

ASTATplus

Ed. 02

Also available on the net!

Softstarter User's guide

Démarreur progressif Manuel d'utilisation

Softstarter Gebruikershandboek

Sanft-Anlasser Benutzerhandbuch

ASTAT Soft Starters	
USER'S GUIDE ASTATplus	A
MANUEL D'UTILISATION ASTATplus	В
GEBRUIKERSHANDBOEK ASTATplus	C
BENUTZERHANDBUCH ASTATplus	

SOLID STATE SOFT STARTER

ASTATplus

USER'S MANUAL

Remarks

- **1.** Read this manual throughly before using the soft starter ASTATplus and store it in a safe place for reference.
- 2. Make sure that this manual is delivered to the end user
- 3. CE marking
 - When using ASTATplus in the EU, compliance with EMC is required. ASTATplus range comply with the generic EN 50081-2 and EN 50082-2
- **4.** The policy of GE Power Controls is one of continuous improvement. The right is reserved to alter the design or any structural details of the products at any time without giving notice.

WARNINGS

- 1. Disconnect power before installing or servicing.
- 2. Hazardous voltages are present in the motor circuit even when the starter is OFF. An isolation contactor is recommended, configured to provide automatic isolation when the motor is turned OFF.
- **3.** Unit may contain more than one live circuit. Disconnect both control and main circuits before installing or servicing.
- 4. Soft stop should not be used as an Emergency stop.
- **5.** Stopping mode must be set to meet applicable standards for operator safety.
- **6.** Separate motor overcurrent protection is required to be provided in accordance with the Canadian Electrical Code, Part 1, ASTATplus provides separate motor protection.

CAUTIONS

- **1.** Semi-conductor fuses specified may not provide branch circuit protection. Refer to local applicable electrical codes.
- 2. Overload relay setting should be properly coordinated with motor.
- **3.** Slow speed running will affect the motor thermal characteristic due to reduced cooling. Care must be taken when operating motor under these conditions.
- **4.** DC braking braking current may cause motor overheating. Select the lowest braking current and time.
- **5.** DC braking must use additional (DC3) in the motor circuit. See wiring diagram page A.12.
- **6.** Abnormal starting times in excess of 30 seconds, or closely repeated operations of acceleration ramp/deceleration ramp, slow speed, or DC injection braking may cause motor damage. Contact motor manufacturer for proper motor selection.
- If control power is lost between starts, the overload relay protection is reset to cold start conditions.

CONTENTS

Section	n 1. Generalities	A .4
1.1.	Comparison of starting systems	A.4
1.2.		
Section	n 2. Types and powers	A.6
2.1.	9	A.6
2.2. 2.3.		
Section	n 3. Technical specifications	A.9
3.1.	General specifications	A.9
3.2.		
3.3.	·	
3.4.		
Section	n 4. Programming	A.16
4.1.		
4.2.	•	
4.3.	·	
4.4.	·	
4.5.	'	
4.6.	Advanced block parameters -ADV	A.23
Section	n 5. Installation	A.26
5.1.	Equipment installation	A.26
5.2.	Fuses, contactors and supply wiring	A.27
5.3.	Start-up	A.28
5.4.	Troubleshooting	A.29
5.5.	Thyristor check	A.30
Section	n 6. Appendix	A.31
6.1.	Application diagrams	A.31
6.2.		
6.3.	Dimensions	A.42
6.4	PCR's layout	Δ 43

1. Generalities

1.1. Comparison of starting systems

There are numerous applications where soft starting and limited current peak are needed and thereby making direct starting of squirrel-cage motors impossible.

Traditionally in such cases other types of starting with reduced stator voltage have been resorted to. The best-known are star-delta starters, autotransformer starters, stator resistance starters or using part winding motors.

Any reduced starting voltage imposes a current limitation, and as a consequence the starting torque is also reduced, but there will always be peaks during the change from one point or state to another which can damage the machine being driven. In order to analyse the performances offered by each of these different types of starters, the following table shows the special characteristics of each of them, comparing with the ASTAT system.

Note that in general reduced voltage starts produce a reduction in torque in squared proportion to the current in the phases of the motor (not the line) and the latter in turn is reduced in linear proportion to the voltage. From this it can be deduced that any start with reduced voltage reduces the torque in squared proportion to the voltage per motor phase. From this point of view soft starting produces, just like any other reduced voltage start, a reduction in starting torque, according to the adjusted parameters. The avantage, of course, is the ease with which this ramp can be controlled to produce a soft start in accordance with the actual requirement of the machine.

From the comparison table it can be seen that the maximum starting torque attainable using the soft system is 90% of that which direct starting tends to.

Bearing in mind that the direct starting torque varies between 1.5 and 2.4 times rated torque, it can be deduced that with the soft starter, starting torques which are somewhat higher than rated are obtained.

This area includes the starting of pumps, fans, conveyor belts, etc. where a torque in the region of 60% of rated is usually sufficient for correct starting.

As a general rule it can be guaranteed that soft starter will allow starting of drives which are currently used in conventional starting systems, with the advantages outlined, and above all the facility to adjust the current peaks and torque at the machine, faced with the impossibility or difficulty of varying the steps in conventional systems.

	Conve	ntional starters				Soft starter
	Direct	Autotransfo	Stator resistance	Part winding motor	Star-delta	
% of direct start current (in the line)	100%	30, 40 or 64%	58 - 70%	65%	33%	Depending on adjust, max. 90%
% of direct start torque	100%	30, 40 or 64%	33 - 49%	48%	33%	Depending on adjust, max. 90%
Starting steps (1)	1	4, 3 or 2	3 or 2	2	2	Continuous, no steps
Connections to motor	3	3	3	6	6	3
Line overload (approx.)	5 In	1.5 or 2.1 or 3.2 ln	3 - 3.5 ln	3.25 ln	1.65 ln	Depending on adjust, max. 4-7 In
Change or starting pause	no	no	no	no	yes	no

^{(1) &}quot;Steps" means sharp changes of speed during the time from rest until rated speed is reached.

1.2. Advantages of the ASTATplus

Increase in productivity and reliability with the use of static soft starters

Starting and stopping the motor without steps or transitions lengthens the life of power-driven machine mechanical elements, greatly reducing stress on transmission and coupling parts.

Consequently, overhauling times are reduced and machine and facility lifespans are lengthened.

Improvement in acceleration / deceleration characteristics

Being able to start by using the voltage ramp or alternatively by limiting current lets acceleration fit the load characteristics. Application of a pulse start may also be selected in cases of high static friction load. Braking may be made by cutting-off power or by stop ramp, and it is also possible to brake more energetically by feeding a DC current to the motor stator, so there are many ways to obtain the best possible deceleration.

Protected motor

The soft starter protects the motor from overloads as well as from incorrect operating conditions such as loss of an input or output phase, blocked rotor, thyristor short circuit, etc.

(4) Digital technology

The control system is based on the use of a highly specialized microcontroller by which signals are treated digitally, thereby avoiding deratings and adjustments common to analogue circuits and obtaining excellent precision and speed of execution.

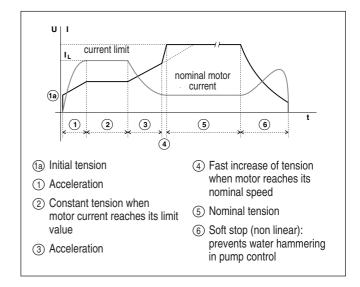
The control board is made with the technology of surface mounting devices (SMD), which increases equipment reliability.

5 High level of immunity

Design of the unit was closely tied to the conditions of supply lines, which handle more disturbance every day. The control signals are optoelectronically isolated and various levels of protection have been set up in the circuits to immunize the equipment against external disturbance and its effects.

6 Easy to run and adjust

This unit can be used for a wide range of applications. Adjustments are very easy to make and diverse options may be selected to have equipment capabilities suited to application needs every time.


Easy maintenance due to full monitoring

The signalling code based on alphanumeric display, makes the equipment working conditions known at any time and gives a quick diagnosis when protection security is violated.

8 Pump control

The ASTATplus includes a Pump Control function which is more effective than the standard soft stop, reducing fluid surges or hammering in a pipe line system.

This method reduces the motor speed, by controlling internal parameters in the motor as well as the output voltage in a close-loop system.

Advanced functions

The ASTATplus includes advanced functions, like linear acceleration ramp, forward and reverse jog, programmable I/O or connection to a computer by serial communication (RS 232), all included as standard.

These performances allows the incorporation of the soft starter to a distributed control net, in automated plant processes, together with other soft starters, programmable controllers, variable speed drives, etc.

2. Types and powers

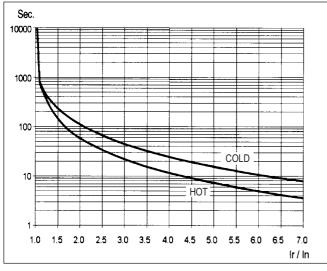
2.1. IEC ratings (1)

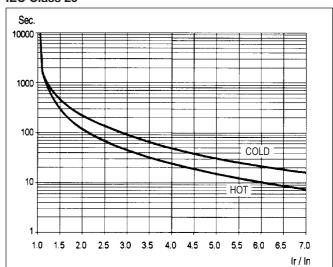
HEAVY D Current rating(2)	UTY 220V/ 240V	380V/ 415V	440V	480V/ 500V	LIGHT DI Current rating(3)	JTY 220V/ 240V	380V/ 415V	440V	480V/ 500V	Туре	Weigh	t
Α	kW(4)	kW(4)	kW(4)	kW(4)	Α	kW(5)	kW(5)	kW(5)	kW(5)		Kg.	Lbs.
Cooling v	vith natu	iral conv	ection - I	P20								
14	3	5.5	7.5	-	17	4	7.5	7.5	-	QC1FDP	4.3	9.48
	3	5.5	7.5	7.5		4	7.5	7.5	11	QC2FDP	4.3	9.48
17	4	7.5	7.5	-	21	5.5	11	11	-	QC1GDP	4.3	9.48
	4	7.5	7.5	11		5.5	11	11	13	QC2GDP	4.3	9.48
22	5.5	11	11	-	27	7.5	13	15	-	QC1HDP	4.6	10.14
	5.5	11	11	15		7.5	13	15	15	QC2HDP	4.6	10.14
32	7.5	15	18.5	-	38	10	18.5	22	-	QC1IDP	4.6	10.14
	7.5	15	18.5	22		10	18.5	22	25	QC2IDP	4.6	10.14
Cooling v	vith fan	- IP00										
48	13	22	22	-	58	15	25	30	-	QC1JDP	12.5	27.56
	13	22	22	30		15	25	30	37	QC2JDP	12.5	27.56
63	15	30	37	-	75	22	37	45	-	QC1KDP	12.5	27.56
	15	30	37	37		22	37	45	45	QC2KDP	12.5	27.56
72	20	37	37	-	86	25	45	50	-	QC1LDP	17.0	37.48
	20	37	37	45		25	45	50	50	QC2LDP	17.0	37.48
105	30	55	55	-	126	37	63	75	-	QC1MDP	17.0	37.48
	30	55	55	75		37	63	75	80	QC2MDP	17.0	37.48
156	40	75	90	-	187	55	90	110	-	QC1NDP	45.0	99.20
	40	75	90	110		55	90	110	132	QC2NDP	45.0	99.20
240	63	110	132	-	288	80	150	165	-	QC1QDP	45.0	99.20
	63	110	132	160		80	150	165	200	QC2QDP	45.0	99.20
315	90	160	200	-	378	110	200	220	-	QC1RDP	55.0	121.3
	90	160	200	220		110	200	220	250	QC2RDP	55.0	121.3
370	110	200	220	-	444	132	220	250	-	QC1SDP	55.0	121.3
	110	200	220	250		132	220	250	315	QC2SDP	55.0	121.3
475	150	250	250	-	570	160	300	355	-	QC1TDP	80.0	176.4
	150	250	250	335		160	300	355	400	QC2TDP	80.0	176.4
610	200	315	400	-	732	220	400	450	-	QC1UDP	105.0	231.5
	200	315	400	400		220	400	450	500	QC2UDP	105.0	231.5
850	250	450	530	-	1020	300	560	600	-	QC1VDP	120.0	264.5
	250	450	530	600	1	300	560	600	750	QC2VDP	120.0	264.5
1075	355	600	670	-	1290	395	715	750	-	QC1XDP	150.0	330.7
	355	600	670	750		395	715	750	850	QC2XDP	150.0	330.7

