
Design and Simulation of an Agent-based Stock Trader

by

Xin Feng

Master of Computer Science, University of North Dakota, 2002

A Project

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May 2002

Table of Contents

List of Figures …………………………………………………………………………..vi

List of Tables …………………………………………………………………………..vii

Abstract ………………………………………………………………………………..viii

1. Introduction ……………………………………………………………………...……1

2. Background of BDI-Agent …………………………………………………...……….3

3. Design of AST ………………………………………………………………………..6

3.1 The Architecture of AST …………………………………………………….6

3.2 The BDI Concepts in AST …………………………………………………..7

4. How To Implement BDI-Agent? ……………………………………………………..9

4.1 Agent-Based Programming Language ………………………………………9

4.2 How To Implement BDI-Agents ……………………………………………9

4.3 How To Program BDI-Agents ……………………………………………..15

5. Example Sessions ……………………………………………………………………21

5.1 Login Entry ………………………………………………………………...21

5.2 Basic Services ………………………………………………………….…..21

5.3 Stock Quotation ……………………………………………………………22

5.4 Stock Trading Recommendation …………………………………………...23

5.5 Posting An Order …………………………………………………………..25

 iv

5.6 Account Details and Trading History …………………………………...…25

6. Conclusions …………………………………………………………………………28

7. Acknowledgments …………………………………………………………………..29

8. References ……………………………………………………….………………….30

Appendices ……………………………………………………………………………..32

Appendix 1: Agent-based Stock Trader (AST) User Manual …………………32

Appendix 2: ASTdb Access Database …………………………………………37

Appendix 3: Source codes ……………………………………………………...39

v

List of Figures

1. The Architecture of AST ……………………………………………………………6

2. Proactive/Reactive BDI Agents ……………………………………………………10

3. BDI-Agent Runtime Control ……………………………………………………….15

4. ASTpackage Structure ……………………………………………………………...33

vi

List of Tables

1. BDI Mapping Table …………………………………………………………………10

2. AST Database Contents ……………………………………………………………..11

3. AST Database Knowledge Table Definition ………………………………………..12

4. Sample Values in Knowledge Table ………………………………………………...13

5. Bpmap Table Definition ……………………………………………………………..14

6. Sample Values in Bpmap Table ……………………………………………………..14

7. Client Table Definition ……………………………………………………………...37

8. Orders Table Definition ……………………………………………………………..37

9. Holding Table Definition ……………………………………………………………38

10. Sample Data in ASTdb.mdb for MS Access ...……………………………………..38

 vii

ABSTRACT

In this report, we introduce a noble implementation scheme of the Belief-Desire-

Intention (BDI) model to be used in an agent-based application using Java. The example

prototype system is the Agent-based Stock Trader (AST) that is a stock-trading expert

based on intelligent agents. Agents in AST are based on the Belief-Desire-Intention

(BDI) model in artificial intelligence.

This report proposes how to program the BDI-based agents using the Java

programming language, and how to make an agent-based application more intelligent and

flexible. This study contributes new implementation scheme of the BDI agents in the Java

programming language useful on many applications. This work also shows how nicely

implement the BDI agents with Java while manipulating BDIs intelligently and

dynamically at runtime. Using our concepts and implementation scheme, the internet-

based application like stock trading can be more intelligent and flexible.

 viii

1. INTRODUCTION

With the introduction of Internet, online investment comes true and lots of online

brokers appear. But compared with traditional brokerages, most of online brokerages will

not call clients with a hot stock tip or track clients down to tell clients, “one of your

securities is in trouble and you should sell”.

So we propose to create an Agent-based Stock Trader (AST) that is intelligent to

facilitate the service of recommendation. It means the AST can give clients some useful

recommendations and help clients to make right decisions, just like traditional agents.

The AST has its own knowledge base. It can continue learning new knowledge at run

time and keep updating its knowledge base. This online agent also provides a set of basic

services such as new clients’ registration, open an account, deposit/withdraw money,

buy/sell stocks, check stock prices, check account status and trading history. Since we

cannot access to the real stock market, we just simply simulate one by building the stock

database. However, the concept and implementation scheme used in this project can be

applicable to the real world problem.

The procedure and methodology is based on object-oriented analysis and design

to develop this agent-oriented program. The theoretical Belief Desire Intention (BDI)

model of artificial intelligence is used to implement the online agent’s intelligence.

Three-tiered design is considered. HTML, Java Servlet, JSWDK, JDBC and Access are

used. In this report, we emphasize how to develop the BDI-based agents in the project

1

 2

using the Java programming language, and how to make an agent-based application more

intelligent and flexible.

The next section, we introduce some background about agent-oriented

programming with BDI concepts, explains some basic concepts used in our work, and

compare our work with the related works.

In the Section 3, we describe the architecture of our prototype application, Agent-

based Stock Trader (AST), constructed based on the BDI-agent concepts. In the Section

4, we show our implementation scheme of AST with the Java codes. The AST is a just

small example program by which we describe our nice implementation scheme of the

BDI-agent concept using Java with the help of database. Therefore, we describe how we

can nicely implement the BDI-agents while showing how we can implement a BDI-

agent-based application like AST.

The Section 5 shows an example session of AST. With a nice user interface, each

session just shows how much the AST system is applicable while using the BDI agents

described technically in the previous sections. Finally we conclude with future work and

references.

2. BACKGROUND OF BDI-AGENT

An agent is a software entity that has some degree of intelligence and autonomy.

It is a high-level system component, which is capable of having goals that it needs to be

accomplished. From the traditional definitions, agents have the following properties:

autonomous, perceptive, pro-active and cooperative [DeLoach 99]. Agents may have

their autonomy and are not controlled directly by the others. The perception of agents

allows the communication between the agents and their environments. Agents can

cooperate with other agents to achieve the common goal. Intelligent agents have learning

ability, so that those agents can learn and adapt to new environment to achieve their goals

in the better way while learning. Agent computing is a new and active research area today

[Franklin & Graesser 96] [Petrie 96].

To realize the intelligent agent computing effectively, a model based on Belief,

Desire, and Intention (BDI) has been proved as a powerful technique [Bratman 87]. The

"Belief" in BDI of an agent represents the knowledge about itself and the world (outside

environment) of the BDI agent. The "Desire" in BDI represents a goal that the agent likes

to achieve. The "Intention" describes a set of plans to achieve the predefined goal or to

react to a specific situation.

There are many possible ways to support agents based on the BDI model. Multi-

paradigm mixed with object-oriented programming, BDI concepts, and logic

programming can be a way to support it. Another possibility we found was knowledge

3

 4

base manipulation, which database supports specific knowledge domain BDI. An

embedded language such as a query language embedded in the existing languages is

another possible solution to support the BDI-agent model. Other solution may include

distributed computing language models similarly found in distributed computing systems

such as JavaSpaces and JINI.

In this work, we have tried to program BDI-based agents for an example stocking

trading application using the Java programming language. Since Java does not support

agent programming, there was no proper language constructs to program agents. To make

it worse, Java does not have any constructs that support the BDI concept at all, and there

is no way to program it. Therefore we have tried to program BDI-based agents using Java

classes with database support. We show here how to program agents, belief, desire and

intention by using class constructs. Stock trading agents create objects for belief, desire

and intention from the corresponding classes implemented already. The desire object

finds appropriate an intention object to achieve its goal based on the information of the

belief object.

We have studied not only how to use the Java programming language nicely to

build the BDI-agent in our online stock trader application, but also how to manipulate

runtime knowledge dynamically to make agents intelligent using database for BDI

knowledge.

There have been several research and experimental works based on the BDI

model extending the Java programming language. BDIM Agent Toolkit is implemented

as a Java package to provide a prototype of runtime architecture [Busetta & R. 97, 98].

 5

Developing a BDIM agent needs to derive classes for each of agent’s plan and belief

from the relevant BDIM base classes.

JAM Agents are composed of five primary components such as a world model, a

plan library, an interpreter, an intention structure, and an observer [Huber 99]. JAM uses

text-based files to specify the agent’s beliefs, goals and plans. To implement a JAM

agent, a user has to write appropriate primitive functions in Java and specify the agent’s

BDI in JAM files.

JACK offers Class, Interface, Method, Syntactic and Semantic extensions of Java

implemented as Java plug-ins to support an agent-oriented development environment

[JACK 99]. Especially, JACK uses the Database class as its data storage device to

describe an agent’s beliefs. Then the Database class is fully integrated with other JACK

classes. However, JACK has its own extended syntax different from Java. To build a

JACK agent, a user has to understand the JACK structure very well, but it is not easy.

All of these works are based on Java. JACK uses DB nicely for belief; however, it

does not support dynamic manipulation of desire and intention, while our work does.

Even though JAM provides a way to manipulate BDIs, neither JAM nor BDIM supports

well dynamic manipulation of BDIs not like ours. In their works, once agents are built by

users, then they are fixed during runtime. In other words, users cannot modify them

dynamically at runtime. Users have to redefine and recompile them if a modification is

needed. In our work, we have built a BDI agent directly in Java with the help of database,

so that a user can handle the BDI agent dynamically by manipulating the relations among

the agent’s belief, desire, and intention defined in the BDI knowledge base at runtime.

3. DESIGN OF AST

3.1 The Architecture of AST

The following figure shows the conceptual overview of the AST system. Three-

tiered design is considered to make the AST system components portable and flexible

[Figure 1].

DB

Access/update

return result send goal

AST-BDI
Agents

Servlet

Controller

Interface

Web Page users

Figure 1. The Architecture of AST

The whole system consists three tiers. The first tier is the Servlet Controller,

which is a link between users and BDI agents. It provides user interface and dynamically

6

 7

generates corresponding web pages. It includes all kinds of objective servlets that

perform different functions such as registration, deposit/withdraw money, buy/sell stocks

check stock prices, check account status and trading history, or give recommendations

through BDI-agent. The second tier consists of the BDI agents, which are the core part of

AST business. The third tier is a data access layer where all information about the AST

system such as the BDI agent's beliefs and the knowledge base are stored. In AST, we

use relational database to represent the beliefs and the knowledge base.

