ProVIEW
User’s
M anual

(ST T =Y I 7]
WHAT IS PROVI EVV_? SO PO PO PP PO PO PP PO P PO PO OO PO PO O PO PO O PO PO O PO PO POE PO PO PO PO P PO PO PR PO 7
MVHO SHOULD USE PROV I IEW ...ttt ettt et ettt e e e e et et a e e e e e e s aaababa e e e e e e sanababaeeaeessaastbaaeeaaseesanbaraneeanesan 8
REFERENCES AND FURTHER READINGScccciiiiuttiiiisiiiiiitttteteeeeeiaisbaseeesesssaasssseesssssasasssssssesssamasssssssesssesmsssssssessseimmsssseesesesnn 9
NS N e 10|
SY STEM REQUIREMENTS.......uuttttiiiiieiiiutttttesseeieausseeesssesaaissssessssssasassssessssssanasssssssssssasasssssssesssasasssssesesssessssssssessssesanssssseessessn 10

NSTALLING PROV IEWVuuviiuiitiiitiiiiueitttususesussssssesssesssnrs 10
TECHNICAL SUPPORTeciiiiitteetieeeeeieebaeeeesseeseaassssesssssssassasssesssssassssssessssssasssssssssssssesssssssssssssesssssssssssssesssssssssessssssssssssessessn 11
ISTARTING PROVIEW ..ottt ettt et et et teteseteseesesetensssesensasesensssesensssesensssesesesesesesenssseseressesensssern 13|

ART PROCEDUREiiiiiiiiiiieiiiiiiiieiiaesaaeaasaasaaasasssssasssaaasssssssssssssssssssssssssssssssssssssnsssssssssssssssnsssnsssnsssnsnsnssnsssnssnnnsnsnnnsnnnnnnn 13
[COMMUNICATING WITH THE INTERPRETER ... ctttteisttteessteresesssssesassssssssessssssssssssssssssssssssssssssssssssesssssessssssssssssssssssssssssssssnes 13

MAGE QUALITY ..vtiieetieeeeieeeeeteee ettt e e e ttee ettt eeeauteeeeenseeaeasseeeaanteeaeanneesessseeaaanteeaeansseseannneaaeanteeaeannseeesanseeeeansteseeansreeesnsres 14
S UL TIPS e ieiiiiittttttieeeeei ettt et eeeeteuabee et e eeeessssse e eseee s ssnns e e e e e e ssnn s e e e e e e s asnn b s e e s e e e e nnnt s e e e e e e e nnn b neeeeeesennbnreeeeeeesanrnrrreesasian 15
IGRAPHICAL USER INTERFACEoootoeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeeeseseeensesnenesesnenssesnenssesnenssnsnenssssnenssssnensseerenssnsneneseens 16|
PROVIEWS WINDOWS ENVIRONMENT ...v.vvteteeeeeseeeeseseeeeseseeseeseeseseseesesessesenessesensssesenessesensssesensssesensssesessssesessesesessssesensases 16

S e R T T T Lo T 11
MAGE WINTAOWcviieieiceieceieite et eteete et e e steeteseeeseeseessenteseeaseeseaseessessensesseasesseeseensansentesseasenseansensessessessessensennsessensensenns 17
SCTIE FIIE WWINTOW. ...ttt ettt ettt et et e et e beeeteetesasesneesneeaseaaseenbeenseassesseesteesteensesnsesnsesneesneeseenes 17
PLOE MVINOOWVS ...ttt ettt ettt e e e ettt e e easeeasssteessannesassasesesaansesesanneseesaneeasansesesannsesesannnsessnsssessnsessssnnees 18
ENU COMMANDSuuttiiiiiiiiiiutereteesteisissseseassessasasssessassaaisssssesssssassssssssesssasssssssssesssesssssssssssssssssssssssssssssnsssssesssssssasssresees 18
[T ———— 18
Eg;t .. 21
S e T 21
1072 [P PPPPP 21

ProVIEW User’'s Manual Table of Content2 iii

LTS 27
21 PP O T PP PP P PP T PP P PO PP TP TP PP TP TP PP PP PP U PP PP P PPPPPUPPTPPR 28
UNCEIONS. ...ttt ettt e et et e et e e e eteeeteeeteeteenteenseeseasseesseesseeseanseenseaseeaseanseenseensennsesssestenstennsesnsesnsesseesseenseensennsenneensenss 29

S e T 31

T Lo 32

LT 32

LS PP PP 33

MSHELL INTERPRETER LANGUAGE ..ottt 35|
LLANGUAGE SYNTAX .veveevvetieeteteereteteeseteteeseseseeseseseessseseessseseesssesesasesessseseasesesensssesssssesensssesensasesensssesesssesesssseseossseseaseseness 35
R T T 35

SEEI(S 1= 1P PP PP PP 41

Calling SyntaX fOr NUMETC FUNCIIONS.ccueiueiiseiiectieeeeestestesteseeereeeesessessestesseeseesesessessessessessessessesseessessessessessenns 41

S0 0= 1T PP P PP P PP TP P P PP TP PP P PR PPPPPPP 41

OPEN GO PrECOOBNCE ...ttt ettt ettt st et se s seens 42

RegiON Of INEEr €St MANIPUIALIONeieiieeeeeeee ettt et et e st e et eeseeseeeesseseeseeseesbesneeseeneenseseessessens 42

5rogram Flow Control and Relational (-)perators ... 43

| 0ok-Up-Table Manipulation ... 45

PROVIEW SCRIPT FILES ((MSF,.MSH,.VSH)cv.cveeverreererestcsssessessessessessessessessessessessessessessessessessssensssensensessessssnsssssesans 416
FUNCH ON FTTES (LMISF) L.ttt ettt et et et et e sbeesceneeneeseeseesbesmeeseeneenseseesreseeans 46
NClUde Files (MSh) o 47
MITTUB] TNCTUTE FITES (VSN)...o.ooooooeosoooooooorooseesooeeeoeeereeeeeeeeeeseeeeeeereeeeeeeeeseeeeeeeerseeeerseeeeseeeerseeeerseeeeseeeeseeerereeerseeeenes 47|
JMPORTING AND EXPORTING DATA......cveveeeieetiieteteeseettcseet et eesnetaseseesaesnerasessanesesserasesnesesesseresessesensasesensssesenssserensssenens 49
MPOItiNG DAta INTO PrOVIEW ...ttt ettt eeeneastasteatesneeseensensensessensesneeseeneensessensensen 49
EXPOrting Data OUL Of PrOVIEWVocviiciice ettt e st e steente e eneesseasseenseeneesseesseesseesseenseenen 49
INTERNAL FUNCTIONS v..veuviviiteeeetiseeeetesesasereseeseesessessasssssssasessesessesesssesessesssssssessesessessasessessasessessssessestatessensssessensasessenessesens 50
[C18SSES OF BUIIT-IN FUNCHONSeeeeeseeeeeerreeeeeeseseseseseseseseceseseseseessessesnsnsnsnsnenensnsnsnsnenssessenenensneneeetsssssnsnenenenenenes 50
ATH ERROR HANDLING. .. .e. et ttistetiititettetetestetessesessessesessessesessessesessessesessessesessessesessessesessessessssessesessessessssessessesessensesessenes 52
EIXTENDIBILITY OF THE ENVIRONMENT ..o 53]
Dynamic Data EXCRaNge. ... 53|
User Provided Functions as DynamiC LINK LIDFaries (DLL)c.coooveviireeiieiieeeeee e 55
PROVIEW WEB INTERFACEvvetetetieieteteteteseuetesetesesesesesesssesssesesesesesessassssssesesesesesesesesesssssssssssesesesesesessnsnsssseseseseseseseses 58
B EINIENES OF FOTITIS......vceveeeeeeeeeeeeeveeseseeeeseeereseseeeesneeeeeseseseesnenensseseenssnenenssesnenssnenenssesnenssnensnssnenssesnenessssensseenensseenenear 58
JRECENT CHANGEScveviveteveteteevetetieeeteteseseseeseteteeseseseessseseesssesesasesensssesesasesenssseseasssesensssesensasesensssesesssesesesesesssseseaseseness 61

Recent Changes that have been made to the ProVIEW functions will be documented here as well as a listing of their

ALE OF BT OCIIVIENESS. ...ttt ettt ee et et es e st et eseseeeeseseensesess e st en e et easeseesesseneasesseneesessenessessenes 61

ACAEO FUNCLIONScoviiieiitiiieeietisiee ettt ettt sttt st e eb s eseesesseneesesseneesessensesesseneenesseseneasensanessessaneasensaneasessanes 61

UDAAEEA FUNGCLIONS.........ccviieeiieieiieecte e eeteeteeteetteetteeteesteeeteeeteenseenseesseeseesseesteensesnsesnsesnsesnsesnsenseenseensesssesseessenstensrennsesnses 61

APPENDIX A © FUNCTION TREE ..ottt 63
INTRODUGCTION ...ttuttteuttessteeeseesateeesseaastsasaseeasseeaseesaseeaseeeaseeeseeeaseeean e e et e e eaneeeaseeeneeeasedenneeaseeeanneesstesnneeasseesnneesnseesnseesnres 64
EATEGORIES OF PROVIEW SMSHELL FUNCTIONS.ocooovvovoressororesrorsererenseeserenseeeeseeeeeesereeeeeeseeeeeseeeseeseeee eeee 64
IAPPENDIX B : INTERNAL FUNCTIONS.......ooioioiiiitiiiiitieststceetiessesesissssesessssesesesssessssssssssssssssssssssssssssssssssssssesessssss 67|
PROVIEW’ SMSHELL INTERNAL FUNCTIONS (BY CATEGORY). 1..tttttietteeeeitteeeeteaeesiteeaaiteaeasnteaesanteaeanneeaesaneeaesneeeesnnes ... 68
AL TaTe T 68
SO XFOI M ...ttt ettt ettt et eseese e e et e oe £ et £ eh e ehEea e e e e b e 4R £ eE £ 4R £ eE £ ehEeREeaE e b e eEeaEesEeeheer e b esrearesEe et 68
NEENSITY IMADPING ..ve.veveeeeeeeeteeeeeeteeeeeteeeteetesteeseeseeseesteseeasesseeseensensessessessesseessessensesseeseesseseseesensessessessesseeseensensessessensen 68
(@ 69

N Y e o o Lo 1= = N 69

IOovvvcoooovvoooseoeoooeeeseeeeeeseeeessseeeeesseeeeesseeeeessseeeesseeeersseeeeeeseeeeesseeeersseeeeesseeeeesseeeersseeeeesseeeeseeeeeeseeeeesseeeeeeseeeeeeees 70)

R AT« 70

SALENITE 1MAGE IMADIDING ...veeveieieeeeetii ittt eett e e sttt eetteesuseeesseessseeesseessseesssseanseessseesnseessseeansessseesnseesnsessnseesnsessnseesnrees 70

L Bl SEI CS .ttt et et et e et et e e e et e et e etteeteesteeeteenteeneeeneeabeenteenteenteenteeheesteenteenteenteeneeeReeaneenteenteenreenreeneeateeareereereenrn 70

ST IO e T 71

S T PP TP PSP PP PP PP PPPPPPP 71

iv » Tableof Contents ProView User's Manual

[TTIQONOMELITC FUNGLIONS.........ccuviiveeetieetieteeteeteeiteseesteeeteeeteeseenseesseessesseesseesseesseessenseenssesseeseessesssensseensesnsesnseseesneenseenss 72
USEFUL ...ttt ettt ettt et ese et et essese et easeRe s easese s easeseaseRe s ensene et ensene et e seneeteseneeteteneererens 72
INTERNAL FUNCTIONS = ALPHABETICAL LIST....vcviviveeievetetieeeteeeereteereseteesessuessesssessssssessesssensssssessssesessssssessssesesessssensssssenesnas 74
ST 75
O 82
LB oo eeee oo eeeeeeeeeee e eeeeeeeemeeeeneeeeeeeereeeeeeeeeereeeeeeeeeeeeeeneeeeeeeeeeneeeeeeeeeeeeeeereeeeeeeees 84
o 87
D - s 92)
S 95
= oottt ettt oot e e eteetetete et e tete et e tete b et eteah et ehe R enteReeRenteneeReatentRestene et enseRe b enteReetenteneebenteneeteteneetentenearetens 97
5 =ttt ettt ettt et et ettt e teteeteateteetetete et entese s eatese s entenesenteneesenseneeneatenteneatenteneatenseteneeneatentenetensenetententetetensatenteneerentens 99

o o 102
[T 104

L =ttt ettt et eteet et eteeteteteete s eaeeseaseaeesesessese s eas et e b enseseaseneese s easseatensess et et ene et e sensesebenseseteasereeteserers 110

VL o ettt e e e e —eeeeeeeeeet—te—eeeaeaaan_te—eeeaeaaaantteeeteaeaaanntteeeaaaeaaanntteeeeeeaaeaaannrreeeaaeeaaannnrareeeaeeaaanrrrreeeann 113
[N 121
o 125

L oo oo e eeeereeeeee e eeeeeeeereeeeneeee e eeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeereeeereeeeereeee 126

[129

R - ettt ettt ettt ettt et et eteeteteae st teaeeseteaeeseasese s sasesseseatene st s ensseateatenseheasent s e sensesesenseseseasereetesertans 130

S ovreeeeeeemeeeeeeeemeeeeeeeee e eeeeeere e e eeeeee e e e eeee e eeeeee e eeeeee e e eeeeee e eeeeeee e eeeeeeeeeeeeeeereeeeeeerees 137
LI 157
Y 159

[O 163

X = ettt ettt ettt ettt et ettt eteteteetetetees et et eesenteteesenseteesenseteesens et e esensete s enseteesens et et ensete s enset et eseseereeseneetesseneeteseeneetesreneeress 166

Z et eeteteeteeteteeteetetestessesessessesessessessssessesessessessesessesssessessssessesssessessesessessisessessssessesseseosesseseisensetessesereiseasarens 169
IAPPENDIX C : EXTERNAL FUNCTIONScooooviiiitetieetieeeiiesiesesesesesesesesesessssssesssssssssssssssssessssssssssssesssssssessssssas 171]
IINTRODUCTION ...ttt ettt ettt e e e e e s s oottt et et st se e s erererereeeeee et st st seaearerebeseotatatataeseseererersesesens 171]

ProVIEW User’'s Manual Table of Contenta v

Overview

What IsProVIEW ?

ProVIEW is an interactive command line and menu driven Image and Signal
Processing Environment which runs as a 32 hit application under Microsoft
Windows 3.x (utilizing Win32s) and Windows NT. ProVIEW provides powerful
scientific image and signal processing and visualization capability by affording you:

Algebraic and matrix operations using mathematically intuitive syntax.

Support of relational operators and flow control through the built-in
MSHELL image processing language interpreter.

Floating point image processing computations for high accuracy which
support both real and complex number operations.

Over 300 operators: FFT, convolution, edge detection....

Geometric operations. re-size and rotate images using unequal
horizontal and vertical scaling.

The ability to call your own functions as a Dynamic Link Library
(DLL).

The ability to query Microsoft Access databases using ProVIEW's
DDE capabilities.

Flexible display of multiple images, plots, and scripts.
Contrast processing, linear stretching, intensity range remapping.

Pseudo Color Lookup Tables for each Image with as many colors as the
hardware permits.

Interactive 2D, 3D, and Contour Plots.

Multiple image format support: ASCII, 8 bits/pix, floating point, in
addition to key standard formats, such as TIFF, BMP, FITS, PGM,
PPM, and PDS.

Optimum use of the dynamic range of your display hardware by
providing optional automatic adjustment of pixel values prior to
display.

ProView User’'s Manual

Overview 7

e Support of text attributes that are attached to an image, these attributes
can be used to store an image header or to store processing instructions
to be applied to the image.

« Affordable real-time performance, when using i860 based floating
point array processors.

Expert or novice, independent of your experience, ProVIEW alows you to
manipulate images and signals in a simple manner, releasing you from the constant
tracking of image attributes such as image dimensionality.

ProVIEW permits you to process a large volume of images in a fully automatic
fashion, e.g. large scale reduction, calibration and analysis of satellite based digital
images.

IF you work with satellite imagery, ProVIEW enhances your productivity by
providing the following additional capabilities:

e Using the SatVIEW module, the ability to:

0 Read ephemeris information following NASA’s SPICE kernel
format,

0 Compute an extensive set of viewing geometry related values, such
as phase angle, incidence angle, and

O Compute the projection of any pixel on the planet surface or the
celestial sphere.

* The ability to have a virtual image variable which can be as large as
your collective disk space! You can then read and write to selective
regions of interest in a very flexible manner.

* The ability to perform simple automatic projections of satellite images
into the planet surface or the celestial sphere.

Who Should Use ProVIEW?

ProVIEW has been developed by and for professionals working in the areas of image
and signal processing who desire to concentrate on algorithmic development rather
than on low level programming.

ProVIEW can significantly reduce the time required for the development and
implementation of image and signal processing algorithms without sacrificing
computational performance. A single statement in ProVIEW's interpreter language,
MSHELL, can be equivalent to a large number of statements in other languages,
such as C or FORTRAN.

Based on the understanding that both image processing and multi-dimensional signal
processing share the same mathematical foundations, MSHELL was developed from
the onset as an image and signal processing language. With MSHELL at it's core,
ProVIEW is an Image and Signal Processing Environment that is powerful,
compact, and simple to use. This makes ProVIEW an excellent tool for work in
many diverse application areas, such as:

« Calibration and Reduction of Satellite Imagery, (coherent as well as
non-coherent image data),

« Visualization of Multi-Spectral Image Data,

8 ¢ Overview ProVIEW User’'s Guide

Modeling of Electro-Optical Imaging Systems,
Machine Inspection,

Pattern Recognition, and

Neural Network modeling.

To effectivly use ProVIEW a working knowledge of Linear Algebra, Image
Processing, and Computer Programming is recommended. A listing of textbooks
which can provide such a working knowledge is given| in “References and Hurther

Reading$” below.

References and Further Readings

Applied Research Corporation, "A User's Guide for the Flexible Image
Transport System (FITS)", March 5, 1990

Erick Malaret - Applied Coherent Technology, "Clementine EDR
Archive SIS", October 1, 1994

Fukunaga, K., "Introduction to Statistical Pattern Recognition,"
Academic Press, 1972.

Harris, G. G., "On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform," Proceedings of the IEEE, vol., 66, No. 1,
pp. 51-83, January 1978.

Kernighan, B. W., and Ritchie, D. M., "The C Programming
Language," Prentice-Hall, Englewood Cliffs, N.J.

Knuth, D. E., "Sorting and Searching," vol. 3, of The Art of Computer
Programming, Addison-Wesley, 1973.

Microsoft Windows User's Guide, Microsoft Corporation

Press, W. H., Flanney, B. P., Teukolsky, S. A., and Vettering, W. T.,
"Numerical Recipes in C," Cambridge University Press, 1988.

Rosenfeld, A., Kak, A. C., "Digital Picture Processing," second edition,
Academic Press, New York,New York, 1982

Strang, G., "Linear Algebra and Its Applications," Academic Press,
New York, 1980.

Newman, W. M., and Sproull, R F., "Principles of Interactive
Computer Graphics," McGraw-Hill Book Company, 1979.

ProView User’'s Manual

Overview * 9

| nstallation

System Requirements

The system requirements to use ProVIEW are:

An 80386, 80486, or PENTIUM PC running Microsoft Windows 3.x
with Win32S or Windows/NT.

A hard drive with at least 10 Megabytes of available disk space.

A minimum of 4 Mbytes of RAM for Windows 3.1 and a minimum of
16 Mbytes for Windows/NT. (The more memory available the larger
the images that ProVIEW can handl€).

A 3.5-inch high-density disk drive, CDROM, or internet connection
depending on the source of installation.

A Microsoft Windows supported High Resolution Video Graphics
Adapter Card. The image resolution and the number of brightness
levels (gray levels) that can be achieved in the display depend on the
video graphics card and monitor used.

A Microsoft or other compatible mouse.
A pardlel port to install the ProVIEW electronic key.

Installing ProVIEW

ProVIEW must be installed on a hard disk in your computer that has at least 10
Mbytes of free space available.

To Install ProVIEW:

While the computer is off, attached the ProVIEW electronic key to the
parallel port of your computer. This device will not interfere with your
printer in any way and is needed in order to access the full functionality
and capabilties of the ProVIEW environment..

Turn on the computer and the monitor, start Windows.

10 « Installation

ProVIEW User’'s Guide

e Once in Windows insert the ProVIEW disk labled #1 in the 3.5 inch
floppy disk drive. (a: or b: as applicable) or place the CDROM in its
drive depending upon source of installation.

* From the Program Manager, select File and then Run. (You can also
do this from the File Manager by double-clicking on the previously
mentioned file.)

* When the dialog box appears, type in aiinstall and select OK. (or
b:install if applicable.)

» Follow the instructions on the screen.

Once the installation is completed you will find the following new directories (e.g., if
installed in ¢:\') on your hard drive;

c:\ProVIEW
c:\ProVIEW\Bin
c:\ProVIEW\Images
c:\ProVIEW\Scripts
c:\ProVIEW\User
c:\ProVIEW\Temp
c:\ProVIEW\Wdb

In addition, you will find that a ProVIEW program group has been created in
Programs Start Menu. After this has been completed, you are now ready to start
ProVIEW.

Technical Support

For Technical Support with ProVIEW please contact:
Applied Coherent Technology Corporation (ACT)

Phone: (703) 742-0294

Fax: (703) 742-0358
Between 9:00 AM to 6:00 PM EST, or

internet: http://www.actgate.com

ProView User’'s Manual Installation « 11

Starting ProVIEW

Start Procedure

Once ingtalled, ProVIEW can be started by double clicking on the ProVIEW icon

@l located in the ProVIEW Program manager group.
Once ProVIEW isloaded in memory the ProVIEW prompt
[ready]:

will appear in the Command Line Window indicating that the command line
interpreter is ready to receive input.

For a quick test of To test if ProVIEW was properly installed you can run the script file ‘'mdemo.msh’.
ProVIEW, select the Thisis done by typing the following line after the ProVIEW prompt,

Help|Demo option from)

the menubar. [ready]: include "mdemo”

followed by Enter or Return.
This shell script can also be ran by choosing the Demo option below the Help menu

The 'mdemo.msh’ script file tests many of ProVIEW's capabilities, such as image
display, graphic display, multiple windows, script file and user defined function
execution.

Communicating with the I nter preter

You can communicate commands to MSHELL, ProVIEW'’s built in command line
interpreter, in several different ways:

a. Through the Graphical User Interface - When a menu option is
selected under the graphical user interface it generates a
corresponding command line string which is passed to the
MSHELL interpreter for execution, seg "Graphical User Intefface"

on page[1p.
b. Through the keyboard - With the Command Line Window active
you can interact directly with the interpreter by following the

ProView User’'s Manual Starting ProVIEW + 13

MSHELL language syntax, see Femmand—SheH—\mndevq " on

pageﬁ
c. Through a ProVIEW script file - ProVIEW script files are user
generated text files consisting of sequences of MSHELL
statements and can be invoked through either the Graphical User
Interface or the keyboard as described above, see "
Files on page[#d. Note, that since a script file is just a collection

or sequence of MSHEL L language statements, it is also referred to
asaMSHELL script file.

| mage Quality

The spatia resolution in pixels and the number of gray levels and/or pseudo colors
that your system has while running ProVIEW is determined by the display driver
loaded in the Microsoft Windows environment and the graphics adapter hardware
installed in your computer. ProVIEW has been tested with the following graphic

adapter cards:
GraphicsCard Spatial Resolution Number of Gray Levels
(columns X rows) or Colors
Number 9 1280 X 1024 16,777,216 (24 bits)
ATI Graphics UltraPro 1024 X 768 65,536 (16 hits)
800 X 600 16,777,216 (24 bits)
640 X 480 16,777,216 (24 bits)
Diamond Viper 2Mb 1024 X 768 65,536 (16 bits)
800 X 600 16,777,216 (24 bits)
Diamond Stealth 64 2Mb 640 X 480 16,777,216 (24 bits)
V GA (generic) 640 X 480 16 (4 bits)
8514 1024 X 768 256 (8 bits)

When at least 65,536 gray levels or pseudo colors are used it is possible to display

gray scale images together with pseudo color images. See "Help|System Infg' on
pagefor how to get specific information about your video graphics card’s present
configuration.

14 - Starting ProVIEW ProVIEW User’'s Guide

Useful Tips

Specific information on how to navigate throughout the ProVIEW environment can
be found in the Graphical User Interface section. However, to help you get off to a
quick start we provide you with some useful tips and observations:

e When a script file or function is executing, the word running appears
in the lower right portion of the screen.

STOP ICON, o * To stop ProVIEW from executing an instruction, click on the STOP
icon, located on the tool bar, or press the ESC key

e While in the Command Line Window any recently invoked command
can be re-invoked by using the UP and DOWN arrow keys on the
keyboard.

* Toexit ProVIEW select the File]Exit menu option.

ProView User’'s Manual Starting ProVIEW « 15

Graphical User Interface

ProVIEW’s Windows Environment

Since ProVIEW runs under Microsoft Windows, some familiarity with the Windows
Graphical User Interface (GUI) is assumed. For additional details or for a review of
the Windows environment we refer you to your Microsoft Windows manuals.

With ProVIEW you can have multiple windows open at the same time, each one
containing an image, a plot, text, or a script file. However, you will note that at any
given time only one of these windows will be the Active Window, i.e. the window
with the highlighted top bar. In Figure 1 the Command Shell Window is the active
window.

Fim [dE Semech |mage ek Cvis Funcdiesz OpEsmeian Sledos

JI] PLOTI

Pl iy salsll = Phsded AT R |9 GEE s
resdylr sles mball
i

[Pl 1A oy ey 108 -0 BES pm fd b wpd <1175
Figure 1 - Sample ProVIEW screen.
In addition, Figure 1 provides examples of some of the different types of ProVIEW

Windows: Command Line, Image, Script, and Plot. A description of each of the
different ProVIEW windows follows.

Command Shell Window

It is in this window that you can interact directly with MSHELL, ProVIEW'’s
command line interpreter. Commands typed in this window are executed by the
MSHELL interpreter. It is from within this window that script files are normally
invoked, see "ProVIEW Script Files (msf,.msh,.vsh}' on page[4d. Also, any text
output is normally sent to thiswindow. Note that in ProVIEW most of the menu item
or icon selections are converted directly to commands in the "M SHELL Interpreter |

Eanguagef, see page B5)

I mage Window

Prior to enabling the An image window provides a visual representation of a two dimensiona array of
display of an image the numbers. In ProVIEW there are severa different ways to enable an image window for
user can control many the display of an existing array variable:

attributes that will affect
how the image is to be
displayed; see section xx

for details.
e from the Command Shell Window using the View command, see
Appendix B, following this section, on page B-87, or
« fromthe menu by selecting the FileJOpen I mage option.
Once the image is open, you can exercise a good deal of control over how it is
displayed, see on page@ Additionally, you can use the scroll bars
that are part of the image window to slide the image horizontally or vertically, or use
the cursor to travel over the image. Notice that as you move the cursor over the
image, it's row position, column position, and corresponding pixel value are tracked
in the status bar at the bottom left of ProVIEW’s Main Window.
Script File Window
In a Script File Window you can create, edit, or display a text file of MSHELL
commands. The easy to use built in editor supports the standard Cut, Paste, Search,
and Replace operations found in most windows applications.
Executing a Script File From the Graphical User Interface
To execute the script file located in a Script File Window:
1. Make the Script File Window the active window, then
@ 2. SelecfilelRun from the menu or click on tHeun tool bar icon.
RUN ICON, = To execute a portion of the script file in a Script File Window:

1. Make the Script File Window the active window, then

2. Highlight the desired portion of the text using the mouse by moving the
cursor to the point where you want to start and while pressing the left
mouse button, move the cursor to highlight the selected area and then
release the left mouse button, then

3. SelecfrilelRun from the menu or click on tHeun tool bar icon.

ProView User's Manual Graphical User Interface « 17

Plot Windows

The magjor types of plot windows in ProVIEW include 2D, 3D, Contour, and
Histogram. These plots can be generated:

e Fromthe GUI, see "I mage|Plot Roil' on page@

e From the Command Line Window using the PLOT, PLOTS3D,
COUNTOUR, and HIST commands, see Appendix A (Listing of
internal Functions), or

Once a plot is generated its display can be changed through the menu
option, see page

To facilitate the handling of generated plots you will find that al plot windows are
numbered so that they may be updated or deleted from the command line.

