
THE INTRODUCTION OF
HITACHI H8 MICROCOMPUTERS

The company names and product names contained in this manual are trademarks or registered

trademarks. The web site addresses (URLs) mentioned in this manual were confirmed to be valid
as of November 2000.

The copyright of this manual is protected by the copyright laws. Reproducing, duplicating by using,

for example, a copy machine, or inputting to electronic equipment the whole or part of this manual
without permission may infringe on the copyright laws.

Duplication of this manual is prohibited, except for the exceptions defined in the copyright laws. To
request permission to duplicate the contents of this manual, please obtain permission from the
Japan Reprographic Rights Center.

Some useful contact details are given below. We recommend contacting them by letter or fax.

Japan Reprographic Rights Center
Tel: +81-3-3401-2382
Fax: +81-3-3401-2386

3-3-7, Kita-aoyama, Minato-ku, Tokyo 107-0061
Dai-ichi Aoyama Building, 3F

Ohmsha, Ltd.
Dept. responsible for the copyright laws
Tel: +81-3-3233-0641

Fax: +81-3-3293-0641
3-3-7, Kanda-nishiki-cho, Chiyoda-ku, Tokyo 101-8460

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Copyrights and liability

The programs included on this CD-ROM are for evaluation purposes only, and may be used free
of charge. The copyrights for these programs belong to Hitachi, Ltd., and to the authors of the
programs. These programs may not be reproduced or distributed in any part, or in their entirety.

The sample programs are intended to introduce the functions of the H8/3048F, and operation is
not guaranteed. Ohmsha Ltd. and the authors of these programs assume no responsibility for any
problems caused by using the programs contained in this manual or on the CD-ROM.

i

Preface

Nowadays, people are supported by computers in many ways in their everyday lives. Personal
computers are one type of computer, perhaps the type with which people are most familiar. A
personal computer has a computer inside it, and can be used to access the Internet and for many
other purposes. The name of this internal computer is rarely noted, but it is used to run and control
personal computers and many other computerized devices. This is called an “embedded”
computer. Unlike a personal computer, its programs are not available on hard disks or CD-ROMs,
and cannot be edited by users. It always runs using the same programs, and is used in countless
applications, among them cellular telephones, facsimile machines, printers, washing machines,
refrigerators, microwave ovens, computer game machines, automotive engines, air conditioners,
and meters, to name just a few. Nearly all of these embedded computers are microcomputers that
are marketed in chip form. The H8 by Hitachi that is discussed in this manual is a representative
type of microcomputer.

As long as the hardware is available in some finished form and programs have been installed,
personal computers can do just about anything we want them to do. The same applies to
microcomputers. As long as a chip has been installed, they can do almost anything. Because there
are no restrictions in terms of an operating system and hardware, like those that apply to personal
computers, microcomputers offer outstanding flexibility.

Numerous companies use microcomputers for system development of products, and countless
numbers of engineers are using microcomputers in their work. Not many school curricula cover
microcomputers, however, and most people who know anything about microcomputers learn it
through educational programs at work.

When microcomputers first appeared on the scene, in the 1970s and 1980s, many introductory
texts were available, and I had access to a wealth of documentation concerning products such as
the Z80 and MC6800. It was an ideal period for beginners to delve into the world of
microcomputers. Nowadays, however, even though microcomputers are in common use, most
textbooks assume that the reader has already acquired a fundamental knowledge of them, and it
has become rather difficult to find good information at the introductory level.

This manual was designed for future engineers in mind, and explains how microcomputers are
used, based on the H8 as an example. The instructions and signal terminal operation vary from one
product to another, but the basic approach to microcomputers is largely the same. The basic
material that you learn in this book through using the H8 can be applied to other microcomputers
as well.

What is important is how you use the tools you will learn here. Using the H8 as an example, this
book will teach you how to use a microcomputer. We hope you will then use that knowledge as a
springboard to devising applications of your own. Japan has a strong reputation for engineering
and technology, and microcomputers are a very important and valuable part of that technology. By

ii

designing products using microcomputers, you will experience the pleasure of developing new
products, and come to realize how important that process can be.

We hope that this book will provide you with a thorough and instructional introduction to
microcomputers.

Finally, I would like to express my appreciation to Mr. Masuda, the Senior Engineer of the System
LSI Business Division at Hitachi, Ltd., who kindly provided me with the assembler and C
compiler used to develop the H8 microcomputer when this book was published, and to Mr.
Toyoshima, the Team Leader at Hitachi Kodaira Semiconductor Co., Ltd., who provided me with
information as a member of the Micom Car Rally Office.

November 2000

Yukiho Fujisawa

iii

Contents

Chapter 1 What Is a Microcomputer?..1
1.1 Microcomputers in Our Everyday Lives...2
1.2 How do Microcomputers Work?...9

1.2.1 What the Microcomputer does...9
1.2.2 Elements other than the Microcomputer (CPU)...10
1.2.3 Types of Microcomputers ..14

1.3 Memory Data and Binary Values..16
1.3.1 Instructions and Binary Values ..17
1.3.2 Numeric Expressions ...17
1.3.3 Character Codes...21
1.3.4 Decimal Point Data ..21
1.3.5 Expressing Numeric Values...22
1.3.6 Memory Maps..22

Chapter 2 H8 Microcomputers have High-Levels of Performance and
Functionality ..25

2.1 What is an H8 Microcomputer? ..25
2.2 Operation Mode of the H8/3048F...27

2.2.1 Summary..27
2.2.2 Single Chip ..30
2.2.3 Memory Expansion..32

2.3 Configuration of Registers and Programming ..34
2.3.1 Register Configuration...34
2.3.2 Instruction ..40
2.3.3 Programming ...53
2.3.4 Size of the Memory and Performance in Executing an Instruction......................70
2.3.5 Basic Input and Output ..75

Chapter 3 Reset and Interrupts...93
3.1 Writing Programs to ROM..93

3.1.1 Hardware..93
3.1.2 Programs ..94
3.1.3 Further Premised Hardware ...95

3.2 Interrupts...101
3.2.1 Need for Interrupt Functions..101
3.2.2 Operation on Occurrence of an Interrupt ...102
3.2.3 Example of Interrupt Use...105

iv

Chapter 4 Internal Peripheral Functions The functions and how to use them
(circuits and programs)..111

4.1 A/D Converters ...112
4.1.1 Overview of the A/D Converter...112
4.1.2 Example of How the A/D Converter is Used...116
4.1.3 A/D Conversion Completed Interrupt..118

4.2 D/A Converter...122
4.2.1 An Overview of the D/A Converter ...122
4.2.2 Example of How the D/A Converter is Used...124

4.3 16-Bit Timer (ITU) ...126
4.3.1 Overview of the ITU..126
4.3.2 Example Using the Interval Timer...130
4.3.3 Example of Using Toggle Output ..138

4.4 Serial Communication (SCI)...140
4.4.1 Overview of the SCI ..141
4.4.2 Example Using Start-Stop Synchronized Communication142
4.4.3 Example Using Clock Synchronization Communication.....................................151

4.5 DMA Controller..154
4.5.1 Various Ways of Sending Data..154
4.5.2 Overview of the DMAC...157
4.5.3 Example Using the Full Address Mode ...158
4.5.4 Example Using the Short Address Mode...165

4.6 WDT ...169
4.6.1 Overview of the WDT ...169
4.6.2 Program Example Showing Reset Using the WDT ...171
4.6.3 Example Using an Interval Timer through the WDT...174

Chapter 5 PROGRAMMING IN THE C LANGUAGE177
5.1 The C Language and the H8 Microcomputer..177

5.1.1 Standard I/O...178
5.1.2 Variable Sizes ..178

5.2 Tasks Prior to Calling main ..179
5.2.1 Reset Processing ..180
5.2.2 Initialization of Variables ..181

5.3 Peripheral Function Programming ..185
5.3.1 Register Access..186
5.3.2 Interrupt Processing ...187

5.4 Basics of the C Language..191
5.4.1 Operators..191
5.4.2 Control Statements...191
5.4.3 Features of Structures, Arrays, and Pointers..199
5.4.4 Function Calls ..200
5.4.5 Declarations and Storage Classes...201

v

Chapter 6 EXTERNAL MEMORY INTERFACE..203
6.1 Memory Interface..203

6.1.1 Basics of Memory Connection...204
6.1.2 Memory Interface Design ..208
6.1.3 DRAM Interface ..217
6.1.4 Example of Application of the Refresh Timer as an Interval Timer....................224

6.2 Peripheral Function Interface..225
6.2.1 Port Expansion...225
6.2.2 LCD Connection ..226

Chapter 7 Using Applications More Effectively ...229
7.1 Electronic organ: Using the timer to turn on the piezoelectric sounder230
7.2 Motor Control 1: Timers can be used to run stepping motors...237
7.3 Motor Control 2: DC motor control is no problem with an encoder.................................249
7.4 Digital Recording and Playback: timed recording is a simple function253
7.5 Voice Processing: Going for the best possible vocal sound..257

APPENDIX that Comes with This Manual ...259

vi

1

Chapter 1 What Is a Microcomputer?

Let’s start off by defining a microcomputer. “Micro”, of course, refers to something small and
compact, while a computer can be defined as a kind of calculator that uses semiconductors and
other electronic components to carry out all kinds of computations. Actually, the first
microcomputers were used in compact calculators. The world’s first microcomputer was made in
the U.S., by Intel, and was called the “i4004”. Its first application was in a calculator. If you think
about how a calculator works, you press keys to enter numeric values, right? This is the same way
that data is entered in a computer, using some kind of input device. The value of the input key is
displayed to indicate to the user that the value has been entered correctly. If you disassembled a
calculator, you would find that the keys and the display unit are not directly connected; there is a
microcomputer between them. The microcomputer decides, based on the key input, what should
be displayed, using instructions (this is called an “operation”). A group of instructions is called a
program. After the numeric value has been input, detailed operations can be carried out, such as
the various arithmetic operations, by the operation keys. So the microcomputer uses a program
that has been stored in it in advance to execute the functions of a calculator.

Because of price considerations, however, dedicated ICs are used nowadays in calculators, instead
of microcomputers.

(1) Confirms whether a switch
 has been pressed
(2) If pressed, shifts the existing
 display to the left, and displays
 the new value at the right.

Switch

CPU
(operation unit)

Instructions

Memory

Figure 1.1 How a Calculator Works

So the computer is a machine that repeatedly carries out functions in response to instructions. The
same is true of a microcomputer, which is nothing but a lump of stone (semiconductors are made
of silicon) without a program. But the program is nothing without the hardware either; both the
software and the hardware are needed in order to create a functioning unit. To put it another way,
if a different program is put into the same hardware, the hardware functions completely
differently. This is obvious if you look at a personal computer or a computer game player. For
example, if a game program is installed in a personal computer and run, the computer serves as a
game player, and if an Internet program is installed and run, the computer becomes an Internet
terminal.

2

A B

Memory in which
programs are stored

Figure 1.2 A microcomputer Integrates Hardware and Software

One good thing about computers is that they will do the same thing over and over without ever
complaining or making a mistake. They work whenever asked to, as long as the electricity that
serves as their fuel is supplied. Microcomputers function in our everyday lives now in far more
diverse capacities than just as calculators. They are working for us from the moment we get up
until the time we go to sleep, and even while we sleep. We can’t even imagine a life without
microcomputers, and yet we rarely stop to think about these machines that do so much for us.

Let’s look at how microcomputers are being used, and what they do for us.

1.1 Microcomputers in Our Everyday Lives

Most machines that we call information devices use microcomputers. Intel says in an
advertisement that microcomputers are the “heart” of the personal computer. Microcomputers are
crucial to the functioning of the personal computer. But they aren’t found just in personal
computers. Keyboards have their own separate microcomputers, while in notebook computers,
microcomputers control the power supply and battery. PDAs (Personal Digital Assistants), like
personal computers, use microcomputers. In response to instructions from the mouse and
keyboard, they run application programs, change screen displays, and carry out other functions.
Displaying the mouse cursor is another job the microcomputer does.

Computer game players work the same way as personal computers, although they use game pads
and, in some cases, bazooka guns instead of a mouse and keyboard. When you make a movement
on the game pad, the screen is constantly redrawn in rapid succession. Newer game players can
refresh the screen even faster than personal computers can.

3

Reads data from
a CD/DVD, etc.

Moves
the displayed
screen

Moved

Figure 1.3 How a Game Player Works

How often do you ever see the old, standard black telephone? Even the word “dial” is fast
becoming extinct, since no one ever “dials” a telephone anymore. Today’s telephones have
microcomputers that control answering machine, redialing and other functions. Facsimile
machines and cellular phones also use microcomputers. When you press a button on a telephone,
you hear a beeping sound, and the telephone number of the person you are calling is displayed on
the screen, along with the elapsed time and other information. Answering machines record and
play back messages. All of these functions are done using microcomputers.

Displays information/communicates with base station

Key is pressed

Figure 1.4 How a Cellular Phone Works

4

Receives instructions
from remote control transmitter

Changes channel/turns motor

Infrared rays

Figure 1.5 How a VTR Works

TVs and VTRs are controlled by microcomputers, too. They handle channel selection, and display
the selected channel number and volume on the screen. The channel is selected among the radio
waves of a certain node being received by an antenna. In an electronic tuner, voltage is applied to
an element called a varicap (variable capacitance) diode, for channel selection. The
microcomputer is what generates the voltage that is applied to the tuner through signals from the
remote control transmitter. In a VTR, in order to carry out operations such as recording and
playback in response to instructions from a remote control transmitter or from buttons on the
VTR, the motor has to turn, so that tape winds through the heads, or recording can be
automatically started at a time specified by a timer. These are also controlled by microcomputers.

You will also find microcomputers in refrigerators and microwave ovens. The refrigerator uses
more electricity than any other household appliance, because it is constantly on. But nowadays,
because of environmental concerns, manufacturers are trying to reduce power consumption, by
using an inverter to control the motor in the compressor that circulates the refrigerant, reducing the
amount of power consumed through on/off control, and by closely controlling the temperature
inside the refrigerator. Microcomputers are used for this inverter control. The inverter frequency
and motor voltage are set to achieve maximum efficiency. Microwave ovens use a variety of
sensors to discriminate between various kinds of foods. Based on the information obtained from
the sensors, the microcomputer adjusts the volume of heat and the cooking speed for the best
results.

Large numbers of microcomputers are used in cars. The microcomputers used for engine control
determine the amount of fuel injected, carry out timing control, and control the speed at which the
engine rotates when idling. The air bags, ABS, traction control, windows, air conditioner and other
functions are all handled by separate microcomputers. For example, in newer cars, rotation signals
from the various axes are sent to the speedometer, which is located on the meter panel. Based on
these signals, the microcomputer turns the motor and controls the position at which the needle
indicates the speed on the speedometer. This type of control is used because signals from the axes
are not in a format that can be displayed on analog-type voltmeters.

5

Start

Displays optimum time
for microwave oven

Confirms switches
Confirms temperature inside oven

Menu

Figure 1.6 How a Microwave Oven Works

20
km/H

40
60 80 100

120

2

4
6 8

RPM

Speed information
Tire

Engine

These turn the motor
Micro

computer

Engine speed

Figure 1.7 How a Speedometer Works

So, as we have seen up to this point, microcomputers function in a diverse spectrum of machines,
without needing people to run them, and carry out many functions automatically that make our
lives easier and more convenient.

Why are microcomputers used in so many different products?

The answer lies in the general-purpose nature of the microcomputer.

Microcomputers are used in the many products we have talked about so far, but certainly there are
products that don’t use them. When it comes to mechanical control, however, microcomputers
make things easier in a lot of situations. For instance, they make it possible to enter a time setting
simply by pressing a button. Also, it takes time to develop dedicated circuits, and if any mistakes
are made during the development stage, they cannot be corrected in many cases. For example, in a

6

clock, if a clockwork timer is used, a dial has to be turned by hand to set the time, and often the
indicated time does not match the real time exactly. If the clock has a microcomputer in it, the
time can be set accurately, even to the seconds unit, using a button. Also, the set time can be
viewed using a digital display, for additional reassurance. So using microcomputers can solve
many problems involved in developing and using products.

Because microcomputers are in general-purpose use, they make it is possible to buy same ones
anywhere, at any time. Conversely, same microcomputers can be incorporated into the different
product to produce completely different results, simply by changing their programs. So
microcomputers can be used instead of dedicated circuits that have been created separately. Also,
programs can be put together to handle difficult and complex functions, that cannot be carried out
by dedicated circuits. Program development requires only a personal computer and a development
device, so costs are far lower for developing microcomputer programs than for developing the
dedicated circuits themselves. Another economic feature is that the development device can be
used repeatedly as long as the same microcomputer is used.

0
1

2
3

4

SW

Precise time set
using oscillating circuit

Time can be set
precisely

Liquid crystal

Turning the dial
by hand is not precise

Figure 1.8 Mechanical Timer and Microcomputer Timer

ICE control
Execution of one instruction in the program
Program aborting
Confirmation of microcomputer status

Personal computer, etc. ICE (in-circuit emulator)
Device that substitutes
for the microcomputer

Microcomputer

(Microcomputer is removed)

Board being made
Completed!

Programming
Input, conversion (combinations of 0s and 1s that can be interpreted by the microcomputer)

Figure 1.9 Mechanical Configuration Required for Development

7

Takes time

(1) Switches are viewed

(2) Lamp is lighted

Figure 1.10 Dedicated Circuit and Microcomputer

So you can see that using microcomputers is advantageous in countless ways.

Do microcomputers have any drawbacks? Well, one drawback is that they require more time for
processing than dedicated circuits.

For example, let’s look at a case in which a lamp lights when two switches are pressed. If a
dedicated circuit is used, as shown in the figure below, the two switches work most effectively if
connected in a series. When the two switches are pressed, the lamp lights immediately.

Now let’s use a microcomputer in the same situation. The switches and lamp are not connected
electrically. As we will explain later, the microcomputer executes instructions one at a time, in
response to a clock. As a result of instructions being executed, the lamp switch goes on if the
system can judge that both switches have been pressed. The instruction that reads the two switches
to the CPU is executed first, followed by the instruction that judges that both switches have been
pressed, and then the instruction that turns on the lamp in response to both switches having been
pressed. Assuming that it takes 1 µs (a millionth of a second) for one instruction to be executed, it
will take at least 3 µs before the lamp lights. If a person is turning on the lamp, and if the
processing is fairly simple, this is not a problem, but if the lamp is being turned on by a machine
operating at high speed, and the processing is complex, this time interval is too long. For example,
a calculation speed of 18.432 MHz (calculating at 640 x 480 pixels x 60 frames) is required to
digitally compress video images and store the data in memory. That means that one data element
has to be processed within 54 ns. Also, intricate processing is required for the compression,
consisting of queuing, DCT (dispersion cosine transformation), quantization, and producing the
sum of disparate absolute values. If the operation speed is too slow, frames will be dropped, and it
will be impossible to watch the resulting video. The ordinary microcomputer is not configured to
execute operations at high speed like this.

So when a microcomputer is used, executing even simple operations takes time. Developers need
to be skilled at judging whether a microcomputer or a dedicated circuit is better equipped for a
certain job, and using them accordingly.

8

Another option is to use a personal computer to put together a program and control various
devices. In this case, however, a board has to be incorporated into the personal computer so that
the device and the personal computer can be connected, and a standard interface has to be
processed and connected for the personal computer. The personal computer itself is fairly large, so
it cannot be incorporated into very many devices. Also, even though computers are less expensive
than they used to be, they are still comparatively high-priced, and although they offer
sophisticated processing capabilities, it is hardly feasible to incorporate one into, for example, a
refrigerator. Personal computers are restricted to certain applications for which they are well fitted.
So we will focus, rather than on personal computers, on microcomputers, which can easily be
incorporated into other devices. Of course, since microcomputers are used in personal computers,
we will also be learning about the inside of the personal computer as we proceed.

No matter how small, a personal computer
will never fit inside a cellular phone.

personal computer

Figure 1.11 Personal Computers and Microcomputers that can Fit into Other Devices

9

1.2 How do Microcomputers Work?

Microcomputers make our everyday lives easier and more convenient. Being able to use
microcomputers flexibly means various devices can be automated and new products can be
created. Before we can accomplish these aims, however, we need to know something about
microcomputers.

Let’s look at what goes inside a computer.

1.2.1 What the Microcomputer does

Unlike people, computers can’t think and act on their own. Combinations of instructions put
together ahead of time (programs) are retrieved one by one from a storage device (memory) and
operations executed based on those instructions.

Let’s assume that, as shown in the figure, instructions have been stored in the memory (we’ll talk
later about how the instructions get stored in the memory). The first instruction is “Read data from
switch”. The computer specifies the place in the memory in which this instruction has been stored,
and reads the instruction. Next, the instruction that has been read is interpreted, and the data is
read from the location where the switch exists. This completes the operation of one instruction.

The microcomputer then reads the next instruction from the memory. This instruction says,
“Confirm whether switch is on”, so the data read in response to the previous instruction is
confirmed at this point. The next instruction says, “If the switch is on, proceed to next instruction,
and if not, return to switch reading instruction.”

Executes (3)

Instruction 1

Instruction 2

Instruction 3

Read from switch

Is switch on?

If on, go to next; if off,
go to instruction 1

Switch information

(1) Fetch

Microcomputer

Reads instruction 1

Interprets instruction
(2) Decodes

Figure 1.12 Relationship between the Microcomputer and the Memory

In this way, the computer reads instructions from the memory and executes them. This operation is
summarized below.

10

Reading Instructions (Instruction Fetch)

The computer outputs an address that specifies where an instruction has been stored, and reads the
instruction from the memory.

Interpreting the Instruction (Instruction Decode)

The instruction that has been read is decoded.

The computer cannot understand the instruction without decoding it.

Executing the Instruction (Instruction Execute)

The decoded instruction is executed.

Fetching, decoding, and executing the instruction comprises one cycle of operation. This cycle is
then repeated for the next instruction, and then the one after that, and so on.

Copying, arithmetic operations, comparisons, logical operations and other processing can only be
carried out on one computer instruction at a time. Instructions can be put together in combinations,
however, to enable complex processing to be executed.

The computer can only execute one instruction at a time. Execution of instructions proceeds based
on a clock. The higher the clock frequency, the shorter the execution time.

(Instructions are stored in the memory ahead of time. This type of computer is called a
“Neumann” computer, based on the name of the person who developed it. Most computers
nowadays use this method.)

1.2.2 Elements other than the Microcomputer (CPU)

The storage device is called a memory. Instructions and data are stored in the memory in binary
format. In order to retrieve this stored information, the microcomputer assigns addresses to the
locations in which the instructions are stored, and uses these addresses to control the instructions.

In order to fetch an instruction, the microcomputer must know the address in which it is stored.
The memory provides the information stored at various addresses (without knowing whether it
consists of instructions or other information) to the microcomputer.

The terminal to which the microcomputer outputs addresses is called an address bus. This refers to
a group of bus signals that handle address information.

The terminal that reads instructions is called a data bus. The data bus is also used to fetch
instructions, but depending on the instruction, it can also be used to move data.

11

In order to incorporate the microcomputer into a product and use it as part of a system, we need a
signal bus that connects the memory, input/output circuits, and various other elements configuring
the system. Let’s look here at these other configuration elements.

If the computer system were a human being, the CPU (Central Processing Unit) would be the
brain. We also have a memory in the brain, right? The microcomputer system also has a memory,
that plays an equivalent role. There are various types of memories which are used for various
applications.

Memories can be divided into two general categories, based on their function.

One is the ROM (Read Only Memory), and the other is the RAM (Random Access Memory).

• ROM

The ROM is used only for reading. But in order to read data, it has to first have been stored in
the memory, a process called “writing” or “programming”. A special technique is used to write
data to the ROM. Data cannot be written directly to the ROM by the microcomputer. A
number of products are available for this purpose, with different products being used for
different applications. Data written to the ROM will be retained even if the power is turned off.

 Masked ROM

In semiconductor manufacturing, 0s and 1s are stored in the ROM. One advantage is that,
when these are manufactured in large volumes, the cost drops. You are probably familiar
with this type because it is used in game cassettes.

Masked ROMs are all the same up to the stage when the transistor that serves as its base is
created. After that, transistors are created so that the wiring is different, or even if the
wiring is the same, the characteristics can be changed using 0s and 1s. Data is stored in the
memory in this way. The masked ROM is a type of ROM in which, once data has been
written, it cannot be rewritten.

 EPROM (Erasable and Programmable ROM) or OTPROM (One Time Programmable
ROM)

The EPROM is a ROM that can be erased, while the OTPROM is a ROM to which data
can only be written once. The same chip is used for both, but the difference is whether or
not the package has a glass window. If it has a glass window, ultraviolet rays can pass
through the window to erase the data that has been stored. If there is no window, the data
cannot be erased. With EPROMs, data can be erased and programmed repeatedly, up to
100 times.

Special programming devices are used to write data to both. Because data can be erased
from EPROMs, these are used as the ROM when incomplete programs are being debugged,
or when the product is not being produced in large quantities.

 EEPROM (Electrically Erasable and Programmable ROM)

This type of ROM can be electrically erased.

12

Unlike EPROMs, ultraviolet rays are not used, so the data can be rewritten with the
EEPROM mounted on the PCB.

EEPROMS can be reused anywhere from 100,000 to one million times, and are used
instead of IC cards or EPROMs/OTPROMs.

 Flash Memory

Like the EEPROM, the flash memory can be electrically rewritten. It is different from the
EEPROM in that data cannot be rewritten in single-address units. Normally, it is
configured of blocks, each of which consists of between several kilobytes and several tens
of kilobytes of data, and these blocks are flashed (erased) individually to enable
information to be written. Previous information has to be deleted before new information
can be written to this type of ROM.

Flash memories can be further subdivided into OR/NOR and AND/NAND flash memories,
with OR/NOR being used in place of EPROM, OTPROM, and EEPROM memories.
Contents stored in the memory can be accessed directly, by specifying the address.
AND/NAND flash memories are used in digital cameras and MP3 players, and take the
place of a hard disk or floppy disk. With AND/NAND flash memories, when an address is
input, data is read and written serially in units of one sector (512 or 1024 bytes). This type
of memory works the same way as a cassette tape, and the target data can only be retrieved
by going through the data in sequential order. Programs cannot be stored to or directly read
from this type of memory.

Writing data this way requires a device called a ROM writer, and can be a time-consuming
process, as it is a more complex operation than reading data. All of the memory types
described above are grouped under the general name of “ROM”. One advantage of ROM is
that the contents stored in the memory are not lost when the power supply is turned off.
That’s why this type of memory is used in microcomputer systems to store the first
program that is run when the power supply is turned on, and to store fixed data that does
not change. It is an essential memory in such systems.

13

Data is erased.

Masked ROM

Factory

Transistors are created

Wiring is connected

Si wafer mask

(This shape is
transferred to the wafer.)

}
}

EPROMs have a window in them.
OTPROMs do not have a window in them.

Data is written

UV lamp

EPROM/OTPROM

Figure 1.13 ROM Types

• RAM

The other type of memory is “RAM”, which can be used freely to read and write data. Most of
the RAMs currently on the market are volatile, meaning that when the power supply is turned
off, the information disappears. This RAM also comes in several types, with different types
being used for different applications.

 SRAM (Static RAM)

With this type of RAM, the contents can be retained as long as power is being supplied.
The power supply voltage can be lowered to 2 V to reduce the power consumption, and the
contents can still be retained even at this low voltage. This feature can be effectively used
in applications where battery backup is required.

 DRAM (Dynamic RAM)

This type of RAM requires refreshing in order to retain the memory contents. Data cannot
be read or written while the RAM is being refreshed, so program execution is slower than
in systems using an SRAM, but the DRAM offers a memory capacity four times that of the
SRAM, and in addition is less expensive, so it is used as a memory in personal computers
and to store image data.

Currently, a type of RAM called a synchronous DRAM (Synchronous Dynamic RAM) is
used as the RAM in personal computers. With this type, operation is synchronized to a
clock.

The RAM is used to temporarily store data on which operations are being carried out, as
well as program status information.

14

SRAM DRAM Data is written once again
(refreshed) before it is lost.Data stored simply

by turning on power supply

Figure 1.14 RAM Types

1.2.3 Types of Microcomputers

When microcomputers were first developed, the available technology only allowed 2,000
transistors that functioned as switches to be mounted on one IC. With all the changes that have
taken place in technology, however, we can now use more than 10 million transistors. The
miniaturization of technology has advanced to the point where we can now create tiny individual
transistors. For instance, around 1985 the wiring used to connect transistors had a width of around
2 µm. By 2000, that width had shrunk to 0.18 µm, approximately one-tenth its earlier value. The
current surface area is only about 1/100th the area required in 1985, meaning that transistors have
also shrunk proportionately, and we can now mount around 100 times as many transistors in the
same surface area as the number possible 15 years ago. More transistors means that more
operations can be carried out at the same time. Naturally, items are also being manufactured at
much smaller sizes than they were previously. Additionally, each individual transistor is much
more sophisticated and powerful, and is capable of operating at higher frequencies. Given all of
these advances, various types of microcomputers are now available, tailored to different usage
formats. Let’s look at some of the different types.

Striving for Higher-Level Performance

One direction in which microcomputers are advancing is towards higher-level performance.
Products are now being developed that boost the operation capability of the microcomputer to the
maximum limits. To do this, only those transistors required for operation circuits are used. The
microcomputer contains none of the memory elements that are required for the microcomputer
system, and no peripheral functions. This type of microcomputer is comprised of a combination of
multiple chips, so it is logically called a “multi-chip microcomputer”.

The multi-chip microcomputer has an operation capability of 32 to 64 bits, and incorporates a
variety of means to achieve high-level performance. For example, some are designed to perform
operations on multiple data items using a single instruction (Single Instruction Multi Data), while
others execute multiple instructions with a single clock (Super Scalar), and still others copy part of
the memory contents to a chip (Cache) in order to operate faster and more efficiently. Multi-chip
microcomputers are now being tailored for use in operating systems such as UNIX and Windows,

15

and are equipped with an MMU (Memory Management Unit) that lets a hard disk be used in place
of a memory when there is limited memory available.

Typical examples of such microcomputers are the Pentium, PowerPC, Strong-ARM, R10000, and
SuperH. These and others like them are used to achieve sophisticated mechanical control in
personal computers, workstations, network servers, sophisticated game players, and other devices.

Many of these microcomputers use a system called RISC (Reduced Instruction Set Computer).
With this system, the content handled by a single instruction is simplified, so that instructions can
be executed at a single clock. Because the instructions are simpler, internal circuits can also be
simplified. This makes the clock faster, so programs run faster. Currently, efforts are underway to
boost the clock speed to 1 GHz. Also, because the same results can be achieved even if the
instructions are executed in a different order, the execution time is not constant. Generally,
programming is done using the C language, and the execution order is left to the C compiler.

Striving for Smaller Sizes

Another direction in which development is moving is towards more compact sizes. Developers are
working to incorporate microcomputers into devices not only because of the convenience factor,
but also because it makes the device smaller and more portable, so that it has a smaller surface
area and volume. Microcomputers are thus used in applications where outstanding operation
performance is not required. For example, microcomputers used in devices such as small-scale
hot-water heaters and electric cooking pots do not need to be terribly sophisticated in terms of
operation capability. They simply view information from a temperature sensor and turn on the
heater if the temperature has dropped. The volume of information for the temperature sensor
doesn’t go much beyond 100 degrees, and control does not need to be implemented in single-
degree units, so four bits are quite sufficient for this type of application. A time period of around
0.1 seconds is also fast enough to judge the temperature, since at that speed, the temperature
display appears to the user to be changing rapidly. A time frame of 0.1 seconds converted to a
frequency would be 10 Hz, and microcomputers are quite capable of processing information at
that rate. If the microcomputer were to be incorporated into the pot, however, we would need a
temperature sensor, and perhaps a temperature display as well. The temperature sensor and display
element themselves cannot be integrated on the same chip as the microcomputer, but the
peripheral functions that connect these to the CPU can be mounted on the same chip. Given this
circumstance, integrating not only the CPU, but also the peripheral devices and memory required
by the system into the microcomputer would help minimize the size of the system as a whole.

Microcomputers developed with that end in mind are called single-chip microcomputers or one-
chip microcomputers.

Because microcomputers are developed with a specific application in mind, we end up having
microcomputers for TVs, microcomputers for air conditioners, microcomputers for telephones,
and many other types. Because there are some functions that are generally required, however,
some microcomputers are available for general-purpose use, and not for specific applications.

16

Most single-chip microcomputers have an operation capability of between four and 16 bits, and
because most are developed using an assembler rather than the C language, many can execute
complex operations with a single instruction (these are called CISCs, or Complex Instruction Set
Computers). Many microcomputers like these are designed to reduce the overall number of
instructions.

The H8 microcomputer by Hitachi is a single-chip microcomputer, but it is designed so that it can
also be used as a multi-chip microcomputer.

Single
System offers compact configuration

Little room for expansion

LCD

CPU
CPU

ROM

ROM

RAM

RAM

Periphery

Periphery

Periphery

Periphery

(Signal conversion)

Multi
Each is configured of an individual IC

Can be easily expanded

Figure 1.15 Multi and Single

1.3 Memory Data and Binary Values

Binary values are the basis of microcomputer operation. Let’s take a moment to review what
binary calculation is all about.

In digital processing, high and low voltages are used to express the numeric values of 0 and 1. All
information is expressed in terms of combinations of 0s and 1s. Because only two values are
involved, we call this “binary” processing.

In digital processing, only two states are used: high voltage and low voltage. There is nothing in
between. For this reason, even if the voltage level of the signal changes slightly, it is rarely
misjudged, meaning that this type of processing is not vulnerable to noise.

One binary digit is called a bit, and eight bits make up a byte. Other terms are also used, such as
“word”, “long word”, “quad word”, and “half word”, but there is no standard number of
configuration bits as defined by JIS. This is left completely to the microcomputer and the
manufacturer, so we will not go into it here.

17

The contents stored in the memory consist of combinations of 0s and 1s (binary values), but they
can mean completely different things. Instructions, data, and text are all expressed in binary
format.

1.3.1 Instructions and Binary Values

Although microcomputers may use the same operation instructions, they use different machine
languages (the instruction format expressed in binary format). The optimum language is used for
the microcomputer performance and application. For this reason, programs designed to run on a
personal computer will not run on a different microcomputer. In other words, programs are not
compatible. We will use the addition instructions for the H8 and Z80 microcomputers as an
example.

ADD instruction for the H8/300 series

Instruction stored in the memory (binary) Instruction when the program is put together

(Machine language) (Assembler)

1000000000000001 ADD.B #1, R0L

ADD instruction for the Z 80

1100011000000001 ADD A, 1

The H8 adds 1 to R0L, while the Z80 adds 1 to A. Both R0L and A are 8-bit memory locations
(called “registers”) in the microcomputer, and “1” is added directly to each as a result of these
instructions. The names are different, but both registers serve the same function. When expressed
in the binary format of the machine language, however, the instructions consist of different
combinations of 0s and 1s. So programs have to be created for the specific microcomputer
involved, and programs copied from one microcomputer to another will not run.

1.3.2 Numeric Expressions

The basic instructions of microcomputers are configured so that numeric values can be treated as
integers. Because the values are integers, there are no digits to the right of the decimal point.

There are two types of integer expressions: expressions that handle only positive values, and
expressions that handle both positive and negative values. Both are configured of combinations of
0s and 1s. There is no bit to express the sign. The 2’s complement is used to determine which type
of expression is used.

For example, if a numeric value using eight bits is expressed as 10000001, there would be a “1” in
the 27 bit and the 20 bit positions, so the values would be read as 128 + 1 = 129.

18

Binary 0 1 1 0 0 0 1 1

Bit weight 27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Decimal 64 + 32 + 2 + 1 = 99

Figure 1.16 Converting from Binary to Decimal Values

If this were expressed as data with a sign (2’s complement), however, it would appear as follows:

This is not a + or - signal, however.

Each bit of original data is reversed

"1" is added

Result is data with reversed sign

01111110

01111111

1+

1 0 0 0 0 0 0 0

MSB

If 1, negative,
if 0, positive()

Figure 1.17 Signs and Reversed Signs

In comparison with the example showing a “1” in the 27 bit position, this value is 1 less, so the
result would be 128 – 1 = 127, and the answer would be –127. This method of calculation can be
used when converting from negative to positive, or from positive to negative. The MSB (Most
Significant Bit) of the negative data is 1, but this 1 does not represent a negative or minus signal.
This is just the way it happens to be. For 8-bit data, the combination of 0s and 1s would add up to
256. If there is no sign, an allocation of 0 to 255 would be used, but if there were a sign, the
allocation would be from –128 to 127.

-128 127

0 255

8-bit, with sign

8-bit, no sign

Figure 1.18 Bit Allocation for Binary Values (Numeric Line)

19

Depending on whether the program is viewed as data with or without a sign, the combinations of
0s and 1s express different data.

This may seem highly imprecise, but it works extremely well for the internal circuits configuring
the CPU. The same calculation method (circuit) can be used regardless of whether or not there is a
sign.

As an example, let’s look at the following addition.

(Decimal display)

(Binary value display) (Without sign) (With sign)

00000011 3 + 3

+ 00001000 8 + 8

00001011 11 + 11

11110010 242 – 14

+ 11111010 250 – 6

111101100 492 – 20

11110000 240 – 16

+ 00000001 1 + 1

11110001 241 – 15

Do you see how it works? The correct result can be output by the same circuit, regardless of
whether or not there is a sign.

As seen here, the same combination of 0s and 1s produces a completely different result, depending
on whether or not the value has a sign. But there is only one instruction. An addition instruction
will produce an addition, whether or not there is a sign.

Table 1.1 4- to 32-Bit Numeric Values

No. of Bits Without Sign With Sign

4

8

16

32

0 to 15

0 to 255

0 to 65,535

0 to 4,294,967,295

-8 to +7

-128 to +127

-32,768 to +32,767

-2,147,483,648 to +2,147,483,647

20

Table 1.2 7-Bit Information Exchange Signs

b7 b6 b5 b4 b3 b2 b1 b0

b4

b5

b6

NUL

SOM

EOA

EOM

EOT

WRU

RU

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DC0

X-ON

DC2

X-OFF

DC4

ERR

SYNC

LEN

S0

S1

S2

S3

S4

S5

S6

S7

SP

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

]

↑
←

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

\

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1
P

ar
ity

 b
it

Other decimal values

• BCD (Binary Coded Decimal)

This is a method in which values are expressed as binary values, but a decimal digit is expressed
every four bits, so if eight bits are used, decimal values from 00 to 99 can be expressed.

In applications where data is input by human beings, such as calculators, using BCD for the
microcomputer operation is convenient. Many microcomputers are configured so that BCD
operations can be carried out using a single instruction.

(Binary value) (Decimal value seen as BCD)

00110100 34

10001001 89

21

1.3.3 Character Codes

Communication is often expressed in text format, particularly in applications such as Internet
communication. Different computers can communicate if they use the same characters. The text
information used here consists of character codes defined by ASCII (American Standard Code for
Information Interchange) or JIS or EUC (character codes used in UNIX). Seven-bit codes are the
same in all character codes, so we will look at this type of code here (refer to table 1.2).

When data created using a microcomputer is transferred to a personal computer, or when
instructions from a personal computer are being used to run a microcomputer, these codes are
used.

Chinese characters are expressed in 16 bits. JIS defines approximately 6,300 such character codes.

1.3.4 Decimal Point Data

Data operations involving data with decimal points are not often used in applications where a
microcomputer is incorporated into a device such as a household product, or in engine control.
Consequently, there is no instruction in the H8 that enables decimal point data to be calculated
with a single instruction. Because this is a standard data format, however, we will look at it here.

Floating decimal point data (a method of expressing data as a mantissa and an exponent, in which
the position of the decimal point is not fixed at a given bit position) is defined by IEEE 792, as
shown in the figure.

There are two types of data: 32-bit single precision and 64-bit double precision.

Exponent

31 30 22 0
S exp fraction

63 62 51 0
S exp fraction

Mantissa Sign

Figure 1.19 Floating Decimal Point

When data is processed by the H8, it is divided into the mantissa and the exponent, and is
calculated using an integer operation instruction.

22

8 bits = 1 byte
1 bit

H ' 0 0 0 0
H ' 0 0 0 1
H ' 0 0 0 2

H'FFFF
H'FFFF

7 0
(Bit no.)

(Address)

Figure 1.20 Example of Memory Map

1.3.5 Expressing Numeric Values

We have talked about binary values and decimal values. If we only see the value “10”, however,
we don’t know which format is intended. If the value is binary and we convert it to decimal, it will
come out as 2, but if it is written as a decimal value, it will be 10. If we take an 8-bit value written
in binary format, it will be expressed as 10000000, which is long. So to distinguish between binary
and decimal, and to express binary values in a shorter form, many microcomputers use the
hexadecimal format. Binary values have (B’) at the beginning of the value, and hexadecimal
values have (H’). This method is used in the assembler in the H8 series.

Binary B’10000000

Decimal 128

Hexadecimal H’80

1.3.6 Memory Maps

A memory map indicates the memory space accessible by a particular microcomputer in map
format.

The microcomputer manages the memory by assigning addresses in units of eight bits. This is
common to most microcomputers, except for 4-bit microcomputers. Figure 1.20 shows a memory
map for a microcomputer that can handle 64-KB data.

If addresses are expressed in hexadecimal format, 64 KB of memory space can be expressed using
four digits (16 bits). In actuality, although we say 64 KB, it is actually 65,536 addresses. Because
the binary format is used for all of the expressions, this will be 1024 at the 210 position, which we

23

call 1 K. So 1 M = 1 K x 1 K, but because the original 1 K is 1,024 bits, 1 M will be 1,048,576
bits.

24

25

Chapter 2 H8 Microcomputers have High-Levels of
Performance and Functionality

2.1 What is an H8 Microcomputer?

‘H8 microcomputer’ is the generic term for Hitachi’s 8/16-bit microcomputers.

The H8 microcomputers are classified into two main series.

(1) H8/500 series

H8/500 series models are mainly used for industrial applications and have more substantial error-
detection functions than other models in the H8 series. It is easy to use an assembler to develop
programs, since many functions that can be executed as single instructions are available. A paged
mode is used when more than 64 Kbytes of data must be handled.

(2) H8/300, H8/300H, H8S/2000 series

These microcomputers have a common instruction set.

• H8/300: standard 8-bit microcomputer

• H8/300L: low-power, low-cost 8-bit microcomputer

• H8/300H: standard 16-bit microcomputer

• H8/300H Tiny: compact 16-bit microcomputer

• H8S/2000: high-performance 16-bit microcomputer

H8S/2100: Application-oriented microcomputer. High-performance version of the H8/300
or H8/300L.

H8S/2200: High-performance version of the H8/300H, equipped with peripheral functions
suitable for consumer applications.

H8S/2300: High-performance version of the H8/300H, equipped with highly functional
timers and other features.

H8S/2600: Multiply-and-accumulate instructions are included. A multiplication is
executed in a minimal three clock cycles. This series provides the highest level of
performance series of all H8S-series products.

H8/300, H8/300H, H8S/2000 series microcomputers are low-priced and are widely used for the
control of televisions and VTRs and for inverter control, under the control panels and in the
internal LANs of automobiles, in cellular phones and ink-jet printers, etc.

H8/300-series devices handle 64-Kbyte memory spaces, while H8/300H, H8S/2000-series devices
handle 16-Mbyte memory spaces. Since the instruction set of these devices is comparatively
simpler, execution speeds are faster than for H8/500-series devices.

26

H8/500

H8/300

H8/300L

H8S/2600

H8S/2100
Upward

compatibility

Multiply-and-accumulate circuit incorporated

Higher speeds

Low power

H8/300H Tiny

H8/300H

H8S/2300

H8S/2200

16 bits

8 bits

H8-series microcomputers
 (development of CPUs)

Figure 2.1 H8 Families

Since the CPU functions in terms of executing instructions are common within each series,
instructions can be shared. H8/500-series, and H8/300H, H8S/2000-series devices process up to
16 bits in each single instruction of most operations, while H8/300-series devices process 8 bits.
The H8/300H series is described below.

27

H8/3005

 No ROM/4 Kbytes,
80 pins

ITU, ADC, SCI

128 kB/4 kB
ITU,TPC, ADC,

DAC

 Development of the H8/3048 Series
(an H8/300H-based product equipped with a 16-bit ITU)

H8/3003

No ROM/512 bytes,
112 pins

DMAC 8 ch,
TPC, ITU, ADC

H8/3042 series
64 kB/2 kB

DMAC 4 ch, TPC
ITU, ADC, DAC

H8/3048 series
128 kB/4 kB

DMAC 4 ch, TPC
ITU, ADC, DAC

H8/3039 series

H8/3035 series
256 kB/4 kB

ITU,TPC, ADC,
DAC

100pin

H8/3052F
256 kB/8 kB

DMAC 4 ch, TPC
ITU, ADC, DAC

Model Name

ROM/RAM capacity
Main peripheral functions

80 pins
compact

Low-capacity memory

High-capacity memory,
high speeds, programming with

a single 5-V power supply

No on-chip ROM

Figure 2.2 Configuration of the H8/300H Series

The H8/300H series is a set of many products that have been developed around the same CPU on
the basis of types and storage capacities of on-chip memory, and of differences in on-chip
peripheral functions. The H8/3048F requires two power supplies, 12 and 5 V, for the
programming of its on-chip flash memory. The H8/3052F is equipped with the same peripheral
functions but only a single 5-V power supply is required to program its on-chip flash memory.
The H8/3052F is recommended to those who require a microcomputer for a new project.

2.2 Operation Mode of the H8/3048F

Features of the H8/3048F as a representative H8 microcomputer are summarized below.

2.2.1 Summary

The H8/3048F is equipped with the H8/300H-series CPU. The H8/300H series was the first
product in which flash memory was used for on-chip ROM. The ‘ROM’ can thus be rewritten
even when the chip is being mounted on a board.