When a user asks to find the recommendation of a specific stock, the interface

agent will send this goal to the agent through the servlet program. Then the

corresponding agent will check whether it can fulfill this goal. If so, it will choose proper

plans to achieve the goal through its control structure and return the result. If not, it may

directly ask other agents for help, or send a failure message back. Finally the interface

agent generates the web page from which the user can get the recommendation as a

result.

3.2 The BDI Concepts in AST

Agent-based Stock Trader (AST) is a stock-trading expert based on intelligent

agents, which uses BDI model in artificial intelligence. Beliefs in AST specify all kind of

stocks information related to that agents know. Agents have explicit goals to achieve or

events (Desires) to handle. The stock names to get recommendation from expert agents in

AST can be goals. A set of plans (Intentions) is applied to describe how agents achieve

their goals based on certain beliefs. Each plan elucidates how to achieve a goal under

 8

varying environments. In this report, we define a belief as a set of states representing

environments, a desire as a set of goals, and an intention as a set of plans.

The examples shown in the next sections describe how BDI-agents work within

AST. According to the technical analysis of the history and current information of some

stocks, one plan will be chosen to give its suggestion to help users. However, another

plan may be used if the decision consideration based on history, information, or stock is

different. Agent itself can autonomously decide which plan will be executed according its

current situation at runtime. The BDI knowledgebase helps this dynamic decision and

manipulation.

4. HOW TO IMPLEMENT BDI-AGENTS?

In this section we describe how to implement agents based on the BDI-agent

concept using Java.

4.1 Agent-Based Programming Language

Agent-based programming is a new programming paradigm that has been arisen

from research in distributed artificial intelligence. Unfortunately we have no proper

agent-based programming language to implement the BDI agent concept well. We have

decided to use the Java programming language to implement encapsulation of agents.

However, Java does not support the BDI agent concept. Therefore we have to devise

some mechanism to support the BDI concept on Java. We discuss here how to implement

the BDI agents using Java with knowledge base.

4.2 How To Implement BDI-Agents

Java is a fully object-oriented platform-independent language and has a sufficient

standard class library, including network-programming facilities. It provides a natural

way to develop internet-based or web-based applications. Agent-based applications can

be also developed in Java. Maybe it is not natural, but it seems to be suitable.

In AST, we use a relational database to represent an agent's belief, including the

agent's knowledge base and the environment states.

9

 10

We have designed the following BDI mapping table [Table 1] that includes

current states of belief, desires to achieve, and its corresponding intentions. By using this

BDI mapping table, we can manipulate dynamically belief, desire, and intention at

runtime. We can also show mapping among them, and we can change their mapping

dynamically at runtime.

Table 1. BDI Mapping Table

Belief Desire Intention

Bi Di Ii

… … …

Bk Dk Ik

A proactive BDI agent acts based on a goal, scans beliefs, finds an intention based

on them, and achieves the goal by executing the intention [Figure 2a]. A reactive BDI

agent reacts based on belief, finds a goal and its intention based on it, can also affect its

belief [Figure 2b]. DeLoach also mentioned about a goal-directed behavior [DeLoach 99]

for proactive agents.

Desire Belief Intention

Desire Intention Belief

Reactive BDI agent

Proactive BDI agent

Figure 2 (2a & 2b). Proactive/Reactive BDI Agents

 11

The AST application starts by initiating a certain goal defined in the desire

definition. Based on specific belief an intention is chosen to achieve the goal based on

current states of belief. There may be several sophisticated plans for each intention. Each

plan triggers the event handler to achieve the goal based on behavioral description in each

plan. An intention consists of a combination of one or more plans. In our current

implementation, we use only one plan for each intention. To implement the concept of

the BDI mapping table, we use several database tables with Java classes like the

following. The related Java codes are shown in the next section.

The following table [Table 2] shows the AST database contents.

Table 2. AST Database Contents

AST Database

Table Name Content

Client Clients’ personal information and account balance.

Holding What kinds and how many stocks clients own.

Orders All orders clients posted and the agent processed.

Knowledge Agent’s knowledge. Desire, belief values and a synthesis

value of belief values.

BPmap Shows what plan will be chosen according the certain

condition.

It is good to be able to manipulate BDIs dynamically for the BDI-based agent

system. Belief can be dynamically changed to represent current environment. Desires can

be set and changed to new ones at run time based on current situations such as belief.

Intentions can be changed, updated, or newly added to achieve a current desire. However,

it is hard to manipulate BDIs directly and dynamically well using Java. To solve this, the

 12

belief values can be stored in a file or database table, and can be manipulated

dynamically at run time. For this AST application, belief was stored in a database table

with which stock agents can consult and update dynamically. In the AST, the desire is

also stored and manipulated dynamically in a database table. Both desire and belief are

stored at the “Knowledge” table in the AST database. To map the corresponding plans in

the intention dynamically based on both the current goal defined in the desire and the

current environment based on the belief, another table “BPmap” has been used in the

AST system. The table “Client” holds clients’ account information. The table “Holding”

keeps the information of stocks owned by clients. The table “Orders” keeps the

information of orders which clients post and the AST agent should process. Among

contents in the AST database, the table “Knowledge” is the most important table to

manipulate the BDI information dynamically.

The following table “Knowledge” shows a knowledge base for desire and belief

[Table 3].

Table3. AST Database Knowledge Table Definition

AST BDI Knowledge

Field Name Data Type Description

Symbol Text Stock name

A Number World economy

B Number US economy

C Number Financial markets and institutions

E Number Others

F Number Buy or sell market

Belief Number The result of analysis of A~F

 13

The stock name “Symbol” is a kind of desire to get any recommendation on its

stocks through the stock market for stock exchange (either selling or buying). For

example, the “Symbol” may hold desire that represents a certain stock of company such

as ORCL (Oracle), YHOO (Yahoo), IBM (IBM), MS (Microsoft), and etc. The

knowledge A through F represents its belief that represents the current environment

surrounding its stock. Its belief holds the values that represent the current status of

environment such as world economy, US economy, financial markets and institutions,

other factors, and buy/sell market. The final field “Belief” holds the value that we can get

from the analysis of the belief factors, A~F, by applying certain mathematical and

stochastic equations. In summary, the “Symbol” keeps the value of current goal/desire,

the values from A to F keep the current environment/belief, and the value of “Belief” is

synthesized from the values of A through F. The following table shows possible values

for the table “Knowledge” [Table 4].

Table 4. Sample Values in Knowledge Table

Values in Knowledge

Symbol A B C D E F Belief

YHOO -1 0 1 1 1 1 3

… … … … … … … …

The following table shows the table “BPmap” that describes the mapping to the

corresponding plans defined in the intention, from the information based on the current

environment defined in the belief [Table 5]. Therefore, it is a kind of mapping table from

belief to intention.

 14

Table 5. BPmap Table Definition

Bpmap

Field Name Data Type Description

LowLimit Number Lower limit of belief

UpLimit Number Upper limit of belief

Plan Text Corresponding plan

PlanChoice Text Choice of a plan

The condition fields, LowLimt and UpLimit, represent the lower limit and upper

limit of the value of belief, from which the corresponding plans are selected. Both “Plan”

and “PlanChoice” are to choose plans defined in the AST intention, which can be

selected by a certain rules defined in the AST system based on the current goal/desire and

the current situation/belief.

The following table shows some example values for each column in “BPmap”

table [Table 6].

Table 6. Sample Values in BPmap Table

Values in Bpmap

LowLimit UpLimit Plan PlanChoice

-3 3 Hold 4

… … … …

The “Plan” may have recommendation values for stock exchange such as

“Strongly Sell”, “Moderate Sell”, “Hold”, “Moderate Buy”, or “Strongly Buy”. The

“PlanChoice” holds the identification number for each plan defined in the AST intention

definition. Theoretically, we may have one or a combination of plans. However, to make

this example simple, we use only one plan as a recommendation value.

 15

4.3 How To Program BDI-Agents

The stock trading agent can be created by defining its own Belief, Desire, and

Intention classes. The agent has its own main controller whose control structure is shown

in Figure 3.

Intended goal

False

False

False True

True

True

Belief Determination Ask others for
help

Exception handling

Selected plan Exception handling

Intention Determination

Desire Determination

BDI-agent main controller

Figure 3: BDI-Agent Runtime Control

The following code is the Belief class to access and update the knowledge base

for its belief. The “getBelief(String goal)” function accesses the belief knowledge base

based on the current goal (“getBelief(String goal)”), and performs some mathematical

and stochastic equations to calculate the exact current environment surrounding the goal.

(Even though in this example application we use a just simple summation formula, in the

real application, any heuristic formula can be used to diagnose the exact case and stock

market.).

 16

// Belief.java

package agent;
import java.util.*;
import java.sql.*;

public class Belief {
 private Connection connection;

 public Belief (Connection x) { this.connection = x; }

 public Connection getConnect() { return connection; }

 //Get believes according to the desire
 public int getBelief (String goal)
 {
 try {
 Statement st = connection.createStatement();
 String sql = "SELECT * FROM knowledge WHERE Symbol='" + goal + "'";
 ResultSet rs = st.executeQuery(sql);
 boolean more = rs.next();
 if (more) {
 int sum = 0;
 ResultSetMetaData rsmd = rs.getMetaData();
 for (int i=2; i<rsmd.getColumnCount(); ++i)
 //1st element: Symbol
 sum += rs.getInt(i);
 System.out.println("sum="+sum);
 return sum; // A value of belief synthesis
 }
 else
 return 11111; // 11111 is the false flag
 }
 catch (SQLException sqlex) {
 sqlex.printStackTrace();
 System.out.println("Desire SQL error\n");
 return 11111; // A false flag
 }
 }

 // update believes of the desire
 // … …
}

The Desire class accesses to its knowledge base and finds whether a certain goal

can be achieved or not (by “achievable(String goal)”). If the goal is achievable the main

 17

agent program will select proper plans under proper situation based on belief. The

following program shows the Desire class for the AST application.

