring. The following three errors are possible:

* PER (parity error): The parity created in the received data is different from the reception
parity.

* FER (framing error): The last stop bit is low level.

* ORER (overrun error): Reception of the next data was completed without the previous data
being processed.

The RDRF (receive data register full) bit that indicates normal reception and the three error bits
must all be confirmed in the program. If any of the three bits is set to 1, the relevant processing
carried out.

As with transmission, the flag bit is cleared to 0 in the program. For example, if the RDRF bit is
not cleared to 0, it is interpreted as the data not having been processed, and an overrun error w
occur the next time that data is received. Also, data cannot be received if any of the error bits he
been set. Make sure all of the error bits have been cleared to 0.

Let's look here at a program that performs initialization and then sends and receives data.

After the SCI has been initialized, the received data is sent just as it is. This is called “echo-bacl
processing. The program assumes that no reception errors have occurred, and shows only an
overview of the operation. Generally, reception error processing is required, but we will introduc
that in the next interrupt program.

147

<Program> (smp_sci 1. scr)

; SCl chanell sample
.CPU 300HA
INCLUDE "3048equ.h"
TDRE: .BEQU 7,SSR1
RDRF: .BEQU 6,SSR1
ORER: .BEQU 5,SSR1
FER: .BEQU 4,SSR1
PER: .BEQU 3,SSR1
vector
.SECTION C,DATA,LOCATE=0
.DATA.L MAIN
e main program -------------------
.SECTION P,CODE,LOCATE=H"1000
MAIN
MOV.L #H'FFFFOO,SP ; Set SP(ER7)
JSR @SCILINIT ;
LOOP:
BTST RDRF)
BNE TRNS ; if receive data , transmit
MOV.B #H'80,ROL ; if occur receive error
MOV.B ROL,@SSR1 ; clear error flag
BRA LOOP ;
TRNS:
BTST TDRE ; if TDRE=0 wait
BEQ TRNS ;
MOV.B @RDR1,ROL ; get receive data
BCLR RDRF ; clear flag
MOV.B ROL,@TDR1 ; set transmit data
BCLR TDRE ; Transmit start
BRA LOOP ;
jmmmmmmmee SCI1 initialize sub -------------
SCILINIT:
SUB.B ROL,ROL ;
MOV.B ROL,@SCR1 ; Stop SCI1,Use internal clock
MOV.B ROL,@SMR1 ; 8data,1stop,noParity,1/clock
MOV.B #51,ROL ; 9600bps=16MHz/32/(51+1)
MOV.B ROL,@BRR1 ;
MOV.W #280,R0O)
WAIT_1BPS:
DEC.W #1,R0 ; Wait 1 bps(105us)
BNE WAIT_1BPS ;
MOV.B @SSR1,ROL ; dummy read
MOV.B #H'80,ROL ;
MOV.B ROL,@SSR1 ; clear error flag
MOV.B #H'30,ROL ;
MOV.B ROL,@SCR1 ; Start SCI1 <—4 The SCI Start and terminal change to TXD/RxD.
RTS
.END

Sending data using interrupts

When the SSR and TDRE bits are 1, an interrupt request is generated. Writing of the data to be
transmitted and clearing of the TDRE bit should be done in the interrupt processing program.
Also, when the transmission processing for the final data has been completed, the TIE bit should
be cleared. Otherwise, the interrupt request cannot be disabled.

148

Receiving data using interrupts

When the RIE bit is used to enable interrupts, two different interrupt requests are produced. One
for normal data reception, and the other is for error reception. Because the two interrupt reques
are different, two interrupt programs are necessary. There are three types of errors, but the
processing does not distinguish among them. The same interrupt program is run no matter whic
error occurs. The distinction is made and the relevant processing carried out in the interrupt
program.

Let's look at a program that uses reception interrupts.

This program initializes the SClI, clears the C_FLG to 0 and then waits for reception. At this poin
the SLEEP instruction is executed and the power consumption is lowered.

SSR | TDRE‘RDRF‘ORER‘ FER ‘ PER ‘TEND‘

TXI interrupt request 4@

ERI interrupt request

,.:D*RXI TEl interrupt request
interrupt request

SCR | TIE ‘ RIE‘ TE ‘ RE ‘MPIE‘TEIE‘
[When using a multiprocessor bit]

A reception interrupt (RXI) is generated
only when MPIE = 1, and only for the MP = 1 data frame.

Figure 4-23 Interrupt Operation
The processing program can be carried out if an interrupt request is received in this state.

When the C_FLG bit is set to 1 and reception has been carried out normally, echo-back proces:
is carried out.

149

<Program> (smp_sci 2. src)

; SCI chanell sample2

When using interrupts, the TIE and RIE bits in the SCR are set to 1.
This enables interrupts to be used.

In a normal reception interrupt, data processing is carried out and
the RDRF bit is cleared. If the bit is not cleared, the interrupt request
will never stop, so even though processing is returned from

the interrupt program, the interrupt program will continue to be
executed.

b

.CPU 300HA
INCLUDE "3048equ.h"

TDRE: .BEQU 7,SSR1

RDRF: .BEQU 6,SSR1

ORER: .BEQU 5,SSR1

FER: .BEQU 4,SSR1

PER: .BEQU 3,SSR1

C_FLG: .BEQU 0,FLAG

R vector
.SECTION C,DATA,LOCATE=0
.DATA.L MAIN
.ORG HEO
.DATA.L ERI1
.DATA.L RXI1

jmmmmmm——- main program ---------=---------
.SECTION P,CODE

MAIN
MOV.L #H'FFFFO00,SP ; Set SP(ER7)
JSR @SCILINIT
LDC #0,CCR ; clear interrupt mask
BCLR C_FLG H

LOOP:
SLEEP
BTST C_FLG ; check flag
BEQ LOOP ; if receive error occur,next
MOV.B @DT,ROL ; get receive data
BSR TX_DATA ; transmit data
BCLR C_FLG ; clear flag
BRA LOOP ; loop

R] SCI1 initialize sub -------------

SCI1INIT:
SUB.B ROL,ROL ;
MOV.B ROL,@SCR1 ; Stop SCI1,Use internal clock
MOV.B ROL,@SMR1 ; 8data,1stop,noParity,1/clock
MOV.B #47,ROL ; 9600bps=16MHz/32/(51+1)
MOV.B ROL,@BRR1 ;
MOV.W #280,R0O)

WAIT_1BPS:
DEC.W #1,R0 ; Wait 1 bps(105us)
BNE WAIT_1BPS ;
MOV.B @SSR1,ROL ; dummy read
MOV.B #H'80,ROL }
MOV.B ROL,@SSR1 ; clear error flag
MOV.B #H'70,ROL
MOV.B ROL,@SCR1 ; Start SCI1 }
RTS

jmemmmm———- SCI1 transmit -------------------

TX_DATA:
BTST TDRE ; check TDTE bit
BEQ TX_DATA ;
MOV.B ROL,@TDR1 ; set TDR
BCLR TDRE ; transmit
RTS

R] RXI intrerrput ------------------

RXI1:
PUSH.W RO
BCLR RDRF ; Clear RDRF,Stop interrupt
MOV.B @RDR1,ROL ; Get receive data
MOV.B ROL,@DT :
BSET C_FLG H
POP.W RO
RTE

ERI intrerrput -

In error reception, the bit that indicates the error must be cleared to 0.

BCLR ORER ; Clear ORER
BCLR FER ; Clear FER <—{
BCLR PER ; Clear PER
RTE
.SECTION B,DATA,LOCATE=H'FFFF0O0
FLAG: .RES.B 1
DT: .RES.B 1
.END

150

4.4.3 Example Using Clock Synchronization Communication
Clock synchronization

There are two clock synchronization modes. The SKE 1 and 0 of the SCR are used to determin
the mode.

Master mode: The synchronization clock is output from the SCK terminal.

Slave mode: The synchronization clock is input from the SCK terminal.

Mode Only sending enabled Only receiving Both sending and receiving

enabled enabled

Master Clock output when datais Clock output when Clock output when data is sent,
sent enabled and data received at same time

Slave Data sent at clock input, Data received at clock Data sent and received at clock
after TDRE =0 input input, after TDRE = 0

What requires attention here is transmission in the slave mode and reception in the master moc
Data can only be sent in the slave mode after preparation has been made (TDRE = 0) and the c
has been input. If preparation is not completed in time, not all of the eight bits of data will be ser
even though eight clocks have been input, and the clock and data bit position will be off from ea
other.

In the master mode, if the mode is set to reception only, clocks are output as soonas RE=1. T
slave mode should be prepared for transmission ahead of time. The clocks will not stop until RE
0 or an overrun error occurs. If the received data is not processed, two-byte clocks will be outpt
before the overrun error occurs.

Here, we will look at a sample in which transmission and reception are being carried out on the
master side. This example shows clock synchronization communicated being carried out with tw
SCls. On the slave side, preparation has been carried out so that data can be transmitted at an
time.

151

Master side

SCKO

Synchronization clocks output when data is sent

LY —
ROR[____ 1]
RxDO

Data received at the same time that data is sent

Slave side

SCKO

Data sent hefore synchronization clocks are input
(SSR.TDRE=0)

S — T
—

TxDO

152

Figure 4-24 Circuit for Clock Synchronization Communication

<Program> (smp_sci 3. src)

; SCI chanel0 sample
; Clock synchronize
.CPU 300HA
.INCLUDE "3048equ.h"
TDRE: .BEQU 7,SSRO
RDRF: .BEQU 6,SSRO
ORER: .BEQU 5,SSR0O
; vector
.SECTION C,DATA,LOCATE=0
.DATA.L MAIN
jmmmmm main program -------------------
.SECTION P,CODE
MAIN
MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @SCIOINIT ;
MOV.B #'A",ROL ;
TRNS:
BTST TDRE ; if TDRE=0 wait
BEQ TRNS ;
MOV.B ROL,@TDRO ; set transmit data
BCLR TDRE ; Transmit start
RCV:
BTST RDRF ; check receive
BEQ RCV ;
MOV.B @RDRO,ROL ; get receive data
BCLR RDRF ; clear flag
LOOP:
BRA LOOP ;
R SCIO initialize sub -------------
SCIOINIT:
SUB.B ROL,ROL ;
MOV.B ROL,@SCRO ; Stop SCI0,Use internal clock
MOV.B ROL,@BRR1 ; 16MHz / 4 = 4Mbps
MOV.B #H'80,ROL ;
MOV.B ROL,@SMRO ; Clock sync.,1/clock
MOV.B @SSRO,ROL ; dummy read
MOV.B #H'80,ROL ;
MOV.B ROL,@SSRO ; clear error flag
MOV.B #H'30,ROL ;
MOV.B ROL,@SCRO ; Start SCIO
RTS
.END

Precautions regarding usage

* The system must wait one-bit cycle for the initial value.
» If data is written to TDR when TDRE = 0, the data will be lost.

» If a reception error occurs, reception stops. The flag must be cleared before reception can be
resumed.

e Channel 0 has a smart card mode.

MSB first can be set as the priority order for both start-stop synchronization and clock
synchronization.

153

45 DMA Controller

The DMA (Direct Memory Access) controller transmits data in place of the CPU. There are
several ways to copy data between memories and to transmit the data between a memory and a
peripheral function.

451 Various Ways of Sending Data
Data transmission using a program
The MOV instruction is executed twice to run a program that sends data between two memories.

MOV.B @ERO, R2L
MOV.B R2L, @ER1

For example, let’s think about moving a data block. To repeatedly send data, a loop counter can
used that will carry out the above transmission repeatedly. For this operation, the number of clocl
would be as follows:

MOV.L # count, ER3
MOV.L # source, ERO
MOV.L # destination, ER1

LOOP: MOV.B @ERO+, R2L ;6
MOV.B R2L, @ER1 ;5
ADDS #1, ER1 2
DEC.L #1, ER3 2
BNE LOOP 4

It takes 18 clocks for one loop. Even with the more efficient EEPMOV (MOVe to EEProm)
instruction, it takes 8 + 4 x R4, as shown here:

MOV.W # count, R4
MOV.L # source, ER5
MOV.L # destination, ER6
EEPMOV.W

One loop is completed in four clocks, which is relatively fast, but eight clocks are required at the
start. Copying is done at high speed using the EEPMOV instruction, but because addresses are
only incremented, copying is not possible for fields that overlap, such as those shown in figure 4-
25. Also, because the addresses of peripheral function registers are fixed, this method is not
appropriate for sending the data of peripheral functions.

154

DMA (Direct Memory Access) transmission

As long as the memory block fields do not overlap, copying can be done using the EEPMOV
instruction, and when a slightly greater degree of flexibility is required concerning the fields and
address direction, the MOV instruction can be used repeatedly. When higher speed is required,
DMAC can be used. With DMAC, one data block is sent using five clocks (two for reading, two
for writing, and one for internal operation).

Copying between memories can also be done by sending data using a program. If this method i
used, however, the EEPMOV instruction cannot be used if one byte of data is being sent with ez
interrupt request, as with the SCR. Another point that must not be overlooked is the time require
for interrupts. For example, if interrupts are being used in SCI transmitting and receiving, the
program is executed only when transmission has been enabled, or when data has been receive
this method was introduced as being more efficient than constantly monitoring the operation. W
interrupts, however, save of the PC and CCR to the stack field and fetch processing from vector
take place between the interrupt request being issued and the interrupt processing program bei
run. In terms of time, this means between 19 and 41 clocks, which takes between 1.2uand 2.6
when running at 16 MHz. Given that data transmission exception processing takes apsther 3
we are looking at a processing capability of about 330 kbytes per second.

Transmission method | Between memories | Address increment / decrement | Interrupt request| Memory and peripheral function | Transrmission speed
EEPMOV.W Possible Increment Possible Not possible High speed
EEPMOV.B Possible Increment | Not possible Not possible High speed
DMA transmission Possible Increment / decrement | Possible Possible High speed
MOV Possible Increment / decrement | Possible Possible Low speed

[Note] The interrupt request column indicates whether data can be received while data is being transmitted.

Example in which data

cannot be transmitted

using EEPMOV instruction Transmission
source

Transmission
destination

Memory

Figure 4-25 Comparison of Data Transmission Methods and Execution Times

When the DMAC is used to send data, processing is faster because no interrupt response time
required. If six clocks are used (three for internal peripheral functions, two for internal memory
and one for internal operation), the maximum transmission speed of the SCI (1 Mbyte per secor
is exceeded.

155

Data can be transmitted using either the program or the DMAC. So which is better to use?

(1) Sending data between memories
Because interrupts are not generated, the CPU starts the transmission. In this case, the
EEPMOV instruction has a smaller overhead and is faster than DMAC initialization, so it is
better to transmit data using the program. The EEPMOV.B instruction is particularly effective
in cases where it is difficult to receive interrupts while data is being transmitted.

(2) Sending data between peripheral functions and the memory
If interrupt requests can be accommodated, it is better to use the DMAC in this case. (There
are some peripheral functions that cannot be handled with the DMAC.) DMAC transmission
does not involve extra time for operations such as exception processing and stopping interrup
requests, before the interrupt processing program is executed. Of course, it takes ten clocks t
return using the RTE instruction.

156

4572 Overview of the DMAC

The DMAC offers high-level data transmission performance, but the problems are DMAC startu
and the number of channels. The requirements for data transmission are as follows:

Timer IMIA 0O to 3 interrupt requests

SCI communication completed interrupt request

DREQ terminals (two terminals, capable of transmission requests from external sources)

Startup with the program alone

Up to eight channels can be specified. Channel specification cannot be handled like interrupt
requests.

Operation modes (Figure 4-27)

Functions shared with the short address mode (8 channels)

Data transmission between internal peripheral functions and memories

(The address at one end is fixed at an eight-bit address space.)

One byte or word is transmitted for one transmission request.

Idle mode

Both the memory address and 1/O address are fixed.

Up to 64 K of words can be transmitted.

I/O mode

Memory addresses can be incremented and decremented, but the I/O address is fixed.
Up to 64 K of words can be transmitted.

Repeat mode

Memory addresses can be incremented and decremented, but the I/O address is fixed.
Up to 256 words can be transmitted.

When the transmission has been finished, operation returns to the beginning and is repeatec
Functions shared with the full address mode (4 channels)

Data can be transferred over the entire memory space (16 MB).

Normal mode

Data is transferred between memories.

Auto request and external request

Memory addresses can be incremented and decremented.

Block transmission mode

ITU or external request

The specified number of blocks (up to 256) is transferred for each transmission request.

157

The maximum number of blocks is 64 k times.

4.5.3 Example Using the Full Address Mode

This example shows data being transmitted between memories, using the full address mode. Wh
the transfer has been completed, an interrupt is produced. The transmission source address is
ROM_TOP, and the transmission destination address is RAM_TOP. The transmission includes 4
bytes of data.

158

<Program: Data transfer between memories> (smp_dma 1. src)

300HA

"3048equ.h"
7,DTCROA
7,DTCROB

; DMA sample

; start : Auto
.CPU
.INCLUDE

DTE: .BEQU

DTME: .BEQU

; vector
.SECTION
.DATA.L

jrmmmmme—- main program

C,DATA,LOCATE=0
MAIN

.SECTION P,CODE,LOCATE=H'1000
MAIN

MOV.L #H'FFFFO0,SP ; Set SP(ER7)

JSR @DMACINIT

BSET DTE

BSET DTME
LOOP:

BRA LOOP
jmmmmmmn DMAC initialize sub -----------
DMACINIT:

MOV.L #ROM_TOP,ERO

MOV.L ERO,@MAROA

MOV.L #RAM_TOP,ERO

MOV.L ERO,@MAROB

MOV.W #40,R0

MOV.W RO,@ETCROA

MOV.B #H'16,ROL

MOV.B ROL,@DTCROA

MOV.B #H'10,ROL

MOV.B ROL,@DTCROB

RTS

.SECTION C,DATA
ROM_TOP:

.DATAL 1

.DATAL 2

.DATAL 3

.DATAL 4

.DATAL 5

.DATAL 6

.DATAL 7

.DATAL 8

.DATAL 9

.DATAL O

.SECTION B,DATA
RAM_TOP:

.RES.L 10

.END

159

Internal address bus

Internal interrupts I m
IMIAQ —»| = Address buffer |<

IMIAL —
IMIA2 —>] =/ Operation unit \Q
IMIA3 —*

TXIO —™
RXI0 —™

MAROA
IOAROA
ETCROA

DREQO —={ Control logic Channel 0
DREOL >
TENDQ ~+—
TEND1 =

Interrupt signals

DENDOA ~—| MARIA
DENDOB <—|
DEND1A = DTCRI1A Channel 1A IOARIA
DEND1B =
DTCR1B Channel 1 ETCRI1A
MAR1B

\ Channel 1B IOAR1B
Data buffer | ETCR1B

Internal data bus

(Explanation of symbols)

DTCR : Data transfer control register
MAR : Memory address register
IOAR : I/O address register

ETCR : Transmission count register

Modular data bus

Figure 4-26 DMA Block (1/2)

160

(Short address mode

)

MAR |~

Memory

IOAR | Peripheral function

Request : Interrupt or DREQ terminal

Transfer : 1 byte/word for each request

Address : Peripheral functions are fixed,
memory can be incremented/

Memory

Peripheral function

Address fixed

decremented (a) Idle mode
Memory U Memory
Peripheral function Peripheral function
64 K max. 256 max. (repeated, no end)
(b) I/0 mode (c) Repeat mode

C

Full address mode

)

MARA -

Memory

MARB -

L~

Memory

Request : Interrupt or DREQ terminal, CPU
Transfer : 1 byte/word for each request (burst for CPU)
Address : Memory can be incremented/decremented

Memory

Memory

64 K max.
(a) Normal mode

Peripheral function

Memory

256 blocks
max.