Menu Commands

File

This menu allows you to control the input and output of images and script files,
printer output, script execution, and to end the ProVIEW work session.

LXFile]New Script

Use this option to open a text window in which to create a new script file.
B_. .

& File|Open Script

Use this option to open an existing script file. Note that multiple script files can be
open simultaneoudly!

SAFile|Save Script

Use this menu to save the script file in the active window.
®XFile|Save Script As

Use this menu to save the script file in the active window to a new disk file.
Eile]Choose Eont

Allows the user to modify the font used within the script file windows.
Eile]Open Image

Use this option to open an image data file stored in any of the supported formats. The
resulting Dialog Box, shown below, allows you to assign the image file format and
the directory location of the file to be retrived.

Fle e : =]

|E = Uy

e 1 I e

fe e, e |
2] T
i 5

—rr—— [mt——

18 « Graphical User Interface

ProVIEW User’s Guide

Figure 2 - File|Open Image Dialog Box

File|Open Image - Browse Button

Select this option to keep the File]lmage Open window active after selecting an
image file. This allows the selection of another image file for display without having
to open the Image File 1/0 window again.

File|Open Image - Movie

Select this option to display the images with the specified file format contained in the
selected directory in a movie-like manner.

File|Open Image - File Formats

The following image file formats are supported:

ascii format (*.asc) is used for images whose datais stored in ASCII. A
sample ASCI| image datafile will look like,

3 3 0
-1 0 1
-2 0 2
-1 0 1

where the first row contains the number of rows, the number of columns,
and the real-complex flag (0 = real, 1 = complex). Thisis followed by
the image data stored in ASCII row by row starting from the top. Note
that the delimiter is the space character. Thisformat is used for both the
reading and writing of image data.

bmp format (*.bmp) is the Windows Device Independent Bitmap
Format and is used both for the reading and writing of images.

char format (*.chr) is used for images stored using 1 byte/pixel data
prefixed by a simple 9 byte header, i.e. 4 bytes specifying the number of
rows, 4 bytes specifying the number of columns, and 1 byte specifying a
real or complex array. This format is used both for reading and writing
of data.

flex format (*.*) provides you significant flexibility in the reading of
data prefixed by an image header. When you select this format an input
dialog box, depicted below, opens alowing you to specify the
dimensions of the input image and the header size. The (flex) format is
only used for reading data.

ProView User’'s Manual

Graphical User Interface »« 19

Swere T opoeLnet
rawbar of rose |1 ™ Pk AT
s | |Frou

Py e | ™ B
™ -
e e [0 woriod 8
madine I: sall cid Il
rom vy |1 al e
Vol (e

Figure 3 - Flex Dialog Box

clemen_pds format (*.*) is the implementation of the PDS (Planetary
Data System) Format adopted by the Clementine mission. When an
image in this format is opened the ascii text header is attached to the
image. This header can be viewed from the image window using the

“[mage[Header}] option, see pagf §2. This format is used only for the

reading of data.

float format ¢.flt) is one in which the data is stored in floating point
using 4 bytes/pixel. Similar to tlehar format above, a 9 byte header is
used. This format is used both for reading and writing of images.

tiff format ¢.tif) can be used for both the reading and writing of data,
but please note thabt all TIFF modes are supported.

fits format (*fit) stands for the flexible interchange transfer system; this

is a format designed for the flexible trasnmission of varying image data
sets along with any extraneous required data such as history logs or any
other text info. This format can be read as well as written by ProVIEW.

jpeg format (*jpg) is a image format primarily known for its extreme
ability of storing an image in a highly compressed state. This format
does however have one disadvantage; it is a lossy format meaning that
when written it loses all of the data in order to get its compression. This
format can be read, but not written.

pds format (*pds) stands for the planetary data system; whereby, this
format involves the Huffman First Difference algorythm with no
compression. This format can be read but not written. Ongoing work is
being done at this time for the incorpoation of a pds writer within
ProVIEW.

FilelOpen Image - File Name

This option allows you to browse over a list of already defined variables or type in the
variable name to be used for the requested image 1/O operation.

File|Save Image

This option, using a Dialog Box similar to that of tRde|Open Image option
discussed earlier, saves an open image to disk in any of the supported formats.

Eile|Save Clipboard Bitmap

This option lets you save the contents of the clipboard to didkphm format, while
specifying the output file name.

20 < Graphical User Interface

ProVIEW User’s Guide

Eile|Printer Setup

Use this option to change the printer configuration, e.g. orientation, paper size, output
quality, etc.

EBFilelPrint

Sends the contents of the active window, be it an image, a plot, or a script file to the

selected printer. Note that ProVIEW does not require any special printer drivers as
utilizes the Windows printer divers that you have aready installed.

Eile|Print Screen
Sends an image of the ProVIEW screen to the printer
@Ei le|RunScript

Use this menu option to execute the script file in the active window or just the
highlighted portion of the script file in the active window. This very powerful feature
simplifies the interactive development of SCRIPT files.

Eile|Exit

Terminates execution of the current ProVIEW session.

Edit
This menu allows the user to select from any of the following options:
QndO% , gut%, CgpyE]"'E', Easte, Delete, and Clear All.
Although these options are primarily for the editing of script files, the Copy and Paste
options can be used with Images.
Edit|[Edit System Variables
This command runs the “sysedit.msh” script file which allows one to change all of the
system variables(M_~~~), which are described later in the internal functions section.
Search
This menu allows the user to select from any of the following options:
Eind% ,Beplacekn, anduext%.'...
All these options are primarily related to the editing of script files.
I_mage

Image|Display

This menu option provides you with a means, using the Dialog Box of Figure 4, to
select which of the open Image Variables to display, [see "Array Va}iables" on page

30

ProView User's Manual Graphical User Interface « 21

= IMAGE

;age ay: El V Kk,

anncel

Figure 4 - Dialog Box to Select Image Variable for Display

I mage|H eader

This option enables or disables the display of any text associated with the image in the
active window; Figure 5 shows this option enabled. Note that the Header Window is
fully contained in the Image Window

El_mageﬁegt

This option enables you to make annotations to the image in the active window in a
nondestructive manner; the actual image data is not modified. Figure 5 shows this
option’s popup window.

= Text
Text: || B
Orientation:
% Horizontal
_| Overlay > Wertical
“DK annceI Fonts...

Figure 5 - This screen illustrates the Image|Header and Image| Text menu options.

| magelProfile

This menu options allows you to extract a profile of intensity values between any two
points in the image with the input focus. The extracted values are then automatically
plotted in a new plot window.

To select a new profile from the active image:

10
20

30

47]

Select thd mage|Pr ofile menu,

Take the cursor back to the image and place it at the desired starting
point,

Press the left mouse button and drag the mouse to the desired end point,
and

Release the left mouse button.

While the extraction of the profile of intensity values is in progress the length of the
line (in pixels or user defined units) between the two selected points is shown in the
status bar at the bottom of ProVIEW’s main window.

22 « Graphical User Interface

ProVIEW User’s Guide

& | mage|Set RO

The Graphical User Interface in ProVIEW allows you to define a rectangular region
of interest interactively using the mouse. Note that all array variables have an implicit
region of interest defined, see "Region of Interest Manipulation] on page This
menu option allows you to define such a rectangular region of interest in the image
with the input focus in the following manner:

107 Select the Image|Set Roi menu option.

271 Take the cursor back to the image and place it at the desired starting

point of the rectangular window.

3 Presstheleft mouse button and drag the mouse to the desired end point.

4[] Release the left mouse button.
I mage|Statistics

Using the | magel|Statistics menu option the you can compute basic statistics over the
active region of interest (ROI) of the active image.

Asillustrated in Figure 6, the statistics-window provides for the selected ROI:

An image of the ROI,

A normalized sum of the ROI's columns,
A normalized sum of the ROI’s rows,

A Histogram of the image of the ROI,
The dimensions of the ROI,

The Minimum, Maximum, Mean, and Standard Deviation of the pixel
values within the ROI, and

The row and column Centroid of the ROI expressed in pixel coordinates
of the original image.

ProView User’'s Manual

Graphical User Interface »« 23

Huf s

il [
14 X

1 e - B2 TIHES
= o

Figure 6 - This screen illustrates the Image| Stati stics window.

Imagel|Plot Roi
Using this menu option you can generate any of the following types of plots:
PLOT3D, CONTOUR, and HISTOGRAM

for the active region of interest defined for the active image. Once aregion of interest
has been defined, an alternative way to invoke these plot functions is through the set
of iconsin the ProVIEW tool bar, i.e.,

O | u|
use L for Plot3d, use lluw for Histogram, and use .2 for Contour.
I mage|Spreadsheet View

This allows one to view the image values as they would appear within a spreadshest
where each pixel is simply an entry within atable with the same dimensions.

@I_mage@oom

This option allows the user to zoom over the active image. Zero order interpolation is
used for zooming into the image. As you move a rectangular window over the input
image a magnified version of the encompassed region appears within the
I mage|Zoom popup window.

I mage|Options

Selecting this menu item opens the I mage|Options Dialog Box which affords you a
great deal of control over the way the image is displayed on screen. The options
available, as pictured in Figure 7, include: a choice of pre-defined or user-defined
Output Look-Up-Tables, adjustable Color Offset, and adjustable Dynamic Range
Setting.

24 « Graphical User Interface

ProVIEW User’s Guide

S Image Options - x i

Select LUT: M Offzet 255

“* Gray Scale Red: [«] [[=](M Expand:0FF
7 Inwersze Gray Scale S el o) -
> PseudoColorl Dynamic Range :

> PzeudoColor2 Blue: [e] | [+l _| Auto Scale

~ User-Defined g max: |35
Usger-Defined LUT: min: II].I]I]B-!
| = v

[~ Modify LUT [GrayScale)

Figure 7 - Image|Options Dialog Box

These options are discussed in more detail in the following:

Sdect LUT

This section gives you a selection of 4 different output Look-Up-Tables, (LUT), as
described below or the option to customize one to your particular needs.

LUT |DESCRIPTION

wolutO gray scale LUT - low amplitudes display as dark (black) and high
amplitudes display as light (white)

B

wolutl inverse gray scale LUT - low amplitudes display as light (white) and high
amplitudes display as dark (black)

wolut2 pseudo color LUT - intensity values are mapped to a pseudo color LUT

wolut3 pseudo color LUT - intensity values are mapped to a pseudo color LUT

s

wolut4 user defined LUT

The presently active LUT is displayed in the middle of the Image|Options dialog box
in the form of an intensity or color strip.

Modify LUT Box

Selecting the Modify LUT option in the Image|Option Dialog Box opens the Modify
GrayScale LUT Dialog Box, illustrated below. This dialog box allows you to
interactively modify the Gray Scale LUT that applies to the active image. Within this
dialog box changesto the gray scale LUT are displayed as aline plot superimposed on
a Histogram of the region of interest of the active image.

ProView User’'s Manual

Graphical User Interface »« 25

Modify GrayScale LUT i

J55 Slope

[« [T [=]f1.0

Horizontal Slide

[[T [*1[o
Hm Yertical Slide xl:ancel

L [T 1o

 Log

¥ Clip LUT Yalues 0 255

|Histuglam| | Heset II Set I

Figure 8 - Look Up Table Dialog Box

e Linear Button. Select this option to interactively modify the user
defined LUT, wolut3, resulting in a linear mapping of intensity values.
While in this mode you can change the slope, and position of the linear
mapping using the slide bars.

e Log Button. Select this option to interactively modify the user defined
LUT, wolut3, resulting in alogarithmic mapping of the intensity values.
While in this mode you can change the curvature of the logarithmic
mapping using the slide bars.

Color Offset

Using the Red, Green, and Blue dlide bars you have full control of the LUT color
offsat.

Expand Button

If this option is selected the active image will be stretched to take the full image
window size.

Dynamic Range

Use this option to either select automatic scaling of the image intensity levels (Auto
Scale Button) or to manually modify the range of amplitude levels that will be
mapped to the dynamic range of the display.

If the auto scale or max. and min. fields are modified, press the Update I mage button
to update the display screen.
ImagelEdit Image Attributes

Thisis used to edit the (m_~~~) variables of an image which are described later in the
internal functions section.

Image|Set Units (Default and User Defined)

The position of the cursor within an image on the screen is normally given with
respect to the upper left pixel in the image, i.e. (row,column) = (0,0). Asyou move

the cursor over the image, it's row position, column position, and pixel value are
tracked in the status bar at the bottom left of ProVIEW’s Main Window. These are
reported as

row# col# val=# [default mode]
row# = yval<units> col# = xval<units> val = # [user define mode]

In the user-defined mode, the cursor position is mapped into a user-defined
rectangular coordinate system, (row, col) ==> (yval, xval). To set user-defined

26 ¢ Graphical User Interface ProVIEW User’'s Guide

For a discussion of

image attributes See
"ﬁinsic Attributes

Associated with Array

Variables|.

Plot

interpixel distance from the Graphica User Interface you need use the
I mage|M ensur ation-User -Defined menu. This will bring an input box similar to the
one below where, x0 is the coordinate along the row axis for the first pixel on the
upper left corner of the image, yO is the coordinate along the column axis for the first
pixel on the upper left corner of the image, dx is the interpixel distance along the
horizontal axis, and dy isthe interpixel distance along vertical axis.

112: 384 <meters> o4 1536 <meters> wal: 178

Figure 9 Partial Landsat Image of Ohare Airport.
Notice user defined units on the lower left corner.

= MENSURATION

*0: vl |4nuu
dx: |25 dy: |25
cunits: Imelers runits: Imelers

' Ok, xl:ancel

Figure 10 Image Mensuration Dialog Box

The values of yvalue and xvalue are computed as:
xval = (col#)*dx+x0, and yval = (row#)*dy+y0

Given an image, say X', the user can modify the image mensuration values
of thisimage directly from a script file by modifying the following intrinsic
image attributes: x.m _x0, x.m y0, x.m _dx, x.m dy. For example the
selection done through the user dialog box above could be done within a
script by typing the following lines: (here the image name is "egohare")

egohare.m_x0 = 300
egohare.m_y0 = 4000
eqoharem_dx = 25
eqoharem_dy =25

view eqohare

Plot|Plot

The plot menu allows you to generate plots used to modify the way that an existing
plot can be displayed. When the PLOT menu is selected it will work on the plot
window that has the input focus.

Plot|Settings
This selection is used for modifying the plot options and axis attributes.

ProView User’'s Manual

Graphical User Interface « 27

o B osmy
ma [Jr Pri . | ¢ Hada Yrain
== [Lag Scela = [0 Lmg St
ke [, ~ BT Scals [= & WL Sl
H:Mu‘ i—.u'w
- Pl FE Uil mem
"""I-ﬁ'"' o i ok Spads
T lagSrsls ST L -
Mp——
k| LE Sraie
e & Lims Coko Wk |
P M Dty

Vo] =] e

Figure 10 Plot Settings Dialog Box

Plot|World

This menu item allows one to view any section of the word by double-clicking on the
map and then entering in the desired coordinates of interest.

[= [0] The World -~

20.00 4

Fe.0n o

LI T

lat itude

3600

IR

0.on = y T T
-led.) -y .00 -23.00 -Fe.0a -Fe.00 -H0.a)

longitude

Figure 11 Plot for World Coordinates

Data
DatalLoad

This menu item allows one to load in adata set from afile.

Data|Save
This menu item allows one to save a data set as afile.
DatalFitting

This menu item allows for the use of linear and bilinear interpolation when
constructing a curve from data points.

28 « Graphical User Interface ProVIEW User’'s Guide

= DATA FITTING

...................... | Syntax: blinterp(f.x.y.xnew.ynew)

“ ‘blinterp;
- linterp Input 1: E
Input 2: E
Input 3: E
Input 4: E
Input 5: E
Output: I— E

/ oK xcance| ? Help

Figure 12 Data Fitting Dialog Box
Data|Formatting

This menu item is used for the formatting of different types of data sets so as to be
manipulated correctly.

= DATA SERIES
| Syntax: geola.n]
Input 1: I E

Input 2: I— E
Dutput:l—

V Ok anncel ? Help
Figure 13 Data Formatting Dialog Box
Data|Series

This menu item is utilized for the creation of various specific type data sets.

= DATA SERIES

3 | Syntax: geola.n)
> ident Input 1: I E

~ ones Input 2 I E
 Zeros
I]ulput:l

¢ Ok anncel ? Help

Figure 14 Data Series Creation Dialog Box

Functions
EunctiongM athematical

This menu option provides an interface to many of the mathematical functions.

ProView User's Manual Graphical User Interface « 29

= MATHEMATICAL FUNCTIONS

> log |5ynlax: abs[a]

> |0_91l] Input 1:|— E'
> nint w2 [

= real

> sign Dutput: l— E'

o osqut

V 0K xCanc:eI ? Help

Figure 15 Mathematical Functions Dialog Box
Eunctions|[Trigonometric

This menu option provides an interface to many of the trigonometric functions.

Py " cosh |S_l,lnlax: acos[a)

> .;lsmm > sin Input 1: I E
> atan = sinh

" cos * tan I]ulput:l
> sinc > tanh

V 0K xcancel ? Help

Figure 16 Trigonometric Functions Dialog Box
Eunctions|Statistical

This menu option provides an interface to many of the statistical functions.

= STATISTICAL FUNCTIONS

> hist
>+ higt255
* mean
~+ median

-+ mediant

> momentr | Syntax: covmla]

= rcoeff Input 1:|— IEI
> war Input 2: I— E
 gauss Input 3:| E
 qgauss Input 4:|— E

 qgaussiny Dutput: I E

“ 0K anncel ? Help

Figure 17 Satistical Functions Dialog Box
Eunctions|Random Numbers

This menu option provides an interface to the random number generator.

30 ¢ Graphical User Interface

ProVIEW User’s Guide

= RANDOM NUMBERS

| Syntax: randg(n.m)

> randinit Input 1: [#]
" el Input 2: E
Dutput: I

V 0K annceI ? Help

Figure 18 Random Generator Dialog Box
Functiong|Ranking

This menu option provides an interface to the many ranking/sorting functions.

2250

it

Figure 19 Ranking Functions Dialog Box

Operators
Operators|Matrix

This menu item is used for the manipulation and operation of matrices.

> tace

= MATRIX OPERATORS
s Qo | Syntax: conj(a)

- sume Input 1:

= ladd sumcum Input 2:

Imul
— 7 sume Output: I

VDK xﬁancel ?Help

Figure 20 Ranking Functions Dialog Box
Operators|Transforms

This menu item is used for the operation of various transforms on data.

ProView User’'s Manual

Graphical User Interface »« 31

TRAAGNSFORMS PERATHRS

Syl itfa]

‘. natrem

. iea || =—n

i e S

Ay P _*I—EI
L |
Outpas | [#

Vo | Keme| | T

Figure 21 Transform Operators Dialog Box
Operatorg|Eiltering
This menu item is used for the various filtering of data sets.

N FLIEROPERSTORS |
Srnlan hlakain m|

ﬁ : it 1 I=]
cimeel =l "'-'I"I—E
Cowaedl it |“1|7E|
e — Treai 4| [2]

Vo | (M| | 20|

Figure 22 Filtering Operators Dialog Box

Window

This menu allows the user to select from any of the following options: Tile, Cascade,
Arrange Icons, and Close All. These menu options permits the control of the layout
of the different windows open within the ProVIEW environment.

Help|Content

This option will bring up ProVIEW’s on-line help screerfhis whole manual is
available under the help menu option.

Help|Keyword search

This option is activated when a script file window has the input focus. It allows the
user to highlight a word and do a search on ProVIEW'’s on-line help file.

Help|About

Provides the version numbers for the ProVIEW shell and gui for your copy of
ProVIEW.

Help|System I nfo

Help System Info will display key system information in a window similar to the one

below. In the example below, the 2.12 Gbytes reported below include available swap
space to disk.

32 « Graphical User Interface

ProVIEW User’s Guide

= System Information

CPU:

Screen:
Printer:

80486

1024 x 768 pixels 65536 colors
600 x 600 DP1

Avail. Memory: 2700 KB [Phys). 37584 KB [Page]

v

Figure 23 System Info Dialog Box
Help|Demo

This menu item invokes a series of demos which show some of ProVIEW'’s
capabilities.

ProVIEW Demos

-Oplions:

DO ALL MON-INTERACTIYE DEMOS
. Image Rotation Example

[+]
. Different Plotting Modes i
[+

. Image Gradient and Hough Transform
. Moon Rotation from file list [cine loop)
. Mandelbrot Fractal

. Image Warping

. Combine LUNAR Topo & Albedo Maps

= LT e Ll P =

Figure 24 Demos Dialog Box

User defined menu items can be added under this menu using the addmenuitem
command.

The User option will show in the menu only if addmenuitem has been invoked.

The User menu along with its corresponding menu items will appear between the
Operators and Window menu headings once started.

[ready]l: addmenuitem "“"Menu
[ready]l: addmenuitem "More"
[readyl: addmenuitem "Functions"
[readyl: addmenuitem "Special”
[ready]l: addmenuitem "Commands"
[readyl:

Figure 25 Illustrative Use of the Addmenuitem Command

ProView User’'s Manual

Graphical User Interface « 33

Pro¥IEWY 4.0

Functions
Special
Commands

Figure 26 Corresponding Menu Creation from the above Command List

34 + Graphical User Interface ProVIEW User’s Guide

MSHELL Interpreter Language

L anguage Syntax

I ntroduction

At the heart of ProVIEW isthe MSHELL interpreter developed by ACT. MSHELL is
a 32 bit image/signal processing language which alows you to perform complex
operations using a simple, amost intuitive syntax. In the following sections we will
introduce you to this language and discuss it's syntax.

Variable Names and Types

In general, a variable name can be any aphanumeric string starting with a letter
followed by a combination of letters and/or digits. The following are legal
alphanumeric variable names,

X,
x10,
Outputimage

Note that variable names should be kept under 15 characters. Additionally there are a
number of reserved keywords and symbols, used by the interpreter, that cannot be
used as variable names. A list of these keywords together with a description of their
use isfound in the section "Appendix A (List of Internal Functions).

There are four basic types of variables:
* Array variables (holding floating point numbers),
e String variables (holding character strings), and
e System variables (which are used to control the interpreter environment).

e Virtua Variable

Throughout most of this
manual the terms image,
array, or matrix can be
interchanged without
loss of generality

The upper left dement in
an image or array is
denoted as eement
(row=0,col=0).

Array Variables

The basic variable in ProVIEW’s MSHELL interpreter is a two dimensional array
structure. More specifically, i&"is the name of an array, then it points to an array
structure of the form,

%ao,o &, - Gy %
&0 &, - Q45
a-pg: L : O
0 O
(Ay00 Qg1 Qg0

where J is the number of rows in the array, and | is the number of columns.

The ProVIEW array structure follows the convention that array indices start at

zero. Having the basic variable as a two dimensional array provides a unified way to

treat scalars, one dimensional signals, and two dimensional signals (images).
ProVIEW array variables may be either real or complex valued (i.e. hold imaginary

numbers). This is particularly advantageous in Fourier transform computations.

The following are valid statements:
[ready]: x = ones(3,3)
[ready]: x(2,2)
1
[ready]: x(0,0)
1
[ready]: row=1
[ready]: col=2
[ready]: x(row,col)
With 'x' defined as above, then the following statement generates an error
[ready]: x(1,5)
>>>error= 6 -requested element address is out of range

There are different schemes that facilitate the reading from (or writing to) an array
O

variable, see:I-“RE-g'rUn-of-hﬂErest-Marr'rpu-laltion" on p!g_]e 42, I&Hmagefeet-RGLI"

on page 2B.

Intrinsic Attributes Associated with Array Variables

There are many intrinsic attributes associated with array variables. For example,
these attributes can control the way a variable is displayed, and interpolated. Most of
these attributes can be inspected and changed by the user. The following presents all
the intrinsic attributes associated with array variables and their associated syntax.

36 « MSHELL Interpreter Language

ProVIEW User’s Guide

Let us denote X’ as an existing array variable. Then:

x.m_interpflag - (This function is not yet implemented.) Selects the type of
interpolation to be performed while accessing an element in an array variable by
Setting:

o x.m_interpflag=0 for zero order interpolation.
o x.m_interpflag=1 for liner interpolation along the values of arow.

e x.m_interpflag=2 for bi-linear interpolation when trying to access the
valuesin an array.

For example, in the following two lines of code the interpolation flag is
set to 2 resulting in arequest to use bi-linear interpolation.

x.m_interpflag=2;
y =x(10.3, 12.7)
Y ou can read the value of this attribute.
x.m_viewflag - Controlsif animageisvisible for display or not by setting:
e x.m viewFlag=1 which forces the image to be displayed.
e x.m viewFlag=0 which disablesthe display of the image.

Note that the default value for this atribute is zero, not to display the
variable.

X.m_viewheight - Controls the height of the display window.

x.m_viewwidth - Controls the width of the display window.

x.m_viewhscrollpos - Controls the horizontal scroll position of the display window.
x.m_viewvscrollpos - Controls the vertical scroll position of the display window.
X.m_viewxO0 - Controls the horizontal position of the upper |eft corner on the display.
x.m_viewyQ - Controls the vertical position of the upper left corner on the display.
x.m_viewlut - Contains the active look-up-table to be used for 'x'.

x.m_viewmaxval - Controls the maximum value to be displayed on the screen.
x.m_viewminval - Controls the minimum value to be displayed on the screen.
X.m_viewtext - Allows oneto view the text which is part of an image.

x.text - Allows you to access (either read or set) the text attribute of the image.

Image variables may contain associated text, which can be accessed by
adding '.text’ to the variable name. The ProVIEW screen of Figure 5 on
the next page provides an example of this; the image 'myramp’ was
created, and its text attribute ‘myramp.text’ was set to some simple text
line. Note that to enable the display of this text, the menu option
I mage|Header must be toggled.

X.vroi - Extracts the coordinates of the variable region of interest.

Every image variable has associated with it a rectangular region of
interest. When avariable is created thisregion of interest is set to be the
whole image. The coordinates of the defined region of interest can be
easily accessed at the command line by appending ".vroi’ to the image
name. For example, the following line of code extracts the coordinates

ProView User’'s Manual

MSHELL Interpreter Language « 37

that define the variable region of interest (vroi) of an already defined
variable, say X, and assignsit to a user defined variable called regionc’,

[ready]: regionc = X.vroi

The notation X.vroi can be viewed asif vroi is an attribute of X.

: mpeanp = (B.ZLG 4 _BGL)
-} i.h—.l--.l.—‘l-[Jlnsras
I wheu nyranp

Figure5 Illustrates test attributes on an image

X.m_aoi - alows access to the actual pixel values defined by the region of interest
associated with an array.

Given an array variable, say X, the actual pixel values can be easly
accessed in the command line by appending ".ao0i’ to the image name.
For example,

[ready]: subimage = X.aoi

extracts the subimage defined by X.vroi and assignsit to a user defined
variable called 'subimage’. This could also be done using the following
notation

[ready]: subimage = X(X.vroi)

ProVIEW provides different ways to operate over regions of interest.
For example, to add 10 to all pixels falling within the defined region of
interest, and updating the display type

[ready]: X(X.vroi) = X.a0i + 10
[ready]: view X

This could also be done as follows,
[ready]: regionc = X.vroi
[ready]: X(regionc) = X(regionc)+10
[ready]: view X

38 « MSHELL Interpreter Language ProVIEW User’s Guide

See "Region of Interest Manipulation|' on page for additional information on using
regions of interest.