// Desire.java

package agent;
import java.util.*;
import java.sql.*;

public class Desire {
 private Connection connection;

 public Desire (Connection x) // constructor
 { this.connection = x; }

 public boolean achievable(String goal)
 {
 try {
 Statement st = connection.createStatement();
 String sql = "SELECT Symbol FROM knowledge WHERE Symbol='"

+ goal + "'";
 ResultSet rs = st.executeQuery(sql);
 if (rs.next()){
 System.out.println(rs.getString(1));
 return true;
 }
 else
 return false;
 }
 catch (SQLException sqlex) {
 sqlex.printStackTrace();
 System.out.println("Desire SQL error\n");
 return false;
 }
 }

 // add a new goal
 // … …
 // delete a goal
 // … …
}

Theoretically, we can build an intention class to list a set of plans the agent

prepares for possible goals. Each plan is represented as a method in the intention class,

 18

which is a behavioral representation to describe how to achieve a goal under a particular

situation represented by a set of states in the belief representation. However, Java does

not support dynamic configuration (mapping) of a combination of plans, which are

suitable for the BDI agent concept. Therefore, in our current implementation, we use an

intention-mapping table (“BPmap”) in the database to store a set of rules that explain how

to dynamically select a suitable plan under a particular situation (performed by the

“selectPlan” function). Then the agent can dynamically access and monitor its belief

through JDBC and SQL statements. The following program shows its Intention class.

// Intention.java

package agent;
import java.util.*;
import java.sql.*;

public class Intention {
 private Connection connection;

 public Intention(Connection x)
 { this.connection = x; }

 public String selectPlan(int bresult) {
 try {
 Statement st = connection.createStatement();
 String sql = "SELECT Plan FROM BPmap WHERE UpLimit>" + bresult

+ " and LowLimit<=" + bresult;
 ResultSet rs = st.executeQuery(sql);

if (rs.next()){
 String s = rs.getString(1);
 System.out.println("Intention plan = "+s);

 return s;
 }else
 return "fail";
 }
 catch (SQLException sqlex) {
 sqlex.printStackTrace();
 return "fail";
 }
 }

 19

 // update the mapping table
 // … …
}

We may also have methods to update plans by which we can update the mapping

values in the mapping table (BPmap table). It is a good idea to have a proper

programming language to update plans dynamically and more naturally.

Finally, we can create an agent class by declaring its own belief, desire, and

intention from their definitions. When a goal is sent to an agent through the desire, the

agent will check whether it can handle. If so, its corresponding desire will be achieved by

executing proper plans defined in its intention. If not, it may delegate it to other agents

for help. It can be implemented by message exchange among multi-cooperative agents,

even though our current system is not implemented in this way. The following code

shows the Agent class for the AST application.

// Agent.java

package agent;
import java.util.*;
import java.sql.*;

public class Agent {
 public Belief B;
 public Desire D;
 public Intention I;

 // constructor
 public Agent (Connection x)
 {
 D = new Desire(x);
 B = new Belief(x);
 I = new Intention(x);
 }

 // agent performance controller
 public String perform(String goal)
 {

 20

 if (D.achievable(goal)) {
 int b = B.getBelief(goal);
 if (b==11111) // 1111 means False flag
 return "Belief sensor error";
 else {
 String p = I.selectPlan(b);
 return p;
 }
 }
 else
 return "Unachievable goal";
 }

}

An agent always starts from the behavioral description named “perform” in this

application (“perform(String gaol)”). A desire is passed to the application through the

string “goal” (“String goal”). The desire class checks whether the current goal is

achievable or not (by “D.achievable(goal)”). If it is achievable, the system gets the

current environment through the belief (by “B.getBelief(goal)”). Unless the current belief

is not available, its plan is chosen to achieve the given goal using the information of

belief (“I.selectPlan(b)”).

5. EXAMPLE SESSIONS

Here we show some example sessions using AST.

5.1 Login Entry

The AST system starts with the entry form of user login. The registered users may

login with their user Ids and passwords. The new user may register into the system. This

session is related to the table “Client” in the database [Table 2]. Here is a snapshot of the

entry login form.

5.2 Basic Services

After successful login, a list of services regarding online stock trading that AST

can provide appears. Currently the prototype system provides six services such as getting

21

 22

quotes, recommendation for stock trading, deposit/withdraw, order placement, account

details, and trading history.

5.3 Stock Quotation

The selection of the stock quote option brings the user to the stock quotation

menu. We borrow the Stock Quotes from Yahoo [Yahoo 00], due to the limitation of

accessing to a real stock market database.

 23

5.4 Stock Trading Recommendation

The recommendation service provides a recommendation to buy, hold, or sell for

a certain stock. Actually the expert agent does the background work. Once a user selects

a stock and clicks on the “Recommend” button, this stock name will be sent to the expert

BDI-Agent as a goal through the servlet program. Then the expert BDI-Agent achieves

the goal (by “perform (String goal)”) just as we described in the previous sections. It

checks its desire and current belief to select and execute a suitable plan. Finally the expert

BDI-Agent sends back its achievement, the recommendation of the stock, to the interface

through the servlet program. Both “Knowledge” and “BPmap” tables [Table 2] are

related to this session.

 24

Once the agent performs a certain function needed to get an appropriate

recommendation, the system shows the result. This is the corresponding answer from the

export agent. With this particular example, the AST system recommends the user to hold

the ORCL stock continuously.

 25

5.5 Posting An Order

Here the user can post his stock order, buy or sell stocks, and the order

management agent will process it for the user. The order will be either successful or fail

based on the several reasons such as the availability of the stock in the market to buy, and

the availability of the funds to buy the stock, and etc. In our system, we simply use the

random function to decide an order successful or fail since we cannot access to the real

stock market. The related tables in the database are “Client”, “Holding” and “Orders”

[Table 2].

5.6 Account Details and Trading History

The account detail option in the main menu can be selected to see the user’s

account in detail. It shows what stocks and how much money the user owns. The tables

“Client” and “Holding” [Table 2] relate to this session.

 26

A user may select the trading history option to see his all trade history in the

current past, which includes successful deals, unsuccessful deals and deals in processing.

 27

The fund manager handles both deposit and withdraw for the user.

6. CONCLUSIONS

Agent-based computing is emerged as a new computing paradigm. The BDI

model is one of the powerful techniques to describe autonomous intelligent agents. In this

report we have presented a stock trading application based on intelligent agents using the

BDI model.

One of the merits of this work is to show how nicely we can use the object-

oriented language, Java, to implement the BDI-agent-based application. The Java

programming language does not support any construct for the BDI-agent concepts.

However, in our work, the agent and its belief, desire, and intention are programmed as

Java classes. Its information of desire, belief, and intention are stored in a database and

updated dynamically at runtime as the environment changes. Therefore, in our work, we

show how nicely we can use the Java programming language to program the BDI-agent-

based application by using a database to implement the knowledge base for BDIs. We

also show how we can manipulate BDIs dynamically at runtime without having any

trouble while Java does not support any runtime knowledge management. Our work also

shows how we can implement a real world application like stock trading using the BDI-

agent model to represent the real world problem more naturally in a better way. The

Java/Servlet programming technique on the Internet has been used to implement our

prototype system.

 28

7. ACKNOWLEDGMENTS

This work has been partially supported by the EPSCoR IIP Seed Grant (4709-

0701) in summer 2001.

 29

8. REFERENCES

[1] Agent Oriented Software Pty. Ltd., JACK Intelligent Agents User Guide,

http://www.agent-software.com.au, 1999.

[2] Bratman, Michael E., Intention, Plans, and Practical Reason, Harvard Univ. Press,

1987 (also by CSLI Publication, 1999).

[3] Busetta, Paolo and Ramamohanarao, Kotagiri. The BDIM Agent Toolkit Design,

Technical Report 97/15, Department of computer Science, The University of

Melbourne, Australia, 1997. http://www.cs.mu.oz.au/publications/tr_db/TR.html.

[4] Busetta, Paolo and Ramamohanarao, Kotagiri. An architecture for Mobile BDI Agent,

Mobile Computing Track, ACM SAC ’98, 7-8, 1998.

[5] DeLoach, Scott A. Multiagent Systems Engineering: A Methodology and Languages

for Designing Agent Systems, http://en.afit.af.mil/ai/publications/Conference/aois-

99/MaSE-AOIS99.htm, 1999.

[6] Franklin, Stan and Graesser, Art. Is it an Agent, or just a Program? : A Taxonomy for

Autonomous Agents, http://www.msci.memphis.edu/~franklin/AgentProg.html, Also

in the Proc. of the 3rd International Workshop on Agent Theories, Architectures, and

Languages, Springer-Verlag, 2-7, 1996.

[7] Huber, Marcus J. JAM: A BDI-theoretic Mobile Agent Architecture, Proc. Of the

Autonomous Agents ’99, Seattle, USA, 236-243, 1999.

 30

http://www.agent-software.com.au/
http://www.cs.mu.oz.au/publications/tr_db/TR.html
http://en.afit.af.mil/ai/publications/Conference/aois-99/MaSE-AOIS99.htm
http://en.afit.af.mil/ai/publications/Conference/aois-99/MaSE-AOIS99.htm
http://www.msci.memphis.edu/~franklin/AgentProg.html

 31

[8] Jo, Chang-Hyun, Agent-based Programming Language: APL, ACM SAC 2002

Conference, Madrid, Spain, 27-31, March 2002.