1 block transferred
for 1 request

256 blocks max.
(b) Block mode

Up to 256
for 1 block

Figure 4-27 DMAC Transmission Modes

161

Bit: 7 6 5 4 3 Bit
Address:H'FFFF27 ‘ DTE ‘ DTSz ‘ SAID ‘ SAIDE ‘ DTIE ‘ DTS2A ‘ DTS1A ‘ DTSO0A H DTME ‘ — ‘ DAID ‘ DAIDE ‘ T™S ‘ DTS2B ‘ DTS1B ‘ DTSOB ‘ HFFFF2F:Address
Initial value: 0 0) 0 0 0 0 0) 0 0 0 0 0 0 Initial value
RW: - RW RIW RW RIW RIW RIW RW RIW RW RIW RIW RIW RW RIW RIW RW RW

T T =
Data Transfer Select 0A
[0] Normaimode | ‘
1 | Block transfer mode Data Transfer Select 2B to 0B
DTS2B|DTS1B|DTSOB Normal mode Block transfer mode

Source Address Increment / Decrement

Data Transfer Select 2A, 1A
Set to "1" for both

Data Transfer Interrupt Enable
‘ 0 ‘ Interrupt requests in response to DTE bit inhibited
‘ 1 ‘ Interrupt requests in response to DTE bit enabled

SAID [SAIDE| Increment / decrement enable
0 0 MARA fixed
1 Increment: When DTSZ = 0, MARA incremented by 1 after transfer
When DTSZ = 1, MARA incremented by 2 after transfer
1 0 MARA fixed
1 Decrement: When DTSZ =0, MARA decremented by 1 after transfer
When DTSZ = 1, MARA by 2 after transfer

0 0 0 Auto request (burst mode)

Starts at interrupt of compare match or
input capture A of ITU channel 0

1 | Cannot be used

Starts at interrupt of compare match or
input capture A of ITU channel 1

Auto request
(cycle steal mode)

Starts at interrupt of compare match or
input capture A of ITU channel 2

1 | Cannot be used

Starts at interrupt of compare match o
input capture A of ITU channel 3

1 0 0 | Cannot be used Cannot be used
1 | Cannot be used Cannot be used

1 0 | Starts at fall of DREQ Starts at fall of DREQ
1 | Starts when DREQ goes lowlevel | Cannot be used

Transfer Mode Select

Data Transfer Size

Data Transfer Enable
u Data transfer inhibited
Data transfer enabled

[Note] When using the full address mode, the transfer method is determined using two registers.

n Byte size transfer
Word size transfer

\ 0 \ When using block transfer mode, the block area is the destination slde.\
\ 1 \ When using block transfer mode, the block area is the source side. \

Destination Address Increment / Decrement

DAID |DAIDE| Increment / decrement enable
0 0 MARB fixed
1 Increment: When DTS; MARB incremented by 1 after transfer
When DTS. MARB incremented by 2 after transfer
1 0 MARB fixed
1 Decrement: When DTSZ = 0, MARB decremented by 1 after transfer
When DTSZ = 1, MARB by 2 after transfer

Data Transfer Master Enable

[0] Data transfer inhibited

Data transfer enabled

162

Figure 4-28 DTCR in Full Address Mode

Bit: 7 6 5 4 3 2 1 0
Address:H'FFFFZ?‘ DTE ‘ DTSZ‘ DTID ‘ RPE ‘ DTIE ‘ DTS2 ‘ DTS1 ‘ DTSO ‘

Initial value: 0 0 0 0 0 0 0 0
RIW: R/W R/W R/W R/W RIW R/W R/W RIW
[
Data Transfer Select
DTS2 | DTS1 | DTSO Startup element for data transfer
0 0 0 Starts at interrupt of compare match or input capture A of ITU channel 0
1 Starts at interrupt of compare match or input capture A of ITU channel 1
1 0 Starts at interrupt of compare match or input capture A of ITU channel 2
1 Starts at interrupt of compare match or input capture A of ITU channel 3
1 0 0 Starts at SCIO transmission completed interrupt
1 Starts at SCIO reception completed interrupt
1 * Specifies full address mode transfer

Data Transfer Interrupt Enable
0 | Interrupt requests in response to DTE bit inhibited.
1 | Interrupt requests in response to DTEL bit enabled

Repeat Enable
RPE | DTIE | Explanation

0 0 Transfer in /10
mode

Ay

1 0 | Transfer in repeat mode
1 Transfer in idle mode

Data Transfer Increment / Decrement
0| Increment: When DTSZ = 0, MAR incremented by 1 after transfer
When DTSZ =1, MAR incremented by 2 after transfer

1| Decrement: When DTSZ =0, MAR decremented by 1 after transfer
When DTSZ =1, MAR decremented by 2 after transfer

Data Transfer Size
0 | Byte size transfer
1 | Word size transfer

Data Transfer Enable
0 | Data transfer inhibited
1 | Data transfer enabled

Figure 4-29 DTCRA in Short Address Mode

163

Bit:
Address:H‘FFFFZF‘ DTE ‘ DTSZ‘ DTID ‘ RPE ‘ DTIE ‘ DTS2 ‘ DTS1 ‘ DTSO ‘

7

6

5

4 3 2 1 0

0
R/W

0
R/W

0 0 0 0 0
R/W R/W R/W R/W R/W

Initial value: 0
R/W: R/W
]

Data Transfer Select

DTS2 | DTS1 | DTS0O Startup element for data transfer
0 0 0 Starts at interrupt of compare match or input capture A of ITU channel 0
1 Starts at interrupt of compare match or input capture A of ITU channel 1
1 0 Starts at interrupt of compare match or input capture A of ITU channel 2
1 Starts at interrupt of compare match or input capture A of ITU channel 3
1 0 0 Starts at SCIO transmission completed interrupt
1 Starts at SCIO reception completed interrupt
1 0 Starts when falling edge of DREQ terminal is input
1 Starts when DREQ terminal low level is input

Data Transfer Interrupt Enable

0

Interrupt requests in response to DTE bit inhibited

1

Interrupt requests in response to DTE bit enabled
Interrupt requests only when DTE =0

Repeat Enable

RPE | DTIE | Explanation
0 0 .
1 Transfer in /0 mode
1 0 Transfer in repeat mode
1 | Transfer in idle mode

Data Transfer Increment / Decrement

When DTSZ = 1, MAR decremented by 2 after transfer

0 | Increment: When DTSZ = 0, MAR incremented by 1 after transfer
When DTSZ = 1, MAR incremented by 2 after transfer
1 | Decrement: When DTSZ =0, MAR decremented by 1 after transfer

Data Transfer Size

0

Byte size transfer

1

Word size transfer

Data Transfer Enable

0

Data transfer inhibited

1

Data transfer enabled

164

Figure 4-30 DTCRB in Short Address Mode

45.4 Example Using the Short Address Mode
Let's try using a DMA transfer to send data that causes an LED to light on the ITU interval timer

Settings are entered first for the DMAC and then for the ITU. Otherwise, the interrupt request
from the ITU would arrive at the CPU too early. The display consists of eight repeated patterns.

this case, the DMA transfer will never end if we use the repeat transfer mode, so we do not nee
interrupt processing.

<Program: Transfer data being sent> (smp_dma2. src)

; DMA sample
; start : ITUO interval timer
.CPU 300HA
INCLUDE "3048equ.h"
DTE: .BEQU 7,DTCROA
; vector
.SECTION C,DATA
.DATA.L MAIN
e main program ------------=------
.SECTION P,CODE
MAIN
MOV.L #H'FFFFO0,SP ; Set SP(ER7)
JSR @IOINIT
JSR @DMACINIT
BSET DTE
JSR @ITUINIT
LOOP:
BRA LOOP
jmmmmeenes DMAC initialize sub -----------
DMACINIT:
MOV.L #PTN,ERO
MOV.L ERO,@MAROA
MOV.B #PBDR,ROL
mgx\?v E&LO?ASQEOA H'0808 is set for ETCROA. The number of_words being transferred is 8, but because_
Mov:w RO,@EfCROA «———— we are using the rgpgat modg, Whgn allle|ght wqrds have been transferred, processing
MOV.B #H10,ROL returns to the beginning, so eight times is specified for both the upper and lower 8 bits.
MOV.B ROL,@DTCROA
RTS
jo————- ITU initialize sub -------------
ITUINIT:
MOV.B #H'23,ROL
MOV.B ROL,@TCRO ; Clear GRA comparematch,1/8 clock
SUB.B ROL,ROL
MOV.B ROL,@TIORO ; No use output pin
MOV.B #H'01,ROL
MOV.B ROL,@TIERO ; Enable IMIA interrupt
MOV.W #39999,R0 ;62.5*8=0.5us
MOV.W R0,@GRAO ; 40000 * 0.5us = 20ms cycle
BSET #0,@TSTR ; Start ITU chO
RTS
jmmmmmmmmen 1/0 initialize sub -------------
IOINIT:
MOV.B #H'FF,ROL ;
MOV.B ROL,@PBDDR ; PB7-PBO output
RTS
PTN:
.DATA.B H'80,H'40,H'20,H'10,H'08,H'04,H'02,H'01
.END

Do you see anything strange about this program? If you do, you can consider yourself a
professional in interrupt processing. What is strange is that, although interrupts are being
requested from the ITU, the | bit in the CCR of the CPU remains masked. If an interrupt is carrie

165

out, the | bit will have been cleared by the LDC instruction. But in this program, we don’t see that
happening. Even so, the DMAC is running.

This is because, as shown in figure 4-31, the interrupt request signal is delivered to the DMAC
without fail, and if the DMA has not been set to request a transmission, the interrupt request sign
is rerouted to the CPU. The | bit is the CPU’s problem and has nothing to do with the DMAC.

Let’s try running the program. If there is a switch attached to the NMI, trying operating it. The
program stops at the debugging monitor function. However, even though the program has stoppe
the DMAC continues to operate, so the lamp flashes. Data can be transferred without relying on
the CPU, which significantly improves the performance of the system.

Precautions concerning usage

e The DMAC should be initialized first, before peripheral units.
« DTCR 0 Ais used to switch between the full and short address modes.
e The SCI must always be accessed for SCI DMA requests.

166

Read Write
Bus CPU X DMAC X DmAC X cPU
P
Interrupt request flag | |
Interrupt request Flag cleared

.. automaticall
Transfer begins in Y

a minimum of 4 clocks

Interrupt request —| DMAC - INTC —_— CPU

The interrupt request arrives first at the DMAC,
and if specified, the DMA transfer begins.
The DMAC is initialized first, and then other peripheral units.

If data transfer processing is carried out in the interrupt processing program,
19 to 41 clocks of exception processing time is included in the interval
between the interrupt request being issued and the data being sent.

Also, the flag must be cleared in the program.

Transfer Transfer
Bus Ordinary program X Exception processing Read X Write X Flag clearing, etc.
Interrupt request flag | |
Interrupt request Flag cleared
Exception processing time —— automatically

=19 to 41 clocks

Figure 4-31 Interrupt Request and DMA Transfer Request

EEPMOV instruction

The EEPMOV instruction is the MOVe to Electrical Erasable and Programmable ROM
instruction.

Essentially, this instruction is used to write data to an EEPROM page, which is where the name
comes from. The EEPROM is a ROM that can be rewritten in units of one byte, but writing data

167

it takes a relatively long time of 10 ms. In order to reduce this time, data is grouped in 32 bytes ot
64 bytes called a page, and CPU is designed so that one page can be rewritten at one time, in th
same 10 ms required to rewrite one byte. The EEPMOV instruction is used to handle rewriting of
these pages.

The H8/3048F does not contain an EEPROM, however. The EEPROM instruction is used simply
to copy memory blocks.

The EEPMOV instruction always uses ER5 for the transfer source address, and ERG6 for the
transfer destination, and R4 or R4L is used as the counter. No other registers are used.

The EEPMOV.B instruction can handle blocks of up to 256 bytes, and the EEPMOV.W
instruction can handle blocks of up to 65,536 bytes.

These two instructions not only handle different block sizes, but they also respond differently to
interrupts. Even if the | bit of the CCR has been cleared to 0, the EEPMOV.B instruction ignores
interrupt requests if it is currently operating, but the EEPMOV.W instruction accommodates them

The following programming is used to generate an interrupt request.

LOOP:
EEPMOV.W
MOV.W R4,R4
BNE LOOP

This enables copying to be carried out with no problem even if an interrupt request is issued.

168

4.6 WDT

The WDT is used to detect a runaway system. It acts as a sort of watchdog, to keep the system
operating safely. We say it “detects” a runaway system, but it does not actually use multiple CP!
to produce a majority decision. It uses a very simple method of monitoring to see if the program
running within the address range that has been created.

46.1 Overview of the WDT

The WDT is an eight-bit timer. The counter is configured so that it counts system clocks. So if le
alone, it will overflow at some point. If that happens, it is configured so that it resets itself. In
other words, the WDT continues to operate normally as long as the counter returns to 0 before «
overflow occurs, and if an overflow does occur, it considers a runaway system to have been
detected.

At this point, it notifies an external source that it has been reset, througESKketerminal.
Because thRESO terminal is open drain, a pull-up resistance should be connected externally.
(The H8/3052F does not have RESO terminal.)

This function is designed to keep the system operating normally. If the WDT is stopped by
mistake, or the counter is accidentally cleared, the WDT will be unable to carry out its detection
function, so steps are taken to protect the WDT when data is written to its registers.

TCNT value

4
Overflow occurs
HFF Femmmmmm e

TCNT cleared to 0

S

‘ - Time

RESO I_,
l«—]
132 status

Figure 4-32 WDT operation

169

Overflow

TCNT
Read/ Internal data bus
Interrupt signal Interrupt nternal d

write

(WOVI) (when using interval timer) | control — control

Internal clocks

- 2/2
RSTCSR

l«——— @/32

le—— @/64
Reset

(internal, external)

Reset control Clock

Clock [© 0/128
selection j«——— @/256
le—— @/512

|« /2048

|l /4096

(Explanation of symbols)
TCNT : Timer counter
TCSR : Timer control / status register
RSTCSR : Reset control / status register

Figure 4-33 WDT Block

170

4.6.2 Program Example Showing Reset Using the WDT
The following program introduces an example of register access.
This program confirms that the WDT has overflowed and has been reset, and switches the LED

<Program> (smp_wdt 1. src)

; WDT samplel
; watch dog timer
.CPU 300HA
.INCLUDE "3048equ.h"
; vector
.SECTION C,DATA,LOCATE=0
.DATA.L MAIN
e main program -------------------
.SECTION P,CODE,LOCATE=H'1000
MAIN
MOV.L #H'FFFFO0,SP ; Set SP(ER7)
JSR @IOINIT ;
MOV.B @RSTCSR+1,R0L ;
BTST #7,ROL ; check WRST
BEQ LED_ON ;
JSR @WDTINIT ;
LOOP:
BRA LOOP ;
e WDT initialize sub ----=-=-=----
WDTINIT:
MOV.W #H'5A40,R0 ; output RESO
MOV.W RO,@RSTCSR)
MOV.W #H'A566,R0 ; watch dog timer
MOV.W RO,@TCSR ; 1/2048(32.768ms)
RTS
e WDT counter clear sub -----------
WDTCLR:
MOV.W #H'5A00,R0 ; clear counter
MOV.W RO,@TCNT ; don't occur reset
RTS
jmmmmmmmmn 1/O initialize sub -------------
IOINIT
MOV.B #H'FF,ROL 3
MOV.B ROL,@PBDDR ; PB7-PBO output
RTS
jommmen LED ON sub(Find WDT reset) --------
LED_ON:
MOV.B #H'FF,ROL)
MOV.B ROL,@PBDR ; All LED on
END_LP:
BRA END_LP
.END

171

Bit: 7 6 5 4 3 2 1 0

Address:H'FFFFAS | OVF ‘WD/ITI' ‘ TME ‘ — ‘ — ‘ CKS2 ‘ CKS1 ‘ CKSO0 | TCSR
Initial value: 0 0 0 1 1 0 0 0
RW: R/WY RW RW — — RW RW R/W

Timer Enable Clock Select

0 | Timer stopped (TCNT is H'00) CKS2| CKS1| CKS0| Operation

1 | Timer operating 0 0 0 | Counts at #/2

0 0 1 Counts at 8/32
Timer Mode Select 0 1 0 | Counts at a/64
0 | Interval timer mode 0 1 1 | Counts at #/128
1 | Watchdog timer mode 1 0 0 | Counts at 2/256
Overflow Flag 1 0 1 Counts at @/512
Read 0 |Overflow has not occurred. 1 L 0 Counts at 6/2048
1 | Overflow has occurred (H'FF a H'00). 1 1 1 Counts at #/4096
Write 0 |Flag cleared (after reading)
1 |Invalid

The flag can only be cleared to "0" from the CPU; it cannot be set to "1" from the CPU.

Bit: 7 6 5 4 3 2 1 0
Address:H'FFFFA8 |WRST ‘RSTOE‘ — ‘ — ‘ — ‘ — ‘ — ‘ — | RSCSR
Initial value: 0 0 1 1 1 1 1 1

RW: RI(W) R/W

Reset Output Enable

0 | Resetsignalis not output to external source.

1 | Resetsignalis output to external source.

Watchdog Timer Reset

Read 0 |Overflow has not occurred.

1 | Overflow has occurred (H'FF a H'00).
Write 0 |Flag cleared (after reading)

1 |Invalid

"0" can be written to bit 7 in order to clear the flag.