28

V V V V V V V V V

C
C

C
C

C
C

S
S

S
S

S
S

S
S

S
S

S
S

P
3

 /D

P
3

 /D

P
3

 /D

P
3

 /D

P
3

 /D

P
3

 /D

P
3

 /D

P
3

 /D7 6 5 4 3 2 1 0

P
4

 /D

P
4

 /D

P
4

 /D

P
4

 /D

P
4

 /D

P
4

 /D

P
4

 /D

P
4

 /D7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Port 3 Port 4

P
or

t 5
P

or
t 9

P5 /A

P5 /A

P5 /A

P5 /A

3

2

1

0

19

18

17

16

P2 /A

P2 /A

P2 /A

P2 /A

P2 /A

P2 /A

P2 /A

P2 /A

7

6

5

4

3

2

1

0

P9 /SCK /IRQ

P9 /SCK /IRQ

P9 /RxD

P9 /RxD

P9 /TxD

P9 /TxD

5

4

3

2

1

0

1

0

1

0

1

0

5

4

P
7

 /A
N

 /
D

A

P
7

 /A
N

 /
D

A

P
7

 /A
N

P
7

 /A
N

P
7

 /A
N

P
7

 /A
N

P
7

 /A
N

P
7

 /A
N

7 6 5 4 3 2 1 0

1 0 5 4 3 2 1 0

Port 7

V

A
V

A
V

R
E

F

C
C

S
S

PA
7/

T
P

7/
T

IO
C

B
2/

A
20

PA
6/

T
P

6/
T

IO
C

A
2/

A
21

/C
S

4

PA
5/

T
P

5/
T

IO
C

B
1/

A
22

/C
S

5

PA
4/

T
P

4/
T

IO
C

A
1/

A
23

/C
S

6

PA
 /

T
P

 /
T

IO
C

B
 /

T
C

LK
D

PA
 /

T
P

 /
T

IO
C

A
 /

T
C

LK
C

PA
 /

T
P

 /
T

E
N

D
 /

T
C

LK
B

PA
 /

T
P

 /
T

E
N

D
 /

T
C

LK
A

Port A

3 2

0 0

3 2

1 0

1 0

P
B

 /
T

P

/D
R

E
Q

 /
A

D
T

R
G

P
B

6/
T

P
14

/D
R

E
Q

0/
C

S
7

P
B

 /
T

P

/T
O

C
X

B

P
B

 /
T

P

/T
O

C
X

A

P
B

 /
T

P

/T
IO

C
B

P
B

 /
T

P

/T
IO

C
A

P
B

 /
T

P
 /

T
IO

C
B

P
B

 /
T

P
 /

T
IO

C
A

15
1

7

4 4 4 4 3 3

5 4

13 12

3 2

11 10

1 0

9 8

P
or

t 8

P8 /CS

P8 /CS /IRQ

P8 /CS /IRQ

P8 /CS /IRQ

P8 /RFSH/IRQ

4 0

3

2

1

0

1

2

3

3

2

1

0

MD

MD

MD

EXTAL

XTAL

ø

STBY

RES

V /RESO

NMI

2

1

0

H8/300H CPU

C
lo

ck
-p

ul
se

ge
ne

ra
to

r
Interrupt Controller

ROM
(masked ROM,

PROM, or
flash memory)

DMA controller
(DMAC)

2-channel serial
communication

interface
(SCI)

Watchdog timer
(WDT)

Refresh
controller

15 14 13 12 11 10 9 8

Address bus

Data bus (upper)

Data bus (lower)

15

14

13

12

11

10

9

8

P
or

t 2

P1 /A

P1 /A

P1 /A

P1 /A

P1 /A

P1 /A

P1 /A

P1 /A

7

6

5

4

3

2

1

0

P
or

t 1

7

6

5

4

3

2

1

0

7 6

1 0

P6 /LWR

P6 /HWR

P6 /RD

P6 /AS

P6 /BACK

P6 /BREQ

P6 /WAIT

6

5

4

3

2

1

0

RAM

16-bit
integrated timer

unit (ITU)

A/D converter

D/A converter

P
or

t 6

B
us

 c
on

tr
ol

le
r

Programmable
timing pattern

controller
(TPC)

Port B

PP *

Note: * The VPP function is provided only for the flash memory version.

Figure 2.3 Internal Block Diagram

29

The on-chip peripheral functions mainly consist of inverter-controlled timers, a serial
communication interface for communication with a host computer, an A/D converter for the
conversion of information received from analog sensors, such as on temperature and humidity, to
digital form, and a D/A converter, which can be used as an output for audio signals or to control
analog-controlled equipment.

This microcomputer is in use as the control unit of an inverter-controlled motor, as the control unit
for the motor in the outdoor unit of an inverter-controlled air conditioner, as the motor controller
of a vacuum cleaner, and in many other applications. It has also been widely adopted for use in
cellular phones because of its low power consumption and on-chip flash memory. Even when
power is not supplied to a flash memory, the stored data is retained. New data can also be written
to a flash memory. In cellular phones, the flash memory can thus be used to store the system
program, phone numbers and addresses, and notes.

Example: System Configuration of an Inverter-Controlled Air Conditioner with the H8/3048

Base driver

Compressor

SCI

ITU

A/D converter

H8/300HCPU

ROM RAM

Overcurrent
detection

H8/3048

Communication with
the indoor unit

M

Six-phase
PWM output

I/O port

Sensor
input

<Indoor unit> <Outdoor unit>

Outdoor
air temperature

Humidity

Direction-valve
controlRelay/switch

In
do

or
 c

on
tr

ol
m

ic
ro

co
m

pu
te

r

M

M

Stepper motor for
controlling

solenoid valves

Driver

Driver

Fan-motor control

IGBT module

•
•

•

Figure 2.4 System Configuration

The 16-bit integrated timer unit (ITU) generates the six pulse-width modulation (PWM) signals
(three positive-going signals and three negative-going signals) that are required to control the
inverter. A motor’s rotational frequency can be produced by the ITU, thus enabling constant-
speed rotation and stop-position control. The current in the inverter circuit is input to an A/D
converter via a current trans former (CT) or shunt resistor. This allows monitoring of whether or
not the inverter circuit is operating correctly.

30

Inverter circuits are used in many electrical appliances such as air conditioners, refrigerators,
microwave ovens, and washing machines. When power that is generated by solar energy or the
force of the wind is used along with a business or domestic power supply, the inverter is used to
send power synchronously with the frequency of the power supply from the electric power
companies.

Flash memory acts as the on-chip ROM. Since a write circuit is included, all of the data in flash
memory can be rewritten by connecting a serial communication interface and a personal computer
while the chip remains mounted on its host board. Since rewriting can be executed in units of
blocks, part of an application or data can be modified while leaving the system program
untouched.

2.2.2 Single Chip

The H8/3048F can be used as a single-chip microcomputer. To designate single-chip operation,
the MD (mode) pins must be set. When the pins are set to seven (binary 111) and power is turned
on, single-chip operation is designated. To change the mode, turn off the power or reset the
microcomputer.

In this case, an address bus or a data bus will not connect the H8/3048F to such external modules
as memory or peripheral function modules. Only the 128 Kbytes of internal flash memory, 4
Kbytes of SRAM, and the on-chip peripheral functions are available for use. Since extended
address and data bus lines are not required, more pins are available for direct use in implementing
peripheral functions.

Figure 2.5 shows the memory map when single-chip operation has been designated. The address
range starting at H’00000 is assigned to the flash memory. On-chip peripheral functions are
allocated to the other part of the memory map.

31

Mode 7
(single-chip advanced mode)

H'00000

H'000FF

H'07FFF M
em

or
y-

in
di

re
ct

br
an

ch
 a

dd
re

ss
es

16
-b

it
ab

so
lu

te
ad

dr
es

se
s

Vector area

On-chip ROM

On-chip RAM

Internal I/O
register

8-
bi

t a
bs

ol
ut

e
ad

dr
es

se
s

16
-b

it
ab

so
lu

te
 a

dd
re

ss
esH'FEF10

H'FFF00
H'FFF0F

H'FFF1C

H'FFFFF

H'1FFFF

H'F8000

Figure 2.5 Memory Map for a Single Chip

Allocation of peripheral functions as is done to the memory map on the H8/300H is called
memory-mapped I/O. Since this method allows I/O with the same instructions as are used for
memory operations, a variety of operations can be executed on I/O data. However, the space
available for memory is reduced since some of the memory is used for I/O.

In some microcomputers, on-chip peripheral functions are not allocated to the memory map and
there is a separate map for use with peripheral functions (the I/O map). This method has a merit in
that it allows more of the memory map to be allocated to memory. On the other hand, the method
has demerits in that I/O operations absolutely require use of the instructions that are exclusively
for the I/O map, and in that the functionality provided by instructions is at too low a level.

Which method is the best depends on the final product. Both methods have both good and bad
points. Memory-mapped I/O is adopted for the H8/300H, taking into consideration the affinity of
the C language to this approach.

32

2.2.3 Memory Expansion

When the setting on the modes is any number from one to six, the expanded mode is set for the
external expansion of memory. As a matter of course, peripheral functions can be connected in a
way that is much the same as the connection of memory. This mode is useful when on-chip
memory or on-chip peripheral functions are insufficient, or when a different type of memory is to
be used.

It is also possible to abandon the on-chip flash memory when the memory is expanded externally.
For instance, a maintenance program may be stored in the on-chip flash memory, with the system
program stored in the external memory space. Usually, the system program in the external
memory will be running. However, when, for example, a problem occurs after the product has
been shipped or when the product’s practical conditions of use are to be researched, the
maintenance program may be executed by simply changing the mode. If updating of the system
program is necessary, further flash memory can be connected as external memory.

The external memory space of 16 Mbytes is divided into eight 2-Mbyte units, called areas.
Memory of various types (including DRAM) and with different speeds can be managed by a
single chip in units of areas. For details, see section 6.

33

External or
internal ROM

H'00000

H'000FF

H'07FFF M
em

or
y-

in
di

re
ct

br
an

ch
 a

dd
re

ss
es

16
-b

it
ab

so
lu

te
ad

dr
es

se
s

1-Mbyte mode

H'1FFFF
H'20000
H'3FFFF
H'40000
H'5FFFF
H'60000
H'7FFFF
H'80000
H'9FFFF
H'A0000
H'BFFFF
H'C0000
H'DFFFF
H'E0000

Area 0

Area 1

Area 2

Area 3

Area 4

Area 5

Area 6

Area 7

External address
space

Vector area

On-chip RAM*

External address
space

Internal I/O
register

8-
bi

t a
bs

ol
ut

e
ad

dr
es

se
s

16
-b

it
ab

so
lu

te
 a

dd
re

ss
es

H'F8000

H'FEF0F
H'FEF10

H'FFF00
H'FFF0F
H'FFF10

H'FFF1B
H'FFF1C

H'FFFFF

Note: * External addresses, can be accessed by disabling on-chip RAM.

16-Mbyte-mode

H'000000

H'0000FF

H'007FFF M
em

or
y-

in
di

re
ct

br
an

ch
 a

dd
re

ss
es

16
-b

it
ab

so
lu

te
ad

dr
es

se
s

H'1FFFFF
H'200000

Area 0

Area 1

Area 2

Area 3

Area 4

Area 5

Area 6

Area 7

External address
space

Vector area

On-chip RAM*

External address
space

Internal I/O
register 8-

bi
t a

bs
ol

ut
e

ad
dr

es
se

s

16
-b

it
ab

so
lu

te
 a

dd
re

ss
es

H'FF8000

H'FFEF0F
H'FFEF10

H'FFFF00
H'FFFF0F
H'FFFF10

H'FFFF1B
H'FFFF1C

H'FFFFFF

H'3FFFFF
H'400000

H'5FFFFF
H'600000

H'7FFFFF
H'800000

H'9FFFFF
H'A00000

H'BFFFFF
H'C00000

H'DFFFFF
H'E00000

External or
internal ROM

H'01FFFF

Figure 2.6 Externally Expanded Memory Map

34

2.3 Configuration of Registers and Programming

Both hardware and software are required to use microcomputers. Let’s study the software
(programs) first. With regard to hardware, a ready-made board is available for purchase and
immediate use.

2.3.1 Register Configuration

There are some temporary storage areas inside the CPU of a microcomputer. Copies of data
stored in memory or the results of operations and records of states on the way to these results are
temporarily placed in these areas. These temporary storage areas are called registers.

Almost all microcomputers can execute operations such as addition, subtraction, multiplication,
and division. They cannot, however operate directly on data in memory.

The reasons for this are:

(1) The instructions become long so that it takes much time to read them.

(2) Operations are seldom completed by one instruction so the possibility that the same data will
be used in the next operation is high. The execution time is thus shorter when the data is
closer to the CPU than memory.

The operation of an instruction becomes complicated when the microcomputer tries to directly
handle data stored in memory or to directly store the results of its processing in memory. For
example, consider the operation of an instruction of a microcomputer that adds data in memory to
each other and stores the results in memory.

The configuration of the instruction is as follows:

ADD source data 1, source data 2, result

(Instructions for execution by a microcomputer are written in a machine language, which consists
of combinations of bits with values 0 and 1. However, it is not easy for most human beings to
read machine language, so an assembler language is used to introduce the instructions. There is an
assembler-language version of every machine-language instruction.)

Instructions must be read before they are executed. How many bytes does this instruction have?
If the data and results are somewhere in memory and the memory space is 16 Mbytes then the
addresses must each have 24 bits. Therefore, three bytes of information are required to indicate
the each of the three addresses for data. Nine bytes are thus required because there are three
addresses. A further two bytes are required for the ADD instruction. So the instruction takes up
11 bytes.

The CPU does not know what to do until all 11 bytes of the instruction have been read. A
microcomputer with a data width of 16 bits can only understand the instruction after having

35

fetched data from the memory six times. What a long time that takes! There is a chance that the
result of this operation will be used in the next operation. It is outrageous if the next instruction
has to directly indicate the address of this result in memory.

MOV source data 1, register 1

MOV source data 2, register 2

ADD register 1, register 2, register 3

(The MOV instruction in this example is a transfer instruction but its actual operation here is to
copy the data. The original data in the memory is unchanged.)

In this case, a total of 12 bytes is necessary, five bytes for each MOV command and two bytes for
the ADD, so the number of bytes seems to have increased. When, however, operations continue
to use the data in memory, each ADD instruction only requires two bytes, so the number of bytes
taken up by instructions can be reduced. In addition, because the data used in the ADD instruction
is only a copy of the data in memory, that data remains in the memory. There is no problem if the
copy is lost, so it is OK to put the result of the ADD instruction in register 2, in the following way.

ADD register 1, register 2

36

Operation circuit

ADD Address 1 Address 2 Address 3

Address 1
Address 2
Address 3

Structure of an instruction (without registers)

Memory

07

24 bits for
 a memory space

of 16-M bytes

Operation circuit

MOV Address 1

MOV Address 2

ADD

Address 1
Address 2

Structure of instructions (register-based)

Memory

07

Register Register

Figure 2.7 Structures of Instructions with and without Registers

That is why it is best for the CPU to have registers.

We will now look at the registers of the H8/300H.

A register is a temporary storage area, so it must be prepared with the right size (number of bits)
for the data it is to store. In H8/300H, three sizes are available, i.e., byte sized, word sized (16 bits
on this system), and long-word sized (32 bits on this system).

The names of the byte-sized registers are R0L, R0H, R1L, R1H⋅⋅⋅R7H.

The names of the word-sized registers are R0, R1⋅⋅⋅R7 and E0, E1⋅⋅⋅E7.

The names of the long-word-sized registers are ER0, ER1⋅⋅⋅ER7.

Note: Area R0 is actually made up of R0H and R0L, area ER0 is made up of E0 and R0, and so
on. If, for instance, R0L is changed, ER0 will also be changed. Take care on this point.

37

These registers are called general-purpose registers. ‘General-purpose’ here indicates that all of
the registers function in the same way and that any it’s possible to use any of these registers for
any of various purposes in the same way. The things that can be done in or with R0 are the same
things that can be done in or with R1 and R3. As one example of the things it’s possible to do ,
let’s start by looking at operations on data. In the case of

ADD.B R0L, R0H

R0L and R0H are added and the result is placed in R0H. R0 is affected but E0 is not. In the case
of

ADD.W R0,R1

R0 and R1 are added and the result is placed in R1. R1 is affected but E1 is not. In the case of

ADD.L ER0,ER1

ER0 and ER1 are added and the results are returned to ER1.

Thus, general-purpose registers can be used to store the original data before an operation or the
results of an operation.

General-purpose registers are also used in another way, to indicate addresses of memory. For
example, the instruction to move a byte of data from memory to a general-purpose register is

MOV.B @ <address of memory>, R0L

Three bytes of information are required to indicate an address of memory with a memory space of
16 Mbytes. Information that indicates the operation is naturally required as information in the
instruction, so the instruction takes up a total of six bytes. This instruction can also be used when
data is to be transferred from the indicated location a number of times.

MOV.B @ER1, R0L

This 2-byte instruction uses general-purpose registers alone to indicate the address of memory.
The address is not input directly. Thus, there are cases in which it is best to use a general-purpose
register to indicate an address.

(@ indicates that an address of memory is given to the H8 microcomputer.)

Note: The parts on the right of the instruction are called operands. This means the targets of the
instruction. If there is more than one, they are separated by commas (,). The left-hand
part is called the source and the right-hand part is called the destination.

The CPU has other registers, too. These are control registers. They include the program counter
(PC) and condition-code register (CCR). The program counter indicates the addresses of the
instructions that are read out from memory.

38

If a program is stored in memory and the PC is pointing to the first address as shown in the figure,
the PC is incremented as each instruction is read out. The next instruction is read out, then the
instruction after that, and so on, in order.

The CCR indicates the current state of the CPU. Its behavior is strongly related to the individual
instructions, so the CCR will be introduced in the next section, along with the instructions.

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7

E0

E1

E2

E3

E4

E5

E6

E7

R0H

R1H

R2H

R3H

R4H

R5H

R6H

R7H

R0L

R1L

R2L

R3L

R4L

R5L

R6L

R7L

0707015

(SP)

23 0

PC

7

CCR

6 5 4 3 2 1 0

I UI H U N Z V C

General-purpose register (ERn)

Control register (CR)

<Legend>
SP
PC
CCR
I
UI
H
U
N
Z
V
C

: stack pointer
: program counter
: condition-code register
: interrupt mask bit
: user bit/interrupt mask bit
: half-carry flag
: user bit
: negative flag
: zero flag
: overflow flag
: carry flag

Figure 2.8 General-Purpose Registers (a)

39

For use as 8-bit registers

For use as 16-bit registers

For use as 32-bit registers

R0H
R1H
R2H
R3H
R4H
R5H
R6H
R7H

R0L
R1L
R2L
R3L
R4L
R5L
R6L
R7L

0707

ER0
ER1
ER2
ER3
ER4
ER5
ER6
ER7

031

E0
E1
E2
E3
E4
E5
E6
E7

R0
R1
R2
R3
R4
R5
R6
R7

015015

Figure 2.8 General-Purpose Registers (b)

Memory

Instruction 1
Instruction 2
Instruction 3

Instruction 4

Address containing an instruction

PC (Program Counter)

Counter is incremented after the instruction has been read out

Figure 2.9 PC and Instructions

40

2.3.2 Instruction

H8/300H has many instructions. They are listed in the table below.

It might seem as if there are too many instructions. It is possible to write most programs with
approximately 10 instructions. This is because some instructions are rarely used and it is possible
to replace some instructions with other instructions.

So, only the basic instructions will be introduced here. Further instructions will be introduced as
required after this section.

The instructions for moving data from memory to a general-purpose register will be introduced
first. Many operations between the general-purpose registers of the H8/300H are available, so the
instructions for moving data to these registers are indispensable.

The MOV instruction is used to move data in this way. Data for MOV instructions can be
specified directly or by using general-purpose registers.

MOV.B @H'10000,R0L ; The contents of the address H'10000 are
; copied to R0L.

MOV.W R0,R1 ; The contents of R0 are copied to R1.

MOV.L ER0,@H'2000 ; The contents of ER0 are copied to the
; address H'2000.

MOV.W #B'10001000,R1 ; The contents of the address H'0088 are
; copied to R1.

(comments on the operations of a program are written after ";")

(one instruction can be written per line)

The data is stored in the destination written to on the right side of an operand. The MOV
instruction does not actually move data, but rather copies it.

41

Table 2.1 Instructions (all instructions in mnemonic form)

General data
movement

MOV

EEPMOV.B

EEPMOV.W

Movement of data (copy) between memory and
general-purpose registers and between general-
purpose registers

Block copy, .B is a 255- and .W is a 65535-byte
block

Control of a stack area PUSH

POP

Save

Restore

ADD, ADDX

ADDS

Addition, ADD X is with a carry.

ADDS is for short-address calculation

SUB, SUBX

SUBS

Subtraction, SUBX is with a carry

SUBS is for short-address calculation

Arithmetic operations

MULXU, MULXS

DIVXU, DIVXS

Multiplication, MULXU is unsigned, MULXS is
signed.

Division, DIVXU is unsigned, DIVXS is signed.

BCD operations DAA, DAS BCD-adjustment for arithmetic operations, DAA is
used after ADD and DAS is used after SUB.

Other operations CMP

NEG

EXTU, EXTS

Data comparison

Inversion of the sign (plus/minus)

Extension of a bit, EXTU is unsigned, EXTS is
signed.

Logical operations AND

OR

XOR

NOT

Logical AND, bit by bit

Logical OR, bit by bit

Exclusive OR, bit by bit

Inversion, bit by bit

Shift/rotation SHAL, SHLL

SHAR, SHLR

ROTL, ROTXL

ROTR, ROTXR

1 bit shift to left (MSB side), SHAL is arithmetic
and SHLL is logical

1 bit shift to right (LSB side), SHAL is arithmetic
and SHLL is logical

1 bit rotation to left (MSB side), ROTXL is with a
carry bit.

1 bit rotation to right (LSB side), ROTXL is with a
carry bit.

Bit control BSET

BCLR

BNOT

BTST

A single bit is changed to 1 (the byte is read out,
the bit is changed, and the byte is then written
back).

A single bit is changed to 0.

A single bit is inverted.

Checks whether or not a single bit is 0.

42

Carry bit control BAND, BIAND

BOR, BIOR

BXOR, BIXOR

BLD, BILD

BST, BIST

The logical AND of the carry bit and a specified
single bit is taken. The results are input to the carry
bit. BIAND specifies inversion of the single bit
operation.

As above, but OR rather than AND.

As above, but XOR rather than OR.

The specified single bit is written to the carry bit.
Otherwise as above.

The carry bit is loaded as a single bit. Otherwise
as above.

Unconditional branch BRA

JMP

BSR

JSR

TRAPA

Non-return branch (PC relative)

Non-return branch (absolute-indirect address)

Subroutine call (PC relative)

Subroutine call (absolute-indirect address)

OS call

Return RTS

RTE

Return from subroutine

Return from interrupt request processing or
TRAPA instruction processing

Conditional branch BNE

BEQ

BHI

BCC (BHS)

BLS

BCS (BLO)

BGT

BGE

BLT

BLE

BPL

BMI

BVS

BVC

Branch when not equal.

Branch when equal.

Branch when greater than, in terms of unsigned
data.

Branch when greater than or equal, in terms of
unsigned data.

Branch when less than, in terms of unsigned data.

Branch when less than or equal, in terms of
unsigned data.

Branch when greater than, in terms of signed data.

Branch when greater than or equal, in terms of
signed data.

Branch when less than, in terms of signed data.

Branch when less than or equal, in terms of signed
data.

Branch when positive or equal, in terms of signed
data.

Branch when negative or equal, in terms of signed
data.

Branch when an overflow is generated, in terms of
signed data.

Branch when no overflow is generated, in terms of
signed data.

43

Low power
consumption mode

SLEEP Makes the transition to sleep or standby mode.

Control of CCR LDC, STC

ANDC, ORC

XORC

Loads/stores the one-byte CCR, as a single byte.

Changes the CCR, in one-bit units.

Others NOP No operation

Endians

When data is moved between the memory and the register, it is handled as one byte over two
addresses if the memory data is one-word data, and as one byte over four addresses if it is long-
word data. Currently there are two types of microcomputers. In the H8/300H, smaller parts of an
address are in the upper side of the register (big endian).Some microcomputers such as Z80 use a
different order (little endian) than that of H8/300H.

Differences of endians observed in 16-bit data storage

Little endian

n+1 address
n address

MSB

LSB

Big endian

n address
n+1 address

MSB

LSB

Figure 1 Endians

Here we will describe operations. First, let’s look at addition.

ADD.B R0L,R0H ;R0L + R0H -> R0H

ADD.W #1000,R1 ;1000 + R1 -> R1

ADD.L ER0,ER1 ;ER0 + ER1 -> ER1

 (# is "immediate", which directly indicates a number. Numerations other than decimal
numeration can be used.)

A carry might be generated as a result of addition. A carry is stored in the C (carry) bit in the
CCR not in a general-purpose register.

R0H after the operation is H'00 (symbol (H') before the value indicates a hexadecimal numerical)
if the register values are set to R0L = H'80, R0H = H'80 before an instruction is executed.

44

In an operation of

ADD.B R0L, R0H ;R0L + R0H -> R0H

ADD.B R0L,R0H
B'1000 0000
B'1000 0000

R0L
R0H

B'0000 0000C= 1

+)

Z=1
N=0

V=1(Negative + Negative = Positive)

Executed instruction Data in the general-purpose register and CCR

With a carry
 from the eighth bit The result of the eighth bit is 0

Positive in a signed data

The data overflows from the eighth bit in signed data

Figure 2.10 Operation and CCR Changes

A carry is stored in the C bit in CCR; the carry never enters E0. In addition, the operation result is
0, so 1 is stored in the Z (0) bit in CCR. When this operation is carried out for signed data, the N
(negative) bit in CCR is 0 because 0 is a positive number. The answer is positive despite the
addition of a negative and a negative. However, this result cannot be recorded as 8-bit
information, therefore, 1 is stored in the V (overflow) bit in CCR. To decide whether a method for
operation must be changed as a result of a carry or overflow the content of CCR must be checked
after the addition. A method for changing processing flow will be introduced later.

Next, we’ll look at subtraction.

SUB.B R0L,R0H ;R0H - R0L -> R0H

SUB.W #10,R1 ;R1 - 10 -> R1

SUB.L ER0,ER1 ;ER1 - ER0 -> ER1

When subtracting, be careful to note the directions for subtraction.

As with addition, the CCR is changed after having confirmed the results of the operation. In this
case, the C bit stores a borrowed value.

There is an instruction that does not return the results to the general-purpose register even
subtraction is carried out in the same way.

CMP.B R0L,R0H ;R0H - R0L

This is an instruction to compare which is larger. Comparison is carried out for subtractions.

45

For another example, this instruction is used to compare the information of a sensor and a target
value to determine whether the target value has been attained. This instruction is different from
the SUB instruction, in that the results are not returned to the general-purpose register. CCR is
changed.

The current state can be recognized by CCR and a branch instruction can be used to change the
processing flow.

CMP.B R0L,R0H ; Compares R0L and R0H and then stores the contents of R0H to CCR
BEQ TUGI ; If equal, go to the line of NEXT and if not so, go to next ADD.
ADD.B #10,R0L ; R0L + 10 -> R0L
BRA SONOTUGI ; Go to the line of AFTERNEXT unconditionally.

NEXT: SUB.B R0L,R0L ; R0L becomes 0 with RL -R0L -> R0L
AFTERNEXT: MOV.B R0L,@H'2000 ; 0 or data added by 10 is in R0L. It is transferred to the memory

; of the H'2000 address

(Lines can be named. They are called as symbols, which are alphanumeric up to the 255th
character starting from the top and discriminating between lowercase and upper case characters.)

The BEQ (Branch EQual) instruction means "If equal, branch." On the contrary, " Branch if not
equal." is BNE (Branch Not Equal).

If the data is equal or can be confirmed by subtracting, the result is 0. This state is shown by Z = 1
in CCR. That is, the BEQ instruction means both equal and "The result is 0".

The meaning of each bit in CCRA is listed in Table 2.2.

The BRA (Branch Always) instruction is an instruction to branch unconditionally. This
instruction does not refer to CCR.

Table 2.2 Each Flag Bit of CCR

N: The result is "negative" if an operation is carried out by a signed binary.

Z: The result is "0".

V: The result is "overflow" if an operation is carried by a signed binary.

C: The result is "carry" or "borrow".

Next, We describe logical operations:

Some data make sense with one bit, rather than with eight bits, for example, they are information
on a sensor or an actuator. Consider an electric heating pot. If a button for boiling is set, the
microcomputer must turn on the heater when that button is pushed. The boiling button can take
only two states of being: pushed or not pushed. Either of these states can be expressed by one bit:
The state is expressed as 1 when pushed and 0 when not pushed. For a heater, the situation is the
same. One bit is sufficient because there are only two states: on and off. As before, when the
button is on the state is expressed as 1 and when it is off, 0.

46

A microcomputer checks the state of a switch or a heater’s on/off controls by exchanging data
with a memory.

A microcomputer has no special instruction to handle a sensor or to control an actuator. An MOV
instruction is used for reading from the switch. The MOV instruction also operates a heater.
However, the CMP instruction is not used to judge the switch’s state because MOV cannot read a
one-bit instruction even though it can be read as one byte data.

H'4000

Memory

07

State of SW

R0L

State of SW

The states of bits other
than SW are unknown

Figure 2.11 Input and Output Memory Map

This is an example showing data being read by the MOV instruction. The switch information is
supposed to be in the H'4000 address.

MOV.B @H'4000,R0L ;(H' is an indication of hexadecimal.)

Certainly, the state of the switch is read in bit 0, but the states of other seven bits are unknown. In
this case, no CMP instruction can be used abruptly.

CMP.B #B'00000001, R0L ;

It is acceptable if all seven bits other than the switch are 0, however, other states are not accepted.
Logical operational instructions are useful in this case. Unnecessary bits can be fixed to 0.

47

x x x x x x x SW
0 0 0 0 0 0 0 AND)
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
0
1Result

When SW is 0
When SW is 1

Input

A B AND OR XOR

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

1

0

Output

Data
Mask information Passes the data

Inverts the data

Figure 2.12 Logical Operation

AND.B #B'00000001,R0L ;

CMP.B #B'00000001,R0L ;

Thus, the CMP instruction operates as desired.

Instructions are used for each purpose, for example, the OR instruction to set the unnecessary bit
to 1, the XOR instruction to invert only the target bit, and the NOT instruction to invert all bits.

Only the bit for the heater can be changed to avoid influencing other bits.

 MOV.B @H'4000,R0L ;
 AND.B #H'01,R0L ; Read the sensor
 CMP.B #H'01,R0L ;
 BEQ ON ;
OFF: MOV.B @H'4001,R0H ; When the sensor is 0
 AND.B #H'FE,R0H ;
 MOV.B R0H,@H'4001 ; *Turn off the heater
 BRA EXIT ;
ON: MOV.B @H'4001,R0H ; When the sensor is 1
 OR.B #H'01,R0H ;
 MOV.B R0H,@H'4001 ; *Turn on the heater
EXIT: BRA EXIT

As will be explained in later programming, some instructions (instructions with *) can be
combined because they are redundant.

48

MOV.B @H'4000,R0L ;
MOV.B @H'4001,R0H ;
AND.B #H'01,R0L ; Read the sensor
CMP.B #H'01,R0L ;
BEQ ON ;

OFF: AND.B #H'FE,R0H ;
BRA WRITE ;

ON: OR.B #H'01,R0H ;
WRITE: MOV.B R0H,@H'4001 ; Control the heater
EXIT: BRA EXIT

Two instructions were combined.

The number of instructions in a program can be reduced using subroutines to repeat the same steps
at different positions in a program.

To call a subroutine program, the instruction BSR or JSR is used. However, the RTS instruction
is used for returns.

 BSR SUB ; Calling
 JSR @SUB ; Calling

SUB: ; Processing program in the subroutine

 RTS ; Return to the next instruction that has been called

49

JSR @SUB
Next instruction

BSR SUB
Next instruction

Program

SUB

RTS

If two or more instructions are
for the same processing,
a program can be made smaller
by combining them into one.

SP(ER7)

The state of the stack area
and the stack pointer
after a subroutine has been called

Not used

SP(ER7)

The state of the stack area
and the stack pointer
before a subroutine has been called

Used

The difference in the two
instructions for calling subroutines
lies in whether @ is added or not.

PC

Figure 2.13 Advantages of Subroutines

As shown, subroutines can be called repeatedly from anywhere. Naturally, the data to be returned
is the instruction following the instruction that has been called (instruction JSR or BSR). Why can
the program return? And to the next instruction that has been called at that!

A function called "stack" is used for this operation. In fact, during the execution of an instruction
that has been called (BSR or JSR), the program counter (PC) indicates the start address of the next
instruction. It is acceptable for this PC to be stored once elsewhere. The word "storage" reminds
us of registers or memory. Registers are acceptable, but their number is restricted and their
current use is unknown. Nothing is accomplished if the operation goes wrong even when the
program returns if the contents are destroyed. Therefore, most microcomputers use memory for
data storage. This particular memory area is called the "stack area".

In H8/300H, ER7, a general-purpose register, is used to indicate the address of a stack area that is
called a stack pointer (SP).

Let’s look at how it is used. The CPU writes the current PC to the memory area indicated by ER7
immediately when an instruction to call a subroutine is executed. Furthermore, when the RTS
instruction is executed, the instruction is read from the stack area to the PC. Thus, a mechanism is
established to return to the next address called from any location.

50

Then, what is the state of ER7? The answer is "undefined." That is, the address indicated is
unknown. In this situation, if the indicated memory device is a ROM, which cannot be written to,
the program cannot be returned. The mechanism to control whether the PC has been written to is
not incorporated into the CPU. The CPU does not know whether the system is in a state to return,
and it thinks that the data has already been stored. Therefore, the PC is read by an RTS instruction.
Then, the state of the PC address is unknown, so the program runs disorderly. We can identify the
RAM address to ER7 by a program.

MOV.L #H'FFFF00,ER7 ; the H'FFFF00 address has been set

A subroutine sometimes calls a smaller subroutine. This is a nested structure subroutine. This
structure is unneeded when only one stack is used. So, ER7 stores PC after having been
decremented by 4 and it is returned to PC after having been incremented by 4 by the RTS
instruction. That is, the operation works like this: the stack area extends in the direction of the
smaller parts of the address as the nest deepens and releases the area used when it is returned.

A problem arises when the number of calls and returns do not coincide and the available RAM is
exceeded. When this happens, the CPU does not recognize that something is wrong. The system
runs disorderly. Programs must be written taking into account the estimated memory and an
estimate of stack size.

One use for a stack area is as a "saving area of the general-purpose register." A general-purpose
register has only one set of a main program or subroutine program. How a general-purpose
register is used in a main program is unknown, so a register used in a subroutine can be defined as
"Start to use after having been saved." However, a general-purpose register cannot be used as a
saving area for a genera-purpose register. If an unused address in RAM is known, it can be used.
However, it is not efficient if it is not released for another purpose after having been used. This
job is automatically carried out in the stack area. It is done in this way when the PC is saved. As
a stack area is always RAM, it is a desirable environment.

51

JSR @SUB1
Next instruction 1

Program

SUB1

RTS

Instruction 1
address

ER7

Not used
SP(ER7)

Used

MOV.L #H'FFFF00,ER7 ; Initialization of SP

SUB2

RTS

SUB3

RTS

JSR @SUB2
Next instruction 2

JSR @SUB3
Next instruction 3

Instruction 1
address

ER7

Instruction 1
address

ER7

Instruction 2
address

Instruction 2
address

Instruction 3
address

State of the stack area during the execution of each subroutine

H'FFFF00

Figure 2.14 Nest and Stack Area

Program

SP(ER7)
Undefined

MOV.L #H'FFFF00,ER7 ; Initialization of SP

H'FFFF00

RTS PC is undefined and
"the program runs disorderly "

PC
Restored from the stack
are by the RTS instruction

Figure 2.15 Program Runs Disorderly

52

JSR @SUB
Next instruction 1

SUB

MOV.L ER0,@-SP ; Save
MOV.L ER1,@-SP ; Save

MOV.L @SP+,ER1 ; Restore
MOV.L @SP+,ER0 ; Restore

Stack area

The general-purpose register
that has been saved
to the stack area can be freely used.

Note: Only word-size data or long-word-size data can be used
 by general-purpose registers. Byte-size data cannot be specified.
MOV.L ER0, @-SP is the same as PUSH.L ER0.
MOV.L @SP+,ER0 is the same as POP.L ER0.

RTS

Instruction 1
address

ER0

ER1

Figure 2.16 Save/Restore of a General-Purpose Register

Column

JSR / BRS instructions and JMP / BRA instructions

JSR and BSR are both instructions for calling a subroutine, and the RTS instruction is for
restoring. Why are there two instructions that function in the same manner? The JSR instruction
is described as JSR @SUB and the BSR as BSR SUB. There is the slight difference of whether
@ is added. However, when instructions are assembled, the address to be jumped is specified in
the JSR instruction, in contrast, a relative distance from the current PC is specified in the BSR
instruction.

What are the differences between them?

The JSR instruction does not change its memory address after it is once translated into machine
language to be changed into a load module. However, the BSR instruction can change its address
even after it is changed into a load module. It can change addresses to be stored freely according
to the situation. This form of program is called a position independent program.

The relationship between the JMP instruction and BRA instruction is the same.

In addition to this method, other methods can be adopted according to the configuration of
instructions, for example, instructions in a jump system can be branched to all memory space. A
branch using a general-purpose register or addresses to be jumped is arranged in memory. Branch

53

system instructions can use an 8-bit form as a relative address to be branched. It also has less
memory, and is faster than jump system instructions of 127 addresses ahead and 128 addresses
after. We recommend that a branch instruction be used for a nearby branch and that a jump
system be used for a distant branch or a jump table.

JSR @SUB
....

SUB:
....

RTS

BSR SUB
....

SUB:
....

RTS

Starting address which has
been estimated at the time of linage
(H'1000)

Call with a
relative address
(PC+H'30)

JSR @SUB
....

SUB:
....

RTS

BSR SUB
....

SUB:
....

RTS

Staring address when an
actual memory is stored.
(H'2000)

Starting address that has been
estimated at the time of linkage.
(H'1000)

Call with a
relative address
has succeeded.

Call with an
absolute address
has failed.

Call with an
absolute address
(H'1030)

Operation is started by both instructions when stored in an address estimated at the time of linkage.

The JSR instruction does not normally operate when a load module is stored in a different address.

Figure 3 Differences between JSR and BSR

2.3.3 Programming

Let’s try to write a program and execute it. Although it might seem to be difficult to write a
program, it’s easier than you expect.

As you can see when you look at the instruction set of the microcomputer, each instruction is only
able to do a small job. Using the microcomputer to do what you want depends on programming
 the combination of instructions. The microcomputer doesn’t have an instruction to, for
example, maintain a comfortable temperature, because each instruction only does a small job.

54

Therefore, you have to break the task down to the level of instructions for the microcomputer.
The result of your breakdown may be as follows:

• Start by reading the room temperature through a sensor (MOV),

• compare the prescribed value with that room temperature (CMP),

• calculate some value to convert the difference between the temperatures into a target frequency
for the inverter (ADD, SUB, etc.),

• then, read the external climatic parameters through a sensor (MOV),

• calculate some value for adjusting the frequency of the inverter according to the external
climate (ADD, SUB, etc.),

• then, read the room’s humidity (MOV),

• calculate some value for adjusting the frequency of the inverter according to the humidity
(ADD, SUB, etc.),

• calculate the difference between the current temperature and the room temperature that was
initially read through the sensor (MOV, CMP),

• calculate how the air conditioner is working to adjust the frequency of the inverter (ADD,
SUB, etc.),

• determine the final frequency for the inverter,

• send the frequency of the inverter to the microcomputer of the external unit of the air
conditioner (MOV).

If you can break a task down as described above, you will be able to write good programs. It is so
easy, isn’t it?

Afterwards, we will shortly ask you to execute instructions and confirm the results of their
execution. You can, of course, learn about the instructions by simply reading this book, but it is
much more effective if you prepare the instruments, execute the program instructions, and confirm
the results on your microcomputer according to the instructions in this book. You will then have a
much better understanding of the functions of the microcomputer.

See the section ‘Preparations for the experiments’ included on the APPENDIX so that you can
prepare the required instruments. All of the programs for development are included on the
attached APPENDIX. Please copy these programs to the hard disk of your PC.

Firstly, input the program, even if you do not understand its meaning. In programming, imitation
is a great way to learn. Enter the program in text format. If you use word-processor software such
as WordPad, be sure to keep the program code in text format.

55

<List: add, subtract, multiply and divide operation>

.CPU 300HA

.SECTION PROGRAM,CODE,LOCATE=H'FFF000
MOV.B @H'FF200,R1L
MOV.B @H'FF201,R2L
SUB.B R2H,R2H
ADD.B R1L,R2L
BCC SET_ADD
MOV.B #1,R2H

SET_ADD: MOV.W R2,@H'FF202
MOV.B @H'FF201,R2L
SUB.B R1L,R2L
MOV.B R2L,@H'FF204
MOV.B @H'FF201,R2L
MULXU.B R1L,R2
MOV.W R2,@H'FF206
MOV.B @H'FF201,R2L
SUB.B R2H,R2H
DIVXU.B R1L,R2
MOV.B R2H,@H'FF208
MOV.B R2L,@H'FF209

EXIT: BRA EXIT
.END

Name the file then save it. The required extension is ‘.SRC’.

Assembly

The program that you have entered is called a source program. This is the original program. The
source program is just a sequence of characters and is not machine language. An assembler is
used to convert the source program to the target machine’s language. Each line of the source
program is converted into an instruction of machine language by the assembler. The result is an
object file named *.OBJ. If the source program includes some grammatical mistakes, the
assembler displays ERROR. In this case, use the text editor to modify the source program then
assemble the source program again.

Linkage

This linkage may be slightly difficult to understand. Linkage is necessary to link files together
when software is developed in separate files by multiple programmers. The address of each
program is decided by this linkage process, so a program must be linked even when it is only
composed of a single program. In other words, the output of the assembler is relocatable object
code that has no addressing information (this file is called a load module and is named *.ABS.)
Errors will not occur. The message ‘Complete’ indicates that linkage is completed.

Execution by debugging monitor

Let’s execute and confirm your program on the H8/3048F. It is more pleasant than reading the
manual. Let’s take the challenge!

56

When the program is executed, the result appears in a moment. This is no problem if the result is
correct. If it is not, what should be done? It is then necessary to confirm the operation of each of
the program’s instructions in your head. That is, you must look at the source program line-by-line
and use your head as a simulator that works in the same way as the H8/300H CPU. You may
think ‘Why do I have to simulate those instructions in my head and act as the microcomputer?’ If
the program works well on the first run, there is, of course, no problem.

We now introduce a tool for use in program development. This tool has the following functions to
help you in debugging:

• Stopping the CPU after the execution of each instruction to confirm the contents of memory or
of general-purpose registers,

• Executing blocks of instructions until a selected instruction is executed, then stopping the CPU
after each execution of that instruction.

In other words, this tool for development makes it possible to confirm the state of the CPU during
the execution of the program, and is thus called a ‘debugging monitor.’

57

MOV
ADD
SUB
....
....

Source program

01010101
11110000
10111001
....
....

Object program

Load module

ASM38 filename

LNK filename

Creation of the source program

Any text editor that is on the market
or is freeware is suitable

Filename.SRC

Filename.ABS

Filename.OBJ

Assembly

Linkage
(concatenation)

Provided by Hitachi, Ltd.

H8

Transfer the object program
then execute it.

Address information

01010101
11110000
10111001
....
....

Text editor

Assembler

Linkage editor

Figure 2.17 Flow of Program Development (Up to the Debugging Stage)

Firstly, write the debugging monitor to the on-chip flash memory of the H8/3048F on the CPU
board that you bought or made. The procedure for writing is described in the chapter
‘Preparations for the experiments.’

The debugging monitor can store the program that has been developed by the user in RAM then
execute it. Before debugging, it is necessary to transfer files from the hard disc of the PC to the
CPU board. The file on the hard disc must be a load module file (*.ABS) rather than a source file.
The on-chip RAM with its size of 4 KB should be used first. The starting address for the program
is H’FFF000. You have seen that address, haven’t you? Yes, this address is used in the source
program in the following way:

58

.SECTION PROGRAM,CODE,LOCATE=H'FFF000

This line indicates that the subsequent line of program code should be placed at H’FFF000, the
starting address for the program.

It is possible to divide the program into several units, so-called sections. The name of this section
is ‘PROGRAM’, and its contents are ‘CODE’ (program). These names have the same format
restrictions as other symbols. Those lines that have a period (.) in their first column are not
instructions to be executed by the microcomputer. Such lines are used to control the assembler,
and are thus called ‘assembler directives.’

Open an MS-DOS prompt then execute the HTERM program that is provided on the APPENDIX.
Turn on the CPU board’s power supply. The startup message from the debugging monitor will
soon be displayed on the screen. Communications between your PC and the CPU board can now
be started. That is, it is now possible to operate the debugging monitor according to commands
from the PC. The symbol for the prompt that shows that the debugging monitor is waiting for a
command is the colon (:).

: L filename [Enter]

Check that the file has successfully been loaded.

: DA FFF000 [Enter]

How is this? This is slightly different from, yet similar to, the source program. Let’s execute the
instructions one by one, from the beginning of the program.

: .PC FFF000 [Enter]

: S [Enter]

How is this? It is possible to display the changes in the contents of general-purpose registers and
the PC after the execution of a single instruction.

What is done by the program will now be described below.

This program applies arithmetic operations such as addition, subtraction, multiplication and
division to data stored in the memory. There are two original data in memory at addresses
H’FFF200 and H’FFF201. The result of the addition is stored in H’FFF202, the subtraction in
H’FFF204, the multiplication in H’FFF206, the quotient in H’FFF209, and the remainder in
H’FFF208.

Use the M command to write some data to the addresses H’FFF200 and H’FFF201, by referring to
‘How to use the debugging monitor’ in the column of this book. Then, start the program from the
address H’FFF000 and execute the whole program to confirm its operation. The BRA instruction
is the last instruction of the program. The program will not continue after the BRA instruction
that is located at H’FFF03C has been executed. It is now possible to confirm the results of
execution at locations after H’FFF200, by using the all-display-function of the D command.

59

<Program> (smp2_2.src)

.CPU 300HA

.section PROGRAM,CODE,LOCATE=H'FFF000
mov.b @H'FFF200,R1L ;DATA1 -> R1L
mov.b @H'FFF201,R2L ;DATA2 -> R2L
SUB.B r2h,r2h ;0 -> R2L
ADD.B R1L,R2L ;DATA1 + DATA2 -> R2L
BCC SET_ADD ;if carry=1
MOV.B #1,R2H ; 1 -> R2H

SET_ADD:
MOV.W R2,@H'FF202 ;R2 -> ADD
MOV.B @H'FFF201,R2L ;DATA2 -> R2L
SUB.B R1L,R2L ;DATA2 - DATA1 -> R2L
MOV.B R2L,@H'FFF204 ;R2L -> SUB
MOV.B @H'FFF201,R2L ;DATA2 -> R2L
MULXU.B R1L,R2 ;DATA1 * DATA2 -> R2
MOV.W R2,@H'FFF206 ;R2 -> PRO
MOV.B @H'FFF201,R2L ;DATA2 -> R2L
SUB.B R2H,R2H ;0 -> R2H
DIVXU.B R1L,R2 ;DATA2 / DATA1
MOV.B R2H,@H'FFF208 ;R2H -> REM
MOV.B R2L,@H'FFF209 ;R2L -> QUO

EXIT: BRA EXIT ;endless loop
.end A line that starts with '.END' indicates the end of the file, and

must be placed at its last line.

; Sample program
; Created on 2000.5.2
; Created by Y.Fujisawa

Use a semicolon (;) to insert comments in source program. For managing
the program, it is convenient to include such information as the purpose of
the program, the date and time of its creation, the version, etc. Japanese
characters can be used in the comments; only use one-byte characters
outside the comment portions.

The line starting with '.CPU' indicates the CPU name to be used.
One assembler can cope with all of the CPU's in the series from
H8/300 through to H8S/2000. This line is used to determine
whether the instructions used in the program are valid for the CPU
that is indicated on this line.