See Section , The following set of image attributes are related to image mensuration. They al start
magelEdit | mage | with .m_"just as the above intrinsic attribute commands did.
Attributes | | x.m_xO0 - user defined horizontal position of upper |eft pixel inimage

X.m_dx - user defined spacing between two adjacent horizontal pixels as you move

he (m ~~~) variables from left to right

pbf an image which are
Hescribed later in the
nternal functions |
Bection.

Default and User |
Defined)| for
examples on the
image mensuration

x.m_yO0 - user defined vertical position of upper left pixel inimage

x.m_dy - user defined spacing between two adjacent pixelsin the same column as you
move from top to bottom

X.m_xunit - string describing the units of x.m_x0
X.m_yunit - string describing the units of x.m_y0

x.m_flag - if this flag is set to 1 the user defined image mensuration will be used
when viewing the X’ image

String Variables

A string is defined as a sequence of alpha numeric characters enclosed within quotes
(similar to the 'C’ language).

In general, string variable names start with ‘$’. For example, the string variable
‘$message’ can be assigned a string as follows,

$message = "hello world";

ProVIEW allows the use of control characters within a string, such as
\n linefeed

\t tabulation
\b backspace
\\ backslash

The above control characters can be used to control the format of strings on the
output.

If $x is a string, its content can be accessed using the following syntax
$x(row)
$x(row,column)
$x(row, start_column : end_column)

For example,

$x(3) /I returns row 3 (starting at 0)

ProView User's Manual MSHELL Interpreter Language « 39

$x(3,4) I/ returns character 4 at row 3
$x(3,4:10) // returns substring at row 3

Relational Operations are permitted on strings. See Program Flow Control for more
info.

System Variables

Within the system variables there are plot, image display, and script related variables.

The majority of the system variables are used for plotting purposes by the ‘plot’ and
‘plot3d’ functions. A complete list of these variables can be found in the dictionary of
internal functions under M_.

Some of the ProVIEW system variables are strings while others are numbers. All
system variables are prefixed by 'M_'. String system variables do not require the ‘$’,
they are a special case. For example, to initialize the x-axis label to the string “Time”
use

M_xlabel="Time";

Virtual Variable'V’

ProVIEW has a special variabl¥,,' called the virtual variable. With this variable the
user can manipulate an image file which can be as large as the whole disk space
available in the system.

If the user has a huge image in a file or is going to be working with an image that can
not be easily held in memory, then he or she can still manipulate pieces of the large
image using ProVIEW's virtual variable.

The basic virtual related functions in ProVIEW are Vopen, Vclose, and Vnew().
Vopen - Links 'V' to a floating point or 1 byte/pixel type of file,
Vclose - Stops link betweeW"and a disk file,
Vnew - Creates a new virtual file.

(See Appendix B for detailed usage of the above virtual variable
manipulatory functions. - Pages B-87:88)

Once a link is established between a file in disk and the virtual varidblién the

user can access rectangular regions of interest in the disk file for read or write
operations (the user must always provide a rectangular region of interest when writing
or reading fromV").

Example: The following script file illustrates the use of ProVIEW's virtual variable
V'
M_cwd = "/proview/images/clemen/moonbrus’
roi =wdef(0,0,1,1)
V=Vopen("almoon.chr",5760::11521::1::0,rci,0);
flyby =0
view flyby;
i=0;
while(i<35){
meter("flyover virtual image",i/35*100);
angle=i/35*6.28
roi = wdef(2336+128* cos(angle),6926+128* sin(angle),256,256)
flyby = V(roi)
=i+l

}
meter("",-1);
Vclose(V);

40 « MSHELL Interpreter Language ProVIEW User’s Guide

Statements

A statement is, in general, an expression involving variables, internal functions, and
calls to script functions. Multiple statements can be typed in the same physical line if
they are separated by a semicolon. For example,

[ready]: x=4; y = x+4; z=cos(y);
isalegal statement.

A statement may expand over more than one physical line if a delimiter \\’ is used in
the the continuation line, e.g.

x= cos(x+y) \
+sn(x-y)

Tabs, spaces, and linefeeds are ignored by the interpreter. An intuitive mathematical
syntax is followed by the interpreter, allowing you to input the expressions in a form
similar to the their actual mathematical representation.

In general, expressions which do not involve an assignment will print the result to the
screen, e.g.,

[ready]: 3+4
7

A broad representation of numbers consistent with most computer languages is
allowed. The following are valid number representations:

4 01 44. 044 34.89E4 34.89e10

Calling Syntax for Numeric Functions

The output of most of the numeric functions can be used as direct inputs to other
numeric function, e.g.

X = abs(log10(fft2(x)))

Notice that you do not have to worry about the implicit dimensions of x and if it is
either real or complex. If a function can not handle a complex input it will return an
error message.

Unary Numeric Function Syntax

In general, when using a function with only one input argument, a ProVIEW unary
function, the following two statements are equivalent,

ufun(varname)
varname.ufun
For example, if x is an array variable the following two lines are equivalent,
y = cos(mean(x))
y = cos(x.mean)

The notation in the second line allows us to look at the mean value as an attribute of x.

Comments

Statements enclosed betwdg&rand*/ are ignored by the interpreter. This is used to
place comments in a script file or to prevent the execution of the line or lines between
the comment delimiters.

For example, a valid group of statements that make use of comment delimiters is,

ProView User’'s Manual

MSHELL Interpreter Language « 41

Proper use

of

parenthesis can result in

a significantly
execution

faster

/* Compute the magnitude of the FFT
onimage x

*/

x = abs(fft2(x))

The delimiter '/’ can be used to create single line commentsin a script file, e.g.
x = fft2(x) // note: compute the 2D FFT of x

Operator Precedence

The following operator symbols are defined within ProvVIEW. Most of them are used
in algebraic operations. The precedence of operators increases as we move down the
list, with operators within the same line having the same precedence.

= assignment operator
row augmentation or string concatenation
column augmentation
+ - array addition and subtraction
* [*. /. multiplication and division (elemental)
A a'b, "ato the power of b"
- unary minus, e.g. -x
' transpose operator, e.g. X’
f an internal function, e.g. cos()
Hence, in the expression
¢ = atb*x;
the multiplication is performed prior to the addition.

The user can use parenthesis to force grouping of terms and override the operator
precedence. The use of parenthesis for grouping can result in faster code execution.
For example, consider the following two expressions,

x = (alb)*c;
x = a*(c/b);

if a and b are scalars, and c is a large 2 dimensional or ldimensiona array, the
grouping, (a/b)*c , executes significantly faster since it involves fewer operations.

Region of Interest Manipulation

ProVIEW supports two types of regions of interest: rectangular regions of interest
(RQI), and non-connected regions of interest, also called generalized regions of
interest (GROI). ROIs provide a simple way to refer and access rectangular regions
within an image, while GROIs provide a simple way to refer to a list of pixelsin an
image as an entity.

ROI

A rectangular region of interest can be constructed in the following ways:

42 « MSHELL Interpreter Language ProVIEW User’s Guide

» Using the window definition function, e.g.
roi = wdef(row0, colO, nrows, ncals);

e Interactively, using the mouse. This option is selected using the
IMAGE|SET-ROI menu option.

If the ROI isavalid region of interest, it can be used as an argument of a ProVIEW
variable. Regions of interest can be specified in any of the following operations,

Assignments,
x(wmove(roi,25,40)) = x(roi);
Within expressions,
x(roi) = y(roi)+z(roi)-q(roi);

GROI

Generalized regions of interest provide a powerful syntax to perform operations on
pixels that do not fall within arectangular region in animage. A number of functions
can return generalized regions of interest, e.g., gtindex, Itindex, and egindex. Once a
generalized region of interest has been defined it can be used as an argument in array
expressions.

Example 1.

The following statements will set all the pixels in an image X which fall within the
values of 100 and 110 to 0.

zroi = rindex(X,100,110);
X(zroi) = 0;
Example 2.

The following statements will compute the mean value of all those pixelsin an image
X which have an amplitude less than or equal to the brightest pixel in X.

zroi = Itindex(X,X.max);
mean(X (zroi))

Generalized region of interest allows for the manipulation of digoint regions of
interest in animage. In this method the pixel coordinates are stored as a complex row
vector. The length of the vector corresponds to the number of pixels identified within
the generalized region of interest. The real part of the row vector serves as a column
index to the pixels, while the complex part serves as arow index.

Program Flow Control and Relational Operators

The if, if-else, and while statements are used in ProVIEW to dter the flow within a
script file or to cause iteration. The range of each of these statements is a compound
statement consisting of statements enclosed in brackets.

|F Statement
if(expression }{
Statements
}
if(expression){

statements

ProView User's Manual MSHELL Interpreter Language « 43

Always use parenthesis
when using relational,
logical, or equality
operators. Do not
assume a specific
precedence.

} else{
statements

}

The if statement causes execution of its compound statements if and only if the
relation in the expression results in anon zero value.

The if-else has two groups of compound statements. |f the relation in the expression
returns a non zero value , the first group of statements is executed otherwise the
second group of statements is executed.

An early exit from an if” block can be performed using the 'ifbreak’ statement.
While Statement

while(expression){

Statements

}

The while statement causes repeated execution of its statements as long as the
expression resultsin anon zero value. The relation is tested before each execution of
its range and if the relations is false, control passes to the next statement beyond the
range of the while statement.

Thetraditional for’ statement used in the C language, i.e.
for(expressionl ; relation ; expression2){
Statements
}

can be constructed using the while statement as:
expressionl
while(relation){
statements
expression2
}

An early exit from awhile loop can be performed using the 'wbreak’ statement.
Control Expression with Numeric Values

The statementsin an 'if” or 'whil€e’ block are executed depending on the value returned
by the control expression. The control expression can include relational, equality, and
logical expressions.

Relational, logical, and equality operators al have the same precedence. Hence,
parenthesis should be used to obtain the desired groupings. For example, in the
following statement there is no ambiguity due to the use of parenthesis,

if((i==4.8) && (p<3))}
X=Y;

}

Relational Operators

The expression syntax when using ar elational operator is:

44 « MSHELL Interpreter Language ProVIEW User’s Guide

expressionl rel-op expression2

where the relational operators are:

< less than

> greater than

<= less or equal to
>= greater or equal to

Equality Operators

The expression syntax when using an equality operator is:
expressionl equality-op expression2

where the equality operators are:
== test for equality
I= test for inequality

Logical Operators
The expression syntax when using alogical operator is:
expressionl logical-op expression2
where the logical operators are:
&& logical and
I| logical or
Control Expression with Strings
The following are the valid comparisons that can be done with strings:
$s1==
$s1!=$s2
$sl<$s2
$s1>$s2

Remember that these type of comparisons are only meaningfull if used within the
control expression in a 'while’ or 'if’ statement. For example, the following code
performs atest on the string $a and displays itself as an image depending on the result
of the test:

$a="hello"
if($a=="hello"){
X = text2image($a);

View X;

L ook-Up-Table Manipulation

Look-up-tables are primarily used to map intensity values displayed on the screen.
Output LUTs have 256 entries numbered O through 255 corresponding to the 256
possible different intensity values or colors.

ProView User's Manual MSHELL Interpreter Language « 45

Output LUTs

Before an image in memory is displayed on the screen, it goes through an output
LUT. The image’s pixel values are used as indices into the output look-up-table, the
output of which is displayed on the screen. Image data is transformed through the
currently selected output LUT whenever an image is being displayed on the screen.
Using the ‘select’ command, the user can select which is the active output look-up-
table. For example, to selagttit3 as the active LUT use the following command,

select wolut3

The user can read the first 3 output look-up-tables. For example,

x= wcolut0; /* copy olutO into x */

Inspecting x will show that it corresponds to 3 rows of data, each row with 256 entries
corresponding to the red, green, and blue components of the pseudo-color LUT.

Look up tablewcolut3 is a user defined output look-up-table, e.g.

* weolut3 is set to the histogram equalization
LUT of image X
*/
wcolut3 = heglut(X);
The following lines modifywcolut3 to provide intensities of red:
/* initialize wcolut3 */
red = (0,255,1);
green = (0,255,1);
blue =(0,255,1);

wcolut3 = red # 0*green # 0*blue;

ProVIEW Script Files (.msf,.msh,.vsh)

Script files provide a powerful tool to achieve repetitive processing tasks in a simple
manner.

There are two types of script files in ProVIEW, i.e. FUNCTION files and Include
files.

Function Files (.msf)

A ProVIEW FUNCTION file, or external function, permits the user to define its own
functions using the ProVIEW language syntax. Local variables defined within a
FUNCTION file are automatically erased by the ProVIEW interpreter when the script
file is finished.

Syntax
A valid ProVIEW FUNCTION must follow the following rules:

46 « MSHELL Interpreter Language ProVIEW User’s Guide

« function names must be limited to eight characters.

e Theinstructions of a ProvIEW FUNCTION must be stored in a file with
the same name as the function, e.g. if the function name was MY FUNC,
then the file name must be MYFUNC.MSF. Notice the addition of the
. msf’ extension.

e Only onefunction per file.
e Array and string variables can be used as input and output arguments.

e If avariable is not defined at the present function level the interpreter
will look for it at the previous function level. If the variableis not found
there it will keep looking for it at the next function level until it
encounters the variable or stops with an error.

e The first eight characters in the file must be the string FUNCTION
follow by the list of output arguments, equated to the function name,
and followed by the list of input arguments.

The following isasimple ProvVIEW FUNCTION file.

FUNCTION [outl,0ut2]=MY FUNCJin1,in2,in3,$in4]
/* Thisisadummy function */

LOCAL a b

a=10*inl; b=3*in2,

“The string passed was “::$in4

outl =inl1-in2

out2 =inl*.in2*.in3-a+b

Notice that the variables 'a and 'b’ in the above example only exist during the duration
of subroutine.

Variables needed within the function must be passed to the function and new variables
not implicitly declared in the calling statement should then be declared within the
function using the LOCAL statement.

An actual call to the above example function could be,

x=hammiw(32,32)
y = gtclipto(x,0.5,0.5)
z=Xxy

[resl, res2] = MYFUNCI x,y,z]

where resl and res2 will contain the result to the external function call.

Include Files (.msh)

Include files are not function files, hence they do not erase local variables upon
termination. Include files are simpler than ProVIEW Function files and are not
constrained by the FUNCTION rules. The user may think of an include file as a
sequence of commands that can be invoked with a simple include call. Typically
include files are saved to disk with the extension .msh’.

Virtual Include Files (.vsh)

A modification to the standard *.msh’ isthe ‘.vsh’ extension; this alows ProVIEW to
automatically execute the entire contents of the script when opened using the
Image|Openmenu item or ‘reada’ syntax of ProVIEW.

ProView User’'s Manual

MSHELL Interpreter Language « 47

Example - movie.msh

Using a script file a sequence of image files residing in disk can be read, display, and
processed under the control of a script file. In thisexample alist of file names of type
'bmp’ is assumed to exit. This script file can be used as a building block for creating
more complex movie-like script files.

$

Il read input list of image files, rm.Ist’, from hard disk

list = readtext("../images/rm.Ist");

/I print number of linesininput list

nlines(list):

[/l initialize the variable 'out’ to zero and view it
out =0
view out

/I start aloop to load every image in rm.Ist’ for viewing
1 the variable i will be used as the loop index
i=0;
while(i<nlines(list)-1){

infile ="../images/"::list(i,:);

infile
out = reada(infile,"char");
i =i+1;
/l'if a end of list reset 'i’ to start again. This
1 script file must be stopped using the
1 ESC key or the STOP sign icon.
if(i==nlines(list)-1){

i=0;
}

48 « MSHELL Interpreter Language ProVIEW User’s Guide

|mporting and Exporting Data

Importing Data into ProVIEW

ProVIEW can read image or array data in a number of different output formats, see
"[File]Open Image - File Format]' on page [L9]

Exporting Data out of ProVIEW

ProVIEW can write image or array data in a number of different output formats, see
"File]Open Image - File Format]' on page [L9]

Data stored in the ProVIEW'’s char and float format contains a smple 9 byte header.
The first 4 bytes contain the number of rows, the next 4 bytes contain the number of
columns, and the last byte contains aflag indicating if the dataisreal or complex.

ProView User's Manual MSHELL Interpreter Language « 49

| nternal Functions

The user can locate a specific function by first looking into the Classes of ProVIEW’s
Built-in Functions where commands are divided into functional areas, see Appendix
A

Given a function name or symbol the user can locate specific information about its

use under the alphabetical listing of internal functions, see Appendix B.

ProVIEW array expressions can be used as arguments to other ProVIEW functions.
In most of the following functions the input to the functions are arrays and the output

result is another array.

Classes of Built-in Functions

+---Animation
+---Demo
+---Filtering

| +---Freq_Ops

| | +---DCT

| | \---FFT

| \---Spatial_Ops

| +---Correlation_Ops

| +---Gradient_Ops

| +---L ocal_Statistics

| +---Morphological

| +---Resampling

| | +---Interpolation
| | \---Irregular_Sampling
| +---Resolution_Enhancement
| \---Spatial_Blurring
+---Fitting_and_Estimation

+---Fractals

+---Geo_Xform

| +---Rot2D

| \---Rot3D

+---HTML_Tools

+---Intensity_M apping
+---Look-Up-Table Operators
\---Radiometric

| \---Data_Formats

| +---aess

| +---Ceos

| +---pds

| *+---ppm

| +---Raw

| +---Virtual
| +---vpf

| \---NetCDF
+---Matrix_Vector_Algebra
+---Mensuration

+---PHIT

| \---Hyper spectral
+---Plot

+---Region_Ops

50 « MSHELL Interpreter Language

ProVIEW User’s Guide

E o I T T R

|
|
|
|
+-
|
|
|
|

+---Groi_L ogical
+---Interactive_Selection
+---Overlapping_Regions
\---Row_M anipulations

--Satellite_|mage_M apping

+---Coordinate_System_Xform
+---M osaics
+---Spherical_Geometry
\---Vector_Projection

+---Statistics

\---Sorting

+---String_Ops

+---System
+---Trigonometric Functions
\---Useful

+---Data_Formatting

+---Flow Control and Relational Operators

\---Image Display
+---Image Attributes
\---Image Window Attributes

ProView User’'s Manual

MSHELL Interpreter Language « 51

Math Error Handling

In MSHELL floating point exceptions generate either results in the form of NOT-A-
NUMBER (NAN), infinity (+INF), or minus infinity (-INF). The user must inspect
an array for such an occurance to determine if invalid number are present in the array.
The example below illustrates manipulations that result in NAN or +INF or -INF.
The user can control how math related errors are reported using the system variable
‘M_matherrflag’ described under M__in Appendix B.

[ready]: cos(1€38)
-NAN

[ready]: 1/0
+INF

[ready]: -1/0
-INF

[ready]: 0/0
-NAN

[ready]: x =1/0:: 0/0

[ready]: x(0,0)
+INF

[ready]: x(0,1)
-NAN

[ready]: 10g(0)
-INF

[ready]: log(-1)

0+ 3.14159i

[ready]: 0"O
1

[ready]: y = 0::1::2:: (0/0)
[ready]: y
(100) X
row 0 =

000 100 200 -NAN
[ready]: z = 0::1::2:: (1/0)
[ready]: z
(20M0) X
row 0 =

0.00 100 200 +INF

[ready]: egindex(y,1/0)
3+0i

52 « MSHELL Interpreter Language ProVIEW User’s Guide

Extendibility of the Environment

In addition to the internal funtions included and listed above you can further extend
the capabilities of ProvVIEW by:

e Accessing your own 'C’ funtions or by

e Accessing other applications that support Dynamic Data Exchange.

Dynamic Data Exchange

ProVIEW is capable of communicating with other applications that support dynamic
data exchange (DDE). The following ProVIEW commands are used to establish
communications links with other applications via DDE.

DDEInit - this command is used to start a conversation on a particular topic
with the server application. Syntax: chan = DDEInit(*Application
Name”,"Topic”). “Application Name” is the name of the application
you want to communicate with (Ex. MSAccess), and “Topic” is the
name of the particular topic. This command returns a channel number
associated with the conversation you are requesting or -1 if the operation
fails.

DDETerm - this command terminates a conversation. Syntax:
DDETerm(chan). chan is the number returned by DDEInit.

DDEExec - this command is used to send a command to the server
application once the DDE conversation is established. Syntax:
DDEExec(chan,cmd). chan is the channel number returned by DDEInit,
and cmd is a string you want the server to execute. DDEExec will return
0 if the server accepted the command, 1 otherwise.

DDEPoke - this command is used to request the server application to accept
an unsolicited data item value. Syntax: DDEPoke(chan,item,val). chan
is the channel number returned by DDElInit, item is a string that
identifies the data item you wish to send a value for, and val is a string
containing the value. DDEpoke will return O if the server accepted the
data item value, 1 otherwise.

DDERegS - this command is used to request the server application to
provide the value of a data item. Syntax: $var = DDEReqS(chan,$item).
$var is a ProVIEW string variable, chan is the channel number returned
by DDEInit, and item is a string that identifies the data item you are
requesting the value of.

DDEReqV - this command is used to request the server application to
provide the value of a data item. Syntax: var = DDEReqV/(chan,$item).
‘var' is a ProVIEW array variable, chan is the channel number returned
by DDEInit, and item is a string that identifies the data item you are
requesting the value of.

Example: Using ProVIEW scripting language

ProView User's Manual MSHELL Interpreter Language * 53

$path = "M:\NEWINDEX\BY ACCESS\\"
$database = "CL_0001"

/* Open Database */

chanl = DDEInit("M SAccess'," System")

$command = "[OpenDatabase "::$path::$database::".MDB]"
$command

DDEExec(chanl,$command)

DDETerm(chanl)

/* Query Database */
$topic = $database::"; SQL"
chanl = DDEInit("M SAccess",$topic);
$temp = "SELECT NEW_IMAGENAME";
status= DDEPoke(chanl," SQL Text" ,$temp);
$temp =" FROM header”;
status=DDEPoke(chanl,"SQL Text",$temp);
$temp =" WHERE ("
status=DDEPoke(chanl,” SQL Text",$temp);
$temp = "([SENSOR_NAME]=\"UVVIS\")
status=DDEPoke(chanl,"SQL Text",$temp);
$temp =" AND ([FILTER]=\"B\") AND ([MISSION_PHASE]=\"LUNAR AND MAPPING\")"
status=DDEPoke(chanl,"SQL Text",$temp);
$temp =" AND (([CENTER_LATITUDE]>=14.0) AND ([CENTER_LATITUDE]<=35.0))"
status=DDEPoke(chanl," SQL Text",$temp);
$temp =" AND (([CENTER_LONGITUDE]>=25.0) AND ([CENTER_LONGITUDE]<=30.0))"
status=DDEPoke(chanl,"SQL Text",$temp);
Stemp = ");"
status=DDEPoke(chanl,"SQL Text" ,$temp);
$res = DDERegS(chanl,"Data’");
if (strlen($res)>0) {
$query = $query::"\n"::$res

}
DDETerm(chanl);

54 « MSHELL Interpreter Language ProVIEW User’s Guide

User Provided Functionsas Dynamic Link Libraries (DLL)

ProVIEW permits the users to provide their own functions via dynamic link libraries.
Following are the steps required to make use of this capability.

First, write a C program containing the code you want to execute. Include user.h in
the header section; user.h isincluded as part of the installation. The functions that can
be caled from ProVIEW must conform to the following declaration: ARRAY
*fname(ARRAY *, ARRAY *, ARRAY *, ARRAY *, ARRAY *), where ARRAY is
a data structure defined in user.h. Note that the declaration requires five ARRAY*
inputs but the user need not use the five inputs. The functions the user wants to call
from ProVIEW must be exportable.

Second, generate a 32-hit dynamic link library. The C compiler/linker you use must
be able to generate a 32-bit DLL. Consult your compiler reference manual.

Note: The memory allocation routines that ProVIEW uses are contained in mem.dll.
If you plan to use memory alocation routines in your code (i.e., malloc, calloc,
realloc, free, strdup) it is strongly recommended that you use instead the functions
contained in mem.dl (i.e, NewMalloc, NewCaloc, NewRealloc, NewFree,
NewsStrdup). The file prvmem.h is provided with the ProVIEW installation. Include
it in your source code if you are going to make use of the mem.dll memory allocation
routines. If you are using Microsoft Visual C++, include the import library memvc.lib
in your project. If you are using Borland C/C++, include the import library membc.lib
in your project. Both memvc.lib and membc.lib are included as part of the ProVIEW
installation.

From within ProVIEW’'s Command Shell Window register the DLL using the
following command: loadDLL($fullpath\\$dliname), where $fullpath is the path to the
DLL including drive letter, and $dllname is the name of the DLL. Note that loadDLL
will return O if the DLL is successfuly loaded and 1 otherwise.

Call the function in the DLL using the following ProVIEW command:
callDLL(“$dllname”,"$functionname”,argl,arg2,arg3,arg4,args). “$functionname” is
the name of the function in the DLL you want to call; argl, arg2, arg3, arg4 and arg5
are the arguments you want to pass to the function.

Example: On the next page.

ProView User's Manual MSHELL Interpreter Language ¢ 55

Example of User Provided Functions as Dynamic Link Libraries

#include <stdio.h>
#include "user.h"

#ifdef__ BORLANDC__
ARRAY* _export test(ARRAY *al, ARRAY *a2, ARRAY *a3, ARRAY *a4, ARRAY *a5);
#endiif

#ifdef_MSC_VER

__declspec(dilexport) ARRAY* test(ARRAY *al, ARRAY *a2, ARRAY *a3, ARRAY *ad, ARRAY
*ab);

#endlif

/***/

--- Include the following two functions in your code. ProVIEW will call --- SetInitA and SetFree upon
loading the DLL to pass the addresses of --- the functionsinside ProVIEW that InitA and Free will call. It is
--- very important that you initialize variables of type ARRAY* using --- InitA. You must passto InitA a
name you want to assign to

--- the variable, the number of rows, the number of columns, and the

--- type (O-real, 1-complex).

**/
void SetInitA(void *fn)
_InitA = (ARRAY* (*)(char *ptr, unsigned long sizej, unsigned long sizei, unsigned char
type))fn;
}
void SetFree(void *fn)

_Free=(void (*)(ARRAY *a))fn;
}

Kk ek kKK KR KR KKK R KRR R KRR KR R Rk kR Rk Rk Rk Rk ko ko ok [

ARRAY* test(ARRAY *al, ARRAY *a2, ARRAY *a3, ARRAY *a4, ARRAY *&b)

{
UN32i, j;
ARRAY *¢;
¢ = InitA("test",al->s zgj ,al->sizei,0);
if(c)
{
for(i=0; i<al->sizgj; i++)
for(j=0; j<al->sizei; j++)
c->refi][j] = al->refi][j] + 10.0;
}
}
return c;
}

56 « MSHELL Interpreter Language ProVIEW User’s Guide

In ProVIEW Command Shell Window:

[ready]: loadDLL("d:\\proview.40\\user\\test.dll")

0
[ready]: x = hammiw(8,8)
[ready]: y = calIDLL("test.dll","test",x,0,0,0,0)
[ready]: show x

— X ——-

datatypeis :red
number of rows =8
number of columns =8
maximumvaue =1
minimum value = 0.0064

[ready]: show y

a— y a—
datatypeis :rea
number of rows =8
number of columns=8
maximumvalue =11
minimum value = 10.0064

[ready]: _

ProView User’'s Manual

MSHELL Interpreter Language « 57

ProVIEW Web | nterface

ProVIEW Web isa CGl application that parses and processes field = value pairs. ProvVIEW Web can beinvoked asa

result of an user submitting aform, or explicitly as

provweb.exe?_ xtype=value&fieldl=valuel&field2=value2&...&fieldn=valuen The ‘&’ character is used to delimit

the varioudield = value pairs. Note that since the ‘=" character is used to separdfielthesalue pair, you can not use it
explicitly in either thefield or value parameters. If you need to use the ‘=’ character inahe& parameter, for instance,

you must encode it using the ‘%’ character followed by the hexadecimal representation of its ASCII value (i.e., %3D).
Also the ‘+’ character is used to denote a white space, so if you need to use the ‘+’ charactetue gaameter, you

must encode it as %2B. Below are examples of incorrect and correct usage.