Figure 4-34 WDT Registers

172

When writing When reading
Address Data Address Data
15 0 7 0
TCNT HFFFFAS || H'5A | Write data | | H'FFFFA9
TCSR H'FFFFAS || H'A5 | Write data | | H'FFFFAS
RSTCSR|WRST bit HFFFFAA|| H'AS \ H'00 | | HFFFFAB
RSTOE bit | HFFFFAA || H'5A | Write data |

Figure 4-35 Register Access Protection

173

4.6.3 Example Using an Interval Timer through the WDT

The WDT can also be used as an interval timer. Only the up-counter is available, the interval tim
is determined by deciding the system clock frequency.

The following program increments the count for the LED display connected to the port each time
an overflow occurs.

<Program> (smp_wdt 2. src)

; WDT sample2
. interval timer
.CPU 300HA
INCLUDE "3048equ.h"
vector
.SECTION C,DATA,LOCATE=0
.DATAL MAIN
.ORG H'50
.DATA.L WDT_INT
e main program -------------------
.SECTION P,CODE,LOCATE=H'1000
MAIN
MOV.L #H'FFFFO0,SP ; Set SP(ER7)
JSR @IOINIT ;
JSR @WDTINIT ;
LDC #0,CCR ; clear interrupt mask
LOOP:
SLEEP ;
BRA LOOP ;
e WDT initialize sub -------------
WDTINIT:
MOV.W #H'A527,R0 ; interval timer
MOV.W RO,@TCSR ; 1/4096
RTS
R 1/O initialize sub -------------
IOINIT
MOV.B #H'FF,ROL ;
MOV.B ROL,@PBDDR ; PB7-PBO output
RTS
jmmmmmme- WDT interrupt routine -----------
WDT_INT:
PUSH.W RO ;
MOV.B @TCSR,ROL ; dummy read
MOV.W #H'A527,R0O ; Over flow flag clrear
MOV.W RO,@TCSR ; stop interrupt request
MOV.B @PBDR,ROL ;
INC.B ROL ;
MOV.B ROL,@PBDR ;
POP.W RO ;
RTE
.END

174

Summary

All of the internal peripheral functions provided in the H8/3048F are easy to use and offer
sophisticated performance almost beyond what is needed. However, they are ultimately parts ¢
whole. In the same way that the instruments of an orchestra work together to produce a sound \
greater breadth and depth, these functions can be used in combination to enhance their
performance to even greater levels. We hope you will explore for yourself, and discover new an
exciting ways to put the H8/3048F to work for you.

175

176

Chapter5 PROGRAMMING IN THE C LANGUAGE

All programs up to this point have been assembler language programs. However, assembler
instructions differ among microcomputers, and considerable effort is necessary to become famil
with assembler. In addition, often many instructions must be combined to perform even simple
tasks, so that the source program tends to contain many lines.

Hence efforts have been made to program using languages which are more nearly like human
conversation than like the language of computers. Interpreters convert the source program into
machine language while executing the code; there are BASIC and C language interpreters.
Compilers convert the source code into machine language and store it in memory before
execution; there are compilers for source code written in BASIC, FORTRAN, PASCAL, C, and
other languages. A variety of different high-level languages have appeared, but at present the C
language in compiled form is most often used; and on personal computer platforms also, progra
are typically developed in the C language or in the C++ language.

5.1 The C Language and the H8 Microcomputer

Programs can be developed in the C language to be run on microcomputers in embedded
applications as well. Of course the C language can be used for development of programs for the
H8/300H also. Advantages to using the C language include the following.

(1) C is a high-level language which enables development of programs without taking the
hardware environment (CPU register configuration, memory map) into account.

(2) C is highly portable; it is easy to port (modify) programs so that they can be run on other
systems.

(3) By using pointer functions, direct hardware operations are also possible. Memory contents ¢
be manipulated using addresses rather than variable names.

However, there are also disadvantages:

(1) As a result of C language specifications, there is a high possibility of redundant instruction
combinations.

(2) The language specifications are not uniform in all respects, so that care must be exercised
when porting programs.

If the machine language instructions for different CPUs are different, compilers will also be
different for different CPUs. A C compiler used in development of programs which run on
personal computers cannot be used to develop programs to be run on the H8/300H. A C compil
for the H8/300H is needed. Because there are parts of the C language specification that are not
determined by ANSI, such differences can also cause problems when porting a program.

With the above as background, let us review procedures for writing C language programs.

177

511 Standard I/O

When starting to learn the C language, a student almost always learns to produce a program like
the following, to be run on a personal computer.

#include <stdio.h>
main()
{
printf ("\nHello.");
}
When this is compiled and executed, "Hello" is displayed on the screepriiitie function
does the work to display the text. Tiwntf function is in the standard 1/O library. If a program

does not run correctly, often the values of variables targeted in debugging are displayed on the
screen using this function.

However, there is no so-called standard I/O in a microcomputer for use in embedded application:
This is because not all products incorporating microcomputers are provided with a keyboard and
display. Hence in program development, C language source code can be written according to
ANSI standards, but standard 1/O library functions sugbriasf andscanf cannot be used. If

the above program is compiled by a C compiler for the H8/300H, no error occurs, but nothing
happens upon execution.

The printf function should be regarded as a state with only an external framework, but no
internal core. If the internal core is programmerhtf andscanf can also be used.

5.1.2 Variable Sizes

Next we consider variable types. C is called a "procedural language"”, in which variables
(receptacles for data) must be prepared in advance, and their sizes must be determined.

main ()
{
inta, b, c;
a =100 ; b =2000;
c=a*b;
printf ("\n ¢ = %d",c);
}

When we look at the screen to see what is displayed, we find that on some systems the correct
result, 200000, is displayed, while on other systems 3392 is displayed.

It turns out that the size of tlret type is "processing system-dependent” and that the number of
bits held by such a variable is not fixed. This is left up to the developer of the C compiler.

178

Table 5.1 Integer Types and Their Ranges

Integer Types Ranges

signed char, char -128t0 127

unsigned char 0 to 255

short —32768 to 32767

unsigned short 0 to 65535

int —32768 to 32767

unsigned int 0 to 65535

long —2147483648 to 2147483647
unsigned long 0 to 4294967295

The integer variable types recognized by the C compiler for the H8/300H are as shown in table
5.1.

The result when using the C compiler for the H8/300H is 3392.

The compiler does not check for overflow; data handling entrusted to the programmer.

5.2 Tasks Prior to Calling main

Normally in order to execute a program on a personal computer, either a command is input, or t
mouse is used to double-click an icon. On doing so, execution generally begins frogirthe
function. However, this is not possible in the case of a microcomputer embedded in a product ol
equipment, and so, as explained above when discussing resets, the starting address of the prog
is recorded in the vector table.

Let's take a look at differences between programs created for a personal computer, and prograr
intended to be run by an embedded microcomputer. If you write programs to run on a personal
computer, it is not necessary to pay attention to the following explanation.

A personal computer has an OS, which is just a management program. This program performs
centralized management of the computer's resources. This includes the hard disk, memory,
display, and keyboard. What this means is that, when executing a program for example, when a
command is input or the mouse is double-clicked, a program is retrieved from the hard disk and
executed. The job of the OS is to read the program from the hard disk and store it in RAM, then
move the program counter to the starting address. Or, if the standard I/O library is used to exec

printf ("abc");
scanf ("%d", &abc);

then "abc" is displayed on the screen, and the system waits for keyboard input. This operation ¢
be performed even though detailed instructions are not given. In order to output this information

179

the screen, the "abc" character pattern needs to be written to the memory used for display; even
it can be displayed simply by using tkentf instruction. Similarly wittscanf , although the
keyboard is not specified, keyboard input up to the Enter key is read. This is because the keyboa
and screen are set by the OS as standard input and output, and part of the program is executed |
the OS. In a system with fixed hardware such as a personal computer, the standard input and
output ports are determined. On the other hand, in the case of a microcomputer for embedding ir
some unknown system as in the case of the H8/3048F, standard input and output cannot be
specified for the C compiler.

In addition, the program and variables are all read from the hard disk to RAM and executed, and
so the type of memory is not considered. Variables with initial values as well as constants are
written to RAM and used in execution. On the other hand, an embedded microcomputer normally
does not have a hard disk. There is no need to read the program; it is sufficient that the program
stored directly in ROM. Variables must be in RAM. What to do about variables with initial
values? If initial values are not stored in ROM, they will be lost. But they are variable values, and
so must be present in RAM, which can be overwritten. There is no OS, and so rather than readin
variables with initial values from a hard disk, initial values placed in advance in ROM must be
copied to RAM before executing tieain program. Variables without initial values, if they are
global variables, have an initial expected value of 0. However, when power is turned on, values il
RAM are not at 0; they do not become 0 until O is written.

5.2.1 Reset Processing
In reset processing, the following must be performed:

(1) SP initialization
(2) Memory initialization, copying of variables with initial values to RAM, and clearing of
variables without initial values to 0

(3) Calling of the main program (normally th&in function)

Initialization of the stack pointer is the same as in assembler. In the C language, the stack pointe
(ER7), as a general-purpose register, cannot be specified for address storage*. This is because
functions intrinsic to the CPU are hidden insofar as possible, in order that program writing
methods can be shared.

* Recent C/C++ compilers enable such specification.
(Example) # program entry <function name> (sp = address)

Memory is initialized by the program described in chapter 5.2.2. Because it is a function, it is
called using thdSR instruction.

To call themain function, either @SR or aJMPinstruction is used. If not returning from the
main function (if the end of thenain function is an endless loop) JMPinstruction may also be

180

used. When programming for a personal computer, this is a forbidden structure; but when
programming for an embedded microcomputer, returning is incorrect.

; Sample program for reset start
. Vector table

H8/3048 sereis advance mode Function names and variable names used in a program
prepared in C can be used in assembly when preceded
N, by the underscore (_). However, there are no definitions

; symbol import in the assembly file, and so the .IMPORT control instruction

jmmmmmmmmm e eeee is used to indicate that "there is no definition in this file,
.import _main,_INITSCT -s4——| but there is a definition in another file, so the assembler

jmmmmmmmmmmmmme e —aee should reference the definition in another file on linking,

: vector define without generating an error. If there is no such definition,

S an error is returned at link time."
.section vect,data,locate=0

; Vector Symbol Factor Number
.data.| reset ;Reset 0 Reset

.section P,code

reset:
mov.| #h'ffff00,sp
jsr @_INITSCT ;Memory initialization (discussed later)

jmp @_main

.end

In assembler instructions, upper and lower cases are not distinguished. On the other hand, case
distinctions are made in section names and in symbol names, so caution should be exercised.

Anything can be used as a C function name. Normally processing performed by the OS is
performed by the user-defined function. Althoughain function is always executed first from
the OS, any function can be executed first from a given program. Nor need themaine a
function at all.

5.2.2 Initialization of Variables

There are various kinds of variables. There are local variables which can only be used within a

function, and variables which, although local, retain their previous values even when the functio
is called again. There are global variables, which can be used by any function. There are variab
which are hidden from other files. Let us try summarizing the properties of each of these kinds c
variables. In the case of the H8 C compiler, by default section names are as shown in table 5.2.

Doesn't 0 seem to be a reasonable initial value for a global variable?

However, when power is turned on, the initial values in RAM are indeterminate. The general-
purpose registers in the CPU are also, like RAM, indeterminate. If an initial value of 0 is needed
the program must write 0 as the variable value.

181

Variables with initial values present further problems, however. An initial value is recorded in
ROM so that it never vanishes. But because it is a variable, it must be possible to overwrite the
variable value later. Values can only be overwritten in RAM. An initial value in ROM must
therefore be copied to RAM.

Table 5.2 Handling of Variables

Section Name

Program P
Variables without initial values B
Variables with initial values D
Constants C
Local variables Stack area (no section name)

In contrast with the case with assembler, positioning in memory is performed upon linking, with
the starting addresses of each section determined in keeping with ROM and RAM.

Here the D and B sections present problems. The D section must be copied from ROM to RAM;
the B section must be cleared to 0. However, the C compiler does not know how much memory i
has used without investigating. The program is prepared as follows.

Suppose that in the program, the section name after copying section D (in ROM) to RAM is X.

182

ROM {

RAM
(including internal RAM)

Vector area

(program)

C
(constants)

D
(variables with initial values)

Copied before
calling main()

X
(copy of section D)
(name can be freely chosen)

B]
(variables without initial values)

——— Cleared to 0 before
calling main()

Stack area

@address: 8

Internal 1/0O registers

Figure 5.1 Section Names and Memory Initialization

183

<List>

<Program> (sct_tb 1. src)

;¥ sample for ISCT_TBL (CPU Mode is 16M ADVANCED Mode) *

.CPU 300HA ; CPU Mode
.EXPORT _D_BGN ; Export Define
.EXPORT _X_BGN

.EXPORT _X_END

.EXPORT _B_BGN

.EXPORT _B_END

.SECTION D,DATA,ALIGN=2

.SECTION X,DATA,ALIGN=2

.SECTION B,DATA,ALIGN=2

The control instruction .DATA.L is used to record

the section starting and ending addresses in section C.
The recorded data is specified using .EXPORT to enable
referencing from other files. A name is added to enable
accessing as a constant from a C language file.

SECTION C,DATAALIGN=2 . Because it is section C, it is stored in ROM.
_D_BGN: .DATA.L (STARTOF D) ; D Begin Address
_X_BGN: .DATALL (STARTOF X) ; X Begin Address
_X_END: .DATALL (STARTOF X)+(SIZEOF X) ; X End Address
_B_BGN: .DATA.L (STARTOF B) ; B Begin Address
_B_END: .DATAL (STARTOF B)+(SIZEOF B) ; B End Address
.END

This file contains no instructions for execution by the CPU.

Each section is simply specified. As a result, the information of each section can be referenced
from this file.

If memory amounts and addresses are known, a copy program can easily be created.

Through this procedure, memory can be initialized. Following this, the program must be called.
This program calling was discussed in the previous section on reset processing, to which the
reader is directed. Using the most recent C/C++ compiler, this can be written in C source code.

184

<List>

<Program> (init sct. c)

/ /
/* sample for INITSCT (CPU Mode is all Mode) */

/ /

extern int *D_BGN, *X_BGN, *X_END, *B_BGN, *B_END;

void INITSCT(void)

{
int *p, *q;
for(p=X_BGN, g=D_BGN ; p < X_END ; p++, q++)

*p=*q; /* Section D Initialize */

for(p=B_BGN ; p < B_END ; p++)
p=0; / Section B Initialize */

}

D_BGNandB_ENDare treated as pointers to 164hit types. However, because the values are
in ROM, they can only be treated as constants, and so new pointer vafipbtep are
prepared, and on copying between pointers, values are cleared to 0.

In the program, these are handled as variables; but at compile time, they are D section address
However, we wish the program to actually use section X, the address in RAM after copying.
Hence the address must be changed. This is performed@mtaption at link time.

>LNK -SUB=subfile.SUB

subfile contents

INPUT reset,initsct,isct_tbl,mainfile
LIBRARY c38ha.lib

ROM (D,X)

START P,C,D(400),X,B(0ffef10)
EXIT

The ROMbption should at least be specified beforeSmARToption. The(D,X) specification
changes the section D address to the section X address.

5.3 Peripheral Function Programming

Logic programming is the same, whatever CPU is used. This is because high-level languages
absorb the differences in hardware to make all systems appear to be the same. However, thing:s
different with peripheral functions. Here effective access methods for peripheral functions are
introduced.

185

5.3.1 Register Access

The peripheral functions of the H8 microcomputer are allocated to a memory map. Hence
peripheral functions can be accessed in the same way as ordinary variables; however the followil
two points need to be born in mind.

(1) The addresses of peripheral functions are fixed, and so pointers are used.

(2) The contents of peripheral functions change regardless of the program, eoidtiles
specification should be used.

When treating peripheral function registers as variables, the address is specified during access.
Generally for high-level languages, when the programmer uses variables, he doesn't have to kno
to what address or register the variable has been allocated. In fact, this has enabled the creation
programming environments which are independent of the hardware. However, there are also cas
such as the H8, in which peripheral functions are in a fixed area of the memory map, and their
contents must be overwritten. To resolve this problem, the C language has pointer functions whic
enable specification of addresses to directly manipulate the contents of these addresses. These
pointer functions may appear to be a barrier to persons just beginning to use the C language; bu
they are indispensable for microcomputer programming.

Let us now look at how pointers are used.

int *p;
Herep is a pointer variablegy stores an address. On the other h&pdrefers to the address stored
in addresp. Henceint *p; indicates that the contents at the address indicatpcabg of the

int type. Let us try storing a numerical valugat

p = 1000;

Herep has become 1000. Now let's do this:

*n = 10;
This stores the value 10 in the type variable area indicated pythat is, the value 10 is stored
at address 1000. But if we write the above code and try compiling it, we get an error. The compile
tells us thap is a pointer variable, but 1000 is a number and not an address, so that the types are
different and substitution is not possible.

However, if we force a type conversion (typecasting) and substitute the value, as shown below, v
obtain the desired result:

186

p = (int *) 1000;
This can be compiled. Here 1000 becomes an address which indicates type variable value.

This method can also be used to access peripheral functions. However, the source code listing
long, and the program becomes difficult to maintain; so let's try the following instead.

define P (* (int *) 0x1000) /* Ox is hexadecimal notation */

P =10;
By initially using#define to define the value, we can uBany number of times in the source
program without bloating the source code listing. The above just meamsishatpointer to an
int type variable at address 0x1000. We can similarly add definitions for each peripheral
function; but if we compile the following list, although no error occurs, the program does not run
as intended.

P =10;

P=0;

P=8;
The intention was to store 10, 0, and &jnn that order. But on compiling, we find that only an
object storing 8 is created. If this variable is in memory, the previously stored 10 and 0 have no
effect whatsoever, and only the final 8 makes a difference; hence the compiler "optimizes" the
program, and does not create objects which have no effect. However, this is not the case where
peripheral functions are concerned. Both 10 and 0 are meaningful; this is why instructions to sto
them are given. To solve this problem, we can instruct the compiler not to perform optimization.
We use the following code.

define P (* (volatile int *) 0x1000)

Here "volatile" means rapidly changing or transient; the above code instructs the compiler that
"this variable is volatile, and so should not be optimized; objects are to be generated according |
the source code description."

On making this change, the intended objects are generated.

5.3.2 Interrupt Processing
Interrupt processing programs can be written in the C language.

Problems here include the fact that RiEE instruction must be used to return from the interrupt
procedure, and that if general-purpose registers are to be used, they must be saved in advance
restored afterward. ThEpragma interrupt directive solves these problems.

Interrupt vectors can be written in either C or assembler.