⁽¹⁾ Ratings in Amps. given for ambient temperature up to $40^{\rm a}$ C and 1000m altitude Derate output current by 1,5% / °C above $40^{\rm e}$ C. Derate output current by 1% / 100m above 1000m

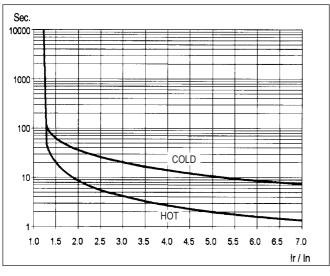
- (2) Heavy duty ratings, IEC Class 10 and 20 protections allowed
- (3) Light duty ratings, only IEC Class 10 protection allowed.
- (4) Maximum recommended Motor Power for IEC Class 20 protection. Set ASTAT's parameters "N" and "o" accordingly
- (5) Maximum recommended Motor Power for IEC Class 10 protection. Set ASTAT's parameters "N" and "o" accordingly

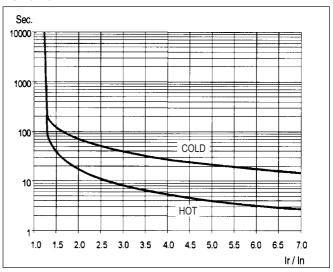
2.2. UL ratings

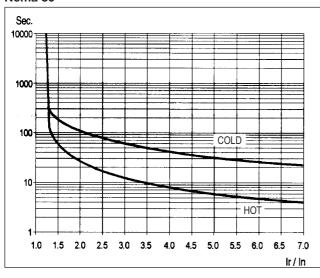

Current rating	Max. starting current	HEAVY 200V	DUTY 230V	460V	STANI 200V	DARD DU 230V	TY 460V	Туре	Weigh	nt
A	А	HP	HP	HP	HP	HP	HP		Kg.	Lbs.
Cooling	with natur	al conve	ction - I	P00	·			·	·	
14	70	3	3	-	3	3	-	QC1FDP	4.3	9.48
		-	-	7.5	-	-	7.5	QC2FDP	4.3	9.48
17	85	3	3	-	3	3	-	QC1GDP	4.3	9.48
		-	-	10	-	-	10	QC2GDP	4.3	9.48
22	110	5	7.5	-	5	7.5	-	QC1HDP	4.6	10.14
		-	-	15	-	-	15	QC2HDP	4.6	10.14
34	170	7.5	7.5	-	10	10	-	QC1IDP	4.6	10.14
		-	-	20	-	-	25	QC2IDP	4.6	10.14
Cooling	with fan -	IP00						·		
48	240	10	15	-	15	15	_	QC1JDP	12.5	27.56
		-	-	30	-	-	30	QC2JDP	12.5	27.56
63 315	315	15	20	-	20	20	-	QC1KDP	12.5	27.56
		-	-	40	-	-	40	QC2KDP	12.5	27.56
72	360	20	20	-	20	25	-	QC1LDP	17.0	37.48
		-	-	40	-	-	50	QC2LDP	17.0	37.48
105	525	30	30	-	30	30	-	QC1MDP	17.0	37.48
		-	-	60	-	-	75	QC2MDP	17.0	37.48
156	780	40	50	-	50	60	-	QC1NDP	45.0	99.20
		-	-	100	-	-	125	QC2NDP	45.0	99.20
240	1200	60	75	-	75	75	-	QC1QDP	45.0	99.20
		-	-	150	-	-	200	QC2QDP	45.0	99.20
315	1575	75	100	-	100	125	_	QC1RDP	55.0	121.25
		-	-	200	-	-	250	QC2RDP	55.0	121.25
370	1850	100	125	-	125	150	-	QC1SDP	55.0	121.25
		-	-	250	-	-	300	QC2SDP	55.0	121.25
500	2500	150	150	-	150	200	-	QC1TDP	80.0	176.36
		-	-	350	-	-	400	QC2TDP	80.0	176.36
630	3150	200	200	-	200	250	-	QC1UDP	105.0	231.47
		-	-	400	-	-	500	QC2UDP	105.0	231.47
850	4250	250	300	-	300	350	-	QC1VDP	120.0	264.54
		-	-	600	-	-	700	QC2VDP	120.0	264.54


2.3. Thermal characteristics

The ASTATplus allows motor protection according IEC Class 10 or Class 20 and Nema 10, 20 or 30, free selectable by parameter "o" -overload-


IEC Class 10


IEC Class 20


Nema 10

Nema 20

Nema 30

Thermal memory

If the control voltage is not removed, the unit has a cool down characteristic, being the cool down time 300 sec. after the overload trip.

If the control voltage is removed after tripping, you must wait, at least, 2 minutes before the unit can be restarted.

Operations per hour

Supposing a cycle T, with starting time of t1, running time of T-2t1 at rated current and OFF time of t1 sec. at least, the ASTATplus allows the following operations per hour.

Starting current	Operations / Hour. Starting time t1= 10sec.	Operations / Hour Starting time t1=20 sec.
2 x lr 3 x lr	180 160	90 60
4 x Ir	30	10

3. Technical specifications

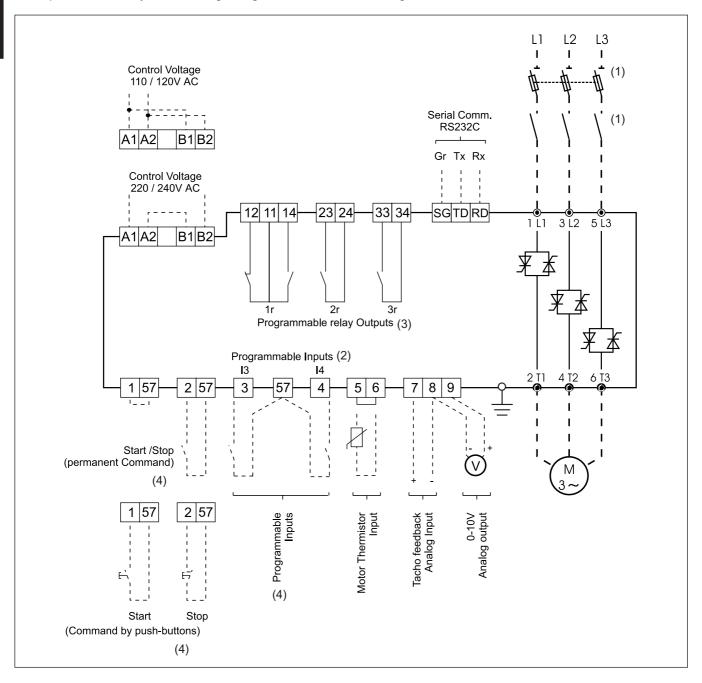
3.1. General specifications

Voltage ratings	3ph AC systems	Up to 440V, +10%, -15% for QC1xDP ASTATplus series Up to 500V, +10%, -15% for QC2xDP ASTATplus series		
Freq. range	50/60 Hz	Control range of 45-65 Hz		
Control specifications	Control system	Digital system with microcontroller Starting ramp with progressive increase in voltage and current limitation		
	Initial voltage (pedestal) %	30 - 95 Un		
	Starting torque %	10 - 90 Mdirect start		
	Kick start %	95 Un (90% Mdirect start), adjustable 0 to 999 ms		
	Motor current (Im)	0,4 to 1,2 lr (rated ASTAT current)		
	Current limitation	1 to 7 ln		
	Acceleration ramp time	1 to 99 s (types: standard or linear ramp up)		
	Energy savings	Output voltage reduction according to power factor		
	Override	Fixed output voltage permanently equal to supply voltage		
	Bypass	Direct control of a bypass contactor		
	Brake time by ramp	1 to 120 s (1 to 99 in secondary ramp) adjustable independently of starting ramp time (types: standard, pump control or linear ramp down)		
	DC braking	0 to 99 s. ; 0,5 to 2,5ln		
	Slow speed	Direct torque: 7% or 14% of nominal speed; reverse torque: 20% of nominal speed		
	Retry	0 to 4 attemps, and 1 to 99 sec. retry time		
	Monitoring	Motor current, line voltage, power, power factor and elapsed time		
Operation	External control	Start - Stop		
	Acceleration phase	Adjustable time		
<u> </u>	Permanent phase	Energy savings / Override choice		
	Stop phase	Power cut-off / Ramp / DC braking/Pump control		
Inputs / Outputs	Inputs	4 digital optocoupled. Two fixed (Start , Stop) , and 2 programmable (I3, I4) 1 Analog 0-5VDC for Tachogenerator input feedback		
	Outputs	3 programmable relays, (1r, 2r, 3r) 1 Analog 0-10VDC output for current metering		
Protections	Current limit	Adjustable from 1 In to 7 In		
	Overload	IEC class 10 and 20; NEMA class 10,20 and 30 all selectable		
	Cool-down time after overload trip	300 s		
	Loss on input phase	Trip at 3 s		
	Thyristor short circuit	Trip at 200 ms		
	Radiator overheating	Trip at 200 ms		
	Motor thermistor	Trip at 200 ms if thermistor impedance > response value		
	Loss on output phase	Trip at 3 s		
	Stalled rotor	Trip at 200 ms		
	Supply frequency error (Hz)	If f < 45 or f > 65, will not start		
	Overcurrent	100 to 150% In; trip time adjustable from 0 to 99 sec.		
	Undercurrent	0 to 99% In; trip time adjustable from 0 to 99 sec.		
	Overvoltage	100 to 130% Un; trip time adjustable from 0 to 99 sec.		
	Undervoltage	0 to 50% Un; trip time adjustable from 0 to 99 sec.		
	Error (CPU)	60 ms		
	Memory	4 former errors		
	Long start time	2 s x ta (ta = acceleration ramp time)		
	Long slow speed time	120 s		

Environmental	Temperature	0 to +55 °C (derate output current by 1,5% / °C above 40°C)		
conditions	Relative humidity	95% without condensation		
	Maximum altitude	3000 m (derate output current by 1% / 100m above 1000m)		
	Mounting position	Vertical		
	Protection Degree	IP00, UL open		
Standards	CE, cUL, UL	CE Conforming IEC 947-4-2; UL, cUL conforming to UL508		
	Conducted & Radiated emissions	Conforming IEC 947 -4-2, Class A		
	Electrostatic discharges	Conforming to IEC 1000-4-2, level 3		
	Radioelectric interference	Conforming to IEC 1000-4-6, level 3 and to IEC 1000-4-3, level 3		
	Immunity to fast trasients	Conforming to IEC 1000-4-4, level 3		
	Immunity to Surge Voltage	Conforming to IEC 1000-4-5, level 3		

3.2. I/O terminal board specifications

Power I/O terminal	ls	
Terminal	Function	Description
1L1, 3L2, 5L3	Mains Input	3ph input voltage according ASTATplus type.
2T1, 4T2, 6T3	Motor output	Output terminals to 3ph AC motor
A1, A2, B1, B2	Input Control	110/120V AC, +10%, -15%: 220/240V AC, +10%, -15%:
	Voltage	A1 A2 B1 B2 A1 A2 B1 B2
Digital inputs		
Terminal	Function	Description
57	Common for digital inputs	This is a common terminal for the digital input terminals specified below.
1	Run	Run order. Command signal may be provided by one NO free voltage push-button to terminals 1 and 57.
2	Stop	Stop order. Command signal may be provided by one NC free voltage push-but-ton to terminals 2 and 57.
		Note: Run/Stop permanent command is allowed linking 1-57 and using one dry NO contact to 2-57 terminals.
3	Programmable input I3	These two inputs are programmable. Can be assigned to the following internal functions
4	Programmable input I4	-soft stop -DC brake -Linear Ramp -pump control -slow speed control -dual ramp selection -kick start -reverse slow speed -bypass function -override -local / remote control
		Command signal should be provided by one NC dry contact to terminals 57-3 or terminals 57-4. By switching
		ON / OFF this contact, is possible to enable or disable the assigned function.



