Design of an Inexpensive Residential Phasor Measurement Unit

Jeremy Murray Vick
ECE 499, Electrical Engineering Capstone
Department of Electrical and Computer Engineering
Union College
Schenectady, NY

Advisor: Professor Luke Dosiek

March 17, 2015

Abstract

Phasor measurement units, (PMUs) are widely used by power companied to measure the
state of transmission lines and the quality of transmitted power. The goal of this project is
to design a low cost PMU that takes measurements at the residential level of the power grid.
This device must be easy to manufacture and highly reliable. It will communicate results
back to a central database via the internet. Compliance with IEEE Standard C37.118.1 and
(C37.118.2 is required. The widespread introduction of an inexpensive PMU will increase
the data resolution available in Wide Area Monitoring Systems (WAMS), providing control
room operators with a more accurate picture of the state of the power grid.

Contents

1 Introduction

1.1 Motivation L

1.2 Objective e
2 Background

2.1 Synchrophasor Definition

2.2 Previous Work

3 Design Requirements

3.1 Performance
3.1.1 Step Down and Device Power
3.1.2 Analog Filtering
3.1.3 Timing L
3.1.4 Measurement
3.1.5 Communication

3.2 Safety

3.3 Cost . . .o

4 Design Alternatives

4.1 Component Selection
4.1.1 Computing Platform00
4.1.2 GPSModule

4.2 Software Design L L
4.2.1 Signal Processing
4.2.2 Signal Acquisition L

5 Preliminary Proposed Design

5.1 Hardware Design
5.1.1 Voltage Step Down
5.1.2 Anti-Aliasing Filter L.
5.1.3 Analog to Digital Conversion

(=)

co

11
11
11
12
13
13
14
15
15

17
17
17
18
18
18
19

8

9

5.1.4 GPS Timing

5.2 Signal Processing
5.2.1 Sampling Rate
5.2.2 Raw Data Processing o .
5.2.3 Synchrophasor Estimation

Final Design

6.1 Hardware Design
6.1.1 Voltage Step Downo oL
6.1.2 Anti-Aliasing Filter L.
6.1.3 Analog to Digital Conversion
6.1.4 GPS Timing

6.2 Signal Processing
6.2.1 Sampling Rate o
6.2.2 Raw Data Processing
6.2.3 Synchrophasor Estimation

Results

7.1 Evaluation Plan. o
7.1.1 Timing Accuracy« o v i
7.1.2 Measuremento
7.1.3 Communication

Production Schedule

Cost analysis

10 User Manual

10.1 Setup o e

10.1.1 Calibration
10.2 Operation e
10.3 Maintenance Lo e e

11 Conclusion

A Preliminary Circuit Diagram

B Final Circuit Diagram

C Texas Instruments Header

D PRU Assembly Code

26
26
26
27
27
28
28
28
29
29

30
30
30
30
32

33

35

37
37
37
38
38

40

41

43

45

48

E Python Code

53

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

5.1
5.2
5.3
5.4

6.1

7.1
7.2

Al

B.1

Phase calculation based on UTC reference 9
Angle convention for synchrophasors 9
OpenPMU block diagram, 10
rPMU block diagram oo 12
Anti-aliasing filter frequency response 12
Data frame transmission order L. 14
DC Bias Circult e 21
Anti-Aliasing Filter Circuit 22
Analog Front End Block Diagram 23
ADC Sequencer Flowchart, 24
ADC Block Diagram 28
Phase vs. Time 31
Frequency vs. Time L o 31
Preliminary Circuit Schematic. 42
Final Circuit Schematic 44

List of Tables

3.1 Required synchrophasor reporting rates 13
3.2 Data frame organization L L0 15
3.3 Summary of design requirements L 16
5.1 Bill of Materials 25
8.1 Proposed weekly schedule for Fall 2014 34
9.1 Proposed budget for PMU components 36
9.2 Cost of PMU components 36
10.1 Component and software versions used in this project. 39

Chapter 1

Introduction

1.1 Motivation

On August 14, 2003, North America suffered its largest blackout. Major 345 kV transmis-
sion lines dropped out of service, unbeknownst to operators, causing a cascading outage that
extended across the Midwest, Northeast, and into Canada [1]. An investigation launched
by the North American Electric Reliability Corporation (NERC) found that the blackout
could have been confined to a small region had operators known the status of overstressed
and failing lines [2].

Since this catastrophe, steps have been taken to improve real-time, networked mon-
itoring of America’s electrical transmission and distribution network, in order to enable
system operators to predict and counteract or confine disturbances. Increased situational
awareness can also allow the dynamic calculation of maximum load ratings based on en-
vironmental conditions. Overall, improved monitoring allows utilities to provide power to
customers in a more efficient, more reliable, and safer way.

The installation of phasor measurement units (PMUs) provides a real time image of
operating conditions. Increasing the number of PMUs improves the resolution of data
available to control room operators. It also creates the possibility for implementation of
automatic control systems to correct disturbances or failures. However, these devices are
costly, approximately $43,400 per installation, and are hard to install [3]. They also require
dedicated communication networks to feed data back to centralized processors, known as
phasor data concentrators (PDCs).

PMUs can offer a new insight when installed at the distribution level of the power grid.
The prevalence of distributed generation, smaller power plants that supply communities
rather than regions, is increasing due to the fact that renewable power generation is better
suited for communities. This increase causes an increase in dynamic events at the distribu-
tion level, as wind turbines and solar farms increase and decrease their output in step with
the weather. Having PMUs measuring at the distribution level will give a more accurate

picture of how the increase in distributed generation affects the power grid on a day-to-day
and long term basis.

1.2 Objective

The goal of this project is to design a low cost PMU that takes measurements at the
residential level of the power grid. This device should be easy to manufacture and highly
reliable. It should communicate results back to a central database using the protocol
described in the IEEE Standard for Syncrophasor Data Transmission.

Chapter 2

Background

2.1 Synchrophasor Definition

Alternating Current (AC) is mathematically represented by a cosine wave,
x = Acos(2mfact + ¢) (2.1)

where fac = 60Hz in North America. Using a technique proposed by Charles Proteus
Steinmetz in [4], AC can be represented as a simplified quantity called a phasor. When
representing a cosine as a phasor, it is assumed that the frequency of the signal remains
the same. Therefore, the variable quantities are magnitude and phase. For AC, magnitude
is commonly defined as the root mean square of voltage. Equation (2.1) becomes

A
X =5/0 (2.2)

Establishing phase requires either a signal or time reference. Synchrophasors calculate
phase using an absolute time reference, commonly Coordinated Universal Time (UTC).
Figure 2.1 shows a cosine superimposed on a UTC time pulse. The synchrophasor is defined
to be 0° if the cosine has a maximum during the pulse and 90° if the cosine has a zero
crossing at the pulse. Values between 0° and 90° are calculated according to the selected
phasor estimation algorithm [5]. Previously, phasor measurement at generators and nodes
in the transmission network was impractical due to geographic separation between the
two. Implementation of synchrophasors allows for easy calculation of magnitude and phase
differences between nodes based off a shared standard time.

2.2 Previous Work

The concept of a synchrophasor was first introduced in the 1980s and has since generated
a large body of commercial and academic research. It is impossible to address all work

Xn
1:!:2—/j9

*Corrected for any
filter delay

Cosine
Reference

Cosine

Reference

UTC Time
Reference 2

UTC Time
Reference 1

Figure 2.1: Phase calculation based on UTC reference. Source: [6]

() time tag 900
1800 ——
time
phasor
representation
90°
(b) time tag 900
1800 0°
time
phasor
representation
\/

-90°

Figure 2.2: Angle convention for synchrophasors. Source: [7]

OpenPMU

»| Time Source
Receiver

>

Disciplined L

Oscillator -

~
< Data Signal
t Acquisition ’.l Processing H Telecoms }»
.

J

Time Signal

| Local Clock

A

Input Signals

Synchrophasor

Figure 2.3: OpenPMU block diagram. Source: [10]

on synchrophasors and their applications in the scope of this project so emphasis will be
placed on development of inerpensive PMUs.

K. Kirihara, B. Pinte, and A. Yoon designed and tested a relatively low cost (approx-
imately $1050) PMU as part of an undergraduate senior project described in [8]. Their
project utilized a National Instruments sbRIO for digital filtering and calculation of syn-
chrophasors. Global Positioning System (GPS) was used to generate the time reference.
The project was able to successfully measure phasors, but utilized only the National Elec-
trical Code residential voltage standards to test the PMU, ignoring IEEE C37.118.1. The
group also did not address the transmission of synchrophasors to a centralized server or
phasor data concentrator (PDC).

In Brian Miller’s Masters thesis [9], alternatives for conventional current transducers
are considered. Miller also examines the use of wireless networks for time synchronization
under the IEEE 1588 standard. Use of wireless networks is found to provide a viable
alternative to GPS synchronization, useful in areas where signal strength is diminished.
It would also provide a cost reduction due to the elimination of the GPS module. These
proposed changes were found to be viable improvements while remaining compliant with
the IEEE C37.118.1 standard.