187

/*

Sample for IRQ3
*/
#define PADDR (*(volatile unsigned char *)0xffffc5)
#define PADR (*(volatile unsigned char *)0xffffc7)
#define PACR (*(volatile unsigned char *)0xffffda)
#define PBDDR (*(volatile unsigned char *)0xffffd4)
#define PBDR (*(volatile unsigned char *)0x(ffffd6)
#define ISCR (*(volatile unsigned char *)0xfffff4)
#define IER (*(volatile unsigned char *)0xfffff5)

/* function prototype declaration */
void irg3(void) ;

void main(void) ;

void initlO(void) ;

void inittRQ(void) ;

void main(void)

{
initlo() ; /*1/O initialization */
initIRQ() ; /* Interrupt controller initialization */
set_cr(0) ; /* Interrupt mask disable */
while(1) sleep() ; /* Infinite loop */

/* Interrupt function */

#pragma interrupt(irq3) <—| irq3() specifies the interrupt processing function

void irg3(void)

PBDR = P4DR ; /* Interrupt data processing */
}

void initlO(void)
PADDR =0 /* Port 4: input, port B: output */
P4CR = PBDDR = 0xff ; /* Port 4: pull-up MOS on */
}

void initIRQ(void)

ISCR = 0x08 ; /* Interrupt request: falling edge */

IER = 0x08 ; /* IRQ3 terminal: enabled */
}

In order to describe a vector in C,

#pragma section vect the function name is placed in an array,
void (* const vec_table[])(void)={ --— and linked from address 0.
main,0,0,0,0,0,0, /* reset */

0,0,0,0,0, /* nmi,trap0,trapl,trap2,trap3 */

0,0,0,irg3,0,0,0,0, /*irq0 - irq7 */

0,0,0,0, /* wovi,cmi */

0,0,0,0, /*imia0,imib0,ovi0 */

0,0,0,0, /*imial,imibl,ovil */

0,0,0,0, /*imia2,imib2,0vi2 */

0,0,0,0, /*imia3,imib3,0vi3 */

0,0,0,0, /*imia4,imib4,ovi4 */

0,0,0,0, /*dendOa,dendOb,dendla,dendlb *

0,0,0,0, /*dend2a,dend2b,dend3a,dend3b *

0,0,0,0, /* eri0,rxi0,txi0,tei0 */

0,0,0,0, /*eril,rxil,txil,teil */

0,0,0,0 /*adi */

b

188

In order to code this in assembler, the starting address of the function must be known. In
assembler, an underscore (_) is preceded by the function name.

Let us consider how to make this a bit easier. For example, IER, which determines control of
interrupts, may be manipulated in byte units, and each individual bit has a different meaning, so
that bit manipulations may also be performed. Let's try using a union and structure bit field.

We may use the following definition:

union { /* IER */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */
unsigned char wk :2; /* */
unsigned char IRQ5E:1; /* IRQ5E */
unsigned char IRQ4E:1; /* IRQ4E */
unsigned char IRQ3E:1; /* IRQ3E */
unsigned char IRQ2E:1; /* IRQ2E */
unsigned char IRQ1E:1; /* IRQlE */
unsigned char IRQOE:1; /* IRQOE */
} BIT; I* */

} IER; I* */

Using a union, the same area of IER can be treatedwassgmed char type and in bit units

as a structure bit field, having names suchRA35E. This makes things easier to understand. This
IER is one register of the interrupt controller (INTC), and so to make things clearer, we add
declarations for all the registers in INTC. A listing based on this approach is as follows.

189

struct st_intc { /* struct INTC */
union { /*ISCR */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */
unsigned char wk :2; /* */
unsigned char IRQ5SC:1; /* IRQ5SC */
unsigned char IRQ4SC:1; /* IRQ4SC */
unsigned char IRQ3SC:1; /* IRQ3SC */
unsigned char IRQ2SC:1; /* IRQ2SC */
unsigned char IRQ1SC:1; /* IRQ1SC */
unsigned char IRQOSC:1; /* IRQOSC */
} BIT; I* *
} ISCR; I* *
union { /*IER */

unsigned char BYTE;
struct {

/* Byte Access */

/* Bit Access */

unsigned char wk :2; /* */
unsigned char IRQ5E:1; /* IRQ5E */
unsigned char IRQ4E:1; /* IRQ4E */
unsigned char IRQ3E:1; /* IRQ3E */
unsigned char IRQ2E:1; /* IRQ2E */
unsigned char IRQ1E:1; /* IRQ1E */
unsigned char IRQOE:1; /* IRQOE */
} BIT; I* *
} IER; I* */
union { /* ISR */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */
unsigned char wk :2; 1* */
unsigned char IRQ5F:1; /* IRQ5F */
unsigned char IRQ4F:1; /* IRQ4F */
unsigned char IRQ3F:1; /* IRQ3F */
unsigned char IRQ2F:1; /* IRQ2F */
unsigned char IRQ1F:1; /* IRQ1F */
unsigned char IRQOF:1; /* IRQOF */
} BIT; I* *
} ISR; I* *
char wk; 1* */
union { /* IPRA *
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */
unsigned char B7:1; /¥ IRQO */
unsigned char B6:1; ¥ IRQ1L %
unsigned char B5:1; /* IRQ2,IRQ3 */
unsigned char B4:1; /¥ IRQ4,IRQ5 */
unsigned char B3:1; /* WDT,RFSHC */
unsigned char B2:1; /% 1TUO */
unsigned char B1:1; * 1Tu1r ¥
unsigned char B0:1; F o1Tu2 ¥
} BIT; I* *
} IPRA; I* */
union { /* IPRB */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */
unsigned char B7:1; * ITU3 ¥/
unsigned char B6:1; /* 1Tuda *
unsigned char B5:1; /¥ DMAC *
unsigned char :1; I* */
unsigned char B3:1; /¥ SCI0 *
unsigned char B2:1; /* SCl1 *
unsigned char B1:1; /* AID */
} BIT; I* */
} IPRB; I* */
I* *

I
#define INTC
/*INTC Address*/

(*(volatile struct st_intc *)OXFFFFF4)

190

The H8/3048F incorporates numerous peripheral functions. The addresses of these peripheral
functions are fixed and are not changed; hence it is convenient to declare all of them from the
start. It's a good idea to prepare a file containing only declarations and to#iselate

statement to include the file as necessary. An example of such a file is included in the APPEND
as 3048f.h.

5.4 Basics of the C Language

54.1 Operators
Operator functions are summarized in table 5.3.

The order of priority (precedence) of operators and their connection properties (left or right) are
described in table 5.4.

5.4.2 Control Statements
Here the operation of control statements is summarized.
Structure of aiif statement
if (expression)
statement 1
[else

statement 2]

Expression
evaluation,

Execution of Execution of
statement 1 statement 2

Figure 5.2 if Statement

191

Structure of awitch statement (nbreak statement)

switch (expression)

{

case constant expression 1:

statement 1

case constant expression 2:

statement 2

case constant expression n-1;

statement n-1

default:

statement n

Constant
expression 1

Statement 1

-

Statement 2

Constant
expression 2

Constant
expression n-1

Statement n

None of constant expressions
1 through n-

Figure 5.3 switch Statement

Structure of awitch statement (witlbreak statement)

switch (expression)

192

{

case constant expression 1:

statement 1

break;

case constant expression 2:

statement 2

break;

case constant expression n-1;

statement n-1

break;
default:

statement n

Constant Constant
expression 1 |expression 2

Constant None of constant expressions
expression n-1| 1 through n-1

| Statement 1 | | Statement 2 |

|Statement n-l| | Statement n |

Figure 5.4 switch Statement

193

Structure of dor statement
for ([expression 1]; [expression 2]; [expression 3])

statement

Statement execution

Figure 5.5 for Statement
Structure of avhile statement
while (expression)

statement

Expression
evaluation

Statement execution

Figure 5.6 while Statement

194

Structure of alo-while statement
do
statement

while (expression);

Statement execution

Figure 5.7 do-while Statement

195

Table 5.3 Frequently Used Operators

Operator

Function Notes

Single-term operators

Negative sign
Positive sign
Bit inversion
Decrement
Increment

&a is the address at which the
value of variable a is stored

Variable address

Content referenced by
pointer variable

*p is the value referenced
by p

Two-term operators -

<<

Subtraction

Addition
Multiplication
Division

Remainder of integer
division

Bitwise AND

Bitwise OR

Bitwise exclusive OR

Logical AND (true or
false)

Logical OR (true or false)

Right-shift (variable name) >> (number of

bits to shift)

Left-shift (variable name) << (number of
bits to shift)

196

Operator

Function

Notes

Assignment operators

<<=

>>=

Assignment
Assignment after addition

Assignment after
subtraction

Assignment after division

Assignment after
remainder

Assignment after left-shift
operation

Assignment after right-shift

operation

Assignment after logical
AND

Assignment after logical
OR

Assignment after logical
exclusive OR

Comparison operators

Equality

Inequality

Greater than

Lesser than

Greater than or equal to

Lesser than or equal to

197

Table 5.4 Precedence and Connectivity Rules for Operators

Operator Connectivity rule*4
O[] ->.++ - *1 Left-hand
| ~ 4+ — + - * & sizeof ** Right-hand
(type) Right-hand
K ** Left-hand
¥ - ** |Left-hand
<< >> Left-hand
< <= > >= Left-hand
== I= Left-hand
& ** Left-hand
A Left-hand
| Left-hand
8&& Left-hand
I Left-hand
?: Right-hand
= 4= = *= [= U= &= A= |= <<= >>= Right-hand
, Left-hand
Notes

1: () denotes a function call, [] calculation of the indices of an array, -> and . the element of
a structure or union, ++ and -- postposition increment and decrement, respectively.
These operations take highest precedence.

2: These operators are single-term operators. ++ and -- denote preposition increment and
decrement, respectively.

Ex.: -a (sign operation), *p (indirection operation), &b (address operation)
3: These operators are two-term operators.
Ex.: a-b (subtraction), a*b (multiplication), a&b (bitwise AND)
4: This indicates the order of calculation when evaluating an expression.
Left-hand connectivity: Calculation is performed from left to right.
Ex.: atb-c (first "a+b" is evaluated, then c is subtracted from the result)

Right-hand connectivity: The value of the expression to the right of the operator is
determined, and then the operator operation is executed.

Ex.: a+ =b =c (first c is assigned to b, and the result is then added to a and assigned
to a)

198

5.4.3 Features of Structures, Arrays, and Pointers

1. Arrays
An array is a collection of data items of the same type. An array is declared as follows.

Example 1:int xy[10]; This is an array aht type variables, with 10 elements in the
array; here the array hame xy indicates the starting address of the array.

Example 2:char ab[2][2]; This is a two-dimensional array oliar type variables, with
a total of four elements; storage space is allocated in the aivflyf0],
ab[0][1], ab[1][0], ab[1][1]

To set the initial values of an array, the initial values are inserted jthidelimited by commas.

If the number of initial values is insufficient relative to the number of array elements, zero is
automatically assigned to the remaining elements. Also, if initial values are set for an array, the
number of elements can be omitted.

Example 3 int xy[10] = {1,2,3}; /* xy[3] throughxy[9] are set to zero */

int ab[][2] = {{0,1}.{2,3}};

2. Structures
Structures are used to handle a number of variables of different types.
The declaration of a structure is as follows.

struct [tag name] {
members
} [variable name];
Both [tag name] and [variable name] may be omitted.

The members of a structure which is not an array are referenced as follows.

Example 1

struct person { /* you.name[0] is the Oth element in the name array of you */
char name[5] ; /* you.name[3] is the 3rd element in the name array of you */
int age; /*you.age is the age of you */
}you; /* you.name is the starting address of the name array of you */

In a structure array, after the variable name, the subscript is written in brackets [] followed by the
member name.

199

Example 2

struct person { /* you[0].name[0] is the Oth element of the name array in the Oth you */
char name[5] ; /* you[1].name[3] is the 3rd element of the name array in the 1styou */

int age; /*you[l].age is the age of the 1st you */
}you[3]; /*you[2].name is the starting address of the name array in the 2nd you */
3. Pointers

Pointer type variables handle addresses at which data is stored. When declaring a pointer type
variable, an asterisk J is preceded by the variable name.

Example 4 int a,b,*ip; The variabldap is declared as a pointer variable
referencing aint type value. However, at the time of its declaration, it is not
determined that what the pointer variable points to.

Example 5 ip=&a; &a means the address at which the varialike
stored. That is, the pointer varialjpe is a pointer to the variabte As a result,
the pointer variabl@ points to a definite place, namely, the address of the
variablea.

Example 6 b=*ip; Here*ip represents the data in the memory location
indicated by the pointer variabile . The result is the same as declatg; .

In general, a variable enables manipulation of a value by specifying the variable name, without
any need to know where in memory the value is stored. General-purpose registers of the CPU m
be used, or the value may be stored in memory. However, in programs for embedded
microcomputers there are some types of data which are better handled by specifying addresses.
One example of this is the peripheral functions incorporated in the H8/300H.

It is at times like this that pointer functions are used. Pointers are memory addresses. This is an
area in which the C language is less like a high-level language which hides the details of the
underlying hardware.

54.4 Function Calls

When creating multiple functions and making calls between functions in machine language, the
BSRor JSR instructions are used to call subroutines. When calling a function, the stack area is
used. If a function has arguments, general-purpose registers and the stack area are used to pass
arguments. General-purpose registers can be used to pass upctmafoworint types, or up to

two long or pointer types. If argument lengths exceed this, the stack is used.

General-purpose registers are used more or less as follows.

200

Table 5.5 Function Calls and General-Purpose Registers

Register Purpose of Use Contents Preserved Across
Functions

ERO Arguments, return values (function Not preserved

values)

ER1 Arguments

ER2 to ER3 Work area

ERA4 to ER6 Register variables Preserved

ER7 Stack pointer

Registers whose contents are preserved have their values saved to and restored from the stack
the called function.

5.4.5 Declarations and Storage Classes

Where are variables stored? And, how do they appear from other files? The key to these questi
lies in storage classes.

Depending on where it is declared, a variable is either of the following:

(1) A global variable
(2) A local variable

A global variable can be referenced from any function, across functions. It is stored at a specific
memory address.

Variables declared within a function: Local variables

Variables declared outside functions: Global variables
In contrast, local variables can only be used within the function in which they are declared.
In addition, there are the following methods of variable use:
*auto storage class

The initial value is set each time the function is called. If there is no initial value setting, the valu
is indeterminate.

*static storage class

Initial values are set at the time the program is created. If there is no initial value setting, the vall
is zero.

201

The functions and features of different variable types are summarized in the following table.

Table 5.6

Storage Class

Place of Declaration

Place of Declaration and Storage Class of Variables

Within a Function

Outside Functions

None Local variable of the auto storage class Global variables; variable names are
(variable value not preserved) external names, and only one instance
of each variable name is allowed
among multiple files. If declared as an
extern storage class, the variable can
be referenced from a program created
in a different file.
auto As above Cannot be declared (syntax error)
static Local variable of the static storage Global variable of the static storage
class (variable value is preserved) class. Cannot be referenced from a
program created in a different file.
extern Global variable reference. Declaration Global variable reference declared by a
indicating that the declaration to program created in a different file.
actually secure storage space is Referencing of global variables in the
performed outside the function. static storage class is not possible.
register Local variable having the same Cannot be declared (syntax error)

properties as the auto storage class.
CPU registers allocated as the storage
location; program execution efficiency
and memory efficiency are improved as
a result. However, the number of
variables which can be so allocated
differs depending on the CPU.

The meanings of storage classes in function definitions are as follows.

Table 5.7

Storage Class

Properties of Function Name

Function Storage Classes

Properties of Function

None External name Can be called from a function in a
different source file
static Internal name Cannot be called from a function in a

different source file

In order to use C program functions and variables from an assembler program, an underscore (_
preceded by the function name or variable name.

202

Chapter 6 EXTERNAL MEMORY INTERFACE

A single-chip microcomputer can only use on-chip memory. Memory cannot be expanded, even
internal memory is insufficient by a single byte. However, in addition to single-chip mode, the
H8/3048F has a mode which enables external memory expansion. Using this function, memory
and peripheral functions can be added.

6.1 Memory Interface

Memory is a storage device. Specifically, it is an IC which only has functions for storing new dat
according to instructions from the CPU, and for outputting currently stored data to the CPU.
When memory is connected to the CPU, it is a master (CPU)-slave (memory) relation.

Memory chip

Row 0, I I
Qumn 0

Chip |

- lection | —— >
Address e Row 2 Y
>

Q
Column 1— ¥

CPU _|

CS = low level

l / Memory chip
Row 0, I I
Row 2 e QQQ
Q
\/'\r
Column 1 — .

]

'CS = high level

El I

Data

01011100

Figure 6.1 Understanding Memory Connections

203

Taking SRAM as an example, the method used to connect memory is explained below.

Memory is a storage device; it can be regarded as a kind of dresser or chest, say, with numerous
small drawers (holding eight bits each), or as a kind of hotel or apartment. The contents of the
drawers cannot be seen from outside. Likewise, looking at the memory chip from outside tells us
nothing about what is stored inside.

The memory device has its "drawers" arranged in numerous rows and columns. The drawer to b
used is specified as a row number and a column number; addresses are used for this. Addresse
begin with row 0, column 0.

If one memory device is insufficient, a second or third can be added. All the memory devices hav
a "row 0, column 0", and so the CPU must also specify which memory device is to be accessed.
For SRAM, this is the chip selectioff) function. Even if lots of memory is connected, the
entry/exit "door" is controlled bgsS, and only one device has its "door" opened.

6.1.1 Basics of Memory Connection

The CPU manipulates memory and the peripheral-function registers only during reading and
writing.

Reading: Instructions, data
Writing: Data

In order to connect memory, an address bus, data bus, and also a control signal indicating the
current bus state are needed. Control signals are often different for different CPU products.

204

Address

H8/3048F decoding Memory
AS o——oG
(Address is output) Yn |o—e—(d Selection
Upper address |:>
(chip selection)
Lower address | | Address
(selection within chip) | | 4
Data (D15 to D8) K, | /07 to /00
RD o q OE
(Read cycle) o
HWR 0 q WE
(Even-numbered address write cycle)
——q Selection
> Address
Data (D7 to DO) [5 1107 to 1100
L——qOE
LWR fo q WE
(Even-numbered address write cycle)

Example for a 16-bit bus

Figure 6.2 CPU and Memory

As shown in figure 6.2, even when signal names in the CPU and memory are different, there ar
signals with the same functions; these are connected. A logic circuit is required for connections
only in the case ofS. The circuit differs depending on the address to which the memory is
connected. This circuit must be designed. For determination of the address to which the memor
is connected, the address bus upper signah&nd used. This circuit is called the address
decoding circuit.

For example, when reading an instruction, the following operations are performed.
CPU
*The instruction stored at an address specified by the PC is to be read.

The CPU outputs the "address" to the address bus, and tells the memory device it "wants to ree
the instruction by setting tHeD signal to active (called "assert"). The CPU has told the memory
device what it wants, and so afterward waits for the memory device to respond.