Digital outputs		
Terminal	Function	Description
11, 12, 14	Programmable relay1r	11-12 = NC, 11-14 = N.O. dry contacts. This relay can be assigned to several internal output functions. (page A.12)
		As default assigned to function RUN
23, 24	Programmable relay 2r	23-24 = N.O. free voltage contact. This relay can be assigned to several internal output functions. (page A.12)
		As default assigned to function EOR
33, 34	Programmable relay 3r	33-34 = N.O. free voltage contact. This relay can be assigned to several internal output functions. (page A.12)
		As default assigned to function DC BRAKE
		Common for all relay output contacts
		Maximum usage voltage: 380VAC (B300 UL) Thermal current: 8A. AC-15 use: 220V/3A, 380V/1A DC-15 use: 30V max/ 3.5A
Analog I/O		
Terminal	Function	Description
8	Analog input common	This is a common terminal for the analog input terminal number 7.
7	TG feedback input	0-5V analog input for speed feedback. It should be provided by a DC tacho-generator coupled to the motor.
		This speed feedback signal is required when the "linear ramp" function is used.
9	Current Output	0-10V DC analog Output for current measurement purpose.
		Ir correspond to 2V DC
		Load Impedance 10KΩ or higher
Motor thermistor	terminals	
Terminal	Function	Description
5,6	Motor thermistor input	This input allows a motor thermistor with a response value from 2,8 to 3,2K Ω , and a reset value from 0,75 to 1K Ω to control motor temperature.
		When the motor thermistor is not used, a link must be used in terminals 5-6.
Communications		
Terminal	Function	Description
SG, TD, RD	Gr, Tx, Rx data	RS232C, 3 wires, half duplex. Maximum cable length 3mts (10 feet) Asynchronous data transmission, 9600 Bauds, 1 bit start, 8 bits data, 2 bits stop. No parity ASCII and ModBus RTU protocols selectable from keypad as standard (Check appendix 6.2). Profibus DP and DeviceNet by external optional accessory

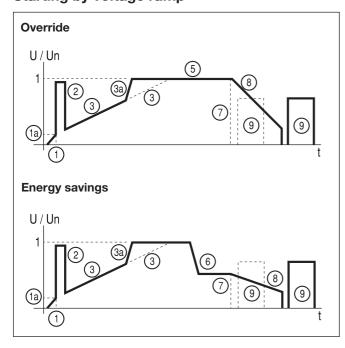
3.3. I/O wiring

ASTATplus's terminal layout and wiring configuration is shown in the diagram of bellow

- (1) Control and Mains wiring recommendations are given in chapter 5.
- (2) The programmable inputs I3, I4 are not assigned to any function as default. Check page A15 prior to using these inputs.
- (3) The programmable relay outputs are assigned to the following functions as default:

Relay (1r): RUN, (RUN status)
Relay (2r): EOR, (End of Ramp)
Relay (3r): DCBR, (DC Braking control)

(4) Important: Use dry contacts only



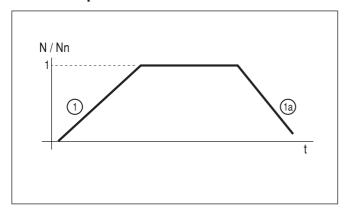
3.4. Operating modes

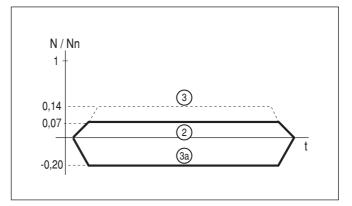
Starting and Stopping

Initial ramp	1	5 main frequency cycles
Initial voltage (pedestal)	1a	30 to 95% Un (adjustable)
Kick start	2	95% Un. Enabled by parameter "Pxxx" to ON
Acceleration ramp (tramp)	3	Voltage ramp up from1 to 99s (adjustable). Dual ramp possibility
		Linear speed ramp by tacho feedback also possible
	(3a)	Fast increase of output voltage when motor gets rated speed
Current limit	4	1 to 7 ln
Permanent state	5	Rated voltage (Override)
	(5a)	Rated current
	6	Energy savings. Enabled by "Fxxx" to OFF
Stopping modes (All selectable)	7	Motor power cut-off. "Sxxx" to OFF, "Cxxx" to OFF
	8	Deceleration ramp 1 to 120s (adjustable). Secondary ramp 1 to 99 s
		Ramp dowm modes available are:
		- Soft Stop -Voltage ramp down Enabled by "Sxxx" to ON
		- Pump control. Selectable by "Sxxx" to ON and "Cxxx" to ON
		- Linear ramp down (Tacho feedback needed)
	8a	Evolution of current in deceleration ramp mode
	9	DC brake (0 to 99s adjustable). Enabled by "Bxxx" to ON

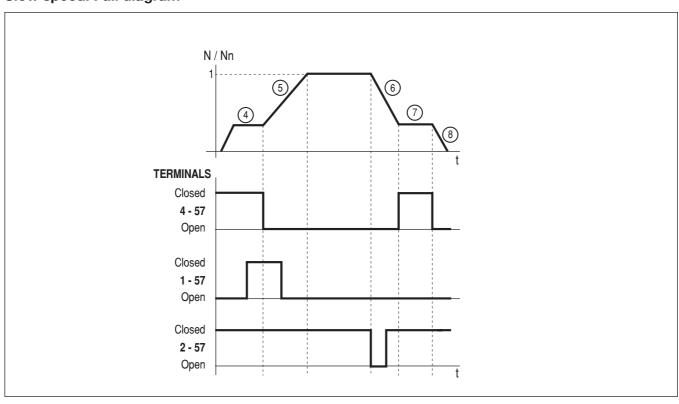
Starting by voltage ramp

Starting by current limitation

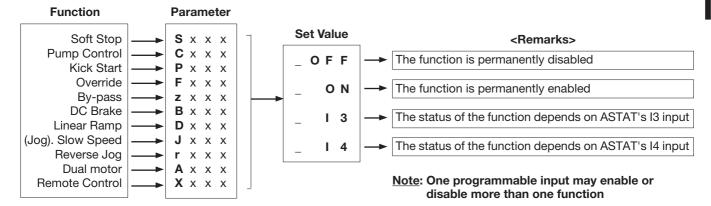


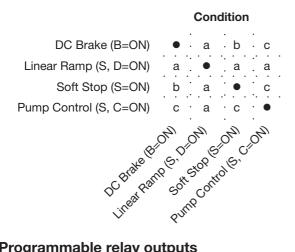

Jog and linear ramp

Linear acceleration and Ramp time adjustable (Selectable by parameter "Dxxx" to ON (1) (1a) deceleration ramp Low slow (7%) and Enabled by parameter "Jxxx" to ON and "jxxx" to LO or HI 2 3 High slow (14%) speeds Reverse slow speed (20%) Enabled by parameter "Jxxx" to ON and "rxxx" to ON Slow speed (7% or 14%) Enabled by parameter "Jxxx" to ON Acceleration ramp Ramp time adjustable Soft stop (deceleration ramp) Ramp time adjustable Slow speed (7% or 14%) Enabled by parameter "Jxxx" to ON DC Brake Current and time adjustables, Enabled by parameter Bxxx to ON, and bxx, Ixxx adjustments


Linear ramp with T.G. feedback

Slow speed. Basic diagram

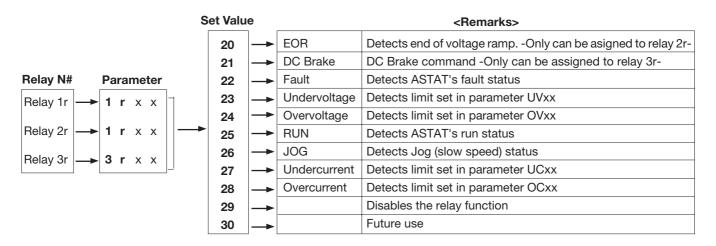

Slow speed. Full diagram



Programmable inputs and functions

The ASTATplus functions like Soft stop, kick start, and etc, can be enabled or disabled by setting ON or OFF in their dedicated parameters, using the facilities provided by the keypad. Most of these functions can be enabled or disabled remotely as well, through the programmable inputs I3 or I4 (terminals board 3-57 and 4-57).

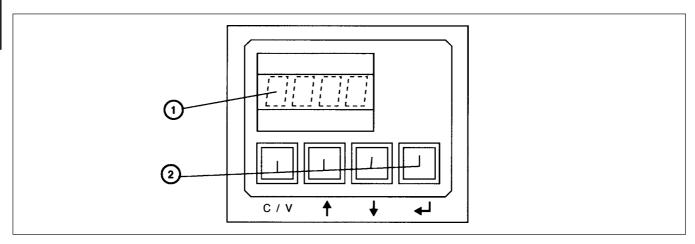
More than one function can be enabled in the ASTATplus, either by the keypad or through the programmable inputs I3 and I4, but there are some functions which may not work as expected during stopping, when are simultaneously enabled. The priority when two or more of the below functions are simultaneously enabled is defined in the following table,


Action

- The Unit stops by Linear Ramp
- The unit stops by DC brake after the Soft Stop is completed.
- The unit stops by Pump Control

Programmable relay outputs

The ASTATplus includes three programmable relays 1r, 2r and 3r, (dry contacts). ASTAT terminals are 11-12-14, 23-24 and 33-34

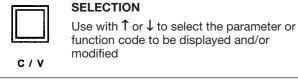

These relays can be assigned to several functions, as shown bellow

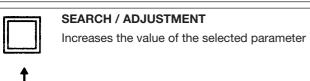
4. Programming

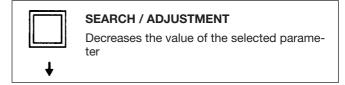
4.1. Keypad and display description

Display 1 Displays Monitoring, Status indications, error messages and function set values

	Display Structure					
Function code						
Data						
11						
iFiiViiViiV						
<u> </u>	4					
	۷					


F	٧	V	V	Status code
	0	N		Equipment is connected
				to main supply
				(equipment is ON)
S	Τ	0	P	Stop
L	0	C	K	Remote stop
Р	U	L	S	Kick start
R	Α	M	P	Acceleration ramp
F	U	L	L	Full conduction or
				Override
S	Α	V	Ε	Energy saving
S	0	F	T	Soft stop
Р	U	M	P	Pump control
D	C	В	K	DC braking
1	N	C	Н	Inching / slow speed
Т	Α	C	Н	Linear ramp (tacho)
				, , , ,