Correct
provweb.exe?cmd1=x+%3D+5
provweb.exe?cmd2=y+%3D+x+%2B+5
provweb.exe?subject="Hello+World!"

Incorrect
provweb.exe?cmdl=x =5
provweb.exe?cmd2=y = x + 5
provweb.exe?subject="Hello World!”

The table below shows how ProVIEW Web interprets varimd = value instances. Thextype=value is optional, and

is used to define the content type returned by ProVIEW Web. If omitted, the content type is text/html, with the <Title>,
<Head> and <Body> tags already predefined. If you spegifype=text/html when invoking provweb.exe, you are
expected to provide the <Title>, <Head> and <Body> tags as part of the output of ProVIEW Web.

| Fidd=value | _Internal Representation | Description |
fieldname = valuel $fieldname = valuel ProVIEW Web internally creates |a
string variable with the same name
as thefield item and sets the value

Example:
myname=Joe+Smith

Example:
$myname = “Joe Smith”

to thevalue item

cmd???... = value2

Example:
cmd1=x+%3D+5;+show+X;

value2

Example:
X = 5; show X;

when the field item starts with
ProVIEW Web uses th
value item as a command to &

‘cmd’,

executed

%

name.x = valuel
name.y = value2

name_x = valuel
name_y = value2

when the user clicks on an ima
map the x and y values of tk

ge

location where the mouse clicked

Example: Example: are passed. ProVIEW Web creates
imagel.x=100 imagel x =100 two variables using the name of the
imagel.y=200 imagel y =200 image to store these values

ProVIEW Web also generates a string variable called $ipaddr which contains the ip address of the client submitting the
form. $ipaddr can be used in script files to keep track of users accessing ProVIEW Web.

Elements of Forms
There are three types of HTML tags you use to create fields in a form: TEXTAREA, SELECT, and INPUT.

TEXTAREA

With TEXTAREA you can provide a field for someone to enter multiple lines of informat@klE is a required option

for this tag. By setting thBIAME to a name starting with ‘cmd’ you can use this field to enter multiple commands for
ProVIEW Web to execute.

58 « MSHELL Interpreter Language ProVIEW User’s Guide

SELECT

The SELECT element shows a list of choices in either a pop-up menu or a scrollable list. Just like the TEXTAREA
element, the SELECT tag requires you to define a name. There are two possible courses of action depending upon the

name used in the NAME property: (a) if the name starts with ‘cmd’, ProVIEW Web uses the item selected from the list of
choices as a command to be executed; or (b) ProVIEW Web creates a string variable whose value is the item selected.

INPUT
INPUT is a single tag option for gathering information. INPUT contains other options for acquiring information including
simple text fields, radio buttons and checkboxes.

TEXT - the default input type, displays a simple line of text.
CHECKBOX - displays a simple checkbox that can be checked or empty.
RADIO - a more complex version of a checkbox, allows only one of a set to be chosen.

In all of the above INPUT types, by setting th&ME property to a name starting with ‘cmd’ you can instruct ProVIEW

Web to execute a command or set of commands depending on the valu&/ALtHe property of the INPUT type as
described previously. Otherwise, ProVIEW Web creates a string variable whose value depends on the INPUT type. In the
case of TEXT the value is the text entered by the user. In the case of a CHECKBOX or a RADIO the value is the string
assigned to th€ALUE property.

EXAMPLE:

<PRE>

<FORM ACTION="http://www.acme.com/cgi-bin/provweb.exe" MBOD=GET Target="South”>
Latitude: <INPUT NAME=lat VALUE=36.1216>

Longitude: <INPUT NAME=lon VALUE=-5.903>

<INPUT TYPE="HIDDEN" NAME=cmd VALUE='include "test"">

<INPUT TYPE="SUBMIT" VALUE="Submit">

</[FORM>
</PRE>

When the user clicks on the Submit button, the client browser will generate a call to provweb.exe as follows:
provweb.exe?lat=36.1216&lon=-5.903&cmd=include+"test”

ProVIEW Web will interpret the various field = value pairs as follows:

Field = Value Translation
|at=36.1216 $lat = “36.1216"
lon=-5.903 $lon = “-5.903"

cmd=include+"test” include “test”

If the contents of the script file ‘test.msh’ is as follows:

show all

$lat

$lon

$coord = "(":$lat::",":$lon::")"

"\nThe coordinate you selected is:"::$coord
"\n<H2>Thanks for using ProVIEW Web</H2>"

,then the output of ProVIEW Web (bottom frame) looks like this:

ProView User's Manual MSHELL Interpreter Language * 59

| <N Welcome to ACT's Pro¥IEW-web - Microsoft Internet Explorer

| Ele Edt View Go Favortes Help |-
S A | & @ A
Back Earxand Stop Refresh Home Search Fawortes Histo
J.&ddressl hittp: Advmana acme, comddumnme. hitm j |J Links

Latitude: |351215

Longitude: F5BU3

Subrnit |

§ipaddr 1 14 =string
ilat 1 7 string
$lon 1 5 string

36.1216
-5.903

The coordinate you selected is: (36.1216,-5.903)

Thanks for using ProVIEW Web

|7I_I_I_|E Interet zote 7

60 « MSHELL Interpreter Language ProVIEW User’s Guide

Recent Changes

Recent Changes that have been made to the ProVIEW functions will be documented
here as well asalisting of their date of effectiveness.

Added Functions

At this time no new functions have been added to the ProVIEW Imaging System.
Further functions will be listed here.

Updated Functions

ProView User's Manual MSHELL Interpreter Language « 61

Appendix A : Function Tree

(By Category)
Of

ProVIEW'SMSHELL

| nterpreter

I ntroduction

With over 140 internal functions and over 100 externa functions, ProVIEW
is an extremely powerful and flexible environment in which to perform signal and
image processing. This appendix, in conjunction with Appendix B and the HTML
based externa function list, is your guide and quick reference to these functions.
While this appendix lists the categories by which ProVIEW'’s functions are organized,
it also contains information as to the listings of the internal and external functions
within these categories.

The internal functions contained within the categories are marked by the
asterisks below in the list. The external function list can be seen by linking to the
following web addresshttp://www.actgate.com/pr oview/help/msf/default.htm]

For detailed descriptions and examples of the internal functions, see
Appendix B. The detailed descriptions and realtime examples of the external
functions can be seen at the above mentioned web address.

Categories of ProVIEW’s MSHELL Functions

The over 140 internal functions currently supported by ProVIEW's MSHELL
interpreter are divided into the following categories marked with an *. The external
functions are also divided among this list; they can be seen online via the above link.
The following represents the master tree whereby all functions, both internal and
external, are categorized.

+---Animation
+---Demo
+---Freg_Ops
| +-DCT
| \FFT]
\---Spatial_Ops
+---Correlation_Ops|
+---Gradient_Ops

|

|

|

|

|

|

| +---Local_Statistics
| +---M or phological
|

|

|

|

|

+---Resampling
| +---[nter polation]
| \---Irregular_Sampling
+---Resolution_Enhancement
\---Spatial_Blurring
+---Fitting_and_Estimation
+---Fractals
+---Geo_Xform
| +---Rot2D
| \---Rot3D
+---HTML_Tools
+---Intensity M apping
+---Look-Up-Table Operators
| \---Radiometric

A-64+ Appendix A : Function Tree

ProVIEW User’'s Manual

http://www.actgate.com/proview/help/msf/default.htm

* ok Kk k ok

* ok kK %k ok ok ok KX

\---Data_Formats
+---aess
+---Ceos
+---pds
+---ppm
+---Raw
+---Virtual
+---vpf
\---NetCDF

+---Matrix_Vector_Algebra
+---Mensuration
+---PHIT

+---Plot

\---Hyper spectral

+---Region_Ops

+---Groi_L ogical
+---Interactive_Selection
+---Overlapping_Regions
\---Row_M anipulations

+---Satellite_Image M apping

+---Coordinate_System_Xform
+---M osaics
+---Spherical_Geometry
\---Vector_Projection

+---Statistics

\---Sorting

+---String_Ops

+---System
+---Trigonometric Functions
\---Useful

+---Data_Formatting

+---Flow Control and Relational Operators

\---Image Display
+---Image Attributes
\---Image Window Attributes

ProView User's Manual

Appendix A : Function Tree ¢ 65

Appendix B : Internal Functions

(Alphabetical Listing)
Of

ProVIEW'sMSHELL
| nter preter

ProVIEW’s MSHELL Internal Functions (by Category):

A complete list, by category, of the the internal functionsis presented on the following pages

Filtering
blackw Blackman-Harriswindow
hammiw Hamming window

Freq Ops
DCT

dct2 computesthe 2D DCT of each 8x8 block of an image
dct8x8 computesthe DCT of each 8x8 block of an image
idct2 computestheinverse 2D DCT of a previous 2D DCT
idct8x8 computestheinverse DCT of a previous DCT

FFT
fft one dimensional Fourier transform
fft2 two dimensional Fourier transform
ifft inver se one dimensional Fourier transform
ifft2 inver setwo dimensional Fourier transform

Spatial_Ops
Correlation_Ops

convol convolutesan array with a kernel
convolt truncated convolution
spatf general spatial filter module
xcorr compute cross correlation between two arrays
xcorrfft computes the cross-correlation between FFT's
xcorrt truncated cross correlation between arrays
Local _Statistics
covm covariance matrix estimation
gauss compute the Gaussian density function
hist histogram of array elements
hist255 histogram of array elements (255 levels)
ggauss area under Gaussian density function
ggaussinv inverse of ggauss
randg gaussian random number gener ator
randinit initialize random number generator
randu uniform random number gener ator
Mor phological
skeleton a binary conversion filter
Resampling
I nter polation
blinterp bilinear interpolation
linterp linear interpolation
zinterp zero-order interpolation
Geo Xform
cmirror mirror image columns
rmirror mirror imagerows
shiftc perform a cyclictrandation
shiftt perform a non-cyclic translation

Intensity Mapping
L ook-Up-Table Operators

heglut uniform histogram equalization look-up-table
hyplut hyper bolic histogram look-up-table

select used to select an output look-up tablefor an image
wecolut[#] complete user definition of output look-up-tables
wolut[#] user -defined output look-up-table

B-68+ Appendix B : Internal Functions ProVIEW User’s Manual

xlut transform input through alook-up-table

callDLL callsaDLL for execution after having been loaded
closef close a file previoudy opened with ’openf’
dbclose closes the connection to a database
dbconnect creates a connection to alocal or network database
dbsgltr posts a formatted string to the database for submission
DDEExec Dynamic Data Exchange execution
DDEInit Dynamic Data Exchange initialization
DDEPoke Dynamic Data Exchange polling
DDERegS Dynamic Data Exchange request returned asa string
DDEReqV Dynamic Data Exchange request returned as a vector
DDETermDynamic Data Exchange ter mination
END ends execution of a script
iboxlist allowsfor choice of input options
include invoke a ProVIEW script file
inputbox input a value from keyboard into a list
load load arraysfrom disk
loadDL L loadsa DLL into memory and registersit with ProVIEW
openf open afile
print print valuesto standard output
reada read an array from disk
readf read from afile
readtext readstext from an ascii file
return stops execution of a script file
save savearraysto disk
writea writean array to disk
writecolor writesacolor .bmp filefrom 3ind. Arrays
writef writetoafile
Data Formats
Virtual
\% Virtual Variable
Vclose closes the above link between " V" and a disk file
Vnew allocates disk space for the abovevirtual link
Vopen links between thevirtual variable" V" and the disk
VPF
vec2image converts a “.vec” format to a proview image
Vpftblinfo returns vpf table database info
Shapefile
getshpinfo Get shapefile header information
shp2contour Shapefile to contour image
shp2filimage Shapefile fill image

Matrix_Vector_Algebra

array subtraction
array transpose

column augmentation

* array multiplication

*, corresponding elements array multiplication
/ array division

/. corresponding elements array division

: select an interval of rows or columns

i row augmentation

n a’b, araised a to power b

+ array addition

= assignment operator

abs absolute value of array elements

cell returns the ceiling for each element of an array
complex used to define a complex vector (a,b)

conj conjugate of array elements

exp e raised to each array element

floor returns the floor for each element of an array
fmod floating point modulus

ProVIEW User’s Guide Appendix B : Internal Functions B-69

imag

int

invm
log
log10
makecmplx
nint

real
sign
sqrt
sum
sumc
sumecum
sumr
svd
trace

Plot

colplot
contour [#]
dwor ld[#]
plot
plot2image
plot3d
rowplot
view4d

Region_Ops

imaginary part of array elements

integer part of array elements

array inverse

natural log of array elements

log base 10 of array elements

makes a scalar into a complex vector
nearest integer of array elements

real part of array elements

sign of array elements

squareroot of array elements

sum of all array elements

sum columns

row wise cumulative sum of array elements
sum rows

computesthe singular value decomp. of an array
sum diagonal elements

plotsa given column from an array

contour plot of an array

extractsa latlong region from the world database
plot arow vector, complex or real

uses coor ds. and intensity to form a shaded image
mesh plot or 3d plot of an array

plotsa given row from an

produces a 3d image which is given height by another

aoi lists pixel valueswithin activeregion of interest
bresen compute line segment between two points
ladd2groi local addition to generalized region of interest
pixval pixel value and mouse statusin an image

rfill fills determined polygons with roi's

text used to add text to an array for later display
Vroi variable region of interest

wdef define a region of interest

wmove move a region of interest

wsize dimensions of a rectangular region of interest
xline extract values along a line

xlinec extract coordinate points of a line

xlinev extract vertices points (end points) of a line
xpolyc extracts coordinate points of a polygon
xpolyv extracts vertices of a polygon
Groi_Logical

regionand

defines a roi which is the common area of two roi's

I nteractive_Selection

inputfocus puts focus to a specific variable for interactive selection
setroi allows for interactive selection of an roi using the mouse
varname returns the variable name of a variable

Overlapping_Regions

cmplxoverlap

finds the overlapping locations within another roi

Satellite Image Mapping

SatVIEW

SatVIEWpix

Statistics
mean
median
medianr
momentr

computes spacecraft image geometry for the corners
computes spacecraft image geometry for listed points

mean of array elements

median of array elements

median along the row of array elements
moment computations along rows

B-70+ Appendix B : Internal Functions

ProVIEW User’'s Manual

rcoeff
stats
var

Sorting
bthresh
eqgindex
geclipto
geindex
gtclipto
gtindex
index
leclipto
leindex
Itclipto
Ithresh
Itindex
max
maxmin
maxof
maxr
min
minof
minr
rindex
sortr

String_Ops
${ string}
$str (H#H#H,)
>
I
\

\\
egindexS
float2str
getline
getpos
int2str
itoa
nlines
smodify
str 2float
str2int
strlow2up
strup2low

System

addmenuitem
all

evaltext

exit

fileinfo
filesize
findfiles

free

getenv

help
M__(command)
mbox
menusel
meter

show

system
vartype

correlation coefficient between two arrays
computes basic statistics
variance of array elements

binary threshold of array elements

index of elementswith a specific value

clip values above and including threshold
index of array elements above a given value
clip values above threshold

index of array elements above a given value
index of non-zero elementsin array

reset values below and equal to threshold
index elementslessor equal to a given value
reset values below threshold

setsthe valuesless than tresh to the thresh
index elements lower than a given value
maximum of array elements

maximum and minimum of array elements
element by element maximum

returns the maximum for each row
minimum of array elements

element by element minimum

returns the minimum for each row

index all elementswithin a specified range
sort array elementsrow wise

used to definea string variable

returnsa subregion of astring

included multi-line comment

single-line comment

used asa control character within strings

line continuation

returns the complex position of each occcurence
convert a floating point number to atext string
returnstheline# of of the desired text within a string
returnstheindex of the desired text within a string
convert an integer number to atext string

convert an integer number to ascii(text)

returnsthe number of lines contained within a string
used to perform a search and replace within a string
convert anumber from ASCI| to float

convert anumber from ASCI| to integer

outputs a string which is the “uupercase” of the input
outputs a string which is the “lowercase” of the input

used to add a user-defined menu to the menu bar
used with “free” and “show” for all variables

used to evaluate a string for functionality

exit the ProVIEW interpreter
returns detailed file information

returns the size of a file in bytes

used to find a particular file or group of files

erase an array from memory

returns desired environment variable value

used to call the ProVIEW help directory

System Variables

brings a dialog box onto the screen with the specified text
used to select a menu item within an iboxlist
used to show percent of completion within a loop
display variables information

calls a DOS shell from within ProVIEW

returns the type of the chosen variable

ProVIEW User’'s Guide

Appendix B : Internal Functions

B-71

Trigonometric Functions

acos arccosine of array elements

asin arcsine of array elements

atan{r} arctangent of array elements

atan2{x,y} arctangent of value, preserving quadrant specifics
cos cosine of array elements

cosh hyper bolic cosine of array elements

sin sine of array elements

sinh hyperbalic sine of array elements

tan tangent of array elements

tanh hyper bolic tangent of array elements

Useful

(a,b,d) generatea 1-d or 2-d ramp

decimate decimate an array

geo geometric series

ident gener ate a squar eidentity array

ones generate an array of all ones

sinc compute the sinc function

zeros generatean array of all zeroes

Data_Formatting
convtoi convert row vector toimage
convtov convert a 2-d array to a onedimensional one
ncols return number of columnsin an array
nrows return number of rowsin an array
scale255 scaleinput tofit in the range of 0-255
zeropad add zeroesto an array

Flow Control and Relational Operators
1= test for inequality

&& logical and

I logical or

< lessthan

<= lessthan or equal to

== test for equality

> greater than

>= greater than or equal to
ifbreak exit if-block immediately
if-else if-else statement

pause pause ProVIEW's execution
while while statement

| mage Display
Image Attributes

text2image convertstext toimageform
textoverlay used to add a text annotation to an image
textremove used to remove a text annotation from an image
Image Window Attributes
m_dx used to define horizontal spacing between pixels
m_dy used to define vertical spacing between pixels
m_inter pflag selects the type of interpolation to useon an array
m_viewflag toggleswhether an imageisto be viewable or not
m_viewheight definesthe height of the display window
m_viewhscroll definesthe horizontal scroll position for a window
m_viewlut defines the active look-up table for an image
m_viewmaxval defines the maximum to be displayed
m_viewminval defines the minimum to be displayed
m_viewvscroll definesthe vertical scroll position for awindow
m_viewwidth defines the width of the display window
m_viewx0 definesthe upper left horizontal window position
m_viewyO definesthe upper left vertical window position
m_x0 used to definehorizontal position of upper left pixel
m_xunit used to define a string of horizontal units
m_y0 used to define vertical position of upper left pixel
m_yunit used to definea string of vertical units
wclose used to close a specific window

B-72¢ Appendix B : Internal Functions ProVIEW User’s Manual

wtile used to tile the existing windows

ProVIEW User’s Guide Appendix B : Internal Functions B-73

Internal Functions - Alphabetical List

Much of ProVIEW's power resides in the MSHELL Interpreter. With over 140
internal commands, ProVIEW has a flexible structure that readily permits tailoring to
specific applications through User Defined external functions and script files

This appendix is an alphabetical listing with descriptions and examples of all the
current ProvVIEW/M SHELL Internal Functions.

- Symbols -
(a,b,g,n]) Generatea1-D or 2-D ramp

Syntax: (start_value, end_value, step_size) 1-D
(start_value, end value, step_size, number_of _rows) 2-D
Description: returnsa 1-D or 2-D ramp of values
Example: The following applications illustrate the use of the 1-D and 2-D ramp
function.
[ready]: (O,3,1) //generate a 1-D row
0.00 1.00 2.00 3.00
[ready]: (0,1,0.2) /1 generate 1-Drow with fractional step size
0.00 0.20 0.40 0.60 0.80
[ready]: (3,0,1,2) /'l generate a 2-D natrix

3.00 2.00 1.00 0.00
3.00 2.00 1.00 0.00
[ready]: pi = 3.14159; /1 define P
[ready]: plot(2 + cos((0,4*pi, pi/l4))) /Il create a plot

Figurel
+ Array Addition
Syntax: atb
Description: The operator symbol + is used to perform the addition of two array

expressions. The actual sum isimplemented as:

C; =@ +hy; foralji
where j and i are, respectively, row and column indices. If ‘b’ is a scalar and ‘a’ is not, then ‘b’
will be added to each of the elements in ‘a’.

Example: The following MSHELL statements illustrate simple examples of array
addition,

ProVIEW User’s Guide Appendix B : Internal Functions B-75

[ready]: a = (10, 15,1) /I creates row vector ‘a’
[ready]:b=a /I copies ‘a’ into ‘b’

[ready]: c = a+b /I add corresponding elements in ‘a’ and ‘b’
[ready]: ¢ /I prints the ‘c’ row vector
(1070) X

row 0 =

20.00 22.00 24.00 26.00 28.00 30.00

[ready]: c+5 /l add 5 to every element in ‘c’
(1070) X

row 0 =

25.00 27.00 29.00 31.00 33.00 35.00

- Array Subtraction
Syntax: a-b

Description: The operator symbol - is used to perform the subtraction of two array
expressions. The actual subtraction isimplemented as:

C; =@ —b; foralj,i
where j and i are row and column indices respectively. lis'lal scalar and ‘a’ is nothen ‘b’
will be subtracted from all the elements in ‘a’.

Example: The following MSHELL statement will subtract array ‘b’ from ‘and store
the result in ‘c’.

|[ready]: c =ab |

* Matrix Multiplication
Syntax: a*b
Description: The operator symbot is used to perform the multiplication of two matrices

or arrays. The multiplication follows the rules of matrix multiplication used in linear algebra:

c, = Z a, , [ﬂ)n’j for all j, i;
n

where j and i are row and column indices respectively. An error message will be generated if
the number of columns in B not equal to the number of rows in 'b". Ifis’a scalar and ‘b’
is not (or vice versa), every element in ‘b’ will be multiplied by ‘a’.

Example: The following MSHELL statements illustrate simple examples of array
multiplication,

B-76¢ Appendix B : Internal Functions ProVIEW User’s Manual

[ready]: a = ones(3,3) I/l creates 3 x 3 natrix with all ones
[ready]: b = ones(1,3) /] creates 1 x 3 vector with all ones
[ready]: a /I prints ‘a’
row 0 =
1.00 1.00 1.00
row 1=
1.00 1.00 1.00
row 2 =
1.00 1.00 1.00
[ready]: b /I prints ‘b’
row 0 =
1.00 1.00 1.00
[ready]: b*a /I multiply row vector ‘b’ by matrix ‘a’
(1070) X
row 0 =
3.00 3.00 3.00
[ready]: a*b /I an invalid multiplication
>>>error = 4 ---incompatible dimensions
[ready]: b*4 /I multiply each element of ‘b’ by 4
row 0 =
4.00 4.00 4.00

*, Array Element Multiplication
Syntax: a*.b
Description: The operator symbol *. is used to perform the multiplication of

corresponding elements between two arrays. The multiplication isimplemented as:
C; =a b, foralji

where j and i are row and column indices respectively. An error message will be generated if
‘a’ and ‘b’ do not have the same dimensions.

Example: The following MSHELL statement will multiply corresponding elements in
array ‘a’ and ‘b’, and store the result in ‘c’,
[ready]: a = 1::2::3 /] creates a row vector
[ready]: a /1 print array
row 0 =

1. 00 2.00 3.00
[ready]: b = a
[ready]: ¢ = a*.b /1 mult. corresponding el enents
[ready]: c /1 print results
row 0 =

1. 00 4.00 9. 00

\\ Continuation Line delimiter

Description: The symbol\\ tells the MSHELL interpreter that the present statement will
be continued on the next physical line. Continuation lines can only be used within MSHELL
script files ¢.msf or *.msh)

Example: The following 2 lines of code illustrate the use of the continuation line
delimiter within a script function. The result of the expression is 21.
X = 4*5 + \\
1
Il Single Line Comment Delimiter
Description: The symbol // is used to specify that a single line comments will follow.

All characters that follow this symbol within a given physical line, will be ignored.
Example: The following illustrates the use of the single line delimiter.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-77

|[ready]: pi = 4*atan(1l.) // this text will be ignored

/ Array Division by Scalar
Syntax: alb
Description: The operator symbol / is used to perform the division of each element of an

array by a scalar. An error message will be generated i§ ‘hbt a scalar, i.e. a 1x1 array.
The actual division is implemented as:

c,; =a; /b foralji

where j and i are row and column indices respectively.

/. Element Array Division
Syntax: al.b
Description: The operator symbol/. is used to perform the division of corresponding

elements between two arrays. An error message will be generated if ‘a’ and ‘b’ do not have the
same dimensions. The actual division is implemented as:

Cii = aj]i/bj,i for all j, i;

where j and i are row and column indices respectively.

Example: The following MSHELL statement will divide the elements in array ‘a’ by
the elements in array ‘b’, and attempt to divide elements in array ‘a’ by a scalar.
[ready]: a = 1::3::5 /'l generates a row vector
[ready]: b = a
[ready]: a/.b /1 divide corresponding el enents
row 0 =

1.00 1.00 1.00
[ready]: a/.4 /1 since 'x' is not 1x1 an error occurs
>>>error = 4 ---inconpatible dinensions

A Raise Array Elements to a Power

Syntax: a™b
Description: The operator symbof or caret is used to raise the elements of an array to a

given constant power, or the power specified by the corresponding elements of another array.
The above statement will raise the elements in array ‘a’ to the power specified by the elements
in array ‘b’, where ‘a’ and ‘b’ have the same dimensions. For ‘a’ and ‘b’ input arrays, we have
the following:

If ‘a’ and ‘b’ have the same dimension, the actual operation is implemented as:
_ b .
C; =a; forallj,i
If ‘b’ is a scalar (i.e. a 1 x 1 array) and ‘a’ is not, the operation is implemented as,
boo
I

C; =a forallji

If ‘a’ is a scalar (i.e. a 1x1 array) and ‘b’ is not, the operation is implemented as,
_ by .
C;; =a,, forallji

where j and i are row and column indices respectively. Note that in each case the result ‘c’ is
an array; only in the case of both ‘a’ and ‘b’ scalars, will ‘c’ be a scalar.

Example:

B-78+ Appendix B : Internal Functions ProVIEW User’s Manual

[ready]: x = (1::3)#(4::5)// creates a 2 by 2 matrix
[ready]: x /1 print 'x’
row 0 =

1.00 3.00
row 1l =

4.00 5.00
[ready]: 27x /] raise 2 to 'x
row 0 =

2.00 8.00
row 1l =

16.00 32.00
[ready]: x70.5 /l raises 'x' to 0.5
row 0 =

1.00 1.73
row 1l =

2.00 2.24
[ready]: x”x /'l raises corresponding el enents
row 0 =

1.00 27.00
row 1l =
256. 00 ###. ##
[ready]: M format = "00000. 00"
[ready]: x”x
row 0 =

1.00 27.00

row 1l =

256.00 3125.00

Matrix Transpose

Syntax: a

Description: The operator symbol is used to generate the transpose of an array.
Mathematically, this operation isimplemented as:

C foralj, i;

row=i,col=j ~ aTow:j,coI:i

where j and i are row and column indices respectively in ‘a’.

Example: These MSHELL statements assigns the transpose of ‘a’ to ‘c’.
[ready]: data = randg(3,3)// generate a 3x3 random array
[ready]: data [/l print 'data
row 0 =

-0.18 0.10 1.36
row 1l =

0.61 0. 57 1.23
row 2 =

-1.10 1.55 -0.58
[ready]: data’ /1 transpose of 'data
row 0 =

-0.18 0.61 -1.10
row 1l =

0.10 0. 57 1.55
row 2 =

1.36 1.23 -0.58

Concatenate Arrays or Strings
Syntax: a::b

Description: Given two arrays with the same number of rows, this operation will append
the corresponding rows of one array to the other array. Likewise, given two strings (which can
be considered one row arrays or row vectors) this operation will append the two strings.