Although in labels such as PROGRAM or SET_ADD, uppercase letter
are distinguished from lowercase letters, they are not distinguished
from each other in program execution. Namely, they are treated in
the same way.

A line that has no characters (empty line) has no meaning.
Use empty lines to make your programs easier to read.

The purposes of memory addresses must be indicated in comments. Otherwise, when the memory
address is used to store numeric data, it will be difficult to understand the program. It is
recommended that you name memory addresses in such cases.

60

<Program> (smp2_3.src)

.CPU 300HA

.SECTION PROGRAM,CODE,LOCATE=H'FFF000

MOV.B @DATA1,R1L
MOV.B @DATA2,R2L
SUB.B R2H,R2H
ADD.B R1L,R2L
BCC SET_ADD
MOV.B #1,R2H

SET_ADD:
MOV.W R2,@ADD
MOV.B @DATA2,R2L
SUB.B R1L,R2L
MOV.B R2L,@SUB
MOV.B @DATA2,R2L
MULXU.B R1L,R2
MOV.W R2,@PRO
MOV.B @DATA2,R2L
SUB.B R2H,R2H
DIVXU.B R1L,R2
MOV.B R2H,@REM
MOV.B R2L,@QUO

EXIT: BRA EXIT ;endless loop

.SECTION WORK,DATA,LOCATE=H'FFF200
DATA1: .RES.B 1
DATA2: .RES.B 1
ADD: .RES.W 1
SUB: .RES.B 2
PRO: .RES.W 1
REM: .RES.B 1
QUO: .RES.B 1

.END

The program becomes easier to understand when the data are assigned
names. The symbol '.RES ' is used to reserve the specified number of
the specified unit of memory. The numeric characters after the symbol
'.RES ' show the number of units to be reserved. Here, for example,
one byte is reserved as DATA1. Although this is referred to as reservation,
it is still possible to access the region by address rather than by name.

DATA1 is the same as H'FFF200 . @DATA1 is the same as @ H'FFF200 .

Naming regions of memory provides further convenience, when the address of a data area must be
moved. A program typically becomes larger and larger with each version of the program. As a
result, memory regions that have been in use become unusable. If the operands of the MOV
instructions of a program are written as by addresses, the address in all of the MOV instructions
must be modified. That is rather difficult to realize. In such a situation, if names have been given
to the memory regions in use, the required modification to the program for a given region is
localized to one line; the address given for LOCATE in the .SECTION line.

Let’s improve the program a little more. In this program, the data from DATA2 is loaded to
register R2L several times, because the content of R2L is changed by the execution of instructions.
As there are many general-purpose registers that are unused by this program, it is possible to copy
the content of R2L to a vacant general-purpose register and make the program execute more
quickly than the original program that reads data from memory several times.

As the data used in the original program are all very close together in the memory, loading the
addresses of those data into the vacant general-purpose registers and using indirect addressing is
an improvement, too.

61

<Program> (smp2_4.src)

.CPU 300HA

.SECTION PROGRAM,CODE,LOCATE=H'FFF000
MOV.L #H'FFF200,ER0 ;set DATA1 address
SUB.L ER1,ER1
MOV.L #0,ER2
MOV.L ER2,ER3
MOV.B @ER0+,R1L ;Increment ER0 after reading the data
MOV.B @ER0+,R2L ;Increment ER0 after reading the data
MOV.B R2L,R3L
ADD.W R1,R2
MOV.W R2,@ER0 ;ADD address
ADDS #2,ER0 ;SUB address
MOV.B R3L,R2L
SUB.B R1L,R2L
MOV.B R2L,@ER0
ADDS #2,ER0
MOV.B R3L,R2L
MULXU.B R1L,R2
MOV.W R2,@ER0
ADDS #2,ER0
DIVXU.B R1L,R3
MOV.W R3,@ER0

EXIT: BRA EXIT

.SECTION WORK,DATA,LOCATE=H'FFF200
DATA1: .RES.B 1
DATA2: .RES.B 1
ADD: .RES.W 1
SUB: .RES.B 2
PRO: .RES.W 1
REM: .RES.B 1
QUO: .RES.B 1

.END

The performance of the program is improved and the amount of memory it requires has been
reduced.

(Refer to the APPENDIX manual ‘The execution time and bytes of instructions.’)

Column

How to Use the Debugging Monitor

The debugging monitor offers debugging functions via SCI 1. These include the following
functions:

• Loading a user program

• Executing the user program

• Break functions

• Modifying/displaying the contents of CPU registers

• Modifying/displaying the contents of memory and peripheral function registers

62

As a result, there are few restrictions on the debugging of programs, although there are some
restrictions on debugging SCI 1. After a program’s operation has been confirmed by using the
debugging monitor, the program can be loaded into ROM and executed as it is, as is the case for
the CPU for ‘model car rally’ is combined with the I/O board. In this case, there are no difficult
points such as modifications of addresses.

Monitor commands (use the help function for more details.)

• L Load the program

• M Alter/display the contents of memory and peripheral function registers

• D Displays the contents of memory in a dump format

• R Display the contents of CPU registers

• . Alter the contents of CPU registers

• G Execute the user program

• S Execute the user program in single-step mode

• B Set or display breakpoints

• H8 Display the contents of the on-chip peripheral function registers

• A Simple assembly

• DA Disassembly

• ? Help

Programming and Debugging

The CPU for ‘model car rally’ and the I/O board are used in the example below.

Prepare a program. The program EX1.SRC from the APPENDIX is used here as an example.

Open the program in your text editor to confirm the content of the file. This program makes each
of the eight LED’s correspond to the state of one of eight switches. These LED’s work as if they
are electrically connected to the switches, although they are not directly connected. The switches
and LED’s are only related to each other by the execution of the program.

Assemble and link the program.

>asm38 exl[Enter]
>lnk exl[Enter]
>HTERM[Enter]

Load the program before debugging into the SRAM that is externally connected to the CPU, rather
than to the on-chip flash ROM of the H8/3048F. Execute the program as a trial run. It is possible
to efficiently debug the program by the use of temporary stops and by alter/displaying the contents
of memory and peripheral function registers. Refer to ‘Preparations for the experiments’ for a
remainder of how to load the debugging monitor for the I/O board into the on-chip flash memory.

63

Start HTERM.

The prompt that shows that the debugging monitor is waiting for commands is the colon (:).
Confirm that this prompt returns after the Enter or Return key on the keyboard is depressed. The
channel for communications between your PC and the H8/3048F has now been established.

Load the program (from the PC to the H8/3048F).

:L EXl[Enter]
 transmit address=001015
 Top Address=000000
 End Address=001015
:

The range occupied by the program will be displayed after it has been loaded. Confirm that these
addresses have the expected values. If they do not, check the source file or link the program
again.

Let’s execute the program.

:G 1000[Enter]

The hexadecimal number 1000 is the starting address of the program to be executed. Confirm the
starting address of the program before executing it. The communication channel between your PC
and the monitor program will be closed as soon as program being debugged is executed by the
monitor program. Inspect the board to confirm results during the program’s execution.

Change the positions of switches SW1 to SW8 to confirm the operation of this EX1 program.
Was the state of each switch successfully transferred to the LED? The bit position of each switch
is the same as that of the corresponding LED. An LED is lit when the corresponding switch has
been slid to its upper position and off when the switch has been slid to its lower position.

How does it work? It doesn’t work, does it?

Yes, this program has a bug. So, debug the program. Firstly, stop the execution of the user
program. As the communication channel to your PC has been closed during the execution of the
user program, the H8/3048F’s internal state is unknown. It is thus necessary to return to the
monitor program.

Press the NMI switch. The message that shows that a program has been aborted appears on the
screen and the monitor program’s prompt will reappear.

64

 Abort at PC=00100A
 PC=00100A CCR=80:I....... SP=00FFFF00
 ER0=00000037 ER1=00000000 ER2=00000000
 ER3=00000000 ER4=00000000 ER5=00000000
 ER6=00000000 ER7=00FFFF00
:

When a program does not work properly, execute its instructions one by one (single-step
execution). Enter the S command, to execute the program from the address that the program
counter currently points to.

:S[Enter]
 PC=00100C CCR=80:I....... SP=00FFFF0000
 ER0=00000037 ER1=00000000 ER2=00000000 ER3=00000000
 ER4=00000000 ER5=00000000 ER6=00000000 ER7=00FFFF00
 00100A 28C7 MOV.B @H'FFFFC7:8,R0L
:S[Enter]
 PC=00100E CCR=80:I....... SP=00FFFF00
 ER0=00000037 ER1=00000000 ER2=00000000 ER3=00000000
 ER4=00000000 ER5=00000000 ER6=00000000 ER7=00FFFF00
 00100C 38D6 MOV.B R0L,@H'FFFFD6:8
:S[Enter]
 PC=00100A CCR=80:I....... SP=00FFFF00
 ER0=00000037 ER1=00000000 ER2=00000000 ER3=00000000
 ER4=00000000 ER5=00000000 ER6=00000000 ER7=00FFFF00
 00100E 40FA BRA 00100A:8
:

The contents of the general-purpose registers are displayed after the execution of each instruction,
and the execution of the program is stopped.

It seems that the data is being correctly input from the switches, because general-purpose register
R0L contains the data H’37. The writing operation also seems good, because the address
H’FFFD6 has been written to.

However, this data is not displayed.

If necessary, you can display or change the contents of memory (including of peripheral function
registers). Let’s change the content of the data register for port B that is connected to the LEDs.

:M FFFD6[Enter]
 FFFFD6 0F ? 55[Enter]
 FFFFD7 FF ? ^[Enter]
 FFFFD6 0F ? 77[Enter]
 FFFFD7 FF ? ^[Enter]
 FFFFD6 0F ? 88[Enter]
 FFFFD7 FF ? .[Enter]
:

How did that work? Has the display on the LEDs changed to reflect the expected value? It has
not changed. Moreover, the data before the change is always H’0F, so any data that has been
written was lost. It appears that the settings of the DDR, the register that decides the input/output
direction for the port’s pins, are wrong.

65

Now, use the M command again to change the value in the DDR. The address of the PBDDR is
H’FFFFD4.

:M FFFD4[Enter]
 FFFFD4 FF ? FF[Enter]
 FFFFD5 FF ? .[Enter]
:

Although the value at the address H’FFFFD4 appears to be H’FF, this value is not the value that
was actually set. This register cannot be read out, because it is a write-only register. Therefore,
write H’FF into the register, even though the displayed value in the register is already H’FF.

What’s the situation now? The states of the LEDs have been changed, haven’t they? PBDDR is
not initialized to the value H’FF by the program. The hardware of the LEDs seems to be normal
because the data is displayed well. Let’s confirm the hardware.

Take the following actions to confirm that there are no problems with the LEDs:

• Write H’FF and confirm that all of the LEDs are lit.

• Write H’00 and confirm that all of the LEDs are not lit.

Does this work well? How about the data H’AA or H’55? These two values are useful for
checking whether or not the bits are affected by their neighboring bits. It is a good idea to check
whether the bits are in a short-circuited state with their neighboring bits or not, as the pins of the
neighboring bits are close together.

:M FFFD4[Enter]
 FFFFD6 88 ? FF[Enter]
 FFFFD7 FF ? ^[Enter]
 FFFFD6 FF ? OO[Enter]
 FFFFD7 FF ? ^[Enter]
 FFFFD6 OO ? 55[Enter]
 FFFFD7 FF ? ^[Enter]
 FFFFD6 55 ? AA[Enter]
 FFFFD7 FF ? .[Enter]
:

How about the switches? Let’s read out their values.

After the M command is issued, the state of the switches at the moment when the Return key is
depressed is read once. If the switch settings have been changed, the address H’FFFFC7 should
be displayed anew.

The switch hardware is normal, if the displayed data changes as follows:

• The displayed data is changed to H’FF when all bits of SW are slid to their upper positions.

• The displayed data is changed to H’00 when all bits of SW are slid to their lower positions.

Confirm that there is no interference between neighboring bits, as with the LEDs.

66

:M FFFC7[Enter]
 FFFFC7 37 ?[Enter] -> The state of the switches has changed.
 FFFFC8 FF ?^[Enter]
 FFFFC7 FF ?[Enter] -> The state of the switches has changed.
 FFFFC8 FF ?^[Enter]
 FFFFC7 OO ?[Enter] -> The state of the switches has changed.
 FFFFC8 FF ?^[Enter]
 FFFFC7 AA ?[Enter] -> The state of the switches has changed.
 FFFFC8 FF ?^[Enter]
 FFFFC7 55 ?.[Enter]
:

Is it true that PBDDR was not set correctly? Let’s look at the program in memory. Use the DA
command for disassembly.

:DA 1000[Enter]
 <ADDR> <CODE> <MNEMONIC> <OPERAND>
 001000 7A0700FFFF00 MOV.L #H'00FFFF00:32,ER7
 001006 5E001010 JSR @H'001010:24
 00100A 28C7 MOV.B @H'FFFFC7:8,R0L
 00100C 38D6 MOV.B R0L,@H'FFFFD6:8
 00100E 40FA BRA 00100A:8
 001010 F800 MOV.B #H'00:8,R0L
 001012 38D4 MOV.B R0L,@H'FFFFD4:8
 001014 5470 RTS
 001016 FF5D MOV.B #H'5D:8,R7L
 001018 FFF6 MOV.B #H'F6:8,R7L
 00101A BADA SUBX #H'DA:8,R2L
 00101C AC75 CMP.B #H'75:8,R4L
 00101E 8AF7 ADD.B #H'F7:8,R2L
 001020 6FF53ADF MOV.W R5,@(H'003ADF:16,ER7)
 001024 A767 CMP.B #H'67:8,R7H
 001026 FCD7 MOV.B #H'D7:8,R4L
:

Memory areas with addresses above H’1010 do not contain parts of this program, so the original
data after the reset are displayed here. Neglect these values, whatever is displayed here.

The MOV instructions at H’1010 and H’1012 initialize the PBDDR. As the register R0L contains
the value H’00, PBDDR becomes set for the input of data. Modify the source program and try
again.

Make the change indicated below.

;---------- I/O initialize sub -------------

IOINIT:

; MOV.B #H’00,R0L ;The bug is on this line; this data should

 ;be H’FF.

 MOV.B #H’FF,R0L ;

 MOV.B R0L,@PBDDR ;PB7-PB0 output

 RTS

Assemble and link the modified program file. Use the L command to load the file thus created,
then use the G command to execute it from the address H’1000.

67

Does the program work well now?

The debugging monitor has some convenient functions other than those described above. In some
situations it is convenient to quickly execute a program to a prescribed address and then execute
further instructions one by one (single-step execution.) In this case, set a breakpoint at the address
from which execution will be in single steps. The command for disassembly is useful for
confirming the addresses of break points.

:DA 1000[Enter]
 <ADDR> <CODE> <MNEMONIC> <OPERAND>
 001000 7A0700FFFF00 MOV.L #H'00FFFF00:32,ER7
 001006 5E001010 JSR @H'001010:24
 00100A 28C7 MOV.B @H'FFFFC7:8,R0L
 00100C 38D6 MOV.B R0L,@H'FFFFD6:8
 00100E 40FA BRA 00100A:8
 001010 F800 MOV.B #H'00:8,R0L
 001012 38D4 MOV.B R0L,@H'FFFFD4:8
 001014 5470 RTS
 001016 FF5D MOV.B #H'5D:8,R7L
 001018 FFF6 MOV.B #H'F6:8,R7L
 00101A BADA SUBX #H'DA:8,R2L
 00101C AC75 CMP.B #H'75:8,R4L
 00101E 8AF7 ADD.B #H'F7:8,R2L
 001020 6FF53ADF MOV.W R5,@(H'003ADF:16,ER7)
 001024 A767 CMP.B #H'67:8,R7H
 001026 FCD7 MOV.B #H'D7:8,R4L
:

The MOV instruction at H’100A transfers the data from SW to R0L.

Let’s set a break point at this instruction.

:B 100A[Enter]
:

Although the monitor gives no indication, the break point has been set correctly. Let’s confirm
this.

:B[Enter]
 <ADDR>
 00100A
:

These settings will make the program break at H’100A. Let’s execute the program.

68

:G 1000[Enter]
 Break at PC=00100A
 PC=001012 CCR=88:I...N... SP=00FFFF00
 ER0=00000000 ER1=00000000 ER2=00000000
 ER3=00000000 ER4=00000000 ER5=00000000
 ER6=00000000 ER7=00FFFF00
:

Did the program stop correctly?

The break point is, of course, located before the instruction that will change the state of the LEDs.
The program counter points to the address of the instruction to be executed next.

Let’s start the single step execution from the address that is indicated by the above program
counter.

:S[Enter]
 PC=00100C CCR=80:I....... SP=00FFFF00
 ER0=00000055 ER1=00000000 ER2=00000000
 ER3=00000000 ER4=00000000 ER5=00000000
 ER6=00000000 ER7=00FFFF00
 00100A 28C7 MOV.B @H'FFFFC7:8,R0L
:

Has the LED display data been changed again?

The program can thus be debugged in the way described above.

[About the break point]

It is only possible to set break points at addresses in RAM. This is because the target instruction
at the break point is replaced with JMP instruction. This forces a call to the debugging monitor
during the execution of the user program that gives the impression that the execution of the user
program has been suspended. This is why a break point cannot be set at addresses in ROM, which
cannot be written to. The target instruction at the break point is replaced by the JMP instruction
when the G command is issued. Disassembly thus cannot be used to confirm whether or not the
replacement has taken place.

The contents of the on-chip peripheral function registers can be displayed in units of functional
modules by the H8 command. For example, the contents of the I/O ports are displayed in the
following way:

69

:H8 I/O[Enter]
<REG><ADDR> <CODE> < 7 6 5 4 3 2 1 0 >
P4DDR FFC5 FF
P4DR FFC7 01010101 D7 D6 D5 D4 D3 D2 D1 D0
P4PCR FFDA 00000000
P6DDR FFC9 FF
P6DR FFCB111
P7DR FFCE 10001101 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0

DA1 DA0
P8DDR FFCD FF
P8DR FFCF ...00000 CS0 IRQ3 IRQ2 IRQ1 IRQ0

CS1 CS2 CS3 RFSH
P9DDR FFD0 FF
P9DR FFD2 ..111111 SCK1 SCK0 RXD1 RXD0 TXD1 TXD0

IRQ5 IRQ4
PADDR FFD1 FF
PADR FFD3 .0000011 TP6 TP5 TP4 TP3 TP2 TP1 TP0

TIOCA2 TIOCB1 TIOCA1 TIOCB0 TIOCA0 TEND1 TEND0
CS4 CS5 CS6 TCLKD TCLKC TCLKB TCLKA
A21 A22 A23

PBDDR FFD4 FF
PBDR FFD6 00001010 TP15 TP14 TP13 TP12 TP11 TP10 TP9 TP8

DREQ1 DREQ0 TOCXB4 TOCXA4 TIOCB4 TIOCA4 TIOCB3 TIOCA3
ADTRG CS7

:

The outline of and details on these commands can be obtained by using the help command:

:?[Enter]
 Monitor Vector 01A258 - 01A357
 Monitor ROM 01A358 - 01FD63
 Monitor RAM 01FD64 - 01FFFF
 User Vector 000000 - 0000FF
 . :Changes contents of H8/300H registers.
 A :Assembles source sentences from the

:keyboard.
 B :Sets or displays or clear breakpoint(s).
 D :Displays memory contents.
 DA :Disassembles memory contents.
 F :Fills specified memory range with data.
 G :Executes real-time emulation.
 H8 :Displays contents of peripheral registers.
 L :Loads user program into memory from host

:system.
 M :Changes memory contents.
 R :Displays contents of H8/300H registers.
 S :Executes single emulation(s) and displays

:instruction and registers.
:
:M?[Enter]
 Changes memory contents.
 M <address> [;<size>] [RET]
 <address> :memory address
 <size> :B -- byte
 W -- word
 L -- long word
:

HTERM can be terminated by depressing the ESC key.

70

Notes on using the monitor

• When the bus controller has not been initialized:

Set the best bus cycle by considering the memory performance and the frequency of the CPU’s
operating clock.

It is impossible for the H8/3048F to be fully utilized if the bus cycle is left in its initial state,
i.e., with the bus cycle set as 6 CPU-clock cycles.

• Interrupt handling by the monitor carries an overhead in terms of time:

The programming of interrupt handlers (including vector descriptions) is the same as on the
single chip. When an interrupt is generated, this is indicated on the display. For this to
happen, and before the interrupt is accepted, the monitor must be executed. This overhead is
why execution times become longer other than in solely ROM-access states.

• The NMI switch enables the user breaks:

After a user program is executed by the G command, control can be returned to the monitor
through a forced break (NMI interrupt).

2.3.4 Size of the Memory and Performance in Executing an Instruction

There are some variations in combinations of instructions that can be used to get the same result
from the microcomputer. For example, let’s clear ER0 to 0.

MOV.L #0,ER0

XOR.L ER0,ER0

SUB.L ER0,ER0

Any of these instructions can be used to clear ER0 to 0. The numbers of bytes and the execution
times of the instructions are, however, not the same. The #0 part of the MOV instruction takes up
4 bytes, because this #0 means that the ‘0’ is expressed in longword format, i.e., as 32 bits. A long
time is taken to read this instruction. The numbers of bytes and the execution times of these
instructions are as follows:

MOV.L #0,ER0 ; The number of bytes in this instruction
; (hereafter called the instruction length) is 6
; bytes, and the execution time is thus at least 6
; clock cycles.

The XOR instruction executes a logical exclusive-OR operation on the bits of the two operands.
When the same register is specified as both operands for this instruction, all bits of the operand
register become 0 as a result of the instruction’s execution. This is because a logical exclusive-OR
operation on two bits with the same value (1 and 1, or 0 and 0) creates a 0 in the result. However,
this instruction is not used extremely frequently, so the instruction is a little long.

71

XOR.L ER0,ER0 ; The instruction length is 4 bytes, and the
 ; execution time is thus at least 4 clock cycles.

The best choice is the SUB (subtraction) instruction. When a SUB instruction is executed by
specifying the same register as both operands, all bits of that operand register will always become
0 as a result of the instruction’s execution. This is because subtracting something from itself
leaves 0. As this instruction is used very frequently, it has a short instruction code.

SUB.L ER0,ER0 ; The instruction length is 2 bytes, and the
; execution time is thus at least 2 clock cycles.

While the MOV instruction is easiest to understand, the SUB instruction has the best performance.

Special care should be taken in selecting instructions, according to the purpose of the program, in
order to get a good performance.

Some other points to be considered are described below.

(1) Executing multiply and divide instructions takes a long time.

Executing MULXn or DIVXn (n means S or U) instructions takes a long time, as shown below.

Instruction Execution time

MULXU.B 14

MULXU.W 22

MULXS.B 16

MULXS.W 24

DIVXU.B 14

DIVXU.W 22

DIVXS.B 16

DIVXS.W 24

On the other hand, the execution time required to obtain the second power of an operand can be
reduced by using shift instructions. This is because the second power of the operand is then
obtained in only 2 clock cycles.

72

MOV.B #2,R0L ; Executes @DATA/2 operation

MOV.W @DATA,R1 ; @DATA is data with no sign bit

DIVXU.B R0L,R1 ; The execution time of a DIVXU instruction is
: 14 clock cycles

MOV.W @DATA,R1 ; The same operation executed as shift
; instructions

SHLR.W R1 ; The execution time of an SHLR instruction is 2

: clock cycles

Logical shift instructions can be used for multiply or divide operations on data that has no sign bit;
arithmetic shift instructions can be used on data with a sign bit. The meanings of the shift
instructions and examples of their usage are given below.

SHLL: Logical shift left

SHLR: Logical shift right

SHAL: Arithmetic shift left

SHAR: Arithmetic shift right

SHAR.L ER0 ;Divide 2

SHLL.W E0 ;Multiply 2

(2) Development of subroutines

Subroutines are useful to reduce memory requirements. However, it is better not to use sub-
routines when the performance of a program takes priority over memory requirements, because it
takes a long time to call sub-routines.

It takes 2 or 4 clock cycles to execute a BSR or JSR instruction and 2 clock cycles for an RTS
instruction. In the worst case, 6 clock cycles are thus required to call a sub-routine. These clock
cycles are not necessary when the sub-routine is not used. A program calling a sub-routine 10
times requires 60 clock cycles; 100 times requires 600 clock cycles. Therefore, if the program
calls the sub-routine at most several times, the performance of the program in which no sub-
routine is used is better than that of a program in which sub-routines are used.

BSR SUB ; 2 to 4 clock cycles

SUB: ... ; processing by the sub-routine

RTS ; 2 clock cycles

The merit of using a sub-routine is that the resulting program should be easier to understand. The
time required to debug the program can thus be shortened. Use fewer sub-routines when
execution times must be reduced.

(3) Practical usage of 8-bits address

A memory space with a maximum address space of 256 bytes is called an 8-bit address space.

73

As few bits are required to specify an address within such a space, a reduction in memory
requirements can be expected. The instructions for operations on individual bits in memory can
only use the 8-bit address space. The bit number is specified as an immediate operand that is
expressed in the form #imm.

The 8-bit address space of the H8/3048F starts from H’FFFF00 and takes up 256 bytes. The space
is composed of on-chip RAM, with a size of 16 bytes, and peripheral functions. The RAM region
should be used with great care, because it consists of only 16 bytes. If this region is also used as a
stack region, the effectiveness of using the 8-bit address space is reduced by half.

MOV.B @H'00:8,R0L ; 2 bytes, 4 clock cycles

MOV.B @H'FF00:16,R0L ; 4 bytes, 6 clock cycles

MOV.B @H'FFFF00:24,R0L ; 6 bytes, 8 clock cycles

On-chip RAM
H'FFFF00

H'FFFF0F

H'FFFF1C

H'FFFFFF

On-chip peripheral functions

@ address : 8
(the memory region
that is accessed
by 8-bit addresses)

16-MB memory space

Figure 2.18 Memory Map of the 8-Bit Address Space

74

(4) Practical usage of the jump table

Processing by many programs variesaccording to the data to be processed. The processing by the
program becomes complicated if many CMP instructions are used to achieve this. Moreover, the
time required to process the data will vary according to the data. A jump table can be used to
solve such problems.

(In case of the use of CMP instruction)

MOV.B @DATA,R0L

CMP.B #H'00,R0L

BEQ SUB00

CMP.B #H'01,R0L

BEQ SUB01

CMP.B #H'02,R0L

BEQ SUB02

CMP.B #H'03,R0L

BEQ SUB03

(In case of the use of the jump table)

MOV.L #JMP_TBL,ER1 ; Acquires the starting address of the table

SUB.L ER0,ER0 ;

MOV.B @DATA,R0L ;

SHLL.L ER0 ; Converts the data to an offset address
; (multiplies by 4)

SHLL.L ER0 ;

ADD.L ER0,ER1 ; Adds the offset address to the initial address
; of the table

JMP @ER1 ; Jumps

JMP_TBL:

.DATA.L SUB00,SUB01,SUB02,SUB03 ; Registers the target addresses
; in the jump table

DATA: .RES.B 1

The performance or memory requirements of a program can thus be dramatically improved by
using the right mechanism in the program after the programmer has gotten a feel for the
characteristics of the CPU. The possibilities depend on the capabilities of the programmer. Of
course, the best programmer is the one who develops a program that works without error before
any of the others.

75

2.3.5 Basic Input and Output

It is not so interesting to operate on data in memory alone. This book covers the functions of the
microcomputer for you to study, so let’s try to control something. As a first step, let’s consider the
I/O ports. I/O ports are always included in single-chip microcomputers and can be used to great
advantage. Covering this function with respect to both hardware and programming is very simple,
so this function is suitable for beginners to learn.

DDR
memory

D Q

Stored the direction
for the pin

(input or output)

DR
memory

D Q

Stored data for
output from the port

Data written to
determine the

direction of the port
(input or output)

Writing of
data for output

Reading of
input data

Reading from
the address of DR

I/O port pin

Figure 2.19 Structure of an I/O Port

Use the following as a rough guide in your thinking about I/O ports. There are some differences
with the approach to memory that has already been treated. Although the memory is used to hold
data, an I/O port is used to send data to or receive data from the pins. The microcomputer can be
made to write data to an I/O port by using an MOV instruction, just as with writing to a location in
memory. The data written to the pins then appears as voltages on the pins. This is called an
output port.

The microcomputer is also able to read data from an I/O port. This is just like reading from the
memory. The data that is read out from the port depends on the voltages which are being applied
to the port at the instant of reading; 1 is read out when the voltage is around 5 V, 0 when it is 0 V.
This is called an input port (refer to the column for more details on the digital voltage.)

76

I/O is an abbreviation for input/output. The use of I/O ports as both inputs and outputs is usual
because ports that are dedicated for use as either input or output provide less flexibility.

Although the description in the figure is of a single pin, the minimum data-bus width that is
available is 8 bits (1 byte), as with memory. Therefore the I/O ports are treated as groups of 8
pins. Let’s use this to turn on the LEDs by depressing the switches.

Construct the circuit shown in the figure.

Vcc

GND

Input port
(P40)

State of SW and input data
SW
ON
OFF

Data
0
1

Vcc

Output port
(PB0)

Data output from and the state of each LED
Data

0
1

LED
Lit

Not lit

Figure 2.20 Switches and LEDs

The pin attached to each switch is used as an input pin. The voltage level becomes high when the
switch is turned off and the information that is read out from the port is then 1; it becomes low
when the switch is turned on and 0 is then read out.

The resistance of a switch is very close to 0 Ω when it is in its ‘on’ state. The voltage at the switch
is 0 V according to Ohm’s law, because the pulling-up resistance and the 0 Ω resistance (switch in
its ‘on’ state) are connected in series if we assume that the resistance of the input port is ∞. When
the switch is in its ‘off’ state, the voltage at the switch is very close to 5 V according to Ohm’s
law, because the resistance of the switch is ∞.

The lamp is an LED (light-emitting diode). The port that is connected to the lamp is an output
port. The lamp is not lit by writing a 1 to the port; it is lit by a 0.

When an output pin is at 0 V, the difference between the voltage on the pin and the power supply
voltage is 5 V. This voltage difference is enough to make an electric current run through the LED.
An LED is a kind of lamp that is switched on when an electric current is passed through it. A
voltage of around 2 V is required to switch the LED on. In other words, the voltage and electric
current are not proportional in a LED, unlike in a resistor. The LED is, after all, a diode. Of the
voltage difference of 5 V, 2 V are applied to the LED, while 3 V are applied to the resistor. The
resistor is used to restrict the electric current that passes through the LED, because the LED may
be destroyed by excessive electric current (over 10 mA).

77

The difference between the voltage of an output pin and the power supply voltage becomes
effectively 0, when the former is close to 5 V. As this voltage difference is not enough to supply
an electric current through the LED, the LED is not illuminated. In other words, the electric
current can pass through the LED when the difference between the voltage on the output pin and
the power supply voltage exceeds 2 V, which is the threshold voltage of the LED. It is guaranteed
in the H8/3048F that the voltage on the output pin is set to [Vcc – 0.5] V, so the LED is certain to
be switched off.

Column

Electrical Characteristics and Absolute Maximum Ratings

There are three major electrical characteristics of any semiconductor; absolute maximum ratings,
DC characteristics, and AC characteristics.

Absolute maximum ratings: The semiconductor may result in permanent damage when it is used
in excess of the absolute maximum ratings (voltage, electric current, or heat). In that case, a
customer cannot ask the manufacturer to repair it under the guarantee.

DC characteristics: DC characteristics mainly consist of I/O voltages, power consumption, etc. In
designing circuitry, a customer can confirm whether or not it is possible to directly connect the
circuitry to the voltages on the I/O ports. The capacity of the power supply circuitry or
countermeasures for heat radiation can be considered by using these DC characteristics.

AC characteristics: AC characteristics indicate the behavior of signal ports in terms of the
propagation delay times, the differences in phase between clock pulses, set up times, hold times,
etc., while the I/O ports are being used within the range given by the DC characteristics.

78

Let’s enter and execute the program shown below.

<Program> (smp2_5.src)

.CPU 300HA
P4DDR: .EQU H'FFFFC5
P4DR: .EQU H'FFFFC7
PBDDR: .EQU H'FFFFD4
PBDR: .EQU H'FFFFD6

.SECTION P,CODE,LOCATE=H'FFF000
MOV.B #H'FF,R0L
MOV.B R0L,@PBDDR

LOOP: MOV.B @P4DR,R0L
MOV.B R0L,@PBDR
BRA LOOP
.END

The LEDs turn on/off according to the on/off states of the switches. This program can rotate a
motor, when a motor rather than an LED is connected to the switch. This program can also be
used to make a heater heat up, when a heater rather than an LED is connected to the switch. It is
nice to know that a program can make something move, rather than simply manipulate the
contents of memory. Moreover, it is the programmer that has the program move that something.

Look at the source code of this program. Only the MOV instruction, which is the same instruction
that operates on memory, is used in this program. That’s OK. The switches or LEDs appear as
memory to the microcomputer. In other words, circuitry that allows a switch or LED to be treated
as memory has been added, because the microcomputer only has the functions to deal with
memory.

The circuitry that is used here is called an I/O port. The lamp is turned on by using the I/O port to
read the state of the switch. That is, an interface between the peripheral apparatus and the
microcomputer is established. This allows the microcomputer to receive information from the
outside or to give the result of an operation to something outside.

The I/O ports that are included in the H8/3048F can be configured as either inputs or outputs. The
DDR (Data Direction Register) decides whether the pins of an I/O port are used as inputs or
outputs. This register is different from the general-purpose registers, because it is assigned to a
memory location. This register is treated in the same way as memory by a MOV instruction. An
I/O pin is used as an output when the corresponding bit of the DDR is 1; as an input when it is 0.
The initial value of the DDR is 0; that is, the I/O pins are used as inputs. The DDR is set to 1
when the corresponding I/O pin must be used as an output. As the DDR cannot be read from, it is
impossible to confirm that a bit of the DDR has really been set to 1 after a 1 has been written to it.

The microcomputer and memory are analogous to the human brain. A human being has hands,
legs, mouth, nose, and ears. The microcomputer cannot become a system without having hands
and legs. The I/O port is the most fundamental shape of its hands and legs. The I/O port allows

79

the microcomputer to communicate with digital apparatus (the case which the microcomputer is
connected to the outside will be described in chapter 6.)

The program shown below can reverse the state of the corresponding LED every time the switch is
turned off. In other words, the LED is turned off by changing the state of the switch once, turned
on by changing it twice, turned off by changing it three times, turned on by changing it four times,
and so on.

<Program> (smp2_6.src)

.CPU 300HA
P4DDR: .EQU H'FFFFC5
P4DR: .EQU H'FFFFC7
PBDDR: .EQU H'FFFFD4
PBDR: .EQU H'FFFFD6

.SECTION P,CODE,LOCATE=H'FFF000
MOV.B #H'FF,R0L
MOV.B R0L,@PBDDR

LOOP1: BTST #0,@P4DR
 BEQ LOOP1
 BNOT #0,@PBDR
LOOP2: BTST #0,@P4DR
 BNE LOOP2
 BRA LOOP1
 .END

This BTST instruction can confirm the state of a single bit. The result of
the instruction is reflected in the Z bit in the CCR. Operation of the BEQ
and BNE instructions as branch instructions is based on the use of
the Z bit. The branch condition is satisfied when the Z bit is 0 in a BEQ
instruction. On the other hand, the branch condition is satisfied when
the Z bit is 1 in a BNE instruction.

The program, however, does not work as expected.

The cause of the malfunction is a phenomenon called jitter that arises from the structure of a
switch. This word ‘jitter’ refers to the state where the switch is repeatedly turned on and off over
a short period. The contact points of the switch do not touch in a sticky fashion like the suckers of
an octopus. When the switch goes to its on state, a pair of solid metal plates makes contact with
each other and bounce. Therefore, the initial signal levels repeatedly change between low and
high levels, and finally settle at the low level as is shown in the figure.

The jitter lasts for, at most, a few dozens of ms. This is a very short period from the viewpoint of
a human being. However, it is an extremely long time from the viewpoint of a microcomputer.
Over one period of 10 ms, when it is running at the clock of 16 MHz, the H8 is able to execute 80
thousands of those instructions which can be executed fastest, like the instruction for addition.
Therefore, a few dozens of ms is an extremely long time from the viewpoint of a microcomputer.

The actions from the confirmation of the input port by the BTST instruction to the turning over of
the bits by the BNOT instruction are repeated 4444 times in 10 ms. The jitter appears to quickly
turn the switch on and off many times. Whether the LED repeats its turning on and off
successfully or not depends on the number of state changes due to jitter and detected by the
program is even or odd. A special care should be taken in the debugging. It is possible to remove
the effect of the jitter by using an R-S type flip-flop.

80

Vcc

GND

Input port Input port

Signal at
the input port

Signal at
the input port

Signal at
the switch

Occurrence of the jitter

OFF ON ON OFF

Vcc

Figure 2.21 Jitter

However, costs increase because of this addition of hardware. This problem can be resolved by
programming. The answer is to simply check the state of the switch only after waiting for enough
time. In this case, you might think that the response will become slower because of this slow
checking of the state of the switch after it has changed state. This is no problem! The response
time of a human being is not as fast as the speed of the microcomputer or the jitter. For example,
can you press the button on a game controller 10 times a second? You do not press the button so
quickly, do you? The period taken to pressing the button is 100 ms, if you can achieve that.
Therefore, waiting 10 ms until the jitter ceases creates no problems.

81

<Program> (smp2_7.src)

P4DDR .EQU H'FFFFC5
P4DR .EQU H'FFFFC7
PBDDR .EQU H'FFFFD4
PBDR .EQU H'FFFFD6

.SECTION P,CODE
MOV.B #H'FF,R0L
MOV.B R0L,@PBDDR

LOOP1: BTST #0,@P4DR
BEQ LOOP1
MOV.L #10000,ER0 ;Sets the time to wait

WAIT1: DEC.L #1,ER0 ;Waits
BNE WAIT1 ;
BNOT #0,@PBDR ;

LOOP2: BTST #0,@P4DR ;
BNE LOOP2 ;
MOV.L #10000,ER0 ;

WAIT2: DEC.L #1,ER0 ;
BNE WAIT2 ;
BRA LOOP1 ;
.END

This program is not efficient. We will consider the answer to jitter in the later section on the
timer.

Summary

The microcomputer only has the ports and instructions such as those that deal with memory. The
microcomputer can communicate with the I/O ports that are to it as the nerves of the hands and
legs are to a human being by using the same functions used to operate on memory. The hands and
legs of the microcomputer are the sensors that sense temperature, humidity, or acceleration, or
actuators such as motors or heater valves. The hands and legs of the personal computer are the
keyboard, mouse, camera, liquid-crystal display, etc. As such apparatus can be treated in the way
that has been described in the section on I/O ports, by connecting circuitry that appears, to the
microcomputer, to be equivalent to memory.

Column

Voltages and Digital Signals

The microcomputer treats digital signals as TTL or CMOS level. The output pin of an I/O port
operates at CMOS levels; input ports at TTL.

Therefore, logic circuitry that is constructed of TTL components can be directly connected to an
input port. This is also true of the output port.

In general, the input values of TTL levels are as follows:

Low level: 0.8 V or less,

High level: 2.0 V or more.

82

The input port of the H8/3048F operates on these voltage levels. The output voltage of the
circuitry that is connected should be as follows to match the two voltage levels:

Low level: 0.4 V or less (the noise margin is 0.4 V (= 0.8 V – 0.4 V),

High level: 2.7 V or more (the noise margin is 0.7 V (= 2.7 V – 2.0 V).

When the input voltage on the input port is 0.8 V or less, the read data becomes 0, while when the
voltage is 2.0 V or more, the read data becomes 1. When the input voltage on the input port is
between 0.8 V and 2.0 V, the read data is unpredictable. Therefore voltages in the range between
0.8 V and 2.0 V cannot be used as input voltages. The electric current at the input port is close to
0.

The input values for CMOS levels are as follows:

Low level: 1.35 V or less,

High level: 3.15 V or more.

The output voltage of CMOS circuitry is determined as follows so that the input voltage levels are
matched:

Low level: 0.1 V or less (the noise margin is 1.25 V (= 1.35 V – 0.1 V)),

High level: Vcc – 0.1 V or more (the noise margin is 1.75 V
(= Vcc – 0.1 V – 3.15 V)).

The output pin of the H8/3048F has the following voltage levels.

Low level: 0.4 V or less (when 0 has been written into the data register),

High level: Vcc – 0.5 V or more (when 1 has been written into the data register).

The amount of electric current from an output pin depends on the pin. For the general purpose
pins, it is between 2 and – 2 mA. The output voltage changes when the electric current is taken
out. The output voltage levels described above are guaranteed when the output electric current is
in the range from 1.6 mA to – 200 µA.

Ports 1, 2, 5, and B are for large electric currents. Pins on these ports can each pass 10 mA as a
maximum electric current, when they output the low-level voltage. It is convenient to use those
ports to turn on the LED, because driver circuitry can then be omitted.

83

Column

Input Circuitry and Driver Circuitry

The levels of input and output voltages of the I/O ports are TTL/CMOS. When an input port is
used to check the state (on/off) of a switch, circuitry must be designed so as to change the input
voltage according to that state (on/off). The voltages of 0 V in the on state and 1 V in the off state,
can be applied to the input port, when a resistor is connected in series with the switch.

Now, let’s look at the value of this resistor. If the resistance is too small, a large electric current
will pass when the switch is turned on. When the resistance is 100 Ω, for example, the electric
current save 0 mA with the switch in its off state and 50 mA with the switch in its on state. This
current of 50 mA is the same as the total consumption of electric current by the H8/3048F. That
is, to check whether a switch is in its on state or not, the same amount of electric current must be
consumed as is consumed by the microcomputer.

Vcc

GND

Almost all of the electric current passes through the switch.
When R = 100 , ION becomes 50 mA.
This current is large because 50 mA is the same value as
the amount of electric current consumed by the H8/3048F.
It is better to use a pull-up resistor with a large resistance
such as several k , for example, to realize a low power consumption.

R ION = Vcc/R

GND
Input capacitance Floating

capacitance etc.
in the wiring lead

When the switch is turned off, these capacitances are charged with electric current
through the pull-up resistor. If the resistance of the pull-up resistor is too large,
the transition to the high level takes a long time.

R

VOFF=5 X (1 - e)- t
CR

Input port

Input port

On Off
Input
signal

Figure 4 Pull-up Resistor

However, further problem is introduced when the value of the resistor is too large. The input port
is connected to the transistor inside the circuitry, and has an input capacitance, which is a
component of capacitor and comes from the structure of the transistor. There is a floating
capacitance, which is the component of capacitor, of the wiring leads. It is necessary to charge
these capacitors to make the resistor high level. As it takes a long time to charge these capacitors
when the value of the resistor is too large, the high level is only reached at the input port a long
time after the switch is turned off. Therefore, it is not good to have too large value for the resistor.

84

Output port

Output port

Output port

Output port

Output port

Output port

Output port

Vcc

Vcc

CMOS-IC

N-ch FETNPN Tr

Open-collector IC

Load

Load

Load

Darlington-connection
type NPN transistor

Load

PNP Tr

Load

Load
Load

Ports 1, 2, 5, and B
Up to 10 mA

Up to several-hundred mA

Up to 50 mA Up to dozens of A

When the load needs
to be driven with low level

Up to dozens of A

P-ch FET

Load
Up to 36 mA

Figure 5 Examples of Driver Circuitry

Output port

Vcc

Photo-coupler
 (insulation by means of light)

Pulse transformer
(insulation by means of magnetic fields)

Figure 6 De-coupling (Photo-coupler and Pulse Transformer)

The normal value is in the range of several kΩ to several hundreds of kΩ.

85

An LED can be directly driven by an output pin, while a motor cannot, because a large electric
current cannot be drawn out of an output pin. It is necessary to connect driver circuitry to amplify
the signal level. Ports for large electric currents or circuitry that can apply 50 mA with standard
logic levels can be used for loads such as those that require small electric currents and can be
driven by 5 V. The open-collector, open-drain, or an interface of the standard logic can be used
for those loads that can be driven by 5 V or more. A transistor must be used to handle a larger
electric current or voltage. A given apparatus can thus be driven by using driver circuitry that is
externally connected to the output pin to amplify the signal level, when the electric capacity of the
output pin is not enough to drive it.

An apparatus that requires a high AC voltage, such as 100 V, must be driven after electrically
isolating the transistors that drives the apparatus from the output port. Such a structure can
prevent damage to the microcomputer even when the transistors have been destroyed. Light or
magnetic fields are used to achieve the electrical isolation. A photo-coupler is used for electrical
isolation by means of light, and requires that the output pin supplies it with DC current. A pulse
transformer or the like achieves electrical isolation by means of magnetic fields.

The signal from the output pin must be pulse-shaped in this case, because magnetic power cannot
be transferred to the other side of the pulse transformer unless the magnetic power is in a state of
change.

Column

I/O Ports of the H8/3048F

The I/O ports can be used for the input or output of data. They are necessary for the
microcomputer to control the system, for example, for the input of data from a sensor, or the
control of actuators.

It is possible to change the direction of signals (input or output) on the I/O ports. Signals can be
read from outside the microcomputer when an I/O pin is set as an input. The level of a pin to
which high level (2.0 V or more) has been applied becomes 1 when the CPU reads it out by a
MOV instruction etc., while the level of a pin to which low level (0.8 V or less) has been applied
becomes 0. I/O ports can thus handle input voltages at what is called TTL levels.

Data which has been written by the CPU with a MOV instruction etc. can be output at a port when
the I/O port is set as an output. The written data can be held until the next round of writing. In
other words, the I/O port can also retain data as if it were a memory. The ‘high’ voltage level
(Vcc – 0.5 V or more) is output on a pin to which 1 has been written, while a ‘low’ level (0.4 V or
less) is output when a 0 has been written. These levels are the CMOS levels.

The addresses that are accessed by this CPU are all in a single address space that includes the
memory (the H8/3048F does not have the other I/O space than memory space, while the 80-series
CPU have.) The addresses that are accessed by the CPU as I/O exist in a prescribed and fixed

86

range (namely, H’FFFF1C to H’FFFFFF in the memory map; the portion that is assigned to on-
chip I/O).

There are a total of 78 ports available on the H8/3048F. However, that figure includes ports that
will in practice be used for other purposes such as for the address and data bus of the memory
interface, and for control signals. As a result, the number of available I/O ports will be reduced
when memory is connected from the outside.