F	٧	٧	V	Error code
Ε	0	1	0	Frequency out of range
Ε	0	1	1	Overload trip
Ε	0	1	3	Loss of synchronism
Ε	0	1	4	Phase U scr
Ε	0	1	5	Phase V scr
Ε	0	1	6	Phase W scr
Ε	0	1	7	Heatsink overtemperature
Ε	0	1	8	Motor thermistor
Ε	0	1	9	Phase U lost
Ē	Õ	2	Õ	Phase V lost
Ē	Ō	2	1	Phase W lost
Ē	Õ	2	2	Stalled rotor
Ē		2		Internal error
Ē	0	2	5	Long start time
_	Ö	_	6	Long slow speed time
_	Ō	_	7	Lock-out
_	Ö	_	8	Undervoltage
_	Ö	_	9	Overvoltage
_	-	3	-	Undercurrent
Ē	_	3	-	Overcurrent
Ē	0	3	2	*
_	U	J	_	Retry, attempts exceeded


F	F/V	V	V	function code (*)
M v	X	X X	X X	Motor current Software Version
P	F	X	X	Power Factor
L T	X	X	X	Limit current
a	X X X		X X X	Starting Torque Ramp up time Ramp down time
S	X	X	X	Soft Stop selection .
Ĺ	K	X	X	Lock out
٠				

(*) These are examples. Full details in sections 4.2 on page A17, 4.3 on page A19, 4.4 on page A20, 4.5 on page A21 and 4.6 on page A23

Keypad 2 Allows setting of parameters and functions

ENTER / SAVE

Introduces the new parameter value into memory

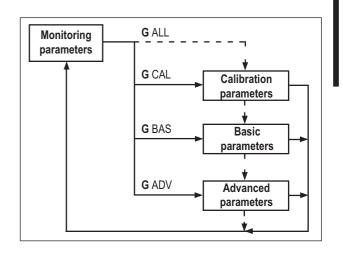
Updates the selected parameter value with the displayed value

4.2. Parameters blocks configuration

Mode selection

The ASTATplus includes a large number of parameters which are divided in four blocks: Monitor, Calibration, Basic and Advanced. The parameters of each group can be displayed or skipped according the selection done in parameter "G".

The monitor parameters are always displayed regardless of the mode selected


Settings in parameter "G"

Gxxx The Monitor parameters are always displayed,

whichever are the settings in parameter "G".

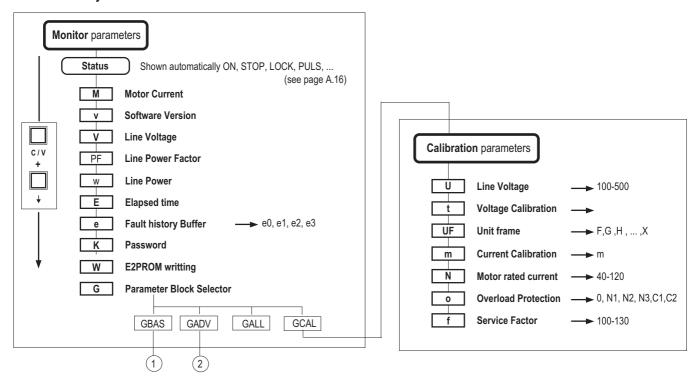
GCAL The Calibration parameters are displayed GBAS The Basic parameters are displayed The Advanced parameters are displayed

GALL All parameters are displayed

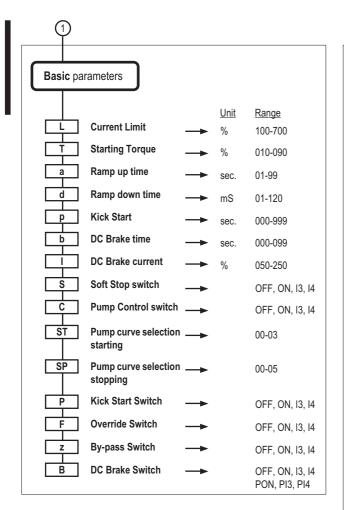
Searching and setting parameters

The ASTATplus displays the parameters sequentially while depresing the Proceed in this way untill the parameter "G" is displayed.

There is a quick way to search automatically the parameter "G" by pressing and Keys. "Gxxx" will be shown on the display.


Once the parameter "G" is displayed, choose the value desired by pressing or Keys. The display will sequence "GBAS", "GCAL", "GADV" and

"GALL" values repeatedly. The actual value displayed can be stored in a temporal memory buffer by pressing \bigsqcup key.


Values stored in the temporal memory are lost upon control power loss, unless these are saved in the permanent E2PROM memory through parameter "W". Additional indications are given on page 4-4

The above is an example given for parameter "G", but all ASTATplus parameters can be modified from its default factory value proceeding in similar way.

Parameter layout

2				
A do not				
Advanc	ed parameters			
			<u>Unit</u>	Range
LK	Lock-out	-	minutes	00-45
R	E2PROM Reading	\rightarrow		ON, OFF
Q	Factory Settings	-		ON, OFF
Ý	Retry	-	n. attempts	000-004
ý	Retry time	\rightarrow	sec.	001-099
ÜΫ	Undervoltage	-	%	00-50
uv	Undervoltage trip time	-	sec.	00-99
OV	Overvoltage	-	%	00-30
ov	Overvoltage trip time	\longrightarrow	sec.	00-99
UC	Undercurrent	-	%	00-99
uc	Undercurrent trip time	\longrightarrow	sec.	00-99
ОС	Overcurrent	-	%	00-50
ОС	Overcurrent trip time	\longrightarrow	sec.	00-99
2a	Secondary Ramp up	-	sec.	01-99
2d	Secondary Ramp down	-	sec.	01-99
2t	Secondary Starting Torque		%	10-90
D	Tacho control switch	-		ON, OFF, I3, I4
	Slow Speed switch			OFF, I3, I4
	Low / High slow speeds			LO, HI
	Reverse slow speed			OFF, ON, I3, I4
A	Dual motor switch			OFF, ON, I3, I4
X	Remote control	-		OFF, ON, I3, I4
XP	Comm Protocol selection	-		00-02
S	Station number	-		001-247
1r	Output relay 1r	-		22-30
2r	Output relay 2r	-		20, 22-30
3r	Output relay 3r	→		21, 22-30

4.3. Monitor block parameters

Display	Function	Default	Range	Unit	Description
O N	Status	O N	ON	-	Switch on time. Equipment is connected to main supply
			STOP	_	Stop
			LOCK	_	Remote control through serial port.
			PULS	_	Kick start
			RAMP	_	Acceleration ramp
			FULL	_	Full conduction / Override (full voltage)
			SAVE	_	Energy saving
			SOFT	_	Soft stop
			PUMP	_	Pump control
			DCBK	_	DC braking
			INCH	_	Inching / slow speed
			TACH		Linear ramp (tacho feedback needed)
			17011		Linear ramp (tacho reedback needed)
$\mathbf{M} \times \times \times$	Motor current		000-999	Α	Displays motor current in Amps.
			1.0-9.9	kA	Current higher than 999A is displayed in kA
				%	If parameter UFxx is not calibrated, the motor current is displayed in %N
v x x x	Software version		-	-	xxx = Version number
V x x x	Main Source voltage		-	V	Displays line voltage in volts.
P F x x	Power factor		00-99	%	Displays line power factor
w x x x	Line power		-	kW	Displays line power
E x x x	Elapsed time		-	Hrs	Displays RUN time in hours (x 1000)
e x x x	Error trace buffer		e0xx-e3xx	-	Saves the last four errors
					e0xx: Fault 1 -Latest fault- xx: Fault code error
					e1xx: Fault 2
					e2xx: Fault 3
					e3xx: Fault 4
Kxxx	Password	K 0 0 0	000-999	-	= 69 allows E2PROM writing operation
	1 433 WOTA	10 0 0	000 333		= 10 Key lock enabled
					= 20 Key lock disabled
					= 20 Rey lock disabled
$\mathbf{W} \times \times \times$	E2PROM writing	WOFF	ON, OFF	-	Saves the unit current parameters to the
					E2PROM
					This rewrites the last values saved
Gxxx	Parameter display	G B A S	CAL, BAS,	_	CAL: Displays calibration parameters
	selection	4 D A 0	ADV, ALL		BAS: Displays basic parameters
	SCIECTION		ADV, ALL		ADV: Displays advanced parameters
					ALL: Displays all parameters
					ALL. Displays all parafficters
					Note: The monitor block parameters are
					Note: The monitor block parameters are always displayed

4.4. Calibration block parameters -CAL-

Display	Function	Default	Range	Unit	Description
U x x x	Line voltage setting	U 4 0 0	100-500	V	Line Voltage from 100 to 500V. Set rated value
t x x x	Voltage calibration	t 4 0 0	000-600	V	Setting of this parameter allows better accuracy in monitoring or voltage protections. (Check the voltage calibration procedure) (1)
U F x	Unit frame	U F 0	F, G, H, I, J, K, L, M, N, Q, R,X	-	Unit frame rating (F,G,H,X) Setting "0" disables calibration
m x x x	Current calibration	m 0 0 0	000-1000	А	Setting of this parameter allows better accuracy in monitoring or current protections. (Check the current calibration procedure) (2)
N x x x	Motor rated current	N 1 0 0	040-120	%	100 x I motor/ I unit ratio When this parameter is adjusted at a value higher than 105% the overload protection curve is automatically adjusted to Class 10. "C1", or to Nema 20 "N2"
o x x x	Overload protection	o C 1	OFF N1, N2, N3, C1, C2	-	Selects either the following overload curves OFF: Overload protection disabled
f x x x	Service factor	f 1 0 0	100-130	%	Allows motor service factor. Applicable for Nema ratings

(1) Voltage calibration procedure

When the unit is installed on site or after PCB's replacement the voltage measurements may have accuracy of 10%. To improve the Voltage measurement accuracy up to 3% proceed as follow.

- 1. Switch on the ASTAT and measure the RMS voltage on phases 1L1-3L2 using a calibrated voltmeter
- 2. Search the parameter "txxx", set the voltage measured and save this value by the key.

It is not necessary to rewrite the E2PROM to make permanent the new setting, the ASTATplus does this automatically.

3. Once the ASTAT has been calibrated, this operation does not need to be repeated. Note however that the parameter "txxx" will show the latest entry, which may differ from the actual voltage value.

(2) Current calibration procedure

When the unit is installed on site or after PCB's replacement the current measurements may have accuracy of 10%. To improve the Current measurement accuracy up to 3% proceed as follow.

- 1. Search parameter "UF x" and enter the right ASTAT's frame type letter. ("F", "G", "H", ..etc.)
- Start the motor, and measure the rms motor current using a calibrated Ammeter.This measurement must be done after complete the starting, once the motor current has been stabilized.
- 3. Search the parameter "mxxx", set the current measured and save this value by the enter's keypad key. It is not necessary to rewrite the E2PROM to make permanent the new setting, the ASTATplus do this automatically. Note: Set real current measured while motor is running. DO NOT enter motor nameplate current rating.
- 4. Once the ASTAT has been calibrated, this operation does not need to be repeated. Note however that the parameter "mxxx" will show the latest entry, which may differ from the actual current value.