Example: For the arrays ‘a’ and ‘b’, the following MSHELL statement will append the
rows of ‘a’ to the rows of ‘b’, and store the result in ‘c’.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-79

|[ready]: c=a:b

The number of columns in ‘c’ is equal the sum of the number of columns in ‘a’ and ‘b’. The
following MSHELL commands will assign to the variable 'y’ the concatenation of two arrays.

[ready]: x = 1::2 /'l creates a row vector
[ready]: y = x::x /1 concatenates 2 vectors
[ready]: x
row 0 =

1.00 2.00
[ready]: vy
row 0 =

1.00 2.00 1.00 2.00

The following MSHELL commands will assign to the string variable ‘$strl’ the concatenation
of two strings.

[ready]: $str = "SSS" /] creates a string

[ready]: $strl = $str::" last name" //concatenates another string
[ready]: $strl

SSS | ast nane

Column Augmentation
Syntax: a#b
Description: Given two arrays with the same number of columns, this operation will

append the corresponding columns of one array to the other array.

Example: The following MSHELL statement will append the columns of ‘b’ to the
columns of ‘a’, and store the result in ‘c’.

|[ready]: c = a#b

The number of rows in ‘c’ equals the sum of the number of rows in ‘a’ and ‘b’. The following
MSHELL commands illustrate the above,

[ready]: a = (0,3,1)’ /'l creates a colum vector
[ready]: b = ones(2,1) Il creates a 2-d identity colum vector
[ready]: c = a#b /1 augnents a with b and assigns result to c
= Assignment
Syntax: c=a
Description: This operator symbol,= , is used to assign the output of an MSHELL

expression to a variable. MSHELL will not allow you to assign an array expression to an
already defined string variable, or vice versa.

Example; The following MSHELL statement will assign the sum of two constants to
the newly defined variable ‘c'.

|[ready]: c =4 + sgrt(3.333)

If the variable ‘c’ has already been defined its content will be changed, otherwise it will be

created.
Array Interval Delimiter
Syntax: x(:,n)
Description: Used to denote an interval of rows or columns.
Example: The following illustrates the use of the array interval delimiter:

To extract column number 3 of an array ‘X', type:

B-80« Appendix B : Internal Functions ProVIEW User’s Manual

[[ready]: x(:,3); |

To extract row number 2 in ‘X’ and assign it to 'y, type:

[[ready]: y = x(2,:); |

To extract the sub array in ‘x’ defined by rows 3 to 5 and columns 2 to 10, and copy to 'y’
type:
|[ready]: y=x(3:5, 2:10) |

To insert the array 'y’ into the array ‘x’ starting at row 8 and column O type:

|[ready]: x(8 , 0:) =y |

To extract an image block starting at row 9 and column 20 type

|[ready]: x(9:, 20:) |

Logical Relational Operators

< L ess Than Operator

> Greater Than Operator

<= Less Than or Equal To Operator

>= Greater Than or Equal To Operator

== Equivalent To Operator
I= Inequivalent To Operator
&& Logical AND Operator

I Logical OR Operator

Syntax: expressionl OPERATOR expression2
Description: These operators are used to perform logical checks on certain desired

expressions.

Example: Notice the use of separating parenthesis to establish precedence in the
example below:

if ((1==4.8) && (P>3)){
X=Y;
}

ProVIEW User’s Guide Appendix B : Internal Functions B-81

abs Absolute Value
Syntax: abs(a) or a.abs
Description: Returns the absol ute value of each element in the array.
Example: The following MSHELL statement will compute the absolute values for each

element of ‘a’.

[ready]: a=1::-2::3::-4 /1 stores these values on variable a
[ready]: abs(a)
row 0 =

1.00 2.00 3.00 4.00

acos I nverse Cosine
Syntax: acos(a) or aacosor
Description: Returns the inverse cosine of each array element. The output is in radians.

The actual mathematical expression computed is given by,
C;; =acos(a;;) forallj, i;
where j and i are row and column indices respectively.

Example; The following MSHELL statement will compute the inverse cosine of ‘a’,
and store the result in ‘c’.

|[ready]: c = acos(a) |

addmenuitem Adds a User Defined Menu Item

Syntax: addmenuitem "myscript.msh"
Description: Use this command to add the capability of invoking user defined script files
from within the graphical user interface, where "myscript.msh" is a valid script file.
Example; The following line will add the 'mdemo.msh' file to the menu item list under
User
|[ready] : addnenuitem "ndeno. nsh" |

all Allows for “all” Variables to be included
Syntax: freeall
Description: Use this command to access all variables at one time. It can be used with

show dll, to free dl variables, or with free dl, to free all variables.

Example: The following line will free all variables from memory
|[ready]: free all |

aoi Active Region of Interest
Syntax: image.aoi
Description: This command lists the pixel values within a previously selected region

of interest.

Note: Theregion of interest must be of conservative size considering the
requirementsto list all values within the region.

B-82¢ Appendix B : Internal Functions ProVIEW User’s Manual

asin Inverse Sine
Syntax: asin(a) or a.asin

Description: Compute the inverse sine of each array element. The output is in radians.
The actual mathematical expression computed is given by,

c; =asin(a;;) foralj,i;
wherej and i are row and column indices respectively.

Example: The following MSHELL statement will compute the inverse sine of ‘a’, and
store the result in ‘c’.

[[ready]: ¢ = asin(a); |

atan I nverse Tangent
Syntax: atan(a) or aatan
Description: Compute the inverse tangent of each array element. The output is in radians.

The actual mathematical expression computed is given by,

C,; =aan(a;) forallji

where j and i are row and column indices respectively. The returned values are b@Bveen
and+172.

Example: The following MSHELL statement will compute the inverse tangent of ‘a’
and store the result in ‘c’.

[[ready]: ¢ = atan(x); |

atan2 I nverse Tangent
Syntax: atan2(y,x)
Description: Computes the inverse tangent of each array element. The output is in

radians. Returns the arc tangent of y/x (in the range +1); atan2 produces correct results
even when the resulting angle is ned® or +172 (i.e. X near 0).

Note that the input values must be in the rangel @b +1, otherwise incorrect results will be
generated, also note that if both x and y are set td@h2(y,X) is set equal ta.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-83

Syntax:

Description:

blackw

blackw(n,m)

Blackman-Harris Window

Generates a 2-D (4 coefficient) Blackman-Harris Window. The n™ element

of the 1-D Blackman-Harris Window is defined as,

where,

W, =

, =0.35875, ¢, =0.48829, c,

-C E:os(z—l\f n) +c, E:os(z—Nn 2n) + ¢, Btos(z—N77 3n)

=0.14128, and c, = 0.01168.

This window has side lobes that are -92dB below the main lobe.

Example: The following generates a 256 x 256 Blackman-Harris Window.
[ready]: y = bl ackw(256, 256)

[ready]: [YSpectrun] = spectruniy]

[ready]: view Yspectrum

[ready]: roi = wdef(256-16, 256-16, 32, 32)

[ready]: plot3d(YSpectrun{roi))

78.52

34.48 4

-9.57 7

-53.61 1

—97.66

-141 .70 =

‘
VIA" ’0 &‘3«’“
= «3‘0

15.50

Figure2

blinterp
Syntax: blinterp(f,2)
Description:

Ui A
SVt \"“‘!"
P ‘rz"liizzl \‘.' ‘VI"‘%;\’,??«’
’t"':z‘(‘ II‘A\-I l ‘f 2N " ’\‘l
0 ""/,l "A' "I"I’ - 23_25

31.00

Bi-linear I nterpolation

Blinterp will bi-linearly interpolate between data points located in a two

dimensional square grid, e.g. an image. Where ‘f’ is a 2-dimensional real data array containing
the input image. The data points in ‘f' correspond to points in a square grid with an assumed
interpixel distance of 1 in the row or column axis and ‘z’ is a complex data array containing
the vertices at which the input image is to be bi-linearly interpolated. Specifically, the real part
of 'z’ contains the fractional column positions and the imaginary part contains the fractional
row positions at which the input image is to be interpolated. Note that for every point that

extrapolation is attempted the result is set to zero

Example:

The following example generates a simple test pattern image over a 4x4 grid.

The image is then bilinearly interpolated at the row coordinate 2.2 and column coordinate 1.2.

B-84+ Appendix B : Internal Functions

ProVIEW User’'s Manual

[ready]: f = hammiw(4,4) // test image

[ready]: f
row 0 =

0.01 0.04 0.08 0.04
row 1 =

0.04 0. 29 0.54 0. 29
row 2 =

0.08 0.54 1.00 0.54
row 3 =

0.04 0.29 0.54 0.29
[ready]: x = complex(2.2, 1.2)
[ready]: blinterp(f,x)

0. 573856
bresen Compute Line Segment Points
Syntax: bresen(z) or z.bresen
Description: Given the coordinates of two or more end points in the plane, this function

computes the points along the line segment between the points using the Bressenham’s Line

Drawing Algorithm. Thisfunction is particularly useful to define aregion of interest make out

of line segments. The argument ‘z’ is a complex row data vector in which the nearest integer
of the real part of z is used as the column positions, and the nearest integer of the complex part
of z as the row positions.

Example: The following usedresen to compute the screen coordinates of the points
joining 5 vertices.

[ready]: x = (0,4,1)

[ready]: = x"2 /1 generate points on a parabol a

y
[ready]: xy = conplex(x,y)// gen. vert. on the conplex plane
[ready]: bresen(xy)

[ready] :i mage = zeros(30, 30) /] create an array of zeroes
[ready] :i mage(bresen(xy)) = 255 // overlay conmputed |ine
[ready] : vi ew i mage /1 display the array

bthresh Binary Threshold
Syntax: bthresh(a,tval)

Description: Given an input array, ‘a’, and a threshold value, ‘tval’, this function returns a
clipped version of the input array. That is, every element in the input array less than the real
threshold value is set to zero, and every element greater or equal than the threshold value is set
to 1.

Example: The following illustrates the use of bthresh.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-85

[ready]: z = (0,5,1,4);
[ready]: z
row 0 =

0. 00 1.00 2.00
row 1 =

0. 00 1.00 2.00
row 2 =

0. 00 1.00 2.00
row 3 =

0. 00 1.00 2.00
[ready]: bthresh(z, 3)
row 0 =

0. 00 0. 00 0. 00
row 1 =

0. 00 0. 00 0. 00
row 2 =

0. 00 0. 00 0. 00
row 3 =

0. 00 0. 00 0. 00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

B-86¢ Appendix B : Internal Functions

ProVIEW User’'s Manual

-C-

callDLL CallsaDLL for execution
Syntax: callDL L ($dllname,$function,returned_paramters);

Description: This function is used to cal a DLL for execution. It must have been
previously loaded with loadDLL. The dll must not return any more than 5 values. The syntax
isdll filename, function name, returns(comma delimited).

See Also: | loadDLL LoadsaDLL for Execution|

Example: The following line calls the delaunay.dil for execution after having been
loaded with loadDLL. There is only a ‘z’ variable being returned by this dll; therefore, one
must return zeros for all unused placeholders.

|[ready] . call DLL("del aunay.dl ", "del aunay", z, 0, 0, 0, 0) |

ceil Find the Ceiling of an Array
Syntax: ceil(array);
Description: This function is used to find the ceiling of an array. The output has the same
dimensions as the original array. The output contains the ceiling for each element
Example: [ready]: x = ceil(1.2::3.4)

row 0 =

2.00 4.00

centroid Findsthe centroid of an object

Syntax: addmenuitem "myscript.msh"

Description: Use this command to add the capability of invoking user defined script files
from within the graphical user interface, where "myscript.msh" is a valid script file.

Example: The following line will add the ‘'mdemo.msh’ file to the menu item list under
User

|[ready] : addrenuitem " mdeno. nsh" |

closef CloseaFile
Syntax: closef(unit);
Description: This function is used to close a disk file previously opened usingpibre

function. It's argument, ‘unit’ is the integer file number assigned wdpanf was initially
invoked. Failure to close a file could result in a future error when doing disk i/o.

See Also: openf on pagq 135

cmirror Mirrors an Image Column Wise

Syntax: cmirror(a) or acmirror

Description: Mirrors the columns of the input array or image, ‘a’.
See Also: [mirror Row Mirrof

Example: The following illustrates the operation on the array ‘aa’.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-87

[ready]: aa = (1::2::3)#(4::5::6)#(7::8::9)
[ready]: aa

row 0 =
1.00 2. 3.00
row 1 =
4.00 5.00 6.00
row 2 =
7.00 8.00 9.00
[ready]: cmirror(aa) /1 print mirror array of aa
row 0 =
3.00 2. 1.00
row 1l =
6.00 5.00 4.00
row 2 =
9.00 8. 7.00
colplot Plotsa Row from an Array
Syntax: colplot(array,column#)
Description: Used to plot a particular column from an array.
cmplxoverlap Adds a User Defined Menu Item
Syntax: addmenuitem "myscript.msh"
Description: Use this command to add the capability of invoking user defined script files

from within the graphical user interface, where "myscript.msh" isavalid script file.

Example;
User

The following line will add the 'mdemo.msh’ file to the menu item list under

| [ready]: addnenuitem

"nmdeno. nsh" |

complex Createsa Complex Array
Syntax: complex(x,y)
Description: Given X' and 'y’ as real arrays with equal dimension, this function constructs

an array, ‘z’, of the form z = x+iy, where i = sqrt(-1).

Example; The following is a simple application of the function.
[ready]: conplex(0::3,4::3)
(1070) X
row 0 =

0.00+ 4.00i 3.00+ 3.00i

conj Array Conjugate

Syntax: conj(a) or aconj
Description: This function returns the complex conjugate of each element in the input

array ‘a’, i.e. it changes the sign of the complex part.

Example; For example, if x = 4+3i, theeonj(x) returns 4-3i.
contour Generates a contour pI ot
Syntax: contour [#](z,zlevels)
Description: This function generates a contour plot of the image or sub image region

selected where: 'z’ is a real array, with at least 2 rows and 2 columns; ‘zlevels’ is the row
vector with the contour levels that will be used; and ‘#' is the Plot Screen Number.

B-88+ Appendix B : Internal Functions ProVIEW User’s Manual

Instead of 'zlevels' you can use the following instruction to generate 11 different levels between
the maximum and minimum value of z:

z.mn+(z.max-z.mn)*(0,1,0.1)

.The ‘# parameter in the contour function is an optional integer number (between 0 and 255)
that selects the plot screen where the plot will be placed. If an integer number from 0 to 255 is
provided in this field the generated plot can be indexed from then on by that number. For
example, if x is an array, then

contour3(z,0.5::0.75)

will plot a contour plot of array ‘z’ on plot screen number 3, using for contour levels 0.5 and
0.75. If later on you want to free that screen type:

free plot3

See Also: "M_] System Variables] on page[173 for a complete list of
system variables which affect the plot related functions.

Example: The following MSHELL instructions generate a 32 x 32 hamming function,
which is then stored in ‘X', and then used to generate a contour plot of ‘x’.
[ready]: Mxl abel = "row index"; Myl abel = "colum index"
[ready]: x = hamm w(32, 32)
[ready]: contour10(x, x. nm n+(x. max-x.nmn)*(0,1,0.3))
convol Discrete Convolution
Syntax: convol(k,a)
Description: This function performs the discrete convolution of a given array, ‘a’, with a

kernel array, ‘k. The implementations used donvol and convolt are computationally
efficient for small kernel sizes. However, for large kernelsFBm implementation of the
convolution should be considered.

Given an image and the right kernel this function can be used to change the spatial resolution
in the image.

Given that array ‘a’ has dimensions (N x M),

an,o Q1 Ao m-1 E
0 @0 a; v-1 O
a-n : : O
[l]
[(AN-10 An-11 ay-gm-l

it is assumed that ‘as zero for any index outside of the implicit range specified above. Itis
required that the kernel, 'k’, be of odd dimension, say (2P+1 x 2Q+1), where P and Q are non-
negative integers satisfying:

2P+1<N,and 2Q+1< M.

The input kernel samples are assumed to map into a row range of (-P to P) and a column range

of (Qto Q),

Ek"f"Q k‘Ff*Q%
k-0 : C 0

a(+P,—Q k+P,+QE

The result of the convolution is the array ‘g’,

ProVIEW User’'s Guide

Appendix B : Internal Functions B-89

%g—l?,—Q gN—F:,M+Q%
g-0 - O

EgN+P—l,—Q gN+P,M+QE

whose elements g jj are given by,

P Q
9= > (Kg@ i),

p=—P4=-Q

By construction, indices outside of the specified range of values in the above ‘g’ matrix are
zero. Note that the output adnvol will have dimensions of (N+2P, M+2Q).

See Also: “convolt” below

Example: “convolt” below

convolt Truncated Discrete Convolution
Syntax: convolt(k,a)

Description: This function is similar to convol; in many instances you may only be
interested in determining how the elements in the range of ‘a’ are affected by the convolution
operation. This function truncates the convolution results by only evaluating ‘g’ over the range
of ‘a’, i.e., arow range of (0 to N-1) and a column range of (0 to M-1).

The implementations used @onvol andconvolt are computationally efficient for small kernel
sizes. However, for large kernels, BRT implementation of the convolution should be

considered.
Example: For arrays ‘a’ and 'k’ as definepnvol andconvolt are given as:
[ready]: a = (1,3,1)
[ready]: k = (3,1,1)
[ready]: convol (a, k) /1 exanpl e of convol
row 0 =
3.00 8.00 14.00 8. 00 3.00
[ready]: convolt(a,k) /'l exanpl e of convolt
row 0 =
8.00 14.00 8. 00

conwvtoi Convert Row Vector to |mage
Syntax: convtoi(a,ncols)
Description: Converts a 1-D row array , ‘a’, to a 2-D array where you specify the column

dimension, ‘ncols’. The resulting number of rows must be an integer. That is, if the row
vector had dimensions (1 x M), and the you are questing a column dimension of N, the output
array will have dimensions of ((M/N) x N),i.e. N must be a factor of M.

Example: The following converts the row array , ‘a’, to a 2-D array.
[ready]: a = 1::2::1::2 /1 create row vector
[ready]: convtoi(a,?2) /1 convert row vector to 2-col. array
row 0 =

1.00 2.00
row 1l =

1.00 2.00

convtov Convert Image to Row Vector

Syntax: convtov(a) or aconvtov

B-90« Appendix B : Internal Functions ProVIEW User’s Manual

Description: Converts the 2-D input array to a 1-D array containing only one row. That
is, if the input array, ‘a’, had dimensions (N x M), the output array will have dimensions of (1 x

(N*M)).
Example: The following converts the 2-D array, ‘a’, to a row array.
[ready]: a = (1,2,1,2) /] creates a 2x2 namtrix
[ready]: a
row 0 =
1.00 2.00
row 1l =
1. 00 2.00
[ready]: convtov(a) // converts matrix to row vector
row 0 =
1. 00 2.00 1. 00 2.00

CoS Cosine
Syntax: cos(a) or acos
Description: Returns thecosine of each array element. The input is expected to be in
radians.
Example: The following MSHELL statement will compute the cosine ofda&/ided by

2, and store the result in ‘c’.

|[ready]: c = cos(al2) |

cosh Hyperbolic Cosine
Syntax: cosh(a) or acosh
Description: Computes the hyperbolic cosine of each array element. The hyperbolic
cosine of x is evaluated as:
e +e™*
cosh(x) =——
2
covm Covariance Matrix Estimation
Syntax: covm(a) or acovm
Description: Computes an unbiased estimate of the covariance matrix established by the
column vectors in ‘a’. The actual estimation is done using the following equation,
1 -1

—1 q (ai - ac)(a'i - ac)t

I - 1=0
where, @, is the i"™ column in ‘@, anda, = sumc(a) is the column vector resulting by
averaging each row in ‘a’.

See Also: Fukunaga, K., “Introduction to Statistical Pattern Recognition”, for a detailed
definition.

ProVIEW User’s Guide Appendix B : Internal Functions B-91

dbclose Closes access to an external database

Syntax: dbclose($database)
Description: Use this command to close the al erady opened database.
Example: The following line will close the connection to the database “Clemen”.

| [ready]: status = dbclose(“Clemen”)

dbconnect Connectsto an external database
Syntax: dbconnect ($database)

Description: Use this command to connect to an external datbase. The string passed is the
name which has been previouly defined for the database in the ODBC administration tool.

Example: The following line connects to the external database “Clemen” for access.
| [ready]: status = dbconnect ("C enen") |

dbsgltr Transacts with an external database
Syntax: dbsgltr ($query,<$filenamep
Description: Use this command to post the passed string as the next query for the

previously connected database. The filename is an optional parameter which is for passing the
returned data to the named file.

Example: The following example will query the database “Clemen” for VOLID and
NEW_IMAGENAME based upon the five passed conditionals.

The following is the file “test.sql”.

SELECT VOLID, NEW_IMAGENAME

FROM Clemen (INDEX = clemen_ACT _idx)

WHERE (
(SENSOR_NAME='UVVIS) AND
(MISSION_PHASE="LUNAR MAPPING’) AND
(CENTER_LATITUDE>=86) AND
(CENTER_LATITUDE<=90) AND
(SLANT_DISTANCE<10000)

)

[ready]: status = dbconnect(“Clemen”)

[ready]: $query = readtext(“\\\arctic\mongo\\out.sql")
[ready]: $filename = “\\Warctic\mongo\\out.txt”
[ready]: M_time

[ready]: $result = dbsqltr($query,$filename)

[ready]: M_time

[ready]: status = dbclose(“Clemen”)

dct8x8 Discrete Cosine Transform (8x8)

Syntax: dct8x8(a)
Description: Computes the discrete cosine transform of each 8 x 8 block within the
specified array "a".

DDEExec Signal Decimation
Syntax: decimate(a,rowskip,columnskip)

B-92¢ Appendix B : Internal Functions ProVIEW User’s Manual

Description: Extracts a sub-sampled version of the input signal, where: ‘a’ is the input
array, ‘rowskip’ and ‘columnskip’ are the number of rows and columns, respectively, to be
skipped in each direction.

Example: A 512 x 512 input image, ‘a’, can be decimated to a 128 x 128 image, ‘b’,
using the following MSHELL statement,

|[ready]: b = decinate(a,4,4); |

DDEInit Signal Decimation

Syntax: decimate(a,rowskip,columnskip)

Description: Extracts a sub-sampled version of the input signal, where: ‘a’ is the input
array, ‘rowskip’ and ‘columnskip’ are the number of rows and columns, respectively, to be
skipped in each direction.

Example: A 512 x 512 input image, ‘a’, can be decimated to a 128 x 128 image, ‘b’,
using the following MSHELL statement,

|[ready]: b = decimate(a, 4, 4); |

DDEPoke Signal Decimation

Syntax: decimate(a,rowskip,columnskip)

Description: Extracts a sub-sampled version of the input signal, where: ‘a’ is the input
array, ‘rowskip’ and ‘columnskip’ are the number of rows and columns, respectively, to be
skipped in each direction.

Example: A 512 x 512 input image, ‘a’, can be decimated to a 128 x 128 image, ‘b’,
using the following MSHELL statement,

|[ready]: b = decinate(a,4,4); |

DDERegS Signal Decimation

Syntax: decimate(a,rowskip,columnskip)

Description: Extracts a sub-sampled version of the input signal, where: ‘a’ is the input
array, ‘rowskip’ and ‘columnskip’ are the number of rows and columns, respectively, to be
skipped in each direction.

Example: A 512 x 512 input image, ‘a’, can be decimated to a 128 x 128 image, ‘b’,
using the following MSHELL statement,

|[ready]: b = decimate(a, 4, 4); |

DDEReqV Signal Decimation

Syntax: decimate(a,rowskip,columnskip)

Description: Extracts a sub-sampled version of the input signal, where: ‘a’ is the input
array, ‘rowskip’ and ‘columnskip’ are the number of rows and columns, respectively, to be
skipped in each direction.

Example: A 512 x 512 input image, ‘a’, can be decimated to a 128 x 128 image, ‘b’,
using the following MSHELL statement,

ProVIEW User’'s Guide

Appendix B : Internal Functions B-93

|[ready]: b = decimate(a, 4, 4);

DDETerm Signal Decimation
Syntax: decimate(a,rowskip,columnskip)

Description: Extracts a sub-sampled version of the input signal, where: ‘a’ is the input
array, ‘rowskip’ and ‘columnskip’ are the number of rows and columns, respectively, to be
skipped in each direction.

Example: A 512 x 512 input image, ‘a’, can be decimated to a 128 x 128 image, ‘b’,
using the following MSHELL statement,

|[ready]: b = decimate(a, 4, 4); |

decimate Signal Decimation
Syntax: decimate(a,rowskip,columnskip)

Description: Extracts a sub-sampled version of the input signal, where: ‘a’ is the input
array, ‘rowskip’ and ‘columnskip’ are the number of rows and columns, respectively, to be
skipped in each direction.

Example: A 512 x 512 input image, ‘a’, can be decimated to a 128 x 128 image, ‘b’,
using the following MSHELL statement,

|[ready]: b = deci mate(a, 4, 4); |

dworld draws world contours
Syntax: dworld(latmin::latmax::longmin::longmax,rowdim::coldim)
Description: Generates a rowdimXcoldim image corresponding to the map of the world
for the selected range of latitudes and longitudes.
Example;
y = dworl d(-90::90::-180::180, 180: : 360)
y = 255-y // negate the inmage to force white background
view y

B-94+ Appendix B : Internal Functions ProVIEW User’s Manual

else else conditional
Syntax: telsg{
Description: Used in an if loop to specify what to do if the conditional is not met in the if
Statement.
Example: The usage of }else{ in an if statement.
x =0
i f(x==1){
$string = “good”
Jelsef{
$string = “bad”
}
END Ends Execution of a Script
Syntax: END (within a script)

Description: Used within a script to end the execution. It is to be placed at the end of the
script when to be compl eted.

egindex Equality I ndex
Syntax: egindex(a,b)

Description: Finds the locations of all the elements in an input array which equa a
constant value, where ‘as the input array and ‘b’ is the constant scalar quantity. This
function returns a (1 x M) complex array, where M is the number of points equal to the
specified value and whose array elements contain the coordinates of each point encoded as
follows: the real part contains the column index, and the imaginary. part contains row index of
the point. If no elements are matched, the vélue returned.

Example: Cases with matches and without are illustrated below.

[ready]: x = (0,5,1)
[ready]: eqindex(x, 3)

3 + 0i
[ready]: y = eqi ndex(x, 10)
--- NULL ARRAY ---

[ready]: y = eqindex(x, 10)
[ready]: y.ncols
0

egindexS Equality Index String
Syntax: eqindexS($a,$b)

Description: Finds the locations of all the elements in an input string which equal a
defined substring, where ‘$& the input string and ‘$b’ is the substring. This function returns

a (1 x M) complex array, where M is the number of points equal to the specified value and
whose array elements contain the coordinates of each string position encoded as follows: the
real part contains the column index, and the imaginary. part contains row index of the location.
If no elements are matched, the valliés returned.

ProVIEW User’s Guide Appendix B : Internal Functions B-95

Example;

[readyl:

[readyl: $string = "This is an example to demonstrate the use of egindexS."
[readyl: x = eqindexS<{Sstring,"de">

[readyl: x

18~@> %

pouw B =

22.80- B.88i

pow 1 =

49 .88- B8.88i

[readyl: _

evaltext Evaluates a String
Syntax: evaltext $str

Description: This function allows you to send a string to the MSHELL interpreter for
execution. Y ou can use this function to create variable names within a script file.

Example: Thefollowing lines of code illustrate the application.
i =1
$str = "x"::int2str(i)::"= hanmm w 32, 32) *255"
eval text $str
vi ew x1
num= 5
evaltext "$string = \"This is a very good nmanual .\""
$string
exit Exit MSHELL/ProVIEW
Syntax: exit
Description: This command will exit the MSHELL Interpreter and confirm if you want to

exit the ProVIEW environment and, if so, return you to the host operating system.

exp I nverse-Natural Logarithm
Syntax: exp(a) or aexp
Description: Computes the inverse natural logarithm of each array element in ‘a’, i.e.,
raise e to the power of each array element. The actual mathematical expression computed is

given by,
A -
¢, =e’" forallji
where j and i are row and column indices respectively,eardn(1).