In order to lessen the restrictions of proprietary hardware and algorithms on the
progress of PMU development, the OpenPMU [10] group was formed, dedicated to de-
signing ”open source platform for synchrophasor applications and research.” The group
utilizes a standard data acquisition device (DAQ) from National Instruments and a GPS
receiver from Garmin as the basis for the OpenPMU. A PIC from Microchip synchronizes
the DAQ to the GPS timecode. The OpenPMU uses the Python scripting language run-
ning on Microsoft Windows. It is currently able to measure synchrophasors, but has yet
to achieve full compliance with IEEE C37.118.1.

10

Chapter 3

Design Requirements

3.1 Performance

A vast majority of the performance requirements for this project are drawn from the IEEE
Standard for Synchrophasor Measurements for Power Systems [11], its 2014 amendment
[12] and the IEEE Standard for Synchrophasor Data Transfer for Power Systems [13].
Two classes of performance are laid out in the standards: P, for fast response with no
explicit filtering and M, for analytic measurements sttausceptible to aliasing. Adherence
to these standards will ensure that the device is compatible with existing phasor data
concentrators (PDCs) and visualization software.

The device is broken down into seven different component parts as shown in Figure
3.1. The measurement source is a 120v residential outlet. A step down circuit lowers
the voltage of the measurement source into the range of the A/D converter. This circuit
will also provide DC power for the device itself. An analog anti-aliasing filter will be
used to limit the signal bandwidth before sampling. The signal passes through an A/D
converter that samples in synchronicity with the time source. The time source provides
an absolute time reference to the A/D converter and the Synchrophasor Estimator. The
Synchrophasor Estimator will calculate the magnitude of digital signal and run it through
a phase estimation algorithm (PEA). The resulting magnitude and phase estimation will
be given a time tag and sent to a PDC via the internet interface. The device must also
accept commands transmitted by the PDC.

3.1.1 Step Down and Device Power

Analog to Digital (A/D) converters are not typically capable of measuring signals at 120v,
meaning a voltage step down circuit must be designed to reduce the magnitude of the AC
signal to match the specified range of the A/D. The device may only have one connection to
the power source, meaning the step down circuit must also include a tap and rectification
circuit to provide power for the chosen processor. The supply circuit should have over-

11

v

[&

A4

120v A
N . > Step Anti-Aliasing u| Synchrophasor | - Internet
233';5"“3' / Down / Filter A/D Converter Estimator N "/ Interface

Device
Power

Data
Concentrator

Control
Commands

Phasor Data
Concentrator

Figure 3.1: rPMU block diagram.

Low Pass Filter

@

(1)

Analog Output

0 fs/2 fg

Figure 3.2: Anti-aliasing filter frequency response. Source: [14]

voltage protection to prevent damage to the device and have an output voltage ripple that
meets the constraints of the chosen processor.

3.1.2 Analog Filtering

Since an A/D conversion is being performed, it necessary to have an analog low-pass filter
to reduce the bandwidth of the input signal and eliminate aliasing. The cutoff frequency for
the low-pass filter should be just above fs/2, the chosen sampling frequency. The desired
frequency response, defined in terms of the sampling frequency, is shown in Figure 3.2.

12

System Frequency 50 Hz 60 Hz
Reporting Rates (frames per second) | 10 ‘ 25 | 10 ‘ 12 ‘ 15 ‘ 20 ‘ 30

Table 3.1: Required synchrophasor reporting rates. Source: [13]

3.1.3 Timing

Synchrophasors must, by definition, be recorded with respect to an absolute time reference.
The absolute reference used by IEEE C37.118.1 is Coordinated Universal Time (UTC).
UTC can be obtained from either a GPS receiver or through the internet based Precision
Time Protocol (PTP) [15]. The time must be accurate within £26us according to the
standard. Receiving UTC via the internet is more practical for the scope of this project,
as GPS signals can be very weak indoors. However, testing is needed to confirm that
synchronization with internet time servers can be achieved with sufficient accuracy.

Each synchrophasor must be given a time tag according to Coordinated Universal
Time (UTC). The time tag consists of three numbers: a System On a Chip (SOC) count,
a fraction-of-second count, and a time status value. SOC is specified as a 4-byte binary
count of the number of seconds since the Unix epoch, 00:00 January 1, 1970. Occasionally,
a leap second must be inserted to keep SOC synchronized with UTC, which is specified
using a special case of the fraction-of-second as specified in section 4.3 of [11]. Time status
indicates the reliability of the clock, which can become unsynchronized due to loss of signal.
Values for time status are specified in Table 6 of [11].

3.1.4 Measurement

Synchrophasor measurements must be synchronized with the time code source so they can
be time-aligned with measurements from other PMUs by a PDC. Reporting rates are also
defined in IEEE C37.118.1 to ensure that multiple PMUs will take measurements at the
same rate.

Reporting Rate

The reporting rate, measured in phasors per second, must be a factor of the nominal system
frequency. Required rated are listed in Table 3.1. The reporting rate must be selectable
by the user via the device’s internet interface according to the protocol defined in [13].

Phase Estimation

There are two categories of phase estimation algorithms (PEAs): time domain and fre-
quency domain. An example of a time domain PEA is the Weighted Least Squares method.
WLS uses a Taylor series expansion of the signal to determine the phase. In [16], variation

13

fisst transmitted | SYNC | [FRAMESIZE | | IDCODE | | SOC | |FRACSEC |
MSB , LSB 2 2 4 4

| DATA1 || DATA2 |... [DATA N| [CHK | lasttransmitted
2

Figure 3.3: Data frame transmission order. Source: [13]

of the number of terms in the series is studied in an attempt to reduce error. The Interpo-
lated Discrete Fourier Transform (IpDFT) is an example of a frequency domain algorithm.
The IpDFT is significantly faster than WLS, but does not perform as well when distur-
bances occur. A thorough comparison between WLS and IpDFT is carried out in [16]. The
selection of the PEA will provide the constraints for selection of a processor.

Total Vector Error

Total Vector Error (TVE) is a measurement of the difference between a perfect theoretical
phasor and the actual phasor measured by the PMU. The IEEE Std. C37.118.1 defines
TVE as:

v - ORI Gl 0E

Where X,(n) and X;(n) are the real and imaginary components, respectively, of the mea-
sured phasor and X,.(n) and X;(n) are the components of the theoretical phasor. The
standard specified that TVE must be less than 1%. Sources of TVE include timing inac-
curacy, off-nominal signal frequency, and low frequency oscillations.

3.1.5 Communication

Communication between the PMU and PDC will take place via the internet. Data packets
will be sent using Transmission Control Protocol (TCP). Data packets are subdivided into
frames, each containing a specific piece of data. The frames required for sending phasor
data, as defined in IEEE C37.118.2, to a PDC are listed in Table 3.2. The phasor itself
is transmitted in frame 7. The DIGITAL frame can be used to transmit extra device
status indicators not included in the STAT frame, relay statuses, breaker statuses or other
information. The generic order of frame transmission is shown in Figure 3.3, where DATAT,
DATAZ2, etc. are frames 7-11 from Table 3.2

14

No. Field Size (bytes) Description

1 SYNC 2 Sync byte followed by frame type and version
number.

2 FRAMESIZE 2 Number of bytes in frame.

3 IDCODE 2 PMU ID number.

4 SOC 4 Second Of Century time stamp.

5 FRACSEC 4 Fraction of Second and Time Quality.

6 STAT 2 PMU status flags.

7 PHASOR 4 Phasor estimate. May be single phase or
3-phase positive, negative, or zero sequence.

8 FREQ 2/4 Frequency.

9 DFREQ 2/4 Rate Of Change Of Frequency.

10 ANALOG 2+ Analog data, available for extra features.

11 DIGITAL 2+ Digital data, available for extra features.

12 CHK 2 Cyclic redundancy check (CRC-CCITT)

Table 3.2: Data frame organization. Source: [13]
3.2 Safety

The device must comply with the National Electric Code regulations for connection spacing
and insulation for 120v connections [17]. The connection to the wall outlet should be made
with a NEMA 5-15 compliant connector as it is the most common outlet found in residences.
The connector is rated for a maximum voltage of 125v, sufficient for the requirements of
this project.

3.3 Cost

Commercial PMUs cost an average of $43,400 per installation [3]. This device will be in-
stalled en masse in residences and should have a cost commensurate with mass production.
The target cost for this project is under $1,000.