[9] Petrie, Charles J. Agent-Based Engineering, the Web, and Intelligence, http://www-

cdr.stanford.edu/NextLink/Expert.html, also appeared in the IEEE Expert, (December

1996).

[10] Yahoo Stock Quotes, http://finance.yahoo.com, 2000.

http://www-cdr.stanford.edu/NextLink/Expert.html
http://www-cdr.stanford.edu/NextLink/Expert.html
http://finance.yahoo.com/

APPENDICES

APPENDIX 1: Agent-based Stock Trader (AST) User Manual

APPENDIX 2: ASTdb Access Database

APPENDIX 3: Source Codes

APPENDIX 1: Agent-based Stock Trader (AST) User Manual
(Readme.doc)

1. Introduction

Agent-Based Stock Trader (AST) is an Internet-based application project using

BDI agent concepts in Java programming language. AST provides a set of basic services.

For example, a new client can register and open an account, after logging in, the client

can get a set of services, such as deposit/withdraw money, buy/sell stocks, check stock

prices, check his account detail and trading history. AST also facilitates the service of

recommendation based on its knowledge base. Since we cannot access to the real stock

market, we just simply simulate one by building an AST database. Figure 4 presents the

structure of AST package and contents.

2. Requirements

• Operating System

This release has been tested on the following platforms: Windows 95/98.

• JDK

Install JDK1.1.8 or up version. http://java.sun.com/products/jdk/1.2/install-

windows.html

• JSWDK1.0.1

Download and install JSWDK1.0.1 at http://java.sun.com/

32

http://java.sun.com/products/jdk/1.2/install-windows.html
http://java.sun.com/products/jdk/1.2/install-windows.html
http://java.sun.com/

33

 Readme (User manual) Money

Order

Show

ShowHoldStocks

ShowTradeHistory

 ASTdb (Access database)
A

ST
pa

ck
ag

e

 stockpg

AccountInfServlet

LoginServlet

LogoutServlet

MoneyServlet

OrderServlet

RecomServlet

RegisterServlet

TradeHistoryServlet

Code

main.html

register.html

Quotes.html

Agent

Belief

Desire

Intention

 agent

Figure 4: ASTpackage Structure

• Environment variables

1. Add the full path of the JDK bin directory (where the java command is

located) to the PATH variable. To do so, click Start-> Run and enter

Sysedit. Open and edit the AUTOEXEC.BAT file and add or change the

PATH statement.

2. Add the tools.jar (from the JDK lib directory) file to your CLASSPATH

variable. Save AUTOEXEC.BAT and close it. Restart your computer.

34

3. Copy servlet.jar (from JSWDK1.0.1 lib directory) file to your JDK

extensions directory (the directory c:\jdk1.2.2\jre\lib\ext on windows).

• Microsoft Access

To execute this application, you need to have a database system like

Microsoft Access. ODBC for MS Access database is provided with windows

system. You need to set up the AST database file as described in the following

section.

3. Install AST

• Register AST database

AST database named ASTdb.mdb contains five tables. To connect to the

database, an ODBC Data Source must be registered with the system through

the ODBC Data Sources option in the Windows Control Panel.

1. Double-click this option to display the ODBC Data Source Administrator

dialog.

2. Select the User DSN tab is selected, then click ADD… to display the

Create New Data Source dialog.

3. Select Microsoft Access Driver and click Finish. Then the ODBC

Microsoft Access 97 Setup dialog appears.

4. Click on Select… button to display the Select Database dialog. Use this

dialog to locate and select the ASTdb.mdb file on your system. Click OK

to return to the ODBC Microsoft Access 97 Setup dialog.

35

5. Enter the name (ASTdb) in the Data Source Name text field. Enter a

description.

6. Click OK to dismiss ODBC Microsoft Access 97 Setup dialog.

7. Notice that the ODBC Data Source Administrator dialog now contains

the data source ASTdb. Click OK to dismiss the dialog.

• Copy HTML files

Copy main.html, quotes.html and register.html (from the Appendix 3) to

the directory jswdk-1.0.1/webpages/

• Install servlet classes

Copy all contents in ASTpackage/code directory to the directory jswdk-

1.0.1/webpages/WEB-inf/servlet

4. Operation procedure

• Start server

To start the server, open the directory with Windows Explorer and double-

click on STARTSERVER.BAT in JSWDK1.0.1 directory (If this does not

work, you can try opening a DOS window and running it from there.)

• Start user-interface

To start the user-interface, open your web browser. Either Internet

Explorer or Netscape Navigator will be fine. Use your browser to access the

following address: http://localhost:8080/main.html. Then the main user-

36

interface, which is login entry, will be brought to user. You can start to test

AST and monitor the server window.

If you test AST from a remote computer, you have to find out the IP

address or domain name (DN) of the server computer that you have installed

AST application in. Then you access to the IP address or DN of the server

instead of localhost.

• Stop server

To stop the server, open Windows Explorer and double-click on

STOPSERVER.BAT in JSWDK1.0.1 directory (If this doesn't work, you can

try opening a DOS window and running it from there.)

5. Features and Deficiencies

The AST system starts with the entry form of user login. The registered users may

login with their user Ids and passwords. The new user may register into the system with a

unique id. After successful login, a list of services regarding online stock trading that

AST can provide appears. Currently the prototype system provides six services such as

getting quotes, recommendation for stock trading, deposit/withdraw, order placement,

account details, and trading history. Getting Quotes service is borrowed from Yahoo, due

to the limitation of accessing to a real stock market database. The same reason for order

service, we use a random function to process an order during a time period.

Recommendation service is based on the BDI agent, which runs dynamically according

to the manipulation of its knowledge base and the BDI mapping table.

APPENDIX 2: ASTdb Access Database

ASTdb Access Database contains 5 tables. The details are shown at Table 2

[p.11]. The definitions of Knowledge Table and Bpmap Table are shown at Table 3

[p.12] and Table 5 [p.14]. The other tables’ definitions are shown at the following tables.

Table 7. Client Table Definition

Field Name Data Type Description

UserID Text User Id (primary key)

Password Text Password

Lname Text last name

Fname Text First name

Email Text email address

Other Text other information

Cash Number (Double) money on the account

Table 8. Orders Table Definition

Field Name Data Type Description

OrdNum Number (int) Order number (primary key)

UserID Text User id (primary, foreign key)

Action Text Sell or Buy

Symbol Text Stock name

Shrs Number (int) The shares of the stock

Paid Number (Double) The price of each share

OrdTime Text The time of an order pasted

Deal Text Wait or Yes or No

37

38

Table 9. Holding Table Definition

Field Name Data Type Description

UserID Text User Id (primary key, foreign key)

Symbol Text stock name

Shrs Number (int) Shares

We give some sample data in AST access database, which are shown in the

following table.

Table 10. Sample Data in ASTdb.mdb for MS Access

C
lie

nt
 userID password LName fName Email other cash

xin xintest Feng Xin xin@cs.und.edu 36500

H
ol

di
ng

 userID Symbol Shrs
xin ORCL 100
xin YHOO 200
xin IBM 100

O
rd

er
s

OrdNum userID Action Symbol Shrs Paid OrdTime Deal
1 xin buy YHOO 100 10 Thu Sep 06 14:35:11 PDT 2001 No
2 xin buy YHOO 300 10 Thu Sep 06 14:43:25 PDT 2001 Yes
3 xin sell YHOO 100 20 Wed Jan 30 11:32:55 PST 2002 No
4 xin sell YHOO 100 20 Wed Jan 30 11:39:10 PST 2002 Yes
5 xin buy orcl 100 10 Wed Jan 30 11:45:34 PST 2002 No
6 xin buy orcl 200 10 Wed Jan 30 11:52:42 PST 2002 Yes
7 xin sell orcl 100 15 Wed Jan 30 15:16:14 PST 2002 Yes
8 xin buy IBM 100 100 Wed Jan 30 15:20:47 PST 2002 Yes

B
Pm

ap

LowLimit UpLimit Plan PlanChoice
-1000 -10 Strong Sell 1

-10 -3 Miderate Sell 2
-3 3 hold 3
3 10 Miderate Buy 4

10 1000 Strong Buy 5

K
no

w
le

dg
e Symbol A B C D E F Belief

ORCL -1 -1 1 1 0 1

YHOO -1 0 1 1 1 1

APPENDIX 3: Source Codes

<!--main.html -->

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
 <meta name="Author" content="XinFeng">
 <meta name="GENERATOR" content="Mozilla/4.73 [en] (Win98; I)
[Netscape]"><title>Welcome to Online Stock Agent</title>
</head>

<body>
<center><table>
<tr><td BGCOLOR="#A0B8C8">Welcome
to Online Stock Agent</td></tr></table></center>

<hr><p>
<form action=http://localhost:8080/servlet/LoginServlet method=post>
<center><table WIDTH="94%" >
<tr><td BGCOLOR="#DCDCDC">I'm a New
User</td></tr>

<tr><td ALIGN=CENTER>Register</
b></td></tr>
<tr><td></td></tr>
<tr><td BGCOLOR="#DCDCDC">I'm
already registered</td></tr>

<tr><td><center><table><tr>
<td ALIGN=RIGHT NOWRAP>User ID:</td>
<td><input name=login size=20 maxlength=32></td></tr>
<tr>
<td ALIGN=RIGHT NOWRAP>Password:</td>
<td><input name=password type=password size=20 maxlength=32></td></tr>
<tr><td ALIGN=CENTER COLSPAN="2" NOWRAP><input type=submit
value="Login"></td></tr>
</table></center></td></tr>

</table></center>
</form>
</body>
</html>

39

40

<!--register.html -->

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
 <meta name="Author" content="XinFeng">
 <meta name="GENERATOR" content="Mozilla/4.73 [en] (Win98; I)
[Netscape]"><title>Register Form</title>
</head>