Example; The following MSHELL statement will compute the inverse-logarithm of ‘a’
and store the result in ‘c’,

|[ready]: c = exp(a) |

B-96¢ Appendix B : Internal Functions ProVIEW User’s Manual

fft 1-D Fast Fourier Transform
Syntax: fft(a) or afft
Description: Computes the one dimensional Fourier transform of the rows of the input

array, ‘a’. The input as well as the output of this function may be a complex array. Note that
the row dimension of the input array must be a power of two

Example: If ‘a’ is an input array with dimensions of 64 x 64, then the one dimensional
Fourier transform of each row can be computedifts).

fft2 2-D Fast Fourier Transform
Syntax: fft2(a) or afft2
Description: Computes the two dimensional Fourier transform of the input array. The

input as well as the output of this function may be a complex array. It is expected that the
dimensions of the input array are a power of two.

Example: If ‘X" is an input array with dimensions of 64 x 64, then its power spectrum
in dB can be estimated using the following construction,

Power_spectrum = 20 * real(log10(fft2(x)))
See Also: spectrum.msf; Appendix B External Function

fileinfo Returns detailed information of afile

Syntax: fileinfo($fname)

Description: Returns the size of an existing file in bytes. |If the file does not exist it
returns-1.

filesize Returnsthesize of afile
Syntax: filesize($fname)
Description: Returns the size of an existing file in bytes. If the file does not exist it
returns-1.

findfiles Locate Filesin Directory Structure
Syntax: findfiles($path,$type)

Description: This function can be used to find all files starting at a given directory level,
‘$path’, and satisfying a matching criteria, ‘$type’. The function returns a string with all the
files that satisfy the matching criteria.

Example: The following returns all files with extension “chr” in c:\proview.

[ready]: $str = findfiles("c:\proview',"*.chr")
[ready]: $str

c:\provi em | MAGES\ EQOHARE. CHR

c:\provi ew | MAGES\ MANDEL. CHR

c:\provi ew | MAGES\ MSHELL. CHR

c:\provi ew | MAGES\ RMD00. CHR

float2str ~ Converts Float Array to a String
Syntax: float2str (a)

ProVIEW User’'s Guide

Appendix B : Internal Functions B-97

Description: Converts the input float array to a string which uses a comma as a column
delimiter and a carriage return as the row delimiter.

Example: The following array will be converted to a string.
[reaqy]: x = (45.54::34.71::23.16)#(10.08::9.13::46.82)
[ready]: $x = float2str(x)

[ready]: $x

45.54,34.71, 23. 16

10. 08, 9.13,46.82

floor Floor of Input Array
Syntax: floor (a) or a.floor
Description: For each element in ‘a’ compute the largest integer not greater than that
element, i.e. returns the Greatest Integer Value for each element of the array.
Example: The following illustrates the function.
[ready]: floor(3.3::4.5)
row 0 =
3.0 4.0
fmod Floating-Point Modulus
Syntax: fmod(a,b)
Description: Compute the floating point modulus of every element in the input array.
Example; The following illustrates the function.
[ready]: a = (4,6,1) /1 create row vector
[ready]: fnod(a+t.5,3)
row 0 =
1.50 2.50 0.50

free Free Variable from Memory
Syntax: freeab...c
Description: Used to erase a list of already defined variables from memory; alsdrieave

all, free plot[#] plot[#] plot[#]. The variable list can contain array variables or string
variables. To erase all variables from memoryfuseall. As you delete image variables the

total memory available will increase. However, the amount of memory increase may not
correspond directly to the size of the object just released. This is due to the fact that MSHELL
can have two different variable names sharing the same array structure in memory as long as
they have an identical content.

B-98+ Appendix B : Internal Functions ProVIEW User’s Manual

-G -

gauss N-Dimensional Gaussian Density
Syntax: gauss(a,invcov,det)
Description: Given a covariance matrix, this function evaluates the Zero Mean Multi-

Dimensional Gaussian Density Function. The gaussian density function is evaluated for each
column vector in ‘a’.

The actual mathematical expression evaluated for each column vector in ‘a’ is,

" O

where: 2 is the covariance matrix of the Gaussian density function with dimensions N x N (N
is the dimension of the columns in ‘a’); s a column vector in the input array (the function is

P i - . .
evaluated for each column in X’} is the matrix inverse of the covariance matrix; &
is the determinant of the covariance matrix.

The output of this function is a row vector of length equal to number of columns present in the
input array ‘a’.

geclipto Greater or Equal Clipto
Syntax: geclipto(a,tval,newval)
Description: Set all the values in the input array greater than or equal to a selected

threshold to a new desired value, where, ‘a’ is the input array, ‘tval’ is the threshold value, and
‘newval’ is the desired new value.

Example: The following illustrates the operation.
[ready]: x = (0,3,1)
X
rowd =
0.00 1.00 2.00 3.00
[ready]: y = geclipto(x, 2,999)
0.00 1.00 999.00 999.00
geindex Greater than or Equal Index
Syntax: geindex(a,b)
Description: Similar to egindex, but it returns an index to all elements in ‘a’ greater or
equal than ‘b’
Example: The following illustrates the operation.
[ready]: a = geo(-2,8)
[ready]: geindex(a, 16)
row 0 =
4.00- 0.00i 6.00- 0.00i
geo Geometric Series
Syntax: geo(a,n)
Description: Generates a vector whose elements are the first ‘n’ terms of the geometric

series of the input scalar, ‘a’. It is expected that ‘a’ be a real or complex scalar.
Mathematicallygeo(a,n) generates the row vector,

ProVIEW User’'s Guide

Appendix B : Internal Functions B-99

(ao al ... an—l)

Example: The following illustrates the operation.

[ready]: geo(-2,8)
row 0 =
1.00 -2.00 4.00 -8.00 16.00 -32.00 64.00 -128.00

getenv Get Environment Variable
Syntax: getenv($string)

Description: Returns a string which is the currently held value for the $string passed in
parenthesis. This $string isthe environment variable for which information isto be retreived.

[ready]: getenv(“PATH")
C:\WINNT40\SYSTEM32;

getline Finds Line Matching String Pattern

Syntax: getline($str,$pattern)

Description: Given a string variable, $str, this function can be used to find the line where
the string $pattern appears for the first time.

Example: The following example illustrates the function.

[ready]: $a = "Now \n is the \n time \n for all..."

[ready]: $a

Now

is the

time

for all...

[ready]: line = getline($a,"time")
[ready]: $b = $a(line,:)

[ready]: $b
time
getpos Finds String Position Within aLine
Syntax: getpos($str,$pattern)
Description: Given a string variable, $str, this function can be used to find the position

within aline where the string $pattern appeares for the first time.

Example; The following example illustrates the function.

[ready]: $a = "Now \n is the \n time \n for all..."
[ready]:$b = $a(2,:)

[ready]:$b

time

[ready]: getpos($b,"e")
4

getshpinfo Gets Shapefile Header | nformation
Syntax: getshpinfo($filename)

B-100-Appendix B : Internal Functions ProVIEW User’s Manual

Description: Given a shapefile filename, $filename, this function retrieves the header
information and returns an array containing the following values: file code (normally 9994),
file size (bytes), version (normally 1000), shape type, Xmin, Y min, Xmax, Y max.

Example: The following example illustrates the function.

a = getshpinfo("d:\\tenp\\admnm n98. shp")

a

(1070) X

row 0 =
9994, 000000 12440280. 000000 1000. 000000 5. 000000
- 180. 000000 -90. 000000 180. 000000 83. 623596

gtclipto Greater than Clipto
Syntax: gtclipto(atval,newval)

Description: Set al the values in the input array above a selected threshold to a new
desired value, where ‘a’ is the input array, ‘tval’ is the threshold value, and ‘newval’ is the
desired new value.

Example: The following illustrates the operation.
[ready]: x = (0,3,1)
X
rowo =
0.00 1.00 2.00 3.00
[ready]: y = gtclipto(x,2,999)

0.00 1.00 2.00 999.00

gtindex Greater than Index

Syntax: gtindex(a,b)
Description: Similar toegindex, but it returns an index to all elements in ‘a’ greater than
‘b
Example: The following illustrates the operation.

[ready]: a = geo(-2,38)
[ready]: a

1.00 -2.00 4.00 -8.00 16.00 -32.00 64.00 -128.00
[ready]: gtindex(a,8)

4 + 0i 6 +0

ProVIEW User’s Guide Appendix B : Internal Functions B-101

hammiw Hamming Window
Syntax: hammiw(n [,m])

Description: Generates a 1-D or 2-D Hamming Window, where the nth element in the
Hamming Window, is defined as,

w, = O.54—O.46cos(z—l\|77 h), n=012,..N-1

This window has side lobes in the frequency domain of -43dB. Note, the Hamming Window is
a specia case of the Blackman-Harris Window. The syntax for generation of a row vector
containing the 1-D, n element Hamming Window is, hammiw(n), and the syntax for
generating the 2-D n x m element Hamming Window is, hammiw(n,m). This 2-D array is
equivalent to the MSHELL construction:

hanmi w(n)’ * hamm w(m

Example; Let ‘a’ be an array with dimensions that are a power of two. The following
MSHELL command will multiply the array ‘atvith a 2-D Hamming Window, followed by the
2-D FFT,

fft2(hamm w(nrows(a), ncols(a)) *. a)

help I nvokes the Help Utility
Syntax: help [topic]
Description: You can invoke the help utility directly from the command line. An optional
topic argument can be provided to search for help on that topic.
Example; For help on theos function, type from the command line,
hel p cos

heglut Histogram Equalization LUT
Syntax: heglut(a) or aheglut

Description: Computes the 256 entry (8 bit) look-up-table (or intensity transformation)
which when applied to the input image, ‘a’, will result in a more uniform distribution of
intensity value.

Example; An image x can be subjected to the heglut intensity transformation, prior to
display, using the following MSHELL instructions,

weol ut 3 = ones(1, 3)*heql ut (X)
sel ect wcol ut 3;

Note that selecting wcolut3 does not change the content of the actual image in memory, only
the way that it is displayed.

hist Histogram Generator
Syntax: hist(a,amin,amax,n)
Description: This is a general purpose histogram generation subroutine. It performs a

histogram value of the element in the source input array. The elements on the input array are
first transformed by a linear equation which determines the range of the data to histogram, and
the number of bins on that range, where ‘a’ is the input array, ‘amin’ and ‘amax’ are the

B-102¢ Appendix B : Internal Functions ProVIEW User’s Manual

extreme values, and ‘n’ is the number of levels over which the input will be grouped. This
function is particularly useful with floating point data, whilest255", below, is optimized for
integer data in the range of 0 to 255.

hist255 Histogram of 8 bit data
Syntax: hist255(a) or ahist255

Description: Generate a histogram of the distribution of intensity values in the input array.
The data values within the input array must assume only integer values in the range of 0 to 255
inclusive. The returned vector has 256 entries; where a k positive value ifh theentry

implies there were k elements in the input array which assuméll traue.

Example: The following is a typical application.

[ready]:x = reada("eqohare.chr","char");
[ready]: plot(hist255(x))

8000 00 q
6000 00 A

» 4000 00 A

Il

T
0 00 100 00 200 00 300 00

Figure3
hyplut Hyperbolic Histogram LUT
Syntax: hyplut(a,imin,imax)
Description: Computes the 256 entries (8bit) look-up-table (or intensity transformation)

which when applied to the input image will result in a hyperbolic distribution of intensity
values. The input arguments are: the input image, ‘a’ and the intensity limits ‘imin’ and ‘imax’

, respectively, the minimum and the maximum values that any intensity value in ‘a’ can be map
to. Both ‘imin’ and ‘imax’ must be between 0 and 255 inclusive. It is expected that the input
image is representative of an image with 8 bits/pixel.

An advantage of using a hyperbolic lut is that it accounts for the assumed logarithmic or cube
root response of the photoreceptors of the human eye model, resulting in a perceived more
uniform distribution of intensity values. The actual intensity mapping utilized has the
following mathematical representation:

R.(1)

k =
hyplut(k) =i, dﬂﬁ[f
yp () min kanD

P.(j) = hist255(a)/(a.nrows*a.ncols)

ProVIEW User’s Guide Appendix B : Internal Functions B-103

1boxlist | nput Box List

Syntax: iboxlist(b)

Description: Thisis used to create an input box on the screen with alist of vaious options.
It allows one to modify various optionsin atable.

Example: The following MSHELL statement will create a 4x4 identity array in
memory,

[$title = "System Variables Editor"

$ilist ="

$item="Mcwd ="

$itendesc = "Sets the current working directory.\r\n" \\

i"Mewd = \"c:\\directory\""
$itemval = Mcwd
[list] add2list[$ilist,$item $itendesc, $itenval]
$ilist l'ist.text

$list = iboxlist($title, 40,$ilist)

idct8x8 | nverse Discrete Cosine Transform (8x8)
Syntax: idct8x8(b)
Description: Used to perform the inverse discrete cosine transform on an array "b" which

isthe DCT of aprevious function. The resultant will be identical to the original array previous
to the creation of "b", except for small errors resulting from computer roundoff errors.

ident Generate an | dentity Array

Syntax: ident(n)
Description: Create an N x N array in memory in which the main diagonal eleements are
set to value +1 and all off diagonal elements are set to zero.
Example: The following MSHELL statement will create a 4x4 identity array in
memory,
[ready]: ident(4)
row 0 =

1. 00 0. 00 0. 00 0. 00
row 1 =

0. 00 1. 00 0. 00 0. 00
row 2 =

0. 00 0. 00 1. 00 0. 00
row 3 =

0. 00 0. 00 0. 00 1. 00

| f |f Conditional

Syntax: if(expression){
statements
}
or
if (expression){
Statements

B-104+ Appendix B : Internal Functions ProVIEW User’s Manual

yelse

statements
}
Description: This condition is used to execute the statements if the expression is
considered true.
Ifft Inverse 1-D FFT
Syntax: ifft(a) or a.ifft
Description: Compute the one dimensional inverse Fourier transform of the input array. It

is expected that the row dimension of the input array is a power of two. Note that the output of
this operation is a complex array.

ifft2 Inverse2-D FFT
Syntax: ifft2(a) or a.ifft2
Description: Compute the two dimensional inverse Fourier transform of the input array. It

is expected that the dimensions of the input array are powers of two. Note that the output of
this operation is a complex array.

Imag Imaginary Part
Syntax: imag(a) or aimag
Description: For a complex input array, extract the imaginary part for each element in the
array.
Example: The following MSHELL statement will extract the imaginary part of the 2D

Fourier Transform of ‘a’, and store the result in ‘c’,

[[ready]: c = imag(fft2(a)) |

include Invokean MSHELL Script File

Syntax: include "fname"

Description: A file with a sequence of MSHELL commands can be invoked at any time
through the use of the include command, where “fname” is the name of the script file to be
executed.

Example: Given an MSHELL script file named ‘test.msh’, the MSHELL instructions
contained in the file can be executed by simply typindude "test" orinclude "test.msh".

In the first case above, the extension ".msh" was not included in the argument. In that case
MSHELL will try to open the file ‘test’, if that fails it will try again after adding the extension
.‘msh’. The system variable M_path establishes which directories, in addition to the present
directory, are to be searched.

See Also: "M_] System Variablds" on page 113.

Include System Script Files

Syntax : include “file2pds.msh”

Description: This script file is used to convert an existing image file to a PDS image file
whereby the new image file now contains a keyed header.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-105

Syntax: include "imgedit.msh"

Description: This script file is used for the editing of image files. It is the same script
which is called when one uses the “Imagelif Enage Attributes” menu.

Example:
B image tvibeses Eamimage |
=i B g [=]
[o [_coe |
- s
I I 1]
W il
- I
¥] Iil
4= |5 k3
Ty m e e e b el e el e o P e ;
b pmed i 3 e bt sl pppite Comedegin i
ra_slm I:'
Rl
CH| [=]
Syntax : include “img2pds.msh”
Description: This script file is used to convert open images to PDS images whereby the

new image now contains a keyed header.

Syntax : include “mpeg.msh”

Description: This script file is used for the creation of MPEG movies from a group of
existing similar image files. This script prompts the user for any needed information and gives
the capability of advanced functions or beginner use.

T UserChoie ||

Options:

Example:

Fegular Lsers
Advanced Users

Selection: Regular Users

B-106¢ Appendix B : Internal Functions ProVIEW User’s Manual

N MFEG Mowie Crestor |
fid gt Pkt Prisis .
P =]
il T il b = I Cancal I
ﬁf%-ilbru- 1] o
{5 H Lrabe o _
(£ rd Humdar L
;.n:l- kL] .
e k1T]
.Irll-|lr'--'l—.|-||'-r""'l1r||.1— o e s Bl s g L}
.!“']] Tm
Syntax : include “pdsmap.msh”
Description: This script file is used to map several or just one PDS formatted image onto a
lat-long annotated grid.
Example:
I File Selection Menu I
-Options:
Select thiz far image focus. n
Select this to enter a specific path/file or files. .
EXIT PROGRAM I
K
Selection: Select this for image focus.
Eotw Pl aed Fah +
=-|r|'i-.,-|-='ﬂ I'-w W * | [I
Entent e paths mch sy e s ot e pon,y oy by ki
L
Syntax : include “sysedit.msh”

ProVIEW User’'s Guide

Appendix B : Internal Functions B-107

Description: This script file is used to convert existing images to PDS image files
whereby the now contained a keyed header.
Example:
B e Vmimbie bl]|
nn J.,ww"_* =]
Hades ! | Corcd |
b tma = B CEFVEEARE A 1
Iol_fmirasd = O] @
[H_pisigs = 13
] r 15
i (4358
Jl_cerycn F
| b = LU0 0 L]
2] B Pl reh o) sk p *
M_peed = “z ilenclay
+
=1 -
index I ndex of Non-Zero Elements
Syntax: index(a,b)
Description: Similar to egindex, but it returns an index to al elements different than zero.
Example: The following illustrates the indexing.
[ready]: a = (-2,2,2,2)
row 0 =
-2.00 0.00 2.00
row 1l =
-2.00 0.00 2.00
[ready]: index(a)
row 0 =
0.00 - 0. 00i 2.00 -0.00i 0.00 +1.00i 2.00 +1.00i
i
inputbox Prompt User for I nput
Syntax: inputbox(prompt, title, default)
Description: Prompts for input through a dialog box, where al the input arguments are

strings. This function returns a string which can be convert to a number. See Also:
str2int and str 2float

Example: The following illustrates the instructions and the Dialog Box.
|[ready] : inputbox("enter new value", "INPUT MENU', "1")

enter new value

[

| oK I LCancel I

Figure4

B-108+Appendix B : Internal Functions

ProVIEW User’'s Manual

inputfocus Captures Array with Current Focus

Syntax: X = inputfocus

Description: Sets the defined variable equal to the variable whose window currently has
focus.
int I nteger part
Syntax: int(a) or aint
Description: Computes the integer part for each element in the input array, ‘a’.
Int2str Convertsan Integer Array to a String
Syntax: int2str(a)
Description: Converts the input integer array to a string which uses a comma as a column

delimiter and a carriage return as the row delimiter.

Example: The following array will be converted to a string.

[reaqy]: x = (45::34::23)#(10::9::46)
[ready]: $x = int2str(x)

[ready]: $x
45, 34, 23
10, 9, 46
invm I nverse of an Array
Syntax: invm(a)
Description: Computes the inverse of matrix "a", so that "a" multiplyed by its inverse

equals the identity matrix.

itoa I nteger to Ascii
Syntax: itoa(x)
Description: Converts the integer ‘X’ to a string.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-109

ladd2groi Local Addto Groi
Syntax: ladd2gr oi(groil,groi2)
Description: Thisisused to add two local generalized regions of interest together.
leclipto Lower or Equal Clip to
Syntax: leclipto(a,tval,newval)
Description: Set all the values in the input array, ‘a’, that are less than or equal to a

selected threshold value, ‘tval’, to a new desired value, ‘newval’.

Example: The following illustrates the operation.
[ready]: a = randu(1l,7)
[ready]: a
row 0 =

0.43 0.43 0.57 0.09 0.78 0.56 0.74
[ready]: leclipto(a,.50,1)
row 0 =

1.00 1.00 0.57 1.00 0.78 0.56 0.74

leindex Lower or Equal I ndex

Syntax: leindex(a,b)
Description: Similar toegindex , but returns an index to all elements in ‘a’ lower than or
equal to ‘b’.
Example: Using the array ‘a’, previously defined lieclipto,
[ready]: a = randu(1l,7)
[ready]: |eindex(a,.5)
row 0 =

0.00 -0.00i 1.00 -0.00i 3.00 -0.00i

linterp Linear | nterpolation

Syntax: linter p(f,x)
Description: Linearly interpolates between data points located on a one dimensional grid.

The function argument, ‘f’, is a 1-dimensional row vector with an assumed interpixel distance

of 1 along the axis, i.e. the element values of ‘f' can be considered the ordinate values for some
function over a set of increasing (or decreasing) abscissa values. The argument ‘X’ is a real 1-
Dimensional row vector containing values of the abscissa for which ordinate values are to be

linearly interpolated. For every point that extrapolation is attempted the result is set to zero.

Example:

The following two examples illustrate the function.

B-110-Appendix B : Internal Functions

ProVIEW User’'s Manual

[ready]: f
[ready]: f
(1070) X
row 0 =
0.01 0.04 0.08 0.04 // assuned abscissa values of: 0, 1, 2, 3
[ready]: x = (-1,7,1) * 0.5
[ready]: x
-0.50 0. 00 0. 50 1. 00 1.50 2.00 2.50 3.00 3.50
[ready]: linterp(f,x)
0.00 0.01 0.02 0.04 0.06 0.08 0.06 0.04 0.00
[ready]: y = 0.2
[ready]: linterp(f,y)
0.01376

= hami W(1, 4)

loadDLL Loadsa DLL for Execution
Syntax: loadDL L ($pathname)

Description: Used toload aDLL for later execution using callDLL. The path and name of
the DLL must be passed as a string.

Example: The following will load the “delaunay.dll”. Notice that the path to this file
has also been included.

|[ready] . loadDLL("c:/proview bin/del aunay.dl ") |

log Natural Logarithm
Syntax: log(a) or alog
Description: Computes the natural logarithm of each array element. The actual

mathematical expression computed is given by,
¢, =log(a;;) forallji
where j and i are row and column indices respectively.

The Log of zero is not defined and will generate an error, where akdbeof a negative
number will generate a complex number.

Example: The following MSHELL statement will compute the natural logarithm of ‘&’
and store the result in ‘c’,

|[ready]: c = log(a) |

log10 Base 10 Logarithm
Syntax: log10(a) or alogl0
Description: Compute the base 10 logarithm of each array element.La¢t0 of zero is

not defined and will generate an error, wheread tigd0 of a negative number will generate a
complex number. The actual mathematical expression computed is given by,

c;; =log,(a,;) forallji;
where j and i are row and column indices respectively.

Example: The following MSHELL statement will compute the base 10 logarithm of ‘a’
and store the result in ‘c’,

|[ready]: ¢ = 10gl0(a) |

ProVIEW User’s Guide Appendix B : Internal Functions B-111

Itclipto Lower than Clip to
Syntax: Itclipto(a,tval,newval)

Description: Set all the values in the input array, ‘a’, below a selected threshold value,
‘tval’, to a new desired value, ‘newval’.

Example: Using the array ‘a’, previously defined lieclipto,

[ready]: Itclipto(a,0.5,.0.2)
row 0 =

0.20 0.20 0.57 0.20 0.78 0.56 0.74

[thresh Lessthan Threshold
Syntax: Ithresh(a,b)

Description: This sets all values within "a" which are less than the treshold "b" equal to
the threshold.

Itindex Lower | ndex
Syntax: Itindex(a,b)
Description: Similar toegindex , but it returns an index to all elements in ‘a’ lower than
‘b
Example: Using the array ‘a’, previously defined lieclipto,

[ready]: Itindex(a,.5)
row 0 =
0.00- 0.00i 1.00- 0.00i 3.00- 0.00i

B-112¢ Appendix B : Internal Functions ProVIEW User’s Manual

-M -
M _ System Variables

Description: System variables are used to control different functions within the MSHELL
environment. Some of the MSHELL system variables are strings while others are numbers.
All system variables are prefixed byl ‘’. For example, to initialize the x-axis label to the
string "Time" use, M_xlabel ="Time".

Note that system string variables do not required the ‘$’ symbol normally associated with user
defined string variables. System variables can be read into other user defined variables, e.g.
$message ¥ _xlabdl, is a legal construction.

Approximately three quarters of the system variables are used in controllimgothand
plot3d function output.

The following list categorize and describes the various the system variables.

Seeinclude system files in this section foisysedit.msh which allows the user to change all
system variables at one time from a table. Also, under the Edit menu one can find the Edit
System Variables item which calls sysedit.msh.

Plot Related Variables

M _axis When usingplot3d you can control if a numeric axis is drawn or not
using theM _axis string; (string variable). IM_axis is set to "xyz" all the axis will be drawn.
If x,y, or z is omitted from the string the corresponding axis is also omitted.

M _blabel Bottom label used in plots; (string variable).

M_device Output plot device, values: 0 = DT2861, 1 = AL860HRG, 2 = Windows
Screen (default)

M _fxaxis Used to control the number of digits used in the x-axisMefor mat

for more information.

M _fyaxis Similar toM _fxaxis but for the y-axis.

M _fzaxis Similar toM _fxaxis but for the z-axis.

M _hidden If set to 0 hidden line removal will not be usedplot3d; default value

is 1 (use hidden line removal).

M _holdx Sets axis display: if O display is the extent of the data, if 1 display is
limited by M _xmin andM _xmax

M _holdy Similar toM _holdx but for y.

M _linetype Sets plot line type style. Valid line styles are: 0, for symbol; 1, for solid
line; and 2, for spikes.

M _panel If set to 1 a side panel will be used in thet3d; default value is 0.

M _phil Select rotation around z axis3dplot: values range betweef0-and90
(degrees).

M _phi2 Select out of plane angle Bdplot: values range betweeB0 and 90
(degrees).

M _tlabel Title label; (string variable).

M _xdir If set to O only the lines of constant x values will appear pios3d,;

default value is 1.

M _xlabel X axis label; (string variable).

ProVIEW User’'s Guide

Appendix B : Internal Functions B-113

M _xlog Log scale of x-axis, valid valuesare 0, 1, 2, or 3. If set to: O the option
is disabled; 1, 2, or 3 yield logarithmic scaling with increasing resolution; applicable to plot

only.

M _xmax Set maximum x-axis value, use M_holdx = 0 to cancel, M_holdx =1to
restore.

M_xmin Set minimum x-axis value, use M_holdx = 0 to cancel, M_holdx = 1 to
restore.

M _xnice If set to 1 the max. and min. for the x-axis are computedsuch that a nice
set of numbersis selected.

M _xtic Used to control the spacing of tic marks along the x-axis; default value is
1. Only appliesif M_xniceis set to zero.

M _ydir Similar to M_xdir but for y.

M_ylabel Similar to M_xlabel but for y.

M_ylog Similar to M_xlog but for y-axis.

M_ymax Set maximum y axis value, use M _holdy = 0 to cancel, M_holdy = 1 to
restore.

M_ymin Set minimum y axis value, use M_holdy = 0 to cancel, M_holdy = 1 to
restore.

M _ynice Similar to M_xnice but for y-axis.

M _ytic Similar to M_xtic but for y-axis.

M _zlabel Similar to M_xlable but for z.

M _zmax Maximum z axis value.

M _zmin Minimum z axis value.

M _znice Similar to M_xnice but for z-axis.

M _ztic Similar to M_xtic but for z-axis.

Image Display Related Variables

M _pframen Contains the active image plane number; (only for the AL 860HRG).
Text Output
M _format Controls the number of digits used when printing values to the

Command Line Window screen. For example, M_format = "00.000" specifies that the largest
value that can be represented, excluding the exponent, is 99.999. Anything larger than thisis
printed as ##.##H.