4.5. Basic block parameters. -BAS-

4.5.1. Basic functions

Display	Function	Default	Range	Unit	Description
Lxxx	Current limit	L 3 5 0	100-700	%	Sets Device current limit. Sets motor current limit if parameter "N" is properly adjusted.
					The maximum range setting is automatically calculated by the unit according the following expression: Max Limit = 450 / N (max allowed is 700%) N is the motor capacity / unit capacity ratio adjusted in parameter "Nxxx".
T × ×	Starting torque	t 2 0	10-90	%	Sets the initial voltage applied to the motor
a x x	Ramp up time	a 20	01-99	sec.	Sets Voltage ramp up time. Motor acceleration time will depend of load conditions.
d x x x	Ramp down time	d 0 2 0	001-120	sec.	Sets Voltage ramp down time. Motor deceleration time will depend of load conditions. Enabled only if the parameter "Sxxx" is ON
p x x x	Kick start	p 0 0 0	000-999	ms.	During the time adjusted, provides 95% of full voltage to motor at starting time. Useful for high static-friction loads Enabled only if the parameter "Pxxx" is ON
b x x	DC brake time	b 0 0	00-99	sec.	Provides DC braking at stopping time. Enabled only if the parameter "Bxxx" is ON
1 x x x	DC brake current	I 0 5 0	050-250	%	Enabled only if the parameter DAXX IS ON

4.5.2. Programmable basic functions

Display	Function	Default	Range	Description
S x x x	Soft stop selector	SOFF	OFF, ON, I3, I4	Enables or disables all modes of Soft stop
C x x x	Pump control selector	COFF	OFF, ON, 13, 14	Enables the Pump control function. Usefull to limit fluid hammering. The parameter "Sxxx" must also be enabled. NOTE: Parameters "p ", "b " and "I " are disabled while "C" is ON
STXX	Pump curve selection at starting phase (*)	S T 0 0	00-03	Choice of various pump control algorithms for starting phase. 00 : Voltage ramp up 01-03 : Various pump algorithms
S P x x	Pump curve selection at stopping phase (*)	S P 0 2	00-05	Choice of various pump control algorithms for stopping phase. 00 : Voltage ramp down 01-05 : Various pump algorithms
P x x x	Kick start selector	POFF	OFF, ON, I3, I4	Enables or disables the Klck start function If Pump control function "P" is enabled, both Kick start and DC Brake functions are internally disabled
Fxxx	Override selector	F O F F	OFF, ON, I3, I4	When this function is enabled, the unit provides constant full voltage after starting, producing the lowest harmonic distortion. Note that the energy saving function is disabled when Override is enabled.
z x x x	By-pass selector	z O F F	OFF, ON, 13, 14	This function provides control of an external by-pass contactor, significantly lowering heating losses and eliminating harmonics. When the By-Pass function "z" is enabled, the programmable relay output 2r is automatically assigned to this function, and must be used to control the external by-pass contactor
B x x x	DC Brake selector	BOFF	OFF, ON, I3, I4, PON, PI3, PI4	Enables or disables the DC brake function When the DC Brake function "B" is enabled, the programmable relay output 3r is automatically assigned to this function. PON, PI3 or PI4 settings enable the DC Brake function just before starting the motor. This is usefull to stop a fan which is rotating in reverse at the starting time

(*) - Curve 0 (both ST00, SP00): Standard voltage ramp up -starting- and ramp down -soft stop-

- Curve 1 (both ST01, SP01): Pump Algorithm based on estimated average PF -power factor-, with large sampling period

- Curve 2 (both ST02, SP02): Pump Algorithm based on instantaneous PF with short sampling period

- Curve 3 (both ST03, SP03): Pump Algorithm based on estimated average PF with short sampling period

- Curve 4 (SP04): As Curve 3, but with high accuracy on PF average estimation

- Curve 5 (SP05): Pump Algorithm based on former ASTAT CD

4.6. Advanced block parameters -ADV-

4.6.1. Advanced functions

Display	Function	Default	Range	Unit	Description
L K x x	Lock-Out	L K 0 0	00-45	min.	Sets time between consecutive starts. Setting "0" disables this function.
Rxxx	E2PROM reading	ROFF	ON, OFF	-	Loads the parameters from the E2PROM to the temporal buffer
Q x x x	Factory settings	QOFF	ON, OFF	-	Loads default factory settings to the temporal buffer.
Y x	Retry	Y 0	0-4	-	Allows up to four tries of automatic restart after a fault. Setting "0" disables this function.
y x x	Retry time	y 1 0	01-99	sec.	Time between retries.
U V x x	Undervoltage	U V 0 0	00-50	%	The unit trips if the line voltage decreases below the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before enabling this protection.
u v x x	Undervoltage trip time	u v 2 0	00-99	sec.	Delay trip time
O V x x	Overvoltage	o v 0 0	00-30	%	The unit trips if the line voltage increases above the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before enabling this protection.
o v x x	Overvoltage trip time	o v 2 0	00-99	sec.	Delay trip time
U C x x	Undercurrent	U C 0 0	00-99	%	The unit trips if the current decreases below the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before enabling this protection.
u c x x	Undercurrent trip time	u c 2 0	00-99	sec.	Delay trip time
0 C x x	Overcurrent	o c 0 0	00-50	%	The unit trips if the current increases above the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before enabling this protection.
o c x x	Overcurrent trip time	o c 2 0	00-99	sec.	Delay trip time.
2 a x x 2 d x x 2 T x x	Dual ramp up Dual ramp down Dual starting torque	2 a 2 0 2 d 2 0 2 T 2 0	01-99 01-99 10-90	% % %	These are a secondary set of ramp up, ramp down and starting torque parameters, which take over the primary "a", "d" and "T" when the programmable function "A" is enabled.

4.6.2. Programmable advanced functions

Display	Function	Default	Range	Description
D x x x	Linear Ramp	DOFF	OFF, ON, I3, I4	This function provides linear acceleration and deceleration ramps in a wider range of load conditions using tachogenerator feedback. A DC Tacho-Generator coupled to motor must be used to provide an analog signal feedback of 0-5VDC to terminals 7 and 8
J x x x	Slow Speed	JOFF	OFF, I3, I4	This function enables slow speed operation Maximum operation time 120sec.
j x x	Speed changeover	j LO	LO, HI	LO: Low Speed, 7% of rated speed. HI: High Speed, 14% of rated speed.
r x x x	Reverse	r O F F	OFF, ON, I3, I4	Reverse dirention is allowed in "High slow speed" mode only. It provides 20% of rated speed
A x x x	Dual motor selector	acceleration, deceleration and s		This function allows dual motor control settings of acceleration, deceleration and starting torque, and is useful to start or stop a motor in different load conditions.
				When this function is enabled, the parameters 2a, 2d and 2T take over the parameters a, d and T. It allows dual motor control settings
X × × ×	Remote control selector	XOFF	OFF, ON, I3, I4	Allows serial communication control by SG, TD and RD terminals. Check Appendix section for more details
X P x x	Communication protocol	X P 0 0	00-02	Sets serialcommunications protocol 0: ASCII 1: Modbus RTU 2; External modules (DeviceNet, ProfibusDP)
s x x x	Station number	s 0 0 1	001-247	ASCII protocol allows a maximum of 90 stations only

4.6.3. Programmable relay output functions

Display	Function	Default	Range	Description
1 r x x	Output relay 1r	1 r 2 5 (RUN)	22-30	This is a programmable relay with one NO / NC dry contacts to ASTATplus's terminals 11-12-13
2 r x x	Output relay 2r	2 r 2 0 (EOR)	20, 22-30	This is a programmable relay with one NO dry contact to ASTATplus's terminals 23-24
				This relay is automatically assigned to BY-Pass control if the function "z" is ON. Any other assignment by the user is overwrited in this case
3 r x x	Output relay 3r	3 r 2 1 (DC Brake)	21, 22-30	This is a programmable relay with one NO dry contact to ASTATplus's terminals 33-34
				This relay is automatically assigned to DC-Brake control if the function "B" is ON. Any other assignment by the user is overwrited in this case

The programmable relays can be set to the functions shown in the following table

Range	Function	Remarks
20 21 22 23 24 25 26 27 28 29 30	EOR DC Brake FAULT Undervoltage Overvoltage RUN Slow Speed Undercurrent Overcurrent Disabled Future use	Detects end of voltage ramp -This function only can be assigned to relay 2r-DC Brake control command -This function only can be assigned to relay 3r-Detects unit Fault status Detects Undervoltage according limit adjusted in function "UV" Detects Overvoltage according limit adjusted in function "OV" Detects unit RUN status Detects slow speed status Detects Undercurrent according limit adjusted in function "UC" Detects Overcurrent limits as adjusted in function "OC" Disables the relay function

5. Installation

5.1. Equipment installation

CAUTION! DISCONNECT POWER BEFORE INSTALLING OR SERVICING

ONLY SPECIALIZED PERSONNEL SHOULD INSTALL THE EQUIPMENT AND ONLY AFTER HAVING READ THIS USER'S GUIDE.

THE USER ITSELF IS RESPONSABLE FOR ANY PHYSICAL INJURY OR MATERIAL DAMAGE RESULTING FROM MISHANDLING THE EQUIPMENT.

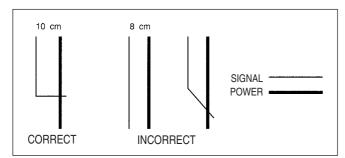
IF YOU HAVE ANY DOUBTS ABOUT ANY PROCEDURE, PLEASE CONTACT YOUR DEALER.

Remarks

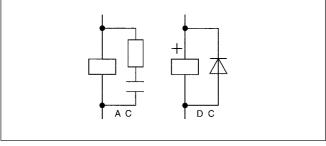
Supply wire conductors should have the same section as direct starters. As an indication, **Vd** voltage drop in wires should not be more than 2%.

$$Vd = \frac{\sqrt{3} \times R \times L \times In}{1000}$$

R = conductor resistance (m Ω / m)


L = conductor length (m)

In = motor rated current(A)

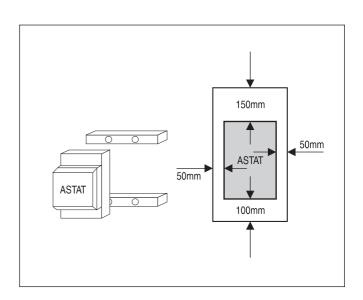

Conductor section (mm²)	2.5	4	6	10	16	25	35	50	100	150
R (Cu) 20°C (mΩ / m)	7.5	4.55	3.05	1.85	1.13	0.725	0.528	0.254	0.183	0.122
R (Al) 20°C (mΩ / m)					1.86	1.188	0.868	0.416	0.3	0.2

Signal wiring should be no longer than 3mts (up to 25mts. when using screened cable), and should be separate from power wires (line, motor, command relays, etc.) by at least 10cm, and if they cross, they should do so at a 90° angle

Relays and contactors located in the same housing as the equipment should have an RC suppressor parallel to the coil (or a reverse diode, if controlled by DC).

Do not install capacitors to correct the power factor between equipment output and motor

If the equipment is fed by a line transformer, its rated power should be at least 1.5 times, but less than 10 times, higher than equipment supply.


Environment

When installing equipment, keep the following points in mind:

- The equipment should be installed vertically and hang over a platform or bars. The vertical position is essential for proper cool air circulation
- Environmental conditions are in accordance with the following ranges and maximum values:
- Operating temperature : 0°C to +55°C
- Relative humidity (without condensation): 95%
- Maximum altitude: 3000m

Reduce rating by 1.5% / °C from 40°C and 1% / 100m from 1000m

- Do not install equipment in environments containing explosive or flammable gases, or near important heat sources
- Equipment should be well ventilated, with minimum keeping clearances as indicated in the illustration.
- When equipment is to be mounted on a platform subject to strong vibrations, there should be an elastic base to protect the equipment.