<body>
<h1>Registration Form</h1>
<hr><form action=http://localhost:8080/servlet/RegisterServlet
method=post>
<center><table WIDTH="94%" >
<tr><td>Create Your Account</td>
<td>(Already Have One? Login)</td></tr>

<tr><td ALIGN=RIGHT>User ID:</td>
<td><input type=text name="login" value="" autocomplte=off size=20
maxlength=32></td></tr>

<tr><td ALIGN=RIGHT>Passward:</td>
<td><input type=password name="pwd1" value="" autocomplete=off size=20
maxlength=32></td></tr>

<tr><td ALIGN=RIGHT>Retype passward:</td>
<td><input type=password name="pwd2" value="" autocomplete=off size=20
maxlength=32></td></tr>
</table></center>

<center><table WIDTH="94%" >
<tr><td>Personal Information</td></tr>

<tr><td>* First Name:<input type=text name=FirstName></td></tr>

<tr><td>* Last Name:<input type=text name=LastName></td></tr>

<tr><td>* Email address: <input type=text name=Email
size=50></td></tr>

<tr><td>Other Information:<input type=text name=other
size=50></td></tr>

<tr><td ALIGN=CENTER>* fields are required</td></tr>

<tr><td ALIGN=CENTER><input type=submit value="Submit"></td></tr>
</table></center>
</from>
</body>
</html>

41

<!--quotes.html -->

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
 <meta name="Author" content="xinfeng">
 <meta name="GENERATOR" content="Mozilla/4.73 [en] (Win98; I)
[Netscape]">
 <title>Online Stock Agent - Quotes</title>
</head>

<body>

<center><table WIDTH="60%" >
<tr BGCOLOR="#A0B8C8">
<td ALIGN=CENTER>Online Stock
Agent</td>
</tr>
</table></center>

<hr>
<center><h2>Stock Quotes from Yahoo!</h2></center>

<form method=get action="http://finance.yahoo.com/q"
target=_blank>Enter one or more ticker symbols, or you may
look up the
symbol by company name.

<input type=text name=s size=30><input type=submit value="Get
Quotes"><select name=d><option value=v1 selected>Basic<option
value=v2>DayWatch<option value=v4>Fundamentals<option
value=t>Detailed<option value=1y>Chart<option
value=r>Research</select></form>

<hr>

<center><table>
<tr>
<td>Get Quotes</td>
<td>Recommend</td>
<td>Deposit & Withdraw</td>
<td>Make an Order</td>
<td>Account Details</td>
<td>Trade History</td>
</tr>
</table></center>

<center>Sign
Out</center>

</body>
</html>

42

// AccountInfServlet.java
// Shows client's account information (stocks, shares, money)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

import stockpg.*; // my package

public class AccountInfServlet extends HttpServlet {
 private Statement statement = null;
 private Connection connection = null;
 private String URL = "jdbc:odbc:ASTdb";

 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 connection =
 DriverManager.getConnection(URL, "", "");
}
catch (Exception e) {
 e.printStackTrace();
 connection = null;
}

 }

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException
{

HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());

if (userID != null) {
 Show show = new Show(connection, userID);
 Vector holdstocks = show.holdstocks();
 double holdmoney = show.holdmoney();

 PrintWriter out = res.getWriter();
 res.setContentType("text/html");

 out.println("<html><body>" +

"<center><table width=\"60%\">
<tr BGCOLOR=#A0B8C8><td align=center>" +
"Online Stock Agent"
+ "</td></tr></table></center><hr>
" + "<center><h2>" +
userID + "'s Account Details</h2></center>
");

 if (holdstocks.isEmpty())

43

 out.println("<h3>You do not have any stocks.</h3>");
 else {
 ShowHoldStocks s= new ShowHoldStocks(holdstocks);

out.println("<h3>You have stocks: </h3>" + "<center><table
border width=\"40%\">" + "<tr><th>Stock
Name</th><th>Shares</th></tr>");

 for(int i=0; i<s.stockName.length; i++)
out.println("<tr><td>" + s.stockName[i] + "</td><td

ALIGN=right>" + s.shares[i] + "</td></tr>");
 out.println("</table></center>
");

 }
 out.println("<h3>Your money balance is: </h3>" +

"<center>$" + holdmoney + "</center><hr>");
 // Add other links

 out.println("<center><table><tr>" + "<td>Get
Quotes</td>" + "<td>Recommend</td>" +
"<td>Deposit &
Withdraw</td>" + "<td>Make an Order</td>" +
"<td>Account
Details</td>" + "<td>Trade
History</td>" + "</tr></table>" + "Sign
Out</center>");

 out.println("</body></html>");
 out.close();
 }
 }

 public void destroy()
 {

try {
 connection.close();
}
catch(Exception e) {
 System.err.println("Problem closing the database");
}

 }

 public String getServletInfo()
 {

return "The AccountInfo Servlet shows a client's account
details.";

 }

}

44

// LoginServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

public class LoginServlet extends HttpServlet {
 private Statement statement = null;
 private Connection connection = null;
 private String URL = "jdbc:odbc:ASTdb";

 public void init(ServletConfig config) throws ServletException
 {

super.init(config);
try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 connection =
 DriverManager.getConnection(URL, "", "");
}
catch (Exception e) {
 e.printStackTrace();
 connection = null;
}

 }

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

 {
String user, pswd;
user = req.getParameter("login");
pswd = req.getParameter("password");
PrintWriter output = res.getWriter();
res.setContentType("text/html");

if (user.equals("") || pswd.equals("")) {

output.println("<H3> Please click the back " + "button and
fill in User ID " + "and Password.</H3>");

output.close();
return;

}

try {

String query = "SELECT * FROM client where userID = '" + user
+ "' AND password = '" + pswd + "'";

statement = connection.createStatement();
ResultSet rs = statement.executeQuery(query);
boolean success = rs.next();
if (success) {

HttpSession session = req.getSession(true);
session.putValue(session.getId(), user);
output.println("<html><body>");
output.println("<center><table width=\"60%\">

45

<tr BGCOLOR=#A0B8C8><td align=center>" +
"Online Stock Agent
" +"</td></tr></table></center><hr>
");

output.println("<h3>Welcome " + user +
", you can have services:<h3>
");

output.println("" +
"
Get Quotes" + "Recommend" +
"
Deposit & Withdraw" +
"
Make an Order" +
"
Account details" +
"
Trade History" +
"" + "<hr><center>" +
"
Sign Out</center>");

 }
 else

output.println("<H2>Incorrect Login, Please try again.</h2>
" + "<center>Login</f
ont></center>
" + "<H2>If you are a New User,
Please" + "REGISTER
 first.</H2>");

 output.println("</body></html>");
 output.close();
 statement.close();
}
catch (SQLException sqlex) {
 System.err.println("ERROR: Problems with finding an entry");
 sqlex.printStackTrace();
 return;
}

 }

 public void destroy()
 {

try {
 connection.close();
}catch(Exception e)
 System.err.println("Problem closing the database");

 }

 public String getServletInfo() {
 return "The Login Servlet gives a login client services.";
 }

}

46

// LogoutServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

public class LogoutServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
HttpSession session = req.getSession(false);
session.invalidate();

PrintWriter output = res.getWriter();
res.setContentType("text/html");

output.println("<html><head><title>Logout</title></head><body>" +

"<center><table width=\"60%\">" +
"<tr bgcolor=a0b8c8><td align=center><font
face=\"Arial\" size=+3>" +
"Online Stock Agent</td></tr></table>" +
"<hr>
<table width=\"90%\">" +
"<tr><td><I>" +
"Thank you for using Online Stock Agent!
</I></td></tr>" +
"<tr><td>You have been successfully logged out</td></tr>" +
"<tr><td align=center>" +
"" +
"Return to Online Stock Agent" +
"
You may neet to log in again.
</td></tr></table></center>" +
"</body></html>");

output.close();
 }

 public String getServletInfo()
 {
 return "The Logout Servlet lets a client logout.";
 }

}

47

// MoneyServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

import stockpg.*;

public class MoneyServlet extends HttpServlet {
 private Statement statement = null;
 private Connection connection = null;
 private String URL = "jdbc:odbc:ASTdb";

 public void init(ServletConfig config) throws ServletException
 {

super.init(config);

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 connection = DriverManager.getConnection(URL, "", "");
}
catch (Exception e) {
 e.printStackTrace();
 connection = null;
}

 }

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());
//System.out.println("userID=" + userID);

Show sb = new Show(connection, userID);
double b = sb.holdmoney();

PrintWriter out = res.getWriter();
res.setContentType("text/html");

out.println("<html><body>" + "<center><table><tr><td

BGCOLOR=#A0B8C8>" + "Online Stock
Agent - Money Manager" +
"</td></tr></table></center><hr>
");

out.println("<center><h3>Your balance is: $" + b +

"</h3></center></br>");

out.println("<form method=post action=\"/servlet/MoneyServlet\">"
+ "<center><table width=\"70%\">" + "<tr><td
width=\"50%\">Action:</td>" +
"<td width=\"50%\"><font

48

size=+1>Amount(US$):</td></tr>" + "<tr><td><input
type=\"radio\" name=\"action\" value=\"deposit\"
checked>Deposit" + "
<input type=\"radio\" name=\"action\"
value=\"withdraw\">Withdraw</td>" + "<td align=center>$<input
name=\"amount\" size=\"20\"></td></tr>" + "<tr><td
align=center colspan=\"2\"><input type=\"submit\"
value=\"Submit\"></td></tr>" + "</table></center></form><hr>"
+ "<center><table><tr>" + "<td>Get
Quotes</td>" + "<td>Recommend</td>" + "<td>Deposit & Withdraw</td>" +
"<td>Make an
Order</td>" + "<td>Account Details</td>"
+ "<td>Trade
History</td>" + "</tr></table></center>" + "<center><font
face=Arial>" + "Sign
Out</center>");

out.println("</body></html>");
out.close();

 }

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());