15

Section Comments

Step down Step down 120v measurement source to acceptable range
for A/D converter

Device power Determined by the choice of processor

Analog filtering ~ Low pass filter with f. just above f,/2

Timing Either internet or GPS based

Phase estimation Either WLS or IpDFT

Safety Must follow all wiring and spacing regulations for 120v

Cost Target cost is under $1000

Table 3.3: Summary of design requirements

16

Chapter 4

Design Alternatives

4.1 Component Selection

4.1.1 Computing Platform

The computing platform is the core of the phasor measurement unit. It is responsible for
acquiring raw AC voltage waveform data from an Analog to Digital Converter (ADC) in
synchronicity with the GPS Pulse Per Second (PPS) time code, computing the magnitude
and phase of the signal, packaging the measured data into the IEEE C37.118.2 transmission
format and sending the resulting data packet over the internet to a PDC. Many options
were considered in the choice of the computing platform for this project, including the well-
known Raspberry PI, the Arduino, BeagleBone Black, and Intel Edison. The Raspberry
PI, while it is a relatively powerful platform with thorough documentation and an active
user base, was dismissed due to the lack of an onboard ADC. Choosing a platform with
an onboard ADC is important because it simplifies the circuitry and reduces the cost of
the device. An Arduino, while it has an onboard ADC, lacks the computing power of the
other SOC based alternatives, requires additional components to connect to the internet,
and does not have the ability to be reprogrammed remotely, an important consideration
when deploying a device in the homes of laymen residents.

Intel’s Edison platform was considered for its high computing power density (dual core
500 MHz processor), but rejected due to the scarcity of public documentation. Ultimately,
the BeagleBone Black was chosen as the computing platform. It has a 1 GHz proces-
sor, which outperforms the Raspberry PI's 700 MHz, a built in ethernet port for internet
connection, and an onboard ADC with eight input channels. The Black also can run the
Debian or Ubuntu Linux distributions. Using these Linux distributions provides built in
support for remotely accessing the device and a large package database to pull from when
implementing components of the project. Of the most consequence in choosing this board
was the NEON and Programmable Realtime Unit (PRU) subsystems. The NEON subsys-
tem provides hardware acceleration for floating point calculations and a implementation of

17

the Fast Fourier Transform that utilizes this capability has already been developed. Uti-
lizing this library will allow for the reduction of the computational load on the processor,
which in turn should enable the device to achieve a higher reporting rate. The PRU, es-
sentially an onboard microcontroller in which the execution of each instruction is fixe is
significant because all of the instructions available in this subsystem have a fixed execu-
tion time of bns. The PRU interfaces directly with the ADC subsystem and the Black’s
onboard memory, meaning it can acquire data from both the GPS and AC voltage inputs
to the ADC and store it for processing in a fixed, known amount of time that can be easily
compensated for in the final calibration of the device.

4.1.2 GPS Module

As stated in the Timing section of the Design Requirements, the time source must be
accurate within £264s in order to achieve the accuracy specified in [11]. There are many
timing-specific GPS modules on the market, but their average price is $450, [18] which is
prohibitive for the budget of this project. The Adafruit Ultimate GPS Module is offered at
a reasonable $40 and achieves £9us accuracy [19] on its PPS output. Though this is not
as accurate as timing-specific sources, some boast sub £5us accuracy, [20] it is well within
the specifications and budget for this device.

4.2 Software Design

4.2.1 Signal Processing

From the initial stages of the project, Python was the desired programming language for
processing raw data into synchrophasor measurements. Availability of Python packages for
signal processing and ethernet packet transmission, cross platform compatibility, and the
ease with which the language can be interpreted by a lay person were the driving factors in
this choice. By choosing such a widely known and supported language the code generated
in this project can be of greater utility to others researching PMUs. However, Python
is a high-level programming language which presents a few challenges when interacting
directly with hardware. Python code has to be parsed by the Python interpreter before it
is executed, exacting a performance penalty. In addition, low-level programming languages
like C are more suited to direct memory interaction than Python.

It was possible to use Python, despite its deficiencies, in this project because the heavy
lifting is handled by the PRU. Samples generated by the ADC are stored in shared memory
accessible from the CPU by the PRU, which ensures that latency between sample acqui-
sition and storage in memory is a fixed, known value. Texas Instruments, the designer
of the AM335x processor onboard the BeagleBone Black, provides a library for sending
assembly code to and monitoring interrupts from the PRU written in C, another obstacle.
Fortunately, PyPRUSS, a community project focused on 3D printing with the Black [21],

18

incorporates a Python wrapper for the C library, enabling its functions to be called within
Python code.

4.2.2 Signal Acquisition

Acquisition of data with the BeagleBone Black’s onboard ADC can either be handled by the
CPU or by the PRU. The host CPU runs Debian, a variant of linux, which is not a realtime
operating system. Any processes interacting with the ADC are scheduled at the mercy of
the operating system, which is not a desirable characteristic in an application where precise
timing is of the utmost importance. Therefore, the PRU was used to communicate with the
ADC subsystem. The PRU is controlled with assembly code loaded by the CPU. Coding
in assembly presents a few challenges; operations involve direct manipulation of registers
and memory locations which is time consuming and potentially catastrophic as the PRU
has access to the memory and storage used by the operating system. Ultimately, the tight
timing constraints imposed by the design requirements necessitate the use of the PRU
despite the faults of coding in assembly.

19

Chapter 5

Preliminary Proposed Design

5.1 Hardware Design

5.1.1 Voltage Step Down

Connection to the wall will be made with a NEMA 5-15 compliant connector, the common
standard for residential outlets [17]. The ADC input range of the BeagleBone Black is 0
to 1.8v [22], but going directly to this range would require a transformer ratio of 66.7:1
or greater, something that is not commonly found in 120v transformer offerings. A 14:1
transformer was chosen instead because of its availability and price. This transformer
yields a 8.57v peak-to-peak output when connected to the 120v wall outlet. The voltage
is further reduced into the ADC range by attenuation in the low pass filtering circuit.

Input Protection

Although 120v is not as dangerous as the high voltage that commercial PMUs measure, it
is important that this device have safety features to protect both the low voltage electronics
and the end user. A 0.5A fast-acting fuse was placed between the hot wire of the plug
and the device as the power supply for chosen for the BeagleBone Black has a maximum
current draw of 0.3A. The digital (DGND), analog (GND_ADC), and earth grounds as
well as the neutral wire are all tied together to ensure that there are no ground loops
that might affect measurement, but also to ensure that any shorts or loose wires will not
generate unexpected voltages throughout the circuit.

DC Bias

It is also necessary to add a DC bias to the AC signal in order to fall within the 0 to
1.8v range. This is accomplished by a simple DC bias circuit shown in Figure 5.1. The
resistor connected from the input terminal to ground is important because it ensures that
the input is at Ov before a connection is made, protecting the measurement source from any

20

VDD_ADC
@)

R1

INPUT " OUTPUT

10k
2
AW
100k

R3

Figure 5.1: Schematic of DC bias circuit.

unexpected charge on the capacitor. The DC bias voltage will be generated by a voltage
divider between VDD_ADC and ADC_GND with equal value resistors to ensure the mean
of AC signal falls exactly in the middle of the input range.

5.1.2 Anti-Aliasing Filter

PMUs typically sample at relatively low rates, 3kHz or less, as the nominal frequency of
the power grid is only 60Hz. It is essential to low pass filter the signal before it is sampled
as sampling at such a low rate means there is a much higher chance of aliasing. As gain
reduction is desired, a non-inverting active low-pass filter was chosen. The BeagleBone
Black is a single supply board necessitating a single supply operational amplifier be used
in the filter, specifically the LM358 which both met the specifications and was already
available in the lab. A DC coupled low-pass RC active filter design presented in the LM358
datasheet [23] was used as the basis for the design of this circuit. Resistor and capacitor
values, listed in the circuit schematic in Figure 5.2 were calculated using the equations
provided in the datasheet with a cutoff frequency of 100Hz, gain of 0.2 and quality factor
of 1 as the design parameters. Filters inherently generate a phase difference between the
input and output signals; it is important that this phase shift is measured and accounted
for in the final calibration of the device.

5.1.3 Analog to Digital Conversion

Sampling is handled by the touchscreen controller and analog-to-digital converter subsys-
tem (TS_ADC_SS). The systems was designed to be used as a digitizer for touch screen
input, but can also operate as a regular ADC when set to general purpose mode. Analog
input can range from 0 to 1.8v and there are 8 channels available on the BeagleBone Black.
However, the 8 channel count is somewhat misleading as there is only one ADC. Channels

21

INPUT

MW AW
10k 10k

I
100k
R

Figure 5.2: Schematic of anti-aliasing filter. Design adapted from the LM358 datasheet [23].

are multiplexed to the ADC, as shown in Figure 5.3, meaning that channel capture can
only happen sequentially. Multiplexing of channels is controlled by a finite state machine
with sixteen sequence steps. Each step corresponds to the acquisition and storage of data
from one channel as outlined in Figure ?7. Two steps will be used to acquire both the
AC voltage waveform and the pulse per second signal from the GPS. The minimum delay
between sampling steps is 15 ADC clock cycles, a value that must be taken into account
in the calibration of the device.

5.1.4 GPS Timing

The Ultimate GPS module from Adafruit is largely self-contained, necessitating only a
few external connections to enable functionality of the chip. An onboard voltage regulator
enables the use of sources from 3.3 to 5v, both of which are available on the pinout of the
BeagleBone Black. 3.3v was chosen for the supply voltage simply because the 5v pin was
already connected to the low pass-filter circuit. Communication between the GPS module
and the Black is handled by the Universal Asynchronous Receiver Transmitter (UART).
National Marine Electronics Association (NMEA) sentences, a standard format for GPS
data, are received from the GPS via UART and used to assign UTC time tags to phase
measurements.