5.2. Fuses, contactors and supply wiring

Cat. No.	In Total losses		Fuses aM	Fuses Jean Müller	Fuses BUSSMANN type		Control voltage		Contactor DC 1	Contactor DC 3	Conducto section
	Α	100% In W	(F1) A	type	(Typower Size	Sucu 660V~ In	Fuse A	Consumpt. VA		(1)	mm²
QC F DP	17	67	25	S00C+/üf01/40A/690V	00	40	1	18	CL02	CL02	4
QC G DP	21	78	32	S00C+/üf01/50A/690V	00	50	1	18	CL03	CL03	4
QC H DP	27	88	40	S00C+/üf01/80A/690V	00	80	1	18	CL04	CL03	6
QC_I DP	38	116	63	S1üf01/110/100A/690V	00	100	1	18	CL45	CL04	10
QC J DP	58	208	80	S1üf01/110/125A/690V	00	125	2	55	CL07	CL45	16
QC K DP	75	277	100	S1üf01/110/160A/660V	00	160	2	55	CL08	CL06	25
QC L DP	86	302	125	S1üf01/110/200A/690V	00	200	2	55	CL09	CL06	35
QC M DP	126	389	200	S1üf01/110/250A/690V	00	250	2	55	CK75	CL07	50
QC N DP	187	719	250	M2üf02/315A/690V	00	315	2	78	CK08	CL10	95
QC Q DP	288	1097	400	M3üf02/500A/690V	2	550	2	78	CK95	CK85	185
QC R DP	378	1286	500	S3üf02/110/630A/690V	2	630	4	118	CK10	CK85	240
QC _ S DP	444	1374	630	S3üf02/110/800A/690V	2	800	4	118	CK11	CK95	Busbar (2)
QC _ T DP	570	2086	800	S3üf02/110/1000A/690V	3	1000	4	118	CK12	CK10	Busbar (2)
QC _ U DP	732	2352	1000	S3üf02/110/1250A/690V	3	1250	4	248	CK12	CK10	Busbar (2)
QC _ V DP	1020	3000	1250	S3üf02/110/800A/690V	_	_	4	248	CK13	CK11	Busbar (2)
QC _ X DP	1290	3839	2x800	S3üf02/110/1000A/690V	_	_	4	248	CK13	CK12	Busbar (2)
EC Class	20 rat	ings									
QC _ F DP	14	56	20	S00C+/üf01/40A/690V	00	40	1	18	CL01	CL01	4
QC _ G DP	17	65	25	S00C+/üf01/50A/690V	00	50	1	18	CL02	CL02	4
QC _ H DP	22	74	32	S00C+/üf01/80A/690V	00	80	1	18	CL03	CL03	4
QC_I DP	32	99	63	S1üf01/110/100A/690V	00	100	1	18	CL04	CL04	6
QC _ J DP	48	178	80	S1üf01/110/125A/690V	00	125	2	55	CL06	CL04	10
QC _ K DP	63	236	80	S1üf01/110/160A/660V	00	160	2	55	CL07	CL04	16
QC _ L DP	72	257	100	S1üf01/110/200A/690V	00	200	2	55	CL08	CL06	25
QC _ M DP	105	325	160	S1üf01/110/250A/690V	00	250	2	55	CL10	CL06	35
QC N DP	156	591	200	M2üf02/315A/690V	00	315	2	78	CK75	CL07	70
QC _ Q DP	240	901	315	M3üf02/500A/690V	2	550	2	78	CK85	CK75	120
QC _ R DP	315	1063	400	S3üf02/110/630A/690V	2	630	4	118	CK95	CK85	185
QC _ S DP	370	1136	500	S3üf02/110/800A/690V	2	800	4	118	CK10	CK85	240
QC _ T DP	475	1721	630	S3üf02/110/1000A/690V	3	1000	4	118	CK11	CK95	Busbar (2)
QC _ U DP	610	1950	800	S3üf02/110/1250A/690V	3	1250	4	248	CK12	CK10	Busbar (2)
QC _ V DP	850	2491	1000	S3üf02/110/800A/690V	_	_	4	248	CK13	CK10	Busbar(2)
QC _ X DP	1075	3168	1250	S3üf02/110/1000A/690V	_	_	4	248	CK13	CK12	Busbar(2)

⁽¹⁾ The 3 contacts of DC3 must be connected in parallel

(2) As per IEC 9471

Branch circuit protection, UL

	Gould-Shawmut, semi-conductor fuses					Short-circuit rating max @480V			
Cat Nr.	Type A50QS (3)	Type A50P (4)	Max. Fuse rating class RK5 & J	Max. circuit breaker size	Non- combi- nation	Combi- nation	<remarks></remarks>		
QC_FDPQC_GDPQC_HDPQC_JDPQC_KDPQC_LDPQC_LDPQC_MDP	50A 60A 80A 100A 150A 200A 225A 350A	- - - - -	30A 35A 40A 70A 100A 125A 150A 200A	35A 40A 50A 80A 125A 150A 150A 250A	25KA 25KA 25KA 25KA 25KA 25KA 25KA 25KA	5KA 5KA 5KA 5KA 10KA 10KA 10KA	(3) Suitable for use on a circuit capable of delivering not more than 100KA RMS symetrical amperes, for 208V, 240V and up to 480V maximum, when used with the semi-conductor fuse for short-circuit protection. Listed with Gould Shawmut Form 101, Type A5QS or A50P		
QC_NDPQC_QDPQC_RDPQC_SDPQC_TDPQC_UDPQC_VDP	450A 600A 2X500A in parallel 2x600A in parallel -	- - - - 2x1000A in parallel 2x1200A in parallel 2x1600A in parallel	350A 500A 600A 600A -	350A 600A 700A 800A 1000A 1200A	65KA 65KA 65KA 65KA 65KA 65KA	25KA 25KA 25KA 25KA(4) 30KA(4) 30KA 65KA	(4) Suitable for use on a circuit capable of delivering not more than 65KA RMS symetrical amperes, for 208V, 240V and		

Note: When ASTATplus reduced voltage starters are used in conjunction with semi-conductor fuses, type 2 co-ordination to IEC 947-4 is attained. These fuses are recommended for best overall short-circuit protection. The semiconductor fuse specified may provide branch circuit protection. Refer to local applicable electrical codes

5.3. Start-up

Make sure equipment wiring corresponds to one of the recommended routing diagrams or equivalent	- If the motor has thermal protection sensor, remove the link between terminals 5 and 6 prior to wire the sensor					
- Make sure the control wire harness corresponds to the control voltage used.	110/120V ac	220/240V ac				
- Adapt equipment rated current to motor,	N x x x ; x x x = In (motor)	$N \times \times \times \times = \frac{\text{In (motor)}}{} \times 100$				
setting the motor current In	Ir (unit)	N 1 0 0				
- Set overload trip curve as needed	oxxx; xx x OFF= disable	d	Factory setting			
	(externa C1/C2= IEC N1/N2/N3= Ne	o C1				
- Set starting parameters as needed :			Factory setting			
$L \times X = \frac{Im (start)}{In (motor)} \times 100$	Starting torque Acceleration ramp time Kickstart Kickstart time Current limit	T _ x x a x x x P ON/OFF/I3/I4 p x x x (if P enabled) L x x x	T _ 20 a _ 2 0 P OFF P 1 0 0 L 3 0 0			
- Set braking parameters as needed :			Factory setting			
	Soft stop Deceleration ramp time DC injection brake DC braking time DC braking current	S ON/OFF/I3/I4 d x x x B ON/OFF/I3/I4 b _ x x (if B enabled) I x x x (if B enabled)	S OFF d _ 2 0 B OFF b 5 I 1 5 0			
If you change the default configuration and wish to keep it, remember to rewrite the parameters in E2PROM as follows:	- Set paramete - Set paramete	r K to ON (ON = 69 + ◀)				

⁻ Send run command to equipment and make sure that operation is correct.

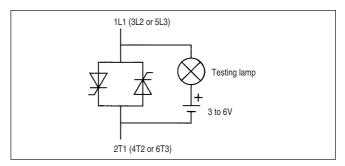
5.4. Troubleshooting

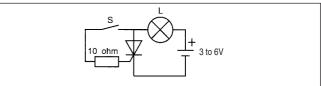
Symptom or Error		Possible Course	Measures to be taken			
Symptom or	ELLOL	Possible Cause	ivieasures to be taken			
Display OFF		No control voltage	Check wire harness and control voltage			
		F1 fuse blown on power supply PCB	Check and change, page 6.8			
		Bad connection of flat wire joining power supply PCB to control PCB	Verify connectors			
Equipment does not res STOP / START controls	pond to	F2 fuse blown on power supply PCB	Check and change, page 6.8			
Frequency error (admits 45Hz ≤ f main ≤	65Hz)	No 1L1 phase or frequency is out of range	Check 1L1 phase and/or mains frequence			
Overload trip		Excessive load or excessive current during starting	Verify overload conditions during startin- time and steady state. Check settings in parameters "Nxxx", "Lxxx", and "oxxx"			
Synchronism loss (Ex13)		Phase 1L1 lost	Check 1L1 phase			
Phase U, V, W thyristor	(Ex14)	Shortcircuited thyristor	Check thyristor module			
	(Ex15) (Ex16)	No output phases	Check 2T1, 4T2 and 6T3 phases			
Heatsink thermostat (Ex17)		Heatsink thermostat tripped by overheating or defective	Check thermostat and wiring			
Motor thermistor (Ex18)		Motor thermistor tripped by overheating or defective	Check thermistor and wiring			
Phase U, V, W loss	(Ex19) (Ex20)	No input / output phases	Check power wire harness for 1L1, 3L2, 5L3, 2T1, 4T2 and 6T3			
	(Ex21)	Defective thyristor or bad wire harness	Verify gate and cathode wire harness. Verify thyristors			
Stalled rotor (Ex22)		Equipment detected stalled motor rotor	Restart equipment and check for an appreciable loss in motor speed at any time (i.e. when the motor is loaded. In this case, try jumping the bypass terminals 3-57 at the end of acceleration ramp).			
Internal error	(Ex23)	Microcontroller malfunction	Check IC1 and IC8 are correctly inserted in their sockets			
Long start time (Ex25)		Current limit condition present more than 2 x ta sec. or 240 sec. (ta = acceleration ramp time)	Increase current limit and / or acceleration ramp time			
Long slow speed time	(Ex26)	Equipment has been in slow speed mode more than 120 sec.	Avoid this condition			
Lock-out (Ex27)		The time between startings is less that the adjusted in parameter "LKxx"	Check is settings are correct This protection may be disabled			
Undervoltage overvoltage	(Ex28) (Ex29)	The line voltage exceeds of limit set in parameters "UVxx" or "OVxx"	Check is settings are correct. This protection may be disabled			
Undercurrent overcurrent	(Ex30) (Ex31)	The motor current exceeds of limit set in parameters "UCxx" or "OCxx"	Check is settings are correct. This protection may be disabled			
Retry	(Ex32)	The retry feature could not re-start the motor after a fault	Check last message "e1xx" and correct Be sure that retry settings are correct as well.			

5.5. Thyristor check

Short-circuit

Use a testing lamp to check the defective power module between input and output phases.

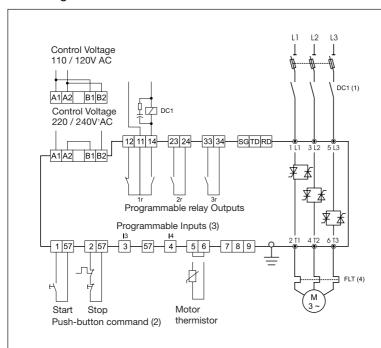

If the lamp goes on, at least one of the thyristors has a short-circuit.


Check with a tester the value or the R resistance between input and output of the same phase (connector B on main PCB must be previously removed)

If R < 50K Ω , at least one of the thyristor is defective

Open thyristor

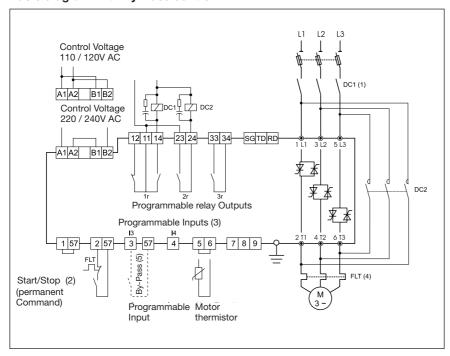
With the simple assembly shown, the lamp should light when the S switch is closed and remain lite when open. If not, the thyristor is defective.