Table 1 Addresses of the I/O Port Registers

Register Bit Name Module
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Name
H'FFFFC0 P1DDR P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR Port 1
H'FFFFC1 P2DDR P27DDR P26DDR P25DDR P24DDR P23DDR P22DDR P21DDR P20DDR Port 2
H'FFFFC2 P1DR P17 P16 P15 P14 P13 P12 P11 P10 Port 1
H'FFFFC3 P2DR P27 P26 P25 P24 P23 P22 P21 P20 Port 2
H'FFFFC4 P3DDR P37DDR P36DDR P35DDR P34DDR P33DDR P32DDR P31DDR P30DDR Port 3
H'FFFFC5 P4DDR P47DDR P46DDR P45DDR P44DDR P43DDR P42DDR P41DDR P40DDR Port 4
H'FFFFC6 P3DR P37 P36 P35 P34 P33 P32 P31 P30 Port 3
H'FFFFC7 P4DR P47 P46 P45 P44 P43 P42 P41 P40 Port 4
H'FFFFC8 P5DDR — — — — P53DDR P52DDR P51DDR P50DDR Port 5
H'FFFFC9 P6DDR — P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR Port6
H'FFFFCA P5D — — — — P53 P52 P51 P50 Port5
H'FFFFCB P6DR — P66 P65 P64 P63 P62 P61 P60 Port6
H'FFFFCC — — — — — — — — —
H'FFFFCD P8DDR — — — P84DDR P83DDR P82DDR P81DDR P80DDR Port 8
H'FFFFCE P7DR P77 P76 P75 P74 P73 P72 P71 P70 Port 7
H'FFFFCF P8DR — — — P84 P83 P82 P81 P80 Port 8
H'FFFFD0 P9DDR — — P95DDR P94DDR P93DDR P92DDR P91DDR P90DDR Port 9
H'FFFFD1 PADDR PA7DDR PA6DDR PA5DDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DDR Port A
H'FFFFD2 P9DR — — P95 P94 P93 P92 P91 P90 Port 9
H'FFFFD3 PADR PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Port A
H'FFFFD4 PBDDR PB7DDR PB6DDR PB5DDR PB4DDR PB3DDR PB2DDR PB1DDR PB0DDR PortB
H'FFFFD5 — — — — — — — — —
H'FFFFD6 PBDR PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 Port B
H'FFFFD7 — — — — — — — — —
H'FFFFD8 P2PCR P27PCR P26PCR P25PCR P24PCR P23PCR P22PCR P21PCR P20PCR Port 2
H'FFFFD9 — — — — — — — — —
H'FFFFDA P4PCR P47PCR P46PCR P45PCR P44PCR P43PCR P42PCR P41PCR P40PCR Port 4
H'FFFFDB P5PCR — — — — P53PCR P52PCR P51PCR P50PCR Port 5

Note: A bit position that is indicated as — has neither port nor memory function.

Moreover, as the ports serve both as I/O ports and as ports for the on-chip peripheral functions, the
number of available I/O ports will be further reduced.

An I/O port has the simple structure shown in figure 2.19, with the port controlled by two
registers; DDR (Data Direction Register) and DR (Data Register).

• DDR (Data Direction Register)

This register determines the direction of the port pins (input or output).

0: The pin is used as an input (initial value)

87

1: The pin is used as an output

• DR (Data Register)

This register handles data for the port. The meaning of this register depends on the settings of
pin directions (input or output). When a pin is set as an input (DDR = 0), the input value at
TTL level can be determined by reading the DR as follows:

0: A low-level voltage has been input to the port

1: A high-level voltage has been input to the port

When it is set as an output (DDR = 1), a value at CMOS level can be output after writing to the
DR as follows:

0: A low-level voltage is output from the port

1: A high-level voltage is output from the port

Note: These two registers represent a kind of memory function that is used to control the I/O
ports and differ from the general-purpose registers of the CPU, although they are still
called registers. They are mapped to the memory map of the H8/3048F. In other words,
these registers are accessed by specifying their addresses. They are treated in the same
way as memory.

The I/O ports are normally treated as groups of 8 pins, because the minimum unit of the memory
in the CPU is the byte (= 8 bits). Individual I/O pin can, however, be treated as independent ports.

Table 1 shows the register configuration of the ports of the H8/3048F. Over 70 I/O pins are
available. The pull-up MOS control registers (PnCR) will be explained later.

Program

Any instruction that is used to access locations in memory, such as MOV, BSET, can be used to
deal with the pairs of I/O registers.

Initialization

The direction for the pins on each I/O port (input or output) is set in the DDR.

After a reset operation, the DDR is initialized so that all pins are set as inputs. It is thus only
necessary to alter the DDR setting when an I/O port is needed as an output port. The following
program sets all 8-bit ports as outputs.

MOV.B #H'FF,R0L

MOV.B R0L,@DDR

(The address of the DDR must be declared with the EQU directive instruction before any
reference to @DDR.)

The following program can be used to set the bits in position 0 as an output and the remaining 7
bits as inputs.

88

MOV.B #H'01,R0L

MOV.B R0L,@DDR

Instructions for bit-wise operations cannot be used on the DDR, because the DDR is write-only.
Therefore, the following usage is wrong.

BSET #1,@DDR

Although a source program that includes this line will be assembled without error, all of the
specified I/O ports can be changed to the output. The instruction for bit-wise operations reads 1
byte of data that includes the 1 bit that is the operand of the instruction, changes only that bit, then
finally writes back 1 byte of data that includes the 1 bit. The instruction for bit-wise operation
thus reads, modifies, and writes in a single process. The DDR is, however, write-only so the value
set in it cannot be read. The data, which is read from the DDR that cannot be read out its value by
an instruction for bit-wise operation, is thus unpredictable. Normally, as the data bus will have
been pre-charged (‘pre-charged’ means that the data bus has been charged to half of the power-
supply voltage, and the time required to make the transition from the pre-charged to the high or
low state is less than that required for high to low or low to high), all bits will be read out as 1.
The bit position 0 of the read out data (H’FF) is then modified to 1, and the modified data (H’FF)
is then returned to the DDR. As a result, all of the specified I/O pins including those that were
intended to be inputs, are turned into outputs.

So all of the bits have been turned into outputs, although the intention was to only switch one bit
from input to output. The program thus will not work as you might have expected. Take care on
this point.

Now, let’s use a program to connect the LED and switch shown in figure 9. This program turns
on an LED when the corresponding switch has been turned on. That is, although they are not
electrically connected, the program makes them operate as if they were electrically connected.

Vcc

GND
P70

PA0

74LVC08

4.7kΩ

330Ω

Figure 9 Example of Input and Output Circuits for the I/O Port

89

The program for inputting and outputting the data

The switch is connected to port 7. Port 7 is a dedicated port for input and has no corresponding
DDR. Data can only be input by reading out the value of the bit in position 0, that is, the bit
connected to the switch.

The LED is connected to port A. The corresponding bit 0 must be set as an output.

As the program has to confirm bit 0 of port 7 and modify bit 0 of the port A that is connected to
the LED, the program may have the following structure.

Memory requirements The execution time
in bytes in clock cycles

 1 P7DR .EQU H'FFFFCE
 2 PADDR .EQU H'FFFFD1
 3 PADR .EQU H'FFFFD3
 4 MOV.B #1,R0L ;2 2
 5 MOV.B R0L,@PADDR ;2 4
 6 LOOP:
 7 BTST #0,@P7DR ;4 6
 8 BEQ LED_ON ;2 4
 9 BSET #0,@PADR ;4 8
10 BRA LOOP ;2 4
11 LED_ON:
12 BCLR #0,@PADR ;4 8
13 BRA LOOP ;2 4

Lines 1 to 3: define the addresses for symbols.

Lines 4 and 5: initializes port A.

Line 7: uses the BTST instruction to confirm the state of the switch (the result is
reflected in the Z bit of the CCR).

Line 8: changes the flow of the process as required by a BEQ instruction.

Lines 9 and 10: turns off the LED.

Lines 11 and 12: turns on the LED.

The first improvement to the program

Although the program works well as it is, it can be simplified. The simpler the program, the
smaller the program, and the faster the execution. Generally speaking, it takes a long time to
execute the conditional branch instructions in a microcomputer. Therefore it is important to
improve the program so that no conditional branch instructions are used. In this example, the bit
of port 7 that is connected to the switch and the bit of port A that is connected to the LED have the
same position, namely bit position 0, so it is possible to move the data in byte-wise fashion from
port 7 to port A, by using the MOV instruction. However, it is necessary to invert the switch data
and the LED data for this style of data transfer. In other words, a 1 must be written to turn on the

90

LED when the switch has been turned on (i.e., when the switch data is 0). This data inversion can
be executed by using the NOT instruction, as follows:

 6 LOOP:
 7 MOV.B @P7DR,R0L ;2 4
 8 NOT.B R0L ;2 2
 9 MOV.B R0L,@PADR ;2 4
10 BRA LOOP ;2 4

1 bit of data can be inverted by the following instruction.

BNOT #0,R0L ;2 2

XOR.B #1,R0L ;2 2

Investigate which program is better from the viewpoint of execution times of the instructions and
memory requirements of the object program.

In this example, as the bits on port A other than the LED bit are set as inputs, it is impossible to
output data from these ports, whatever the data that has been written. Although the data to be
input through these ports, other than by the switch bit, is unpredictable, the output of the result of
inversion of the input data only affects bit 0 of port A. Therefore, there is no problem with using a
NOT instruction to invert the whole byte.

The second improvement to the program

A modification to the hardware is necessary to further simplify the program. The NOT instruction
is unnecessary if the sense of the data from the switch is same as that for the LED. In this case,
the program can be improved as follows:

 6 LOOP:
 7 MOV.B @P7DR,R0L ;2 4
 8 MOV.B R0L,@PADR ;2 4
 9 BRA LOOP ;2 4

The improved circuitry is shown in figure 10. The improvement is that the polarity of the driver
circuit for the LED has been inverted.

91

Vcc

GND
P70

PA0

74LVC04

4.7kΩ

330Ω

Figure 10 Improved Hardware

The third improvement to the program

As the operand addresses of the MOV instructions used in the programs described above belong to
the 8-bit address space, this program is assembled in the addressing mode of @aa:8.

Both the memory requirement and the execution time of this program can be reduced by the
following procedures:

• The operand addresses of the MOV instructions belong to some address space other than 8-bit
address space.

• Loading the operand addresses into general-purpose registers.

• Using the @Ern register-direct addressing mode.

The principal is that those addresses that are most frequently accessed are loaded into the general-
purpose registers.

 1 P7DR .EQU H'FFFFCE
 2 PADDR .EQU H'FFFFD1
 3 PADR .EQU H'FFFFD3
 4 MOV.B #1,R0L ;2 2
 5 MOV.B R0L,@PADDR ;2 4
 6 MOV.L #P7DR,ER1 ;6 6
 7 MOV.L #PADR,ER2 ;6 6
 8 LOOP:
 9 MOV.B @ER1,R0L ;2 4
10 MOV.B R0L,@ER2 ;2 4
11 BRA LOOP ;2 4

The execution times for lines 9 and 10 can be reduced, although lines 6 and 7 now have been
added.

An input pull-up MOS is a transistor that acts as a pull-up resistor that is only connected with a
port when that port is used as an input port. The input pull-up MOS can be turned on and off by
the setting in the control register. When a switch that is connected to the input has been turned on,
the electric current that passes through the internal pull-up MOS (resistor) is in the range from 50

92

to 300 µA. The equivalent resistance value of the internal pull-up MOS is in the range from 17 to
100 kΩ (for more details, refer to the electric current of the pull-up MOS in the chapter on
electrical characteristics.) The capacitance of the input port is 15 pF (maximum value).

• Clear P4DDR to zero. This sets all of the 8 pins of port 4 as inputs.

The ports have been set as inputs by initialization (a reset).

• Set P4PCR, if necessary.

The pull-up MOS is set in its off state by the initialization process.

• Read P4DR in order to input the data.

P4DDR: .EQU H'FFFFC5
P4DR: .EQU H'FFFFC7
P4PCR: .EQU H'FFFFDA

MOV.B #0,R0L
MOV.B R0L,@P4DDR ;Clears P4DDR to zero.
MOV.B #H'FF,R0L
MOV.B R0L,@P4PCR ;Turns all of the pull-up MOS resistors on.
MOV.B @P4DR,R0L ;Moves the input data to R0L.

The bit-wise instruction may be used to determine the state of one pin (high or low) of an input
port. For example, the state of P43 can be determined by the following instructions:

BTST #3,@P4DR

BEQ symbol ; A BNE instruction can be used instead of the BEQ
; instruction.

These instructions allow the contents of the general-purpose registers to be left unchanged,
because they do not load data into the general-purpose registers.

Vcc

Vcc

GNDPort 4

Turns on when P4PCR equals to 1

Pull-up MOS

External circuitry that
can be omitted by using
the internal pull-up MOS

Figure 11 Example of the Circuitry on an Input Port

93

Chapter 3 Reset and Interrupts

3.1 Writing Programs to ROM

The programs described up till now have been run by specifying an address for execution in the
debugging monitor. However, this is not the case in a VCR or rice cooker in which the
microcomputer is incorporated; when the power is turned on, the program starts up immediately.
This chapter describes operations to cause a desired program to start up when the power is turned
on.

3.1.1 Hardware

When power is turned on, a "return to initial state" instruction must be sent to the microcomputer.
This instruction is applied to the RES terminal. When this terminal is set to low level, a "return to
initial state" is executed. In the H8/3048F, even after power is turned on, this terminal must be
held at low level for 20 ms. Thereafter it is set to return to high level automatically; hence the
circuit shown below should be formed.

Vcc Vcc
VT+

RES Time

Power on

Low-level
reset

High-level
start

GND

Vcc

RES

GND

Change in voltage of pin

Reset
 IC

There is Schmitt trigger gate VT
(voltages at the boundary between
high and low levels)
 (VT+, VT-), in a noise-resistant
logic circuit

Fig. 3.1 Reset Circuit

There is Schmitt trigger gate which has two levels of the threshold VT (voltages at the boundary
between high and low levels) (VT+, VT-), in a noise-resistant logic circuit

When using a time-constant circuit consisting of a resistor and capacitor, the RES terminal voltage
becomes unstable due to noise from the oscillator circuit and surrounding circuits, possibly
resulting in malfunctions, and so use of such circuits is not recommended. The RES terminal has

94

an internal Schmitt trigger function, and the high-level voltage (VIH) is higher than that of other
terminals at VCC-0.5 V; further, sampling employs the system clock. In this way efforts have been
made to prevent malfunctions insofar as possible; but if possible, a reset IC should be used.

When the RES terminal voltage returns to high level, the microcomputer reads into the PC the four
bytes beginning from address 0.

H'000000

PC

H'000001
H'000002
H'000003
H'000004
H'000005

RES

Reset PC initial
value read

Program
execution

Address bus

H8/300H CPU

H'00
H'01
H'00

H'00 H'01 H'00

H'0000 H'0002 Instruction

Data bus

TimeRead Read

PC PC

Because the internal ROM bus
width is 16 bits, 32 bits can be
read in two operations.

Fig. 3.2 Reset Operation

3.1.2 Programs

Following this, instructions are read from PC addresses to run the program. This is the same as
giving a GO command from the debugging monitor. In order to run the program, it is necessary
that:

(1) The starting address of the program to be started is recorded at address 0

(2) This information at address 0, and the program to be started, are retained in memory even
when power is turned off

95

Method for recording starting address

In order to record fixed data in memory, the .DATA.L control instruction is used. In order to
record the address H'100 at the address 0, the following is used.

Here also, the program can be made more flexible for future modifications by using symbols, and
so the above is rewritten as follows.

Here the system has been prepared to start execution from the target address simply by turning the
power on. Execution of such processing in which the hardware overwrites the PC is called
exception processing.

A system reset is one type of exception request. When a reset is requested, the contents of the
address to which execution jumps are read. A microcomputer which operates in this manner is
called a vector computer.

In the above program, following reset an ER7 (SP) instruction, used to call a subroutine, is set to
be executed first. The reason for this is explained below; ER7 must be initialized.

The initial values of general-purpose registers, including ER7, are undefined immediately after
activation from reset. In the debugging monitor, their values are shown as 0, but this value is only
used for convenience. In addition, the I bit (interrupt mask bit) of CCR is initialized to 1.

3.1.3 Further Premised Hardware

A microcomputer consists of logic circuits called sequential circuits. Within the circuit are flip-
flops, and signals are moved in synchronization with a clock signal. Above we have discussed
only the reset circuit; below we describe the circuitry which is premised on the reset circuit.

Power supply (VCC and VSS)

5 V and 3 V power supplies (from 2.7 to 5 V) are used. The voltage is made to conform to the
voltage of standard logic circuits and memory circuits. Power supply voltages are different for
different microcomputer products, and so care should be taken to supply the appropriate voltage.
The power supply terminals are VCC and VSS.

Note: In general there are multiple power supply terminals; if all are not connected, correct
operation is not guaranteed. Power supply terminals may include test pins used in
semiconductor manufacturing. Also, as shown in the figures, current flowing in from other
terminals is gathered to flow into VSS. If many terminals change all at once, the current
flowing into VSS may change considerably; such a change in current may appear as a
voltage v=Ldi/dt for the wiring inductance (coil component) L.

96

Even when the VSS terminal is at 0 V, a voltage appears internally. If for example 2.5 V is
applied to the input port, this voltage exceeds VIH and so should be read as 1; but due to
the voltage appearing internally, GND is no longer at 0 V, and the input voltage - L di/dt is
read as low level, that is, as 0. In order to prevent this from occurring, the impedance of
the power supply line (the sum of the resistance component, coil component, and so on)
should be held as close to zero as possible. To this end, it is important that numerous VSS

terminals be provided in a microcomputer. It is also important that the power supply line
on the printed circuit board be made thick and short, to lower the impedance. Hence a
printed circuit board with a circuit intended for high-speed operation generally has a
sandwich structure with four or more layers, with the power supply line inside the board.

Noise decoupling

In analog circuits, capacitors are used to bypass circuits in order to ensure that high-frequency
components appearing as noise are not passed on to subsequent circuits. These capacitors are
called bypass capacitors.

Similarly in digital circuits; even if a digital circuit is designed to withstand noise, it is best if
noise effects are suppressed. To this end, capacitors are used to remove ripple (high-frequency
components) included in the power supply line. In digital circuits, the removal of noise
components from signals and the power supply is called decoupling.

In microcomputer power supplies also, a layered ceramic capacitor of value approx. 0.1 µF and
with good high-frequency characteristics is connected between VCC and VSS as close to the chip as
possible for noise decoupling. Depending on the noise frequency components, an electrolytic
capacitor of from 1 to 10 µF may be connected as well.

Noise causing malfunctions may originate in the microcomputer itself. The microcomputer, and
the logic circuits which operate in accordance with the microcomputer, operate according to the
clock signal. Nearly all recent circuits have a CMOS structure, so that power consumption is low;
however, there are drawbacks. When signals are driven at high speed, each time a signal changes,
current suddenly flows or stops flowing. This is because the wiring has a capacitive component.
These changes in current become sources of noise. Of course the wiring is close together, so that
these changes propagate as (radio) waves. Electrostatic inductance occurs between adjacent lines,
or becomes electromagnetic waves to cause interference elsewhere. Capacitors are also effective
for keeping noise from being generated by a microcomputer.

97

Clock oscillator circuits

If a clock signal is not supplied, the microcomputer will not function. A clock oscillator circuit is
incorporated in the H8/3048F, and so only a crystal oscillator must be connected externally.

The minimum operating frequency is 1 MHz; the maximum operating frequency is 18 MHz.
Choose an operating frequency within this range. The clock frequency becomes the basis for the
basic time of the timer and for serial communication speeds, discussed below. The clock
frequency must be determined with consideration paid to overall system requirements, and not just
to CPU processing performance.

Connection of dedicated input terminals

The H8/3048F has dedicated input terminals. If the input terminals of an IC with a CMOS
structure are left open (unconnected), internal transistors tend to be in a state of direct connection
to the power supply and ground, and so such practices are forbidden. Among the dedicated input
terminals of the H8/3048F, care is especially necessary with respect to STBY and NMI. These two
terminals must not remain unconnected.

When the STBY terminal is in the low-active state, the hardware is put into standby mode. In
hardware standby mode, internal RAM is backed up by a small battery. If this signal goes active,
the CPU, peripheral functions, and the clock oscillation circuit are stopped.

NMI is used for unmasked interrupt requests, discussed below; these are highest-priority
interrupts. If this signal goes active (in the initial state, on the falling edge), an interrupt processing
program is called. If no such program has been written, system operation cannot be guaranteed.

STBY and NMI are both pulled-up to VCC. By so doing, they can be used later when the need
arises. If they are connected to VCC or VSS without a resistor, they cannot be used later.

There are other dedicated input terminals as well. Normally these input terminals are always
connected to high or to low input.

98

CPU operating modes

The three terminals MD0 to MD2 determine the operating mode of the CPU. On reset, the CPU
can be switched into the following modes according to the terminal states.

Table 3.1 CPU Operating Modes

Operating mode External memory Vector-fetch bus width Internal ROM

1 8 bits

2

External expansion (1 MB)

16 bits

3 8 bits

4

External expansion (16 MB)

16 bits

Invalid

5 External expansion (1 MB) 16 bits (internal ROM)

6 External expansion (16 MB) 16 bits (internal ROM)

7 Single-chip (1 MB) 16 bits (internal ROM)

Valid

During operation, the states of the terminals must not be changed. In order to change the operating
mode, another reset must be performed.

In order to operate the system in various modes, switches and jumpers can be used to change MD0
to MD2. MD2 in particular is used to supply the program voltage (VPP = 12 V) when writing to
internal flash memory. In order to overwrite the internal flash memory while the microcomputer is
mounted on the printed circuit board, this terminal must not be fixed at VCC or GND.

CPU internal state immediately after reset

On reset, the CPU returns to its initial state. At this time general-purpose registers are not affected,
and their states are not known. General-purpose registers are not initialized to 0. The contents of
CCR are also indeterminate, except for the interrupt mask bit (I), and are not known. Before use,
the registers must be initialized by the program.

99

GND

GND

XTAL

EXTAL

Vcc
Vcc
Vcc

Vss
Vss
Vss
Vss
Vss
Vss

MD2
MD1
MD0

Vcc

Vcc

Vcc

RES

GND

Capacitor for oscillator circuit
(approx. 10 to 20 pF)

Noise-suppressing
capacitor

Reset
IC

GND

Vss

NMI
STBY

0.1µF

Crystal oscillator connected externally
(Must be positioned as close as possible to
the oscillator circuit within the H8/3048F.)

Connect to determine mode
(Example shown is for mode 7 (single-chip))

All power terminals connected
(If left unconnected, system may not operate.)

Vcc

External driving
also possible

Output terminals Low-level output

0V
v = L

di
dt

If many output terminals simultaneously output low
level, the internal GND level rises as indicated by
the equation, possibly resulting in malfunction.
Vss terminals must all be connected, and wiring
made thick and short so as to reduce the power
supply impedance.

Unused dedicated input terminals must always be handled
so as not to go to a high-impedance state. If pulled up,
they can often be used later.

Fig. 3.3 Power Supply and Clock-Related Circuits (no onboard overwriting)

100

MD2
MD1
MD0

Vcc

RESO/Vpp

Vcc

Vcc

+12V

+12V

Fig. 3.4 Power Supply and Clock-Related Circuits (with onboard overwriting)

Oscillator Circuit

A microcomputer is a relative, so to speak, of a logic IC based on sequential circuits.

Of course, because they are sequential circuits, a clock signal is necessary. The clock signals used
in microcomputers are often provided by crystal or ceramic oscillators; here an oscillator circuit
employing a crystal oscillator is briefly discussed.

Features of an oscillator circuit using a crystal oscillator include high frequency precision and
minimal changes with temperature and aging. In order to cause oscillation, an oscillator circuit is
necessary. There are a variety of such circuits; one simple example uses a NOT circuit.

X'tal

D
>

Q
Q

Fig. 1. Oscillator Circuit

Many microcomputers have internal oscillator circuits, in order to reduce the system size.
However, an oscillator circuit which includes a crystal oscillator is an analog circuit. That is, it is
extremely susceptible to noise. If digital signals are present near an oscillator circuit, these signals
may disrupt the oscillator circuit. Wherever possible a circuit board layout should be adopted in
which an oscillator circuit is surrounded by a pattern at GND level, and kept far away from other
signals.

101

3.2 Interrupts

Whenever we're in the middle of something and someone calls out "hey," we turn around; when
the phone rings, we leave off what we're doing to answer it. Whether we have been studying or
working, we suspend what we were doing, and attend to these matters in the order in which they
occur.

The same is true of microcomputers; even while executing a program, they are provided with a
function which allows us to tap them on the shoulder, so to speak, to get their attention. This
function is called an "interrupt".

This so-called tapping on the shoulder is accomplished by an interrupt request. Of course, even
after someone has called "hey" and gotten our attention, after we have dealt with the matter, we
can go back to work. Although, sadly, humans often cannot immediately recall what it was they
were doing.... Microcomputers are also designed such that, if an interrupt request causes them to
leave off and execute a different program, they can always return to the original program and
resume execution.

3.2.1 Need for Interrupt Functions

Why should such functions be necessary? What problems would arise if there were no interrupts?

It's all about efficiency.

For example, consider a game which has a clock function. It's a game, and so up, down, left and
right buttons, say, are used to move pictures in memory which make up the screen. Here it is
sufficient for the program to monitor the buttons. Judgments as to whether buttons have been
pressed are made, and a program to draw a picture is run. After the picture has been moved,
buttons are again monitored. This operation is repeated.

If a time is displayed on the same screen, the display must be updated. However, updates are not
performed quickly, as in the game itself; at most they are performed once every second. But if
time is required to move the game screen, and the time exceeds this one second, what will happen?
If the display is overwritten, the time will suddenly advance by two seconds. Such a clock is
meaningless.

It is at such times that interrupt requests are used. When one second has elapsed, an interrupt is
requested. In interrupt processing, only the clock display is updated. The game program itself can
forget about the clock. Programs can thus be separated according to function, making debugging
easier.

It is best to use interrupts to handle events that are unrelated, and that do not occur frequently, but
that must be attended to promptly when they do occur.

102

Such execution of multiple tasks by a single system is called multitasking. In a multitasking
system, when a lot of time is required for individual tasks, timer functions can be used to set a
fixed amount of time, after which interrupt processing is used to switch to a different program
(task). By using this method, a system can be created in which several tasks appear to be executed
simultaneously, even though only a single CPU is used.

Let us now describe the underlying mechanism of interrupts.

3.2.2 Operation on Occurrence of an Interrupt

The concept is the same as that underlying reset operations, discussed above. It cannot be
predicted when there will be an interrupt request. When a request occurs, the hardware must set
the PC, and so a vector is used. However, interrupts differ from resets in that execution later
returns to the original program. How is this accomplished? The PC and CCR contents are
temporarily stored when an interrupt request occurs. The same stack area as for the subroutine is
allocated for storage of this data.

MOV ...

ADD ...

LDC #0,CCR ;Interrupt enabled

Interrupt
request

Exception processing
PC, CCR saved to stack
Interrupt disabled (I = 1) Program executed in

interrupt-disabled
state (I = 1)

Interrupt enabled
again (I = 0)

Vector determined by
interrupt factor

Recorded

Interrupt processing
program

RTE

Starting
address

PC
CCR

SP

SP
I=0

Fig. 3.5 Interrupt Operation (from receipt to return of execution)

When an interrupt is requested, after the instruction which was being executed is completed,

(1) PC and CCR are saved on the stack

(2) A new PC is read from the vector area

When interrupt processing is completed, an RTE instruction is executed. This instruction causes
the PC and CCR to be retrieved from the stack.

There is only one set of general-purpose registers; if these are used during interrupt processing,
they are used after their contents are saved, and after being used for interrupt processing, their
contents are restored.

103

Another issue must be remembered when handling interrupt requests. When we are tapped on the
shoulder, we may not be able to stop what we are doing at the time. Such is the case with a
microcomputer also. CCR has an I bit; when this bit is set to 1, no interrupts are accepted--they are
masked. Hence in order to accept interrupts, this I bit must be cleared to 0.

The instruction to accomplish this is

LDC #0,CCR

or

ANDC #H'7F,CCR

104

Table 3.2 Vector Table

Vector number
0
1
to
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
to
51
52
53
54
55
56
57
58
59
60

Reset
System reserved

NMI
TRAPA instruction

IRQ interrupt request

Reserved

Watchdog timer
Refresh controller
Reserved

ITU channel 0

Reserved
ITU channel 1

Reserved
ITU channel 2

Reserved
ITU channel 3

Reserved
ITU channel 4

Reserved
DMAC
(transfer ended)

Reserved

SCI channel 0

SCI channel 1

A/D

Exception factor

TRAPA #0
TRAPA #1
TRAPA #2
TRAPA #3
IRQ0
IRQ1
ITR2
IRQ3
IRQ4
IRQ5

WOVI (overflow)
CMI (compare match)

IMIA0 (compare match/input capture A0)
IMIB0 (compare match/input capture B0)
OVI0 (overflow 0)

IMIA1 (compare match/input capture A1)
IMIB1 (compare match/input capture B1)
OVI1 (overflow 1)

IMIA2 (compare match/input capture A2)
IMIB2 (compare match/input capture B2)
OVI2 (overflow 2)

IMIA3 (compare match/input capture A3)
IMIB3 (compare match/input capture B3)
OVI3 (overflow 3)

IMIA4 (compare match/input capture A4)
IMIB4 (compare match/input capture B4)
OVI4 (overflow 4)

DEND0A
DEND0B
DEND1A
DEND1B

ERI0 (receive error 0)
RXI0 (receive completion 0)
TXI0 (transmit completion 0)
TEI0 (transmit ended 0)
ERI1 (receive error 1)
RXI1 (receive completion 1)
TXI1 (transmit completion 1)
TEI1 (transmit ended 1)
ADI (conversion ended)

Vector address
H'000000

H'00001C
H'000020
H'000024
H'000028
H'00002C
H'000030
H'000034
H'000038
H'00003C
H'000040
H'000044

H'000050
H'000054

H'000060
H'000064
H'000068

H'000070
H'000074
H'000078

H'000080
H'000084
H'000088

H'000090
H'000094
H'000098

H'0000A0
H'0000A4
H'0000A8

H'0000B0
H'0000B4
H'0000B8
H'0000BC

H'0000D0
H'0000D4
H'0000D8
H'0000DC
H'0000E0
H'0000E4
H'0000E8
H'0000EC
H'0000F0

Priority

High

Low

105

3.2.3 Example of Interrupt Use

Let's try using an interrupt.

Prepare the circuit shown in Fig. 3.6. The switch is used to request an interrupt. The main program
counts up the number displayed by lamps, with time inserted between increments. When the
switch is used to request an interrupt, the count is returned to 0.

IRQ3/P83/CS1

Vcc

This terminal is used for multiple functions.
Only one function can be used at a time.
When used as the terminal IRQ3, CS1
cannot be used. In order to be used as
IRQ3, IER (interrupt enable register) must
be set accordingly.

Fig. 3.6 Interrupt Request Circuit

This terminal is used for multiple functions. Only one function can be used at a time. When used
as the terminal IRQ3, CS1 cannot be used. In order to be used as IRQ3, IER (interrupt enable
register) must be set accordingly.

The INC instruction is used to increment the count; but if this is executed continuously, operation
is too fast for the eye to follow, and so one million is inserted in ER1, and the DEC instruction is
used to decrement this by one each time. When ER1 reaches 0, the count is incremented by one
using the INC instruction.

106

Program

 ; IRQ3 sample
; interrupt : falling edge
; main : increment LEDs
;
 .CPU 300HA
 .INCLUDE "3048equ.h"
;---------- vector -------------------------
 .SECTION C,DATA,LOCATE=0
 .DATA.L MAIN
 .ORG H'3C
 .DATA.L IRQ3

;---------- main program -------------------
 .SECTION P,CODE,LOCATE=H'1000
MAIN:
 MOV.L #H'FFFF00,SP ; Set SP(ER7)
 BSR @IOINIT
 BSR @IRQ
 LDC #0,CCR ; Enable interrupt
LOOP:
 MOV.L #1000000,ER1 ; Set wait counter
WAIT:
 DEC.L #1,ER1 ; Decrement wait counter
 BNE WAIT ;
 MOV.B @PBDR,R0L ;
 INC R0L ; Increment LED counter
 MOV.B R0L,@PBDR ;
 BRA LOOP

;---------- IRQ setting -------------------
IRQ:
 BSET #3,@ISCR ; Enable falling edge
 BSET #3,@IER ; Enable IRQ3
 RTS
;---------- I/O initialize sub -------------
IOINIT:
 MOV.B #H'FF,R0L ;
 MOV.B R0L,@PBDDR ; PB7-PB0 output
 RTS

;---------- IRQ3 interrupt -----------------
IRQ3:
 PUSH.W R0 ;
 SUB.B R0L,R0L ;
 MOV.B R0L,@PBDR ; LED clear
 POP.W R0 ;
 RTE

 .END

3048equ.h is a file which defines the addresses of
internal peripheral functions. Source programs no longer
need to include definitions, which are contained in a single file,
and read using the INCLUDE "3048equ.h" directive.

Either edge or low-level triggering can be selected for the interrupt request terminal. Use
whichever is more convenient. If a switch is used to request an interrupt, edge triggering is better.
If level triggering is used, an interrupt is requested during the entire time that the switch is
depressed, making it appear that numerous interrupts have been requested even though the switch
is pressed only once.

107

IER

IRQ3E

ISCR

IRQ3SC

I

CCR

Edge/level
detection

Interrupt controller CPU

Interrupt request
received

0
1

Terminal is other than
Terminal is

0
1

Level request
Falling edge request

IRQ3/P83/CS1

Fig. 3.7 Receiving an Interrupt Request

Interrupt requests can be generated by internal peripheral functions, discussed below, as well as
from terminals.

Vectors have been shown in the table for reset and for interrupt factors (table 3.2). The vector
address for an IRQ3 interrupt request is H'3C.

Another interrupt request type is an "unmaskable interrupt request". "Maskable interrupt requests"
can be ignored (receipt can be deferred) by setting the CCR I bit. On the other hand, "unmaskable
interrupt requests" are, in the H8, called NMI interrupt requests, and are received even if the CCR
I bit is set to 1.

108

IRQn terminal

IRQn terminal

ISR.IRQnF bit

CPU operation Normal program NormalException processing

19-41 clocks
(in a single-chip case)

Interrupt processing program RTE

Automatically cleared

Request awaited until exception
processing begins

Normally request
stopped by program

Note: n = 0 to 5

Edge

Level

Fig. 3.8 Edge Requests and Level Requests

The interrupt request terminal is the NMI terminal.

NMI may be connected to an emergency stop button and used as a function for safely halting the
system, or may be used for suspend and resume functions, in which when a power button is
pressed a low-power state is initiated and the microcomputer is put into an inactive state while
preserving memory contents; when the button is again pressed, the immediately preceding state is
restored.

SYSCR

NMIEG

I

CCR

Edge
detection

Interrupt controller CPU

Interrupt request
always accepted

0
1

Falling edge
Rising edge

NMI

Fig. 3.9 NMI Terminal Settings and Receipt of Interrupt Requests

109

About the OS (Operating System)

The above sections have explained how interrupts can be used to switch between programs (tasks).
Such a program able to manage program execution is itself an OS (operating system). Of course
the H8 microcomputer cannot be used for program startup with the mouse or for moving windows
about in an attractive manner, as in the Windows operating system; but the microcomputer
nonetheless itself functions as an OS. The H8 also has an OS, called ITRON (Industrial The Real
time Operating system Nucleus). The hardware is not fixed, as in the case of a personal computer,
and so the OS is designed to start, terminate, and switch between tasks, and to perform
communications between tasks. The user can add external communication functions and display
functions as necessary. This OS can rapidly switch between tasks, and so is referred to as a
realtime OS.

Although an OS, ITRON is not widely known like the Windows OS. However, you may know of
it in its guise as the OS used in iMODE cellular phone terminals.

* ITRON is an abbreviation for Industrial TRON.

* TRON is an acronym of The Real Time Operating System Nucleus, developed under the
guidance of Dr. Ken Sakamura of The University of Tokyo.

* Windows is a registered trademark of Microsoft Corp.

* iMODE is a registered trademark of NTT Docomo.

110

111

Chapter 4 Internal Peripheral Functions
The functions and how to use them (circuits and programs)

In this chapter, we will try installing various inputs and outputs on the microcomputer.

At the end of Chapter 2, in the section introducing programs, we talked briefly about sending
simple input and output through an I/O port. If there is an I/O port, it can be used to make LED
lamps flash, or to confirm switch status. If we substitute a circuit that handles large volumes of
current, such as a relay, a power transistor, or a TRIAC for the LED lamp, we can run a device
such as the actuator of a motor or an electromagnetic bulb. If the LED lamp is changed to an
ultraviolet ray, it is less vulnerable to influence from light bulbs and solar light, so we can then use
it in combination with a light-receiving element to detect objects, or as the remote control
transmitter for a TV or other device. The switch can be changed to a light-receiving element and
touch sensor to handle sensor information. So as you see here, various types of input and output
can be handled simply by having an I/O port. There are a number of functions (peripheral
functions), however, that play a useful role in the system configuration in terms of input and
output, and we will look at these functions here.

Peripheral devices require various signal protocols and voltage levels, each suited to that particular
device. Microcomputers, on the other hand, do not support such various signals and voltage levels.
In order for a microcomputer to run peripheral devices or to obtain the device status, the signals
have to be converted. This signal conversion is one of the peripheral functions that we just
mentioned.

CPU

Sensor Signal
conversion

Peripheral function

Handled the same
way as the memory;
enables access to
sensors

Figure 4-1. Peripheral Function (Signal Conversion)

112

4.1 A/D Converters

Many of the phenomena that take place around us, such as changes in temperature, humidity, and
acceleration, are carried out using analog, not digital, processing. In many cases, sensors also use
analog processing. In order for a microcomputer to handle these analog signals, the signals must
be converted to digital signals. This function is called A/D conversion. Using A/D conversion
allows us to work with temperatures, voices, and other types of data.

4.1.1 Overview of the A/D Converter

The performance specifications for the A/D converter in the H8/3048F are as follows.

Conversion method Successive comparison

Resolution 10 bits

Input voltage 0 to 5 V (up to VREF voltage)

Conversion time 134 clocks (when running at 119.4 kHz @ 16 MHz per channel)

Input terminals 8

Start Program or ADTRG terminal

Automatic conversion channel Continuous on 1 up to 4 (max.), or 1 individual channel

Interrupt request When conversion is completed on specified channel

Conversion precision ±4 LSB (absolute conversion precision)

113

Module data bus Internal data bus

A
D

D
R

A

A
D

D
R

B

A
D

D
R

C

A
D

D
R

D

A
D

C
S

R

A
D

C
R

10-bit D/A

AV

V

AV

CC

REF

SS

AN

AN

AN

AN

AN

AN

AN

AN

0

1

2

3

4

5

6

7

Sample &
hold circuit

Comparator

+

–

Control circuit

ADTRG

ø/8

ø/16

ADI
interrupt signal

(Explanation of symbols)
ADCR
ADCSR
ADDRA
ADDRB
ADDRC
ADDRD

:A/D control register
:A/D control/status register
:A/D data register A
:A/D data register B
:A/D data register C
:A/D data register D

A
nalog m

ultiplexer

B
us interface

S
uccessive com

parison register

Analog power supply

Reference voltage

Input
terminals

Control and
status registers

Conversion
results
registers

External trigger terminal

Figure 4-2 A/D Block Diagram

A/D converters use a variety of conversion methods, among them parallel, serial-parallel,
successive, ∆Σ, and integrating types. The H8/3048F uses the successive comparison type, which
is relatively fast and involves a small circuit scale. Unlike the parallel and serial-parallel methods,
it cannot handle signals up to video bandwidths, and it does not boost precision, as the ∆Σ and
integrating methods do. However, it still offers good performance. Because it is not a stand-alone
A/D converter IC, though, the absolute precision is around ±4 LSB, so caution is required when
using it. The upper eight bits are accurate, but there is potential for error in the lower two bits.

A/D conversion uses voltage from 0 to VREF. The maximum VREF value is the same as that of AVCC,
which in turn is the same as VCC, which is up to 5 V. If 0 V is input, the digital value following
conversion will be H’000, and if 5 V is input, the value will be the maximum value of H’3 FF

114

(H’FFC0 because it is stored from the MSB). Because the resolution is ten bits, the digital value
changes by 1 if the analog voltage is changed by approximately 5 mV.

Only one converter is used. Conversion can be carried out continuously by changing the input
terminal, but the time required for conversion will be the conversion time for one channel
multiplied by the number of channels. The results for the four channels can be saved in
succession, without going through a program. The results for the individual terminals will be
stored in ADDRA to ADDRD. The relationship between the input terminals and the results
registers is fixed.

AN0 or AN4 à ADDRA

115

CH2 CH1 CH0 Single mode Scan mode

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7

AN0
AN0 to AN1
AN0 to AN2
AN0 to AN3

AN4
AN4 to AN5
AN4 to AN6
AN4 to AN7

DescriptionChannel selection

Channel Selection

0

1

Conversion time = 266 clocks (max)

Conversion time = 134 clocks (max)

Clock selection

0

1

Single mode

Scan mode

Scan Mode

0

1

A/D conversion stops
A/D conversion starts
1: Single mode
 Automatically cleared to "0" after conversion
 has been completed.
2: Scan mode
 Carries out conversion on the selected channel
 as required until ADST is cleared to "0" by the CPU.

A/D Start

0

1

Interrupt requests at completion of A/D conversion inhibited

A/D Interrupt Enable

Interrupt requests at completion of A/D conversion enabled

 0 Conversion in progress or stopped
 1 Conversion completed
 Single mode: 1 specified channel
 Scan mode: All specified channels
 0 Flag cleared (after reading)
 1 Invalid

Read

Write

A/D End Flag

The CPU can only clear the flag to "0". It cannot set the flag to "1".

0

Bit:

Address:H'FFFFE8
Initial value:

R/W:

7 6 5 4 3 2 1 0

R/(W)

0 00 0 0 0 0

SCAN CKS CH2ADSTADIEADF CH1 CH0 ADCSR

R/W R/W R/W R/W R/W R/W R/W*

(The clock is the CPU operation clock.)

7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1

Trigger Enable

Inhibits the initiation of A/D conversion in response to external trigger input.

Initiates A/D conversion at fall of external trigger terminal () signal.1

0

R/W

TRGE ADCR

(ADCSR.ADST bit may remain 0.)

Bit:

Address:H'FFFFE9

Initial value:

R/W:

Figure 4-3 A/D Registers

116

AN1 or AN5 à ADDRB

AN2 or AN6 à ADDRC

AN3 or AN7 à ADDRD

4.1.2 Example of How the A/D Converter is Used

Here, we will look at an application in which conversion is started in response to a request from
the ADTRG terminal, and the conversion results are output to a lamp.

If a falling edge (a shift from high level to low level) is applied to the ADTRG terminal, a
conversion will start.

<Program> (\sec 4\ program \smp_ad 1.src)

; A-D sample
; start : ADTRG terminal
; mode : single , 266 state , AN0

.CPU 300HA

.INCLUDE "3048equ.h"
ADF: .EQU 7
TRGE: .BEQU 7,ADCR
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN
;---------- main program -------------------

.SECTION P,CODE,LOCATE=1000
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @IOINIT
JSR @ADINIT

WAIT_ADF:
BTST #ADF,@ADCSR ; If ADF=0 wait
BEQ WAIT_ADF ; else next
MOV.B @ADDRA,R0L ; VR -> LED
MOV.B R0L,@PBDR ;
BCLR #ADF,@ADCSR ; clear ADF
BRA WAIT_ADF

;---------- I/O initialize sub -------------
IOINIT:

MOV.B #H'FF,R0L ;
MOV.B R0L,@PBDDR ; PB7-PB0 output
RTS

;---------- A-D initialize sub -------------
ADINIT:

SUB.B R0L,R0L ;
MOV.B R0L,@ADCSR ; AN0,266state,Single,

; No-interrupt
BSET TRGE:8 ; use ADTRG
RTS
.END

If operation involves only one bit, the peripheral function should use a bit name
that indicates the meaning of the bit, if possible. This makes debugging easier.
We will use .EQU and register only the name as our method in this example.
ADF: .EQU 7
 BTST $ADF, @ADCSR ; If ADF=0 wait
The .BEQU directive can be used to define the bit name and the register name
at the same time.
TRGE: .BEQU 7, ADCR
 BSET TRGE ; use ADTRG
In some cases, this method is easier to understand.

This program outputs the uppermost eight bits of the conversion results to the LED of Port B.

The table shows the operation modes, the start of conversion, and the operation following
conversion.

117

Mode Conversion Start Stop

Single mode Only 1 specified channel ADST = 1 or falling edge of
ADTRG

Stops automatically
after conversion

Scan mode Repeated conversion for
up to 4 specified
channels

ADST = 1 or falling edge of
ADTRG

When ADST = 0 is
written by the program

The terminal to which the analog signal undergoing A/D conversion is input is shared with port 7.
The functions of port 7 cannot be used while analog data is being input. If a data register is read,
the analog voltage being input at that time will be read as a digital value.

When the ADTRG terminal is used, the functions of the port B7 / TP15 / DREQ1, which is shared
with this terminal, cannot be used. Input to the port, TPC and DMA should be stopped (initial
status), or the terminal should not be used.

A/D conversion ends when 134 clocks or 266 clocks have elapsed. When the ADF bit is set to 1, it
indicates that the conversion has been completed. Please be aware that the ADF bit is not cleared
automatically to 0; it must be cleared in the program.

118

Single mode (Program Start, CH = 0)

Scan mode (Program Start, CH = 1)

ADCSR.ADST bit

ADDRA

ADCSR.ADF bit

ADTRG terminal

Conversion starts Conversion ends or is stopped

Conversion results (AN0)

Conversion results (AN0)

Conversion results (AN1)

134 or 266 clocks

ADCSR.ADST bit

ADDRA

ADDRB

ADCSR.ADF bit

Conversion starts Conversion ends or is stopped

134 or 266 clocks 134 or 266 clocks

The ADCSR.ADST bit is automatically set by the external trigger.

Figure 4-4 Conversion Modes

4.1.3 A/D Conversion Completed Interrupt

An interrupt request (ADI) can be generated when conversion has been completed (ADF = 1) by
setting the ADIE bit.

Let’s look at a program in which the conversion completed interrupt (ADI) is used.

119

<Program> (cmp_ad 2. src)

; A-D interrupt sample
; start : ADTRG
; interrupt : ADI enable
; process : ADDRA -> PortB(7 segment LED)

.CPU 300HA

.INCLUDE "3048equ.h"
ADF: .BEQ 7,ADCSR
TRGE: .BEQ 7,ADCR
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN

.ORG H'F0

.DATA.L ADI
;---------- main program -------------------

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @IOINIT
JSR @ADINIT
LDC #0,CCR ; Enable interrupt

LOOP:
SLEEP
BRA LOOP

;---------- A-D initialize sub -------------
ADINIT:

MOV.B #H'40,R0L ; AN0,Single,ADI Enable
MOV.B R0L,@ADCSR ;
BSET TRGE ; Enable ADTRG terminal
RTS

;---------- I/O initialize sub -------------
IOINIT:

MOV.B #H'08,R0L ;
MOV.B R0L,@PADDR ; PA3 output
MOV.B #H'7F,R0L ;
MOV.B R0L,@PBDDR ; PB6-PB0 output
BSET #3,@PADR ; PA3 is High level
RTS

;---------- ADI interrupt ------------------
ADI:

PUSH.L ER0
BCLR ADF ; Clear ADF,stop interrupt request
MOV.W @ADDRA,E0
ORC #1,CCR ; Set C bit
ROTXR.W E0 ; 6bit data shift right
SHAR.W E0
SHAR.W E0
SHAR.W E0
SHAR.W E0
SHAR.W E0
NOT.W E0 ; Invert data
MOV.W #200,R0 ; / 200
DIVXU.B R0L,E0
MOV.W E0,R0
EXTU.W R0 ; Change offset address
EXTU.L ER0
ADD.L #PTN,ER0 ; Change LED pattern address
MOV.B @ER0,R0L ; Get LED pattern
MOV.B R0L,@PBDR ; Set 7 segment LED
POP.L ER0
RTE

PTN: ;5 4 3 2 1 0
.DATA.B H'6D,H'66,H'4F,H'5B,H'06,H'3F
.END

The ADIE bit and ADF bit produce the ADI interrupt request. One or the other
of these bits must be cleared to 0 in the interrupt processing program in order
to return from the program. Usually, the ADF bit is cleared. This enables an
interrupt to be requested again after the next conversion has been completed.