The PPS signal is acquired via the onboard ADC in conjunction with the AC voltage
waveform. This signal serves as the marker for the start of a Discrete Fourier Transform
(DFT) window. The output of VFix, which is pulled low when a strong signal is found,
is connected to a general purpose input output, indicating when the GPS is ready for
measurement to begin.

22

HHV (VDDA
Domain)

YPPSW
XNPSW
XPPSW

SEL_INP<3:0> SEL_RFP<2:0>

VREFP p— >0
4
VREFN (p— VDDA 5
INTREF » Penaira) PENIRQ<1:0>
(no internal Control) PENCTR<1:0>
. A A 2
XPUL ANO i T
XNUR AN1
YPLL AN2
YNLR AN3
ANG AMUX
ANS 9:
ANG
AN7
— ADCOUT<11:0>
L | EOC
CLK
— PD
L] DIFF_CNTRL
— START
VSSA Aax |
BIAS_SEL
8
vssa apc” VREFN —&]
vooa_anc" p— . . | 4 Eigs]

SEL_INM<3:0> SEL_RFM<1:0> REXT_BIAS
(o internal
Blue pins are /O pads connection)

WPNSW
YNNSW
YPNSW
XNNSW

Figure 5.3: Block diagram of ADC analog front end operation. Source: [22]

5.2 Signal Processing

5.2.1 Sampling Rate

The sampling rate of ADC acquisitions is controlled both by dividing the ADC clock and
by increasing the delay between measurement steps. Both methods will be implemented to
achieve sampling at an integer multiple of 60Hz, desired to ease the processing requirements
once sampled.

5.2.2 Raw Data Processing

Data from the ADC is stored as a 32 bit hex value. Both the four bit channel ID and the
twelve bit converted value are contained within these 32 bits. Two bitwise shift operations
are used to extract each component and then the values are converted to integers for further
processing.

5.2.3 Synchrophasor Estimation

Synchrophasor estimation will be handled by a basic DFT at the beginning of this project.
Other methods such as I[pDFT and Weighted Least Squares are shown to provide higher
accuracy [24], but DFT will allow a proof of concept. The choice of Python as the pro-
gramming language allows for easy substitution of the phase estimation algorithm.

Each second of raw data was divided into 30 windows and a DFT performed on each to
achieve the desired reporting rate of 30 phasors/second. Once the DFT for each window is

23

Update Shadow |«
StepEnable Reg

IDLE
(apply Idle Step Config)

StepEnable[N]=1?

Set N=0
Set pen down flag = 1
Set pen override mask = 1
Ignore Pen IRQs

« If preempt flag =1, increment N,
else set N to first SW Stepconfig
* Reset Preempt flag

I k
Set preempt Incr N

flag =1;
Save N No

If HW[N] and
StepEnable[N]

If sw[N] and
StepEnable[N]

Preemption
Yes enabled?

rement N I Apply StepConfig [N]

A 4
Wait OpenDelay [N]

Apply StepConfig [N]

v L
Wait OpenDelay [N]

v
Wait SampleDelay [N]

v
Wait SampleDelay [N]

v
ADC Conversion

v
v .
ADC Conversion
AVGIN]? Yes
v
1
(Reset StepEnable[n] if One-Shot[n]) AVGIN]?
+ Yes
Looped all enabled No (Reset StepEnable|n] if One-Shot[n])
’ HW steps?
TYes No Looped all enabled
Reset pen ove:ide mask SW steps?
l Yes
+ If TS Charge step is enabled, apply TS
Charge StepConfig and OpenDelay + Generate END_OF_SEQUENCE int

(ignore any pen irq during this step)

If pen down flag = 1 and now pen is up,
then generate PEN_UP interrupt and
reset pen_down_flag

If preempt flag is 1, restore N, elseset N
to first SW Stepconflig

* HW event can either be Pen-down or input HW event, but not both

Figure 5.4: Flowchart for ADC subsystem step sequencer. Source: [22]

24

completed, it is paired with its corresponding GPS time tag and transmitted via ethernet.

Component Source Mfr. Part Num. Cost
BeagleBone Black Adafruit 1876 $55.00
Ultimate GPS Adafruit 746 $39.95
GPS Antenna Adafruit 960 $12.95
5v 2A DC Power Supply Adafruit 276 $7.95
14:1 Power Transformer DigiKey HM510-ND $19.82

LM358 Single Supply Op Amp DigiKey =~ LM358NFS-ND $0.49

Table 5.1: Bill of Materials

25

Chapter 6

Final Design

6.1 Hardware Design

6.1.1 Voltage Step Down

Connection to the wall will be made with a NEMA 5-15 compliant connector, the common
standard for residential outlets [17]. The ADC input range of the BeagleBone Black is 0
to 1.8v [22], but going directly to this range would require a transformer ratio of 66.7:1
or greater, something that is not commonly found in 120v transformer offerings. A 14:1
transformer was chosen instead because of its availability and price. This transformer
yields a 8.57v peak-to-peak output when connected to the 120v wall outlet. The voltage
is further reduced into the ADC range by attenuation in the low pass filtering circuit.

Input Protection

Although 120v is not as dangerous as the high voltage that commercial PMUs measure, it
is important that this device have safety features to protect both the low voltage electronics
and the end user. A 0.5A fast-acting fuse was placed between the hot wire of the plug
and the device as the power supply for chosen for the BeagleBone Black has a maximum
current draw of 0.3A. The digital (DGND), analog (GND_ADC), and earth grounds as
well as the neutral wire are all tied together to ensure that there are no ground loops
that might affect measurement, but also to ensure that any shorts or loose wires will not
generate unexpected voltages throughout the circuit.

DC Bias

It is also necessary to add a DC bias to the AC signal in order to fall within the 0 to
1.8v range. This is accomplished by a simple DC bias circuit shown in Figure 5.1. The
resistor connected from the input terminal to ground is important because it ensures that
the input is at Ov before a connection is made, protecting the measurement source from any

26

unexpected charge on the capacitor. The DC bias voltage will be generated by a voltage
divider between VDD_ADC and ADC_GND with equal value resistors to ensure the mean
of AC signal falls exactly in the middle of the input range.

6.1.2 Anti-Aliasing Filter

PMUs typically sample at relatively low rates, 3kHz or less, as the nominal frequency of
the power grid is only 60Hz. It is essential to low pass filter the signal before it is sampled
as sampling at such a low rate means there is a much higher chance of aliasing. As gain
reduction is desired, a non-inverting active low-pass filter was chosen. The BeagleBone
Black is a single supply board necessitating a single supply operational amplifier be used
in the filter, specifically the LM358 which both met the specifications and was already
available in the lab. A DC coupled low-pass RC active filter design presented in the LM358
datasheet [23] was used as the basis for the design of this circuit. Resistor and capacitor
values, listed in the circuit schematic in Figure 5.2 were calculated using the equations
provided in the datasheet with a cutoff frequency of 100Hz, gain of 0.2 and quality factor
of 1 as the design parameters. Filters inherently generate a phase difference between the
input and output signals; it is important that this phase shift is measured and accounted
for in the final calibration of the device.

6.1.3 Analog to Digital Conversion

Sampling is handled by the touchscreen controller and analog-to-digital converter subsys-
tem (TS_ADC_SS). The systems was designed to be used as a digitizer for touch screen
input, but can also operate as a regular ADC when set to general purpose mode. Analog
input can range from 0 to 1.8v and there are 8 channels available on the BeagleBone Black.
However, the 8 channel count is somewhat misleading as there is only one ADC. Channels
are multiplexed to the ADC, as shown in Figure 5.3, meaning that channel capture can
only happen sequentially. Multiplexing of channels is controlled by a finite state machine
with sixteen sequence steps. Each step corresponds to the acquisition and storage of data
from one channel as outlined in Figure ??7. Two steps will be used to acquire both the
AC voltage waveform and the pulse per second signal from the GPS. The minimum delay
between sampling steps is 15 ADC clock cycles, a value that must be taken into account
in the calibration of the device.

Values from the ADC are stored in a FIFO buffer as shown in Figure 6.1. Samples are
retrieved from this buffer by the PRU via the code shown in Appendix D. They are moved
into shared memory, accessible from the CPU via a two part linear buffer. When the first
segment of this buffer is full, an interrupt is generated, signaling the CPU to read the data
from memory and store it within a Python array.