String action = req.getParameter("action");
//double amount = (double)req.getParameter("amount");
String money = req.getParameter("amount");
double amount = Double.parseDouble(money);

Money m = new Money(connection, userID);
int mr = m.manager(action, amount);

PrintWriter output = res.getWriter();
res.setContentType("text/html");

output.println("<html><body>");
output.println("<center><table><tr><td BGCOLOR=#A0B8C8><font

face=Arial size=+3>" + "Online Stock Agent - <font
size=+1>Money Manager" +
"</td></tr></table></center><hr>
");

if (mr==1)
 output.println("<h3>You just " + action + " $" + amount +

"</h3>
");
else
 output.println("<h3>Error happenned, Would you please try it

later.</h3>
");

49

Show show = new Show(connection, userID);
double balance = show.holdmoney();

output.println("<center><h3>Your total balance is: $" + balance +

"</h3></center>
");

output.println("<hr><center><table><tr>" + "<td>Get
Quotes</td>" + "<td>Recommend</td>" +
"<td>Deposit &
Withdraw</td>" + "<td>Make an Order</td>" +
"<td>Account
Details</td>" + "<td>Trade
History</td>" + "</tr></table>" + "Sign
Out</center>");

output.println("</body></html>");
output.close();

 }

 public void destroy()
 {

try {
 connection.close();
}
catch(Exception e) {
 System.err.println("Problem closing the database");
}

 }

 public String getServletInfo()
 {
 return "The Money Servlet manages money deposit and withdraw.";
 }

}

50

// OrderServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

import stockpg.*;

public class OrderServlet extends HttpServlet {
 private Statement statement = null;
 private Connection connection = null;
 private String URL = "jdbc:odbc:ASTdb";

 public void init(ServletConfig config) throws ServletException
 {

super.init(config);

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 connection = DriverManager.getConnection(URL, "", "");
}
catch (Exception e) {
 e.printStackTrace();
 connection = null;
}

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException
 {

HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());

Show sb = new Show(connection, userID);
double b = sb.holdmoney();

PrintWriter out = res.getWriter();
res.setContentType("text/html");

out.println("<html><body>" + "<center><table><tr><td

BGCOLOR=#A0B8C8>" + "Online Stock
Agent - Order Manager" +
"</td></tr></table></center><hr>
");

out.println("<h3>You have $" + b + " cash available in your

account.</h3></br>");

out.println("<form method=post action=\"/servlet/OrderServlet\">"
+ "<center><table width=\"70%\">" + "<tr><th><font
size=+1>Action:</th>" + "<th><font
size=+1>Symbol:</th>" + "<th># of
Shares</th>" + "<th><font

51

size=+1>Price(US$):</th></tr>" + "<tr><td><input
type=\"radio\" name=\"action\" value=\"buy\" checked>Buy" +
"
<input type=\"radio\" name=\"action\"
value=\"sell\">Sell</td>" + "<td><input name=\"symbol\"
size=\"20\"></td>" + "<td><input name=\"shares\"
size=\"20\"></td>" + "<td><input name=\"price\"
size=\"20\"></td></tr>" + "<tr><td align=center
colspan=\"4\"><input type=\"submit\"
value=\"Submit\"></td></tr>" + "<tr><td
colspan=\"4\">Note:
If you don't hava enough cash
to " + "buy # of shares above, buy as many as
possible.
" + "You only can sell as many as possible # of
shares stocks that you are holding." +
"</td></tr></table></center></form><hr>" +
"<center><table><tr>" + "<td>Get
Quotes</td>" + "<td>Recommend</td>" + "<td>Deposit & Withdraw</td>" +
"<td>Make an
Order</td>" + "<td>Account Details</td>"
+ "<td>Trade
History</td>" + "</tr></table></center>" + "<center><font
face=Arial>" + "Sign
Out</center>");

out.println("</body></html>");
out.close();

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException
 {

HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());

String action = req.getParameter("action");
String symbol = req.getParameter("symbol");
String ss = req.getParameter("shares");
long shares = Long.parseLong(ss);
String sprice = req.getParameter("price");
double price = Double.parseDouble(sprice);

Order o = new Order(connection, userID);
String or = new String(o.orderpost(action, symbol, shares,

price));

PrintWriter output = res.getWriter();
res.setContentType("text/html");

output.println("<html><body>");
output.println("<center><table><tr><td BGCOLOR=#A0B8C8><font

face=Arial size=+3>" + "Online Stock Agent - <font

52

size=+1>Order Manager" +
"</td></tr></table></center><hr>
");

output.println("<h3>" + or + "</h3>
");

output.println("<hr><center><table><tr>" + "<td>Get
Quotes</td>" + "<td>Recommend</td>" +
"<td>Deposit &
Withdraw</td>" + "<td>Make an Order</td>" +
"<td>Account
Details</td>" + "<td>Trade
History</td>" + "</tr></table>" + "Sign
Out</center>");

output.println("</body></html>");
output.close();

if (or.endsWith("processing.")) {
 o.processOrder();
}

 }

 public void destroy()
 {

try {
 connection.close();
}
catch(Exception e) {
 System.err.println("Problem closing the database");
}

 }

 public String getServletInfo()
 {
 return "The Order Servlet manages buying or selling stocks.";
 }

}

53

// RecomServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

import agent.*;

public class RecomServlet extends HttpServlet {
 private Statement statement = null;
 private Connection connection = null;
 private String URL = "jdbc:odbc:ASTdb";
 private Agent RecomAgent;

 public void init(ServletConfig config) throws ServletException
 {

super.init(config);

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 connection = DriverManager.getConnection(URL, "", "");
}
catch (Exception e) {
 e.printStackTrace();
 connection = null;
}

 }

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

 {
HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());

PrintWriter out = res.getWriter();
res.setContentType("text/html");

out.println("<html><body>" + "<center><table><tr><td

BGCOLOR=#A0B8C8>" + "Online Stock
Agent - Recommend" +
"</td></tr></table></center><hr>
");

out.println("<form method=postaction=\"/servlet/RecomServlet\">"

+ "<center><SELECT NAME=\"sn\">" + "<OPTION
VALUE=\"^DJI\">Dow" + "<OPTION VALUE=\"^IXIC\">Nasdaq" +
"<OPTION VALUE=\"^SPC\">S&P 500"+ "<OPTION
VALUE=\"ORCL\">Orcal" + "<OPTION
VALUE=\"YHOO\">Yahoo</SELECT>" + "<INPUT TYPE=\"submit\"
VALUE=\"Recommend\">" + "</center></form>");

out.println("<hr><center><table><tr>" + "<td>Get

54

Quotes</td>" + "<td>Recommend</td>" + "<td>Deposit & Withdraw</td>" +
"<td>Make an
Order</td>" + "<td>Account Details</td>"
+ "<td>Trade
History</td>" + "</tr></table></center>" + "<center><font
face=Arial>" + "Sign
Out</center>");

out.println("</body></html>");
out.close();

 }

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

 {
HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());

String symbol = req.getParameter("sn");

RecomAgent = new Agent(connection);
String rs = RecomAgent.perform(symbol);

PrintWriter output = res.getWriter();
res.setContentType("text/html");

output.println("<html><body>");
output.println("<center><table><tr><td BGCOLOR=#A0B8C8><font

face=Arial size=+3>" + "Online Stock Agent - <font
size=+1>Recommend" +
"</td></tr></table></center><hr>
");

output.println("<h3>Recommendation: </h3>
" + "<center>" +

symbol + ": " + rs + "</center>
" + "
Note: Above
recommendation is not responsible for your profit or
loss.");

output.println("<hr><center><table><tr>" + "<td>Get
Quotes</td>" + "<td>Recommend</td>" +
"<td>Deposit &
Withdraw</td>" + "<td>Make an Order</td>" +
"<td>Account
Details</td>" + "<td>Trade
History</td>" + "</tr></table>" + "Sign
Out</center>");

output.println("</body></html>");

55

output.close();
 }

 public void destroy()
 {

try {
 connection.close();
}
catch(Exception e) {
 System.err.println("Problem closing the database");
}

 }

 public String getServletInfo()
 {

return "The Order Servlet manages buying or selling stocks.";
 }

}

56

// RegisterServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

public class RegisterServlet extends HttpServlet {
 private Statement statement = null;
 private Connection connection = null;
 private String URL = "jdbc:odbc:ASTdb";

 public void init(ServletConfig config) throws ServletException
 {

super.init(config);

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 connection = DriverManager.getConnection(URL, "", "");
}
catch (Exception e) {
 e.printStackTrace();
 connection = null;
}

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException
 {

String userID, pswd1, pswd2, email, firstName, lastName, other;

userID = req.getParameter("login");
pswd1 = req.getParameter("pwd1");
pswd2 = req.getParameter("pwd2");
email = req.getParameter("Email");
firstName = req.getParameter("FirstName");
lastName = req.getParameter("LastName");
other = req.getParameter("other");

PrintWriter output = res.getWriter();
res.setContentType("text/html");

try {
 String query = "SELECT * FROM client where userID = '" +

userID + "'";

 statement = connection.createStatement();
 ResultSet rs = statement.executeQuery(query);
 boolean inuse = rs.next();

 if (inuse) {

output.println("<H3> User Id is already used, please reset
it.</H3>");

57

output.close();
return;

 }
}
catch (SQLException sqlex) {
 System.err.println("ERROR: Problems with finding an entry");
 sqlex.printStackTrace();
 return;
}

if (! pswd2.equals(pswd1)) {
 output.println("<H3> Please reset your password.</H3>");
 output.close();
 return;
}

if (email.equals("") || firstName.equals("") ||

lastName.equals("")) {
output.println("<H3> Please click the back button and fill in

all fields.</H3>");
output.close();
return;