M _ptsize Controls the font size to be used when overlaying text to images using
the text2image commands; the available point sizesare: 9, 10, 12, 14, 18, and 24.

Time Related Variables

M_time Returns the system time; this variable is read only, no value is needed or
assigned.

[ready]: Mtinme
Tue Apr 25 12:04:35 1995

B-114+ Appendix B : Internal Functions ProVIEW User’s Manual

System Related Variables
M_cwd Sets the current working directory. For example, to set 'c:/mydir’ as the
current working directory type: M_cwd ="c:/mydir"

M _path The path string assigned to this variable will be searched when trying to
open an input file. For example, to set M_path to the directorys 'c:/mshell/bin’ &
'c:/mshell/msf’ type: M _path ="c:/mshell/bin; ¢c:/mshell/msf".

M_wdb This show the location of the world database.

M _windir Thisisthe windows root directory.

M _wwwr oot Thisisthe root www directory, which is used for ProVIEW Web.

M _echo This toggles the display of executed commands within a script file.

M _echo=1 causes all commands to be displayed as they are performed. M _echo=0 turns the
display of the commands off again.

Math Related

M _matherrflag Selects the manner in which math errors or exceptions are reported and
handled. If M_matherrflag = 0, no errors are reported. If M_matherrflag = 1, mathematical
exceptions are reported and script file execution halted until you acknowledge by clicking in a
popup window. If M_matherrflag is set equal to 2, mathematical exceptions are reported and
script file execution is halted.

m_ Array Window Operators
Syntax: m_Xxxxx(a)

See include system files in this section for imgedit.msh which allows the user to change all
image attributes at one time from a table. Also, under the Image menu one can find the Edit
I mage Attributes item which calls imgedit.msh.

m_x0 This is used to define the horizontal position of the upper left
pixel of an image within awindow.

m_y0 Thisisused to define the vertical position of the upper left pixel
of an image within a window.

m_dx Used to define the horizontal spacing between pixels of an
image.

m_dy Used to definethe vertical spacing between pixels of an image.

m_xunit Used to define a string of the horizontal unitsfor m_x0

m_yunit Used to define a string of the vertical unitsfor m_y0.

m_interpflag Used to select the type of interpolation to use when displaying
an array.

m_viewflag Toggleswhether an imageisto be viewable or not.

m_viewlut Used to definethe active look-up table for an image.

m_viewminval Used to define the minimum value to be displayed.
m_viewmaxval Used to define the maximum valueto be displayed.
m_viewheight Used to define the height of the display window.
m_viewwidth Used to define the width of the display window.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-115

m_viewhscroll
m_viewvscroll

m_viewx0

m_viewy0

m_view2fit

Used to definethe horizontal scroll position for a window.
Used to define the vertical scroll position for awindow.

Used to define the upper-left horizontal position of the display
window.

Used to define the upper-left vertical position of the display
window.

Used to expand the image to the extents of the window

makecmplx Makes a scalar into a complex vector

Syntax: makecmplx(x)
Description: Makes the scalar ‘x’ into a complex vector.
Example: The following demonstrates the operation.
[ready]: y = makecnpl x(5)
[ready]: vy
row 0 =

5 + 0i

max Maximum in Array

Syntax: max(a) or amax
Description: Find the maximum value of all the elements in the input array. Note that this

function is only valid for real input arrays.

Example; The following demonstrates the operation.
[ready]: a = randu(l,8)
[ready]: a
row 0 =
0.02 0.46 0.64 0.96 0.34 0.57 0.08 0.60

[ready]: max(a)

0. 95636

maxmin Maximum and Minimum in Array

Syntax: maxmin(a) or amaxmin
Description: Find the maximum and minimum values of all the elements in the input

array. Note that this function is only valid for real input arrays.

Example: The following demonstrates the process.
[ready]: a = randu(1, 100) //create a vector of random nunbers
[ready]: maxm n(a)
row 0 =

1.00 0.01

maxof Element by Element Maximum

Syntax: maxof(a,b)
Description: Computes the maximum on an element by element basis. In general, the two

input arrays must have the same dimensions. The only exception to this is when one of the
input arrays is a scalar. Note that this function is only valid for real input arrays.

Example: The following demonstrates the process.

B-116¢ Appendix B : Internal Functions ProVIEW User’s Manual

[ready]

X = randu(2, 2)

[ready]: x
row 0 =
0.01 0.22
row 1 =
0.12 0.38
[ready]: y = randu(2,2)
[ready]: vy
row 0 =
0.48 0.02
row 1 =
0.56 0.73
[ready]: maxof (x,Y)
row 0 =
0.48 0.22
row 1 =
0.56 0.73
maxr Row Maximum
Syntax: maxr (a)
Description: Computes the maximum for each row of array "a"' and strores
these val ues as a column vector.
mbox Text Box
Syntax: mbox($string)
Description: Prints to string to a dialog box on the screen.
mean Mean of Array Elements
Syntax: mean(a) or amean
Description: This module computes the mean of all the elements in the input array. The
formula used to compute the mean is
1 1-1J-1
C e a. foralj,i
o0 I E‘D 1=0 J=0 M

wherej and i are row and column indices respectively.

Example: The following demonstrates the application.
[ready]: a = randu(2,100) //create a matrix of ran. num
[ready]: nmean(a)

0. 503304

median Compute Median Value

Syntax: median(a)
Description: Compute the median value of all the elementsin the input array. The output
isascalar, i.e, alx1 array.
Example: The following demonstrates the process.
[ready]: a = randu(2, 100)
[ready]: median(a)

0. 502454

ProVIEW User’'s Guide

Appendix B : Internal Functions B-117

medianr Row Wise Median

Syntax: medianr (a) or amedianr

Description: Compute the median value along each row of the input array. The output isa
column vector with the number of elements equal to the number of rows in the input array ‘a’.

Example: The following demonstrates the process.

[ready]: a = randu(7, 100)
[ready]: medianr(a)’
row 0 =
0.46 0.53 0.47 0.48 0.47 0.53 0.48

menusel Selectsa Menu Itemin a List
Syntax: menusel ($title, $option3

Description: Returns the row position for the desired option within the $options list. The
title of the menu must be passed along with the options.

Example: The following demonstrates the process.
| [ready] : nenuv = nenusel (" Sone ProVI EW Denps", $opti ons) |

Some Pro¥lEW Demos

— Options:

DO ALL MOM-INTERACTIVE DERMOS
1. Image Rotation Example
2. Different Platting Modes
3. Image Gradient and Hough Transform
4. Moon Rotation from file list [cine loop)
8. Mandelbrat Fractal
E. Image ‘W arping ;I

Selection: DO ALL NOM-INTERACTIVE DEMOS

meter Displays a Metering Toolbar
Syntax: meter ($string, value)
Description: Draws a meter toolbar on the lower right hand corner of the screen. The first

argument, ‘$string’ is a text string used for description purposes. The second argumet, ‘value’,
is a scaler whose value controls the behavior of the meter toolbar. If ‘value’ < 0 the meter
toolbar is erased, if 0 <= ‘value’ <= 100 the meter toolbar is drawn with ‘value’ as a percent. If

‘value’ > 100 an error occurs.

Example: The following script file draws a meter toolbar.

i =0

whi | e(i <100) {
i =i+l
neter("hello",i);

neter("hello",-1)

B-118+Appendix B : Internal Functions ProVIEW User’s Manual

min

min(a) or amin

Minimumin Array
Syntax:

Description: Find the minimum value of all the elementsin the input array. Note that this
function is only valid for rea input arrays.

Example: The following demonstrates the process.
[ready]: a = (-2,2,1,2)
row 0 =
-2.00 -1.00 0.00 1.00 2.00
row 1l =
-2,00 -1,00 0.00 1.00 2.00
[ready]: min(a)

-2

minof Element by Element Minimum

Syntax: minof(a,b)
Description: Compute the minimum on an element by element basis. In general, the two

input arrays must have the same dimensions. The only exception to this is when one of the
input arraysisascalar. Note that thisfunction isonly valid for real input arrays.

Example: The following demonstrates the process.
[ready]: b = (-4,4,2,2)
[ready]: b
row 0 =

-4.00 -2.00 0.00 2.00 4.00
row 1 =

-4.00 -2.00 0.00 2.00 4.00
[ready]: a = (0,4,1,2)
[ready]: a
row 0 =

0.00 1.00 2.00 3.00 4.00
row 1 =

0.00 1.00 2.00 3.00 4.00
[ready]: minof(a,b)
row 0 =

-4.00 -2.00 0.00 2.00 4.00
row 1 =

-4.00 -2.00 0.00 2.00 4.00

minr Row Minimum

Syntax: minr(a)
Description: Computes the minimum for each row of array "a"' and strores

these values as a column vector.

momentr Row Wise Moment
Syntax: momentr (a,x)
Description: Compute the X" moment along each row of the input array, where ‘x’ can be

real or complex. The moment of terpw is defined as:

ProVIEW User’'s Guide

Appendix B : Internal Functions B-119

a.ncols-1
X
aJ 1i
1=0
Example: The MSHELL statements on the following page will compute the second
moment of each row of the array ‘a’ and assign the values to ‘b’.

[ready]: a = randu(100, 5)
[ready]: b = nonentr(a, 2)
[ready]: show a

--- a---
data type is : real
nunber of rows = 100
nunber of colums =5
maxi mum val ue = 0.995382
m ni nrum val ue = 0. 00161857
[ready]: show b
data type is : rea
nunber of rows =1
nunber of colums =5
maxi mum val ue = 7.25416
m ni mum val ue = 5.92651

[ready]: b
6.48 7.25 7.18 6.13 5.93

B-120- Appendix B : Internal Functions ProVIEW User’s Manual

-N -

ncaddvar NetCDF Add Variable
Syntax: ncaddvar ($fname,$varname,$vardims)
Description: Adds a new variable to an existing NetCDF file. The variable must use

existing dimensions from the NetCDF file, and specify them in order in $vardims.

Example: The following demonstrates the process. The example NetCDF file has 3
dimensions: plane, lat, and lon.

[ready]: status = ncaddvar(“temp.nc”,"mydata”,”plane\nlat\nlon\n”)
[ready]: status = ncaddvar(“temp.nc”,"planeinfo”,”plane\n”)

ncing NetCDF FileInquiry
Syntax: ncing($fname)

Description: Returns size and shape of NetCDF file $fname in a 1x4 array, and a list of

the variable names in the file. The format of the array is;. Number of dimensions::Number of
Variables::Number of Global Attributes::The Unlimited Dimension ID (if any). These
numbers come directly from call to NetCDF library function ‘nc_ing_var’. The .text portion
of the return variable will contain a list of the variable names from the file, separated by
newlines.

Example: The following demonstrates the process. The example NetCDF file has 3
dimensions, 4 variables, no global attributes, and no variables with an unlimited dimension.

[ready]: netcdfinfo = ncing(“temp.nc”)
[ready]: netcdfinfo

(20”70) X
row 0 =
3.00 4.00 0.00 -1.00

[ready]: netcdfinfo.text

Longitude
Latitude
Depth
Temperature
ncingvar NetCDF Variable Inquiry
Syntax: ncingvar ($fname,$varname)

Description: Returns the size and shape of variable $varname within NetCDF file
$fnameina 1xN array, where N is the number of dimensions of the requested variable. The
format of the array is: Size of dimension#l::Size of dimension#2::Size of
list of the N dimension names the variable makes use of.

Example: The following demonstrates the process.

ProVIEW User’s Guide Appendix B : Internal Functions B-121

[ready]: varinfo = ncingvar(“temp.nc”,”"Temperature”)
[ready]: varinfo
(2070) X
row 0 =
34.00 51.00 51.00

[ready]: varinfo.text

Depth
Latitude
Longitude
ncnew Create new NetCDF file
Syntax: ncnew($fname,$dims,varinfo,$varname)
Description: Creates a new NetCDF file. Parameter $fname is the filename to use. The

parameter $dims should contain the list of dimension names for the new file separated by
newlines. The varinfo parameter should match the $dims variable and provide the size for
each respective dimension. Finaly, $varname should contain the NetCDF variable name to
createin the new file. Currently, ProVIEW will only create a single variable NetCDF file.

Example; The following demonstrates the process. A new file called newfilenc is
created with two dimensions called diml, and dim2. A 100x100 variable using these two
dimensionsis created called myvariable.

[ready]: ncnew(“newfile.nc”,”dim1\ndim2”,100::100,"myvariable”)
0

ncols Number of Columns
Syntax: ncols(a) or a.ncols
Description: Returns the number of columnsin the input array.
Example: The following demonstrates the process.

[ready]: a = (0,255,1,10356) create 10357x256 matrix
[ready]: ncols(a)

256
[ready]: a.ncols /I this is an equivalent command
256
ncread NetCDF Variable reader
Syntax: ncr ead($fname, $varname) or ncr ead($fname, $varname, start,edges)

Description: Returns the data from a NetCDF variable $varname from $fname. The first
form reads in the entire variable. The second form allows an N-dimensional region of interest
to be read from the variable. The start variable gives the start position for each dimension of
the variable. The edges variable gives the length of each of the dimension to read.

Example: The following demonstrates the process. The ProVIEW variable img will
contain 51 rows and 51 columns from the first “plane” of the variable “Temperature”.
ProVIEW arrays storing more than one “plane” will be filled sequentially with each plane
requested.

B-122¢ Appendix B : Internal Functions ProVIEW User’s Manual

[ready]: img = ncread(“temp.nc”,"Temperature”,0::0::0,1::51::51)
[ready]: show img

_— |mg —

datatypeis :real

number of rows =51

number of columns = 51

maximum value = 28.833
minimum value =-1e+034
ncvarattstr NetCDF Variable Attribute String
Syntax: ncvar attstr ($fname,$varname, $attname)
Description: Returns the contents of the attribute $attname attached to variable

$varname from NetCDF file $fname as a string. An error will occur if the variable does not
exist. A blank string will be returned if the attribute does not exist.

See Also: hevarattval NetCDF Variable Attribute Value|
Example: The following demonstrates the process.
[ready]: ncvarattstr(“temp.nc”,”"Temperature”,"units”)
degC
ncvarattval NetCDF Variable Attribute Value
Syntax: ncvar attval ($fname,$varname, $attname)
Description: Returns the value of the attribute $attname attached to variable $varname

from NetCDF file $fname as an array. An error will occur if the variable does not exist. A
blank string will be returned if the attribute does not exist. Returns a Null string if attribute
contains an unknown numeric type.

See Also: hevarattstr NetCDF Variable Attribute String|
Example: The following demonstrates the process.
[ready]: ncvarattval(“temp.nc”,"Temperature”,”dtgymd”)
19981012
ncwrite NetCDF Write Variable
Syntax: ncwr ite($fname,$varname,img,ncstart,ncedges)
Description: Writes array img to an existing variable $varname in NetCDF file $fname.

The parameters ncstart and ncedges determine what position to start writing in the variable,
and how much to write in each dimension. For an N dimensional NetCDF variable, ncstart and
ncedges must be 1xN.

Example: The following demonstrates the process. The values 1::2::3 are written to the
beginning of the first row in the 2-D variable “myvariable” in NetCDF file “temp.nc”.

[ready]: ncwrite(“newfile.nc”,"myvariable”,1::2::3,0::0,1::3)
0

ncwr iteatt NetCDF Write Attribute
Syntax: ncwr iteatt($fname,$varname,$attname,val ue) or

ncwr iteatt($fname,$varname, $attname, $strval ue)

ProVIEW User’'s Guide

Appendix B : Internal Functions B-123

Description: Creates or modifies the value of attribute $attname associated with variable
$varname. If $varname is empty string, the attribute is added to the “global” attributes of the
NetCDF file. A floating point value (value), or a string ($strvalue) can be written.

Example: The following demonstrates the process.

[ready]: ncwriteatt(“newfile.nc”,"myvariable”,"version”,3)
0

[ready]: ncwriteatt(“newfile.nc”,”myvariable”,”Units”,"degrees C”)
0

nint Nearest | nteger
Syntax: nint(a) or a.nint
Description: Compute the nearest integer for each element in the array.
Example: The following MSHELL statement will compute the nearest integer for each
element of the input array, ‘a’, and store the result in ‘c’.
[ready]: a = randu(2,4) /] create a random 2x4 matri x
[ready]: nint(a)
row 0 =
0.00 1. 1.00 0.00
row 1 =
1.00 1. 0.00 0.00
nlines Returns number of Lines
Syntax: nlines($string)
Description: This function returns the number of lines contained in the string
"$string".
nrows Number of Rows
Syntax: nrows(a) or anrows
Description: Returns the number of rows in the input array.
Example: The following demonstrates the process.

10356

10356

[ready]: a = (0, 255, 1, 10356)
[ready]: nrows(a)

[ready]: a.nrows

//create 10357x256 matri x

/1 this command is equival ent

B-124« Appendix B : Internal Functions

ProVIEW User’'s Manual

-0 -

ones Initialize an Array to all ones
Syntax: ones(n,m)
Description: Create an array of the specified dimensions, with all elements set equal to 1.
Example: The following MSHELL statement will create a 512 x 512 array with all

entries set to 1,

[ready]:a = ones(512, 512)
[ready]: a(300,0:4) [/ print first 5 elenents in row 301
row 0 =

1.00 1.00 1.00 1.00 1.00

openf Open afilefor Formatted I/O

Syntax: openf(unit,"fname","mode")

Description: This function is used to open a disk file for formatted input or output. The

unit number can be any positive integer value. The selected integer value will identify the
opened file from then on. The file name, “fname” must be a valid file name in DOS. The
“mode” string must be one of the followings: "r" for read; "w" for write; or "a" for append.

If the write or append modes are tried on a non-existing file, the file will be createapértie
returns a O into status if successful. The system varigblpath will determine which
directories, in addition to the current directory, to be searchedMse&ystem Variables' on
page[11B.

See Also: writef andclosef

Example: The following will open "test.out" for output as unit number 1, and "test.in"
for input as unit number 2,

[ready]: status
[ready]: status

openf (1,"test.out","w');
openf(2,"test.in","r");

ProVIEW User’s Guide Appendix B : Internal Functions B-125

-P-

pause Suspend Execution for N Seconds

Syntax: pause(N)

Description: Will causes MSHELL to stop execution for ‘N’ seconds. If the value of ‘N’
is negative a pause dialog box will be opened. Note that ‘N’ can be a fractional number.

pixval Displays Pixel Status of Mouse
Syntax: pixval(a)
Description: This displays the pixel value and intensity corresponding with the

placement of the mouse when clicked within an image "a" ,after
having entered this command at the command line window.

Example; pixval(x)

Now click in the image "x" where you would like placement and
intensity status.

The following is returned:
<row position> <column position> <intensity> <button value>

The <button value> is 1 for a left click or 2 for a right click. Also, if the selection is made
outside of the image, then the first three values are all -1.

plot Plot a Vector
Syntax: plot[#](y) or plot[#](x,y)
Description: Plots a row vector. The parameter ‘#' in the plot function is an optional

integer (0 to 255) that selects the plot screen where the plot will be placed. If an integer
number from 0 to 255 is provided in this field, the generated plot can be indexed from then on
by that number. For example if ‘x’ is a row vector, tipdot 10(x); will plot the vector on plot
screen number 10. If you would like to free that screen later on you caifir égpelot10.

Note that the plot function can have either one or two arguments.

Single Argument Case: When one argument is used in the plot function aglat(y), the

row vector 'y’ will be plotted against an internally generated ramp of integer values. If 'y’ is a
complex vector then the real part of 'y’ will be used as the abscissa and the imaginary part of
'y’ as the ordinate.

Two Argument Casee When two arguments are used with the plot function, as in
plot(x,y); the first argument, X’ , corresponds to the abscissa values and the second argument,
'y’, corresponds to the ordinate values, i.e. a plot of 'y’ versus ‘x’ will result. Hence, for the
case that 'y’ is complexlot(y), is equivalent telot(real(y), imag(y)).

See Also: "M | System Variablest on page[1]3 for a complete list of
system variables which affect the plot function.

Example: The following MSHELL instructions generate two ramp vectors in memory,
‘X" and ‘y’, and plotsin(y) as a function oos(x); see Figure below and code following.

B-126¢ Appendix B : Internal Functions ProVIEW User’s Manual

sindy»

-1.00 T T T 1
-1.00 -0.50 0.00 0.50 1.00

cos (x>

Figure5

[ready]: x = (0, 3.14159*5,0.1);
[ready]: vy = 3.0 * x ;

[ready]: Myl abel = "sin(y)";
[ready]: Mxlabel = "cos(x)"
[ready]: plot(sin(y),cos(x));

plot2image Plotsan Image from Input

Syntax: plot2image(image,vec)
Description: Thisisused to build polygons and then fill them with a particular

color or intensity. "image" isthe image on which the polygons will
be built. "vec" isacomplex vector in which intensity and co ordinates are defines.
Example: xcoord = (intenisty:: xcornerl::xcorner2::xcorner3::xcorner4::......)

ycoord = (0,ycornerl::ycorner2;:ycorner3::ycornerd::......)

vec = complex(xcoord ,ycoord)

plot3d 3-D Plot or Mesh Plot
Syntax: plot3d[#](2)

Description: This function generates a hidden line surface plot using the values of an input

array, ‘z’. The plot3d function requires as arguments a real array, ‘z’, with two or more rows,
and two or more columns. You can also provide a row and column axis vector for annotation.
The parameter ‘#' in the plot function is an optional integer (0 to 255) that selects the plot
screen where the plot will be placed. If an integer number from 0 to 255 is provided in this
field, the generated plot can be indexed from then on by that number For example if ‘X’ is an
array, therplot3d10(x) will plot ‘x’ on plot screen number 10. If you want to free that screen
later on you can typfree plot10.

See Also: "M System Variables on page[113 for a complete list of
system variables which affect the plot functions.

Example: The following MSHELL instructions generate a 32 x 32 Hamming function
and displays the function as a 3d plot.

[ready]: row = (0, 15,1)

[ready]: col = (0,19, 1)+50
[ready]: z = hanm w16, 20)

[ready]: Mxlabel = "row index";
[ready]: Myl abel = "col umm i ndex"
[ready]: plot3d(z,row,col)

ProVIEW User’'s Guide

Appendix B : Internal Functions B-127

pol yfill Fillsan Image with Polygons

Syntax: polyfill(image, complex(l ndex,fill)::outlist)

Description: Fills and Image with Contained Polygons.

Example: Thefollowing MSHELL expression illustrates the use of the polyfill function
[ready]: Mformat = "000.000000"

[ready]: x =3

[ready]: print "The value of x =" x "\n"

The val ue of x = 3.000000

print Formatted Print
Syntax: print ".."
Description: Prints scalar values or strings to the standard output.
See Also: "M_format] on page [[14]
Example; The following MSHELL expression illustrates the use of the print statement
[ready]: M format = "000.000000"
[ready]: x =3
[ready]: print "The value of x =" x "\n"
The val ue of x = 3.000000

B-128+Appendix B : Internal Functions

ProVIEW User’'s Manual

Q

ggauss Area Under Gaussian Density

Syntax: ggauss(a) or a.qgauss
Description: Let Z(x) be the one dimensional Gaussian density function with zero mean
and unit variance, defined as
1 -5
Z(X)=——e ?

Va2

then qgaussreturns the integral of Z(x) from x to infinity,
I Z(x)dx
aj

for each element in the input array.

Example: The following MSHELL expressions compute the area under the Gaussian
density function (the probability) for values of 0 to 5 standard deviations.

[ready]: sigma = (0,5,0.1)
[ready]: plot(signm, ggauss(signm))

ggaussinv I nverse of ggauss
Syntax: ggaussinv(a) or a.qgaussinv

Description: Given an input array with values, with 0.0 < a; <10 that correspond to

probabilities under the normalized Gaussian density function, ggaussinv computes the decision
threshold values, t. ., that will generate those probability values. That is, ggaussinv computes

i
the values of t;; such that the area under the normalized Gaussian density between t;; and

infinity equals a;, i.e.

Example: The following MSHELL expression computes the ordinate values under the
Gaussian density function for arow vector with values of 0.25, 0.50, and 0.75.

[ready]: qgaussinv(0.25::0.50::0.75)
0.67 0.00 -0.67

ProVIEW User’s Guide Appendix B : Internal Functions B-129

‘R -

randg Gaussian Random Number Generator
Syntax: randg(n,m)
Description: This function is similar to randu, except that it generates independent

identically distributed (i.i.d.) Gaussian random numbers with zero mean and unit variance,
where, ‘n’ and ‘m’ refer to the number of rows and columns in the array of Gaussian random
numbers to be generated.

Example: Say, ‘a’ is an already existing array to which it is desired to add Gaussian
distributed random numbers with zero mean and standard deviation of 10. The following
MSHELL expression will add the Gaussian noise to ‘a’ and will save the result in c,

[ready]: randinit(30) //initialize random nunber generator
[ready]: a = (10,100, 1)

[ready]: c = a+10. * randg(a.nrows, a.ncols);

[ready]: plot(a,c)

randinit Random Number Seed I nitializer
Syntax: randinit(n)

Description: As this function is used to initialize the MSHELL random number generators
it does not return any value. To initialize a random sequenceratalinit using a scalar
value greater than 1.

Example: The initialization and subsequent use of a random generator,

[ready]: randinit(10) /1 initialize random nunber generators
[ready]: x = randg(1,100) // call gaussian. rand. num gnrtr

randu Uniform Random Number Generator
Syntax: randu(n, m)
Description: This generator produces independent identically distributed (i.i.d.) random

numbers between 0 and 1. It returns a pointer to an (n x m) dimensioned array structure, where
n and m are, respectively, the number of rows and columns of uniformly distributed random
numbers generated.

The uniform random number generator itself is an adaptation oR#&M1() generator
presented in “Numerical Recipes in C”, see pageR&ferences and Further Readings'.

This is a portable generator (given the same seed number it will generate the same random
sequence on all machines), which utilizes three linear congruential generators in producing
output.

Example; The following MSHELL expressions will add uniform noise, with intensities
between 0 and 10, to the array, ‘a’, and save the result in ‘c’,

[ready]: randinit(20) //initialize random nunber generator
[ready]: c¢ = a+10. * randu(nrows(a) , ncols(a))

r coeff Correlation Coefficient
Syntax: rcoeff(a,b)
Description: Estimates the correlation coefficient between two arrays, ‘a’ and ‘b’ with the

same dimensions. The correlation coefficient is a scalar. Although the correlation coefficient is
an internal function,. it could also be computed in terms of other MSHELL instructions as,

rcoeff(a,b) = (nmean(a*.b)-a.nean*b. nean)/sqrt(a.var*b.var)

B-130+Appendix B : Internal Functions ProVIEW User’s Manual

reada Read Array or Image
Syntax: reada("fname",$mode, cntvec])

Description: Reads an array or image from disk. The ‘$mode’ string specifies the format
of the data to be read from the disk. If the wrong mode is used with a given file the image will
not load properly. The image file formats (or modes) supported are: char, charflex, fits, tiff,
gif, pds, float, bmp, jpeg, asciiflex, and clemen_pds. Note that only the charflex and asciiflex
formats requires the additional argument ‘cntvec’, please see third and fourth examples.
Several examples using supported file formates follow.

See Also: M_path under M | System Variables} on pagd 11B.
chr The char format stores images by using 1 byte/pixel prefixed by MSHELL's

9 byte header, i.e. 4 bytes specifying the number of rows, 4 bytes specifying the number of
columns, and 1 byte specifying if array elements real or complex . This format can be used
both for both the reading and writing of data.

Example: Readeqohare.chr image.