205

Memory

*The memory operates according to the CPU's instruction, responding with "This is what was
stored at the address".

"Oh, you're calling me?" is conveyed 6§. "The address" is conveyed by the address data. There
is no order to the input of signals; the address is input first, ar@Stlsecond, and vice versa. If
all the signals do not get together, however, the desired operation will not be performed.

Signals appear in bus cycles as shown in Fig. 6.3, over multiple clock cycles based on the CPU
clock.

Operations of a signal over two clock cycles are as follows.

First Clock Cycle Second Clock Cycle
From rising edge From falling edge On falling edge
Common Address output Address output stopped
AS output AS output stopped
Reading RD output RD output stopped
Data reading
Writing Data output XWR output XWR output stopped
Data output stopped

Note: xisHorlL

When the CPU accesses memory it outputs the address access, and indicatas ifdideess
Strobe) signal that the address was output correctly. This signal is low-active. With the output of
this signal, the memory device learns that the CPU wants to do something and has started a bus
cycle. Thereafter, whether this is a read or a write operation is indicated R threby xWR

signal (x = H or L). With these, the memory device can confirm all of what the CPU wants to do.
On learning this, next it is the memory device's turn to perform a task. If this is a read operation,
the data at the specified address must be output to the data bus; if a write operation, data output
the CPU must be stored within the memory.

206

M Bus cycle example (three clock cycles)

Time —
Read cycles Write cycles
T1 T2 T3 T1 T2 T3
S o AR o U o U
! } — !
wiess | S -
; ! 1
Setup time Hold time L 7~ Hold time
Data —
Access time Setup time ‘
(time for use by |CPU: Data (memory) }
decoding circuit read time cPU: Outout of al
and memory) e o SRAM wiritten at this point
CPU: Output of all information completed - completed (
Interval during which
data must be output CPU: Write completed, bus cycle ended

from memory

B Bus cycle example (program wait)

Address X X
AS \ ~ [
= \ s
S — T
v
- T

From 0 to 3 clock cycles
can be set by the program

W Bus cycle example (two clock cycles)

Address X X

AS
RD \ /
HWR \ ’

Insertion of wait cycle
not possible

Figure 6.3 Bus Cycles

207

The CPU does not know whether the memory read or write operation has been completed;
however, after a predetermined amount of time has elapsed it ends the bus cycles, and moves o
to the next operation.

Operations are performed in this manner, and so in order to connect a memory device,

(1) The address to which the memory device will be connected must be considered; and,

(2) A circuit must be designed, and timing studied such that the memory can operate in
coordination with the CPU.

6.1.2 Memory Interface Design
The H8/3048F can be connected to a maximum 16 Mbytes of memory.

Below an example of the design of a circuit which connects 4 megabits (512 k words x 8-bit
configuration) of SRAM is described.

Circuit Design

First, the address to which the memory is to be allocated is determined. If external memory is
used, the memory containing address 0 must be ROM. (Please refer to the chapter on resets.) A
kind of memory may be connected to all other addresses. If a 16-bit address space (H'000000 to
H'007FFF and H'FF8000 to H'FFFFFF) is used, the program can be made smaller and executior
faster; hence if possible, addresses should be used beginning with these. However, if internal
RAM and peripheral functions overlap at an address, the internal functions take precedence, anc
external memory cannot be used.

208

M 8-bit bus
Address
H8/3048F decoding Memory
ASlo———— oG 512 k x 8-bit configuration
Ylo——qgcs
Upper address I:>
(A23 to A19) , .
Lower address Addresses start from A0 to
(A18 t0 AD) | > Address (A18 to A0)
D15 to D8 [| 107 to 1100
- __ D15 D8
RD o OE
HWR O WE
W 16-bit bus
Address
H8/3048F decoding Memory
ASlo———— oG 512 k x 8-bit configuration
Ylo—e—dCs
Upper address I:> bs slz 0
(A23 to A20)
Even-numbered addresses Addresses start from Al to
Lower address N
(A19 10 AD) | T D Address (A18 to AO)
D15 to D8 (¢ | 107 to 1100 D15 ! D8 D7 ! Do
RD p q OE AWR WR
HWR o q WE Byte access control
512 k x 8-bit configuration
L—dcCs
Odd-numbered addresses
> Address (A18 to A0)
D7 to DO ™ 1107 to 1100
L gOE
LWR O d WE

Figure 6.4 SRAM Connection Circuits

When addresses for memory connection are determined, a circuit to decode addresses is desig
An address-decoding circuit looks at the address output by the H8/3048F, and if the address is
the memory, it outputs a chip select signal.

Address Decoding Circuit

Let's try designing a decoder to connect to a 512-kbyte memory chip with addresses starting frg
H'200000. Addresses range from H'200000 to H'27FFFF. When one of these addresses is outp
the address bus terminals A23 to A19 are at B'00100. There are no other states. This signal is
used.

209

Addresses which do not change within a 512-kbyte range Addresses within memory

H'000000

H'200000

H27FFFF

512 kbytes

HFFFFFF

A
" N

N
A23 A22 A21 A20 A19 Al18 Al7 Al16 A15 - A0
0 0 1 0 0 0 0 0 0 =0 H200000
0 0 1 0 0 1 1 1 1 1 H27FFFF

001 OO0

Decoder output CS
with AS added

As ——O

B Meaning of the AS signal
T1 T2

[\

Address XlndelermmaleX Target address

Decoder output
for address only =y

I

When CS is asserted, power consumption
is the same as during operation

210

Figure 6.5 Decoding Circuit

M Internal decoding circuit

16-Mbyte mode 1-Mbyte mode

___ 2-Mbyte units _ 128-kbyte units

A23 —] o— CSO H'000000 to A19 —] P— CSO H'00000 to
A22 —] o— CS1 H'200000 to A18 —] o— CS1 H'20000 to
A21 — Ob— CS2 H'400000 to Al7 — O— CS2 H'40000 to
Decoder— ©S3 H600000 to Decoder b ©S3 H'60000 to

O— CS4 H'800000 to O— CS4 H'80000 to

o— CS5 H'A00000 to o— CS5 H'A0000 to

b— CS6 H'C00000 to o— CS6 H'C0000 to

o— CS7 H'E00000 to o— CS7 H'E0000 to

The initial state after reset is an
input port; measures must be taken

H Connection using
internal decoder circuit

Bl Memory map

to prevent unintended selection.

H8/3048F Vce Memory
:12 k x 8-bit configuration H'200000
Cs1 CS 512 kbytes
H'27FFFF
H'280000
Lower address :> Address (A18 to A0) Because this area Area 1
(A18 to AQ) is not decoded, (2 Mbytes)
it appears the same
D15 to D8 [{————)| /07 to 1/00 o
RDjo——dOE
HWR o————d WE H'3FFFF
Figure 6.6 Internal Decoding Circuit

Looking at the bus cycles, it appears that the address terminals all change at once; but normally
this is not the case. Some terminals change slightly earlier, others later. Thus the times at whict
they change differ slightly, and so if only the address terminals are checked and decoding
performed, it is possible th@S will mistakenly be read as active for a short interval. In order to
prevent this, thaS signal is connected to the decoding circuit enable terminal.

The memory chi®E terminal is connected to the B®, and the memorE signal is
connected to the HAWR andLWR signals.

A WR signal is prepared in the 8-bit units of the data bus. If the bus is 16 bits, both are used; fol
an 8-bit data bus, D15 to D8 aH3VR are combined. In a basic circuit design, all that is
necessary is an address decoding circuit. So the H8/3048F provides this circuit internally.

Memory Management Area

The internal decoding circuit decodes the upper three bits of the address, and so this circuit
divides the memory space into eight equal parts. The range of the addresses of one of these pe
is called an area; areas are numbered from 0 to 7.

211

The bus cycle configuration can be modified in area units. Possible modifications are shown in
Table 6.1.

By incorporating a decoding circuit, an external circuit can be eliminated, and slower memory cal
also be connected. If decoding for smaller spaces is necessary, an external decoding circuit sho
be connected.

Timing Design

Selection is possible according to memory performance. Memory that can be used when the CP!
is operating at 16 MHz is shown in the table. The SRAM chips that can be connected are produc
which respond within the times indicated in the table. Characteristics of HM 628512-70 ns
products are also shown in the table. Except for the read data hold.tjnef €PU time >

SRAM time, the product can be used. Accordingly for three or more bus clock cycles, 70 ns
SRAM can be used.

Table 6.1 Area Management and Bus Cycles

Bus width 8 or 16 bits
Clock cycles 2 or 3 (wait states possible for 3)
Wait modes Program, terminal wait, terminal auto wait (one total)

No. of wait cycles

Program Oto3

Terminal wait 0 While WAIT terminal is low

Terminal wait 1 Cycle set by program + while WAIT terminal is low

Terminal auto wait Area where WAIT is low only, cycles set by program
Memory types Standard or DRAM (area 3 only)

Table 6.2 Access Times (CPU Operating Clock = 16 MHz)

Read
H8/3048F notation, and corresponding SRAM AC characteristic Bus Clock Cycles
notation 2 3 1 wait
CPU Access time 1/2 teertaces 60 120 1825
SRAM Address access time t., 70 max

CS access time teo 70 max
CPU Access time 3/4 tyecsltacea 30 95 1575
SRAM OE access time toe 35 max
CPU Read data hold time teon 0 0 0
SRAM Output data hold time to 10 min

212

Write

CPU Write data setup time tosil twosoHwsws 15 60 1225
SRAM Input data set time tow 30 min
CPU Input data hold time tom 20 20 20
SRAM Input data holding time t.,, 0 min
CPU Write pulse width 1/2 tvswi Lwsws 35 65 1275
SRAM Write command pulse width [50 min

Units: ns

Comparing AC characteristics, it is possible to judge whether a memory chip can be used;
important points in the timing design which is the basis for this table is whether the following
timing can be maintained:

Reading (H8 timing)
Read data setup time)
Read data hold time,(},)
Writing (SRAM timing)
Input data set time (f)
Input data holding time (1)
The CPU read is performed on the clock falling edge.
*Read data setup time

Internal reading is performed during this time; because the signal is propagating internally,
however, if it does not arrive at the H8/3048F slightly earlier, reading will not be executed
properly. This time is called the setup time. In the H8/3048F, the access,}jné(B/4)

indicates the maximum amount of time the memory can use, while setting aside this setup time.

*Read data hold time

When reading is completed, the H8/3048F closes the circuit which latches data in sync with the
RD negation (switching from low level to high level). Before closing the circuit, the data must no

be lost; the read data hold timg,(} indicates how long the data bus signal must be held relative
to theRD signal negation time.

213

Read
T3

Address)
CSn

Write
T3

Address X
CSn

S (N VA O A W W O Y L W A
I
[

HWR

RDS tRDH

HWR

tbw DH

Interval of data

CPU:tacca
Memorytog putput from memory
Time requested
by CPU
CPU:tacc2
Memory:taa.tacs

Can be used if CPU time is
longer than memory time

(CPU read data setup time
(trRDS) is secured)

Interval of data
output from CPU

Time requested
by memory

Can be used if CPU time
is longer than memory time

(memory input data set time
(tpw) is secured)

Figure 6.7

214

Setup Hold Time

W Memory read operation Case where address input is last

—
Address !
Address X l | S
cs
Cs -\, , o
OE
oE ¥ , Data AA(Address access time) =
] —
R r=aa— . Case where CS input is last
toe(OE output delay time) P
tacs(CS access|time) Address
taa(Address access fjme) — —\
cs
S
Data —
OE
When all conditions
are met, data is output Data tcs(CS access time)
(cf. figure on right) -
WE Case where OE input is last
Address
cs

OE §

tog(OE output delay time) y—

r

B Memory write operation 4 L = N
Write timing difference (CS)

cs /

WE_i[

Address X

Wm

Data _<

—
T 1

typ(Pulse width) =
© {pH(Hold time) Write timing difference (WE)
tpw/(Setup time) -
cs jl
Data) —

N e [

OE]
Data _< —

Figure 6.7 Setup Hold Time (cont)

215

Il Bus modes which can be set for each area

Bus width
n
ABWCR
0: 16 bits
1. 8 bits
n: 0to7

Access state

n
ASTCR

0: 2 clock cycles
1: 3 clock cycles + wait

Wait control enable (effective when 3 clock cycles set)
n

0: Wait on WAIT pin only
1: Program wait + WAIT pin

M Wait states settable by program (common to all areas)

7 6 5 4 3 2 1 0
WCR ‘ — ‘ — ‘ — ‘ — ‘ WMS1 ‘ WMSO0 ‘ wC1 ‘ wWCOo ‘
1 1 1 1 0 0 1 1

— — — — R/W R/W R/W R/W

Wait mode selection Wait count
0: Insert only wait cycles set Wait cycles for
by wait count settings 0 to 3

1: Ignore wait count setting

Wait count + WAIT pin

3: When WAIT pin asserted,
insert only wait count cycles

N

Figure 6.7 Setup Hold Time (cont)

SRAM performs writing upon the earlier 68 negation andE negation. The write is performed
on theWE rising edge. (This is becauBéE negation occurs earlier th&$ negation.)

*Input data setup time
Same as the H8/3048F; if data does not arrive before this time, writing cannot be performed.
*Input data holding time

Holding time after writing. Normally O ns or longer; write data should not disappear before the
write time.

216

*Write pulse width

The minimum time is determined for whi®¥iE is asserted. Write data is output by the CPU
beforexWR is asserted.

Timing design is performed to confirm that signals conform to the timing constraints described
above.

6.1.3 DRAM Interface
The H8/3048F has an internal DRAM interface circuit.

In addition to address multiplexing, DRAM differs from SRAM in havRWS (row address

strobe) andCAS (column address strobe) control signals. In addition, if DRAM is not refreshed,
its contents are destroyed. The H8/3048F incorporates all these functions, and so DRAM can b
directly connected and used. Only area 3 can be used, up to a maximum 2 MB. Connection is ©
possible using a 16-bit bus width.

DRAM consists of storage elements (memory cells) which include capacitors and transistors
acting as switches.

Because DRAM uses capacitors to store data, the data cannot be stored for extended lengths ¢
time. The time that data can be stored differs among products, but is between 2 ms and 128 ms
order to continue data storage, the contents of the memory must be written once again before ti
data is lost, in what is called a refresh operation.

217

Initial state after reset is an input
port, so measures must be taken to
prevent accidental selection

H8/3048F Vee
RAS o—%—c RAS

WEp————qWE
UCAS p—————q UCAS
LCAS p———q LCAS

DRAM products with a x16-bit
configuration including those using
two CAS signals for byte access
control, and those using two WE
signals; either can be used.

Lower address [————————p| Address

Data(D15 to D8) K———————)| /015 to /08
Data(D7 to D) K—————————} /07 to /00

DRAM bus width is
always 16 bits

Read
T1 T2 T3 T1 T2 T3
’ _/_\J__FU_L/_\J_\J_\
Address Row address (Column address X X X

e | | —— RAS precharge time
Fowadaress Row address Cglumn address
Shce inputhold ingut setup time
RAS inputsetup time ime
UCAS,LCAS ‘ ;]
WE \

Write data («—>||«<———————>| Write data
setup time hold time

7%7

Data

Figure 6.8 DRAM Connections

DRAM offers the advantage of larger storage capacities than SRAM. However, as a result the
number of address terminals is increased. Consequently the package size is increased, and the
mounted area on the circuit board is greater. In order to alleviate this problem, DRAM addresses
are multiplexed. All types of memory perform access by specifying rows and columns in a two-
dimensional planar storage space; here row addresses and column addresses are input to the s:
terminal at different times. By this means, the number of terminals required is reduced by half.
The result is a dramatic reduction in mounting area.

218

If the microcomputer can also output addresses in two operations, no problems arise; but unlike
DRAM, both SRAM and ROM handle addresses in a single operation. Hence, a chip called a
DRAM controller is inserted between the microcomputer and the DRAM.

Let's try externally connecting the H8/3048F to a DRAM interface circuit.

This circuit performs address multiplexing, generation of the accompaRN8@ENdCAS
signals, and also performs refresh operations periodically.

Refreshing is performed one row at a time. DRAM specifications include indications such as 10:
cycles/16 ms. This means that 1024 refresh operations should be performed within 16 ms; henc
timer is used to measure 16 ms, and when the time is up, 1024 read cycles are issued. This is
called a concentrated refresh operation.

Refresh

+ Capacitor

Word line
voltage

1
Rool

Row address

23
g
L =
S ©
52
= Q
o 9
g8

RAS —— >

Data line

g i If no refresh is pe‘r%ér‘m‘ed‘~ .
DRAM memory cell ' data cannot be maintained.
(1-hit storage configuration) ;

Data bus ‘_} Column address
decoder circuit

CAS Column address

Row address Column address
input input

XX
\ /

CAS X(/
OE
Read data >

Address

RAS

Hie

F Write data >‘

Figure 6.9 Internal DRAM Configuration

219

On the other hand, a method in which one row is refreshed every & &26alled distributed
refreshing. The circuit is a distributed circuit. To perform a refresh, &thSralone is asserted
and the row address applied, in a RAS-only refresh meth@@h®iis first asserted and the
address is not applied, in a CAS-before-RAS (CBR) refresh method. This is a CBR circuit.

Address
H8/3048F multiplexer DRAM

Lower address

Upper address => A
Y I:> Address
—)

[}
RD RAS
HWR UCAS
LWR LCAS
CSn WE
OE
D15 to DO 1/015 to 1/00
7777777777777777777777777777777 Details ~
| Address
i multiplexer
| (Select) !
| csn 74LVC164(1) . !
! A oAl Po———dRas i
I B B 4 |
: QcC UCAS

1 CLR ;D—o LCAS

Py

W)
-/ \N\—>
AN
VA—D>
V\A—>
r\

-

=

py)
5000

! Timer output for

1 refresh operations
TIOCA

155
- R > e
T M
i |

Figure 6.10 DRAM Interface Circuit (No Internal Controller Used)

220

All these kinds of circuits are incorporated in the H8/3048F. System sizes can be reduced.
However, most current DRAM chips are larger in size, 64 Mbits (8 Mbytes) and larger. The
H8/3048F functions supported only up to 2 MB maximum, and direct connection to larger chips
not possible.

H8/3048F DRAM
Address terminals insufficient 1 A12
Output port{ 0 ALl
A22 Al10
A21 A9
A9 A8
A8 A7
A7 A6
A6 A5
A5 A4
A4 A3
A3 A2
A2 Al
Al A0
16-bit bus width means ~ AQ |- NC
AQ is not used

Figure 6.11 Large-Capacity DRAM Connection

However, by making a few changes to connections, as shown in the figure, even chips with larg
storage capacities can be used.

In the case of a 9-bit column address, the insufficient address bus width can be supplemented t
port functions, and a 2 Mbytes x 4 configuration can be connected to area 3.