The data registered by PTN in the program is the display pattern for
the 7-segment LED. H'6D displays 0, and the subsequent values
correspond to the 1, 2, 3, 4, and 5 patterns.

120

ADCSR CCRADF ADIE I

(Enabled)
"1"

(Interrupt mask)
Canceled
"1" "0"

(Request flag)
At end of conversion

"0" "1"

A/D converter CPU

Interrupt
request received

ADI
vector

H'0000F0ADF bits
"0" a "1": Conversion completed (A/D converter is automatically set)
"1" a "0": CPU processing ("0" written after reading)

Figure 4-5 Interrupt Request and Reception

How A/D conversion is carried out

A/D conversion can be carried out in a number of ways. We will look here at how conversion is
done using the successive comparison A/D converter in the H8/3048F.

The following operations are carried out based on the clock.

(1) Input data is held by the hold circuit to prevent it from being out of synch with the clock
during conversion.

(2) The output from the D/A converter is adjusted so it is the same as the held data.

(3) The output from the D/A converter serves as the result of the A/D conversion.

For instance, if a voltage of 3.0 V is being input to AN0, first let’s output half (2.5 V) of the
voltage (0 to AVCC, except that AVCC = VCC = 5 V) applied to the reference voltage VREF from the
D/A converter. At this point, the D/A converter is using H’8000 as the data. The results compared
with a comparator capable of comparing voltages are fed back to the D/A converter. Because the
result is higher than 2.5 V with this input voltage, H’8000 is left as it is.

You can see from the above that the Bit 1 of the MSB will be 1.

What will happen with the next bit? Because we have an input voltage in the range of 2.5 V to 5.0
V, it will next be compared to H’C000. The output voltage from the D/A converter is 3.75 V (2.5
+ 1.25). This time the input resulting from the comparison made by the comparator is smaller, so
this bit will be 0.

121

With an A/D converter that uses successive comparison, the bits are compared one at a time in this
way, and the results are confirmed for each individual bit.

With the H8/3048F, it takes about 30 clocks for the sample and hold operation. Successive
comparison is carried out for another 100 clocks or so, so the conversion is completed in a total of
134 clocks. The conversion speed and precision are about an intermediate level with this method.

If higher-speed conversion is required, for instance as with video signals, parallel conversion is
used, with the number of comparators matched to the number of bits (1,024 for 10 bits). If higher
conversion precision is required, the ∆Σ type is used.

AVcc=Vcc
 =VREF=5V

AVss=Vss=0V

AN0 terminal=3V

1st time 2nd time 3rd time

Compared
with 3.75 V

Compared
with 2.5 V

Compared
with 3.125 V

Successive comparison register 1 0 0 . .

ADDRA

Sent to ADDRA at end of conversion

1 0 0 . . 0 0 0 0 0 0

High

Low

Low

Lower 6 bits are always 0

Figure 1 Conversion process

Precautions concerning the above information

• The voltage input to the ANn terminal should not exceed AVCC.

Particular attention is required if an amplifier has been installed externally.

Normally, a clamp circuit is connected.

• If the ADF bit is not read, it cannot be cleared to 0.

• If the ADTRG terminal is being used, the ADST bit does not need to be used for starting.

• The absolute precision is ±4 LSB.

The lower two bits represent the error margin.

122

The characteristics are largely linear, so compensation is possible.

• The input impedance is 10 kΩ.

• There is no ANn terminal switching function.

Reading is possible using this terminal as a dedicated constant-input port.

ADDRA 0 0 0 0 0 0

Full-scale error

Quantizing error

Offset error

The
ore

tica
l ch

ara
cte

ris
tic

Ac
tua

l c
ha

rac
ter

ist
ic

Non-linearity
error

Digital

Expanding Analog

Analog voltage

ADDRn

H'3FF
(This is H'FFC0 if ADDRn is used)

0

[Note] n is A to D

VREF

MSB LSB

The total error (absolute precision) is ± 4 LSB.

Figure 4-6 Conversion precision

4.2 D/A Converter

The D/A converter is the reverse of the A/D converter. This is used to return data processed
digitally in the microcomputer to analog signals.

4.2.1 An Overview of the D/A Converter

The performance specifications for the D/A converter in the H8/3048F are as follows.

Resolution 8 bits

Output voltage 0 to 5 V (up to VREF voltage)

Conversion time 10 µs (100 kHz)

Output terminals 2

Port 7 is used in common with the output terminal of D/A conversion and the A/D conversion
terminal. When these terminals are being used by the D/A converter, they cannot be used for any
other functions.

123

AVCC

DA0

DA1

D
A

D
R

0

D
A

D
R

1

VREF

Module data bus

B
us

 in
te

rf
ac

e Internal
data bus

Control circuit

8-bit D/A

AVSS

Terminals

Data
registers

Control
register

Power supply is
same as A/D converter

(Explanation of symbols)

DACR
DADR0
DADR1

: A/D control register
: D/A data register 0
: D/A data register 1

Port 7 is used in common with
the output terminal of D/A conversion
and the A/D conversion terminal

D
A

C
R

Figure 4-7 D/A block diagram

D/A data registers

D/A output

7 6 5 4 3 2 1 0

RRRRRRRR

R
R/2R/2R/2R/2R/2R/2R/2

Figure 4-8 Resistance Ladder Circuit

124

4.2.2 Example of How the D/A Converter is Used

Let’s look at a program in which the results which underwent A/D conversion are now undergoing
D/A conversion and being output.

<Program> (smp_da. src)

; D-A sample
; A-D -> D-A

.CPU 300HA

.INCLUDE "3048EQU.H"
ADF: .BEQU 7,ADCSR
TRGE: .BEQU 7,ADCR
;---------- vector -------------------------

.SECTION C,DATA

.DATA.L MAIN

.ORG H'F0

.DATA.L ADI
;------------ main program ----------------

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ;Set SP
JSR @ADDAINIT ;Initialize A-D(single mode),D-A
LDC #0,CCR ;

LOOP:
BRA LOOP

;---------- A-D initialize sub -------------
ADDAINIT:

MOV.B #H'40,R0L ;single,AN0
MOV.B R0L,@ADCSR ;
BSET TRGE ;
MOV.B #H'40,R0L ;enable DA0
MOV.B R0L,@DACR ;
RTS

;---------- A-D end interrupt --------------
ADI:

PUSH.W R0 ;
BCLR ADF ;stop ADI request
MOV.B @ADDRA,R0L ;ADDRA -> DADR0
MOV.B R0L,@DADR0 ;
POP.W R0 ;
RTE

.END

125

DAOE0DAOE1 DAE — — — — — DACR

7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1

R/W R/W R/W — — — — —

DAOE1
0

1

0
1
—

DAOE0
0
1
0
1
0
—
1

D/A conversion inhibited on channels 0 and 1
D/A conversion enabled on channels 0 and 1
D/A conversion enabled on channel 1 only
D/A conversion enabled on channels 0 and 1
D/A conversion inhibited on channels 0 and 1
D/A conversion enabled on channels 0 and 1

D/A Enable

Note: If DAE=1, the current consumption for the analog current will
be the amount consumed during operation.

DAE
0

1

Bit:

Address:H'FFFFDE

Initial value:

R/W

— — — DASTE DASTCR— — — —

7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0

— — — R/W— — — —

Reserve bit

D/A Standby Enable

This bit enables or inhibits

D/A output in the software

standby mode.

Bit:

Address:H'FFFF5C

Initial value:

R/W:

Figure 4-9 D/A Registers

There are no interrupt requests, as there are with the A/D converter. This function only takes the
values written to the data registers, just as they are, and outputs them as analog voltage.

Precautions regarding usage

• Output is assured at a load resistance of 2 to 4 MΩ.

A buffer is always required.

126

-

+DAn

Voltage follower

Figure 4-10 Buffer circuit

4.3 16-Bit Timer (ITU)

The timer function is used when the user wants to be notified following the number of clocks
specified by the timer. It is not a clock function that counts hours, minutes, and seconds. If a
program is created, a clock function and chronograph function can be provided. In most cases, the
clock functions provided in VTRs and TVs use are realized by using the timer function we will be
discussing here in the program.

4.3.1 Overview of the ITU

The 16-bit counters are main units of the timer. There are five of these counters, all of which
function independently, and which increment in synch with the system clock run by the CPU.
When the counter reaches H’FFFF, it returns to 0 and starts incrementing again. There are two
general registers linked to each counter, for a total of ten general registers. The general registers
are compared to the counters, and if they match, an interrupt request is generated, making it
possible to change the status of the terminal. The counters are used for the following purposes:

Interval timer When a given time period has elapsed, notification is made in the
form of an interrupt request.

One-shot pulse output When a given time period has elapsed, the terminal changes only
once.

Toggle output When a given time period has elapsed, the output terminal is
reversed.

The above function sets the time in the general registers.

PWM (pulse width modulation) output The timing and width of output pulses are controlled
and used for D/A conversion.

127

One general register contains the time setting for the interval, and the other contains the time
setting for the pulse width.

The general registers are also used to store the numeric values for the timer counters.

Input capture This measures the intervals and pulse widths of pulses generated externally.

The general registers are used to store the values of the timer counters when the external signal has
changed.

128

H'FFFF

H'0000

H'0000

H'0000

H'0000

a Time

Interrupt requests
generated

Capture requests generated

ø(CPU clock)

Basic operation of the 16-bit timer counter

Various operation modes of the 16-bit timer (ITU)

(a) Interval timer

H'FFFF

(e) Input capture

H'FFFF

Set time
 (GRA/B)

Timer output terminal

(b) One-shot pulse output

Set time (GRA/B)

Timer output terminal

Timer input channel

(c) Toggle output

H'FFFF

H'0000

H'0000

H'FFFF

H'FFFF

Set time
 (GRA/B)

Timer counter value

automatically stored

in memory

(GRA/B)
Stored (1)

Stored (2)

Pulse width = Stored (2) - Stored (1)
The pulse width is calculated by the number of counts.
The result is unsigned data.

Timer output terminal

(d) PWM output

Interval (GRB)

Pulse width (GRA)

Timer counter (TCNT) value

N-1

N

N+1

TCNT: Timer counter
GRA: General register A
GRB: General register B

Figure 4-11 Timer Operation

129

Pulses can be calculated by comparing the value with the previous value.

Also, if an external clock is specified as the timer counter clock, the timer counter can be used for
the following purposes:

External event count The number of events occurring externally (changes in signals)
can be counted.

Phase coefficient The count is incremented or decremented based on the phase
differential between the two clocks.

The counter value is the measurement result.

Clock A

Clock B

Clock input terminal

(a) External event count (b) Phase coefficient

Figure 4-12 Timer Operation

Timer functions (1 channel)

Clock φ, φ/2, φ/4, φ/8, external (TCLKA, TCLKB, TCLKC, TCLKD)

General registers 2

Buffer registers 2 (channels 3 and 4 only)

Interrupt requests Compare match, input capture, overflow

DMA transmission request Possible

Pulse outputs 2 (one-shot, toggle, PWM)

Total of six complementary PWMs and reset PWMs on channels 3
and 4

Output stop function Yes

Pulse inputs 2 (rising edge, falling edge, both edges)

130

4.3.2 Example Using the Interval Timer

Here, we look at a program in which the interval timer function is used to make a lamp flash.

If the lamp were simply to flash at a given time interval, there would be no need to use interrupts,
so let’s make it flash at two different intervals. If the lamp only flashed once, we could configure
the program without using the interval timer. All we would have to do is wait a certain period of
time and then invert the lamp status. That is why we have to use interrupts in order to make the
two lamps flash at two different times.

131

<Program: Clearing method on channels 0 and 1> (smp_itu 1. src)

; ITU interval timer sample
; 2 chanel
; CPU clock = 16MHz
; ITU0 : 20ms
; ITU1 : 30ms

.CPU 300HA

.INCLUDE "3048EQU.H"

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN

.ORG H'60

.DATA.L IMIA0

.ORG H'70

.DATA.L IMIA1

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ; Set stack
JSR @IOINIT
JSR @ITUINIT
LDC #0,CCR ;Clear interrupt mask bit

LOOP:
SLEEP
BRA LOOP

;---------- I/O initialize sub -------------
IOINIT:

MOV.B #H'FF,R0L ;
MOV.B R0L,@PBDDR ; PB7-PB0 output
RTS

;---------- I/O initialize sub -------------
ITUINIT:

MOV.B #H'23,R0L
MOV.B R0L,@TCR0 ; Clear GRA comparematch,1/8 clock
MOV.B R0L,@TCR1 ; Clear GRA comparematch,1/8 clock
SUB.B R0L,R0L
MOV.B R0L,@TIOR0 ; No use output pin
MOV.B R0L,@TIOR1 ; No use output pin
MOV.B #H'01,R0L
MOV.B R0L,@TIER0 ; Enable IMIA interrupt
MOV.B R0L,@TIER1 ; Enable IMIA interrupt
MOV.W #39999,R0 ; 62.5 * 8 = 0.5us
MOV.W R0,@GRA0 ; 40000 * 0.5us = 20ms cycle
MOV.W #59999,R0 ; 62.5 * 8 = 0.5us
MOV.W R0,@GRA1 ; 60000 * 0.5us = 30ms cycle
MOV.B #H'03,R0L ;
MOV.B R0L,@TSTR ; Start ITU ch0,ch1
RTS

;---------- IMIA0 interrupt -------------
IMIA0:

BCLR #0,@TSR0 ; Clear IMFA flag
BNOT #0,@PBDR ; reverse LED
RTE

;---------- IMIA1 interrupt -------------
IMIA1:

BCLR #0,@TSR1 ; Clear IMFA flag
BNOT #1,@PBDR ; reverse LED
RTE
.END

The IMFA bit of the TSR is cleared to 0 in the interrupt processing
 program. This is because the IMFA bit of the TSR is used for
the interrupt request. Interrupt requests from the timer are enabled
by setting the IMIEA bit of the TIER to 1. If the IMFA bit is set to 1
as the result of a compare match in the enabled state, an interrupt
request is generated. The interrupt request is generated using these
two bits in combination. The interrupt request cannot be disabled
unless one of the two bits is cleared to 0. Normally, the IMFA bit is
cleared. This generates an interrupt request at the next compare
match.

If method (1) is used, either GRA or GRB may be used.
The count is set to 40,000. Because 0 is also counted as
one count, the count should be set to 39,999.

132

Module data bus

B
us

 in
te

rf
ac

e

In
te

rn
al

 d
at

a
bu

s

IMIA0 to IMIA4
IMIB0 to IMIB4
OVI0 to OVI4

TCLKA to TCLKD

ø. ø/2. ø/4. ø/8

TOCXA4. TOCXB4

Clock selection

Control logic

TIOCA0 to TIOCA4
TIOCB0 to TIOCB4

TOER

TOCR

TSTR

TSNC

TMDR

TFCR

TOER
TOCR
TSTR
TSNC
TMDR
TFCR

(Explanation of symbols)
: Timer output master enable register
: Timer output control register
: Timer start register
: Timer synchro register
: Timer mode register
: Timer function control register
16-bit tim

er channel 4

16-bit tim
er channel 3

16-bit tim
er channel 2

16-bit tim
er channel 1

16-bit tim
er channel 0

Clock input
terminals

Timer input
terminals

Interrupt
requests

Shared
control registers

Each channel has TCNT,
GRA/B, and various control
registers

Figure 4-13 ITU Block

133

7

—

1

—

6

—

1

—

5

—

1

—

4

STR4

0

R/W

3

STR3

0

R/W

0

STR0

0

R/W

TSTR

2

STR2

0

R/W

1

STR1

0

R/W

Counter Start n

0 TCNTn operation is stopped

1 TCNTn counting starts

n is the channel number (0 to 4).

Bit:

Address:H'FFFF60

Initial value:

R/W:

7

—

1

—

6

MDF

0

R/W

5

FDIR

0

R/W

4

PWM4

0

R/W

3

PWM3

0

R/W

0

PWM0

0

R/W

TMDR

2

PWM2

0

R/W

1

PWM1

0

R/W

PWM Mode

0 Channel n is in normal operation

1 Channel n is in PWM mode

Flag Direction

0 OVF is set to "1" if there is an overflow or underflow for TCNT2

1 OVF is set to "1" if there is an overflow for TCNT2

Phase Count Mode

0 Channel 2 is in normal operation

1 Channel 2 is in phase coefficient mode

n is 0 to 4

Bit:

Address:H'FFFF62

Initial value:

R/W:

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only)

134

7

—

1

—

6

—

1

—

5

CMD1

0

R/W

4

CMD0

0

R/W

3

BFB4

0

R/W

0

BFA3

0

R/W

TFCR

2

BFA4

0

R/W

1

BFB3

0

R/W

Buffer operation

0 GRA/B is operating normally

1 Buffer operation is taking place for GRA/B and BRA/B

Combination modes 0 and 1

Channels 3 and 4 are in normal operation

Channels 3 and 4 are operating in complementary PWM mode, in combination

Channels 3 and 4 are operating in reset interval PWM mode, in combination

Bit 5

0

1

Bit 4

0

1

0

1

Channel 3 and 4 operation modesCMD1 CMD0

Relationship between GRA/B and BRA/B
Bit name General register Buffer
BFA3 GRA3 BRA3
BFB3 GRB3 BRB3
BFA4 GRA4 BRA4
BFB4 GRB4 BRB4

Bit:

Address:H'FFFF63

Initial value:

R/W:

7

—

1

—

6

CCLR1

0

R/W

5

CCLR0

0

R/W

4

CKEG1

0

R/W

3

CKEG0

0

R/W

0

TPSC0

0

R/W

TCRn

(n=0 to 4)

2

TPSC2

0

R/W

1

TPSC1

0

R/W

Timer pre-scaler 2 to 0

Clock edges 1 and 0

Counter Clear 1 and 0

Inhibits clearing of TCNT

Clears TCNT at GRB compare match or input capture

Synchronous clear. TCNT is cleared in synch with the clearing
of other timer counters during synchronized operation.

0

1

0

0

1

Resources for clearing TCNTCCLR1 CCLR0

Clears TCNT at GRA compare match or input capture1

Counts at rising edge

Counts at both edges

0

1

0

—

External clock detection edgeCKEG1 CKEG0

Counts at falling edge1

TPSC2

1

TCNT count clock

ø

ø/2

ø/4

ø/8

Counts on TCLKA terminal input

Counts on TCLKB terminal input

Counts on TCLKC terminal input

TPSC1

0

1

0

1

TPSC0

0

1

0

1

0

1

0

Counts on TCLKD terminal input1

0

ø indicates the CPU clock.

Bit:

Address:H'FFFF64

Initial value:

R/W:

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only) (cont)

135

7

—

1

—

6

IOB2

0

R/W

5

IOB1

0

R/W

4

IOB0

0

R/W

3

—

1

—

0

IOA0

0

R/W

TIORn

(n=0 to 4)

2

IOA2

0

R/W

1

IOA1

0

R/W

I/O control

IOB2

1

Selection of GRA function

Selection of GRA function

Selection of GRB function

Selection of GRB function

GRA/B is output
compare register.

GRA/B is input
capture register.

IOB1

0

1

0

1

IOB0

IOA2 IOA1 IOA0

0

1

0

1

0

1

0

1

0 Terminal output based on compare match inhibited

"0" output at compare match of GRA/B

"1" output at compare match of GRA/B

Toggle output at compare match of GRA/B*

Input capture to GRA/B at rising edge

Input capture to GRA/B at falling edge

Input capture to GRA/B at both edges

Bit:

Address:H'FFFF65

Initial value:

R/W:

Note * 1 output for channel 2 only.

7

—

1

—

6

—

1

—

5

—

1

—

4

—

1

—

3

—

1

—

0

IMFA

0

R/(W)

TSRn

(n=0 to 4)

2

OVF

0

R/(W)

1

IMFB

0

R/(W)*

Input capture / Compare match A

Overflow Flag

* * *

Input capture / Compare match B

* "0" can also be written to clear the flag.

 0 Buffer overflow not generated
 1 Overflow (H'FFFF a H'0000) generated
 0 Flag cleared (after reading)
 1 Invalid

 Read

Write

 0 Input capture, compare match not generated by GRA
 1 Compare match generated by GRA (TCNT = GRA), or input capture generated
 (specified edge is input to TIOCA terminal, and TCNT a GRA)

 0 Flag cleared (after reading)
 1 Invalid

 Read

Write

 0 Input capture, compare match not generated by GRB
 1 Compare match generated by GRB (TCNT = GRB), or input capture generated
 (specified edge is input to TIOCB terminal, and TCNT a GRB)

 0 Flag cleared (after reading)
 1 Invalid

 Read

Write

Bit:

Address:H'FFFF67

Initial value:

R/W:

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only) (cont)

136

7

—

1

—

6

—

1

—

5

—

1

—

4

—

1

—

3

—

1

—

0

IMIEA

0

R/W

TIERn

(n=0 to 4)

2

OVIE

0

R/W

1

IMIEB

0

R/W

Input capture / Compare match interrupt enable A

0 Interrupt (IMIA) request in response to IMFA flag inhibited

1 Interrupt (IMIA) request in response to IMFA flag enabled

Input capture / Compare match interrupt enable B

0 Interrupt (IMIB) request in response to IMFB flag inhibited

1 Interrupt (IMIB) request in response to IMFB flag enabled

Overflow interrupt enable

0 Interrupt (OVI) request in response to OVF flag inhibited

1 Interrupt (OVI) request in response to OVF flag enabled

Bit:

Address:H'FFFF66

Initial value:

R/W:

Figure 4-14 Register Configuration (for Shared Registers and Channel 0 Only) (cont)

Setting the time

There are two ways to set the timer time:

(1) The timer counter can be returned (cleared) to 0 when the time is up, so that the counts starts
over again.

(2) The general register can be reset to the next time when the currently set time is up.

If method (1) is used, only one time setting can be set for one timer counter. If method (2) is used,
two different times can be set in the two general registers for one timer counter.

The following approach is used to set the time.

Time to be set / 1 clock cycle = No. of counts

If the time to be set is 20 ms and the clock cycle is 62.5 ns (16 MHz), the number of counts is
320,000. However, this count exceeds the range of the 16 bits.

A function is available that makes it possible for the ITU to divide the clock cycles in advance and
then reduce the frequency, so let’s use this method.

320000 / 2 = 160000 This doesn’t work, either.

320000 / 4 = 80000 This still doesn’t work.

320000 / 8 = 40000 This will work.

137

(a) Clearing the counter

H'FFFF

GRA0

GRA1

(b) Adding GRA0

H'FFFF
GRB0

GRA0

GRA0+20ms

GRB0+30ms

20ms

30ms 30ms

20ms 20ms 20ms

Two timer channels are necessary
in order to set two different times.

Two different times can be set using
only one timer channel.

Figure 4-15 Configuration of the Two Interval Timers

Since the last formula will work, we will set the 40000 count in the general register and the
division of clock cycles by 8 in the TCR (timer status register). The TCR is also used to specify
whether or not the counter is to be cleared.

This completes the counter preparation. All that is left is to set the interrupt request to be
generated when the time has elapsed. There is an interrupt enable bit in the TIER (timer interrupt
enable register), and in the TSR (timer start register) there is a flag bit that provides notification
when the time has elapsed. An interrupt request is generated when both bits are 1. These should be
set to match the general registers being used.

138

<Program: Addition method channel 0> (smp_itu 2. src)

;---------- ITU initialize sub -------------
ITUINIT:

MOV.B #H'03,R0L ;
MOV.B R0L,@TCR0 ; Clear GRA comparematch,1/8 clock
MOV.B R0L,@TCR1 ; Not clear,1/8 clock
SUB.B R0L,R0L ;
MOV.B R0L,@TIOR0 ; No use output pin
MOV.B R0L,@TIOR1 ; No use output pin
MOV.B #H'01,R0L ;
MOV.B R0L,@TIER0 ; Enable IMIA interrupt
MOV.B R0L,@TIER1 ; Enable IMIA interrupt
MOV.W #39999,R0 ; 62.5 * 8 = 0.5us
MOV.W R0,@GRA0 ; 40000 * 0.5us = 20ms cycle
MOV.W #59999,R0 ; 62.5 * 8 = 0.5us
MOV.W R0,@GRA0 ; 60000 * 0.5us = 30ms cycle
MOV.B #H'03,R0L ;
MOV.B R0L,@TSTR ; Start ITU ch0,ch1
RTS

;---------- IMIA0 interrupt -------------
IMIA0:

PUSH.W R0
BCLR #0,@TSR0 ; Clear IMFA flag
MOV.W @GRA0,R0 ;
ADD.W #40000,R0 ;
MOV.W R0,@GRA0 ;
BNOT #0,@PBDR ;
POP.W R0
RTE

;---------- IMIA1 interrupt -------------
IMIA1:

PUSH.W R0
BCLR #0,@TSR1 ; Clear IMFA flag
MOV.W @GRA1,R0 ;
ADD.W #60000,R0 ;
MOV.W R0,@GRA1 ;
BNOT #1,@PBDR ;
POP.W R0
RTE
.END

If the time is 30 ms, the count value is 60,000 by division of cycles by 8.

If method (2) is used, 40,000 is added here.

4.3.3 Example of Using Toggle Output

The ITU timer has a function that reverses the status of the output terminal when the time has
elapsed. This is called toggle output. If the output port is reversed in the interrupt processing
program for the interval timer, pulses can be output in the same way, but because the exception
processing time varies, pulses cannot be output at accurate times. Using the ITU timer enables
accurate output, and requires no time for interrupt processing, so it boosts the performance of the
system as a whole. (See Chapter 7 of the APPENDIX.)

In the following program, a buzzer is attached to the timer output terminal and a 1 kHz sound
produced. With this program, a switch is connected to bit 3 of port 8, and the program is structured
so that toggle output is produced only when this switch goes on.

139

<Program> (smp_itu 3. src)

; ITU toggle output sample
;

.CPU 300HA

.INCLUDE "3048EQU.H"
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN
;---------- main program -------------------

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @ITUINIT ;

LOOP:
BTST.B #3,@P8DR ; Check toriger SW (ON?)
BNE LOOP
BSET.B #0,@TSTR ; ITU ch3 start

LOOP2:
BTST.B #3,@P8DR ; Check toriger SW (OFF?)
BEQ LOOP2
BCLR.B #0,@TSTR ; ITU ch3 stop
BRA LOOP ;

;---------- ITU3 initialize sub -------------
ITUINIT:

MOV.B #H'23,R0L ;
MOV.B R0L,@TCR0 ; Clear GRA comparematch,1/8 clock
MOV.B #H'03,R0L
MOV.B R0L,@TIOR0 ; Toggle output(TIOCA0)
MOV.W #999,R0 ; 2kHz = 16MHz / 8 /(999+1)
MOV.W R0,@GRA0 ; 0.5ms
RTS
.END

Low-level output from the TIOCAO terminal.

The timer is set by setting TIOR to toggle output. All other settings are the same as those for the
interval timer.

Timer output terminal

H'FFFF

Compare match
at 2 kHz

1 kHz output

Figure 4-16 Timer Operation Diagram (Relationship between Toggle Frequency and
Timer Cycles)

Let’s try running the program and stop it while the buzzer is sounding. If you are using a
debugging monitor, input NMI. The CPU waits for a command to be input, but the buzzer

140

continues to sound, right? The timer continues to output pulses on its own (although actually the
pulse output was started by the CPU). The CPU and the timer are completely separate. Dividing
up the work this way makes it possible to configure a system that runs highly efficiently.

Precautions concerning usage

• If a compare match is generated at the same timing that data is being written to GRA/GRB, the
compare match cannot be executed.

• The duty for the PWM output cannot be either 0% or 100%.

• The initial value for the timer output is low level.

• Word access must be used for the 16-bit registers of GRA, GRB, and TCNT.

4.4 Serial Communication (SCI)

Exchanging data between the microcomputer and a personal computer is simpler and more reliable
if the same method is always used. The personal computer has a COM port and an internal
communication function. Many ports are designed for a modem to be connected, but the
H8/3048F has two functions that are the same as a modem connection. One (channel 1) has a
connection with the personal computer already set up in advance so that data can be written to the
internal flash memory. The debugging monitor also uses this function to send the current status to
the personal computer and to receive commands, so this function was already at work, without you
knowing it, when the programs we worked with earlier were being debugged. Figure 4-17 shows
the Start-Stop synchronous method of transmitting and receiving data.

TxD terminal

RxD terminal

Output from terminal 1 bit at a time

Input grouped as 8 bits

CPU Write

CPU Read

Idle status

Data Data

Stop bit

Start bit

Transmission Data Register (TDR)

Transmission Shift Register (TSR)

Reception Shift Register (RSR)

Received Data Register (RDR)

Figure 4-17 SCI Operation

141

4.4.1 Overview of the SCI

The EIA-232 D (RS-232 C) is a physical standard used when information is exchanged. It does
not govern anything concerning the content of the information. The SCI of the H8/3048F can be
connected to the EIA-232 D simply by exchanging the voltage.

What the SCI can do

• Transmission modes

 Start-Stop synchronization, clock synchronization, smart card (channel 0 only)

 When using the Start-Stop synchronization method

• Data bit length 7/8

• Stop bits 1/2

• Parity bit Even, odd, none, multiprocessor

• Transmission direction LSB or MSB first (this is fixed at LSB first for
channel 1)

• Interrupt requests Transmission end / transmission completed / reception
completed / reception error

• DMA transmission requests Interrupt requests possible on channel 0 only
(transmission completed / reception completed)

• Transmission speed Internal / external (16-times clock to SCK terminal)

 When using clock synchronization

• Data 8

• Transmission direction LSB or MSB first (this is fixed at LSB first for
channel 1)

• Interrupt requests Transmission end / transmission completed / reception
completed / reception error

• DMA transmission requests Interrupt requests possible (transmission completed /
reception completed)

• Transmission speed Internal / external (1-time clock to SCK terminal)

 When using a smart card (channel 0 only)

• Same as for the Start-Stop synchronization method

• The data terminals (TxD and RxD) can be shorted externally to form one terminal.

142

RxD

TxD

SCK

RDR

RSR

TDR

TSR

SSR
SCR
SMR

BRR

Module data bus

B
us

 in
te

rf
ac

e

Internal data bus

Sending/
receiving control

Baud rate
generator

ø
ø/4
ø/16
ø/64

ClockParity generation
Parity check

TEI
TXI
RXI
ERI(Explanation of symbols)

External clock

RSR
RDR
TSR
TDR
SMR
SCR
SSR
BRR

: Receive shift register
: Receive data register
: Transmit shift register
: Transmit data register
: Serial mode register
: Serial control register
: Serial status register
: Bit rate register

Sending/
receiving
data terminals

Clock
input/output
terminal Interrupt

requests

Figure 4-18 SCI Block

Here, we will look at Start-Stop synchronization and clock synchronization.

4.4.2 Example Using Start-Stop Synchronized Communication

Let’s try carrying out communication with a personal computer using Start-Stop synchronization.
In terms of hardware, the debugging monitor is already running, so we don’t need to do anything
else.

What we have to be careful of is connecting pull-up resistors to the TxD terminal and RxD
terminal. Without this, the terminal status will be indefinite from the time when the reset is carried
out until the initialization of the SCI, and the personal computer may end up displaying illogical
displays or hanging up the communication software.

Settings should be entered in the following order:

(1) Stop the SCI function.

(2) Determine the transmission speed.

(3) Wait an interval of at least one bit.

143

(4) Boot the SCI function.

If this order is not observed, indefinite data may be output from the transmit data terminal (TxD),
or the first bit received may be result in an error.

0

R/W R/WR/W R/W

7 6 5 4 3 2 1 0

R/WR/WR/WR/W

0 0

CKS1 CKS0 Clock

0

0

1

1

0

1

0

1

ø

ø/4

ø/16

ø/64

Clock Selection

0

1

1 stop bit

Stop Bit Length

0

1

Even parity

Odd parity

Parity Mode

0

1

Addition of parity bit and check inhibited

Addition of parity bit and check enabled

Parity Enable

0

1

8-bit data

Character Length

7-bit data

1

Start-Stop synchronization mode

Communication Mode

Clock synchronization mode

0

2 stop bits

0 0 0 0 0

O/E STOP MP CKS1 CKS0 SMRn
(n=0,1)

PECHRC/A

0

1

Multiprocesser function inhibited

Multiprocessor Mode

Selection of multiprocessor format

Bit:

Address:H'FFFFB0

Initial value:

R/W:

0

R/W R/WR/W R/W

7 6 5 4 3 2 1 0

R/WR/WR/WR/W

0 00 0 0 0 0

RE MPIE TEIE CKE1 CKE0 SCRn
(n=0,1)

TERIETIE

0

1

Interrupt request at end of transmission (TENDI) inhibited

Interrupt request at end of transmission (TENDI) enabled

Transmit End Interrupt Enable

0

1

Transmission operation inhibited, terminal is I/O port

Transmission operation enabled, terminal is TxD

Transmit Enable

0

1

Reception data full interrupt (RXI) requests, reception error interrupt (ERI) requests inhibited
Receive Interrupt Enable

Reception data full interrupt (RXI) requests, reception error interrupt (ERI) requests enabled

1

Interrupt request at completion of transmission (TXI) inhibited
Transmit Interrupt Enable

Interrupt request at completion of transmission (TXI) enabled

0

Clock Enable 1, 0

CKE1 CKE0 Start-Stop synchronization mode

0

1

0

1

-

Internal clock/SCK terminal = input port

Internal clock/SCK terminal = clock output

External clock/SCK terminal = clock input

Internal clock/SCK terminal = synchronized clock out

External clock/SCK terminal = synchronized clock input

CKE1 CKE0 Clock synchronization mode

0

1

-

-

0

1

Multiprocessor interrupt requests inhibited
(normal reception operation carried out)

Multiprocessor interrupt requests enabled

Multiprocessor Interrupt Enable

0

1

Reception operation inhibited, terminal is I/O port

Reception operation enabled, terminal is RxD

Receive Enable

Bit:

Address:H'FFFFB2

Initial value:

R/W:

Figure 4-19 SCI Registers

144

Bit rate
110
150
300
600

1200
2400
4800
9600

19200
31250
38400

SMR.CKS
2
2
1
1
0
0
0
0
0
0
0

14MHz
BRR
248
181

90
181

90
181

90
45
15

9
7

Error (%)
-0.17
0.16
0.16
0.16
0.16
0.16
0.16

-0.93
-0.93

0
3.57

SMR.CKS
2
2
2
1
1
0
0
0
0
0
0

14.7456MHz
BRR

64
191

95
191

95
191

95
47
23
14
11

Error (%)
0.70

0
0
0
0
0
0
0
0

-1.70
0

SMR.CKS
3
2
2
1
1
0
0
0
0
0
0

16MHz
BRR

70
207
103
207
103
207
103

51
25
15
12

Error (%)
0.03
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16

0
0.16

1

R R

7 6 5 4 3 2 1 0

R/(W)

0 10 0 0 0 0

FER PER TENDORERRDRFTDRE

Parity Error

Framing Error

Receive Data Register Full

Transmit Data Register Empty

Overrun Error

The flag can only be cleared to "0" from the CPU; it cannot be set to "1" from the CPU.

MPB MPBT SSRn
(n=0,1)

R/WR/(W) R/(W) R/(W) R/(W)

Transmit End

0

1

Data received where multiprocessor bit is "0"

Data received where multiprocessor bit is "1"

0

1

Transmission in progress

Transmission completed (no data left in TDR or TSR)

0 Data transferred where multiprocessor bit is "0"

Data transferred where multiprocessor bit is "1"1

Multiprocessor Bit

Multiprocessor Bit Transfer

Bit:

Address:H'FFFFB4

Initial value:

R/W:

 0 Data exists in TDR prior to transmission; data cannot be written
 1 Data can be written to TDR
 0 Flag cleared (after reading), error processing completed
 1 Invalid

 Read

 Write

 0 No received data
 1 Received data exists in RDR
 0 Flag cleared (after reading), error processing completed
 1 Invalid

 Read

Write

 0 No framing errors in reception
 1 Stop bits different in Start-Stop synchronization
 0 Flag cleared (after reading), error processing completed
 1 Invalid

 Read

Write

 0 No parity errors in reception
 1 Parity bits different in Start-Stop synchronization
 0 Flag cleared (after reading), error processing completed
 1 Invalid

 Read

Write

 0 No overrun errors in reception
 1 Next data received when previously received data is still in RDR (SSR, RDRF = 1)
 0 Flag cleared (after reading), error processing completed
 1 Invalid

 Read

Write

Figure 4-19 SCI Registers (cont)

145

P91/TxD1

P93/RxD1

MAX232 (RS-232C
line driver / receiver)

DC-DC
converter

Vcc
Personal computer
COM port

This is done to make
the terminal go to the High-Z
state following a reset.

3

2

5

11

12

14

13

TxD

RxD

Figure 4-20 EIA-232D Circuit Diagram

Start

End

SCI is stopped (SCR = 0)

Transmission/reception speed is determined.
Internal: SCR, SKE, BRR, SMR, CKS

External: SCR, SKE (16 times input to SCK)

Other communication modes are determined (SMR, etc.)

Waits an interval of 1 bit

Transmission and reception enabled
(SCR.TE = SCR.RE = 1)

Figure 4-21 Initialization Flowchart

At (1), the TE and RE bits in the SCR (serial control register) are cleared to 0. Next, let’s decide
the clock source for CKE 1 and 0. (After a reset, the SCI is not used, so this processing is not
necessary.)

At (2), if an internal clock is being used, the CKS 1,0 and BRR (bit rate register) for the SMR
(serial mode register) are also specified. If an external clock is being used, begin the clock input.
BRR does not need to be specified. Set the communication mode to SMR.

146

At (3), the system waits. The time does not have to be precise. Also, if there are no other urgent
tasks that have to be carried out in parallel to this waiting time, let’s wait for the program to
repeat. Initialization of registers other than the SCI may be carried out during this time if you like.

At (4), The TE and RE bits of the SCR are set to 1.

Sending and receiving of data are carried out while confirming the status indicated by the SSR
(serial status register).

Sending data without using interrupts

Before sending data, check the transmission data register to see if there is any data left that has not
been processed. The TDRE (transmit data register empty) bit of the SSR indicates the status of the
transmission data register. If this bit is 1, the next data item can be written.

When the data has been written to the transmission data register, the TDRE bit is cleared. Please
be aware that the bit must be cleared in order for the data to be sent.

The SSR also has a TEND bit that indicates that there is no data left which has not yet been sent.
If you are going to use the energy-saving mode and shut down the line driver / receiver, make sure
that this bit is set to 1 first.

Transmission of 1 byte

End

Write data to be sent to TDR

Transmission begins (SSR and TDRE = 0)

Is TDR empty?
(SSR and TDRE = 1?)

Read received data from RDR.

Data processing is concluded. (SSR and RDRF = 0)

Is there any data in RDR?
(SSR and RDRF = 1?)

Has an error been received?
(SSR, ORER, FER, PER = 1?)

Reception of 1 byte

End

Clear the error flag.
(SSR, ORER, FER, PER = 0)

Figure 4-22 Sending and Receiving Flowchart

147

Receiving data without using interrupts

Receiving data without using interrupts is more complicated than sending it, because there is the
possibility of an error occurring. The following three errors are possible:

• PER (parity error): The parity created in the received data is different from the reception
parity.

• FER (framing error): The last stop bit is low level.

• ORER (overrun error): Reception of the next data was completed without the previous data
being processed.

The RDRF (receive data register full) bit that indicates normal reception and the three error bits
must all be confirmed in the program. If any of the three bits is set to 1, the relevant processing is
carried out.

As with transmission, the flag bit is cleared to 0 in the program. For example, if the RDRF bit is
not cleared to 0, it is interpreted as the data not having been processed, and an overrun error will
occur the next time that data is received. Also, data cannot be received if any of the error bits has
been set. Make sure all of the error bits have been cleared to 0.

Let’s look here at a program that performs initialization and then sends and receives data.

After the SCI has been initialized, the received data is sent just as it is. This is called “echo-back”
processing. The program assumes that no reception errors have occurred, and shows only an
overview of the operation. Generally, reception error processing is required, but we will introduce
that in the next interrupt program.

148

<Program> (smp_sci 1. scr)

; SCI chanel1 sample
.CPU 300HA
.INCLUDE "3048equ.h"

TDRE: .BEQU 7,SSR1
RDRF: .BEQU 6,SSR1
ORER: .BEQU 5,SSR1
FER: .BEQU 4,SSR1
PER: .BEQU 3,SSR1
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN
;---------- main program -------------------

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @SCI1INIT ;

LOOP:
BTST RDRF ;
BNE TRNS ; if receive data , transmit
MOV.B #H'80,R0L ; if occur receive error
MOV.B R0L,@SSR1 ; clear error flag
BRA LOOP ;

TRNS:
BTST TDRE ; if TDRE=0 wait
BEQ TRNS ;
MOV.B @RDR1,R0L ; get receive data
BCLR RDRF ; clear flag
MOV.B R0L,@TDR1 ; set transmit data
BCLR TDRE ; Transmit start
BRA LOOP ;

;---------- SCI1 initialize sub -------------
SCI1INIT:

SUB.B R0L,R0L ;
MOV.B R0L,@SCR1 ; Stop SCI1,Use internal clock
MOV.B R0L,@SMR1 ; 8data,1stop,noParity,1/clock
MOV.B #51,R0L ; 9600bps=16MHz/32/(51+1)
MOV.B R0L,@BRR1 ;
MOV.W #280,R0 ;

WAIT_1BPS:
DEC.W #1,R0 ; Wait 1 bps(105us)
BNE WAIT_1BPS ;
MOV.B @SSR1,R0L ; dummy read
MOV.B #H'80,R0L ;
MOV.B R0L,@SSR1 ; clear error flag
MOV.B #H'30,R0L ;
MOV.B R0L,@SCR1 ; Start SCI1
RTS
.END

The SCI Start and terminal change to TxD/RxD.

Sending data using interrupts

When the SSR and TDRE bits are 1, an interrupt request is generated. Writing of the data to be
transmitted and clearing of the TDRE bit should be done in the interrupt processing program.
Also, when the transmission processing for the final data has been completed, the TIE bit should
be cleared. Otherwise, the interrupt request cannot be disabled.

149

Receiving data using interrupts

When the RIE bit is used to enable interrupts, two different interrupt requests are produced. One is
for normal data reception, and the other is for error reception. Because the two interrupt requests
are different, two interrupt programs are necessary. There are three types of errors, but the
processing does not distinguish among them. The same interrupt program is run no matter which
error occurs. The distinction is made and the relevant processing carried out in the interrupt
program.

Let’s look at a program that uses reception interrupts.

This program initializes the SCI, clears the C_FLG to 0 and then waits for reception. At this point,
the SLEEP instruction is executed and the power consumption is lowered.

TDRESSR RDRF ORER FER PER TEND

TXI interrupt request
TEI interrupt requestRXI

interrupt request

TIESCR RIE TE RE TEIEMPIE

ERI interrupt request

[When using a multiprocessor bit]
A reception interrupt (RXI) is generated
only when MPIE = 1, and only for the MP = 1 data frame.

Figure 4-23 Interrupt Operation

The processing program can be carried out if an interrupt request is received in this state.

When the C_FLG bit is set to 1 and reception has been carried out normally, echo-back processing
is carried out.

150

<Program> (smp_sci 2. src)

; SCI chanel1 sample2
;

.CPU 300HA

.INCLUDE "3048equ.h"
TDRE: .BEQU 7,SSR1
RDRF: .BEQU 6,SSR1
ORER: .BEQU 5,SSR1
FER: .BEQU 4,SSR1
PER: .BEQU 3,SSR1
C_FLG: .BEQU 0,FLAG
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN

.ORG H'E0

.DATA.L ERI1

.DATA.L RXI1
;---------- main program -------------------

.SECTION P,CODE
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @SCI1INIT ;
LDC #0,CCR ; clear interrupt mask
BCLR C_FLG ;

LOOP:
SLEEP ;
BTST C_FLG ; check flag
BEQ LOOP ; if receive error occur,next
MOV.B @DT,R0L ; get receive data
BSR TX_DATA ; transmit data
BCLR C_FLG ; clear flag
BRA LOOP ; loop

;---------- SCI1 initialize sub -------------
SCI1INIT:

SUB.B R0L,R0L ;
MOV.B R0L,@SCR1 ; Stop SCI1,Use internal clock
MOV.B R0L,@SMR1 ; 8data,1stop,noParity,1/clock
MOV.B #47,R0L ; 9600bps=16MHz/32/(51+1)
MOV.B R0L,@BRR1 ;
MOV.W #280,R0 ;

WAIT_1BPS:
DEC.W #1,R0 ; Wait 1 bps(105us)
BNE WAIT_1BPS ;
MOV.B @SSR1,R0L ; dummy read
MOV.B #H'80,R0L ;
MOV.B R0L,@SSR1 ; clear error flag
MOV.B #H'70,R0L ;
MOV.B R0L,@SCR1 ; Start SCI1
RTS

;---------- SCI1 transmit -------------------
TX_DATA:

BTST TDRE ; check TDTE bit
BEQ TX_DATA ;
MOV.B R0L,@TDR1 ; set TDR
BCLR TDRE ; transmit
RTS

;---------- RXI intrerrput ------------------
RXI1:

PUSH.W R0
BCLR RDRF ; Clear RDRF,Stop interrupt
MOV.B @RDR1,R0L ; Get receive data
MOV.B R0L,@DT ;
BSET C_FLG ;
POP.W R0
RTE

;---------- ERI intrerrput ------------------
ERI1:

BCLR ORER ; Clear ORER
BCLR FER ; Clear FER
BCLR PER ; Clear PER
RTE
.SECTION B,DATA,LOCATE=H'FFFF00

FLAG: .RES.B 1
DT: .RES.B 1

.END

In error reception, the bit that indicates the error must be cleared to 0.

When using interrupts, the TIE and RIE bits in the SCR are set to 1.
This enables interrupts to be used.

In a normal reception interrupt, data processing is carried out and
the RDRF bit is cleared. If the bit is not cleared, the interrupt request
will never stop, so even though processing is returned from
the interrupt program, the interrupt program will continue to be
executed.