27

PRCM TSC_ADC Subsystem

CLK_M_0SC pd_whup ade fok |
ER
L3Slow ¢ <> g %
Interconnect AR 8 FIFO1
o 64x16-bit
L4Wakeup , 2 SCR s FIFO0
Interconnect <>[2s— M 64x16-bit
Fls3
=%lg= TSC_ADC
> R Pads
MPU Subsystem, S[—>
PRU-ICSS, PN ¥ vz |
WakeM3 gen_intr PG Sec']:use’\r}lcer

Figure 6.1: Block diagram for ADC sample acquisition and storage. Source: [22]

6.1.4 GPS Timing

The Ultimate GPS module from Adafruit is largely self-contained, necessitating only a
few external connections to enable functionality of the chip. An onboard voltage regulator
enables the use of sources from 3.3 to 5v, both of which are available on the pinout of the
BeagleBone Black. 3.3v was chosen for the supply voltage simply because the 5v pin was
already connected to the low pass-filter circuit. Communication between the GPS module
and the Black is handled by the Universal Asynchronous Receiver Transmitter (UART).
National Marine Electronics Association (NMEA) sentences, a standard format for GPS
data, are received from the GPS via UART and used to assign UTC time tags to phase
measurements.

The PPS signal was acquired via the onboard ADC in conjunction with the AC voltage
waveform. The signal is a pulse width modulation signal with a frequency of 1Hz and
a magnitude of 3.3v. A simple voltage divider was used to divide this signal in half to
fit the 1.8v maximum on the ADC inputs. This signal serves as the marker for the start
of a Discrete Fourier Transform (DFT) window. The output of ”VFix”, which is pulled
low when a strong signal is found [19], is connected to a general purpose input output,
indicating when the GPS is ready for measurement to begin.

6.2 Signal Processing

6.2.1 Sampling Rate

The sampling rate of ADC acquisitions is controlled both by dividing the ADC clock and
by increasing the delay between measurement steps. Both methods will be implemented to
achieve sampling at an integer multiple of 60Hz, desired to ease the processing requirements
once sampled.

28

6.2.2 Raw Data Processing

Data from the ADC is stored as a 32 bit hex value. Both the four bit channel ID and the
twelve bit converted value are contained within these 32 bits. Two bitwise shift operations
are used to extract each component and then the values are converted to integers for further
processing.

6.2.3 Synchrophasor Estimation

Synchrophasor estimation will be handled by a basic DFT at the beginning of this project.
Other methods such as I[pDFT and Weighted Least Squares are shown to provide higher
accuracy [24], but DFT will allow a proof of concept. The choice of Python as the pro-
gramming language allows for easy substitution of the phase estimation algorithm.

Each second of raw data was divided into 30 windows and a DFT performed on each
to achieve the desired reporting rate of 30 phasors/second.

29

Chapter 7

Results

There currently exists an issue in the code with the way interrupts are generated by the
PRU and handled by the CPU when the two part buffer reaches its capacity. As such, only
one buffer’s worth of data can be captured and processed at a time. Repeatedly executing
the capture process allows the user to overcome this by repeatedly executing the capture
operation.

Figure 7.1 and 7.2 show the change in phase and frequency over one second of time for
the measured data.

7.1 Evaluation Plan

Though the device is not fully functional yet, the following evaluation plan has been devised
for the device once the coding issues have been resolved.

7.1.1 Timing Accuracy

Acquiring a highly accurate time source, such as an atomic clock, to test the accuracy of
the timing circuit is impractical, due to the cost of such devices. However an indirect test
can be performed to analyze the stability of the timing circuit. Measuring the period of
the pulse per second signal provided by the timing source over sixty minutes will give a
good indication of the short term stability of the time source and local oscillator.

7.1.2 Measurement

The reference conditions for each testing parameter, as specified in section 5.5.4 of IEEE
C37.118.1, are listed below. Each parameter should remain constant, unless it is currently
being tested.

e Voltage at nominal

30

Phase Angle vs. Time
T T

Phase (degrees)
T
|

a4l B

Figure 7.1: Plot of phase vs. time for one second of measured data.

Frequency vs. Time
T T

603 B

Frequency (Hz)

S8 -

597 B

Figure 7.2: Plot of frequency vs. time for one second of measured data.

31

Current at nominal

e Frequency at nominal

Voltage, current, phase, and frequency constant

All interfering signals < 0.2% of the nominal frequency (60Hz)
e Temperature 23° + 3°C

e Humidity > 90%

Synchrophasor Estimation

Synchrophasor estimation should be tested by calculating the TVE as defined in (3.1) for
each testing condition listed in Table 3 of [11]. The TVE should remain below 1% in all
testing conditions. The signal generator and oscilloscope must have a testing uncertainty
ratio of 4, i.e. for desired TVE of 1%, the devices should be able to measure TVE within
+0.25%.

7.1.3 Communication

Confirmation of the proper communication protocol specified in IEEE C37.118.2 will be
verified using the PMU Connection Tester software package provided by the Grid Protec-
tion Alliance!. If necessary, the Wireshark filter for IEEE C37.118 communication may be

used to examine the raw data frames?.

'The software can be found at http://pmuconnectiontester.codeplex.com
2 A more detailed summary of the filter can be found at http://www.wireshark.org/docs/dfref/s/synphasor.html

32

Chapter 8

Production Schedule

For the most part, time estimates proposed at the beginning of the project and reproduced
in 8.1 were accurate. The order of the weeks was shuffled around in order to prioritize the
selection of more important components over the design of voltage step down and filtering

circuits.

33

Week Objective

1 Design voltage step down and device power circuit

2 Design anti-aliasing filter, select sampling frequency and A/D converter
3 Research on and selection of time code source

4 Design timing and synchronization circuit

5 Select phase estimation algorithm
6-7 Design synchrophasor estimator

8 Design internet interface

9 Construction and testing of voltage step down and device power circuit
10 Construction of anti-aliasing filter

Table 8.1: Proposed weekly schedule for Fall 2014

34

Chapter 9

Cost analysis

The final cost for this project came in well below the initial proposed budget, reproduced
in Table 9.1. A number of factors contributed to this, most notably the identification of
a sufficiently accurate GPS module available for 1/10 the cost of timing specific offerings.
Replacement of the proposed FPGA development board with a single-board computer also
enabled a large cost reduction. The change in computing platform was based on the need
for remote management access, something that would have been impossible to reliably
implement on an FPGA.

A transformer and the LM358 chip were obtained from previous projects within the
department. The transformer also included a NEMA 15-5 plug. Components obtained for
free are indicated in parentheses in the cost summary shown in Table 9.2.

Construction of this residential phasor measurement unit came in well below the $14,000
estimated cost of commercial offerings [3]. Achieving such a substantial cost reduction
is made possible by the fact that this device takes measurements at low voltage levels,
removing a large number of insulation and protection requirements for high voltage PMUs.
Commercial devices are more accurate than this residential PMU, but the low cost of
this device will enable installation in more locations, offsetting accuracy shortfalls with an
increased volume of data.

35

Component Quantity Cost Subtotal

Project Enclosure 1 $20 $20

NEMA 5-15P Connector 1 $16 $16
Transformer - 12:1 1 $20 $20
AC/DC Converter 1 $21 $21
GPS Time Code Receiver 1 $400 $400
FPGA - Altera DE2 1 $269 $269
ToTAL PROJECTED COST $746

Table 9.1: Proposed budget for PMU components

Component Quantity Cost

BeagleBone Black 1 $55.00
Ultimate GPS 1 $39.95
GPS Antenna 1 $12.95
5v 2A DC Power Supply 1 $7.95

14:1 Power Transformer 1 $(19.82)
NEMA 5-15P Connector 1 $(15.98)
LM358 Single Supply Op Amp 1 $(0.49)
TotAL COST $142.16

Table 9.2: Cost of PMU components

36

Chapter 10

User Manual

10.1 Setup

Setup of the residential PMU is designed to be quick and simple. Device power and
measurement input are both drawn from the same connector, a NEMA 15-5 plug that
is compatible with residential outlets. The plug is simply inserted into the wall outlet
to provide power and the AC voltage to be measured. Transmission of measured data
and device management is handled via ethernet; the device must be connected to the
same network as the server receiving data. The GPS antenna is connected to the external
antenna connector mounted on the device and should be placed as close to a window or
outside wall as possible. It may be necessary to experiment with antenna positioning; the
LED labelled ”Fix” on the GPS module will cease flashing when a strong enough signal is
obtained to begin measurements.

10.1.1 Calibration

In the current iteration of the device, a 10k{2 potentiometer configured as a voltage divider
is connected between the secondary side of the transformer and the input of the low pass
filter. This allows the magnitude of the incoming signal to be adjusted manually to span
the entire 0 to 1.8v range of the ADC, thus maximizing measurement resolution. Once
the potentiometer is set, the magnitude and phase difference between the 120v wall outlet
and signal at the ADC input pin on the BeagleBone Black should be measured with an
oscilloscope or other suitable tool. These values need to be entered into the Calibration
section of the Python code, shown in Appendix E. Calibration should be performed on an
annual basis according to the standards set forth in IEEE C37.119.1 [25].

37

10.2 Operation

Once connected to power, the device will boot up and automatically begin to execute the
Python code. After a strong GPS signal is obtained, indicated when the Fix light on the
GPS is extinguished, the device will begin collecting and processing data. The incoming
data stream can be viewed using OpenPDC, an open source PDC provided by the Grid
Protection Alliance [26]. As of March 6, 2015 the software is now compatible with Mac OS
X and Linux operating systems in addition to Windows Server.