H'600000

2 Mbytes x 4

H'7FFFFF

Figure 6.12 Large-Capacity DRAM Memory Map

In addition, the timer used to refresh DRAM is worth using even if no DRAM is connected, and
so is described below.

Refresh Timer
If DRAM is not refreshed, the contents of memory are lost. The refresh timer generates a refres

cycle, like that shown in the figure, at the preset time.

221

This is called CBR (CAS-before-RAS) refresh; in normally read and write operations, when RAS
goes to activeCAS is at high level, but i€AS is forced to low level a refresh operation is

detected, and an internal address counter is used to refresh the data for one row's worth (one
page).

The refresh time interval is normally 15.62%. Below is an example in which the timer is set to
comply with this.

HFF

Refresh
timer counter

H'00

Refresh interval (within 16.625 ps)

Refresh Refresh
request request

. \ .
Bus CPU/DMAC ><?9f"55h><)(CPU/DMAC XRefresh>< CPU/DMAC
\

Refresh cycle
(CBR refresh)

RAS

CAS

Figure 6.13 Refresh Cycle

222

<Program> (smp_mem.c)

/*
Memory interface(CPU mode=3,16MHz)
Area 0 Byte EPROM HN27C256HG-70 3
1-

2 Word SRAM HM62832-25 2
3 Word DRAM HM514260-6 3
4 -

5-

6 Byte I/O0 5

7 -
*
#include <machine.h>
#include "3003.h"
void initBSC(void) ;
void main(void) ;
void main(void)

initBSC() ;
while(1) ;

}
void initBSC(void)

BSC.ABWCR.BYTE = 0x41 ; /* Set bus width */
BSC.ASTCR.BYTE = 0xfb ; /* 2 clock cycle of area2 */
BSC.WCR.BYTE = 0x02 ; /* 3 + 2wait clock */
BSC.WCER.BYTE = 0x40 ; /* Enable WCR of area6 *
BSC.BRCR.BYTE = 0x0 ; /* BREQ pin not use */
RFSHC.RTCOR =30 ; /*15.6us > 62.5ns * 8 * 31 */

RFSHC.RTMCSR.BYTE = 0x10 ; /* 1/8 clock , disable interrupt */
RFSHC.RFSHCR.BYTE = 0xb9 ; /* Area3 is 2CAS,9bitcolumn DRAM */
/* Enable refresh. and wait 8cycle */

}

In order to connect DRAM, area 3 is set to a 16-bit width, and wait cycles to 0. In the refresh
controller, the time is set according to DRAM refresh requirements.

The CPU operating speed is set to 16 MHz, and the refresh counter operates at 1/8 of this clocl
speed. (RFSHC.RTMCSR.BYTE = 0x10) Then the time per count g0 Befresh must be
performed within 15.625s, and so arrangements are made such that a compare match occurs
every 31 counts. At the 31st count, the setting is 30. (RFSHC.RTCOR = 30)

When the constant register and timer counter coincide, the timer counter is always reset, and is
restarted from O.

The refresh timer requests an interrupt when a compare match occurs. When used for DRAM
refresh operations, an interrupt is not used; but if no DRAM is connected, the timer can be used
a one-interval timer.

223

6.1.4 Example of Application of the Refresh Timer as an Interval Timer

A program which uses the timer as an interval timer is shown below.

Program (smp_rfsh.c)

#include <machine.h>
#include "3048f.h"
void initRfsh(void) ;
void main(void) ;
unsigned int count ;
void main(void)

initRfsh() ; [* Initialize rfresh timer */
while(1) ;

/

* Initialize Rfresh *

void initRfsh(void)

RFSHC.RTCOR =114 ;

RFSHC.RTMCSR.BYTE = 0x58 ; /* 1/128 , enable interrupt */
}
/
* Interrupt handller *

#pragma interrupt(rfsh)
void rfsh(void)

RFSHC.RTMCSR.BIT.CMF =0 ; /* stop interrupt request */
count++ ;

}

TRICKS TO COPE WITH INSUFFICIENT MEMORY

When memory is insufficient, the program structure and algorithms should be studied. There are
numerous techniques for reducing both program size and the size of data.

For example, as much processing as possible should be incorporated in common code,
encapsulated in subroutines. Variable sizes should be limited to only the necessary sizes. And
methods using CPU functions include the adoption of addressing modes which can shorten

instructions.

If memory is still insufficient, the following tricks can be used.

ROM

*Check whether there are any interrupts that are not used by the vector table.

Space reserved by the system, and interrupt request vector space for peripheral functions not be

used, can be used to store anything.

224

RAM
*Check whether there are any unused peripheral function registers.

For example, the ITU GRA and other registers can be read and written, and so can be used as
bit memory. Of course the DMAC and other address registers can also be used. If terminals are
not being used, I/O port DR can be used as memory by setting them to output.

*Can the CCR U and Ul bits be used?

U and Ul are bits that can be used freely.

6.2 Peripheral Function Interface

Port functions and SCI functions are built-in, but in order to configure a complete system, variot
other functions are necessary. Here the connection of functions other than memory is explainec

Compared with memory functions, peripheral functions use fewer registers, and so do not occuj
much of the memory map. That is, there is more input to the address decoder. Many functions
require another hold time, and appropriate measures must be taken.

Also, some products using signals differing from those for memory.

6.2.1 Port Expansion

Let's try connecting an I/O port to a bus. However, a dedicated IC is not used,; in this example a
standard-logic IC is employed.

An output port need only store the data bus state, and so a D flip-flop or D-type latch is used. It
configured to enable storage on the rising edgéWR.

How about input ports? Data input to the terminal is read. In a read cycle, the input signal need
only be transmitted to the data bus, and so a bus buffer is used. The circuit is designed so that
whenRD goes active, the buffer is enabled.

I/O ports can be utilized by employing a simple circuit.

225

H8/3048F

74LVC373

Data(D15 to D8) : L :) Output port
RD LE OE 317
74LVC244
A
< 1 Input port
CSn JE—
AWR G OE D@

Figure 6.14 Circuit Diagram

6.2.2 LCD Connection

Many LCD products employ the Hitachi LCD-II interface; let's consider connection of such a
product.

Chip selection employs the E (enable) active-high signal. Instead of sépBratel WE control
signals, a single BY (read/write) signal is used.

Signal operations are not fast, and so often an 1/O port is used to create a signal; but this
complicates the program, and in the interest of learning more about the memory interface, we he
use the bus.

The minimum active time of the E select signal is 450 ns. Before this signal goes activady the R/
and RS (register select) signals must be fixed. There is no signal in the H8/3048F which perform
such an operation. It must somehow be created.

E

This is an enable signal. It is equivalent to a memory chip selection signal. When the E clock is a
high level, read data is output. During write operations, writing is on the E falling edge.

The frequency is 1 MHz. This is either created by 1/16 frequency division of the systenp,clock
or by using the ITU toggle output. The ITU toggle output has a long output delay time &fbm
100 ns, making it difficult to ensure bus cycle timing; it is simpler to divide the system clock
externally.

RIW
This indicates the data bus direction. UnlikeRiizandWR signals, this signal does not indicate

a timing. There is no corresponding signal in the H8/3048F. HendgWiResignal is used.

226

RS

A register within the LCD-II is selected. If the A0 terminal is connected, the register can be
positioned at continuous addresses.

H8/3048F 74LVC164(1) LCD
CSn 044444441H$>T::A
B
1 > Qk E (chip selection)
RD A==
AWR @ TR
74LVC164(2) C% R/W(read/write)
:E .
B
> QG
—_— —qCLR
WAIT D—G W 0: Command
(l:Dma)
A0 RS(register select)
Data(D15 to D8) [| DB to DBO

Figure 6.15 Circuit Diagram

74LVC164(2)
QA
QB QC QD QE

74LVC164%)A QB QC QD QE QF QG

T1 T2

Uy

il
s T\ I
= —
w T\ [~

74LVC164(1)

QE /
74LVC164(2))
QG

e / A
Data ,/—:>-
R\ [l
Data —< >_

Figure 6.16 LCD Interface Timing

227

As the bus cycle,

(1) For the RS and RV signals a 140 ns setup time is required before the E rising rises.
(2) A hold time from the E clock falling edge of 20 ns is necessary.
(3) Program waits are insufficient, and so WAIT signal must be used.

In order to synchronize with the E clock rising edge, waits are inserted such that the CPU T3
coincides with the E clock falling edge.

Because a 140 ns setup time for the E clock rising edge is required, if the bus cycle is four clock
cycles before the E clock rising edge, the bus cycle is executed in the E cycle; if fewer than four
clock cycles, the next E clock cycle is used for the bus cycle. Consequentilfiesignal is
asserted by’Sn, and T3 is made to coincide with the E falling edge in accordance with issue of a
bus cycle.

The bus interface settings in this case are as follows.

<Program> (smp_lcd)

void initBSC(void)

{

BSC.ABWCR.BIT.B7 = 1; /* Set bus width */
BSC.ASTCR.BIT.B7 = 1; /* 3 clock cycle of area7 */
BSC.WCR.BYTE = 0x03; /* 3 + 3wait clock */
BSC.WCER.BIT.B7 =1; /*Enable WCR of area7 */
BSC.BRCR.BYTE = 0x0; /* BREQ pin not use */

}

As a result, exchanges with the LCD are now possible. The LCD operates on command. These
however are not "commands", but simply data as seen from the CPU. Commands are used to
initialize the LCD circuits and to write display data.

228

Chapter 7 Using Applications More Effectively

Together, we'll try using the microcomputer to create various systems.

The key to doing this effectively is having a good understanding of the devices that are being ru
through the microcomputer. It's important to know what means are used to control the various
devices. As long as you are familiar with the device at the other end, you can figure out for
yourself what the microcomputer needs to do to control it. Then you can consider how internal

peripheral functions can be put to work, or how to compensate for functions that are lacking,
within that framework.

We will use the C language to introduce the programs.

First, let’s look at the exterior of the CPU board used for confirmation.

- -
['-\.I'-.:-‘ -
e
i
wl A
| 7,
2 I .| o
o wiol -
K oRe REAY |
-I - L] N Wi §
N B 2 il O

229

7.1 Electronic organ: Using the timer to turn on the piezoelectric
sounder

The piezoelectric sounder is an element which is used to create the bell sound when a cellular
phone rings, or to create the beeping sound used in household appliances.

There are two types of piezoelectric sounders, a separately-excited vibration type and a self-
excited vibration type. The self-excited vibration type produces a sound at a certain frequency
whenever a voltage is applied. With the separately-excited vibration type, a diaphragm moves
each time a pulse is applied from an external source, so sounds can be produced at various scal
notes. Let’s try using this type.

Piezoelectric buzzer

PA2/TP2/TCLKC/TIOCAO ﬂ

To use this terminal as —
TIOCAO or toggle output, —vr
specify ITUO.TIOR.BIT.

IOA = 3. GND

Fig. 7-1 Sounder Circuit

When the sound is actually produced, the sine wave contains no extra high-frequency componer
so a more pleasant sound is produced. Since the rectangular waveform of a timer output makes |
easy to output a waveform, it is used here.

Toggle output works best when the timer is being used for this purpose. The general register whe
using toggle output is set so that comparison matching occurs at twice the frequency to be outpu
for instance, at 880 Hz if the sound to be output is the “A” at 440 Hz.

The following shows the relationship between the frequencies of scale notes and the general
registers.

230

Table 7-1 Scale Notes and Frequencies

Scale Notes Frequency General Register Value
A 440 18181
A 466.16 17160
B 493.88 16197
523.25 15288
C# 554.27 14432
D 587.33 13620
D# 622.25 12856
659.26 12134
F 698.46 11453
F# 739.99 10810
G 783.99 10203
G# 830.61 9630
A 880 9090

The numeric value for the general register is set up so that the operating frequency (@) of the CI
is 16 MHz, and the ITU increments and toggle output is produced at g.

Calculating the frequency
Frequency = 440x2"(x/12)
(x=0,1,2,3/4...)

One octave consists of 12 keys on the piano, counting both the black keys and the white keys. T
frequency of the sound can be calculated using the formula given above. At one octave, the
frequency doubles. Because calculating each frequency takes a lot of time and effort, let’s do it
ahead of time. The data for one octave should be done in advance. The data for the scale one
octave higher can be obtained by shifting one bit to the right. The CPU can easily calculate shift
so you can have the CPU calculate it each time you need a shift.

Calculate the compare/match value for a timer that corresponds to this frequency, and write it tc
the GRA by setting the switches appropriately.

Let's look at a program that turns the sound from the switch connected to P83 on and off, and u
the switch connected to the port to set the octave and scale note.

231

[Program] smp71_1.c

/*
Sample program for buzzer
use : /0 =key scan
ITUO =sound
*
#include <machine.h>
#include "3048f.h"

void main(void) ;
void initlO(void) ;
void initITU(void) ;

volatile unsigned char key , oct ;

const unsigned short kai[] = {

A B C D E F G */
36364,34323,32396,30578,28862,27242,25713,24270,22908,21622,20408,19263

b

void main(void)

initlO() ; /* Initializes 1/0 port */
initITU() ; /* Initializes ITU timer */
while(1) {

while(P8.DR.BIT.B3) ;
oct = P4.DR.BYTE >> 6 ;
key = P4.DR.BYTE & OXOf ;

/* Waits until P83 goes low level */
/[* Sets two bits of P47 and P46 to oct variable
/* Sets P43 to P40 to key variable

*
*/

ITUO.GRA = kai[key] >> oct ; /* Writes data for scale note to GRAO
ITUTSTR.BIT.STRO=1; /* Starts ITUO */
while(!P8.DR.BIT.B3) ; /* Continues to produce sound until P83 goes high level */
ITUTSTR.BIT.STRO=0; /* Stops ITUO *

*

void initlO(void)

PB.DDR = 0xff ; /* PB7 - PBO : output (display LEDs) */
P4.DDR=0; [* PAT7 - P40 : input (switches) */

}

/*
ITUO : BUZZ

*
/
void initiTU(void)

ITUO.TCR.BYTE = 0x20 ;
ITUO.TIOR.BYTE = 0x03 ;
}

/* 1/1 clock , clears IMFA
/* TIOCAO : toggles

*
*/

The eight switches connected to port 4 are used to input scale notes. The upper two bits of the

switches (two switches) specify the octave, and the lower four bits (four switches) specify the
scale note within the octave.

Look at the switch connected to bit 3 of port 8. If it is low level, sound is produced, and if it is
high level, the sound stops.

232

In this way, the pulses generated from the ITU can be used for performance.
Now let’s expand this to a system that has 16 keys.

If there are 16 switches, and we tried to connect each switch to its own input port, we would nee
16 input port terminals. If we had 100 switches, we would need 100 terminals. In other words, w
would need as many terminals as there were switches. We don’t have that many terminals, so |
figure out how to make the system work with fewer terminals than switches.

The reason that we need so many terminals is so we can check a lot of switches at one time. In
case, what if we checked fewer switches at one time, and then accommodated a lot of switches
switching between them? This is an operation that is usually called a key scan. It takes advanta
of the difference between the speed at which the microcomputer operates and the speed at whi
humans can react. For example, even if it takes the microcomputer 100 ms (0.1 seconds) to
respond after a switch has been pressed, it appears to the person as if the microcomputer has
responded immediately. We can make use of this difference between the actual time and the
perception of it.

100 ms is an extremely long time in microcomputer terms. A microcomputer running at 16 MHz
could execute 800,000 instructions in that time. So we can use a timer to request an interrupt e\
100 ms. We can use interrupt processing to check switches.

If we have 16 switches, we can read all of them by reading four at a time, four times. To read
switches, we need a pull-up resistance and a GND connection. We'll use four output ports to
switch among the switches being read four at a time, and we’ll use low-level output to connect
only the four switches being read to GND. The output ports to which the other twelve switches r
being read just then are connected will be set to high level or high impedance. If it is possible fo
two or more switches to be pressed at the same time, note that the output terminal will be short
by the switches if they are not set to high impedance.

Using this method, we can accommodate 16 switches with eight ports. If we had 64 switches, w
would need only 16 ports. This significantly reduces the number of ports being used.

233

M Keyboard circuit Vce
% % % % Detailed view of
switch section _
PB3 / 3
PB2 1\ /?
PB1 e ’
SEesEha et
PBO
P73
P72
P71
P70
B Keyboard reading operation Outputting a high level prevents
short-circuiting of the port output
by pressing two switches at the
same time. DDR = 1 (output)
DR=0
Strobe Y o o
interval High impedance S ILowI Vs DDR = 0 (input)
PB3 -—Ieve
PB2 [[
PB1 | |
PBO [[
—7 / I
P3P0 — X X X)+ X X X _)—

Status of the four
switches connected
to PB3

Interval (100 ms)

Fig. 7-2 Key Scan Circuit

234

[Program] smp71_2.c

/*
Sample for ITU+TPC(pulse motor)
CPU 16MHz
ITU chO
TPC Group2(TP11-8)
*
#include <machine.h>
#include "3048f.h"

void initITU(void) ;
void initTPC(void) ;
void initlO(void) ;
void main(void) ;

const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;
unsigned long pos ;

void main(void)

{
pos=0;
initlo() ; /* Initialize 1/0 port */
initITu() ; /* Initialize ITU chO */
initTPC() ; /* Initialize TPC group2 */
set_ccr(0) ; /* Clear interrupt mask */
while(1){

sleep() ; /* Sleep until interrupt request */

}

}

void initTPC(void)

PB.DDR = 0x0f ; /* TP11-8 is pulse */
TPC.NDERB.BYTE = 0x0f ; /* Enable TPC group2 */
TPC.NDRB1.BYTE = ptn[pos] ; /* The first data */
TPC.TPMR.BYTE=0; /* Group2 is overlapped */
TPC.TPCR.BYTE=0; [* IMIAO triggered TPC group2 ~ */

}

void initITU()
ITUO.TCR.BYTE = 0x23 ; /* clear GRA comparematch,1/8clock */
ITUO.TIOR.BYTE=0; /* not use ITU pins */
ITUO.TIER.BIT.IMIEA =1 ; /* Enable comparematch-A interrupt */
ITUO.GRA = 19999 ; /* 10ms = 62.5ns * 8 * (19999+1) */
ITUTSTR.BYTE =0x01; /* Start ITU chO */

235

void initITU(void)

ITUO.TCR.BYTE = 0x20 ; /* 1/1 clock , clear IMFA */
ITUO.TIOR.BYTE = 0x03 ; /* TIOCAQO : toggle */
ITU2.TCR.BYTE = 0x23; /* 1/8 clock , clear IMFA */
ITU2.TIER.BYTE = 0x01 ; /* Enable IMIA interrupt */
ITU2.GRA = 3999 ; /* 20ms / 0.5us = 40000count */
ITUTSTR.BIT.STR2=1; /* start ITU2 */

}

#pragma interrupt(imia2)
void imia2(void)

{
inti,flag,j;
unsigned char dt ;
flag=0;
key = Oxff ;
ITU2.TSR.BIT.IMFA=0; /* clear IMFA , stop interrupt request */
for(i=0;i<4;i++){ /* search switch */
PB.DDR = stb[i] ; /* output strobe pattern */
for(j=0;j<100;j++) ; /* wait */
dt =P7.DR.BYTE & Oxf; /* get return data */
if(dt 1= Oxf) { /* switch on ? */
key = (stb[i]<<4) + dt ; /* strobe pattern + return data */
flag=1;
break ;
}
}
PB.DDR =0 /* stop strobe pattern */

}

A vector setting is necessary because we are using interrupt processing requests. The assemble
program for that section would be as follows.

smp71_2v.src

.cpu 300ha
.import _main,_imia2
.section vect,data
.data.l reset

.org h'80

.data.l _imia2

.section P,code
reset:

mov.| #h'ffff00,sp
jmp @_main
.end

In actuality, connecting the switches in a matrix pattern and carrying out a key scan eliminate the
jittering produced by the switches. If the jittering can be kept within the interval of the key scan
time, the switch going on one time can be viewed as one event, and this allows a system to be

236

configured in which the sound goes on when the switch is turned on, and goes off when the swi
goes on again.