151

4.4.3 Example Using Clock Synchronization Communication

Clock synchronization

There are two clock synchronization modes. The SKE 1 and 0 of the SCR are used to determine
the mode.

Master mode: The synchronization clock is output from the SCK terminal.

Slave mode: The synchronization clock is input from the SCK terminal.

Mode Only sending enabled Only receiving
enabled

Both sending and receiving
enabled

Master Clock output when data is
sent

Clock output when
enabled

Clock output when data is sent,
and data received at same time

Slave Data sent at clock input,
after TDRE = 0

Data received at clock
input

Data sent and received at clock
input, after TDRE = 0

What requires attention here is transmission in the slave mode and reception in the master mode.
Data can only be sent in the slave mode after preparation has been made (TDRE = 0) and the clock
has been input. If preparation is not completed in time, not all of the eight bits of data will be sent
even though eight clocks have been input, and the clock and data bit position will be off from each
other.

In the master mode, if the mode is set to reception only, clocks are output as soon as RE = 1. The
slave mode should be prepared for transmission ahead of time. The clocks will not stop until RE =
0 or an overrun error occurs. If the received data is not processed, two-byte clocks will be output
before the overrun error occurs.

Here, we will look at a sample in which transmission and reception are being carried out on the
master side. This example shows clock synchronization communicated being carried out with two
SCIs. On the slave side, preparation has been carried out so that data can be transmitted at any
time.

152

TDR
RDR
Data received at the same time that data is sent

Synchronization clocks output when data is sent

RDR
TDR

Data sent before synchronization clocks are input
(SSR.TDRE=0)

LSBMSB

LSB MSB

Master side Slave side

SCK0

TxD0

RxD0

SCK0

RxD0

TxD0

Figure 4-24 Circuit for Clock Synchronization Communication

153

<Program> (smp_sci 3. src)

; SCI chanel0 sample
; Clock synchronize

.CPU 300HA

.INCLUDE "3048equ.h"
TDRE: .BEQU 7,SSR0
RDRF: .BEQU 6,SSR0
ORER: .BEQU 5,SSR0
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN
;---------- main program -------------------

.SECTION P,CODE
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @SCI0INIT ;
MOV.B #"A",R0L ;

TRNS:
BTST TDRE ; if TDRE=0 wait
BEQ TRNS ;
MOV.B R0L,@TDR0 ; set transmit data
BCLR TDRE ; Transmit start

RCV:
BTST RDRF ; check receive
BEQ RCV ;
MOV.B @RDR0,R0L ; get receive data
BCLR RDRF ; clear flag

LOOP:
BRA LOOP ;

;---------- SCI0 initialize sub -------------
SCI0INIT:

SUB.B R0L,R0L ;
MOV.B R0L,@SCR0 ; Stop SCI0,Use internal clock
MOV.B R0L,@BRR1 ; 16MHz / 4 = 4Mbps
MOV.B #H'80,R0L ;
MOV.B R0L,@SMR0 ; Clock sync.,1/clock
MOV.B @SSR0,R0L ; dummy read
MOV.B #H'80,R0L ;
MOV.B R0L,@SSR0 ; clear error flag
MOV.B #H'30,R0L ;
MOV.B R0L,@SCR0 ; Start SCI0
RTS
.END

Precautions regarding usage

• The system must wait one-bit cycle for the initial value.

• If data is written to TDR when TDRE = 0, the data will be lost.

• If a reception error occurs, reception stops. The flag must be cleared before reception can be
resumed.

• Channel 0 has a smart card mode.

MSB first can be set as the priority order for both start-stop synchronization and clock
synchronization.

154

4.5 DMA Controller

The DMA (Direct Memory Access) controller transmits data in place of the CPU. There are
several ways to copy data between memories and to transmit the data between a memory and a
peripheral function.

4.5.1 Various Ways of Sending Data

Data transmission using a program

The MOV instruction is executed twice to run a program that sends data between two memories.

MOV.B @ER0, R2L

MOV.B R2L, @ER1

For example, let’s think about moving a data block. To repeatedly send data, a loop counter can be
used that will carry out the above transmission repeatedly. For this operation, the number of clocks
would be as follows:

MOV.L # count, ER3

MOV.L # source, ER0

MOV.L # destination, ER1

LOOP: MOV.B @ER0+, R2L ;6

MOV.B R2L, @ER1 ;5

ADDS #1, ER1 ;2

DEC.L #1, ER3 :2

BNE LOOP ;4

It takes 18 clocks for one loop. Even with the more efficient EEPMOV (MOVe to EEProm)
instruction, it takes 8 + 4 x R4, as shown here:

MOV.W # count, R4

MOV.L # source, ER5

MOV.L # destination, ER6

EEPMOV.W

One loop is completed in four clocks, which is relatively fast, but eight clocks are required at the
start. Copying is done at high speed using the EEPMOV instruction, but because addresses are
only incremented, copying is not possible for fields that overlap, such as those shown in figure 4-
25. Also, because the addresses of peripheral function registers are fixed, this method is not
appropriate for sending the data of peripheral functions.

155

DMA (Direct Memory Access) transmission

As long as the memory block fields do not overlap, copying can be done using the EEPMOV
instruction, and when a slightly greater degree of flexibility is required concerning the fields and
address direction, the MOV instruction can be used repeatedly. When higher speed is required,
DMAC can be used. With DMAC, one data block is sent using five clocks (two for reading, two
for writing, and one for internal operation).

Copying between memories can also be done by sending data using a program. If this method is
used, however, the EEPMOV instruction cannot be used if one byte of data is being sent with each
interrupt request, as with the SCR. Another point that must not be overlooked is the time required
for interrupts. For example, if interrupts are being used in SCI transmitting and receiving, the
program is executed only when transmission has been enabled, or when data has been received, so
this method was introduced as being more efficient than constantly monitoring the operation. With
interrupts, however, save of the PC and CCR to the stack field and fetch processing from vectors
take place between the interrupt request being issued and the interrupt processing program being
run. In terms of time, this means between 19 and 41 clocks, which takes between 1.2 and 2.6 µs
when running at 16 MHz. Given that data transmission exception processing takes another 3 µs,
we are looking at a processing capability of about 330 kbytes per second.

Transmission method
EEPMOV.W
EEPMOV.B
DMA transmission
MOV

Between memories
Possible
Possible
Possible
Possible

Interrupt request

Possible
Not possible

Possible
Possible

Address increment / decrement

Increment
Increment

Increment / decrement

Increment / decrement

Memory and peripheral function

Not possible
Not possible

Possible
Possible

Transmission speed

High speed

High speed

High speed

Low speed

Transmission
source

Transmission
destination

Memory

Example in which data
cannot be transmitted
using EEPMOV instruction

[Note] The interrupt request column indicates whether data can be received while data is being transmitted.

Figure 4-25 Comparison of Data Transmission Methods and Execution Times

When the DMAC is used to send data, processing is faster because no interrupt response time is
required. If six clocks are used (three for internal peripheral functions, two for internal memory
and one for internal operation), the maximum transmission speed of the SCI (1 Mbyte per second)
is exceeded.

156

Data can be transmitted using either the program or the DMAC. So which is better to use?

(1) Sending data between memories

Because interrupts are not generated, the CPU starts the transmission. In this case, the
EEPMOV instruction has a smaller overhead and is faster than DMAC initialization, so it is
better to transmit data using the program. The EEPMOV.B instruction is particularly effective
in cases where it is difficult to receive interrupts while data is being transmitted.

(2) Sending data between peripheral functions and the memory

If interrupt requests can be accommodated, it is better to use the DMAC in this case. (There
are some peripheral functions that cannot be handled with the DMAC.) DMAC transmission
does not involve extra time for operations such as exception processing and stopping interrupt
requests, before the interrupt processing program is executed. Of course, it takes ten clocks to
return using the RTE instruction.

157

4.5.2 Overview of the DMAC

The DMAC offers high-level data transmission performance, but the problems are DMAC startup
and the number of channels. The requirements for data transmission are as follows:

Timer IMIA 0 to 3 interrupt requests

SCI communication completed interrupt request

DREQ terminals (two terminals, capable of transmission requests from external sources)

Startup with the program alone

Up to eight channels can be specified. Channel specification cannot be handled like interrupt
requests.

Operation modes (Figure 4-27)

• Functions shared with the short address mode (8 channels)

Data transmission between internal peripheral functions and memories

(The address at one end is fixed at an eight-bit address space.)

One byte or word is transmitted for one transmission request.

• Idle mode

Both the memory address and I/O address are fixed.

Up to 64 K of words can be transmitted.

• I/O mode

Memory addresses can be incremented and decremented, but the I/O address is fixed.

Up to 64 K of words can be transmitted.

• Repeat mode

Memory addresses can be incremented and decremented, but the I/O address is fixed.

Up to 256 words can be transmitted.

When the transmission has been finished, operation returns to the beginning and is repeated.

• Functions shared with the full address mode (4 channels)

Data can be transferred over the entire memory space (16 MB).

• Normal mode

Data is transferred between memories.

Auto request and external request

Memory addresses can be incremented and decremented.

• Block transmission mode

ITU or external request

The specified number of blocks (up to 256) is transferred for each transmission request.

158

The maximum number of blocks is 64 k times.

4.5.3 Example Using the Full Address Mode

This example shows data being transmitted between memories, using the full address mode. When
the transfer has been completed, an interrupt is produced. The transmission source address is
ROM_TOP, and the transmission destination address is RAM_TOP. The transmission includes 40
bytes of data.

159

<Program: Data transfer between memories> (smp_dma 1. src)

; DMA sample
; start : Auto

.CPU 300HA

.INCLUDE "3048equ.h"
DTE: .BEQU 7,DTCR0A
DTME: .BEQU 7,DTCR0B
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN
;---------- main program -------------------

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @DMACINIT
BSET DTE
BSET DTME

LOOP:
BRA LOOP

;---------- DMAC initialize sub -----------
DMACINIT:

MOV.L #ROM_TOP,ER0
MOV.L ER0,@MAR0A
MOV.L #RAM_TOP,ER0
MOV.L ER0,@MAR0B
MOV.W #40,R0
MOV.W R0,@ETCR0A
MOV.B #H'16,R0L
MOV.B R0L,@DTCR0A
MOV.B #H'10,R0L
MOV.B R0L,@DTCR0B
RTS
.SECTION C,DATA

ROM_TOP:
.DATA.L 1
.DATA.L 2
.DATA.L 3
.DATA.L 4
.DATA.L 5
.DATA.L 6
.DATA.L 7
.DATA.L 8
.DATA.L 9
.DATA.L 0
.SECTION B,DATA

RAM_TOP:
.RES.L 10
.END

160

IMIA0
IMIA1
IMIA2
IMIA3
TXI0
RXI0

DREQ0
DREQ1
TEND0
TEND1

DEND0A
DEND0B
DEND1A
DEND1B

Control logic

Data buffer

Address buffer

Operation unit

MAR0A

MAR0B

MAR1A

MAR1B

IOAR0A

IOAR0B

IOAR1A

IOAR1B

ETCR0A

ETCR0B

ETCR1A

ETCR1B

Internal address bus

Internal interrupts

Interrupt signals

Internal data bus

M
od

ul
ar

 d
at

a
bu

s

(Explanation of symbols)
DTCR
MAR
IOAR
ETCR

: Data transfer control register
: Memory address register
: I/O address register
: Transmission count register

Channel 0A

Channel 0B

Channel 1A

Channel 1B

Channel 0

Channel 1

DTCR0A

DTCR0B

DTCR1A

DTCR1B

When using full address mode

When using short address mode

Figure 4-26 DMA Block (1/2)

161

Short address mode

Full address mode

Memory

Peripheral function

Memory

Address fixed

Peripheral function

Request : Interrupt or DREQ terminal
Transfer : 1 byte/word for each request
Address : Peripheral functions are fixed;
 memory can be incremented/
 decremented (a) Idle mode

Memory

64 K max.

Peripheral function

(b) I/O mode

Memory

256 max. (repeated, no end)

Peripheral function

(c) Repeat mode

Memory

Memory

Request : Interrupt or DREQ terminal, CPU
Transfer : 1 byte/word for each request (burst for CPU)
Address : Memory can be incremented/decremented

Memory Memory

64 K max.
(a) Normal mode

Memory

256 blocks max.

Up to 256
for 1 block

256 blocks
max.

Peripheral function

(b) Block mode

1 block transferred
for 1 request

MAR

IOAR

MARA

MARB

Figure 4-27 DMAC Transmission Modes

162

7

DTE

0

R/W

6

DTSZ

0

R/W

5

SAID

0

R/W

4

SAIDE

0

R/W

3

DTIE

0

R/W

0

DTS0A

0

R/W

2

DTS2A

0

R/W

1

DTS1A

0

R/W

Data Transfer Enable
0 Data transfer inhibited
1 Data transfer enabled

Source Address Increment / Decrement

Data Transfer Interrupt Enable

Data Transfer Select 0A
0 Normal mode
1 Block transfer mode

Data Transfer Select 2A, 1A
Set to "1" for both

Data Transfer Size
0 Byte size transfer
1 Word size transfer

Increment / decrement enable

MARA fixed

MARA fixed
Decrement:

0

1

0
1

0
1

SAID SAIDE

Increment:

0 Interrupt requests in response to DTE bit inhibited
1 Interrupt requests in response to DTE bit enabled

When DTSZ = 0, MARA decremented by 1 after transfer
When DTSZ = 1, MARA decremented by 2 after transfer

When DTSZ = 0, MARA incremented by 1 after transfer
When DTSZ = 1, MARA incremented by 2 after transfer

Bit:

Address:H'FFFF27

Initial value:

R/W:

7

DTME

0

R/W

6

—

0

R/W

5

DAID

0

R/W

4

DAIDE

0

R/W

3

TMS

0

R/W

0

DTS0B

0

R/W

2

DTS2B

0

R/W

1

DTS1B

0

R/W

Data Transfer Master Enable
0 Data transfer inhibited
1 Data transfer enabled

Destination Address Increment / Decrement

Increment / decrement enable

MARB fixed

MARB fixed
Decrement:

0

1

0
1

0
1

DAID DAIDE

Increment:

Transfer Mode Select
0 When using block transfer mode, the block area is the destination side.
1 When using block transfer mode, the block area is the source side.

Data Transfer Select 2B to 0B

DTS2B
0

1

Normal mode
Auto request (burst mode)

Cannot be used

Auto request
(cycle steal mode)
Cannot be used

Cannot be used
Cannot be used

DTS1B
0

1

0

1

DTS0B
0

1

0

1

0
1
0
1

Block transfer mode
Starts at interrupt of compare match or
input capture A of ITU channel 0

Starts at interrupt of compare match or
input capture A of ITU channel 1

Starts at interrupt of compare match or
input capture A of ITU channel 2

Starts at interrupt of compare match or
input capture A of ITU channel 3

Cannot be used
Cannot be used

Cannot be used
Starts at fall of DREQ

When DTSZ = 0, MARB incremented by 1 after transfer
When DTSZ = 1, MARB incremented by 2 after transfer

When DTSZ = 0, MARB decremented by 1 after transfer
When DTSZ = 1, MARB decremented by 2 after transfer

Starts when DREQ goes low level

Starts at fall of DREQ

:Bit

H'FFFF2F:Address

:Initial value

:R/W

[Note] When using the full address mode, the transfer method is determined using two registers.

Figure 4-28 DTCR in Full Address Mode

163

7

DTE

0

R/W

6

DTSZ

0

R/W

5

DTID

0

R/W

4

RPE

0

R/W

3

DTIE

0

R/W

0

DTS0

0

R/W

2

DTS2

0

R/W

1

DTS1

0

R/W

Data Transfer Enable
0
1

Data Transfer Size
0 Byte size transfer
1 Word size transfer

Data Transfer Increment / Decrement
0 Increment:

1 Decrement:

Data Transfer Select

DTS2

Data Transfer Interrupt Enable

0 Interrupt requests in response to DTE bit inhibited.
1 Interrupt requests in response to DTEL bit enabled

0

1

Startup element for data transfer
Starts at interrupt of compare match or input capture A of ITU channel 0

Starts at interrupt of compare match or input capture A of ITU channel 1

Starts at interrupt of compare match or input capture A of ITU channel 2

Starts at interrupt of compare match or input capture A of ITU channel 3

Starts at SCI0 transmission completed interrupt
Starts at SCI0 reception completed interrupt
Specifies full address mode transfer

DTS1
0

1

0

1

DTS0
0
1
0
1
0
1

*

Repeat Enable

Explanation
Transfer in I/O
mode

Transfer in repeat mode
Transfer in idle mode

RPE
0

1

DTIE
0
1
0
1

When DTSZ = 0, MAR incremented by 1 after transfer
When DTSZ = 1, MAR incremented by 2 after transfer

When DTSZ = 0, MAR decremented by 1 after transfer
When DTSZ = 1, MAR decremented by 2 after transfer

Data transfer inhibited
Data transfer enabled

Bit:

Address:H'FFFF27

Initial value:

R/W:

Figure 4-29 DTCRA in Short Address Mode

164

7

DTE

0

R/W

6

DTSZ

0

R/W

5

DTID

0

R/W

4

RPE

0

R/W

3

DTIE

0

R/W

0

DTS0

0

R/W

2

DTS2

0

R/W

1

DTS1

0

R/W

Data Transfer Enable
0 Data transfer inhibited
1 Data transfer enabled

Data Transfer Size
0 Byte size transfer
1 Word size transfer

Data Transfer Increment / Decrement
0 Increment:

1 Decrement:

Data Transfer Select

DTS2

Data Transfer Interrupt Enable

0 Interrupt requests in response to DTE bit inhibited
1 Interrupt requests in response to DTE bit enabled

Interrupt requests only when DTE = 0

0

1

Startup element for data transfer

Starts at interrupt of compare match or input capture A of ITU channel 0
Starts at interrupt of compare match or input capture A of ITU channel 1
Starts at interrupt of compare match or input capture A of ITU channel 2
Starts at interrupt of compare match or input capture A of ITU channel 3

Starts at SCI0 transmission completed interrupt
Starts at SCI0 reception completed interrupt

DTS1
0

1

0

1

DTS0
0
1
0
1
0
1

Repeat Enable
Explanation

Transfer in repeat mode
Transfer in idle mode

RPE
0

1

DTIE
0
1
0
1

0
Starts when DREQ terminal low level is input1
Starts when falling edge of DREQ terminal is input

When DTSZ = 0, MAR incremented by 1 after transfer
When DTSZ = 1, MAR incremented by 2 after transfer

When DTSZ = 0, MAR decremented by 1 after transfer
When DTSZ = 1, MAR decremented by 2 after transfer

Transfer in I/O mode

Bit:

Address:H'FFFF2F

Initial value:

R/W:

Figure 4-30 DTCRB in Short Address Mode

165

4.5.4 Example Using the Short Address Mode

Let’s try using a DMA transfer to send data that causes an LED to light on the ITU interval timer.

Settings are entered first for the DMAC and then for the ITU. Otherwise, the interrupt request
from the ITU would arrive at the CPU too early. The display consists of eight repeated patterns. In
this case, the DMA transfer will never end if we use the repeat transfer mode, so we do not need
interrupt processing.

<Program: Transfer data being sent> (smp_dma2. src)

; DMA sample
; start : ITU0 interval timer

.CPU 300HA

.INCLUDE "3048equ.h"
DTE: .BEQU 7,DTCR0A
;---------- vector -------------------------

.SECTION C,DATA

.DATA.L MAIN
;---------- main program -------------------

.SECTION P,CODE
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @IOINIT
JSR @DMACINIT
BSET DTE
JSR @ITUINIT

LOOP:
BRA LOOP

;---------- DMAC initialize sub -----------
DMACINIT:

MOV.L #PTN,ER0
MOV.L ER0,@MAR0A
MOV.B #PBDR,R0L
MOV.B R0L,@IOAR0A
MOV.W #H'0808,R0
MOV.W R0,@ETCR0A
MOV.B #H'10,R0L
MOV.B R0L,@DTCR0A
RTS

;---------- ITU initialize sub -------------
ITUINIT:

MOV.B #H'23,R0L
MOV.B R0L,@TCR0 ; Clear GRA comparematch,1/8 clock
SUB.B R0L,R0L
MOV.B R0L,@TIOR0 ; No use output pin
MOV.B #H'01,R0L
MOV.B R0L,@TIER0 ; Enable IMIA interrupt
MOV.W #39999,R0 ; 62.5 * 8 = 0.5us
MOV.W R0,@GRA0 ; 40000 * 0.5us = 20ms cycle
BSET #0,@TSTR ; Start ITU ch0
RTS

;---------- I/O initialize sub -------------
IOINIT:

MOV.B #H'FF,R0L ;
MOV.B R0L,@PBDDR ; PB7-PB0 output
RTS

PTN:
.DATA.B H'80,H'40,H'20,H'10,H'08,H'04,H'02,H'01
.END

H'0808 is set for ETCR0A. The number of words being transferred is 8, but because
we are using the repeat mode, when all eight words have been transferred, processing
returns to the beginning, so eight times is specified for both the upper and lower 8 bits.

Do you see anything strange about this program? If you do, you can consider yourself a
professional in interrupt processing. What is strange is that, although interrupts are being
requested from the ITU, the I bit in the CCR of the CPU remains masked. If an interrupt is carried

166

out, the I bit will have been cleared by the LDC instruction. But in this program, we don’t see that
happening. Even so, the DMAC is running.

This is because, as shown in figure 4-31, the interrupt request signal is delivered to the DMAC
without fail, and if the DMA has not been set to request a transmission, the interrupt request signal
is rerouted to the CPU. The I bit is the CPU’s problem and has nothing to do with the DMAC.

Let’s try running the program. If there is a switch attached to the NMI, trying operating it. The
program stops at the debugging monitor function. However, even though the program has stopped,
the DMAC continues to operate, so the lamp flashes. Data can be transferred without relying on
the CPU, which significantly improves the performance of the system.

Precautions concerning usage

• The DMAC should be initialized first, before peripheral units.

• DTCR 0 A is used to switch between the full and short address modes.

• The SCI must always be accessed for SCI DMA requests.

167

Bus

Interrupt request flag

Interrupt request

Flag cleared
automatically

DMAC INTC CPU

Read
DMACCPU

Write
DMAC CPU

Interrupt request

Bus

Interrupt request flag

Flag cleared
automatically

Transfer
ReadOrdinary program Exception processing

Transfer
Write Flag clearing, etc.

Interrupt request

Exception processing time
= 19 to 41 clocks

Transfer begins in
a minimum of 4 clocks

The interrupt request arrives first at the DMAC,
and if specified, the DMA transfer begins.
The DMAC is initialized first, and then other peripheral units.

If data transfer processing is carried out in the interrupt processing program,
19 to 41 clocks of exception processing time is included in the interval
between the interrupt request being issued and the data being sent.
Also, the flag must be cleared in the program.

Figure 4-31 Interrupt Request and DMA Transfer Request

EEPMOV instruction

The EEPMOV instruction is the MOVe to Electrical Erasable and Programmable ROM
instruction.

Essentially, this instruction is used to write data to an EEPROM page, which is where the name
comes from. The EEPROM is a ROM that can be rewritten in units of one byte, but writing data to

168

it takes a relatively long time of 10 ms. In order to reduce this time, data is grouped in 32 bytes or
64 bytes called a page, and CPU is designed so that one page can be rewritten at one time, in the
same 10 ms required to rewrite one byte. The EEPMOV instruction is used to handle rewriting of
these pages.

The H8/3048F does not contain an EEPROM, however. The EEPROM instruction is used simply
to copy memory blocks.

The EEPMOV instruction always uses ER5 for the transfer source address, and ER6 for the
transfer destination, and R4 or R4L is used as the counter. No other registers are used.

The EEPMOV.B instruction can handle blocks of up to 256 bytes, and the EEPMOV.W
instruction can handle blocks of up to 65,536 bytes.

These two instructions not only handle different block sizes, but they also respond differently to
interrupts. Even if the I bit of the CCR has been cleared to 0, the EEPMOV.B instruction ignores
interrupt requests if it is currently operating, but the EEPMOV.W instruction accommodates them.

The following programming is used to generate an interrupt request.

LOOP:

EEPMOV.W

MOV.W R4,R4

BNE LOOP

This enables copying to be carried out with no problem even if an interrupt request is issued.

169

4.6 WDT

The WDT is used to detect a runaway system. It acts as a sort of watchdog, to keep the system
operating safely. We say it “detects” a runaway system, but it does not actually use multiple CPUs
to produce a majority decision. It uses a very simple method of monitoring to see if the program is
running within the address range that has been created.

4.6.1 Overview of the WDT

The WDT is an eight-bit timer. The counter is configured so that it counts system clocks. So if left
alone, it will overflow at some point. If that happens, it is configured so that it resets itself. In
other words, the WDT continues to operate normally as long as the counter returns to 0 before an
overflow occurs, and if an overflow does occur, it considers a runaway system to have been
detected.

At this point, it notifies an external source that it has been reset, through the RESO terminal.
Because the RESO terminal is open drain, a pull-up resistance should be connected externally.
(The H8/3052F does not have an RESO terminal.)

This function is designed to keep the system operating normally. If the WDT is stopped by
mistake, or the counter is accidentally cleared, the WDT will be unable to carry out its detection
function, so steps are taken to protect the WDT when data is written to its registers.

H'FF

TCNT value

Time

TCNT cleared to 0

Overflow occurs

 RESO

132 status

Figure 4-32 WDT operation

170

ø/2

ø/32

ø/64

ø/128

ø/256

ø/512

ø/2048

ø/4096

TCNT

TCSR

RSTCSR

Reset control

Interrupt signal

Reset
(internal, external)

(when using interval timer)
Interrupt
control

Overflow

Clock
Clock

selection

Read/
write

control

Internal data bus

Internal clocks

(Explanation of symbols)
TCNT
TCSR
RSTCSR

: Timer counter
: Timer control / status register
: Reset control / status register

(WOVI)

Figure 4-33 WDT Block

171

4.6.2 Program Example Showing Reset Using the WDT

The following program introduces an example of register access.

This program confirms that the WDT has overflowed and has been reset, and switches the LED.

<Program> (smp_wdt 1. src)

; WDT sample1
; watch dog timer

.CPU 300HA

.INCLUDE "3048equ.h"
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN
;---------- main program -------------------

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @IOINIT ;
MOV.B @RSTCSR+1,R0L ;
BTST #7,R0L ; check WRST
BEQ LED_ON ;
JSR @WDTINIT ;

LOOP:
BRA LOOP ;

;---------- WDT initialize sub -------------
WDTINIT:

MOV.W #H'5A40,R0 ; output RESO
MOV.W R0,@RSTCSR ;
MOV.W #H'A566,R0 ; watch dog timer
MOV.W R0,@TCSR ; 1/2048(32.768ms)
RTS

;--------- WDT counter clear sub -----------
WDTCLR:

MOV.W #H'5A00,R0 ; clear counter
MOV.W R0,@TCNT ; don't occur reset
RTS

;---------- I/O initialize sub -------------
IOINIT:

MOV.B #H'FF,R0L ;
MOV.B R0L,@PBDDR ; PB7-PB0 output
RTS

;------- LED ON sub(Find WDT reset) --------
LED_ON:

MOV.B #H'FF,R0L ;
MOV.B R0L,@PBDR ; All LED on

END_LP:
BRA END_LP
.END

172

0 0 0 1 1 0 0 0

R/W R/W— — R/WR/WR/WR/(W)

7

— — CKS2 CKS1 CKS0 TCSR

6 5 4 3 2 1 0

TMEWD/ITOVF

CKS2

0

0

0

0

1

1

1

1

Clock Select

0

1

Timer Enable

Timer stopped (TCNT is H'00) CKS1 CKS0

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Timer operating

0

1

Timer Mode Select

Interval timer mode
Watchdog timer mode

Operation

Counts at ø/2

Counts at ø/32

Counts at ø/64

Counts at ø/128

Counts at ø/256

Counts at ø/512

Counts at ø/2048

Counts at ø/4096

Overflow Flag

*

Bit:

Address:H'FFFFA8

Initial value:

R/W:

 0 Overflow has not occurred.
 1 Overflow has occurred (H'FF a H'00).
 0 Flag cleared (after reading)
 1 Invalid

Read

Write

The flag can only be cleared to "0" from the CPU; it cannot be set to "1" from the CPU.

0 0 1 1 1 1 1 1

R/WR/(W)

7

— —

6 5 4 3 2 1 0

RSTOEWRST

0

1

Reset Output Enable
Reset signal is not output to external source.

Reset signal is output to external source.

Watchdog Timer Reset

"0" can be written to bit 7 in order to clear the flag.

*

— — — — RSCSR

Bit:

Address:H'FFFFA8

Initial value:

R/W:

 0 Overflow has not occurred.
 1 Overflow has occurred (H'FF a H'00).
 0 Flag cleared (after reading)
 1 Invalid

Read

Write

Figure 4-34 WDT Registers

173

TCNT

TCSR

RSTCSR WRST bit

H'FFFFA8

H'FFFFA8

H'FFFFAA

RSTOE bit H'FFFFAA

H'FFFFA9

H'FFFFA8

H'FFFFAB

When writing
Address Data Address Data

15 0

H'5A Write data

H'A5 Write data

H'A5 H'00

H'5A Write data

When reading

7 0

Read data

Read data

Read data

Figure 4-35 Register Access Protection

174

4.6.3 Example Using an Interval Timer through the WDT

The WDT can also be used as an interval timer. Only the up-counter is available, the interval time
is determined by deciding the system clock frequency.

The following program increments the count for the LED display connected to the port each time
an overflow occurs.

<Program> (smp_wdt 2. src)

; WDT sample2
; interval timer

.CPU 300HA

.INCLUDE "3048equ.h"
;---------- vector -------------------------

.SECTION C,DATA,LOCATE=0

.DATA.L MAIN

.ORG H'50

.DATA.L WDT_INT
;---------- main program -------------------

.SECTION P,CODE,LOCATE=H'1000
MAIN:

MOV.L #H'FFFF00,SP ; Set SP(ER7)
JSR @IOINIT ;
JSR @WDTINIT ;
LDC #0,CCR ; clear interrupt mask

LOOP:
SLEEP ;
BRA LOOP ;

;---------- WDT initialize sub -------------
WDTINIT:

MOV.W #H'A527,R0 ; interval timer
MOV.W R0,@TCSR ; 1/4096
RTS

;---------- I/O initialize sub -------------
IOINIT:

MOV.B #H'FF,R0L ;
MOV.B R0L,@PBDDR ; PB7-PB0 output
RTS

;--------- WDT interrupt routine -----------
WDT_INT:

PUSH.W R0 ;
MOV.B @TCSR,R0L ; dummy read
MOV.W #H'A527,R0 ; Over flow flag clrear
MOV.W R0,@TCSR ; stop interrupt request
MOV.B @PBDR,R0L ;
INC.B R0L ;
MOV.B R0L,@PBDR ;
POP.W R0 ;
RTE
.END

175

Summary

All of the internal peripheral functions provided in the H8/3048F are easy to use and offer
sophisticated performance almost beyond what is needed. However, they are ultimately parts of a
whole. In the same way that the instruments of an orchestra work together to produce a sound with
greater breadth and depth, these functions can be used in combination to enhance their
performance to even greater levels. We hope you will explore for yourself, and discover new and
exciting ways to put the H8/3048F to work for you.

176

177

Chapter 5 PROGRAMMING IN THE C LANGUAGE

All programs up to this point have been assembler language programs. However, assembler
instructions differ among microcomputers, and considerable effort is necessary to become familiar
with assembler. In addition, often many instructions must be combined to perform even simple
tasks, so that the source program tends to contain many lines.

Hence efforts have been made to program using languages which are more nearly like human
conversation than like the language of computers. Interpreters convert the source program into
machine language while executing the code; there are BASIC and C language interpreters.
Compilers convert the source code into machine language and store it in memory before
execution; there are compilers for source code written in BASIC, FORTRAN, PASCAL, C, and
other languages. A variety of different high-level languages have appeared, but at present the C
language in compiled form is most often used; and on personal computer platforms also, programs
are typically developed in the C language or in the C++ language.

5.1 The C Language and the H8 Microcomputer

Programs can be developed in the C language to be run on microcomputers in embedded
applications as well. Of course the C language can be used for development of programs for the
H8/300H also. Advantages to using the C language include the following.

(1) C is a high-level language which enables development of programs without taking the
hardware environment (CPU register configuration, memory map) into account.

(2) C is highly portable; it is easy to port (modify) programs so that they can be run on other
systems.

(3) By using pointer functions, direct hardware operations are also possible. Memory contents can
be manipulated using addresses rather than variable names.

However, there are also disadvantages:

(1) As a result of C language specifications, there is a high possibility of redundant instruction
combinations.

(2) The language specifications are not uniform in all respects, so that care must be exercised
when porting programs.

If the machine language instructions for different CPUs are different, compilers will also be
different for different CPUs. A C compiler used in development of programs which run on
personal computers cannot be used to develop programs to be run on the H8/300H. A C compiler
for the H8/300H is needed. Because there are parts of the C language specification that are not
determined by ANSI, such differences can also cause problems when porting a program.

With the above as background, let us review procedures for writing C language programs.

178

5.1.1 Standard I/O

When starting to learn the C language, a student almost always learns to produce a program like
the following, to be run on a personal computer.

#include <stdio.h>

main()

{

 printf ("\nHello.");

}

When this is compiled and executed, "Hello" is displayed on the screen. The printf function
does the work to display the text. The printf function is in the standard I/O library. If a program
does not run correctly, often the values of variables targeted in debugging are displayed on the
screen using this function.

However, there is no so-called standard I/O in a microcomputer for use in embedded applications.
This is because not all products incorporating microcomputers are provided with a keyboard and
display. Hence in program development, C language source code can be written according to
ANSI standards, but standard I/O library functions such as printf and scanf cannot be used. If
the above program is compiled by a C compiler for the H8/300H, no error occurs, but nothing
happens upon execution.

The printf function should be regarded as a state with only an external framework, but no
internal core. If the internal core is programmed, printf and scanf can also be used.

5.1.2 Variable Sizes

Next we consider variable types. C is called a "procedural language", in which variables
(receptacles for data) must be prepared in advance, and their sizes must be determined.

main ()

{

 int a, b, c;

 a = 100 ; b = 2000;

 c = a * b;

 printf ("\n c = %d",c);

}

When we look at the screen to see what is displayed, we find that on some systems the correct
result, 200000, is displayed, while on other systems 3392 is displayed.

It turns out that the size of the int type is "processing system-dependent" and that the number of
bits held by such a variable is not fixed. This is left up to the developer of the C compiler.

179

Table 5.1 Integer Types and Their Ranges

Integer Types Ranges

signed char, char –128 to 127

unsigned char 0 to 255

short –32768 to 32767

unsigned short 0 to 65535

int –32768 to 32767

unsigned int 0 to 65535

long –2147483648 to 2147483647

unsigned long 0 to 4294967295

The integer variable types recognized by the C compiler for the H8/300H are as shown in table
5.1.

The result when using the C compiler for the H8/300H is 3392.

The compiler does not check for overflow; data handling entrusted to the programmer.

5.2 Tasks Prior to Calling main

Normally in order to execute a program on a personal computer, either a command is input, or the
mouse is used to double-click an icon. On doing so, execution generally begins from the main
function. However, this is not possible in the case of a microcomputer embedded in a product or
equipment, and so, as explained above when discussing resets, the starting address of the program
is recorded in the vector table.

Let's take a look at differences between programs created for a personal computer, and programs
intended to be run by an embedded microcomputer. If you write programs to run on a personal
computer, it is not necessary to pay attention to the following explanation.

A personal computer has an OS, which is just a management program. This program performs
centralized management of the computer's resources. This includes the hard disk, memory,
display, and keyboard. What this means is that, when executing a program for example, when a
command is input or the mouse is double-clicked, a program is retrieved from the hard disk and
executed. The job of the OS is to read the program from the hard disk and store it in RAM, then
move the program counter to the starting address. Or, if the standard I/O library is used to execute

printf ("abc");

scanf ("%d", &abc);

then "abc" is displayed on the screen, and the system waits for keyboard input. This operation can
be performed even though detailed instructions are not given. In order to output this information to

180

the screen, the "abc" character pattern needs to be written to the memory used for display; even so,
it can be displayed simply by using the printf instruction. Similarly with scanf , although the
keyboard is not specified, keyboard input up to the Enter key is read. This is because the keyboard
and screen are set by the OS as standard input and output, and part of the program is executed by
the OS. In a system with fixed hardware such as a personal computer, the standard input and
output ports are determined. On the other hand, in the case of a microcomputer for embedding in
some unknown system as in the case of the H8/3048F, standard input and output cannot be
specified for the C compiler.

In addition, the program and variables are all read from the hard disk to RAM and executed, and
so the type of memory is not considered. Variables with initial values as well as constants are
written to RAM and used in execution. On the other hand, an embedded microcomputer normally
does not have a hard disk. There is no need to read the program; it is sufficient that the program be
stored directly in ROM. Variables must be in RAM. What to do about variables with initial
values? If initial values are not stored in ROM, they will be lost. But they are variable values, and
so must be present in RAM, which can be overwritten. There is no OS, and so rather than reading
variables with initial values from a hard disk, initial values placed in advance in ROM must be
copied to RAM before executing the main program. Variables without initial values, if they are
global variables, have an initial expected value of 0. However, when power is turned on, values in
RAM are not at 0; they do not become 0 until 0 is written.

5.2.1 Reset Processing

In reset processing, the following must be performed:

(1) SP initialization

(2) Memory initialization, copying of variables with initial values to RAM, and clearing of
variables without initial values to 0

(3) Calling of the main program (normally the main function)

Initialization of the stack pointer is the same as in assembler. In the C language, the stack pointer
(ER7), as a general-purpose register, cannot be specified for address storage*. This is because
functions intrinsic to the CPU are hidden insofar as possible, in order that program writing
methods can be shared.

* Recent C/C++ compilers enable such specification.

(Example) # program entry <function name> (sp = address)

Memory is initialized by the program described in chapter 5.2.2. Because it is a function, it is
called using the JSR instruction.

To call the main function, either a JSR or a JMP instruction is used. If not returning from the
main function (if the end of the main function is an endless loop), a JMP instruction may also be

181

used. When programming for a personal computer, this is a forbidden structure; but when
programming for an embedded microcomputer, returning is incorrect.

; Sample program for reset start
; Vector table
; H8/3048 sereis advance mode

;----------------------------
; symbol import
;----------------------------
 .import _main,_INITSCT
;----------------------------
; vector define
;----------------------------
 .section vect,data,locate=0
; Vector Symbol Factor Number
 .data.l reset ;Reset 0 Reset

;----------------------------
; jamp to main program
;----------------------------
 .section P,code
reset:
 mov.l #h'ffff00,sp
 jsr @_INITSCT ;Memory initialization (discussed later)
 jmp @_main

 .end

Function names and variable names used in a program
prepared in C can be used in assembly when preceded
by the underscore (_). However, there are no definitions
in the assembly file, and so the .IMPORT control instruction
is used to indicate that "there is no definition in this file,
but there is a definition in another file, so the assembler
should reference the definition in another file on linking,
without generating an error. If there is no such definition,
an error is returned at link time."

In assembler instructions, upper and lower cases are not distinguished. On the other hand, case
distinctions are made in section names and in symbol names, so caution should be exercised.

Anything can be used as a C function name. Normally processing performed by the OS is
performed by the user-defined function. Although a main function is always executed first from
the OS, any function can be executed first from a given program. Nor need there be a main
function at all.

5.2.2 Initialization of Variables

There are various kinds of variables. There are local variables which can only be used within a
function, and variables which, although local, retain their previous values even when the function
is called again. There are global variables, which can be used by any function. There are variables
which are hidden from other files. Let us try summarizing the properties of each of these kinds of
variables. In the case of the H8 C compiler, by default section names are as shown in table 5.2.

Doesn't 0 seem to be a reasonable initial value for a global variable?

However, when power is turned on, the initial values in RAM are indeterminate. The general-
purpose registers in the CPU are also, like RAM, indeterminate. If an initial value of 0 is needed,
the program must write 0 as the variable value.

182

Variables with initial values present further problems, however. An initial value is recorded in
ROM so that it never vanishes. But because it is a variable, it must be possible to overwrite the
variable value later. Values can only be overwritten in RAM. An initial value in ROM must
therefore be copied to RAM.

Table 5.2 Handling of Variables

Section Name

Program P

Variables without initial values B

Variables with initial values D

Constants C

Local variables Stack area (no section name)

In contrast with the case with assembler, positioning in memory is performed upon linking, with
the starting addresses of each section determined in keeping with ROM and RAM.

Here the D and B sections present problems. The D section must be copied from ROM to RAM;
the B section must be cleared to 0. However, the C compiler does not know how much memory it
has used without investigating. The program is prepared as follows.

Suppose that in the program, the section name after copying section D (in ROM) to RAM is X.

183

ROM

RAM
(including internal RAM)

Vector area

P
(program)

C
(constants)

D
(variables with initial values)

X
(copy of section D)

(name can be freely chosen)

B
(variables without initial values)

Stack area

@address: 8

Internal I/O registers

Copied before
calling main()

Cleared to 0 before
calling main()

Figure 5.1 Section Names and Memory Initialization

184

<List>

<Program> (sct_tb 1. src)

The control instruction .DATA.L is used to record
the section starting and ending addresses in section C.
The recorded data is specified using .EXPORT to enable
referencing from other files. A name is added to enable
accessing as a constant from a C language file.
Because it is section C, it is stored in ROM.

;***
;* sample for ISCT_TBL (CPU Mode is 16M ADVANCED Mode) *
;***
 .CPU 300HA ; CPU Mode
 .EXPORT _D_BGN ; Export Define
 .EXPORT _X_BGN
 .EXPORT _X_END
 .EXPORT _B_BGN
 .EXPORT _B_END
 .SECTION D,DATA,ALIGN=2
 .SECTION X,DATA,ALIGN=2
 .SECTION B,DATA,ALIGN=2
 .SECTION C,DATA,ALIGN=2

_D_BGN: .DATA.L (STARTOF D) ; D Begin Address
_X_BGN: .DATA.L (STARTOF X) ; X Begin Address
_X_END: .DATA.L (STARTOF X)+(SIZEOF X) ; X End Address
_B_BGN: .DATA.L (STARTOF B) ; B Begin Address
_B_END: .DATA.L (STARTOF B)+(SIZEOF B) ; B End Address
 .END

This file contains no instructions for execution by the CPU.

Each section is simply specified. As a result, the information of each section can be referenced
from this file.

If memory amounts and addresses are known, a copy program can easily be created.

Through this procedure, memory can be initialized. Following this, the program must be called.
This program calling was discussed in the previous section on reset processing, to which the
reader is directed. Using the most recent C/C++ compiler, this can be written in C source code.

185

<List>

<Program> (init sct. c)

/**/
/* sample for INITSCT (CPU Mode is all Mode) */
/**/
extern int *D_BGN, *X_BGN, *X_END, *B_BGN, *B_END;

void INITSCT(void)
{
int *p, *q;

 for(p=X_BGN , q=D_BGN ; p < X_END ; p++ , q++)
 *p = *q; /* Section D Initialize */

 for(p=B_BGN ; p < B_END ; p++)
 p = 0; / Section B Initialize */
}

D_BGN and B_END are treated as pointers to 16-bit int types. However, because the values are
in ROM, they can only be treated as constants, and so new pointer variables (*p, *q) are
prepared, and on copying between pointers, values are cleared to 0.

In the program, these are handled as variables; but at compile time, they are D section addresses.
However, we wish the program to actually use section X, the address in RAM after copying.
Hence the address must be changed. This is performed as a ROM option at link time.

>LNK -SUB=subfile.SUB
subfile contents
INPUT reset,initsct,isct_tbl,mainfile
LIBRARY c38ha.lib
ROM (D,X)
START P,C,D(400),X,B(0ffef10)
EXIT

The ROM option should at least be specified before the START option. The (D,X) specification
changes the section D address to the section X address.

5.3 Peripheral Function Programming

Logic programming is the same, whatever CPU is used. This is because high-level languages
absorb the differences in hardware to make all systems appear to be the same. However, things are
different with peripheral functions. Here effective access methods for peripheral functions are
introduced.

186

5.3.1 Register Access

The peripheral functions of the H8 microcomputer are allocated to a memory map. Hence
peripheral functions can be accessed in the same way as ordinary variables; however the following
two points need to be born in mind.

(1) The addresses of peripheral functions are fixed, and so pointers are used.

(2) The contents of peripheral functions change regardless of the program, and the volatile
specification should be used.

When treating peripheral function registers as variables, the address is specified during access.
Generally for high-level languages, when the programmer uses variables, he doesn't have to know
to what address or register the variable has been allocated. In fact, this has enabled the creation of
programming environments which are independent of the hardware. However, there are also cases,
such as the H8, in which peripheral functions are in a fixed area of the memory map, and their
contents must be overwritten. To resolve this problem, the C language has pointer functions which
enable specification of addresses to directly manipulate the contents of these addresses. These
pointer functions may appear to be a barrier to persons just beginning to use the C language; but
they are indispensable for microcomputer programming.

Let us now look at how pointers are used.

int *p;

Here p is a pointer variable; p stores an address. On the other hand, *p refers to the address stored
in address p. Hence int *p; indicates that the contents at the address indicated by p are of the
int type. Let us try storing a numerical value at p.

p = 1000;

Here p has become 1000. Now let's do this:

*p = 10;

This stores the value 10 in the int type variable area indicated by p; that is, the value 10 is stored
at address 1000. But if we write the above code and try compiling it, we get an error. The compiler
tells us that p is a pointer variable, but 1000 is a number and not an address, so that the types are
different and substitution is not possible.

However, if we force a type conversion (typecasting) and substitute the value, as shown below, we
obtain the desired result:

187

p = (int *) 1000;

This can be compiled. Here 1000 becomes an address which indicates an int type variable value.
This method can also be used to access peripheral functions. However, the source code listing is
long, and the program becomes difficult to maintain; so let's try the following instead.

define P (* (int *) 0×1000) /* 0x is hexadecimal notation */

P = 10;

By initially using #define to define the value, we can use P any number of times in the source
program without bloating the source code listing. The above just means that P is a pointer to an
int type variable at address 0x1000. We can similarly add definitions for each peripheral
function; but if we compile the following list, although no error occurs, the program does not run
as intended.

P = 10;

P = 0;

P = 8;

The intention was to store 10, 0, and 8 in P, in that order. But on compiling, we find that only an
object storing 8 is created. If this variable is in memory, the previously stored 10 and 0 have no
effect whatsoever, and only the final 8 makes a difference; hence the compiler "optimizes" the
program, and does not create objects which have no effect. However, this is not the case where
peripheral functions are concerned. Both 10 and 0 are meaningful; this is why instructions to store
them are given. To solve this problem, we can instruct the compiler not to perform optimization.
We use the following code.

define P (* (volatile int *) 0×1000)

Here "volatile" means rapidly changing or transient; the above code instructs the compiler that
"this variable is volatile, and so should not be optimized; objects are to be generated according to
the source code description."

On making this change, the intended objects are generated.

5.3.2 Interrupt Processing

Interrupt processing programs can be written in the C language.