When powering down the device, either the command ”sudo shutdown -h now” should
be issued via a SSH login or the power button on the BeagleBone Black should be pressed.
These shutdown methods are mandated by the manufacturer in order to prevent damage
to the device or loss of data.

10.3 Maintenance

SSH access is enabled on the BeagleBone Black, allowing remote login to update or modify
code on the device. IP address configuration is currently handled by DHCP so any network
changes may alter the IP address. Though an inconvenience, this choice was a necessity as
the device may be connected to a variety of different networks with different address ranges.
Connecting a monitor and keyboard to the device and issuing the command ”ifconfig” from
the command line is the most reliable way to determine the IP address once the device is
installed.

The revisions of all hardware and software components used by the device are listed in
Table 10.1. Monthly software updates should be issued using the command ”sudo apt-get
update” to update package lists from the Debian repository and ”sudo apt-get upgrade”
to perform the update. Proper backup practices should be followed before these updates
to prevent data or functionality loss. It is not recommended to update the Linux kernel,
a process that requires the internal memory of the BeagleBone Black to be flashed with
a new image, without thorough testing as subsequent versions make major changes to the
way in which the PRU is initialized and accessed by the CPU.

38

Component Revision
Hardware

BeagleBone Black C
Ultimate GPS Module 3

Software
Linux Kernel
Debian

Python
AM335x Driver
PyPRUSS

3.8.13-boned7?

7.8

2.7.3

Commit e4d44bd on GitHub
Commit 6feef2b on Bitbucket

Table 10.1: Component and software versions used in this project.

39

Chapter 11

Conclusion

The goal of this project is to design an inexpensive residential phasor measurement unit.
Designing an inexpensive PMU will allow the proliferation of real-time, networked moni-
toring devices across the grid. Doing so increases the resolution of data available to control
room operators and regional administrators. This will allow for the design of automatic
control systems that can react faster than control room operators to counteract and confine
disturbances on the grid.

The device will be entirely self contained, with the only external connections to the
internet and the residential wall outlet. There should be no interaction between the resident
of the house and the device, initial installation will be done by the power company. The
device will be designed in compliance with the IEEE Std. C37.118, in order to ensure
compatibility with existing phasor data concentrators and visualization software.

Having an inexpensive PMU on the market opens up many possibilities for future
development and supports some of the objectives of the smart grid. In particular, it will
support increased use of distributed generation. Distributed generation allows for the use
of small, sustainable sources to supplement or be the sole power source of small areas. This
capability is key to the spread of sustainable power.

40

Appendix A

Preliminary Circuit Diagram

41

‘ustsop pesodord Areurwrpard Jo orjRWOYDS JMOIL) [y 9INSIg

INITLNO 3INO8319v3d

QO ano ane Q-
O ano ano O
O f0o04dD zinoyw O
O NI onY O
O eNw Ny O >
O SNy any O]
{ oav vano NIy O hlw
QO oav aan WIS Lds O
Q 10 uds oatds O
O 0s0ouds el e0lde O
O axy Lgvn 1z eodo O =
QO axl Lgvn 47101d9 O =
QO axy zidvn axizibvn O a8
O vasegal s zoa O IH
O vas o2 s O AN
O grWMdaHI 9L oD O
O VLNMdEHS axivisvn O
O sz LoD axd rigvn O
O Ni3S3u SAS mneemd O
O AssAS nssas O
QO AsToan Asoan O
) dX3ENETQOA dx3eAe aan O
O aneo ano O Ty
6d —=
QO LzodD 9 z0ld2 O M
O &:20ld2 8 zoid® O Z-96GE12
O 1 zods oL zoldn O
O €1 zoldD Zl20ld9 O
{ axu siHvn axirsisvn O
AEPOZ dNMOVEA O NsLO ei™vn NSLO vIHYN O
ATFOE - { NSy el™vn NSIH vidvn O
||||||||||||| O NSIH S1HY¥N NSL1D siuvn O
INY X3 Xy QO 5220149 gz zolde O
MMM ans X1 Mwu Q rZ 2ol & zold9 O
T84 Sdd+ aND =3 QO 62 10149 oLoldo O
piGg] WOl ON =) QO 10D ¥ L0IdD O
s1&q ON ON o QO s Lodo 0 Lold9 O
915q ON X13-0e =3 QO 1£7101d9 veamduHI O
1154 ON dMIOVEA s Q +rzoido Zoold9 O
154l ON aND = 0O #L LoD Sl oide O
srea] aNe 1383HN = QO 9z 0oldD SZNMdEHI O
ozig N el Q 2 iod9 el L0ldD® O
||||||||||||| O 9d3nIL sgamiL O
o500 GEEELN WA z8n QO 43WIL raaNIL O
SdD HIVAOWNGDS Q e Lod9 g Lolde O
|._U| O {0 910149 O
AN in —O ano ane O
Aieyeg dmyjoeg 2d

LLNY O oy youig auogalbeeg | ¢y

42

Appendix B

Final Circuit Diagram

43

USISOP AUl JO DIJRWLYDS JNOITY) :T'g 9INST]

T T ANITLNO INOF3I19DVv3dg T
O ano ano O
= O ano ano O
= O 200ld9 zLnoM1 O
35 QO INY oNY O
O eNv Ny O
O SNV oY O
QO 0av vaND NIy O
= Davaan Q@ 2av daa M10S HdS O
= O 10 Hds oatds O
33 O 0SO HdS 6L e0ldD O
QO axy Lldvn 1zeolds O L
QO axL hlevn 27ode O =
O axd zldvn axlzwvn O 35
O vas zozl 10s 2ozl O 1y
O vas ozl 1057102l O AN
O glNMdYHa 9l oo O
O VHAMJEHI axlvievn O
O 82 +0IdD axy riavn O
O N13S3H SAS 1ng umd O L s
O AS SAS ASSAS O = =
O As aaa Asaan O 25 3=
QO dX3EAE AAA dx3ene aan O
O ano ane O e
6d ——
)| =
O L0l 9z0ldD O Jlg :
O 6201d9 87201dD O 3IsNd gigeselz
QO 20IdD ol zoldd O L
O &1 zoido z17z01d0 O =
O axd siavn axLslevn O o<
V0T dNYOVEA O NSLO e1dvn NSL1O v1dvn O
AET-0E 208 O NSLY eldvn NSLH pL1HvN O
||||||||||||| O NS4 SlHvN NS1O s1Hvn O Savaan—
Trsq] LNv'x3 X4 I57sg O 2 20ldD €2 20IdD O
Zreq| ON© XL e QO 2201dD 2z 20ldd O
“ereq| Sddt aNo [z=5] O 62 10IdD o lolde O
b1gg| Wold ON 755 O L loldD v 1ol O
cial ON ON 565 Q § 10Idd og"1oIdD O
oigql ON X130 fees Q 1€710IdD veAMddHI O
at= dNMOVEA [Ze— O 172oldd 12001dd O
sigal ON aND 5] O v 101D simoldd O
s1ea] AN© 13S3UN |55 QO 92.001dD geNMdEHI O
oesal ON 0M [reg O 2 +oldD el lode O
||||||||||||| O 9daNIL sHamiL O
1osdiu0 6EEELIN MLW 250 O d3NIL vaanL O
SdO HOVAOWNIDS m M\”wﬁw N\”mﬁw w
A in O ano ans O

Kiapeg dnyoeg
HINY 0 Aoy doe|g suogoe|beag rwm

44

0~ O O W N~

W W R DNDNDDNDDNDDDDNDNDN DN = = = =
H O OO N Ulik WNEFE O OO Uik WN = O O

Appendix C

Texas Instruments Header

N.B. Additions to the example header provided by Texas Instruments are marked with the
title “Addition.”

[sk sk ok s ok ok KKK K oK o KK KK K SR R KK KK SR R S KK KK SR K R K KKK SR R S K KKK R ok KK KK KK ok o %k /
// file: PRU_memAccess_.DDR_PRUsharedRAM . hp

//

// brief: PRU_memAccess: DDR_PRUsharedRAM assembly constants.