}

boolean success = insertIntoDB("'" + userID + "','" + pswd1 +
"','" + lastName + "','" + firstName + "','" +
email + "','" + other + "'");

if (success)

output.print("<H2>Thank you " + firstName + " for
registering.</H2>" + "
<center><font face=Arial
size=+1>" + "" + "Login
Online Stock Agent</center>");

else
output.print("<H2>An error occurred. " + "Please try again

later.</H2>");

output.close();
 }

 private boolean insertIntoDB(String stringtoinsert)
 {

try {
 statement = connection.createStatement();
 statement.execute("INSERT INTO client

(userID,password,lName,fName,email,other)
VALUES (" + stringtoinsert + ");");

 statement.close();
}
catch (Exception e) {
 System.err.println("ERROR: Problems with adding new entry");
 e.printStackTrace();
 return false;

58

}

return true;
 }

 public void destroy()
 {

try {
 connection.close();
}
catch(Exception e) {
 System.err.println("Problem closing the database");
}

 }
}

59

// TradeHistoryServlet.java
// show client's trade history (action,stocks,shares,paid,ordtime,deal)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.sql.*;

import stockpg.*; // my package

public class TradeHistoryServlet extends HttpServlet {
 private Statement statement = null;
 private Connection connection = null;
 private String URL = "jdbc:odbc:ASTdb";

 public void init(ServletConfig config) throws ServletException
 {

super.init(config);

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 connection = DriverManager.getConnection(URL, "", "");
}
catch (Exception e) {
 e.printStackTrace();
 connection = null;
}

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException
 {

HttpSession session = req.getSession(false);
String userID = (String)session.getValue(session.getId());

if (userID != null) {
 Show disp = new Show(connection, userID);
 Vector trade = disp.trade();

 PrintWriter out = res.getWriter();
 res.setContentType("text/html");
 out.println("<html><body>" + "<center><table width=\"60%\"><tr

BGCOLOR=#A0B8C8><td align=center>" + "<font face=Arial
size=+3>Online Stock Agent" +
"</td></tr></table></center><hr>
" + "<center><h2>" +
userID + "'s Trade History</h2></center>
");

 if (trade.isEmpty())

out.println("<h3>You do not have any trade history.</h3>");
 else {

ShowTradeHistory s= new ShowTradeHistory(trade);
out.println("<h3>You have trade history: </h3>" +

"<center><table border width=\"80%\">" +

60

"<tr><th>No.</th><th>Action</th><th>Stock
Name</th><th>Shares</th>" +
"<th>Paid(US$)</th><th>Order
Time</th><th>Deal</tr>");

for (int i=0; i<s.stockName.length; i++)
 out.println("<tr><td>" + i + "</td><td>" + s.action[i] +

"</td><td>" + s.stockName[i] + "</td><td
ALIGN=right>" + s.shares[i] + "</td><td
ALIGN=right>" + s.paid[i] + "</td><td>" +
s.ordtime[i] + "</td><td>" + s.deal[i] +
"</td></tr>");

out.println("</table></center>
Note: " + "In

the last column-Deal, \"Yes\" means order is
successful; " + "\"No\" means order is unsuccessful;
" + "
\"null\" means order is waiting.");

 }
 out.println("<hr><center><table><tr>" + "<td>Get
Quotes</td>" + "<td>Recommend</td>" +
"<td>Deposit &
Withdraw</td>" + "<td>Make an Order</td>" +
"<td>Account
Details</td>" + "<td>Trade
History</td>" + "</tr></table>" + "Sign
Out</center>");

 out.println("</body></html>");
 out.close();
}

 }

 public void destroy()
 {

try {
 connection.close();
}
catch(Exception e)
 System.err.println("Problem closing the database");

 }

 public String getServletInfo()
 {

return
 "The TradeHistory Servlet shows a client's trade history.";

 }
}

61

// Agent.java

package agent;

import java.util.*;
import java.sql.*;

public class Agent {
 public Belief B;
 public Desire D;
 public Intention I;

 public Agent(Connection x)
 {

D = new Desire(x);
B = new Belief(x);
I = new Intention(x);

 }

 public String perform(String goal)
 {

if (D.achievable(goal)) {
 int b = B.getBelief(goal);
 if (b==11111)

return "Belief sensor error";
 else {

String p = I.selectPlan(b);
return p;

 }
}
else
 return "Unachievable goal";

 }

}

62

// Belief.java Desire->Believes

package agent;

import java.util.*;
import java.sql.*;

public class Belief {
 private Connection connection;

 public Belief (Connection x)
 {

this.connection = x;
 }

 public Connection getConnect() {return connection;}

 // Get believes according to the desire
 public int getBelief (String goal)
 {

try {
 Statement st = connection.createStatement();
 String sql = "SELECT * FROM knowledge WHERE Symbol='" + goal +

"'";
 ResultSet rs = st.executeQuery(sql);
 boolean more = rs.next();
 if (more) {

int sum = 0;
ResultSetMetaData rsmd = rs.getMetaData();
for (int i=2; i<rsmd.getColumnCount(); ++i)
//1st element: Symbol
 sum += rs.getInt(i);

System.out.println("sum="+sum);
return sum; //

 }
 else

return 11111; //false flag
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 System.out.println("Desire SQL error\n");
 return 11111; //false flag
}

 }

}

63

// Desire.java

package agent;

import java.util.*;
import java.sql.*;

public class Desire {
 private Connection connection;

 public Desire (Connection x)
 {

this.connection = x;
 }

 public boolean achievable(String goal)
 {

try {
 Statement st = connection.createStatement();
 String sql = "SELECT Symbol FROM knowledge WHERE Symbol='" +

goal + "'";
 ResultSet rs = st.executeQuery(sql);
 if (rs.next()){

System.out.println(rs.getString(1));
return true;

 }
 else

return false;
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 System.out.println("Desire SQL error\n");
 return false;
}

 }

}

64

// Intention.java

package agent;

import java.util.*;
import java.sql.*;

public class Intention {
 private Connection connection;

 public Intention(Connection x)
 {

this.connection = x;
 }

 public String selectPlan(int bresult) {

try {
 Statement st = connection.createStatement();
 String sql = "SELECT Plan FROM BPmap WHERE UpLimit>" + bresult

+ " and LowLimit<=" + bresult;
 ResultSet rs = st.executeQuery(sql);

 if (rs.next()){

String s = rs.getString(1);
System.out.println("Intention plan1="+s);
return s;

 }
 else

return "fail";
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 return "fail";
}

 }

}

65

// Money.java

package stockpg;

import java.util.*;
import java.sql.*;

public class Money {
 private Connection connection;
 private Show show;
 private String ID;

 public Money(Connection x, String userID)
 {

connection = x;
ID = new String(userID);
show = new Show(x, userID);

 }

 public int manager(String act, double bucks)
 {

double amount = show.holdmoney();
if (act.equalsIgnoreCase("Deposit"))
 amount += bucks;
else if (act.equalsIgnoreCase("Withdraw"))
 amount -= bucks; // who about amount<0
else
 System.out.println("\nAction was:" + act);

System.out.println("amount=" + amount);
try {
 Statement st = connection.createStatement();
 String sql = "UPDATE client SET cash = " + amount + " WHERE

userID = '" + ID + "'";
 int rs = st.executeUpdate(sql);
 st.close();

 if (rs == 1) //System.out.println("\nUpdate successful\n");

return 1;
 else //System.out.println("\nUpdate failed\n");

return -1;
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 return -1;
}

 }

}

 66

// Order.java
// Post orders

package stockpg;
import java.util.*;
import java.sql.*;

public class Order {
 private Connection connection;
 private Show show;
 private String ID;
 private double money;
 private long num;
 private long OrdNo = 1;
 private String act;
 private String stock;
 private long shrs;
 private double price;
 private int hm;

 public Order(Connection x, String userID)
 {

connection = x;
ID = new String(userID);
show = new Show(x, userID);

 }

 public String orderpost(String act, String stock, long shrs, double
price) {

this.act = new String(act);
this.stock = new String(stock);
this.shrs = shrs;
this.price = price;

Statement st;
money = show.holdmoney();
num = show.checkhold(stock);

if (act.equalsIgnoreCase("Buy")) {
 double total = shrs * price;
 if (money == 0) // no money, cannot buy

return "No money available, can't buy any stocks.";
 if (money < total) // no enough money

this.shrs = (int) (money/price);
}

if (act.equalsIgnoreCase("Sell")) {
 if (num == -1) // donot have this stock, cannot sell it

return "You don't have this stock, can't sell it.";
 else

if (num < shrs) // donot have so many shares
 this.shrs = num; // only can sell holding shares

}

 67

try {
 st = connection.createStatement();
 String sql1 = "SELECT MAX(OrdNum) FROM orders";
 ResultSet rs1 = st.executeQuery(sql1);
 if (rs1.next())

OrdNo = rs1.getLong(1) + 1;

 java.util.Date ud = new java.util.Date();
 hm = ud.getHours() * 60 + ud.getMinutes();

 String sql = "INSERT INTO orders (OrdNum, userID, Action,

Symbol, Shrs, Paid, OrdTime)" + "VALUES (" +
OrdNo + ",'" + ID + "', '" + act + "' ,'" + stock
+ "', " + this.shrs + "," + price + ",'" +
ud.toString() + "')";

 int rs = st.executeUpdate(sql);
 if (rs == 1)

return "Your order is posted successfully, and is
processing.";

 else
return "Your order post is UNsuccessful.";

}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 return "Update datebase(SQL) fail.";
}

 }

 public void processOrder ()
 {

int temphm;
do {
 java.util.Date temp = new java.util.Date();
 temphm = temp.getHours() * 60 + temp.getMinutes();
} while ((temphm-hm)< 3); //deal time 3 minutes

try {
 Statement st = connection.createStatement();
 String dord;
 Random r = new Random();
 if (Math.abs(r.nextInt())%2 == 0) {

if (act.equalsIgnoreCase("Buy")) {
 String updtcash = "UPDATE client SET cash = " + (money-

shrs*price) + " WHERE userID='" + ID + "'";
 int rs11 = st.executeUpdate(updtcash);
 if (rs11==1)