Problems here include the fact that the RTE instruction must be used to return from the interrupt
procedure, and that if general-purpose registers are to be used, they must be saved in advance and
restored afterward. The #pragma interrupt directive solves these problems.

Interrupt vectors can be written in either C or assembler.

188

In order to describe a vector in C,
the function name is placed in an array,
and linked from address 0.

/*
 Sample for IRQ3
*/
#define P4DDR (*(volatile unsigned char *)0xffffc5)
#define P4DR (*(volatile unsigned char *)0xffffc7)
#define P4CR (*(volatile unsigned char *)0xffffda)
#define PBDDR (*(volatile unsigned char *)0xffffd4)
#define PBDR (*(volatile unsigned char *)0xffffd6)
#define ISCR (*(volatile unsigned char *)0xfffff4)
#define IER (*(volatile unsigned char *)0xfffff5)

/* function prototype declaration */
void irq3(void) ;
void main(void) ;
void initIO(void) ;
void initIRQ(void) ;

void main(void)
{
 initIO() ; /* I/O initialization */
 initIRQ() ; /* Interrupt controller initialization */
 set_cr(0) ; /* Interrupt mask disable */
 while(1) sleep() ; /* Infinite loop */
}

/* Interrupt function */
#pragma interrupt(irq3)
void irq3(void)
{
 PBDR = P4DR ; /* Interrupt data processing */
}

void initIO(void)
{
 P4DDR = 0 ; /* Port 4: input, port B: output */
 P4CR = PBDDR = 0xff ; /* Port 4: pull-up MOS on */
}

void initIRQ(void)
{
 ISCR = 0x08 ; /* Interrupt request: falling edge */
 IER = 0x08 ; /* IRQ3 terminal: enabled */
}

#pragma section vect
void (* const vec_table[])(void)={
 main,0,0,0,0,0,0, /* reset */
 0,0,0,0,0, /* nmi,trap0,trap1,trap2,trap3 */

 0,0,0,irq3,0,0,0,0, /* irq0 - irq7 */
 0,0,0,0, /* wovi,cmi */
 0,0,0,0, /* imia0,imib0,ovi0 */
 0,0,0,0, /* imia1,imib1,ovi1 */
 0,0,0,0, /* imia2,imib2,ovi2 */
 0,0,0,0, /* imia3,imib3,ovi3 */
 0,0,0,0, /* imia4,imib4,ovi4 */
 0,0,0,0, /* dend0a,dend0b,dend1a,dend1b */
 0,0,0,0, /* dend2a,dend2b,dend3a,dend3b */
 0,0,0,0, /* eri0,rxi0,txi0,tei0 */
 0,0,0,0, /* eri1,rxi1,txi1,tei1 */
 0,0,0,0 /* adi */
} ;

 irq3() specifies the interrupt processing function

189

In order to code this in assembler, the starting address of the function must be known. In
assembler, an underscore (_) is preceded by the function name.

Let us consider how to make this a bit easier. For example, IER, which determines control of
interrupts, may be manipulated in byte units, and each individual bit has a different meaning, so
that bit manipulations may also be performed. Let's try using a union and structure bit field.

We may use the following definition:

union { /* IER */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char wk :2; /* */
 unsigned char IRQ5E:1; /* IRQ5E */
 unsigned char IRQ4E:1; /* IRQ4E */
 unsigned char IRQ3E:1; /* IRQ3E */
 unsigned char IRQ2E:1; /* IRQ2E */
 unsigned char IRQ1E:1; /* IRQ1E */
 unsigned char IRQ0E:1; /* IRQ0E */
 } BIT; /* */
 } IER; /* */

Using a union, the same area of IER can be treated as an unsigned char type and in bit units
as a structure bit field, having names such as IRQ5E. This makes things easier to understand. This
IER is one register of the interrupt controller (INTC), and so to make things clearer, we add
declarations for all the registers in INTC. A listing based on this approach is as follows.

190

struct st_intc { /* struct INTC */
 union { /* ISCR */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char wk :2; /* */
 unsigned char IRQ5SC:1; /* IRQ5SC */
 unsigned char IRQ4SC:1; /* IRQ4SC */
 unsigned char IRQ3SC:1; /* IRQ3SC */
 unsigned char IRQ2SC:1; /* IRQ2SC */
 unsigned char IRQ1SC:1; /* IRQ1SC */
 unsigned char IRQ0SC:1; /* IRQ0SC */
 } BIT; /* */
 } ISCR; /* */
 union { /* IER */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char wk :2; /* */
 unsigned char IRQ5E:1; /* IRQ5E */
 unsigned char IRQ4E:1; /* IRQ4E */
 unsigned char IRQ3E:1; /* IRQ3E */
 unsigned char IRQ2E:1; /* IRQ2E */
 unsigned char IRQ1E:1; /* IRQ1E */
 unsigned char IRQ0E:1; /* IRQ0E */
 } BIT; /* */
 } IER; /* */
 union { /* ISR */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char wk :2; /* */
 unsigned char IRQ5F:1; /* IRQ5F */
 unsigned char IRQ4F:1; /* IRQ4F */
 unsigned char IRQ3F:1; /* IRQ3F */
 unsigned char IRQ2F:1; /* IRQ2F */
 unsigned char IRQ1F:1; /* IRQ1F */
 unsigned char IRQ0F:1; /* IRQ0F */
 } BIT; /* */
 } ISR; /* */
 char wk; /* */
 union { /* IPRA */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char B7:1; /* IRQ0 */
 unsigned char B6:1; /* IRQ1 */
 unsigned char B5:1; /* IRQ2,IRQ3 */
 unsigned char B4:1; /* IRQ4,IRQ5 */
 unsigned char B3:1; /* WDT,RFSHC */
 unsigned char B2:1; /* ITU0 */
 unsigned char B1:1; /* ITU1 */
 unsigned char B0:1; /* ITU2 */
 } BIT; /* */
 } IPRA; /* */
 union { /* IPRB */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char B7:1; /* ITU3 */
 unsigned char B6:1; /* ITU4 */
 unsigned char B5:1; /* DMAC */
 unsigned char :1; /* */
 unsigned char B3:1; /* SCI0 */
 unsigned char B2:1; /* SCI1 */
 unsigned char B1:1; /* A/D */
 } BIT; /* */
 } IPRB; /* */
}; /* */

#define INTC (*(volatile struct st_intc *)0xFFFFF4)
/* INTC Address*/

191

The H8/3048F incorporates numerous peripheral functions. The addresses of these peripheral
functions are fixed and are not changed; hence it is convenient to declare all of them from the
start. It's a good idea to prepare a file containing only declarations and to use an #include
statement to include the file as necessary. An example of such a file is included in the APPENDIX
as 3048f.h.

5.4 Basics of the C Language

5.4.1 Operators

Operator functions are summarized in table 5.3.

The order of priority (precedence) of operators and their connection properties (left or right) are
described in table 5.4.

5.4.2 Control Statements

Here the operation of control statements is summarized.

Structure of an if statement

if (expression)

statement 1

[else

statement 2]

Expression
evaluation

False

True

Execution of
statement 1

Execution of
statement 2

Figure 5.2 if Statement

192

Structure of a switch statement (no break statement)

switch (expression)

{

case constant expression 1:

statement 1

case constant expression 2:

statement 2

case constant expression n-1:

statement n-1

default:

statement n

}

Expression

Statement n

Statement n-1

Statement 2

Statement 1

Constant
expression 1

Constant
expression 2

Constant
expression n-1

None of constant expressions
1 through n-1

Figure 5.3 switch Statement

Structure of a switch statement (with break statement)

switch (expression)

193

{

case constant expression 1:

statement 1

break;

case constant expression 2:

statement 2

break;

case constant expression n-1:

statement n-1

break;

default:

statement n

}

Expression

Statement nStatement n-1Statement 2Statement 1

Constant
expression 1

Constant
expression 2

Constant
expression n-1

None of constant expressions
1 through n-1

Figure 5.4 switch Statement

194

Structure of a for statement

for ([expression 1]; [expression 2]; [expression 3])

statement

Expression 2
False

True

Statement execution

Expression 3

Expression 1

Figure 5.5 for Statement

Structure of a while statement

while (expression)

statement

Expression
evaluation

False

True

Statement execution

Figure 5.6 while Statement

195

Structure of a do-while statement

do

statement

while (expression);

Expression 2
False

True

Statement execution

Expression 3

Expression 1

Figure 5.7 do-while Statement

196

Table 5.3 Frequently Used Operators

Operator Function Notes

- Negative sign

+ Positive sign

~ Bit inversion

-- Decrement

+ + Increment

& Variable address &a is the address at which the
value of variable a is stored

Single-term operators

* Content referenced by
pointer variable

*p is the value referenced
by p

- Subtraction

+ Addition

* Multiplication

/ Division

% Remainder of integer
division

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

&& Logical AND (true or
false)

|| Logical OR (true or false)

>> Right-shift (variable name) >> (number of
bits to shift)

Two-term operators

<< Left-shift (variable name) << (number of
bits to shift)

197

Operator Function Notes

= Assignment

+= Assignment after addition

-= Assignment after
subtraction

/= Assignment after division

%= Assignment after
remainder

<<= Assignment after left-shift
operation

>>= Assignment after right-shift
operation

&= Assignment after logical
AND

|= Assignment after logical
OR

Assignment operators

^= Assignment after logical
exclusive OR

= = Equality

!= Inequality

> Greater than

< Lesser than

>= Greater than or equal to

Comparison operators

<= Lesser than or equal to

198

Table 5.4 Precedence and Connectivity Rules for Operators

Operator Connectivity rule*4

() [] -> . ++ -- * 1 Left-hand

! ~ ++ -- + - * & sizeof * 2 Right-hand

(type) Right-hand

* / % * 3 Left-hand

+ - * 3 Left-hand

<< >> Left-hand

< <= > >= Left-hand

= = != Left-hand

& * 3 Left-hand

^ Left-hand

| Left-hand

&& Left-hand

|| Left-hand

?: Right-hand

= += -= *= /= %= &= ^= |= <<= >>= Right-hand

, Left-hand

Notes
1: () denotes a function call, [] calculation of the indices of an array, -> and . the element of

a structure or union, ++ and -- postposition increment and decrement, respectively.
These operations take highest precedence.

2: These operators are single-term operators. ++ and -- denote preposition increment and
decrement, respectively.

Ex.: -a (sign operation), *p (indirection operation), &b (address operation)
3: These operators are two-term operators.

Ex.: a-b (subtraction), a*b (multiplication), a&b (bitwise AND)

4: This indicates the order of calculation when evaluating an expression.
Left-hand connectivity: Calculation is performed from left to right.
Ex.: a+b-c (first "a+b" is evaluated, then c is subtracted from the result)
Right-hand connectivity: The value of the expression to the right of the operator is
determined, and then the operator operation is executed.
Ex.: a+ = b = c (first c is assigned to b, and the result is then added to a and assigned
to a)

199

5.4.3 Features of Structures, Arrays, and Pointers

1. Arrays

An array is a collection of data items of the same type. An array is declared as follows.

Example 1: int xy[10]; This is an array of int type variables, with 10 elements in the
array; here the array name xy indicates the starting address of the array.

Example 2: char ab[2][2]; This is a two-dimensional array of char type variables, with
a total of four elements; storage space is allocated in the order ab[0][0],
ab[0][1], ab[1][0], ab[1][1] .

To set the initial values of an array, the initial values are inserted within {} , delimited by commas.
If the number of initial values is insufficient relative to the number of array elements, zero is
automatically assigned to the remaining elements. Also, if initial values are set for an array, the
number of elements can be omitted.

Example 3: int xy[10] = {1,2,3}; /* xy[3] through xy[9] are set to zero */

int ab[][2] = {{0,1},{2,3}};

2. Structures

Structures are used to handle a number of variables of different types.

The declaration of a structure is as follows.

struct [tag name] {

members

} [variable name];

Both [tag name] and [variable name] may be omitted.

The members of a structure which is not an array are referenced as follows.

Example 1

struct person { /* you.name[0] is the 0th element in the name array of you */
char name[5] ; /* you.name[3] is the 3rd element in the name array of you */
int age ; /* you.age is the age of you */
} you ; /* you.name is the starting address of the name array of you */

In a structure array, after the variable name, the subscript is written in brackets [] followed by the
member name.

200

Example 2

struct person { /* you[0].name[0] is the 0th element of the name array in the 0th you */
char name[5] ; /* you[1].name[3] is the 3rd element of the name array in the 1st you */
int age ; /* you[1].age is the age of the 1st you */

} you[3] ; /* you[2].name is the starting address of the name array in the 2nd you */

3. Pointers

Pointer type variables handle addresses at which data is stored. When declaring a pointer type
variable, an asterisk (*) is preceded by the variable name.

Example 4 int a,b,*ip; The variable ip is declared as a pointer variable
referencing an int type value. However, at the time of its declaration, it is not
determined that what the pointer variable points to.

Example 5 ip=&a; &a means the address at which the variable a is
stored. That is, the pointer variable ip is a pointer to the variable a. As a result,
the pointer variable ip points to a definite place, namely, the address of the
variable a.

Example 6 b=*ip; Here *ip represents the data in the memory location
indicated by the pointer variable ip . The result is the same as declaring b=a; .

In general, a variable enables manipulation of a value by specifying the variable name, without
any need to know where in memory the value is stored. General-purpose registers of the CPU may
be used, or the value may be stored in memory. However, in programs for embedded
microcomputers there are some types of data which are better handled by specifying addresses.
One example of this is the peripheral functions incorporated in the H8/300H.

It is at times like this that pointer functions are used. Pointers are memory addresses. This is an
area in which the C language is less like a high-level language which hides the details of the
underlying hardware.

5.4.4 Function Calls

When creating multiple functions and making calls between functions in machine language, the
BSR or JSR instructions are used to call subroutines. When calling a function, the stack area is
used. If a function has arguments, general-purpose registers and the stack area are used to pass the
arguments. General-purpose registers can be used to pass up to four char or int types, or up to
two long or pointer types. If argument lengths exceed this, the stack is used.

General-purpose registers are used more or less as follows.

201

Table 5.5 Function Calls and General-Purpose Registers

Register Purpose of Use Contents Preserved Across
Functions

ER0 Arguments, return values (function
values)

ER1 Arguments

ER2 to ER3 Work area

Not preserved

ER4 to ER6 Register variables

ER7 Stack pointer

Preserved

Registers whose contents are preserved have their values saved to and restored from the stack by
the called function.

5.4.5 Declarations and Storage Classes

Where are variables stored? And, how do they appear from other files? The key to these questions
lies in storage classes.

Depending on where it is declared, a variable is either of the following:

(1) A global variable

(2) A local variable

A global variable can be referenced from any function, across functions. It is stored at a specific
memory address.

Variables declared within a function: Local variables

Variables declared outside functions: Global variables

In contrast, local variables can only be used within the function in which they are declared.

In addition, there are the following methods of variable use:

*auto storage class

The initial value is set each time the function is called. If there is no initial value setting, the value
is indeterminate.

*static storage class

Initial values are set at the time the program is created. If there is no initial value setting, the value
is zero.

202

The functions and features of different variable types are summarized in the following table.

Table 5.6 Place of Declaration and Storage Class of Variables

Place of DeclarationStorage Class

Within a Function Outside Functions

None Local variable of the auto storage class
(variable value not preserved)

Global variables; variable names are
external names, and only one instance
of each variable name is allowed
among multiple files. If declared as an
extern storage class, the variable can
be referenced from a program created
in a different file.

auto As above Cannot be declared (syntax error)

static Local variable of the static storage
class (variable value is preserved)

Global variable of the static storage
class. Cannot be referenced from a
program created in a different file.

extern Global variable reference. Declaration
indicating that the declaration to
actually secure storage space is
performed outside the function.

Global variable reference declared by a
program created in a different file.
Referencing of global variables in the
static storage class is not possible.

register Local variable having the same
properties as the auto storage class.
CPU registers allocated as the storage
location; program execution efficiency
and memory efficiency are improved as
a result. However, the number of
variables which can be so allocated
differs depending on the CPU.

Cannot be declared (syntax error)

The meanings of storage classes in function definitions are as follows.

Table 5.7 Function Storage Classes

Storage Class Properties of Function Name Properties of Function

None External name Can be called from a function in a
different source file

static Internal name Cannot be called from a function in a
different source file

In order to use C program functions and variables from an assembler program, an underscore (_) is
preceded by the function name or variable name.

203

Chapter 6 EXTERNAL MEMORY INTERFACE

A single-chip microcomputer can only use on-chip memory. Memory cannot be expanded, even if
internal memory is insufficient by a single byte. However, in addition to single-chip mode, the
H8/3048F has a mode which enables external memory expansion. Using this function, memory
and peripheral functions can be added.

6.1 Memory Interface

Memory is a storage device. Specifically, it is an IC which only has functions for storing new data
according to instructions from the CPU, and for outputting currently stored data to the CPU.
When memory is connected to the CPU, it is a master (CPU)-slave (memory) relation.

01
01

11
00Row 2

Column 1

Row 2

Column 1

Row 0,
column 0

Memory chip

Address

Data

11
11

00
00

Row 0,
column 0

Memory chip

 = low level

CS = high level

CPU

01
01

11
00

Chip
selection

Figure 6.1 Understanding Memory Connections

204

Taking SRAM as an example, the method used to connect memory is explained below.

Memory is a storage device; it can be regarded as a kind of dresser or chest, say, with numerous
small drawers (holding eight bits each), or as a kind of hotel or apartment. The contents of the
drawers cannot be seen from outside. Likewise, looking at the memory chip from outside tells us
nothing about what is stored inside.

The memory device has its "drawers" arranged in numerous rows and columns. The drawer to be
used is specified as a row number and a column number; addresses are used for this. Addresses
begin with row 0, column 0.

If one memory device is insufficient, a second or third can be added. All the memory devices have
a "row 0, column 0", and so the CPU must also specify which memory device is to be accessed.
For SRAM, this is the chip selection (CS) function. Even if lots of memory is connected, the
entry/exit "door" is controlled by CS, and only one device has its "door" opened.

6.1.1 Basics of Memory Connection

The CPU manipulates memory and the peripheral-function registers only during reading and
writing.

Reading: Instructions, data

Writing: Data

In order to connect memory, an address bus, data bus, and also a control signal indicating the
current bus state are needed. Control signals are often different for different CPU products.

205

Address
decoding

Upper address
 (chip selection)
Lower address

(selection within chip)
Address

Selection

I/O7 to I/O0

OE

G

WE

Address

Selection

I/O7 to I/O0

OE

WE

Data (D7 to D0)

Data (D15 to D8)

RD
(Read cycle)

AS
(Address is output) Yn

HWR
(Even-numbered address write cycle)

LWR
(Even-numbered address write cycle)

H8/3048F Memory

Example for a 16-bit bus

Figure 6.2 CPU and Memory

As shown in figure 6.2, even when signal names in the CPU and memory are different, there are
signals with the same functions; these are connected. A logic circuit is required for connections
only in the case of CS. The circuit differs depending on the address to which the memory is
connected. This circuit must be designed. For determination of the address to which the memory
is connected, the address bus upper signal and AS is used. This circuit is called the address
decoding circuit.

For example, when reading an instruction, the following operations are performed.

CPU

*The instruction stored at an address specified by the PC is to be read.

The CPU outputs the "address" to the address bus, and tells the memory device it "wants to read"
the instruction by setting the RD signal to active (called "assert"). The CPU has told the memory
device what it wants, and so afterward waits for the memory device to respond.

206

Memory

*The memory operates according to the CPU's instruction, responding with "This is what was
stored at the address".

"Oh, you're calling me?" is conveyed by CS. "The address" is conveyed by the address data. There
is no order to the input of signals; the address is input first, and the CS second, and vice versa. If
all the signals do not get together, however, the desired operation will not be performed.

Signals appear in bus cycles as shown in Fig. 6.3, over multiple clock cycles based on the CPU
clock.

Operations of a signal over two clock cycles are as follows.

First Clock Cycle Second Clock Cycle

From rising edge From falling edge On falling edge

Common Address output

AS output

Address output stopped

AS output stopped

Reading RD output RD output stopped

Data reading

Writing Data output xWR output xWR output stopped

Data output stopped

Note: x is H or L

When the CPU accesses memory it outputs the address access, and indicates by the AS (Address
Strobe) signal that the address was output correctly. This signal is low-active. With the output of
this signal, the memory device learns that the CPU wants to do something and has started a bus
cycle. Thereafter, whether this is a read or a write operation is indicated by the RD or by xWR
signal (x = H or L). With these, the memory device can confirm all of what the CPU wants to do.
On learning this, next it is the memory device's turn to perform a task. If this is a read operation,
the data at the specified address must be output to the data bus; if a write operation, data output by
the CPU must be stored within the memory.

207

ø

Address

AS

RD

HWR

Data

T1 T2 T3 T1 T2 T3

Setup time

Access time
(time for use by
decoding circuit

and memory)

Setup time
(memory)

Hold time Hold time

Write cyclesRead cycles

ø

Address

AS

RD

HWR

Data

Data

 Bus cycle example (three clock cycles)

 Bus cycle example (program wait)

CPU: Output of all information completed

CPU: Output of all
 information
 completed

CPU: Data
 read time

Interval during which
data must be output
from memory

CPU: Write completed, bus cycle ended

SRAM written at this point

Time

T1 T2 Tw T3

From 0 to 3 clock cycles
can be set by the program

ø

Address

AS

RD

HWR

Data

Data

 Bus cycle example (two clock cycles)

T1 T2

Insertion of wait cycle
not possible

Figure 6.3 Bus Cycles

208

The CPU does not know whether the memory read or write operation has been completed;
however, after a predetermined amount of time has elapsed it ends the bus cycles, and moves on
to the next operation.

Operations are performed in this manner, and so in order to connect a memory device,

(1) The address to which the memory device will be connected must be considered; and,

(2) A circuit must be designed, and timing studied such that the memory can operate in
coordination with the CPU.

6.1.2 Memory Interface Design

The H8/3048F can be connected to a maximum 16 Mbytes of memory.

Below an example of the design of a circuit which connects 4 megabits (512 k words x 8-bit
configuration) of SRAM is described.

Circuit Design

First, the address to which the memory is to be allocated is determined. If external memory is
used, the memory containing address 0 must be ROM. (Please refer to the chapter on resets.) Any
kind of memory may be connected to all other addresses. If a 16-bit address space (H'000000 to
H'007FFF and H'FF8000 to H'FFFFFF) is used, the program can be made smaller and execution is
faster; hence if possible, addresses should be used beginning with these. However, if internal
RAM and peripheral functions overlap at an address, the internal functions take precedence, and
external memory cannot be used.

209

Address
decoding

Upper address
(A23 to A20)

Lower address
(A19 to A1) Address (A18 to A0)

CS

I/O7 to I/O0

OE
WE

Address (A18 to A0)

CS

I/O7 to I/O0

OE
WE

D7 to D0

D15 to D8

RD
HWR

LWR

H8/3048F Memory

Even-numbered addresses
Even-numbered addresses

Odd-numbered addresses

Odd-numbered addresses

G

Y

Address
decoding

Upper address
(A23 to A19)

Lower address
(A18 to A0) Address (A18 to A0) Addresses start from A0 to

Addresses start from A1 to

CS

I/O7 to I/O0

OE
WE

D15 to D8

RD

AS

AS

HWR

H8/3048F Memory

G

Y

7 0

D15 D8

15 8 7 0

D15 D8 D7 D0

HWR LWR
Byte access control

 8-bit bus

 16-bit bus

512 k x 8-bit configuration

512 k x 8-bit configuration

512 k x 8-bit configuration

Figure 6.4 SRAM Connection Circuits

When addresses for memory connection are determined, a circuit to decode addresses is designed.
An address-decoding circuit looks at the address output by the H8/3048F, and if the address is for
the memory, it outputs a chip select signal.

Address Decoding Circuit

Let's try designing a decoder to connect to a 512-kbyte memory chip with addresses starting from
H'200000. Addresses range from H'200000 to H'27FFFF. When one of these addresses is output,
the address bus terminals A23 to A19 are at B'00100. There are no other states. This signal is
used.

210

H'000000

H'200000

H'27FFFF

H'FFFFFF

A23 A22 A21 A20 A19 A18 A17 A16 A15 ...
...
...

A0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 1 1

H'200000
H'27FFFF

Addresses which do not change within a 512-kbyte range Addresses within memory

CS

AS

512 kbytes

ø

Address

Decoder output
for address only

Decoder output
with added

T1 T2

Indeterminate

 Meaning of the AS signal

Indeterminate

Target address

When is asserted, power consumption
is the same as during operation

Figure 6.5 Decoding Circuit

211

A23
A22
A21

CS0 H'000000 to
H'200000 to
H'400000 to
H'600000 to
H'800000 to
H'A00000 to
H'C00000 to
H'E00000 to

16-Mbyte mode
2-Mbyte units

A19
A18
A17

CS0
CS1
CS2
CS3
CS4
CS5
CS6
CS7

CS1
CS2
CS3
CS4
CS5
CS6
CS7

H'00000 to
H'20000 to
H'40000 to
H'60000 to
H'80000 to
H'A0000 to
H'C0000 to
H'E0000 to

1-Mbyte mode
128-kbyte units

Decoder
 circuit

Decoder
circuit

Lower address
(A18 to A0)

Address (A18 to A0)

CS

I/O7 to I/O0

OE
WE

D15 to D8

RD

CS1

HWR

H8/3048F Memory

512 k x 8-bit configuration

Vcc

The initial state after reset is an
input port; measures must be taken
to prevent unintended selection.

H'200000

H'27FFFF
H'280000

H'3FFFF

512 kbytes

Because this area
is not decoded,
it appears the same
as the 512 kbytes.

Area 1
(2 Mbytes)

 Connection using
 internal decoder circuit

 Memory map

 Internal decoding circuit

Figure 6.6 Internal Decoding Circuit

Looking at the bus cycles, it appears that the address terminals all change at once; but normally
this is not the case. Some terminals change slightly earlier, others later. Thus the times at which
they change differ slightly, and so if only the address terminals are checked and decoding
performed, it is possible that CS will mistakenly be read as active for a short interval. In order to
prevent this, the AS signal is connected to the decoding circuit enable terminal.

The memory chip OE terminal is connected to the H8 RD, and the memory WE signal is
connected to the H8 HWR and LWR signals.

A WR signal is prepared in the 8-bit units of the data bus. If the bus is 16 bits, both are used; for
an 8-bit data bus, D15 to D8 and HWR are combined. In a basic circuit design, all that is
necessary is an address decoding circuit. So the H8/3048F provides this circuit internally.

Memory Management Area

The internal decoding circuit decodes the upper three bits of the address, and so this circuit
divides the memory space into eight equal parts. The range of the addresses of one of these parts
is called an area; areas are numbered from 0 to 7.

212

The bus cycle configuration can be modified in area units. Possible modifications are shown in
Table 6.1.

By incorporating a decoding circuit, an external circuit can be eliminated, and slower memory can
also be connected. If decoding for smaller spaces is necessary, an external decoding circuit should
be connected.

Timing Design

Selection is possible according to memory performance. Memory that can be used when the CPU
is operating at 16 MHz is shown in the table. The SRAM chips that can be connected are products
which respond within the times indicated in the table. Characteristics of HM 628512-70 ns
products are also shown in the table. Except for the read data hold time (tRDH), if CPU time >
SRAM time, the product can be used. Accordingly for three or more bus clock cycles, 70 ns
SRAM can be used.

Table 6.1 Area Management and Bus Cycles

Bus width 8 or 16 bits

Clock cycles 2 or 3 (wait states possible for 3)

Wait modes Program, terminal wait, terminal auto wait (one total)

No. of wait cycles

 Program

 Terminal wait 0

 Terminal wait 1

 Terminal auto wait

0 to 3

While WAIT terminal is low

Cycle set by program + while WAIT terminal is low

Area where WAIT is low only, cycles set by program

Memory types Standard or DRAM (area 3 only)

Table 6.2 Access Times (CPU Operating Clock = 16 MHz)

Read

Bus Clock CyclesH8/3048F notation, and corresponding SRAM AC characteristic
notation 2 3 1 wait

CPU Access time 1/2 tACC1/tACC2 60 120 182.5

Address access time tAA 70 maxSRAM

CS access time tCO 70 max

CPU Access time 3/4 tACC3/tACC4 30 95 157.5

SRAM OE access time tOE 35 max

CPU Read data hold time tRDH 0 0 0

SRAM Output data hold time tOH/tHZ 10 min

213

Write

CPU Write data setup time tWDSI/tWDS2+tWSW2 15 60 122.5

SRAM Input data set time tDW 30 min

CPU Input data hold time tWDH 20 20 20

SRAM Input data holding time tDH 0 min

CPU Write pulse width 1/2 tWSW1/tWSW2 35 65 127.5

SRAM Write command pulse width tWP 50 min

Units: ns

Comparing AC characteristics, it is possible to judge whether a memory chip can be used;
important points in the timing design which is the basis for this table is whether the following
timing can be maintained:

Reading (H8 timing)

Read data setup time (tRDS)

Read data hold time (tRDH)

Writing (SRAM timing)

Input data set time (tDW)

Input data holding time (tDH)

The CPU read is performed on the clock falling edge.

*Read data setup time

Internal reading is performed during this time; because the signal is propagating internally,
however, if it does not arrive at the H8/3048F slightly earlier, reading will not be executed
properly. This time is called the setup time. In the H8/3048F, the access time (tACC 1/2/3/4)
indicates the maximum amount of time the memory can use, while setting aside this setup time.

*Read data hold time

When reading is completed, the H8/3048F closes the circuit which latches data in sync with the
RD negation (switching from low level to high level). Before closing the circuit, the data must not
be lost; the read data hold time (tRDH) indicates how long the data bus signal must be held relative
to the RD signal negation time.

214

ø

Address
CSn

Address
CSn

RD

HWR

Data

T3

Time requested
by CPU

Interval of data
output from memory

Read

ø

RD

HWR

Data

T3

Time requested
by memory

Interval of data
output from CPU

Write

CPU:tACC4
Memory:tOE

tRDS tRDH tDW tDH

Memory:tAA,tACS

CPU:tACC2

Can be used if CPU time is
longer than memory time

(CPU read data setup time
(tRDS) is secured)

Can be used if CPU time
is longer than memory time
(memory input data set time

(tDW) is secured)

Figure 6.7 Setup Hold Time

215

tOE(OE output delay time)

tACS(CS access time)

 Memory read operation

When all conditions
are met, data is output

(cf. figure on right)

Address

CS

OE

Data

WE

tDH(Hold time)

tDW(Setup time)

tWP(Pulse width)

 Memory write operation

Address

CS

WE

Data

OE

tAA(Address access time)

Address

CS

OE

Data

tCS(CS access time)

Address

CS

OE

Data

tOE(OE output delay time)

Address

CS

OE

Data

Case where address input is last

Case where CS input is last

Case where OE input is last

Write timing difference (CS)

Write timing difference (WE)

CS

WE

Data

CS

WE

Data

tAA(Address access time)

Figure 6.7 Setup Hold Time (cont)

216

Bus width

ABWCR

0: 16 bits
1: 8 bits
n: 0 to 7

0: 2 clock cycles
1: 3 clock cycles + wait

Wait control enable (effective when 3 clock cycles set)

0: Wait on pin only
1: Program wait + pin

n

ABWn

Access state

ASTCR

n

ASTn

WCER

WCR

n

WCEn

 Bus modes which can be set for each area

 Wait states settable by program (common to all areas)

7

—

1

—

6

—

1

—

5

—

1

—

4

—

1

—

3

WMS1

0

R/W

0

WC0

1

R/W

2

WMS0

0

R/W

1

WC1

1

R/W

Wait mode selection
0: Insert only wait cycles set
 by wait count
1: Ignore wait count setting
2: Wait count + pin
3: When pin asserted,
 insert only wait count cycles

Wait count
Wait cycles for
settings 0 to 3

Figure 6.7 Setup Hold Time (cont)

SRAM performs writing upon the earlier of CS negation and WE negation. The write is performed
on the WE rising edge. (This is because WE negation occurs earlier than CS negation.)

*Input data setup time

Same as the H8/3048F; if data does not arrive before this time, writing cannot be performed.

*Input data holding time

Holding time after writing. Normally 0 ns or longer; write data should not disappear before the
write time.

217

*Write pulse width

The minimum time is determined for which WE is asserted. Write data is output by the CPU
before xWR is asserted.

Timing design is performed to confirm that signals conform to the timing constraints described
above.

6.1.3 DRAM Interface

The H8/3048F has an internal DRAM interface circuit.

In addition to address multiplexing, DRAM differs from SRAM in having RAS (row address
strobe) and CAS (column address strobe) control signals. In addition, if DRAM is not refreshed,
its contents are destroyed. The H8/3048F incorporates all these functions, and so DRAM can be
directly connected and used. Only area 3 can be used, up to a maximum 2 MB. Connection is only
possible using a 16-bit bus width.

DRAM consists of storage elements (memory cells) which include capacitors and transistors
acting as switches.

Because DRAM uses capacitors to store data, the data cannot be stored for extended lengths of
time. The time that data can be stored differs among products, but is between 2 ms and 128 ms. In
order to continue data storage, the contents of the memory must be written once again before the
data is lost, in what is called a refresh operation.

218

Lower address Address

RAS

I/O15 to I/O8

WE
UCAS

I/O7 to I/O0

LCAS

Data(D7 to D0)

Data(D15 to D8)

WE
RAS

UCAS

LCAS

H8/3048F DRAM

ø

Address

RAS

UCAS,LCAS

WE

Data

T3T2T1 T3T2T1

Read

Vcc

Initial state after reset is an input
port, so measures must be taken to
prevent accidental selection

DRAM products with a x16-bit
configuration including those using
two CAS signals for byte access
control, and those using two WE
signals; either can be used.

DRAM bus width is
always 16 bits

Row address
input setup time

Column address
input setup time

RAS precharge time

Write data
setup time

Write data
hold time

Row address
input hold
time

Row address Column address

Figure 6.8 DRAM Connections

DRAM offers the advantage of larger storage capacities than SRAM. However, as a result the
number of address terminals is increased. Consequently the package size is increased, and the
mounted area on the circuit board is greater. In order to alleviate this problem, DRAM addresses
are multiplexed. All types of memory perform access by specifying rows and columns in a two-
dimensional planar storage space; here row addresses and column addresses are input to the same
terminal at different times. By this means, the number of terminals required is reduced by half.
The result is a dramatic reduction in mounting area.

219

If the microcomputer can also output addresses in two operations, no problems arise; but unlike
DRAM, both SRAM and ROM handle addresses in a single operation. Hence, a chip called a
DRAM controller is inserted between the microcomputer and the DRAM.

Let's try externally connecting the H8/3048F to a DRAM interface circuit.

This circuit performs address multiplexing, generation of the accompanying RAS and CAS
signals, and also performs refresh operations periodically.

Refreshing is performed one row at a time. DRAM specifications include indications such as 1024
cycles/16 ms. This means that 1024 refresh operations should be performed within 16 ms; hence a
timer is used to measure 16 ms, and when the time is up, 1024 read cycles are issued. This is
called a concentrated refresh operation.

DRAM memory cell
(1-bit storage configuration)

D
at

a
lin

e

Word line

Time

Capacitor
voltage

Refresh

If no refresh is performed,
data cannot be maintained.

R
ow

 a
dd

re
ss

de

co
de

r
ci

rc
ui

t

Column address
decoder circuit

Row address

RAS

Data bus

Column addressCAS

Address

RAS

CAS

OE

WE

Row address
input

Column address
input

Read data

Write data

Figure 6.9 Internal DRAM Configuration

220

On the other hand, a method in which one row is refreshed every 15.625 µs is called distributed
refreshing. The circuit is a distributed circuit. To perform a refresh, either RAS alone is asserted
and the row address applied, in a RAS-only refresh method, or CAS is first asserted and the
address is not applied, in a CAS-before-RAS (CBR) refresh method. This is a CBR circuit.

Address
multiplexer

Upper address

Lower address
Address

I/O15 to I/O0D15 to D0

ø
RD

HWR
LWR
CSn

RAS
UCAS
LCAS
WE
OE

H8/3048F DRAM

S

Y
A

B

Signal
generation

circuit

CLR

HWR
RD

CSn

ø

74LVC164(1)

74LVC164(2)

CLR

>

>

A
B

RAS

UCAS

LCAS

WE

OE

QA
QB
QC

QA
QB
QC

LWR
BACK

BREQ

TIOCA

Timer output for
refresh operations

Address
multiplexer

(Select)

Details

Figure 6.10 DRAM Interface Circuit (No Internal Controller Used)

221

All these kinds of circuits are incorporated in the H8/3048F. System sizes can be reduced.
However, most current DRAM chips are larger in size, 64 Mbits (8 Mbytes) and larger. The
H8/3048F functions supported only up to 2 MB maximum, and direct connection to larger chips is
not possible.

1
0

A22
A21

A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

H8/3048F DRAM

Output port {

16-bit bus width means
A0 is not used

NC

Address terminals insufficient

Figure 6.11 Large-Capacity DRAM Connection

However, by making a few changes to connections, as shown in the figure, even chips with larger
storage capacities can be used.

In the case of a 9-bit column address, the insufficient address bus width can be supplemented by
port functions, and a 2 Mbytes x 4 configuration can be connected to area 3.

2 Mbytes x 4

H'600000

H'7FFFFF

Figure 6.12 Large-Capacity DRAM Memory Map

In addition, the timer used to refresh DRAM is worth using even if no DRAM is connected, and
so is described below.

Refresh Timer

If DRAM is not refreshed, the contents of memory are lost. The refresh timer generates a refresh
cycle, like that shown in the figure, at the preset time.

222

This is called CBR (CAS-before-RAS) refresh; in normally read and write operations, when RAS
goes to active, CAS is at high level, but if CAS is forced to low level a refresh operation is
detected, and an internal address counter is used to refresh the data for one row's worth (one
page).

The refresh time interval is normally 15.625 µs. Below is an example in which the timer is set to
comply with this.

H'FF

H'00

Refresh
timer counter

Refresh
request

Refresh
request

Refresh RefreshCPU/DMAC CPU/DMAC CPU/DMACBus

RAS

CAS

Refresh interval (within 16.625 µs)

Refresh cycle
(CBR refresh)

Figure 6.13 Refresh Cycle

223

<Program> (smp_mem.c)

/*
 Memory interface(CPU mode=3,16MHz)

Area 0 Byte EPROM HN27C256HG-70 3
1 -
2 Word SRAM HM62832-25 2
3 Word DRAM HM514260-6 3
4 -
5 -
6 Byte I/O 5
7 -

*/
#include <machine.h>
#include "3003.h"
void initBSC(void) ;
void main(void) ;
void main(void)
{
 initBSC() ;
 while(1) ;
}
void initBSC(void)
{
 BSC.ABWCR.BYTE = 0x41 ; /* Set bus width */
 BSC.ASTCR.BYTE = 0xfb ; /* 2 clock cycle of area2 */
 BSC.WCR.BYTE = 0x02 ; /* 3 + 2wait clock */
 BSC.WCER.BYTE = 0x40 ; /* Enable WCR of area6 */
 BSC.BRCR.BYTE = 0x0 ; /* BREQ pin not use */
 RFSHC.RTCOR = 30 ; /* 15.6us > 62.5ns * 8 * 31 */
 RFSHC.RTMCSR.BYTE = 0x10 ; /* 1/8 clock , disable interrupt */
 RFSHC.RFSHCR.BYTE = 0xb9 ; /* Area3 is 2CAS,9bitcolumn DRAM */

/* Enable refresh. and wait 8cycle */
}

In order to connect DRAM, area 3 is set to a 16-bit width, and wait cycles to 0. In the refresh
controller, the time is set according to DRAM refresh requirements.

The CPU operating speed is set to 16 MHz, and the refresh counter operates at 1/8 of this clock
speed. (RFSHC.RTMCSR.BYTE = 0x10) Then the time per count is 0.5 µs. Refresh must be
performed within 15.625 µs, and so arrangements are made such that a compare match occurs
every 31 counts. At the 31st count, the setting is 30. (RFSHC.RTCOR = 30)

When the constant register and timer counter coincide, the timer counter is always reset, and is
restarted from 0.

The refresh timer requests an interrupt when a compare match occurs. When used for DRAM
refresh operations, an interrupt is not used; but if no DRAM is connected, the timer can be used as
a one-interval timer.

224

6.1.4 Example of Application of the Refresh Timer as an Interval Timer

A program which uses the timer as an interval timer is shown below.

Program (smp_rfsh.c)

#include <machine.h>
#include "3048f.h"
void initRfsh(void) ;
void main(void) ;
unsigned int count ;
void main(void)
{
 initRfsh() ; /* Initialize rfresh timer */
 while(1) ;
}
/*************************************
* Initialize Rfresh *
*************************************/
void initRfsh(void)
{
 RFSHC.RTCOR = 114 ;
 RFSHC.RTMCSR.BYTE = 0x58 ; /* 1/128 , enable interrupt */
}
/*************************************
* Interrupt handller *
*************************************/
#pragma interrupt(rfsh)
void rfsh(void)
{
 RFSHC.RTMCSR.BIT.CMF = 0 ; /* stop interrupt request */
 count++ ;
}

TRICKS TO COPE WITH INSUFFICIENT MEMORY

When memory is insufficient, the program structure and algorithms should be studied. There are
numerous techniques for reducing both program size and the size of data.

For example, as much processing as possible should be incorporated in common code,
encapsulated in subroutines. Variable sizes should be limited to only the necessary sizes. And
methods using CPU functions include the adoption of addressing modes which can shorten
instructions.

If memory is still insufficient, the following tricks can be used.

ROM

*Check whether there are any interrupts that are not used by the vector table.

Space reserved by the system, and interrupt request vector space for peripheral functions not being
used, can be used to store anything.

225

RAM

*Check whether there are any unused peripheral function registers.

For example, the ITU GRA and other registers can be read and written, and so can be used as 16-
bit memory. Of course the DMAC and other address registers can also be used. If terminals are
not being used, I/O port DR can be used as memory by setting them to output.

*Can the CCR U and UI bits be used?

U and UI are bits that can be used freely.

6.2 Peripheral Function Interface

Port functions and SCI functions are built-in, but in order to configure a complete system, various
other functions are necessary. Here the connection of functions other than memory is explained.

Compared with memory functions, peripheral functions use fewer registers, and so do not occupy
much of the memory map. That is, there is more input to the address decoder. Many functions
require another hold time, and appropriate measures must be taken.

Also, some products using signals differing from those for memory.

6.2.1 Port Expansion

Let's try connecting an I/O port to a bus. However, a dedicated IC is not used; in this example a
standard-logic IC is employed.

An output port need only store the data bus state, and so a D flip-flop or D-type latch is used. It is
configured to enable storage on the rising edge of HWR.

How about input ports? Data input to the terminal is read. In a read cycle, the input signal need
only be transmitted to the data bus, and so a bus buffer is used. The circuit is designed so that
when RD goes active, the buffer is enabled.

I/O ports can be utilized by employing a simple circuit.

226

LE

Data(D15 to D8)

RD

CSn
HWR

H8/3048F
74LVC373

74LVC244

G

OE

OE

Output port

Input port

Figure 6.14 Circuit Diagram

6.2.2 LCD Connection

Many LCD products employ the Hitachi LCD-II interface; let's consider connection of such a
product.

Chip selection employs the E (enable) active-high signal. Instead of separate RD and WE control
signals, a single R/W (read/write) signal is used.

Signal operations are not fast, and so often an I/O port is used to create a signal; but this
complicates the program, and in the interest of learning more about the memory interface, we here
use the bus.

The minimum active time of the E select signal is 450 ns. Before this signal goes active, the R/W
and RS (register select) signals must be fixed. There is no signal in the H8/3048F which performs
such an operation. It must somehow be created.

E

This is an enable signal. It is equivalent to a memory chip selection signal. When the E clock is at
high level, read data is output. During write operations, writing is on the E falling edge.

The frequency is 1 MHz. This is either created by 1/16 frequency division of the system clock φ,
or by using the ITU toggle output. The ITU toggle output has a long output delay time from φ of
100 ns, making it difficult to ensure bus cycle timing; it is simpler to divide the system clock
externally.

R/W

This indicates the data bus direction. Unlike the RD and WR signals, this signal does not indicate
a timing. There is no corresponding signal in the H8/3048F. Hence the HWR signal is used.

227

RS

A register within the LCD-II is selected. If the A0 terminal is connected, the register can be
positioned at continuous addresses.

CLR

Data(D15 to D8)

HWR
RD

CSn

ø

A0

WAIT

H8/3048F 74LVC164(1)

74LVC164(2)

CLR

>
E (chip selection)

RS(register select)
DB7 to DB0

R/W(read/write)

>

A
B

A
B

QE

QG

LCD

0: Command
1: Data()

Figure 6.15 Circuit Diagram

T1 T2 T3
QA

74LVC164(1)

74LVC164(1)

QB QC QD QE
QA

74LVC164(2)

74LVC164(2)

QB QC QD QE QF QG

ø

CSn

WAIT

RD

QE

QG

E

Data

HWR

Data

Figure 6.16 LCD Interface Timing

228

As the bus cycle,

(1) For the RS and R/W signals a 140 ns setup time is required before the E rising rises.

(2) A hold time from the E clock falling edge of 20 ns is necessary.

(3) Program waits are insufficient, and so the WAIT signal must be used.

In order to synchronize with the E clock rising edge, waits are inserted such that the CPU T3
coincides with the E clock falling edge.

Because a 140 ns setup time for the E clock rising edge is required, if the bus cycle is four clock
cycles before the E clock rising edge, the bus cycle is executed in the E cycle; if fewer than four
clock cycles, the next E clock cycle is used for the bus cycle. Consequently the WAIT signal is
asserted by CSn, and T3 is made to coincide with the E falling edge in accordance with issue of a
bus cycle.

The bus interface settings in this case are as follows.

<Program> (smp_lcd)

void initBSC(void)
{
 BSC.ABWCR.BIT.B7 = 1 ; /* Set bus width */
 BSC.ASTCR.BIT.B7 = 1 ; /* 3 clock cycle of area7 */
 BSC.WCR.BYTE = 0x03 ; /* 3 + 3wait clock */
 BSC.WCER.BIT.B7 = 1 ; /* Enable WCR of area7 */
 BSC.BRCR.BYTE = 0x0 ; /* BREQ pin not use */
}

As a result, exchanges with the LCD are now possible. The LCD operates on command. These
however are not "commands", but simply data as seen from the CPU. Commands are used to
initialize the LCD circuits and to write display data.

229

Chapter 7 Using Applications More Effectively

Together, we’ll try using the microcomputer to create various systems.

The key to doing this effectively is having a good understanding of the devices that are being run
through the microcomputer. It’s important to know what means are used to control the various
devices. As long as you are familiar with the device at the other end, you can figure out for
yourself what the microcomputer needs to do to control it. Then you can consider how internal
peripheral functions can be put to work, or how to compensate for functions that are lacking,
within that framework.

We will use the C language to introduce the programs.

First, let’s look at the exterior of the CPU board used for confirmation.