//

//

// (C) Copyright 2012, Texas Instruments, Inc

//

// author M. Watkins

[sk kR sk ok ok KKK oK o o S KK KK SR K R KK KK SR R S KKK SR SR R K KKK SR R S KKK K Kk KK KK SRR ok o Kk /

#ifndef _PRU_memAccess_. DDR_PRUsharedRAM_HP_
#define _PRU_memAccess. DDR_PRUsharedRAM_HP_

[OROKOROR KRR KKK K K K K K K
/] * Global Macro definitions *

[/ ok sk sk sk ok ok ok kKK sk ok sk KR KRR R K SR KKK KK KK KK R K K

// Refer to this mapping in the file — \prussdrv\include\pruss_intc_mapping.h

#define PRUO_PRU1INTERRUPT 17
#define PRUI_PRUOINTERRUPT 18
#define PRUOARMINTERRUPT 19
#define PRUI_ARM_INTERRUPT 20
#define ARM_PRUOINTERRUPT 21
#define ARM_PRU1INTERRUPT 22
#define CONSTPRUCFG C4
#define CONSTPRUDRAM C24
#define CONSTPRUSHAREDRAM C28
#define CONST_DDR C31

45

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

[/ koo ok sk ok ok ok sk ok ok ok Kk ok ok ok

// Addition — J. Vick

[/ otk ok sk ok sk ok koK ok Kk K K ok ok

#define PRUSHAREDRAM 0x00010000 //12kB
#define PRUDRAM1 0x00000000

#define PRUDRAM2 0x00002000

#define PRUDRAMSIZE 8192

#define PRUSHAREDRAMSIZE 12288

[/ sk sk kK kR ok ok

// End addition

[/ kR Rk sk ok ok ok

// Address for the Constant table Block Index Register (CTBIR)
#define CTBIR 0x22020

// Address for the Constant table Programmable Pointer Register 0(CTPPR.0)
#define CTPPR.O 0x22028

// Address for the Constant table Programmable Pointer Register 1(CTPPR.1)
#define CTPPR.1 0x2202C

.macro LD32
.mparam dst ,src

LBBO dst ,src,#0x00 ,4
.endm

.macro LD16
.mparam dst , src

LBBO dst ,src,#0x00,2
.endm

.macro LD8
.mparam dst , src

LBBO dst ,src,#0x00,1
.endm

.macro ST32
.mparam src ,dst

SBBO src ,dst ,#0x00,4
.endm

.macro ST16
.mparam src ,dst
SBBO src ,dst ,#0x00,2

.endm

46

82
83| . macro ST8
84| .mparam src ,dst

85 SBBO src ,dst ,#0x00,1
86| .endm

87

88

89 // sk sk ok sk sk ok ok ok sk ok sk ok ok ok sk ok ok ok ok ok ok

90| // Additions — J. Vick

OL| [/ sskskoskoskostotosk ok sk sk sk ok ok okokokok ok ok ok

92| // fill the entire DRAM with val (2—byte—value)
93| . macro FILLSHAREDRAM

94| . mparam val

95 MOV r3 ,PRUSHAREDRAMSIZE

96| FILLSHAREDRAMREPEAT2:

97 SUB r3,r3,2

98 SBCO val ,CONST_PRUSHAREDRAM, r3 ,2
99 QBNE FILLSHAREDRAMREPEAT2, 13,0

100| .endm

101 /] sorokokokoskosk oo s s ok ok %
102| // End addition

103] [/ skoskotorososkos s ko ok ok ok ok

104
105 [/ sororororokokokoskskosk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3 o o 3
106| // = Global Structure Definitions *

TOT| [/ ootttk skoskoskoron ok ok sk sk ok skokok ok sk ok skokok ok Kk ok koK R ok
108
109| . struct Global

110 .u32 regPointer

111 .u32 regVal

112| . ends

113

114

T1B| [/ stttk skoskostok ok sk sk ok ok ok skokok ok sk ok sk ok stk ok ok ok ok ok skok ok ok ok
116| // = Global Register Assignments *

T1T] /] sorokokoskoskoskoskoskoskok ok ok sk sk ok ok skokok ok ok sk sk ok skoskok ok ok ok sk kok skok ok ok ok
118
119| . assign Global, r2, %, global
120
121
122|#endif //_PRU_memAccess. DDR_PRUsharedRAM_

47

Appendix D

PRU Assembly Code

1| .origin 0 // offset of the start of the code in PRU memory

2| .entrypoint START // program entry point, used by debugger only

3

4|#include " ADCCollector.hp”

5

6| // REGISTER ADDRESS DEFINITIONS

7|#define ADC.CTRL 0x44E0D040

8|#define SYSCONFIG 0x44E0DO010

9|#define ADCSTAT 0x44E0D044

10|#define ADC_CLKDIV 0x44E0D04C

11|#define IRQENABLESET 0x44E0D02C

12|#define IRQENABLE_CLR 0x44E0D030

13|#define IRQSTATUS 0x44E0D028

14|#define FIFOOCOUNT 0x44E0DOE4

15|#define FIFOOTHRESHOLD 0x44E0DOES

16

17|#define STEPENABLE 0x44E0D054

18|#define STEPCONFIG1 0x44E0D064

19|#define STEPDELAY1 0x44E0DO068

20|#define STEPCONFIG2 0x44E0D06C

21|#define STEPDELAY?2 0x44E0DO070

22

23| // Data locations

24|#define FIFOODATA 0x44E0D100

25

26

27| // Variable definitions

28|#define BUFF_SIZE 0x0000FA(Q0 //Total buff size: 4kbyte(Each buffer has
2kbyte: 500 piece of data)

29|#define HALF_SIZE BUFF_SIZE / 2

30|#define FIFOTHRESHOLD 0x00000031 //value —1

31|#define FIFOTHRESHOLDNUM FIFOTHRESHOLD+1

48

34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

//
/!

MACRO DEFINITIONS

N N N NN NN R NIRRTl
T T T T T T T T T T T T 1 17 11 11 11 11 11 17 17

.macro FIFOWAIT

FIFO:
ILBBO r3, r13, 0, 4
QBBC FIFO, r3.t2

.endm

.macro READADC

//Initialize buffer status (0: empty, 1: first buffer is ready,
second buffer is ready)

MOV r2, 0x0

SBCO r2, CONSTPRUSHAREDRAM, 0, 4

MOV r7, HALF_SIZE

MOV 112, FIFOODATA
MOV 110, FIFOOCOUNT
MOV r13, IRQSTATUS

MOV r5, 0 //Shared RAM address of ADC Saving position
MOV r6, BUFF.SIZE //Counting variable
QBA READ

INITV :
MOV r5, 0 //Shared RAM address of ADC Saving position
MOV r6, BUFF_SIZE //Counting variable
//QBNE EMPTYFIFO, r14, 0
QBA READ

READ:
MOV r3, 0x0000000F
SBBO r3, r13, 0, 1

FIFOWAIT

MOV r14 , FIFOTHRESHOLDNUM
EMPTYFIFO:
IBBO r3, r12, 0, 3
ADD r5, r5, 4
SBCO r3, CONSTPRUSHAREDRAM, r5, 3

SUB r14, r14, 1
SUB r6, r6, 4
QBEQ CHBUFFSTATUS1, r6, r7 //If first buffer is ready
QBEQ CHBUFFSTATUS2, r6, 0 //If second buffer is ready
QBNE EMPTYFIFO, r14, 0

QBA READ

49

2:

83

84 //Change buffer status to 1

85 CHBUFFSTATUSLI :

86 MOV r3, 0x00000001

87 SBCO r3, CONST_PRUSHAREDRAM, 0, 4
88 //QBNE EMPTYFIFO, r14, 0

89 MOV r31.b0, PRUO_ARMINTERRUPTH16
90 QBA READ

91

92 //Change buffer status to 2

93 CHBUFFSTATUS2:

94 MOV r3, 0x00000002

95 SBCO r3, CONSTPRUSHAREDRAM, 0, 4
96 MOV r31.b0, PRUOARM_INTERRUPT+16
97 QBA INITV

98

99 //Send event to host program

100 END:

101 MOV r31.b0, PRUO_ARMINTERRUPTH16
102 HALT

103| .endm

104

105 // /II,II/,//I/III,//I/III,//I//,//II,II/,//II’III,//I/III,’//II/,//I/III,//I/III,//I//

106| // Initialize ADC
107| /| HHHHHHEHAHRRAHERRAE

108|START:

109 // Enable OCP master port

110 LBCO r0, CONSTPRUCFG, 4, 4

111 CLR 10, 10, 4

112 SBCO r0, CONSTPRUCFG, 4, 4

113

114 //C28 will point to 0x00012000 (PRU shared RAM)
115 MOV r0, 0x00000120

116 MOV r1, CTPPR.O

117 ST32 r0, rl

118

119 //Reset SYSConfig Register to 0

120 MOV r2, 0x44E0D010 // load register address
121 MOV r3, 0x00000000

122 SBBO r3, r2, 0, 4 // set register

123

124 //Wait for ADC to be idle

125 Adcldle:

126 MOV r2, 0x44E0D044 // load register address
127 QBBS Adcldle, r2, 5

128

129 //Write enable steps, disable ADC

130 MOV r2, ADCCTRL

131 MOV r3, 0x00000004

132 SBBO r3, r2, 0, 4

50

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

//Set ADC.CLKDIV

MOV 12, ADC.CLKDIV

MOV 13, 0x0000031F //value—1 399 0xI18F
SBBO r3, r2, 0, 4

MOV r0, O
FILLSHAREDRAM r0

CLEARFIFO:
MOV r2, FIFOODATA
ILBBO r3, r2, 0, 4
MOV r2, FIFOOCOUNT
ILBBO r3, r2, 0, 4
QBNE CLEARFIFO, r3, 0

//Clear any residual interrupts
MOV r2, IRQSTATUS
MOV r3, 0x000007FF
SBBO r3, r2, 0, 4