6. Appendix

6.1. Application diagrams

Basic diagram



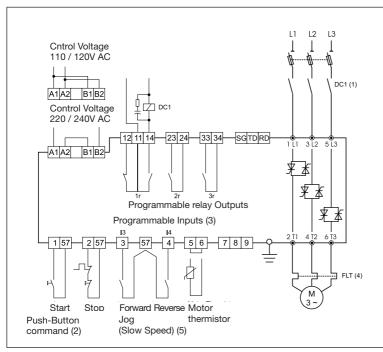
Remarks

- The isolation contactor DC1, is not required to perform operation to the motor.
 Be aware however that DC1 provides galvanic isolation from the incoming line increasing the safety.
- (2) In this example, Start and Stop command is enabled by push-buttons. Permanent command is allowed as well, wiring 1, 2 and 57 terminals as shown on page A12.
- (3) The output relays allow for direct action on contactors according ratings specified on page A11 of this manual.
- (4) The ASTATplus is provided with an electronic motor overload protection, which should be adequate protection for most of the applications.

You should use an external overload protection if required by local codes or to protect the motor against current unbalance.

Basic diagram with By-Pass control

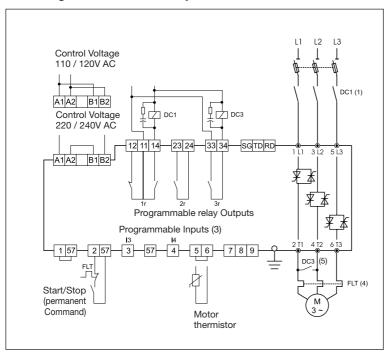
Remarks


- The isolation contactor DC1, is not required to perform operation to the motor.
 - Be aware however that DC1 provides galvanic isolation from the incoming line increasing the safety.
- (2) In this example, Start and Stop command is enabled by permanent command. Push-buttons control is allowed as well, wiring 1, 2 and 57 terminals as shown on page A12.
- (3) The output relays allow for direct action on contactors according ratings specified on page A11 of this manual.
- (4) CAUTION: In by-pass mode an external overload relay protection must be used.
- (5) By-pass control using function "zxxx" and external contactor DC2. Details given bellow.

By-pass control. Programming steps

- 1. The by-pass function may be enabled by setting "zxxx" to ON. In this case the by-pass is automatically done after starting.
 - An alternative, if "zxxx" is set to one of the programmable inputs "I3" or "I4", the by-pass may be controlled by one remote signal (5). Check section 4.5.2 on page A22 for more details.
- 2. Once this function is enabled, the relay 2r is automatically assigned to this function (check section 4.6.3 on page A24). This relay must be used to control the by-pass contactor.

Basic diagram with jog (slow speed) function


Remarks

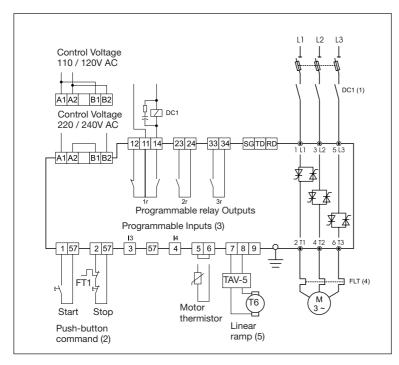
- The isolation contactor DC1, is not required to perform operation to the motor.
 Be aware however that DC1 provides galvanic isolation from the incoming line increasing the safety.
- (2) In this example, Start and Stop command is enabled by push-buttons. Permanent command is allowed as well, wiring 1, 2 and 57 terminals as shown on page A12.
- (3) The output relays allow for direct action on contactors according ratings specified on page A11 of this manual.
- (4) The ASTATplus is provided with an electronic motor overload protection, which should be adequate protection for most of the applications.
 - You should use an external overload protection if required by local codes or to protect the motor against current unbalance.
- (5) Slow Speed for Jog forward or reverse using programmable inputs I3, I4. Details given bellow

Jog (Slow Speed) function. Programming steps

- 1. The slow speed function may be enabled by setting "Jxxx" to I3. In this case Slow Speed is allowed by a push-button wired to ASTATplus terminals 3-57.
 - Reverse jog is also possible by setting "rxxx" to ON. As alternative, if "rxxx" is set to programmable input I4, forward or reverse may be controlled by remote push-button signal (5). Check section 4.6.3 on page A24 for more details.
- 2. Slow Speed can be effected with ASTATplus in stop status. Slow speed and normal run commands are internally interlocked.

Basic diagram with DC brake injection

Remarks


- The isolation contactor DC1, is not required to perform operation to the motor.
 Be aware however that DC1 provides galvanic isolation from the incoming line increasing the safety.
- (2) In this example, Start and Stop command is enabled by permanent command. Push-buttons control is allowed as well, wiring 1, 2 and 57 terminals as shown on page A.12.
- (3) The output relays allow for direct action on contactors according ratings specified on page A11 of this manual.
- (4) The ASTATplus is provided with an electronic motor overload protection, which should be adequate protection for most of the applications.
 - You should use an external overload protection if required by local codes or to protect the motor against current unbalance.
- (5) DC brake at stopping time is provided by the DC brake function and external contactor DC3. CAUTION:
 - The 3 contacts of DC3 must be connected in parallel. Mandatory between 2T1 and 4T2 phases, otherwise a short-circuit can occur

DC brake function. Programming steps

- 1. The DC function may be enabled by setting "Bxxx" to ON.
- 2. Once this function is enabled, the relay 3r is automatically assigned to this function. This relay must be used to control the DC brake contactor. Check section 4.5.1 and 4.5.2 on A.21 and A.22 for more details

Basic diagram with linear ramp

Remarks

- The isolation contactor DC1, is not required to perform operation to the motor.
 Be aware however that DC1 provides galvanic isolation from the incoming line increasing the safety.
- (2) In this example, Start and Stop command is provided by push-buttons. Permanent command is allowed as well, wiring 1, 2 and 57 terminals as shown on page A12.
- (3) The output relays allow for direct action on contactors according ratings specified on page A11 of this manual.
- (4) The ASTATplus is provided with an electronic motor overload protection, which should be adequate protection for most of the applications. You should use an external overload protection if required by local codes or to protect the motor against current unbalance.
- (5) Linear ramp provided by "Dxxx" function. A tacho generator must be used as feedback. Details given bellow.

Linear ramp function. Programming steps

The linear ramp function may be enabled by setting "Dxxx" to ON. In this case, linear ramp is independent of the load. This function needs the speed feedback provided by an external tacho generator.

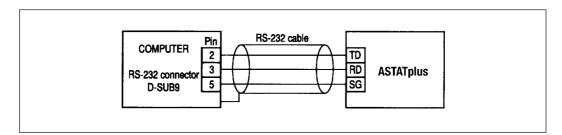
Check section 4.6.2 on page A.24 for more details.

6.2. Serial communication

ASTATplus is able to send and receive data trough a serial RS232 port. Within this port ASTATplus communicates with a host (which can be either with a PC / PCL or an industrial fieldbus system) to be started, stopped, programmed or checked.

Three different communication possibilities are available:

- Connection to a PC / PLC using ASCII protocol. (PC Windows communication software tool available)
- Connection to a PC / PLC using Modbus RTU protocol.
- Connection to industrial fieldbus systems (Profibus DP / DeviceNet). In this case it is necessary to use an external
 communications module. ASTATplus communicates with this module using Modbus RTU protocol, and the module acts
 as a gateway to the fieldbus system.


In order to select the disired procedure the user must change the value of the parameter XP.

Protocol	XP setting
ASCII	0
Modbus RTU	1
Profibus/DeviceNet	2

6.2.1. RS232 port, wiring and communication settings

RS232 is an operating standard of communication only in terms of electrical characteristics (voltage, timing, etc) while the communication procedure are defined by different protocols (Modbus, ASCII, Profibus, DeviceNet, etc.). The maximum allowed RS232 cable length is 3 meters. ASTATplus uses a connector with only 3 pins: TD, RD, SG.

Astat Terminal	Name		
TD	Transmit data		
RD	Receive data		
SG	Signal common		

The following table indicates the communication settings used by ASTATplus to perform data communication via its serial port

Name	Setting	Description
Baud Rate	9600 bps	Bits per second transmission rate
Parity	None	Data error checking method
Data Bits	8	Number of data bits in each transmission
Start Bits	1	Number of bits to indicate beginning of transmission
Stop Bits	2	Number of bits to indicate ending of transmission
Data	ASCII / RTU	Communications protocol used
Handshaking	None	No need to request to send or clear to send

6.2.2. ASCII Protocol

To select this communications protocol, XP must be set to 0.

It is possible to operate the ASTATplus from a host using standard ASCII characters. Two functions are available to be able to READ and WRITE parameters.

Write Parameters to ASTATPlus:

To write data into a parameter, the command format is the following:

Request from host: :ssWxxxyyy←

Response from the ASTAT: :ssWxxxyyy←

where ':' is a char to indicate the command start, 'ss' is the station address, 'xxx' (3 bytes needed) is the parameter number, and 'yyy' (3 bytes needed) is the value to write into the parameter. The '\(\Lambda'\) is the return key to indicate the command stop.

Note: the parameters modification is not allowed while the motor is operating.

Read Parameters from ASTATplus:

To read a parameter, the command format is the following:

Request from host: :ssRxxx←

Response from the ASTAT: :ssRxxxyyyy ←

where ':' is a char to indicate the command start, 'ss' is the station address, 'xxx' (3 bytes needed) is the parameter number, and 'yyyyy' (chars response) is the value of the parameter. The '\(\Lefta\)' is the return key to indicate the command stop.

Examples:

If we are trying to communicate with station 2:

- to start the unit, the command will be: :02W060000←
- to stop the unit, the command will be: :02W060001←
- to set the acceleration ramp time to 35sec., the command will be: $:02W005035 \leftarrow :02W005035$
- to know which overload curve is selected, the command will be: :02R016←;

(if for instance the response is :02R01600004←, this means that the overload curve selected is IEC class 10).

The table shown in 6.2.5 provides a complete reference for the parameters that can be controlled by the serial interface.

6.2.3. MODBUS RTU Protocol

Modbus RTU is an standard communication protocol. It is completely predefined, so any Modbus RTU master device will be able to send and receive data from ASTATplus. To select this communications protocol, XP must be set to 1.

The communication begins with a master request which is answered by the slave (ASTATPlus). Each message from master to slave and viceversa is transmitted asynchronously as follows:

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
3.5 chars	0-247	1-24	N chars	2 chars	3.5 chars

It is required to give different address to each slave. A Modbus master is able to handle up to 248 different addresses, but as address 0 is reserved for broadcast command, only 247 slaves are allowed. The CRC is an error detection code. Although Modbus protocol defines up to 24 different functions, only 3 of them will be useful to ASTATplus:

- Read - Write - Read + Write

Read parameters from ASTATplus

The function code assigned to 'Read' is '3' (3h).

The request message from master must contain the following information:

- Slave address; the master must indicate which slave has been selected. The non-addressed slaves will receive the
 message but will not execute the command. Only the slave with the corresponding address will send a response message.
- Function code: as related above, Read command is number 3.
- Data field: as this is a read command, the data requested is the number of parameters to be read and the starting address to begin to read.