230

7.1 Electronic organ: Using the timer to turn on the piezoelectric
sounder

The piezoelectric sounder is an element which is used to create the bell sound when a cellular
phone rings, or to create the beeping sound used in household appliances.

There are two types of piezoelectric sounders, a separately-excited vibration type and a self-
excited vibration type. The self-excited vibration type produces a sound at a certain frequency
whenever a voltage is applied. With the separately-excited vibration type, a diaphragm moves
each time a pulse is applied from an external source, so sounds can be produced at various scale
notes. Let’s try using this type.

PA2/TP2/TCLKC/TIOCA0

GND

Piezoelectric buzzer

To use this terminal as
TIOCA0 or toggle output,
specify ITU0.TIOR.BIT.
IOA = 3.

Fig. 7-1 Sounder Circuit

When the sound is actually produced, the sine wave contains no extra high-frequency components,
so a more pleasant sound is produced. Since the rectangular waveform of a timer output makes it
easy to output a waveform, it is used here.

Toggle output works best when the timer is being used for this purpose. The general register when
using toggle output is set so that comparison matching occurs at twice the frequency to be output,
for instance, at 880 Hz if the sound to be output is the “A” at 440 Hz.

The following shows the relationship between the frequencies of scale notes and the general
registers.

231

Table 7-1 Scale Notes and Frequencies

Scale Notes Frequency General Register Value

A 440 18181

A# 466.16 17160

B 493.88 16197

C 523.25 15288

C# 554.27 14432

D 587.33 13620

D# 622.25 12856

E 659.26 12134

F 698.46 11453

F# 739.99 10810

G 783.99 10203

G# 830.61 9630

A 880 9090

The numeric value for the general register is set up so that the operating frequency (ø) of the CPU
is 16 MHz, and the ITU increments and toggle output is produced at ø.

Calculating the frequency

Frequency = 440×2^(x/12)

(x=0,1,2,3,4...)

One octave consists of 12 keys on the piano, counting both the black keys and the white keys. The
frequency of the sound can be calculated using the formula given above. At one octave, the
frequency doubles. Because calculating each frequency takes a lot of time and effort, let’s do it
ahead of time. The data for one octave should be done in advance. The data for the scale one
octave higher can be obtained by shifting one bit to the right. The CPU can easily calculate shifts,
so you can have the CPU calculate it each time you need a shift.

Calculate the compare/match value for a timer that corresponds to this frequency, and write it to
the GRA by setting the switches appropriately.

Let’s look at a program that turns the sound from the switch connected to P83 on and off, and uses
the switch connected to the port to set the octave and scale note.

232

[Program] smp71_1.c

/*
 Sample program for buzzer
 use : I/O = key scan
 ITU0 = sound
 */
 #include <machine.h>
 #include "3048f.h"

 void main(void) ;
 void initIO(void) ;
 void initITU(void) ;

 volatile unsigned char key , oct ;
 const unsigned short kai[] = {
 /* A B C D E F G */
 36364,34323,32396,30578,28862,27242,25713,24270,22908,21622,20408,19263
 } ;

 void main(void)
 {
 initIO() ; /* Initializes I/O port */
 initITU() ; /* Initializes ITU timer */

 while(1) {
 while(P8.DR.BIT.B3) ; /* Waits until P83 goes low level */
 oct = P4.DR.BYTE >> 6 ; /* Sets two bits of P47 and P46 to oct variable */
 key = P4.DR.BYTE & 0x0f ; /* Sets P43 to P40 to key variable */
 ITU0.GRA = kai[key] >> oct ; /* Writes data for scale note to GRA0 */
 ITU.TSTR.BIT.STR0 = 1 ; /* Starts ITU0 */
 while(!P8.DR.BIT.B3) ; /* Continues to produce sound until P83 goes high level */
 ITU.TSTR.BIT.STR0 = 0 ; /* Stops ITU0 */
 }
 }

 void initIO(void)
 {
 PB.DDR = 0xff ; /* PB7 - PB0 : output (display LEDs) */
 P4.DDR = 0 ; /* P47 - P40 : input (switches) */
 }

 /*
 ITU0 : BUZZ
 */
 void initITU(void)
 {
 ITU0.TCR.BYTE = 0x20 ; /* 1/1 clock , clears IMFA */
 ITU0.TIOR.BYTE = 0x03 ; /* TIOCA0 : toggles */
 }

The eight switches connected to port 4 are used to input scale notes. The upper two bits of the
switches (two switches) specify the octave, and the lower four bits (four switches) specify the
scale note within the octave.

Look at the switch connected to bit 3 of port 8. If it is low level, sound is produced, and if it is
high level, the sound stops.

233

In this way, the pulses generated from the ITU can be used for performance.

Now let’s expand this to a system that has 16 keys.

If there are 16 switches, and we tried to connect each switch to its own input port, we would need
16 input port terminals. If we had 100 switches, we would need 100 terminals. In other words, we
would need as many terminals as there were switches. We don’t have that many terminals, so let’s
figure out how to make the system work with fewer terminals than switches.

The reason that we need so many terminals is so we can check a lot of switches at one time. In that
case, what if we checked fewer switches at one time, and then accommodated a lot of switches by
switching between them? This is an operation that is usually called a key scan. It takes advantage
of the difference between the speed at which the microcomputer operates and the speed at which
humans can react. For example, even if it takes the microcomputer 100 ms (0.1 seconds) to
respond after a switch has been pressed, it appears to the person as if the microcomputer has
responded immediately. We can make use of this difference between the actual time and the
perception of it.

100 ms is an extremely long time in microcomputer terms. A microcomputer running at 16 MHz
could execute 800,000 instructions in that time. So we can use a timer to request an interrupt every
100 ms. We can use interrupt processing to check switches.

If we have 16 switches, we can read all of them by reading four at a time, four times. To read
switches, we need a pull-up resistance and a GND connection. We’ll use four output ports to
switch among the switches being read four at a time, and we’ll use low-level output to connect
only the four switches being read to GND. The output ports to which the other twelve switches not
being read just then are connected will be set to high level or high impedance. If it is possible for
two or more switches to be pressed at the same time, note that the output terminal will be shorted
by the switches if they are not set to high impedance.

Using this method, we can accommodate 16 switches with eight ports. If we had 64 switches, we
would need only 16 ports. This significantly reduces the number of ports being used.

234

PB3

PB2

PB1

PB0

P73

P72

P71

P70

PB3

PB2

PB1

PB0

P73 to P70

Vcc

Detailed view of
switch section

High impedance Low
level

Strobe
interval

Status of the four
switches connected
 to PB3

Outputting a high level prevents
short-circuiting of the port output
by pressing two switches at the
same time.

Interval (100 ms)

Keyboard reading operation

Keyboard circuit

DDR = 1 (output)
 ,DR=0

DDR = 0 (input)

Fig. 7-2 Key Scan Circuit

235

[Program] smp71_2.c

/*
 Sample for ITU+TPC(pulse motor)
 CPU 16MHz
 ITU ch0
 TPC Group2(TP11-8)
 */
 #include <machine.h>
 #include "3048f.h"

 void initITU(void) ;
 void initTPC(void) ;
 void initIO(void) ;
 void main(void) ;

 const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;
 unsigned long pos ;

 void main(void)
 {
 pos = 0 ;

 initIO() ; /* Initialize I/O port */
 initITU() ; /* Initialize ITU ch0 */
 initTPC() ; /* Initialize TPC group2 */
 set_ccr(0) ; /* Clear interrupt mask */
 while(1){
 sleep() ; /* Sleep until interrupt request */
 }
 }

 void initTPC(void)
 {
 PB.DDR = 0x0f ; /* TP11-8 is pulse */
 TPC.NDERB.BYTE = 0x0f ; /* Enable TPC group2 */
 TPC.NDRB1.BYTE = ptn[pos] ; /* The first data */
 TPC.TPMR.BYTE = 0 ; /* Group2 is overlapped */
 TPC.TPCR.BYTE = 0 ; /* IMIA0 triggered TPC group2 */
 }

 void initITU()
 {
 ITU0.TCR.BYTE = 0x23 ; /* clear GRA comparematch,1/8clock */
 ITU0.TIOR.BYTE = 0 ; /* not use ITU pins */
 ITU0.TIER.BIT.IMIEA = 1 ; /* Enable comparematch-A interrupt */
 ITU0.GRA = 19999 ; /* 10ms = 62.5ns * 8 * (19999+1) */
 ITU.TSTR.BYTE = 0x01 ; /* Start ITU ch0 */
 }

236

 void initITU(void)
 {
 ITU0.TCR.BYTE = 0x20 ; /* 1/1 clock , clear IMFA */
 ITU0.TIOR.BYTE = 0x03 ; /* TIOCA0 : toggle */

 ITU2.TCR.BYTE = 0x23 ; /* 1/8 clock , clear IMFA */
 ITU2.TIER.BYTE = 0x01 ; /* Enable IMIA interrupt */
 ITU2.GRA = 3999 ; /* 20ms / 0.5us = 40000count */

 ITU.TSTR.BIT.STR2 = 1 ; /* start ITU2 */
 }

 #pragma interrupt(imia2)
 void imia2(void)
 {
 int i , flag , j ;
 unsigned char dt ;

 flag = 0 ;
 key = 0xff ;
 ITU2.TSR.BIT.IMFA = 0 ; /* clear IMFA , stop interrupt request */

 for(i = 0 ; i < 4 ; i++) { /* search switch */
 PB.DDR = stb[i] ; /* output strobe pattern */
 for(j=0;j<100;j++) ; /* wait */
 dt = P7.DR.BYTE & 0xf ; /* get return data */
 if(dt != 0xf) { /* switch on ? */
 key = (stb[i]<<4) + dt ; /* strobe pattern + return data */
 flag = 1 ;
 break ;
 }
 }
 PB.DDR = 0 ; /* stop strobe pattern */
 }

A vector setting is necessary because we are using interrupt processing requests. The assembler
program for that section would be as follows.

smp71_2v.src

 .cpu 300ha
 .import _main,_imia2
 .section vect,data
 .data.l reset
 .org h'80
 .data.l _imia2

 .section P,code
reset:
 mov.l #h'ffff00,sp
 jmp @_main
 .end

In actuality, connecting the switches in a matrix pattern and carrying out a key scan eliminate the
jittering produced by the switches. If the jittering can be kept within the interval of the key scan
time, the switch going on one time can be viewed as one event, and this allows a system to be

237

configured in which the sound goes on when the switch is turned on, and goes off when the switch
goes on again.

Product names of the piezoelectric sounder and keyboard used

Piezoelectric sounder EE1707K FUJI ELECTRIC CO.,LTD.

Keyboard A016 FUJISOKU CORPORATION

7.2 Motor Control 1: Timers can be used to run stepping motors

Pulse motors (also called stepping motors) are used in copiers and printers, to feed the paper and
in other functions. They can be thought of as the second hand on a watch, in that the second hand
moves at one-second intervals, and the pulse motor moves in the same way, advancing a certain
distance in response to the number of pulses applied. When the pulses are stopped, the motor
stops. The difference between this motor and the second hand of a watch is that the stepping motor
can run in reverse.

There are a number of advantages to having the motor turn only in response to the number of
pulses applied:

• Accurate positioning is possible without using feedback control.

• There is torque when the motor stops (a brake is applied).

• The motor can turn at slow speeds without gears.

There are also drawbacks, however:

• The rotation torque is small but heavy.

• High-speed rotation is not possible.

• Low-speed rotation produces strong vibration.

The illustration shows the relation between the pulses applied and the rotation.

238

2-phase motor

Rotor

COMA

COM

B

A B

N

S

A

B

Clockwise (CW) Counterclockwise (CCW)

Time for one pulse

Motor configuration

Example of motor drive circuit (for 1 coil)

Pulse and rotation control

Motor drive method
(unipolar drive)

Power supply

N-ch power
MOS-FET

Output port

The counter-electromotive
force of the coil is absorbed,
preventing the transistor from
being broken and making the
motor turn more smoothly.

• A transistor with low VGS that can
 be driven by the port is selected.
• A transistor with low on-resistance is
 selected to minimize heat given off
 from the transistor.
• A transistor with an ID at least twice
 the rated current for the coil is used
 (to allow for an extra margin).

Current flows
to the coil,
magnetizing it.

A total of four pulse outputs are required.
• The A and A switches operate in reverse
 from each other.
• The B and B switches operate in reverse
 from each other.
(The switches are configured of transistors.)
Power supply

Fig. 7-3 Pulses and Motor Rotation

A fairly simple circuit can be constructed using unipolar drive with two-phase excitation, so let’s
try using this method. We will need the following functions in order to get the motor to turn.

239

(1) Two pulses with a phase differential of 90 degrees

(2) A total of four pulses, with a reverse signal applied

(3) We need to supply a large enough current to the coil that it cannot be absorbed by the
microcomputer.

(4) The coil should generate counter-electromotive force when the current is turned on and off.

When the pulses can be output in this way, the motor will turn. The following methods are
possible to output the pulses:

(1) Interval timer + I/O port

(2) Toggle output timers (four)

(3) Interval timer + TPC

240

A

B

Timer
counter

Interval timer + I/O port

I/O port status
changed in interrupt
processing program

Jitter produced
in pulses

Interrupt request

A

B

Timer
counter

ITU + TPC

TPC changed in interrupt
processing program

A

B

Timer
counter

ITU toggle outputs (two)

Two general registers are
used for speed changes.

GRA

GRB

Features:
• Approach is simple
• Speed can be changed by setting a single general register
• Jitter is produced

Features:
• No jitter is produced
• Speed can be changed by setting a single general register
• Using DMAC causes constant-speed rotation without loads to CPU

Features:
• No jitter is produced
• Speed changes by setting two general registers

Fig. 7-4 Pulse Output Methods

Let’s take a look here at methods (1) and (3).

With (1), the output port is updated using the interrupt processing program for the interval timer.
The concept behind this method is very simple and allows the number of rotations to be controlled
by controlling the timer time. The drawback is that, because of the delay caused by the time for
interrupt processing, offset called jitter is produced even when the motor is rotating at a steady
speed.

241

Timer
counter

Interrupt request

Program

Clocks 19 to 41
(when internal memory is used)
(Processing time varies depending on
instructions issued prior to interrupt)

Processing program

Program

Pulse pattern is
output to output port.Processing times vary

if condition branching is
carried out.

Time from interrupt
request to pulse output
is not constant.

Exception
processing

Fig. 7-5 Pulse Output (1)

(In actuality, jitter does not cause problems at the frequency (100 pulses per second) at which
pulse motors operate.)

242

[Program] smp72_1.c

/*
 Sample for ITU(pulse motor)
 CPU 16MHz
 ITU ch0
 10ms interval
 GRA clear
 */
 #include <machine.h>
 #include "3048f.h"

 void initITU(void) ;
 void initIO(void) ;
 void main(void) ;

 const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;
 unsigned long pos ;

 void main(void)
 {
 pos = 0 ;
 initIO() ; /* Initialize I/O port */
 initITU() ; /* Initialize ITU ch0 */
 set_ccr(0) ; /* Clear interrupt mask */
 while(1){
 sleep() ; /* Sleep until interrupt request */
 }
 }

 void initITU()
 {
 ITU0.TCR.BYTE = 0x23 ; /* clear GRA comparematch,1/8clock */
 ITU0.TIOR.BYTE = 0 ; /* not use ITU pins */
 ITU0.TIER.BIT.IMIEA = 1 ; /* Enable comparematch-A interrupt */
 ITU0.GRA = 19999 ; /* 10ms = 62.5ns * 8 * (19999+1) */
 ITU.TSTR.BYTE = 0x01 ; /* Start ITU ch0 */
 }

 #pragma interrupt(imia0)
 void imia0(void)
 {
 ITU0.TSR.BIT.IMFA = 0 ; /* Stop interrupt request */
 PB.DR.BYTE = ptn[pls] ; /* Set pulse for motor */
 pos++ ;
 pos &= 0x03 ;
 }

 void initIO(void)
 {
 PB.DDR = 0x0f ; /* PB0-3 output,other PB are input */
 }

Running this program outputs pulses at 100 pps. A motor that turns once each 200 pulses (1.8
degrees per pulse) would turn half a rotation in one second.

243

smp72_1v.src

 .cpu 300ha
 .import _main,_INITSCT,_imia0
;----------------------------
; vector table
;----------------------------
 .section vect,data
 .data.l reset
 .org h'60
 .data.l _imia0
;----------------------------
; jump to main program
;----------------------------
 .section P,code
reset:
 mov.l #h'ffff00,sp
 jsr @_INITSCT ; Memory initialization
 jmp @_main

 .end

Method (3) uses a TPC (timing pattern controller). This eliminates the jitter produced when
method (1) is used, and enables accurate pulse output.

The TPC is activated by a timer interrupt request. Data is sent from the NDR (Next Data Register)
to the output port at the same time that the comparison and matching are carried out. The program
is structured so that the next value to be output is specified for the NDR.

244

Timer
counter

Interrupt request

Output port

Program

Exception
processing

Program

DMAC

Program

Next pattern
set in TPC

Processing program

Program

Next pattern is set
in NDR of TPC

Automatic transmission with
compare/match of timer

Time available to be
used for purposes
other than pulse output

Using DMAC increases the time
available to be used for purposes
other than pulse output.

Operation when DMAC is used

When using an interrupt processing program

The time required
for DMA transfer is
six clocks
 (when using the
internal memory)

Because the output terminal is
changed through the hardware,
there is no jitter, and accurate
pulses can be obtained.

Fig. 7-6 Pulse Output (3)

245

[Program] smp72_2.c

/*
 Sample for ITU+TPC(pulse motor)
 CPU 16MHz
 ITU ch0
 TPC Group2(TP11-8)
 */
 #include <machine.h>
 #include "3048f.h"

 void initITU(void) ;
 void initTPC(void) ;
 void initIO(void) ;
 void main(void) ;

 const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;
 unsigned long pos ;

 void main(void)
 {
 pos = 0 ;

 initIO() ; /* Initialize I/O port */
 initITU() ; /* Initialize ITU ch0 */
 initTPC() ; /* Initialize TPC group2 */
 set_ccr(0) ; /* Clear interrupt mask */
 while(1){
 sleep() ; /* Sleep until interrupt request */
 }
 }

 void initTPC(void)
 {
 PB.DDR = 0x0f ; /* TP11-8 is pulse */
 TPC.NDERB.BYTE = 0x0f ; /* Enable TPC group2 */
 TPC.NDRB1.BYTE = ptn[pos] ; /* The first data */
 TPC.TPMR.BYTE = 0 ; /* Group2 is overlapped */
 TPC.TPCR.BYTE = 0 ; /* IMIA0 triggered TPC group2 */
 }

 void initITU()
 {
 ITU0.TCR.BYTE = 0x23 ; /* clear GRA comparematch,1/8clock */
 ITU0.TIOR.BYTE = 0 ; /* not use ITU pins */
 ITU0.TIER.BIT.IMIEA = 1 ; /* Enable comparematch-A interrupt */
 ITU0.GRA = 19999 ; /* 10ms = 62.5ns * 8 * (19999+1) */
 ITU.TSTR.BYTE = 0x01 ; /* Start ITU ch0 */
 }

246

 #pragma interrupt(imia0)
 void imia0(void)
 {
 ITU0.TSR.BIT.IMFA = 0 ; /* Stop interrupt request */
 TPC.NDRB1.BYTE = ptn[pos] ; /* Set next strobe */
 pos++ ;
 pos &= 0x03 ;
 }

 void initIO(void)
 {
 PB.DDR = 0x0f ; /* PB0-3 output , other PB are input*/
 }

The following types of data are specified in the program, but if you look closely, you’ll see that
the data consists of four repeated patterns. Using the DMAC repeat function eliminates the need
for a program, which in turn means less memory is required, and more time is available to run
other programs. In other words, this function improves the performance of the entire system.

When the next pulse is set in the interrupt processing, at least 19 clocks of exceptional processing
time are added, meaning that it takes time for the pulse to be specified by the program. Six clocks
are used just for the data transmission time (two clocks for reading the internal RAM, three clocks
for writing the data to the ITU register, and one clock for DMAC preparation).

247

[Program] smp72_3.c

/*
 Sample for ITU+TPC+DMAC(pulse motor)
 CPU 16MHz
 ITU ch0
 TPC Group2(TP11-8)
 */
 #include <machine.h>
 #include "3048f.h"

 void initDMAC(void) ;
 void initITU(void) ;
 void initTPC(void) ;

void initIO(void) ;
 void main(void) ;

 const unsigned char ptn[] = {0x03,0x06,0x0c,0x09} ;

 void main(void)
 {
 initIO() ; /* Initialize I/O port */
 initDMAC() ; /* Initialize DMAC0A(short address)*/
 initITU() ; /* Initialize ITU ch0 */
 initTPC() ; /* Initialize TPC group2 */
 while(1){
 sleep() ; /* Sleep until interrupt request */
 }
 }

 void initDMAC(void)
 {
 DMAC0A.MAR = &ptn[0] ; /* Set source address */
 DMAC0A.IOAR = (unsigned char)&TPC.NDRB1 ; /* Set IO address */
 DMAC0A.ETCR = 0x0404 ; /* Set transfer counter 4 */
 DMAC0A.DTCR.BYTE = 0x10 ; /* Repeat mode , ITU0 , Byte */
 DMAC0A.DTCR.BIT.DTE = 1 ; /* Start DMA transfer */
 }

 void initTPC(void)
 {
 PB.DDR = 0x0f ; /* TP11-8 is pulse */
 TPC.NDERB.BYTE = 0x0f ; /* Enable TPC group2 */
 TPC.TPMR.BYTE = 0 ; /* Group2 is overlapped */
 TPC.TPCR.BYTE = 0 ; /* IMIA0 triggered TPC group2 */
 }

248

 void initITU()
 {
 ITU0.TCR.BYTE = 0x23 ; /* clear GRA comparematch,1/8clock */
 ITU0.TIOR.BYTE = 0 ; /* not use ITU pins */
 ITU0.TIER.BIT.IMIEA = 1 ; /* Enable comparematch-A interrupt */
 ITU0.GRA = 19999 ; /* 10ms = 62.5ns * 8 * (19999+1) */
 ITU.TSTR.BYTE = 0x01 ; /* Start ITU ch0 */
 }

 void initIO(void)
 {
 PB.DDR = 0x0f ; /* PB0-3 output,other PB are input */
 }

Product names of pulse motor and power transistor used

Pulse motor PK243-03A ORIENTAL MOTOR

Power transistor array 4AK17 HITACHI

249

7.3 Motor Control 2: DC motor control is no problem with an encoder

DC motors are used for models and other applications. This motor features extremely good
performance at high speeds, as well as a large torque. The rotation speed can be varied by
changing the applied voltage, making it possible to use an encoder to control the speed. The ITU
timer of the H8/3048F has a built-in function that makes use of the input from an optical rotary
encoder.

Also, direct analog control of the motor voltage is not very efficient, so we will use digital control,
through a PWM. Making the pulse width broader has the same effect as increasing the voltage,
and making the pulse width narrower has the same effect as lowering the voltage.

(1) Raising and lowering the voltage

(2) Inputting encoder pulses

(3) Implementing control at regular times using an interval timer

An encoder can be used only with timer channel 2.

Any channel can be used for PWM output. Using channel 3 or 4, which have a buffer function, as
a general register produces a more accurate pulse. The problem here is whether to give higher
priority to rewriting the general register used for the duty that is rewritten in order to control the
speed, or to the comparison match. Because writing to the general register is a higher priority, if
writing to the general register through the program is done at the same time that a comparison
match occurs, the writing process takes priority, and the comparison match does not occur. No
flags are set, and the pulse does not change. The buffer function is available to solve this problem.
The program rewrites only the buffer register, and does not write to the general register. Rewriting
of the general register is done with the comparison match, and the ITU automatically sends the
data from the buffer register. Using this function enables the buffer register to be rewritten without
disturbing the pulse, and without worrying about the timing.

250

Output pulses are averaged
(low-pass filter)

PB0/TP8/TIOCA3

PB0/TP8/TIOCA3

PA0/TP0/ /TCLKA
PA1/TP1/ /TCLKB

PA6/TP6/A21/ /TIOCA2
PA5/TP5/A22/ /TIOCB1

GND

Low-pass filter
Output is

analog voltage

TIOCA3 output

Output after filter

Power supply

TIOCA3 output

M

Power supply

M

DC motor drive circuit

General register buffer function

PWM output and analog voltage

Interval (constant)

Pulse width (variable)

Rotation Free

Rotary
encoder

Phase counting
(ITU2)

Rewriting of GRA/GRB takes precedence over the
compare/match. If both occur simultaneously,
the compare/match is ignored and data for one
pulse is dropped in the PWM mode settings.

GRB

GRA

GRB

BRA GRA

The program writes the following pulse
setting to BRA/BRB. The data is
automatically sent to GRA/GRB as a result
of the compare/match.

CPU

Pulses used for automatic measurement of ITU2:
ITU1: Toggle output
ITU2: Input capture

ITU2 counter

TCLKA
TCLKB

TIOCA2(TIOCB1)

50ms

 The value of TCNT2 is sent
 (captured) to GRA2.

GRA3 is rewritten and the
PWM pulse width controlled to
achieve a constant value for
GRA2.

If the transistor is operated
at this signal, a high volume of
heat is generated, and
efficiency is poor.

VDS

ID

Heat generation by transistor
PFET = VDS × ID

Fig. 7-7 Drive Circuit

The PWM pulse is amplified to directly drive the motor. The motor being used has an encoder,
and is the DSE48BE25-153 made by JAPAN SERVO CO.,LTD. The motor performance is the

251

speed of 2,770 rpm at 24 V. The rotary encoder output is 400 p/r at TTL level (the number of
counts at the ITU phase counting).

This motor is driven at 5 V, and control is set up so that the count value for the phase counting
reaches 200 at intervals of 50 ms. The speed is 600 rpm (60 seconds x 200 p / 400 p / 50 ms).

[Program] smp73_1.c

/*
 DC motor control
 */
 #include <machine.h>
 #include "3048f.h"

 void initITU(void) ;
 void initIO(void) ;
 void main(void) ;

 #pragma interrupt(imia2)

 void main(void)
 {
 initIO() ; /* initialize I/O port */
 initITU() ; /* initialize ITU */

 ITU.TSTR.BYTE = 0xe ;
 set_ccr(0) ; /* enable interrupt */
 while(1) ;
 }

 void initITU(void)
 {
 ITU.TMDR.BYTE = 0x68 ; /* ITU2 = encode rotation,ITU3 = PWM */
 ITU.TFCR.BYTE = 0x01 ; /* BRA3 enable */
 ITU3.TCR.BYTE = 0x40 ; /* clear GRA,1/1 clock */
 ITU3.GRB = 1600 ; /* carrier frequency 10kHz */
 ITU3.GRA = ITU3.BRA = 1000 ; /* */
 ITU2.TCR.BYTE = 0x20 ; /* clear GRA,1/1 clock */
 ITU2.TIOR.BYTE = 0x04 ; /* input capture */
 ITU2.TIER.BIT.IMIEA = 1 ; /* IMFA interrupt enable */
 ITU1.TCR.BYTE = 0x43 ; /* clear GRA,1/8 clock */
 ITU1.TIOR.BYTE = 0x30 ; /* TIOCB1 is toggled */
 ITU1.GRB = 49999 ; /* 50ms cycle */
 }

 void initIO(void)
 {
 PB.DR.BYTE = 0x10 ; /* H bridge(PB4,PB2,PB1,PB0(TIOCA3)) */
 PB.DDR = 0x17 ; /* */
 }

252

 void imia2(void)
 {
 int pls , diff ;

 ITU2.TSR.BIT.IMFA = 0 ; /* stop interrupt request */

 pls = ITU3.BRA ; /* get current pulse width */
 diff = ITU2.GRA ; /* get differential */

 if(diff<200){ /* fast or late */
 pls = pls + diff - 200 ; /* */
 if(pls<0) pls = 0 ; /* */
 }
 else {
 pls = pls + diff - 200 ; /* */
 if(pls>1600) pls=1599 ; /* */
 }

 ITU3.BRA = pls ; /* set pulse width */
 }

The motor speed is controlled by the imia2() function. The speed is controlled by calculating how
far the count value obtained from the phase counting is off from the target value of 200 pulses and
converting the result to the pulse width. In order to approach the target speed in the shortest
possible time, the pulse width is determined using the information obtained from the system
characteristics (in this case, the motor inertial moment, the load status, and other factors).
Classically, PID control has been used, but more recently, theories such as the modern control
theory and fuzzy control theory are used. Because we are focusing on the H8/3048F in our
explanation, we will leave out the control theory aspect here.

Because we are using interrupt requests, we need to set the vectors. The assembler program for
that section will be as follows.

 .import _main,_imia2

 .section vect,data
 .data.l reset
 .org h'80
 .data.l _imia2

 .section P,code,align=2
reset:
 mov.l #H'ffff00,sp
 jmp @_main
 .end

Let’s actually try running the motor now, holding the axis and applying torque. When we do this,
the pulse width that raises the speed increases.

Product names of DC motor and power transistor used

DC motor SE48BE25-153 JAPAN SERVO CO.,LTD.

Power transistor 4AM12 HITACHI

253

7.4 Digital Recording and Playback: timed recording is a simple function

Let’s see now if the H8/3048F can handle voices.

Humans can hear sounds with frequencies in the range of 20 Hz to 20 kHz. The range in which we
can hear voices is smaller, however. With a good telephone, a frequency of up to 4 kHz is enough
for us to hear voices.

Conversion from digital to analog is done by sampling data at regular intervals. This interval is
called the sampling frequency. The higher the sampling frequency, and the more digital bits there
are, the closer the signal obtained will be to the original analog signal. A high sampling frequency,
however, requires a large memory capacity, and the microcomputer processing may not be able to
keep up. The minimum sampling frequency necessary to reproduce the original sound is more than
twice the original analog frequency. This is called the sampling theorem. In other words, to handle
voices of 4 kHz, the sampling frequency will be at least 8 kHz.

The conversion time of the A/D converter built into the H8/3048F is either 134 or 266 clocks per
channel. If running at 16 MHz, the figure will be 119.4 kHz or 60.2 kHz. The conversion speed is
fast enough to handle voices with no problem.

A high number of digital bits produces a sound close to the original, but telephone-quality sound
can be produced with 10 bits. If 10 bits are saved without compressing them, however, it takes two
bytes per sample, so a large memory capacity is required. In this example, taking memory storage
and the A/D converter precision into consideration, we used eight bits.

Even with this, only 0.5 seconds of recording can be stored in the internal RAM (4 KB), which is
very little. To handle longer recordings, we would need to use external expansion memory. (See
chapter 6 for information on this.)

An amplifier circuit is necessary for voice input. The microphone voltage is limited to several mV,
so we amplified this to 5 V. When we amplified it, however, the final input to the A/D converter
could not be handled by the analog signal, which oscillates around 0 V, so we set it to oscillate
around 2.5 V. We passed the signal through a level shifting circuit and amplified it around 1,000
times. In an actual situation, it would be better to pass the signal through an AGC (auto gain
control) circuit, so that small sounds would be made louder and loud sounds would be softer, but
we eliminated this step because we wanted to keep our circuit simple.

We used a headphone amp in our playback circuit. The voltage of the output from the D/A
converter is 5 V, which is sufficiently high, but a load resistance of 2 to 4 MΩ is needed to satisfy
the AC characteristic for the current, so not enough can be obtained. To correct that, we connected
an amp to boost the power. We used the recommended circuits, but because the output voltage
from the D/A converter is high, we passed it through a resistor and a VR to lower it. The capacitor
connected to the speaker is intended to cut the DC component. If the DC component passes
through the system, it will cause the speaker to heat up.

254

Vcc

GND

GND
–

+

–

+
AN7/DA1/P77

P77/AN7/DA0

PB7/TP15/ /

PB3/TP11/TIOCB4

10kΩ

10kΩ

1kΩ

1MΩ

600Ω

10µF

4.7µF

4.7µF

2.5-V reference voltage
generated

–

+
10kΩ

10Ω

100kΩ

10kΩ

1µF

0.047µF

220µF

Dynamic
microphone

10kΩ
Capacitor
microphone

GND

SpeakerNMJ386

P76/AN6/DA1

10Ω

10Ω

220µF

GND

Speaker

NMJ4580

 A/D conversion started
(also enabled by hardware)

8Ω, 0.1W

Fig. 7-8 Recording/playback Circuit

255

[Program] smp74_1.c

/*
 A/D and D/A convert
 Record for microphone and Play to speaker
 */
 #include <machine.h>
 #include "3048f.h"

 #define MTOP (unsigned char *)0x2000

 void ituinit(void) ;
 void addainit(void) ;
 void sciinit(void) ;
 void main(void) ;

 volatile unsigned char *pdata ;
 unsigned char *MEND ;

 void main(void)
 {
 ituinit() ; /* Initialize ITU0,1 */
 addainit() ; /* Initialize A/D,D/A */
 PB.DDR = 0xff ;

 set_ccr(0) ; /* Clear interrupt mask */

 MEND = (unsigned char *)0xffff;

 while(1){
 pdata = MTOP ; /* set pdata 0x2000 */

 PB.DR.BYTE = 0x01 ;
 while(P8.DR.BIT.B3) ; /* wait P8.B3 LOW for start rec */
 ITU0.TIER.BIT.IMIEA = 1 ; /* start inerrupt for AD */
 while(! P8.DR.BIT.B3) ; /* wait P8.B3 HIGH for stop rec */
 ITU0.TIER.BIT.IMIEA = 0 ; /* unable Interrupt */
 MEND = pdata;
 PB.DR.BYTE = 0x80 ;

 while(P8.DR.BIT.B3) ; /* wait P8.B3 LOW for start play */
 pdata = MTOP ; /* set pdata 0x2000 */
 ITU1.TIER.BIT.IMIEA = 1 ; /* start inerrupt for DA */
 while(! P8.DR.BIT.B3) ; /* wait P8.B3 HIGH for stop play */
 ITU1.TIER.BIT.IMIEA = 0 ; /* unable Interrupt */
 }
 }

 void ituinit(void)
 {
 ITU0.TCR.BYTE = 0x23 ;
 ITU1.TCR.BYTE = 0x23 ; /* timer 0 & 1 clear 1/8clock */
 ITU1.GRA = ITU0.GRA = 230 ; /* about 8kHz */
 ITU.TSTR.BYTE = 0x03 ; /* start ITU0 & ITU1 */
 }

 void addainit(void)
 {
 AD.CSR.BYTE = 0x0f; /* 00001111 AN7 max=134st singl mode */
 DA.CR.BIT.DAOE0 = 1; /* use only DADR0 */
 }

256

 #pragma interrupt(adstart, dastart)
 void adstart(void)
 {
 ITU0.TSR.BIT.IMFA = 0 ; /* stop Interrupt */
 AD.CSR.BIT.ADF = 0 ;
 AD.CSR.BIT.ADST = 1 ; /* start AD */
 while(! AD.CSR.BIT.ADF) ; /* wait AD END */
 if(pdata != MEND)
 pdata++ = AD.DRD >> 8 ; / set result AD */
 else
 pdata = AD.DRD >> 8, ITU0.TIER.BIT.IMIEA = 0 ; / unable Interrupt */
 }

 void dastart(void)
 {
 ITU1.TSR.BIT.IMFA = 0 ; /* stop Interrupt */
 DA.DR0 = *pdata ; /* data set DA Register */
 if(pdata++ == MEND)
 ITU1.TIER.BIT.IMIEA = 0 ; /* unable Interrupt */
 }

Because we are using interrupt requests, we need to set the vectors. The assembler program for
that section will be as follows.

 .cpu 300ha
 .import _main,_adstart,_dastart,_INITSCT
 .section vec,data,locate=0
 .data.l reset
 .org h'60
 .data.l _adstart
 .org H'70
 .data.l _dastart

 .section P,code
reset:
 mov.l #h'ffff00,sp
 jsr @_INITSCT
 jmp @_main
 .end

The A/D converter is started by the interval timer, and the system then waits for “1” to be set for
the conversion completed flag (ADF). The data is then processed.

The following could also be considered in order to make the system run more efficiently.

(1) The timer could be set to toggle output, and connected to the ADTRG. ADI interrupts could be
used to process the converted data, shortening the time for the interrupt processing program.

(2) The A/D converter could be set to scanning, and the DMAC booted by the interval timer
interrupt. The converted data would be sent to the memory by the DMAC, reducing the time
for the interrupt processing program required for data processing to zero.

257

7.5 Voice Processing: Going for the best possible vocal sound

Processing data using digital means is called digital signal processing.

For example, when voice signals are sampled, the high-frequency component ends up being
included in some cases. This is called aliasing.

The system can be tailored so that only the necessary signals of the low-frequency range can be
filtered out from signals that contain a high-frequency component.

To do this, we would use an operation called a movement average.

The past seven data elements and the current sampling data are added, and divided by eight. This
eliminates sudden changes, and is the original form of the operation called a low pass.

This averages all of the data, so it results in a poor filter characteristic. The result is multiplied by
a coefficient to improve the characteristic.

This requires the multiply-and-accumulate operation together. Generally, this can be done at high
speed by using a DSP.

Let’s look here at the program only for the processing section.

[Program] smp75_1.c

MEND = pdata;
PB.DR.BYTE = 0x80 ;

while(P8.DR.BIT.B3) ; /* wait P8.B3 LOW for start play */
pdata = MTOP ; /* set pdata 0x2000 */
ITU1.TIER.BIT.IMIEA = 1 ; /* start interrupt for DA */
while(! P8.DR.BIT.B3) ; /* wait P8.B3 HIGH for stop play */
ITU1.TIER.BIT.IMIEA = 0 ; /* unable Interrupt */

for(p=MTOP,sum=0 ; (p+7)<pdata;p++) {
 sum=(*p + *(p+1) + *(p+2) + *(p+3) + *(p+4) + *(p+5) + *(p+6) + *(p+7)) ;
 *p = (sum >> 3) ;
}

MEND = pdata;
PB.DR.BYTE = 0x40 ;

An echo is created in the same way. Old data is reduced as current data is added in, creating an
echo.

258

259

 APPENDIX that Comes with This Manual

Compiled information

The following types of information have been compiled in the APPENDIX. Items may only be
used if you have agreed to the exemption from liability clause. Those users who agree to the
clause may go ahead and use the items for programming. The sample program, which is provided
in source format, may also be changed or modified in any way you like.

1. H8/300 and H8S Series Microcomputer Development Tools For Evaluation

C/C++ compiler, assembler, linker, etc.

2. Convenient Tools For Use

Debugging monitor (written to internal flash memory in H8/3048F)

Communication software for personal computers (HTERM.EXE) capable of reading output
from development tools for evaluation

3. Manuals

Hardware manuals for the H8/3048 series and H8/3052F series

Manuals for development tools, etc.

4. Sample program

The programs noted in this manual, and other sample programs

5. Additions to this manual

Chapter 7: Towards More Sophisticated Applications

Using the APPENDIX

The file called “index.html” on the APPENDIX contains detailed information about using the
files. Please open this file in an HTML browser. No HTML browser has been included on the
APPENDIX, so please use one from another source.

Operating environment

• The contents of the APPENDIX are stored in the ISO9660 format.

• The contents can be viewed on Windows 95, 98, NT, 2000, and Mac OS 8 or a subsequent
version.

• The H8/300 and H8S Series Microcomputer Development Tools for Evaluation and the
communication software for personal computers can be executed at the MS-DOS prompts in
Windows 95 and 98. However, the communication software can only be run on DOS/V.

260

Copyrights and liability

The programs included on this APPENDIX are for evaluation purposes only, and may be used free
of charge. The copyrights for these programs belong to Hitachi, Ltd., and to the authors of the
programs. These programs may not be reproduced or distributed in any part, or in their entirety.

The sample programs are intended to introduce the functions of the H8/3048F, and operation is
not guaranteed. Ohmsha Ltd. and the authors of these programs assume no responsibility for any
problems caused by using the programs contained in this manual or on the APPENDIX.

Related home pages

Information related to this manual can be found on a number of home pages. Please check these
home pages for the latest available information.

• Hitachi, Ltd., Semiconductor and Integrated Circuit Division

http://www.hitachi.co.jp/Sicd/

• Hitachi, Ltd., Education & Training Dept.

http://www.hitachi.co.jp/Sicd/Japanese/Seminar/top.htm

• Ohmsha Robocon Magazine

http://www.ohmsha.co.jp/robocon/index.htm

For information on APPENDIX, click this.

261

Reference Documents

1. Documents relating to the H8/3048F

H8/3048 Series Hardware Manual: Hitachi Ltd.

H8S and H8/300 Series C/C++ Compiler User’s Manual: Hitachi Ltd.

2. Documents relating to computers

Computer Construction and Design (2 vols.): Nikkei Business Publications Inc., David A.
Patterson / John L. Hennessy. Translated by Mitsuaki Narita. 1996

3. Documents related to programming

Programming Language C: Kyoritsu Shuppan Co, Ltd., B. W. Carnihan and D. M. Ritchey.
Translated by Haruhisa Ishida. 1994

Algorithm Dictionary Using C Language: Gijutsu-Hyoron Co., Ltd., Haruhiko Okamura. 1994

Fundamentals of Digital Signal Processing: CQ Publishing, Naoki Mikami. 1998

Digital Signal Processing: Tokyo Denki University Press, Shogo Nakamura. 1991

4. Documents relating to circuits

Transistor Circuit Design, CQ Publishing, Masaomi Suzuki. 1998

5. Other

Textbooks of Education & Training Dept., Hitachi, Ltd.

Introductory Microcomputer Course (1999)

Intermediate Microcomputer Course (2000)

H8/300H Course (2000)

Introductory Course in C Language (2000)

Pointer Course in C Language (2000)

262

Authors:

Yukiho Fujisawa

Joined Denken Seiki Kenkyusho Co. in 1978.

Joined Hitachi VLSI Systems Co. in 1984

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

fujisawa-yukiho@denshi.head.hitachi.co.jp

In cooperation with:

Yuji Katori

Joined Hitachi VLSI Systems Co. in 1984

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

katori-yuji@denshi.head.hitachi.co.jp

Masayuki Sato

Joined Hitachi VLSI Systems Co. in 1989

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

sato-masayuki@denshi.head.hitachi.co.jp

Aogu Nagashima

Joined Hitachi VLSI Systems Co. in 1992

Currently an instructor in the Education & Training Dept. of Electric Devices Sales & Marketing
Group.

nagashima-aogu@denshi.head.hitachi.co.jp

THE INTRODUCTION OF HITACHI H8 MICROCOMPUTERS
  Yukiho Fujisawa 2000

December 12, 2000 Issue of first impression of the first edition
Writer Yukiho Fujisawa
Publisher Ohmsha, Ltd.

Seiji Sato, President

Proof mark omitted
Published by Ohmsha, Ltd.

3-1 Kanda Nishiki-cho, Chiyoda-ku,
Tokyo 101-8460 Japan
Tel: +81-3-3233-0641
Money transfer: 00160-8-20018
http://www.ohmsha.co.jp/

Printed in Japan Printed by Chuo Printing Co., Ltd.
Binding by Sansuisha

A book with missing pages or disorderly binding will be replaced.

	Cover
	Preface
	Contents
	Chapter 1 What Is a Microcomputer?
	1.1 Microcomputers in Our Everyday Lives
	1.2 How do Microcomputers Work?
	1.2.1 What the Microcomputer does
	1.2.2 Elements other than the Microcomputer (CPU)
	1.2.3 Types of Microcomputers

	1.3 Memory Data and Binary Values
	1.3.1 Instructions and Binary Values
	1.3.2 Numeric Expressions
	1.3.3 Character Codes
	1.3.4 Decimal Point Data
	1.3.5 Expressing Numeric Values
	1.3.6 Memory Maps

	Chapter 2 H8 Microcomputers have High-Levels of Performance and Functionality
	2.1 What is an H8 Microcomputer?
	2.2 Operation Mode of the H8/3048F
	2.2.1 Summary
	2.2.2 Single Chip
	2.2.3 Memory Expansion

	2.3 Configuration of Registers and Programming
	2.3.1 Register Configuration
	2.3.2 Instruction
	2.3.3 Programming
	2.3.4 Size of the Memory and Performance in Executing an Instruction
	2.3.5 Basic Input and Output

	Chapter 3 Reset and Interrupts
	3.1 Writing Programs to ROM
	3.1.1 Hardware
	3.1.2 Programs
	3.1.3 Further Premised Hardware

	3.2 Interrupts
	3.2.1 Need for Interrupt Functions
	3.2.2 Operation on Occurrence of an Interrupt
	3.2.3 Example of Interrupt Use

	Chapter 4 Internal Peripheral Functions The functions and how to use them (circuits and programs)
	4.1 A/D Converters
	4.1.1 Overview of the A/D Converter
	4.1.2 Example of How the A/D Converter is Used
	4.1.3 A/D Conversion Completed Interrupt

	4.2 D/A Converter
	4.2.1 An Overview of the D/A Converter
	4.2.2 Example of How the D/A Converter is Used

	4.3 16-Bit Timer (ITU)
	4.3.1 Overview of the ITU
	4.3.2 Example Using the Interval Timer
	4.3.3 Example of Using Toggle Output

	4.4 Serial Communication (SCI)
	4.4.1 Overview of the SCI
	4.4.2 Example Using Start-Stop Synchronized Communication
	4.4.3 Example Using Clock Synchronization Communication

	4.5 DMA Controller
	4.5.1 Various Ways of Sending Data
	4.5.2 Overview of the DMAC
	4.5.3 Example Using the Full Address Mode
	4.5.4 Example Using the Short Address Mode

	4.6 WDT
	4.6.1 Overview of the WDT
	4.6.2 Program Example Showing Reset Using the WDT
	4.6.3 Example Using an Interval Timer through the WDT

	Chapter 5 PROGRAMMING IN THE C LANGUAGE
	5.1 The C Language and the H8 Microcomputer
	5.1.1 Standard I/O
	5.1.2 Variable Sizes

	5.2 Tasks Prior to Calling main
	5.2.1 Reset Processing
	5.2.2 Initialization of Variables

	5.3 Peripheral Function Programming
	5.3.1 Register Access
	5.3.2 Interrupt Processing

	5.4 Basics of the C Language
	5.4.1 Operators
	5.4.2 Control Statements
	5.4.3 Features of Structures, Arrays, and Pointers
	5.4.4 Function Calls
	5.4.5 Declarations and Storage Classes

	Chapter 6 EXTERNAL MEMORY INTERFACE
	6.1 Memory Interface
	6.1.1 Basics of Memory Connection
	6.1.2 Memory Interface Design
	6.1.3 DRAM Interface
	6.1.4 Example of Application of the Refresh Timer as an Interval Timer

	6.2 Peripheral Function Interface
	6.2.1 Port Expansion
	6.2.2 LCD Connection

	Chapter 7 Using Applications More Effectively
	7.1 Electronic organ: Using the timer to turn on the piezoelectric sounder
	7.2 Motor Control 1: Timers can be used to run stepping motors
	7.3 Motor Control 2: DC motor control is no problem with an encoder
	7.4 Digital Recording and Playback: timed recording is a simple function
	7.5 Voice Processing: Going for the best possible vocal sound

	APPENDIX that Comes with This Manual