//Disable all interrupts
MOV r2, IRQENABLE_CLR
MOV r3, 0x000007FF

SBBO r3, r2, 0, 4

//Enable FIFOO interrupt in INTENABLESET
MOV r2, TRQENABLESET

MOV r3, 0x00000004

SBBO r3, r2, 0, 4

//Set FIFOOTHRESHOLD

MOV r2, FIFOOTHRESHOLD

MOV r3, FIFOTHRESHOLD //value-—1
SBBO r3, r2, 0, 4

/ /STEPCONFIG1

MOV r2, STEPCONFIG1

MOV r3, 0x00000001 //continuous mode
SBBO r3, r2, 0, 4

//STEPDELAY1

MOV r2, STEPDELAY1

MOV r3, 0x0000000E //value-—1
SBBO r3, r2, 0, 4

/ /STEPCONFIG2

MOV r2, STEPCONFIG2

MOV r3, 0x00280001 //continuous mode
SBBO r3, r2, 0, 4

51

183

184 / /STEPDELAY?2

185 MOV r2, STEPDELAY?2

186 MOV r3, 0x0000000F //sample is value—1 open is not
187 SBBO r3, r2, 0, 4

188

189 //Set ADC STEPENABLE

190 MOV r2, STEPENABLE

191 MOV r3, 0x00000004

192 SBBO r3, r2, 0, 4

193

194 //Write protect steps, enable ADC
195 MOV r2, ADC.CTRL

196 MOV r3, 0x00000003

197 SBBO r3, r2, 0, 4

198

199

200 READADC

52

0~ O O W N

W W WWWNNNDNDNDNDDNDNNDN R = === =
W~ OO DUk WNhRFE O OO0 Utk WNR~OO

Appendix E

Python Code

import pypruss as pru
import mmap

import numpy as np
import struct

import time

MEMORY LOCATIONS

PRU_ICSS = 0x4A300000
PRU_ICSS_LEN = 512%1024

RAMOSTART = 0x00000000
RAM1.START 0x00002000
RAM2START = 0x00012000

TOTAL BUFFER LEN = 0x00000FA0

BUFFER.LEN = TOTALBUFFER.LEN/2
BUFFER1.START = RAM2START + 4
BUFFER2. START = BUFFER1START + BUFFER_LEN

FUNCTION DEFINITIONS
def processRawADC (value):
value = 0x00000FFF & value
value = int (value)
value = (valuex1.8)/(2712)
return value

def channellD (value):
value = 0x000F0000 & value
value = value >> 16
return value

PRU SETUP

pru.modprobe () # enable uio_pruss module

93

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

pru.init () # initialize PRU

pru.open (0) # open connection to PRU 0
pru.pruintc_init () # configure interrupt handlers
pru.exec_program (0, ”./oneshot.bin”) # load assembly file

counter = 0

f = open(”/dev/mem”, 7r+b”)
output = open(”./results.txt”, 7w”)

while counter < 10:
start = time.time()
pru. wait_for_event (0)

ddr-mem = mmap.mmap(f.fileno (), PRUICSS.LEN, offset=PRU_ICSS)
shared = struct.unpack(’L’, ddr.mem [RAM2.START:RAM2START+4])
print shared [0]
if shared [0] = 1:
print ”buffer 17
for i in range(0,500):
fifo = struct.unpack(’L’,
ddr_mem [BUFFER2.START+ (i #4) : BUFFER2.START-+4+(i #4)]) [0]
value = processRawADC (fifo)
channelNum = channelIlD (fifo)
output.write (str (channelNum) + ”,” + str(value) +”\n”)
counter 4= 1
pru.clear_event (0)

elif shared [0] = 2:
shared = struct.unpack(’L’, ddr.mem |[RAM2.START:RAM2START+4])
print ” buffer 27
for i in range(0,500):
fifo = struct.unpack(’L’,
ddr_mem [BUFFER2.START+ (i #4) : BUFFER2.START-+4+(i #4)]) [0]
value = processRawADC (fifo)
channelNum = channelID (fifo)
output.write (str (channelNum) + ”7,” + str(value) +7\n”)
counter +=1
pru.clear_event (0)
end = time.time ()
#print end—start

f.close ()
output.close ()

pru.clear_event (0)
pru.pru_disable (0)
pru.exit ()

o4

Bibliography

1]

2]

E. Lipton, R. Perez-Pena, and M. Wald, “Overseers missed big picture as failures led
to blackout,” New York Times, September 2003.

NERC, “NERC Final Blackout Reccommendations,” North American Energy Relia-
bility Corporation, Tech. Rep., 2004.

U.S. Department of Energy, “Synchrophasor technologies and their deployment in the
recovery act smart grid programs,” Online, August 2013.

C. P. Steinmetz, “Complex quantities and their use in electrical engineering,” in Pro-
ceedings of the International Electrical Congress Held in the City of Chicago, August
21st to 25th, 1893. American Institute of Electrical Engineers, 1894, pp. 33-74.

S. Das and T. Sidhu, “A simple synchrophasor estimation algorithm considering ieee
standard ¢37.118.1-2011 and protection requirements,” Instrumentation and Measure-
ment, IEEE Transactions on, vol. 62, no. 10, pp. 27042715, Oct 2013.

M. Adamiak, B. Kasztenny, and W. Premerlani, “Synchrophasors: definition, mea-
surement, and application,” Proceedings of the 59th Annual Georgia Tech Protective
Relaying, Atlanta, GA, 2005.

K. Martin, D. Hamai, M. Adamiak, S. Anderson, M. Begovic, G. Benmouyal,
G. Brunello, J. Burger, J. Y. Cai, B. Dickerson, V. Gharpure, B. Kennedy, D. Karls-
son, A. Phadke, J. Salj, V. Skendzic, J. Sperr, Y. Song, C. Huntley, B. Kasztenny,
and E. Price, “Exploring the ieee standard ¢37.118-2005 synchrophasors for power
systems,” Power Delivery, IEEE Transactions on, vol. 23, no. 4, pp. 1805-1811, Oct
2008.

K. Kirihara, B. Pinte, and A. Yoon, “Phasor measurement unit,” Online, February
2013.

B. R. Miller, “Concept for next generation phasor measurement: A low-cost, self-
contained, and wireless design,” Master’s thesis, University of Tennessee, 2010.

95

[10]

[11]

[12]

[13]

D. Laverty, D. J. Morrow, A. McKinley, and M. Cregan, “Openpmu: Open source
platform for synchrophasor applications and research,” in Power and Energy Society
General Meeting, 2011 IEEE, July 2011, pp. 1-6.

“leee standard for synchrophasor measurements for power systems,” IFEE Std
C37.118.1-2011 (Revision of IEEE Std C37.118-2005), pp. 1-61, Dec 2011.

“IEEE standard for synchrophasor measurements for power systems — amendment
1: Modification of selected performance requirements,” IFEE Std C37.118.1a-201/
(Amendment to IEEE Std C37.118.1-2011), pp. 1-25, April 2014.

“IEEE standard for synchrophasor data transfer for power systems,” IFEE Std
C37.118.2-2011 (Revision of IEEE Std C37.118-2005), pp. 1-53, Dec 2011.

B. C. Baker, “Anti-aliasing, analog filters for data acquisition systems,” Microchip
Technology Inc., Tech. Rep., 1999.

“leee standard profile for use of ieee 1588 precision time protocol in power system
applications,” IFEFE Std C87.238-2011, pp. 1-66, July 2011.

D. Belega, D. Macii, and D. Petri, “Fast synchrophasor estimation by means of
frequency-domain and time-domain algorithms,” Instrumentation and Measurement,
IEEE Transactions on, vol. 63, no. 2, pp. 388—401, Feb 2014.

National Fire Protection Association, National Electrical Code 2011, ser. International
electrical code series. National Fire Protection Association, 2010.

WI125 Specifications, Connor Winfield, 1 2015.

J. Delano, “FGPMMOPAGH gps standalone module data sheet,” Globaltop Technol-
ogy Inc., Tech. Rep., 2012.

125 Series Wil25 GPS Receiver, Connor Winfield, 01 2015.
E. Bakken, PyPRUSS, Hipster Circuits, March 2014.

Texas Instruments, “Am335x sitara processors technical reference manual,” Online,
October 2011.

LMz58-N Dual-Operational Amplifiers, Rev. i ed., Texas Instruments, January 2000.

G. Barchi, D. Macii, and D. Petri, “Synchrophasor estimators accuracy: A compar-
ative analysis,” Instrumentation and Measurement, IEEE Transactions on, vol. 62,
no. 5, pp. 963-973, May 2013.

“Ieee standard for synchrophasors for power systems,” IEEE Std C37.118-2005 (Re-
vision of IEEE Std 1344-1995), pp. 01 — —57,2006.

56

[26] Grid Protection Alliance, “Openpdc,” March 2015. [Online]. Available:
http://openpdc.codeplex.com

57