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
			starting address		
3.5 chars	slave #	3	# of parameters	2 chars	3.5 chars

The response from the ASTATplus will contain the same slave address and function code, but the data field will include the total number of chars read, and the value of the requested parameters.

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
			# of chars read		
3.5 chars	slave #	3	parameters value	2 chars	3.5 chars

Write Parameters to ASTATplus

The function code assigned to 'Write' is '16' (10h)

The request message from master must contain the following information:

- Slave address: the master must indicate which slave has been selected. The non-addressed slaves will receive the message but will not execute the command. Only the slave with the corresponding address will send a response message.
- Function code: as related above, Write command is number 10h.
- Data field: as this is a write command, the data requested is the number of parameters to be written, number of chars, starting address and the value to write.

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
3.5 chars	slave #	10	starting address # of parameters # of chars values to write	2 chars	3.5 chars

The response from the ASTATplus will contain the same slave address and function code, but the data field will include the total number of chars read, and the value of the requested parameters.

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
3.5 chars	slave #	10	starting address # of parameters	2 chars	3.5 chars

Read + Write parameters to ASTATplus

The function code assigned to 'Read and Write' is '23' (17h).

The request message from master must contain information to perform both operations:

- Slave address: the master must indicate which slave has been selected. The non-addressed slaves will receive the message but will not execute the command. Only the slave with the corresponding address will send a response message.
- Function code: as related above, write command is number 17h.
- Data field: as a read command, the data requested is the starting address, and the quantity to read. As this is also a write command, the data requested is the number of parameters to be written, number of chars, starting address and the value to write.

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
3.5 chars	slave	17	starting address to read # of parameters to read # starting address to write # of parameters to write # of chars to write values to write	2 chars	3.5 chars

The response from the ASTATplus will contain the same slave address and function code, but the data field will include the total number of chars read, and the value of the requested parameters.

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
			# of chars		
3.5 chars	slave #	17	parameters read	2 chars	3.5 chars

Examples

Supposing we are trying to communicate with slave 17 (note that 17 is 11h):

- To read parameters 3, 4, 5 and 6

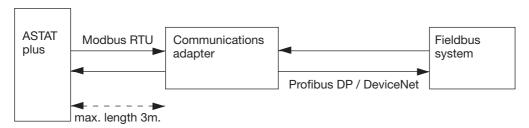
Quiet time	Slave address	Function code	Data field	CRC	Quiet time
			0003		
3.5 chars	11	03	0004	2 chars	3.5 chars

- To read values 1, 2 and 3 in parameters 9, 10 and 11

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
3.5 chars	11	10	0009 0003 06 0001 0002 0003	2 chars	3.5 chars

- To execute the above 2 commands in one

Quiet time	Slave address	Function code	Data field	CRC	Quiet time
3.5 chars	11	17	0003 0004 0009 0003 06 0001 0002 0003	2 chars	3.5 chars



6.2.4. Profibus / DeviceNet

It is possible to connect ASTATplus to an industrial fieldbus. Only a communications adapter is required. It is also necessary to set XP to 2.

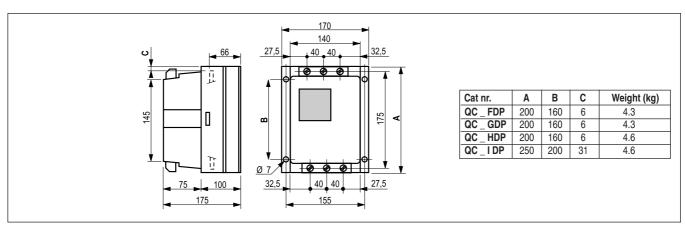
2 different modules are available: Profibus DP and DeviceNet Profibus DP: Cat Nr.: QCPPDP Reference Nr.: 129769
DeviceNet: Cat Nr.: QCPDNT Reference Nr.: 129768

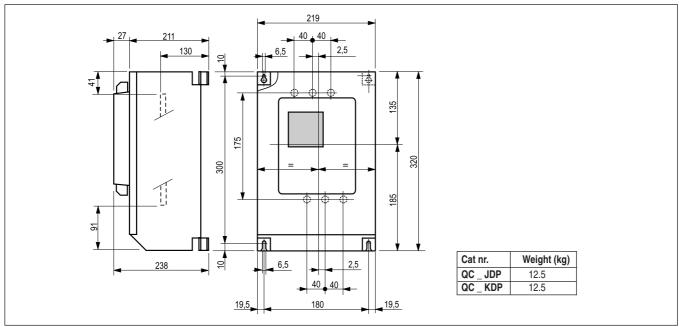
ASTATplus communicates with this module using Modbus RTU protocol.

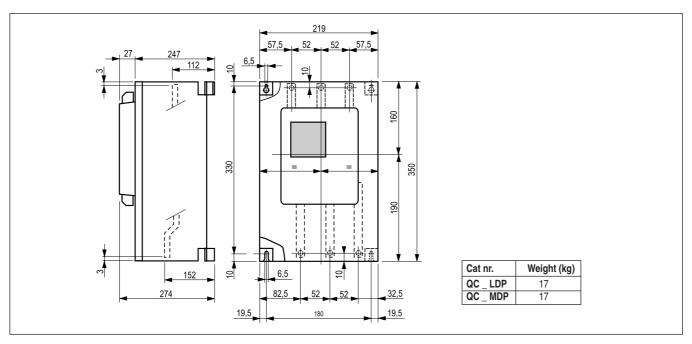
Note: Detailed information of communication modules QCPPDP and QCPDNT is described in their specific manuals.

6.2.5. List of parameters that can be controlled by the serial interface

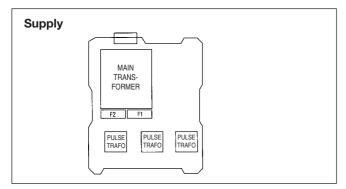
Parameter number	Parameter name	Function	Read/Write (R / W)	Range	Comments
000	Status	Soft starter status	R/-	0 - 14	0: ON 1: STOP 2: LOCK 3: Alarm (errors) 4: PULS 5: RAMP 6: FULL 7: SAVE 8: SOFT 9: DCBK 10: FULL (override) 11: Not used 12: INCH 13: TACH 14: PUMP
001	M	Motor current (%N or Amps, depending on UF parameter)			
002	N	Nominal motor current (% Unit current)	R/W	40-120	
003	L	Limit current (% In)	R/W	100-700	
004	T	Starting torque (% DOL torque)	R/W	10-90	
005	а	Acceleration ramp time (sec)	R/W	1-99	
006	d	Deceleration ramp time (sec)	R/W	1-120	
007	р	Kick start time (msec)	R/W	0-999	
800	b	DC brake time (sec)	R/W	0-99	
009	1	DC brake current (% In)	R/W	50-250	
010	S	Soft stop control	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
011	С	Pump control	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
012	Р	Kick start control	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
013	F	Override	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
014	В	DC brake control	R/W	0-6	0: OFF 1: ON 2: I3 3: I4 4: PON 5: PI3 6: PI4
015	LK	Lockout (sec)	R/W	0-45	
016	0	Overload trip curve	R/W	0-5	0: OFF 1: N1 2: N2 3: N3 4: C1 5: C2
017		Internal use			-
	W	Write EEPROM	-/W	1	
018					i .

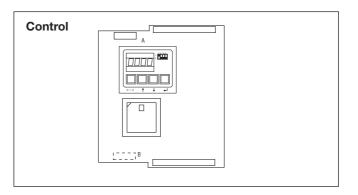

Parameter number	Parameter name	Function	Read/Write (R / W)	Range	Comments
020		Internal use			
021	v	Software version	R/-	XXX	VXXX
022		Internal use			
023		Internal use			
024	1r	Programmable relay 11-12-14	R/W	22-30	See programmable relays functions on page xx
025	2r	Programmable relay 23-24	R/W	20,22-30	. 0
026	3r	Programmable relay 33-34	R/W	21-30	
027	ОС	Overcurrent (%N)	R/W	0-50	0: OFF
028	ос	Overcurrent time (sec)	R/W	0-99	
029	r	Reverse slow speed	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
030	Υ	Retry attemps	R/W	0-4	
031	у	Retry time (sec)	R/W	1-99	
032	ÚV	Undervoltage (%U)	R/W	0-50	0: OFF
033	uv	Undervoltage time (sec)	R/W	0-99	
034	OV	Overvoltage (%U)	R/W	0-30	0: OFF
035	ov	Overvoltage time (sec)	R/W	0-99	
036	UC	Undercurrent (%N)	R/W	0-99	0: OFF
037	uc	Undercurrent time (sec)	R/W	0-99	
038	PF	Power factor (%)	R/-	00-99	
039	U	Nominal voltage (volt)	R/W	100-500	
040	V	Line voltage (volt)	R/-		
041	w	Power (KW*10)	R/-		
042	X	Local/remote control		0-3	0: OFF 1: ON 2: I3 3: I4
043	D	Linear ramp control	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
044	J	Slow speed control	R/W	0-2	0: OFF 1: I3 2: I4
045	j	Slow speed type	R/W	0-1	0: HI 1: LO
046	2a	Secondary acceleration ramp time (sec)	R/W	1-99	
047	2d	Secondary deceleration ramp time (sec)	R/W	1-99	
048	A	Dual ramp selection	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
049	UF	Unit frame	R/W	0-16	0: not defined 1 to 16: F to X frames
050	Е	Elapsed time (hours)	R/-		
052	Q	Recall factory settings	-/W	1	
053	2T	Secondary starting torque (%DOL torque)	R/W	10-90	
054	m	Current calibration	R/-		
055		Internal use			
056	z	Bypass function	R/W	0-3	0: OFF 1: ON 2: I3 3: I4
057		Internal use			
058	f	Service factor (%N)	R/W	100-130	
059	t	Voltage calibration	R/-		




Parameter number	Parameter name	Function	Read/Write (R / W)	Range	Comments
060	RUN/STOP	RUN/STOP order	-/W		0: RUN 1: STOP
061		Internal use			
062		Internal use			
063		Internal use			
064		Internal use			
065		Internal use			
066		Internal use			
067		Internal use			
068		Internal use			
069		Internal use			
070	ST	Pump Control selection curve	R/W	0-3	0: standard voltage ramp 1-3: Pump algorithms
071		Internal use			
072		Internal use			
073	SP	Pump Control selection curve	R/W	0-5	0: standard voltage ramp 1-5: Pump algorithms
074		Internal use			
075		Internal use			
076		Internal use			
077		Internal use			
078		Internal use			
079		Internal use			
080		Internal use			
081		Internal use			
082		Internal use			
083	XP	Communication protocol	R/W	0-2	0: ASCII 1: Modbus RTU 2: others (with external module)
084	s	Station number for communication	R/W	1-247	
085	e0xx	error e0	R/-		xx: error code
086	e1xx	error e1	R/-		xx: error code
087	e2xx	error e2	R/-		xx: error code
088	e3xx	error e3	R/-		xx: error code

6.3. Dimensions





6.4. P.C.B.'s layout

A 44

GE Power Controls Hornhouse Lane, Knowsley Business Park Liverpool L33 7YQ United Kingdom

GE Power Controls Belgium Axxes Business Park Guldensporenpark 30 B-9820 Merelbeke (Gent)

GE Power Controls Germany Ernst-Weyden-Straße 7 D-51105 Köln GE Power Controls France 7, rue Nicolas Robert BP 32 - Z.I. La Garenne F-93601 Aulnay-sous-Bois

GE Power Controls Nederland Maanlander 45 NL-3824 MN Amersfoort Postbus 127 NL-3800 AC Amersfoort

GE Power Controls Export Department Guldensporenpark 30 B-9820 Merelbeke (Gent) Belgium