Product names of the piezoelectric sounder and keyboard used

Piezoelectric sounder EE1707K FUJI ELECTRIC CO.,LTD.

Keyboard A016 FUJISOKU CORPORATION

7.2 Motor Control 1: Timers can be used to run stepping motors

Pulse motors (also called stepping motors) are used in copiers and printers, to feed the paper a
in other functions. They can be thought of as the second hand on a watch, in that the second he
moves at one-second intervals, and the pulse motor moves in the same way, advancing a certa
distance in response to the number of pulses applied. When the pulses are stopped, the motor
stops. The difference between this motor and the second hand of a watch is that the stepping m
can run in reverse.

There are a number of advantages to having the motor turn only in response to the number of
pulses applied:

» Accurate positioning is possible without using feedback control.
e There is torque when the motor stops (a brake is applied).
» The motor can turn at slow speeds without gears.

There are also drawbacks, however:

» The rotation torque is small but heavy.
» High-speed rotation is not possible.
» Low-speed rotation produces strong vibration.

The illustration shows the relation between the pulses applied and the rotation.

237

B Pulse and rotation control _ _
Clockwise (CW) Counterclockwise (CCW)

SN e I
[
I

:

Current flows
to the caoll,
magnetizing it.

Time for one pulse

Power supply
A

H Motor configuration M Motor drive method
(unipolar drive)
COM

>

2-phase motor
A total of four pulse outputs are required.
* The A and A switches operate in reverse
from each other.
B * The B and B switches operate in reverse
from each other.
(The switches are configured of transistors.)
COoM Power supply

l Example of motor drive circuit (for 1 coil)

The counter-electromotive
force of the coil is absorbed,
E preventing the transistor from
being broken and making the
motor turn more smoothly.

N-ch power
MOS-FET

Output port * A transistor with low VGS that can

be driven by the port is selected.

« A transistor with low on-resistance is
selected to minimize heat given off
from the transistor.

* A transistor with an Ip at least twice
the rated current for the coil is used
(to allow for an extra margin).

Fig. 7-3 Pulses and Motor Rotation

A fairly simple circuit can be constructed using unipolar drive with two-phase excitation, so let's
try using this method. We will need the following functions in order to get the motor to turn.

238

(1) Two pulses with a phase differential of 90 degrees
(2) A total of four pulses, with a reverse signal applied

(3) We need to supply a large enough current to the coil that it cannot be absorbed by the
microcomputer.

(4) The coil should generate counter-electromotive force when the current is turned on and off.

When the pulses can be output in this way, the motor will turn. The following methods are
possible to output the pulses:

(1) Interval timer + 1/O port
(2) Toggle output timers (four)
(3) Interval timer + TPC

239

M Interval timer + 1/O port

Timer
counter

!
Interrupt request

A
B
T
Jitter produced! | 1/O port status
in pulses changed in interrupt
processing program
Features:

* Approach is simple
» Speed can be changed by setting a single general register
« Jitter is produced

HITU + TPC

Timer
counter

TPC changed in interrupt
processing program

Features:
« No jitter is produced
» Speed can be changed by setting a single general register

M ITU toggle outputs (two)

Timer
counter

Two general registers are
used for speed changes.

Features:
« No jitter is produced
« Speed changes by setting two general registers

« Using DMAC causes constant-speed rotation without loads to CPU

GRA

GRB

Fig. 7-4 Pulse Output Methods

Let's take a look here at methods (1) and (3).

With (1), the output port is updated using the interrupt processing program for the interval timer.
The concept behind this method is very simple and allows the number of rotations to be controlle
by controlling the timer time. The drawback is that, because of the delay caused by the time for
interrupt processing, offset called jitter is produced even when the motor is rotating at a steady

speed.

240

Timer
counter

|
[Interrupt request

Program Program

Exception
| processing

S

Processing program

(Processing time varies depending on
instructions issued prior to interrupt)
Processing times vary
if condition branching is
carried out.

Clocks 19 to 41
Ewhen internal memory is used) '

l Pulse pattern is
output to output port.
f

B

|

i

-

' Time from interrupt '
request to pulse output
is not constant.

Fig. 7-5 Pulse Output (1)
(In actuality, jitter does not cause problems at the frequency (100 pulses per second) at which

pulse motors operate.)

241

[Program] smp72_1.c

/*
Sample for ITU(pulse motor)
CPU 16MHz
ITU chO
10ms interval
GRA clear
*/
#include <machine.h>
#include "3048f.h"

void initITU(void) ;
void initlO(void) ;
void main(void) ;

const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;
unsigned long pos ;

void main(void)

{
pos=0;
initlo() ; /* Initialize 1/0 port */
initITU() ; /* Initialize 1TU chO */
set_ccr(0) ; /* Clear interrupt mask */
while(1){
sleep() ; /* Sleep until interrupt request */
}
}
void initITU()
ITUO.TCR.BYTE = 0x23; /* clear GRA comparematch,1/8clock */
ITUO.TIOR.BYTE=0; /* not use ITU pins */
ITUO.TIER.BIT.IMIEA = 1 ; /* Enable comparematch-A interrupt */
ITUO.GRA = 19999 ; /*10ms = 62.5ns * 8 * (19999+1) */
ITUTSTR.BYTE =0x01; /* Start ITU chO */

}

#pragma interrupt(imia0)
void imiaO(void)

ITUO.TSR.BIT.IMFA =0; /* Stop interrupt request *
PB.DR.BYTE = ptn[pls]; /* Set pulse for motor *
pos++;
pos &= 0x03 ;
}
void initlO(void)
PB.DDR = 0x0f ; /* PBO-3 output,other PB are input */
}

Running this program outputs pulses at 100 pps. A motor that turns once each 200 pulses (1.8
degrees per pulse) would turn half a rotation in one second.

242

smp72_1v.src

.cpu 300ha
.import _main,_INITSCT,_imia0

.section vect,data

data.l reset
.org h'60
.data.l _imiaO

.section P,code

reset:
mov.| #h'ffff00,sp
jsr @_INITSCT ; Memory initialization
jmp @_main

.end

Method (3) uses a TPC (timing pattern controller). This eliminates the jitter produced when
method (1) is used, and enables accurate pulse output.

The TPC is activated by a timer interrupt request. Data is sent from the NDR (Next Data Registe
to the output port at the same time that the comparison and matching are carried out. The progr
is structured so that the next value to be output is specified for the NDR.

243

B \When using an interrupt processing program

Timer
counter

Interrupt request

Program ‘ Program

Exception
processing

|
|
i
|
|
|
|
|
|
|
|
|
! Processing program !
i
T
.
)
)

Next pattern is set

changed through the hardware, !
in NDRof TPC

there is no jitter, and accurate
pulses can be obtained.

Because the output terminal is :>< ><:

Automatic transmission with
\(compare/match of timer

Output port * ‘ >

| —
. | . 'Time availablejto be
M Operation when DMAC is used used for purposes
| other than pulge output

Program | Program

The time required
for DMA transfer is
six clocks

(when using the
internal memory)

Next pattern
_setin TPC

Using DMAC increases the time
available to be used for purposes
other than pulse output.

Fig. 7-6 Pulse Output (3)

244

[Program] smp72_2.c

/*
Sample for ITU+TPC(pulse motor)
CPU 16MHz
ITU chO
TPC Group2(TP11-8)
*
#include <machine.h>
#include "3048f.h"

void initITU(void) ;
void initTPC(void) ;
void initlO(void) ;
void main(void) ;

const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;
unsigned long pos ;

void main(void)

{
pos=0;
initlo() ; /* Initialize 1/0 port */
initITu() ; /* Initialize ITU chO */
initTPC() ; /* Initialize TPC group2 */
set_ccr(0) ; /* Clear interrupt mask */
while(1){

sleep() ; /* Sleep until interrupt request */

}

}

void initTPC(void)

PB.DDR = 0x0f ; /* TP11-8 is pulse */
TPC.NDERB.BYTE = 0x0f ; /* Enable TPC group2 */
TPC.NDRB1.BYTE = ptn[pos] ; /* The first data */
TPC.TPMR.BYTE=0; /* Group2 is overlapped */
TPC.TPCR.BYTE=0; [* IMIAO triggered TPC group2 ~ */

}

void initITU()
ITUO.TCR.BYTE = 0x23 ; /* clear GRA comparematch,1/8clock */
ITUO.TIOR.BYTE=0; /* not use ITU pins */
ITUO.TIER.BIT.IMIEA =1 ; /* Enable comparematch-A interrupt */
ITUO.GRA = 19999 ; /* 10ms = 62.5ns * 8 * (19999+1) */
ITUTSTR.BYTE =0x01; /* Start ITU chO */

245

#pragma interrupt(imia0)
void imiaO(void)

ITUO.TSR.BIT.IMFA=0; /* Stop interrupt request */
TPC.NDRB1.BYTE = ptn[pos] ; /* Set next strobe */
pos++;

pos &= 0x03 ;

}
void initlO(void)

PB.DDR = 0x0f ; /* PBO-3 output , other PB are input*/
}

The following types of data are specified in the program, but if you look closely, you'll see that
the data consists of four repeated patterns. Using the DMAC repeat function eliminates the need
for a program, which in turn means less memory is required, and more time is available to run
other programs. In other words, this function improves the performance of the entire system.

When the next pulse is set in the interrupt processing, at least 19 clocks of exceptional processin
time are added, meaning that it takes time for the pulse to be specified by the program. Six clock
are used just for the data transmission time (two clocks for reading the internal RAM, three clock
for writing the data to the ITU register, and one clock for DMAC preparation).

246

[Program] smp72_3.c

/*
Sample for ITU+TPC+DMAC(pulse motor)
CPU 16MHz
ITU chO
TPC Group2(TP11-8)
*/
#include <machine.h>
#include "3048f.h"

void initDMAC(void) ;
void initITU(void) ;
void initTPC(void) ;
void initlO(void) ;
void main(void) ;

const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;

void main(void)

{
initlo() ; /* Initialize 1/O port */
initDMAC() ; /* Initialize DMACOA(short address)*/
initITU() ; /* Initialize ITU chO */
initTPC() ; /* Initialize TPC group2 */
while(1){
sleep() ; /* Sleep until interrupt request */
}
}

void initDMAC(void)

DMACOA.MAR = &ptn[0] ; /* Set source address */
DMACOA.IOAR = (unsigned char)&TPC.NDRBL1 ; /* Set 10 address */
DMACOA.ETCR = 0x0404 ; /* Set transfer counter 4 */
DMACOA.DTCR.BYTE = 0x10 ; /* Repeat mode , ITUO , Byte */
DMACOA.DTCR.BIT.DTE =1 ; /* Start DMA transfer *

void initTPC(void)
{

PB.DDR = 0x0f ; /* TP11-8 is pulse */
TPC.NDERB.BYTE = 0x0f ; /* Enable TPC group2 */
TPC.TPMR.BYTE=0; /* Group2 is overlapped *
TPC.TPCR.BYTE=0; /* IMIAO triggered TPC group2 */

}

247

void initITu()

ITUO.TCR.BYTE =0x23; /*clear GRA comparematch,1/8clock */
ITUO.TIOR.BYTE=0; /*notuse ITU pins *
ITUO.TIER.BIT.IMIEA = 1 ; /* Enable comparematch-A interrupt */
ITUO.GRA = 19999 ; /*10ms = 62.5ns * 8 * (19999+1) */
ITUTSTR.BYTE =0x01; /* Start ITU chO */

void initlO(void)

PB.DDR = 0x0f ; /* PB0-3 output,other PB are input */
}

Product names of pulse motor and power transistor used

Pulse motor PK243-03A ORIENTAL MOTOR

Power transistor array 4AK17 HITACHI

248

7.3 Motor Control 2: DC motor control is no problem with an encoder

DC motors are used for models and other applications. This motor features extremely good
performance at high speeds, as well as a large torque. The rotation speed can be varied by
changing the applied voltage, making it possible to use an encoder to control the speed. The IT!I
timer of the H8/3048F has a built-in function that makes use of the input from an optical rotary
encoder.

Also, direct analog control of the motor voltage is not very efficient, so we will use digital control
through a PWM. Making the pulse width broader has the same effect as increasing the voltage,
and making the pulse width narrower has the same effect as lowering the voltage.

(1) Raising and lowering the voltage
(2) Inputting encoder pulses
(3) Implementing control at regular times using an interval timer

An encoder can be used only with timer channel 2.

Any channel can be used for PWM output. Using channel 3 or 4, which have a buffer function, &
a general register produces a more accurate pulse. The problem here is whether to give higher
priority to rewriting the general register used for the duty that is rewritten in order to control the
speed, or to the comparison match. Because writing to the general register is a higher priority, if
writing to the general register through the program is done at the same time that a comparison
match occurs, the writing process takes priority, and the comparison match does not occur. No
flags are set, and the pulse does not change. The buffer function is available to solve this proble
The program rewrites only the buffer register, and does not write to the general register. Rewriti
of the general register is done with the comparison match, and the ITU automatically sends the
data from the buffer register. Using this function enables the buffer register to be rewritten witho
disturbing the pulse, and without worrying about the timing.

249

Power supply

B PWM output and analog voltage l

Low-pass filter
TN Output is

analog voltage
*************** Vps

If the transistor is operated
at this signal, a high volume of|
heat is generated, and
efficiency is poor.

PBO/TP8/TIOCA3

Heat generation by transistor
PreT=VDs * Ip

GND

Interval (constant) ‘
—

Pulse width (variable) ‘

TIOCA3 output

) Output pulses are averaged
Output after filter (low-pass filter)

B DC motor drive circuit

Power supply

TIOCAS3 output

]

‘ Rotation ‘ Free ‘
AN GRA3 is rewritten and the
AN S]cggrer PWM pulse width controlled to
AN achieve a constant value for
PBO/TPS/TIOCA3 N ach

—The value of TCNT2 is sent

ITU2 counter (captured) to GRA2.
Phase counting®AO/TPO/TENDO/TCLKA %m

(ITU2) PAL/TP1/TENDT/TCLKB
TCLKA LI
PA6/TP6/A21/CS4/TIOCA2 B TCLKe U
pubinl N e IR —
PA5/TP5/A22/CS5/TIOCB1 TiocAZ(TIoCEY) [T L—of
Pulses used for automatic measurement of ITU2: 50ms

ITU1: Toggle output
ITU2: Input capture

B General register buffer function

The program writes the following pulse
setting to BRA/BRB. The data is
automatically sent to GRA/GRB as a result
of the compare/match.

GRB Y —4 GRB
CPU /
GRA7 / BézAaGRA7 //

Rewriting of GRA/GRB takes precedence over the
compare/match. If both occur simultaneously,

the compare/match is ignored and data for one
pulse is dropped in the PWM mode settings.

Fig. 7-7 Drive Circuit

The PWM pulse is amplified to directly drive the motor. The motor being used has an encoder,
and is the DSE48BE25-153 made by JAPAN SERVO CO.,LTD. The motor performance is the

250

speed of 2,770 rpm at 24 V. The rotary encoder output is 400 p/r at TTL level (the number of
counts at the ITU phase counting).

This motor is driven at 5 V, and control is set up so that the count value for the phase counting
reaches 200 at intervals of 50 ms. The speed is 600 rpm (60 seconds x 200 p / 400 p / 50 ms).

[Program] smp73_1.c

/*
DC motor control
*/
#include <machine.h>
#include "3048f.h"

void initITU(void) ;
void initlO(void) ;
void main(void) ;

#pragma interrupt(imia2)

void main(void)

initlo() ; [* initialize 1/0 port ~ */
initITU() ; [* initialize ITU */
ITUTSTR.BYTE = Oxe ;
set_ccr(0) ; /* enable interrupt *
while(1) ;

}

void initITU(void)

ITUTMDR.BYTE = 0x68 ; /* 1ITU2 = encode rotation,ITU3 = PWM */

ITUTFCR.BYTE = 0x01 ; /* BRA3 enable *
ITU3.TCR.BYTE = 0x40 ; /* clear GRA,1/1 clock */
ITU3.GRB = 1600 ; [* carrier frequency 10kHz *
ITU3.GRA = ITU3.BRA = 1000 ; /* *
ITU2.TCR.BYTE = 0x20 ; /* clear GRA,1/1 clock */
ITU2.TIOR.BYTE =0x04 ; /*input capture *
ITU2.TIER.BIT.IMIEA=1; /[* IMFA interrupt enable */
ITULTCR.BYTE = 0x43 ; /* clear GRA,1/8 clock */
ITULTIOR.BYTE =0x30; /* TIOCB1 is toggled */
ITUL.GRB = 49999 ; /* 50ms cycle */

}

void initlO(void)
PB.DR.BYTE = 0x10 ; /* H bridge(PB4,PB2,PB1,PBO(TIOCA3)) */
PB.DDR = 0x17 ; 1* *

}

251

void imia2(void)
{
int pls , diff ;
ITU2.TSR.BIT.IMFA=0; /* stop interrupt request */
pls = ITU3.BRA; /* get current pulse width *
diff = ITU2.GRA ; /* get differential */
if(diff<200){ /* fast or late */
pls = pls + diff - 200 ; /* */
if(pls<0) pls=0; 1* */
else {
pls = pls + diff - 200 ; /* */
if(pls>1600) pls=1599 ; /* */
ITU3.BRA =pls ; /* set pulse width */
}

The motor speed is controlled by the imia2() function. The speed is controlled by calculating how
far the count value obtained from the phase counting is off from the target value of 200 pulses an
converting the result to the pulse width. In order to approach the target speed in the shortest
possible time, the pulse width is determined using the information obtained from the system
characteristics (in this case, the motor inertial moment, the load status, and other factors).
Classically, PID control has been used, but more recently, theories such as the modern control
theory and fuzzy control theory are used. Because we are focusing on the H8/3048F in our
explanation, we will leave out the control theory aspect here.