System.out.println("\nBuy cash update success");
 else

System.out.println("\nBuy cash update fail");

 String updthold;
 if (num == -1)

updthold = "INSERT INTO holding VALUES('" + ID +
"','"+stock+"',"+shrs+")";

 68

 else
updthold = "UPDATE holding SET Shrs = "+(num + shrs)+

" WHERE userID='" + ID + "' AND Symbol='" +
stock + "'";

 int rs12 = st.executeUpdate(updthold);
 if (rs12==1)

System.out.println("\nBuy hold update success");
 else

System.out.println("\nBuy hold update fail");
}

if (act.equalsIgnoreCase("Sell")) {
 String updtcash = "UPDATE client SET cash=" + (money +

shrs*price) + " WHERE userID='" + ID + "'";
 int rsupcash = st.executeUpdate(updtcash);
 if (rsupcash==1)

System.out.println("\nSell cash update succecc");
 else

System.out.println("\nSell cash update fail");

 String updthold;
 if ((num-shrs)==0)

updthold = "DELETE FROM holding WHERE userID='" + ID
+ "' AND Symbol='" + stock + "'";

 else
updthold = "UPDATE holding SET Shrs=" + (num-shrs) +

" WHERE userID='"+ID+"' AND Symbol='" +
stock + "'";

 int rsuphold = st.executeUpdate(updthold);
 if (rsuphold==1)

System.out.println("\nSell hold update success");
 else

System.out.println("\nSell hold update fail");
}

dord="UPDATE orders SET Deal='Yes' WHERE OrdNum =" + OrdNo;

 }
 else

dord="UPDATE orders SET Deal='No' WHERE OrdNum =" + OrdNo;

 int rsdord = st.executeUpdate(dord);
 if (rsdord==1)

System.out.println("\nOrder processing successed");
 else

System.out.println("\nOrder processing failed");
 st.close();
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
}
return ;

 }
}

 69

// Show.java
// Show client's trade history and holding

package stockpg;
import java.util.*;
import java.sql.*;
import java.text.SimpleDateFormat;

public class Show {
 private Connection connection = null;
 private String ID = null;

 public Show(Connection x, String userID)
 {

connection = x;
ID = new String(userID);

 }

 // A client trade history
 public Vector trade()
 {

Statement st;
ResultSet rs;
try {
 st = connection.createStatement();
 String sql = "SELECT Action, Symbol, Shrs, Paid, OrdTime, Deal

FROM orders WHERE userID ='" + ID + "'";
 rs = st.executeQuery(sql);
 return displayResult(rs);
} catch (SQLException sqlex) {
 sqlex.printStackTrace();
 System.out.println("Show.trade() error"); //test error
 Vector dt = new Vector();
 return dt;
}

 }

 // A client holds what and how many stocks
 public Vector holdstocks()
 {

Statement st;
ResultSet rs;
try {
 st = connection.createStatement();
 String sql = "SELECT Symbol, Shrs FROM holding WHERE userID

='" + ID + "'";
 rs = st.executeQuery(sql);
 return displayResult(rs);
} catch (SQLException sqlex) {
 sqlex.printStackTrace();
 Vector dt = new Vector();
 return dt;
}

 }

 70

 // Check a client has how many shares of a certain shock
 public long checkhold(String stock)
 {

try {
 Statement st = connection.createStatement();
 String sql = "SELECT Shrs FROM holding WHERE userID='" + ID +

"' AND Symbol='" + stock + "'";
 ResultSet rs = st.executeQuery(sql);
 if (rs.next())

return rs.getLong(1);
 else

return -1; // donot have this stock
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 return -1; // sql error
}

 }

 // A client has how much money
 public double holdmoney()
 {

Statement st;
ResultSet rs;
try {
 st = connection.createStatement();
 String sql="SELECT cash FROM client WHERE userID ='"+ID+"'";
 rs = st.executeQuery(sql);
 rs.next();
 return rs.getDouble(1); // may return 0
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 return -1; // sql error
}

 }

 private Vector displayResult(ResultSet rs) throws SQLException
 {

boolean more = rs.next();
ResultSetMetaData rsmd = rs.getMetaData();
Vector rows = new Vector();
if (!more) {
 System.out.println("No trade history");
 return (rows);
}

do {
 rows.addElement(getNextRow(rs,rsmd));
} while (rs.next());

return rows;

 }

 71

private Vector getNextRow(ResultSet rs, ResultSetMetaData rsmd)
throws SQLException

 {
Vector curRow = new Vector();

for (int i=1; i<=rsmd.getColumnCount(); ++i)
 switch(rsmd.getColumnType(i)) {

case Types.VARCHAR:
 curRow.addElement(rs.getString(i));
 break;
case Types.INTEGER:
 curRow.addElement(new Long(rs.getLong(i)));
 break;
case Types.DOUBLE:
 curRow.addElement(new Double(rs.getDouble(i)));
 break;
default: //DATETIME
 System.out.println("Type was: " +

rsmd.getColumnTypeName(i));

curRow.addElement(rs.getDate(i));
 }

return curRow;

 }

 //Show current stock price and other information
 public Vector getCurInf(String stock)
 {

Statement st;
try {
 st = connection.createStatement();
 java.util.Date ud = new java.util.Date();
 SimpleDateFormat formatter = new SimpleDateFormat ("M/dd/yy");
 // Here is a bug when month>9
 String dateString = formatter.format(ud);
 System.out.println("format time:" + dateString);

 String sql = "SELECT * FROM quotes WHERE Symbol='" + stock +

"' AND Date LIKE '" + dateString + "'";

 System.out.println("\nsql: " + sql);
 ResultSet rs = st.executeQuery(sql);
 return displayResult(rs);
}
catch (SQLException sqlex) {
 sqlex.printStackTrace();
 Vector dt = new Vector();
 return dt;
}

 }

}

 72

// ShowHoldStocks.java
// Shows holding stock record (stockName, shares)

package stockpg;
import java.util.*;

public class ShowHoldStocks {
 public String stockName[];
 public int shares[];

 public ShowHoldStocks(Vector v)
 {

int SIZE = v.size();
System.out.println("number of records is: " + SIZE);
stockName = new String[SIZE];
shares = new int[SIZE];

for (int n=0; n<v.size(); ++n) {
 Vector r = new Vector();
 r.addElement(v.elementAt(n));
 Enumeration enum = r.elements();
 StringBuffer buf = new StringBuffer();

 while (enum.hasMoreElements()) {

buf.append(enum.nextElement());
//System.out.println("buf="+buf.toString());
buf.deleteCharAt(0);
buf.deleteCharAt(buf.length()-1);
//System.out.println("bufnew="+buf.toString());
String str = new String(buf);
StringTokenizer strtok = new StringTokenizer(str, ",");

stockName[n] = strtok.nextToken();
StringBuffer temp = new StringBuffer();
temp.append(strtok.nextToken());
temp.delete(0,1);
shares[n] = Integer.parseInt(temp.toString());

 }
}

 }

}

 73

// ShowTradeHistory.java
// Shows client's trade history (Action,Symbol,Shrs,Paid,OrdTime,Deal)

package stockpg;
import java.util.*;

public class ShowTradeHistory {
 public String action[];
 public String stockName[];
 public int shares[];
 public double paid[];
 public String ordtime[];
 public String deal[];

 public ShowTradeHistory(Vector v)
 {

int SIZE = v.size();
System.out.println("number of records is: " + SIZE);
action = new String[SIZE];
stockName = new String[SIZE];
shares = new int[SIZE];
paid = new double[SIZE];
ordtime = new String[SIZE];
deal = new String[SIZE];

for (int n=0; n<v.size(); ++n) {
 Vector r = new Vector();
 r.addElement(v.elementAt(n));
 Enumeration enum = r.elements();
 StringBuffer buf = new StringBuffer();
 while (enum.hasMoreElements()) {

buf.append(enum.nextElement());
buf.deleteCharAt(0);
buf.deleteCharAt(buf.length()-1);
String str = new String(buf);
StringTokenizer strtok = new StringTokenizer(str, ",");
action[n] = strtok.nextToken();
stockName[n] = strtok.nextToken();

StringBuffer sb1 = new StringBuffer();
sb1.append(strtok.nextToken());
sb1.delete(0,1);
shares[n] = Integer.parseInt(sb1.toString());
StringBuffer sb2 = new StringBuffer();
sb2.append(strtok.nextToken());
sb2.delete(0,1);
paid[n] = Double.parseDouble(sb2.toString());
ordtime[n] = strtok.nextToken();
deal[n] = strtok.nextToken();

 }
}

 }

}

	Design and Simulation of an Agent-based Stock Trader
	May 2002
	This report, submitted by Xin Feng in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisor under whom the work has been done and is hereby approved.

	Permission
	Title: Design and Simulation of an Agent-based Stock Trader
	Department: Department of Computer Science
	Degree: Master of Science
	In presenting this report in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that Department of Computer Science shall make it freely available for inspection. I further agree that permission for
	Signature ____________________
	Date ________________________
	Table of Contents
	Appendices ……………………………………………………………………………..32

	List of Figures
	This report proposes how to program the BDI-based agents using the Java programming language, and how to make an agent-based application more intelligent and flexible. This study contributes new implementation scheme of the BDI agents in the Java program
	1. INTRODUCTION
	APPENDICES

	APPENDIX 1: Agent-based Stock Trader (AST) User Manual
	APPENDIX 2: ASTdb Access Database
	APPENDIX 3: Source Codes
	APPENDIX 1: Agent-based Stock Trader (AST) User Manual
	(Readme.doc)
	APPENDIX 2: ASTdb Access Database
	APPENDIX 3: Source Codes