Because we are using interrupt requests, we need to set the vectors. The assembler program for
that section will be as follows.

.import _main,_imia2

.section vect,data
.data.l reset
.org h'80
.data.l _imia2

.section P,code,align=2
reset:

mov.l #H'ffff00,sp

jmp @_main

.end

Let’s actually try running the motor now, holding the axis and applying torque. When we do this,
the pulse width that raises the speed increases.

Product names of DC motor and power transistor used

DC motor SE48BE25-153 JAPAN SERVO CO.,LTD.

Power transistor 4AM12 HITACHI

252

7.4 Digital Recording and Playback: timed recording is a simple function
Let's see now if the H8/3048F can handle voices.

Humans can hear sounds with frequencies in the range of 20 Hz to 20 kHz. The range in which
can hear voices is smaller, however. With a good telephone, a frequency of up to 4 kHz is enou
for us to hear voices.

Conversion from digital to analog is done by sampling data at regular intervals. This interval is
called the sampling frequency. The higher the sampling frequency, and the more digital bits thel
are, the closer the signal obtained will be to the original analog signal. A high sampling frequenc
however, requires a large memory capacity, and the microcomputer processing may not be able
keep up. The minimum sampling frequency necessary to reproduce the original sound is more t
twice the original analog frequency. This is called the sampling theorem. In other words, to hanc
voices of 4 kHz, the sampling frequency will be at least 8 kHz.

The conversion time of the A/D converter built into the H8/3048F is either 134 or 266 clocks per
channel. If running at 16 MHz, the figure will be 119.4 kHz or 60.2 kHz. The conversion speed is
fast enough to handle voices with no problem.

A high number of digital bits produces a sound close to the original, but telephone-quality sounc
can be produced with 10 bits. If 10 bits are saved without compressing them, however, it takes t
bytes per sample, so a large memory capacity is required. In this example, taking memory stora
and the A/D converter precision into consideration, we used eight bits.

Even with this, only 0.5 seconds of recording can be stored in the internal RAM (4 KB), which is
very little. To handle longer recordings, we would need to use external expansion memory. (See
chapter 6 for information on this.)

An amplifier circuit is necessary for voice input. The microphone voltage is limited to several mVv
so we amplified this to 5 V. When we amplified it, however, the final input to the A/D converter
could not be handled by the analog signal, which oscillates around 0 V, so we set it to oscillate
around 2.5 V. We passed the signal through a level shifting circuit and amplified it around 1,000
times. In an actual situation, it would be better to pass the signal through an AGC (auto gain
control) circuit, so that small sounds would be made louder and loud sounds would be softer, bu
we eliminated this step because we wanted to keep our circuit simple.

We used a headphone amp in our playback circuit. The voltage of the output from the D/A
converter is 5 V, which is sufficiently high, but a load resistance of 2 t@4svheeded to satisfy

the AC characteristic for the current, so not enough can be obtained. To correct that, we connec
an amp to boost the power. We used the recommended circuits, but because the output voltage
from the D/A converter is high, we passed it through a resistor and a VR to lower it. The capacit
connected to the speaker is intended to cut the DC component. If the DC component passes
through the system, it will cause the speaker to heat up.

253

1MQ
10kQ
Capacitor
microphone 4-TWF

Dynamic 474F
microphone, i
600Q A
GND 10kQ
10kQ
GND V
2.5-V reference voltage
generated

AN7/DA1/PT7

P77/AN7/DAO

P76/AN6/DAL

PB7/TP15/DREQ1/ADTRG
PB3/TP11/TIOCB4 |

100kQ

NMJ386 Speaker
220pF

10kQ 0.047uF
10Q
GND
10Q
220uF Speaker
8Q, 0.1W
10Q
GND

It

A/D conversion started
(also enabled by hardware)

Fig. 7-8 Recording/playback Circuit

254

[Program] smp74_1.c

/*
A/D and D/A convert
Record for microphone and Play to speaker
*
#include <machine.h>
#include "3048f.h"

#define MTOP (unsigned char *)0x2000
void ituinit(void) ;

void addainit(void) ;

void sciinit(void) ;

void main(void) ;

volatile unsigned char *pdata ;
unsigned char *MEND ;

void main(void)

{
ituinit() ; /* Initialize ITUO,1 *
addainit() ; /* Initialize A/D,D/A */
PB.DDR = 0xff ;
set_ccr(0) ; /* Clear interrupt mask */

MEND = (unsigned char *)Oxffff;

while(1){
pdata = MTOP ; /* set pdata 0x2000 */

PB.DR.BYTE = 0x01 ;

while(P8.DR.BIT.B3); /* wait P8.B3 LOW for start rec */
ITUO.TIER.BIT.IMIEA = 1 ; /* start inerrupt for AD *
while(! P8.DR.BIT.B3) ; /* wait P8.B3 HIGH for stop rec *
ITUO.TIER.BIT.IMIEA =0 ; /* unable Interrupt */
MEND = pdata;

PB.DR.BYTE = 0x80 ;

=

while(P8.DR.BIT.B3) ; /* wait P8.B3 LOW for start play */

pdata = MTOP ; /* set pdata 0x2000 */
ITUL.TIER.BIT.IMIEA = 1 ; /* start inerrupt for DA */
while(! P8.DR.BIT.B3) ; /* wait P8.B3 HIGH for stop play */
ITUL.TIER.BIT.IMIEA = 0 ; /* unable Interrupt */

}

}
void ituinit(void)

ITUO.TCR.BYTE = 0x23;
ITULTCR.BYTE =0x23; /*timer 0 & 1 clear 1/8clock */
ITUL.GRA = ITUO.GRA = 230 ; /* about 8kHz */
ITUTSTR.BYTE = 0x03 ; [* start ITUO & ITUL */

}

void addainit(void)

AD.CSR.BYTE = 0x0f; /¥ 00001111 AN7 max=134st singl mode */
DA.CR.BIT.DAOEO =1; /* use only DADRO */
}

255

#pragma interrupt(adstart, dastart)
void adstart(void)

{

ITUO.TSR.BIT.IMFA=0; /*stop Interrupt */
AD.CSR.BIT.ADF=0;

AD.CSR.BIT.ADST =1 /* start AD */
while(! AD.CSR.BIT.ADF) ; /* wait AD END */
if(pdata != MEND)

pdata++ = AD.DRD >>8; / set result AD */
else

pdata = AD.DRD >> 8, ITUO.TIER.BIT.IMIEA = 0 ; / unable Interrupt */
}

void dastart(void)

ITULTSR.BIT.IMFA=0; /*stop Interrupt */
DA.DRO = *pdata ; /* data set DA Register */
if(pdata++ == MEND)

ITULTIER.BIT.IMIEA=0; /*unable Interrupt */

}

Because we are using interrupt requests, we need to set the vectors. The assembler program for
that section will be as follows.

.cpu 300ha

.import _main,_adstart,_dastart, _INITSCT
.section vec,data,locate=0

.data.l reset

.org h'60

.data.l _adstart

.org H70

.data.| _dastart

.section P,code
reset:

mov.| #h'ffff00,sp

jsr @_INITSCT

jmp @_main

.end

The A/D converter is started by the interval timer, and the system then waits for “1” to be set for
the conversion completed flag (ADF). The data is then processed.

The following could also be considered in order to make the system run more efficiently.

(1) The timer could be set to toggle output, and connected to the ADTRG. ADI interrupts could be
used to process the converted data, shortening the time for the interrupt processing program.

(2) The A/D converter could be set to scanning, and the DMAC booted by the interval timer
interrupt. The converted data would be sent to the memory by the DMAC, reducing the time
for the interrupt processing program required for data processing to zero.

256

7.5 Voice Processing: Going for the best possible vocal sound
Processing data using digital means is called digital signal processing.

For example, when voice signals are sampled, the high-frequency component ends up being
included in some cases. This is called aliasing.

The system can be tailored so that only the necessary signals of the low-frequency range can b
filtered out from signals that contain a high-frequency component.

To do this, we would use an operation called a movement average.

The past seven data elements and the current sampling data are added, and divided by eight. T
eliminates sudden changes, and is the original form of the operation called a low pass.

This averages all of the data, so it results in a poor filter characteristic. The result is multiplied b
a coefficient to improve the characteristic.

This requires the multiply-and-accumulate operation together. Generally, this can be done at hig
speed by using a DSP.

Let's look here at the program only for the processing section.

[Program] smp75_1.c

MEND = pdata;
PB.DR.BYTE = 0x80 ;

while(P8.DR.BIT.B3); /* wait P8.B3 LOW for start play */
pdata = MTOP ; /* set pdata 0x2000 */
ITULTIER.BIT.IMIEA = 1 ; /* start interrupt for DA */
while(! P8.DR.BIT.B3); /* wait P8.B3 HIGH for stop play */
ITUL.TIER.BIT.IMIEA = 0 ; /* unable Interrupt */

for(p=MTOP,sum=0 ; (p+7)<pdata;p++) {
sum=(*p + *(p+1) + *(p+2) + *(p+3) + *(p+4) + *(p+5) + *(p+6) + *(p+7)) ;
*p = (sum >>3) ;

}

MEND = pdata;
PB.DR.BYTE = 0x40 ;

An echo is created in the same way. Old data is reduced as current data is added in, creating al
echo.

257

258

APPENDIX that Comes with This Manual

Compiled information

The following types of information have been compiled in the APPENDIX. Items may only be
used if you have agreed to the exemption from liability clause. Those users who agree to the
clause may go ahead and use the items for programming. The sample program, which is provid
in source format, may also be changed or modified in any way you like.

1.

H8/300 and H8S Series Microcomputer Development Tools For Evaluation
C/C++ compiler, assembler, linker, etc.

Convenient Tools For Use

Debugging monitor (written to internal flash memory in H8/3048F)

Communication software for personal computers (HTERM.EXE) capable of reading output
from development tools for evaluation

Manuals

Hardware manuals for the H8/3048 series and H8/3052F series
Manuals for development tools, etc.

Sample program

The programs noted in this manual, and other sample programs
Additions to this manual

Chapter 7: Towards More Sophisticated Applications

Using the APPENDIX

The file called “index.html” on the APPENDIX contains detailed information about using the
files. Please open this file in an HTML browser. No HTML browser has been included on the
APPENDIX, so please use one from another source.

Operating environment

The contents of the APPENDIX are stored in the ISO9660 format.

The contents can be viewed on Windows 95, 98, NT, 2000, and Mac OS 8 or a subsequent
version.

The H8/300 and H8S Series Microcomputer Development Tools for Evaluation and the
communication software for personal computers can be executed at the MS-DOS prompts in
Windows 95 and 98. However, the communication software can only be run on DOS/V.

259

Copyrights and liability

The programs included on this APPENDIX are for evaluation purposes only, and may be used fre
of charge. The copyrights for these programs belong to Hitachi, Ltd., and to the authors of the
programs. These programs may not be reproduced or distributed in any part, or in their entirety.

The sample programs are intended to introduce the functions of the H8/3048F, and operation is
not guaranteed. Ohmsha Ltd. and the authors of these programs assume no responsibility for an
problems caused by using the programs contained in this manual or on the APPENDIX.

Related home pages

Information related to this manual can be found on a humber of home pages. Please check these
home pages for the latest available information.

» Hitachi, Ltd., Semiconductor and Integrated Circuit Division
http://www.hitachi.co.jp/Sicd/

» Hitachi, Ltd., Education & Training Dept.
http://www.hitachi.co.jp/Sicd/Japanese/Seminar/top.htm

* Ohmsha Robocon Magazine
http://www.ohmsha.co.jp/robocon/index.htm

For information on APPENDIX, click this.

260

Reference Documents

1.

Documents relating to the H8/3048F

H8/3048 Series Hardware Manual: Hitachi Ltd.

H8S and H8/300 Series C/C++ Compiler User's Manual: Hitachi Ltd.
Documents relating to computers

Computer Construction and Design (2 vols.): Nikkei Business Publications Inc., David A.
Patterson / John L. Hennessy. Translated by Mitsuaki Narita. 1996

Documents related to programming

Programming Language C: Kyoritsu Shuppan Co, Ltd., B. W. Carnihan and D. M. Ritchey.
Translated by Haruhisa Ishida. 1994

Algorithm Dictionary Using C Language: Gijutsu-Hyoron Co., Ltd., Haruhiko Okamura. 1994
Fundamentals of Digital Signal Processing: CQ Publishing, Naoki Mikami. 1998

Digital Signal Processing: Tokyo Denki University Press, Shogo Nakamura. 1991
Documents relating to circuits

Transistor Circuit Design, CQ Publishing, Masaomi Suzuki. 1998

Other

Textbooks of Education & Training Dept., Hitachi, Ltd.

Introductory Microcomputer Course (1999)

Intermediate Microcomputer Course (2000)

H8/300H Course (2000)

Introductory Course in C Language (2000)

Pointer Course in C Language (2000)

261

Authors:
Yukiho Fujisawa
Joined Denken Seiki Kenkyusho Co. in 1978.
Joined Hitachi VLSI Systems Co. in 1984

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

fujisawa-yukiho@denshi.head.hitachi.co.jp

In cooperation with:
Yuji Katori
Joined Hitachi VLSI Systems Co. in 1984

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

katori-yuji@denshi.head.hitachi.co.jp
Masayuki Sato
Joined Hitachi VLSI Systems Co. in 1989

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

sato-masayuki@denshi.head.hitachi.co.jp
Aogu Nagashima
Joined Hitachi VLSI Systems Co. in 1992

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

nagashima-aogu@denshi.head.hitachi.co.jp

262

THE INTRODUCTION OF HITACHI H8 MICROCOMPUTERS
O Yukiho Fujisawa 2000

December 12, 2000 Issue of first impression of the first edition
Writer Yukiho Fujisawa
Publisher Ohmsha, Ltd.

Seiji Sato, President

Proof mark omitted
Published by Ohmsha, Ltd.
3-1 Kanda Nishiki-cho, Chiyoda-ku,
Tokyo 101-8460 Japan
Tel: +81-3-3233-0641
Money transfer: 00160-8-20018
http://www.ohmsha.co.jp/

Printed in Japan Printed by Chuo Printing Co., Ltd.
Binding by Sansuisha

A book with missing pages or disorderly binding will be replaced.

	Cover
	Preface
	Contents
	Chapter 1 What Is a Microcomputer?
	1.1 Microcomputers in Our Everyday Lives
	1.2 How do Microcomputers Work?
	1.2.1 What the Microcomputer does
	1.2.2 Elements other than the Microcomputer (CPU)
	1.2.3 Types of Microcomputers

	1.3 Memory Data and Binary Values
	1.3.1 Instructions and Binary Values
	1.3.2 Numeric Expressions
	1.3.3 Character Codes
	1.3.4 Decimal Point Data
	1.3.5 Expressing Numeric Values
	1.3.6 Memory Maps

	Chapter 2 H8 Microcomputers have High-Levels of Performance and Functionality
	2.1 What is an H8 Microcomputer?
	2.2 Operation Mode of the H8/3048F
	2.2.1 Summary
	2.2.2 Single Chip
	2.2.3 Memory Expansion

	2.3 Configuration of Registers and Programming
	2.3.1 Register Configuration
	2.3.2 Instruction
	2.3.3 Programming
	2.3.4 Size of the Memory and Performance in Executing an Instruction
	2.3.5 Basic Input and Output

	Chapter 3 Reset and Interrupts
	3.1 Writing Programs to ROM
	3.1.1 Hardware
	3.1.2 Programs
	3.1.3 Further Premised Hardware

	3.2 Interrupts
	3.2.1 Need for Interrupt Functions
	3.2.2 Operation on Occurrence of an Interrupt
	3.2.3 Example of Interrupt Use

	Chapter 4 Internal Peripheral Functions The functions and how to use them (circuits and programs)
	4.1 A/D Converters
	4.1.1 Overview of the A/D Converter
	4.1.2 Example of How the A/D Converter is Used
	4.1.3 A/D Conversion Completed Interrupt

	4.2 D/A Converter
	4.2.1 An Overview of the D/A Converter
	4.2.2 Example of How the D/A Converter is Used

	4.3 16-Bit Timer (ITU)
	4.3.1 Overview of the ITU
	4.3.2 Example Using the Interval Timer
	4.3.3 Example of Using Toggle Output

	4.4 Serial Communication (SCI)
	4.4.1 Overview of the SCI
	4.4.2 Example Using Start-Stop Synchronized Communication
	4.4.3 Example Using Clock Synchronization Communication

	4.5 DMA Controller
	4.5.1 Various Ways of Sending Data
	4.5.2 Overview of the DMAC
	4.5.3 Example Using the Full Address Mode
	4.5.4 Example Using the Short Address Mode

	4.6 WDT
	4.6.1 Overview of the WDT
	4.6.2 Program Example Showing Reset Using the WDT
	4.6.3 Example Using an Interval Timer through the WDT

	Chapter 5 PROGRAMMING IN THE C LANGUAGE
	5.1 The C Language and the H8 Microcomputer
	5.1.1 Standard I/O
	5.1.2 Variable Sizes

	5.2 Tasks Prior to Calling main
	5.2.1 Reset Processing
	5.2.2 Initialization of Variables

	5.3 Peripheral Function Programming
	5.3.1 Register Access
	5.3.2 Interrupt Processing

	5.4 Basics of the C Language
	5.4.1 Operators
	5.4.2 Control Statements
	5.4.3 Features of Structures, Arrays, and Pointers
	5.4.4 Function Calls
	5.4.5 Declarations and Storage Classes

	Chapter 6 EXTERNAL MEMORY INTERFACE
	6.1 Memory Interface
	6.1.1 Basics of Memory Connection
	6.1.2 Memory Interface Design
	6.1.3 DRAM Interface
	6.1.4 Example of Application of the Refresh Timer as an Interval Timer

	6.2 Peripheral Function Interface
	6.2.1 Port Expansion
	6.2.2 LCD Connection

	Chapter 7 Using Applications More Effectively
	7.1 Electronic organ: Using the timer to turn on the piezoelectric sounder
	7.2 Motor Control 1: Timers can be used to run stepping motors
	7.3 Motor Control 2: DC motor control is no problem with an encoder
	7.4 Digital Recording and Playback: timed recording is a simple function
	7.5 Voice Processing: Going for the best possible vocal sound

	APPENDIX that Comes with This Manual