[ready]: x = reada("eqohare.chr","char")
[ready]: view x

flex The flex format provides you significant flexibility when reading various byte/pixel
types of data. You can read the whole image or just specified subregions of the image. This is
accomplished by using an additional argument, ‘cntvec’. This is a vector with specific data
read criteria, and is formated as follows:

in_sizej:: /* nunber of rows in input image */ \\
in_sizei:: /* nunber of col. in input imge */ \\
hsi ze: : /* header size to skip (if any) */ \\
jstart:: /[* start row */ \\

istart:: /* start colum */ \\

jend:: /* end row */ \\

iend:: /* end colum */ \\

jstep:: /* read every 'jstep’ row */ \\

i step /* read every 'istep’ colum */ \\

The syntax for this format is thenteada("eqohare.chr”,"flex_type",cntvec)
The format specifier is “flex_type”; this string can be any of the following:

“char”

“PC16”

“PC32”

“SUN16”

“SUN32"

“PCFLOAT”

“SUNFLOAT”

Example: Reading a portion of thegohare.chr image.

[ready]: eqohare=reada("eqohare.chr","char", \\
256::256::9::128::128::255::255::3::1)
[ready]: view eqohare

This format is easier to use from the menu with File|]l mage Open option since a dialog
box, illustrated in Figure 4, is provided to facilitate entery of the data read criteria.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-131

FLEX Reader Options]

& BYTE PCFLOAT
numberafraws: [T | |0 PCAR £ SUNFLOAT
number of cols: IU— i PC32

header size: ID— ' SUN-1B
" SUN-32
zhart row:lﬂ— start col: IEI—
end row:lﬂ— end col: IEI—
=] step:|1 col step: |1

2

annceI

Figure 4 - Charflex dialog box

float Thefloat format is similar to the char format but the datais stored in floating

point using 4 bytes/pixel.

Example: Creating, writing, and then reading in afilein float formet,

[ready]: y = witea("out.flt", randu(3,3), "float")

[ready]: x = reada("out.flt","float")

ascii The ascii format storesimagesin ASCII. A typical ASCII file will look like:
3 3 0

-1 0 1

-2 0 2

-1 0 1

where the first row is a three element header containing the number of rows, the number of
columns, and the real-complex flag (0 = real, 1 = complex). This header is followed by the
image data stored lexico-graphically in ASCII. This format can be used for both the reading
and writing of data.

Example: Creating, writing, and then reading in afile in ascii format,

[ready]: y = writea("out.asc", randu(3,3), "ascii")

[ready]: x = reada("out.asc","ascii")

asciiflex The asciiflex format permits you to load selected rows and columns from an

ascii file. Note that the elements in the ascii file must be comma delimited. A typical
ASCII(flex) could look like test.asc, below:

This is a sanple user file
3, 1, gain= 2, tint=3
-1, 0, gain= 22, tint=3
-2, 1, gain=n/a, tint=3
0, 2, gain= 3, tint=0
This is the end of the file

where ascii text can be mixed in with the numerical data to be extracted. Note that this read
process searches for and accepts the first number it encounters after a delimiter. The syntax is

similar to that of char(flex) , using a control vector, 'cntvec" to provide the specific read
parameters. The control vector structure, which is differs from that of charflex, is formated as

follows:

first_ row: /* first rowto read */ \\

| ast _row : /* last row, if -1 read to last row */ \\
nnchar: : /* non nuneric character flag */ \\

B-132¢ Appendix B : Internal Functions ProVIEW User’s Manual

hdr subset : : /* vector of columm nunbers to read */ \\
cntvec = firstrow :lastrow :nnchar::col vec

w

cntvec.text = “,

The text portion of the control vector contains the delimiter to use for ascii reading. Note that

the non-numeric charecter flag value, 'nnchar’ is assigned to any array entry encountered in the

read process that does not contain an ascii humeric data. The syntax for this format is then:
reada("test.asc","asciiflex" ,cntvec)

Example: Reading a portion of the test.asc file.

[ready]: cntvec = 1::-1::-999::0::2 //read rows 1 to end, colums 0 and 2
[ready]: cntvec.text ="

[ready]: data = reada("test.asc","asciiflex”,cntvec)
[ready]: data
(1070) X
row 0 =

3.00 2.00
row 1=

-1.00 22.00
row 2 =

-2.00 -999.00
row 3 =

0.00 3.00
row 4 =
-999.00 -999.00

Note that in the above example, only the numeric data was extracted from the array entries of
column 2; in those cases, rows 3 and 5, that contained non numeric data the designated 'nnchar’
value has bee assigned. This flexability in extraction of numeric information from ascii text
commented data arraysis a very powerful processing tool.

bmp The bmp format is the windows Bit Map Format (BMP). This format can be
used for both the reading and writing of images.
Example: Reading afilein bmp format,

| [ready]: x = reada("mandel.bmp","bmp") |
PDS The PDS format used is the implementation of the Planetary Data System
Format adopted by the Clementine mission.
Example: Reading afilein PDS format,

[ready]: // reads image object

[ready]: x =reada("lual472h.202","clemen_pds_image_uncorr")
[ready]: // reads browse image object

[ready]: x=reada("lual472h.202","clemen_pds_browse_uncorr")
[ready]: /I reads histogram object

[ready]: x=reada("lual472h.202","clemen_pds_hist_uncorr")

readf Formatted File Read

Syntax: readf(unit,"format" ,arrayname) or
readf(unit,"format",stringname)

Description: This function is used to perform a formatted read of a scalar or a string from

afile unit which has already been opened using the openf command. Only one value or string

can be read at a time. The format string follows a similar form to the “C” language formatting
options, where %s is used for strings, and %f, %g, %e are used for floating point numbers.
The first command above is used for reading a value into an already existing array. After
executing the eadf the array will have dimensions of 1x1, i.e. a scalar. The second command
above is used for reading a string into an already existing string variable. riéatifeis
successful it will return a value of 0. On end-of-file (eof) a value of -1 is returned.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-133

See Also: openf on page[125]and
M _path under "M | System Variables on page [.13

Example: Assuming that unit 1 has been aready open with an openf statement, and
that the variables ‘x’ and ‘name’ are respectively, an array variable and a string variable, then
the following MSHELL statements are legahdf statements,

[ready]: status
[ready]: status
[ready]: status
[ready]: status
[ready]: status

readf (1," %", $nane) ;
readf (1,"%", x);
readf (1,"9%t. 2", x);
readf (1, "%", x);
readf (1," %", Xx);

readtext Loads Text File

Syntax: readtext($fname)
Description: This function is used to load a text file into memory.
Example: Read then display the script file flyby.msh,

[ready]: $x = readtext("c:/proview nsh/flyby.msh")
[ready]: $x
V = Vopen("d:/cl emen/ nvi ew uvvi sn/ fe_0tol8.chr" \\
5760: :11521::1::0,wdef (0,0, 1, 1), 0);
flyby = 0
view flyby;
time
i =0;
whi | e(i <35) {
neter("flyby denp conpletion",i/35*100);
angle = i/35*%6.28
roi = wdef (2336+128*cos(angl e), 6926+128*si n(angl e), 256, 256)
flyby = V(roi)
i =i+l

neter("",-1);
time
[ready]: evaltext $x

real Real Part of an Array
Syntax: real(a) or areal
Description: Returns real part for each element in the array ‘a’.
Example: The following MSHELL statement will extract the real part of the Fourier

Transform of ‘a’, and store the result in ‘c’,

c =real(fft2(a));
|[ready]: eval text $x |

regionand Definesa ROl as Common of Two
Syntax: regionand(roi,roi2)

Description: Defines a new region of interest which is the common (overlapping) area of
two other regions of interest (rand roi2).

return Returns From an Include File
Syntax: return
Description: Stops the execution of an include file and returns control to the calling

process.

B-134+ Appendix B : Internal Functions ProVIEW User’s Manual

rfill
Syntax: rfill(a,b)

Description: Finds the subregion of an image(’b’) which is all points contained within a
created groi from a list of polygonal verti¢as).

Fillsa subregion

Example:

[ready]l: groi = complex{2@.1208>: :conplex{280.28>: complex(2B8, 2385 : :conplex(138,128)
[readyl: x = zeros(255,255)

[readyl: groi2 = pfilldgroi,wdef(@d.8.255,.2550>

[ready]l: x{(groi2> = 188

[readyl: groild = rfilldgroi,wdef<(@d.08.128.128>>

[ready]l: x{(groild> = 288

[readyl: _

rindex Range | ndex

Syntax: rindex(a,minval,maxval)

Description: This function finds the location of all the elements of an input array which
fall within a specified range of values, where ‘a’ is the input array, and ‘minval’ and ‘maxval’
are scalar values specifying the selection range. This function returns a (1 x M) complex array,
where M is the number of points equal to the specified value and whose array elements contain
the coordinates of each point encoded as follows: the real part contains the column index, and
the imaginary. part contains row index of the point. If no elements are matched, thelvalue
returned.

Example: The following illustrates the function using the array ‘a’.
[ready]: a = randu(2, 6) /] create random 2x6 natrix
[ready]: a
row 0 =

0.08 0.59 0.23 0.46 0.93 0.13
row 1 =

0.79 0.19 0.39 0.33 0.71 0.67
[ready]: rindex(a,.4,.5)
3 + 0i

rmirror Row Mirror

Syntax: rmirror(a) or atmirror
Description: This function yields the mirror image of the input array over its rows, e.g.,

the last row will become the first row.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-135

See Also: cmirror

Example; Creates array ‘a’ and then does the row reflection,
[ready]: a = randu(3, 3)
[ready]: a
row 0 =
0.96 0.42 0.93
row 1 =
0.17 0.31 0.90
row 2 =

0.75 0.58 0.65
[ready]: rmrror(a)

row 0 =

0.75 0.58 0. 65
row 1 =

0.17 0.31 0.90
row 2 =

0.96 0.42 0.93

rowpl ot Plots a Row from Array
Syntax: rowplot(array,row#)

Description: Used to plot a particular row from an array.

B-136¢ Appendix B : Internal Functions ProVIEW User’s Manual

$string String Access Control

Syntax: Sstring(#:#,#:#)

Description: Thisisused to extract a particular area of text out of alarge string.
The first ## identifies the line range, and the second #:# determines the column range within
the string.
Example:

[readyl: Sstring = " This is an example of string extractionsnFirst, one may create a
[readyl: Sstring

This is an example of string extraction

First, one may create a string and then

will later pick a region to extract.

[readyl: Sstring(@:1.12:18>

example

ay crea

[readyl: _

SatVIEW Geometry I nfo. for Satellite Images
Syntax: SatVIEW ($epoch,$camera,$centralbody,exposure)

Description: ProVIEW provides the built-in function, SatVIEW, as a method of
computing spacecraft image geometry using the SPICE (Spacecraft Planet Instrument Camera
Events) formats developed by the Navigation and Ancillary Information Facility (NAIF) at the
Jet Propulsion Laboratory. SatVIEW, caled from the command shell within ProVIEW,
requires a timestamp, instrument name (ID), and exposure duration, to return an array of
observation geometry parameters.

Calling Syntax:

y = Sat VI EW $epoch, $caner a, $cent r al body, exposur e)

[INPUT]

$epoch Start time of image . Example: “27FEB94/20:12:34.513”
$camera Camera for which the values will be computed.

$centralbody Body for which all SUB_SPACECRAFT values are computed.
exposure Time (in seconds) of the exposure duration for the sensor.
[OUTPUT]

Row vector with 59 entries containing image geometry values computed by SatVIEW.
The indices of the returned array correspond to the list given in Tablel on the next page.

If ProVIEW was installed in the ‘c:’ drive, SatVIEW will look for a SPICE kernel definition
file in 'c:/proview/satview/satview.ini', an example is illustrated below,

[LDPOOL]
; Text PCK file containing other planetary constants
kernel 1=c:/ provi ew sat vi ew pck00003. t pc
; Leapsecond Kernel File
kernel 2=c: / provi ew sat vi ew nai f0004.tls
; Clenentine H RES Instrument kernel
ker nel 3=c:/ provi ew satvi ew hi res007. ti
; Cenmentine W/ Visible Instrument kernel
kernel 4=c: / provi ew satvi ew uvvi s007. ti
; Clenentine Near InfraRed Instrument kernel
kernel 5=c: / provi ew sat vi ew ni r007. ti

Cl ementine Long Wave I nfraRed I nstrunment kernel

kernel 6=c:/ provi ew satview | wi r007. ti
; Cenentine Star Tracker A Instrument kernel

ProVIEW User’'s Guide

Appendix B : Internal Functions B-137

kernel 7=c: / provi ew satvi ew astar005. ti

C enentine Star Tracker B Instrunent kernel

i<er nel 8=c:/ provi ew sat vi ew bst ar005. ti
; SC SCLK Ker nel

i<er nel 9=c:/ provi ew sat vi ew dspse002. t sc

[SPKLEF]

; Clenmentine Binary SP-Kernel (spacecraft epheneris)
kernel 1=c:/ provi ew sat vi ew cl endef 0. bsp
Bi nary SP-Kernel of Planetary Epheneris

ker nel 2=c: / provi ew sat vi ew de245. bsp

[CKLPF]

; Cenentine Binary C-Kernel (spacecraft pointing info)
kernel 1=c:/ provi ew sat vi ew cl endef 1. bck

[PCKLOF]

; Lunar Binary PC Kernel (Euler angles of noon-Mean Earth Frane)

ker nel 1=c: / provi ew sat vi ew nel i b245. bpc

Return (continue)

Vector

Description:

00 30

RIGHT_ASCE SMEAR_LEN

NSION GTH

01 31

DECLINATIO SMEAR_AZI

N MUTH

02 RA1 32
NORTH_AZI
MUTH

03 DEC1 33
SUB_SPACEC
RAFT_LATIT
UDE

04 RA2 34
SUB_SPACEC
RAFT_LONGI
TUDE

05 DEC2 35
SPACECRAFT
_ALTITUDE

06 RA3 36
SUB_SPACEC
RAFT_AZIMU
TH

07 DEC3 37X_SC

08 RA4 38Y_SC

09 DEC4 397 SC

10 X_TARGET 40 VX_SC

11 Y_TARGET 41VY_SC

127 _TARGET 42VZ_SC

13 43
SPACECRAFT

B-138+Appendix B : Internal Functions

ProVIEW User’'s Manual

VX_TARGET _SOLAR DIS
TANC

14 44

VY_TARGET SOLAR _DIST
ANCE

15 45

VZ_TARGET SUB_SOLAR _
AZIMUTH

16 46

TARGET _CE SUB_SOLAR_

NTER_DISTA LATITUDE

NCE

17 47

SLANT _DIST SUB_SOLAR_

ANCE LONGITUDE

18 48

CENTER_LAT INCIDENCE_

ITUDE ANGLE

19 49

CENTER_LO PHASE_ANG

NGITUDE LE

20 LAT1 50
EMISSION_A
NGLE

21 LON1 51
LOCAL_HOU
R_ANGLE

22LAT2 52
SOURCE_DIS
TANCE

23 LON2 53
SUB_SOURCE
_AZIMUTH

24 LAT3 54
SUB_SOURCE
_LONGITUDE

25 LON3 55
SUB_SOURCE
_LATITUDE

26 LAT4 56
SOURCE_INC
IDENCE_ANG
LE

27 LON4 57
SOURCE_PH
ASE_ANGLE

28 58

HORIZONTA SOURCE_EMI

L_PIXEL_SCA SSION_ANGL

LE E

29

VERTICAL_PI

XEL_SCALE

ProVIEW User’'s Guide

Appendix B : Internal Functions B-139

Table 1 - SatVIEW output array description

Example 1: Below is an example script file that determines image geometry information
for all Clementine UVVIS images from revolution 68 in latitude bin “d” (°-G6 -5C°
latitude).

I/l get alist of all uvvis inmages fromrevolution 68
$list = findfiles("g:/1un068/| uxxxxxx/ | uxxxxxd", "l u*.068")
n = nlines($list)
/1 loop through all inmages and cal cul ate geonetry
i =0;
while (i<n) {
I/l read file and get image header
$fname = $list(i,:)
x = reada($f nane, "cl enen_pds_i mage_uncorr");
$hdr = x.text
/1l parse the header to get the inmage tinestanp
line = getline($hdr, " START_TI ME")
$tenp = $hdr(line,:)
eqof f set = get pos($tenp, "=")
$epoch = $tenp(0, eqof f set +2: eqof f set +24)
$nepoch = $epoch(0,0:9)::"/"::$epoch(0, 11: 22)
/Il parse the header to get the instrunent id
line = getline($hdr, "I NSTRUMENT_I D")
$tenp = $hdr(line,:)
eqof fset = getpos($tenp, "\"")
$cam = $tenp(0, eqof f set +1: eqof f set +5)
/'l parse the header for the exposure duration
l'ine = getline($hdr, " EXPOSURE_DURATI ON")
$tenp = $hdr(line,:)
eqof fset = get pos(S$tenp,"=")
$exposure = $tenp(0, eqof f set +1: eqof f set +8)
/] satview expects integration time in seconds....
tint = str2fl oat($exposure) / 1000;
/1 call SatVIEWw th paraneters cal cul ated from header
y = Sat VI EW $nepoch, $cam "MOON', ti nt)
/1 display sanple values fromthe returned val ues
y(0, 33: 35)
i =i +1;

Detailed Description of SatVIEW Computed Values:
VX_TARGET, VY_TARGET, VZ_TARGET <km/sec>

X-, y-, and z- components of velocity vector of target relative to observer, expressed in J2000
coordinates, and corrected for light time, evaluated at epoch at which image was taken. Units
are expressed in kilometers/second.

TARGET_CENTER_DISTANCE <km>

The target_center_distance element provides the distance between the spacecraft and the center
of the named target, expressed in kilometers.

SLANT_DISTANCE <km>

Distance from spacecraft to camera boresight intercept point on surface expressed in
kilometers.

CENTER_LATITUDE <deg>
CENTER_LONGITUDE <deg>

B-140- Appendix B : Internal Functions ProVIEW User’s Manual

Planetocentric latitude and longitude of camera boresight intercept point.

LAT1, LON1, LAT2, LON2, LAT3, LON3, LAT4, LON4 <deg>

L atitudes and longitudes of the surface intercept points of the principle points of the camera.
HORIZONTAL_PIXEL_ SCALE <km>

VERTICAL_PIXEL_SCALE <km>

Distance, measured along horizontal and vertical directions, along target surface between
intercept points defined by centers of left and right edges of pixel-sized regionin FOV centered
at camera boresight. Defined only when boresight intercepts surface. Units are in kilometers.

SMEAR_LENGTH <pixels>

Norm of velocity vector of camera boresight intercept point projected on target, multiplied by
the exposure duration with the scale of the image factored to obtain the smear in pixels.
Spacecraft rotation is taken into account. (Units arein pixels.)

SMEAR_AZIMUTH = xxxxx.xx <deg>

Azimuth of smear velocity vector. The reference line for the angleextends from the center of
the image to the right edge of the image. The angle increases in the clock-wise direction. The
angle is measured to the "image" of the smear velocity vector in the camera’s focal plane. This
image is computed by orthogonally projecting the smear vector onto the image plane and then
applying whatever transformations are required to orient the result properly with respect to the
image. The specific transformations to be performed are given by the cameras I-kernel.

NORTH_AZIMUTH = xXxxX.Xxx <deg>

Analogs to smear azimuth, but applies to the target north poledirection vector.
SUB_SPACECRAFT_LATITUDE <deg>
SUB_SPACECRAFT_LONGITUDE <deg>

Planetocentric latitude and longitude of spacecraft-to-centerbody-center surface intercept
vector. These parameters and the SPACECRAFT ALTITUDE and SUB
SPACECRAFT_AZIMUTH parameters described below are relative to the central body for
which the spacecraft is orbiting and not the target of the observation.

SPACECRAFT_ALTITUDE <km>

Altitude of spacecraft above reference ellipsoid. Distance ismeasured to closest point on
ellipsoid.

SUB_SPACECRAFT_AZIMUTH <deg>

Azimuth angle of sub-spacecraft point inimage. Method of measurement is same as for smear
azimuth (see above).

X_SC, Y_SC, Z_SC <km>

X-, y-, and z- components of position vector from observer to sun,center expressed in J2000
coordinates, and corrected for light timeand stellar aberration, evaluated at epoch at which
image was taken. Units are kilometers.

VX_SC, VY_SC, VZ_SC <km/sec>

X-, y-, and z- components of velocity vector of sun relative to observer, expressed in J2000
coordinates, and corrected for light time, evaluated at epoch at which image was taken. Units
are kilometers/second.

SPACECRAFT_SOLAR_DISTANCE <km>
Analogous to "target center distance," but Sun replaces target body in computation.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-141

SOLAR_DISTANCE <km>
Distance from target body center to Sun. The Sun position used is that described above.
SUB_SOLAR_AZIMUTH <deg>

Azimuth of the apparent sub-solar point, as seen by the spacecraft. This point is the surface
intercept of the target-center-to-Sun vector, evaluated at the camera epoch minus one-way light
time from target to spacecraft at that epoch spacecraft at that epoch. Azimuth is measured as
described above. Target body position relative to the spacecraft is corrected for light-time and
stellar aberration. Target body orientation is corrected for light-time.

SUB_SOLAR_LATITUDE <deg>

SUB_SOLAR_LONGITUDE <deg>

Planetocentric latitude and longitude of the apparent sub-solar point.
INCIDENCE_ANGLE <deg>

PHASE_ANGLE<deg>

EMISSION_ANGLE <deg>

These angles are measured at the camera boresight intercept point. The target-Sun vector is the
same as that used in the sub-solar point computation. The spacecraft-target vector is the same
as that used in the camera boresight intercept computation. The INCIDENCE ANGLE isthe
angle between the target-Sun vector and the local vertical vector at the boresight intercept. The
PHASE ANGLE is measured between the boresight intercept-to-Sun vector and the negative
of the boresight vector. The EMISSION ANGLE is measured between the negative of the
boresight vector and the local vertical vector at the boresight intercept.

LOCAL_HOUR_ANGLE <deg>

The angle from the negative of the target-body-to-Sun vector to the projection of the negative
of the spacecraft-to-target vector onto the target’s instantaneous orbital plane. Both vectors are
computed as in the sub-spacecraft point computation. The angle is measured in a
counterclockwise direction when viewed from North of the ecliptic plane.

SOURCE_DISTANCE <km>

Distance from target body center and secondary light source center.
SUB_SOURCE_AZIMUTH <deg>

Analogs to sub solar azimuth but using secondary light source instead of sun.
SUB_SOURCE_LONGI TUDE <deg>

SUB_SOURCE_LATITUDE <deg>

Analogs to sub solar latitude and longitude but using secondary light source instead of sun.
SOURCE_INCIDENCE_ANGLE <deg>

SOURCE_PHASE_ANGLE<deg>

SOURCE_EMISSION_ANGLE <deg>

Analogs to incidence, phase and emission angles but using secondary light source instead of
sun.

TWIST_ANGLE = xxxx.xxx <deg>

The element TWIST_ANGLE provides the angle of rotation about optical axis relative to
celestial coordinates. The right ascension, declination, and twist angles define the pointing
direction of the scan platform.

B-142+ Appendix B : Internal Functions ProVIEW User’s Manual

roi

SatVI EWpix Geometry I nfo.
Syntax: SatVIEW ($epoch,$camera,$central body,exposure,roi)

Description: ProVIEW provides a built-in function, SatVIEWpix, as a method of
computing spacecraft image geometry using the SPICE (Spacecraft Planet Instrument Camera
Events) formats developed by the Navigation and Ancillary Information Facility (NAIF) at the
Jet Propulsion Laboratory. SatVIEWDpix is called from the command shell within ProVIEW.
Given alist of one or more points in the focal plane array of an image, SatVIEWpix computes
for each point its corresponding latitude, longitude, incidence, phase, and emission angles.
This function is highly dependent on the SatVIEW function. The first four inputs to
SatVIEWDpix are similar to the ones used with SatVIEW.

Calling Syntax:

y = Sat VI EWi x($epoch, $caner a, $cent r al body, exposure, roi)

[INPUT]

$epoch Start time of image. example: “27FEB94/20:12:34.513"
$camera Camera for which the values will be computed.
$centralbody Body for which all SUB_SPACECRAFT values are computed
exposure Time (in seconds) of the exposure duration for the sensor

complex row vector with dimension 1 x N. Each entire in roi corresponds to a pixel position in
the focal plane array. The real part correspond to the column position and the imaginary part
correspond to the row position. The upper left corner pixel is referenced corresponds to row =
0 and column = 0.

[OUTPUT]
y 5 x N array.

The entries in thdicolumn of the return array are listed and described in Table 2.

Description:

latitude in deg.

longitude in deg.

incidence angle in deg.

phase anglein deg.

emission anglein deg.

Table 2 - SatVIEWpix return array description

save Saves an Array to Disk
Syntax: save(path/array)

ProVIEW User’'s Guide

Appendix B : Internal Functions B-143

Description: Used to save an array to disk wherby one specifies the desired path and array
name to use.

scale255 Scaleto 8-bit Range
Syntax: scale?255(a) or a.scale255

Description: Scale the input array values to fall in the range [0,255]. This function is
particularly useful for scaling an array prior to copying it to an 8 bit image frame buffer.

Note that the input to scale?55 must be real.
Example; Given that ‘a’ is a valid array,
f = scal e255(a);

will scale ‘a’ and copy it into image ‘f".

select Selects an Output Look-Up Table
Syntax: select wolut#
Description: This is used to select the desired look-up table. The # sign will be replaced

with the corresponding number for the look-up table desired.

Example; The following will select look-up table 2.,

|[ready] . select wolut2

setcwd Sets the current working directory
Syntax: setcwd($string
status = setcwd($string

Description: This is used to set the current working directory from the command line or
within a script. The advantage of using this function over the typical M_cwd command is that
this captures the state of the change. If status is <0> then the cwd request was successful; if
equal to <-1> then it was unsuccessful. This could be because the directory specified does not
exist or simply that access permissions have not been met.

Example: The following sets the current working directory to “C:\Temp”. Since status
=0, we know that the request was successful.

[ready]: status = setcwd(“C:\\Temp”)
[ready]: status
0

[ready]:
setroi | nteractively setsan ROI
Syntax: setr oi(image)
Description: This is used to set aroi from the screen using the mouse for input. After

having released the left mouse buton and clicking the right button, the roi will be saved as the
rectangular region selected.

Example: The following sets the variable ‘roi’ equal to the complex array of pixels
defining the dragged out contained region within ‘image’.

|[ready]: roi = setroi(inage) |

B-144+ Appendix B : Internal Functions ProVIEW User’s Manual

shiftc Cyclic Shift of an Image
Syntax: shiftc(a,row,col)

Description: This function is used to shift or trandate an input array or image by a
specified number of columns and rows. The shift iscyclic, i.e., border pixels will wrap around.
Note that the values of ‘row” and ‘col’ must be non-negative.

Example: Included with example ahiftt.
shiftt Shift an Array or Image
Syntax: shiftt(a,row,col)
Description: This function is used to shift or translate an input array or image by a

specified number of columns and rows. The shift is non-cyclic, i.e., border pixels will not
wrap-around. Note that the values of ‘row” and ‘col’ must be non-negative.

Example: The example on the next page generates an array and then appéiastthe
andshiftt functions.

[ready]: x = int(randu(3,3)*10) /1 generate a 3 x 3 array of random
[ready]: x /1 integers between 1 and 10
(10n0) X
row 0 =
3.00 1.00 2.00
row 1l =
9.00 3.00 1.00
row 2 =
2.00 5.00 8.00
[ready]: shiftc(x,1,0) /1 cyclic shift one row down
(10n0) X
row 0 =
2.00 5.00 8.00
row 1l =
3.00 1.00 2.00
row 2 =
9.00 3.00 1.00
[ready]: shiftt(x,0,1) /1 translation one colum right
(10n70) X
row 0 =
0.00 3.00 1.00
row 1l =
0.00 9.00 3.00
row 2 =
0.00 2.00 5.00

show Display Variables Information
Syntax: show variable [or list of variables]
Description: Display basic parameters of a list of arrays, or of all arrays in memory. Also

haveshow all. Note that this command can not be used within an expression.

Example: Generate some variables and then invaiav,

ProVIEW User’s Guide Appendix B : Internal Functions B-145

[ready]: ranp = (0, 255, 1, 256)
[ready]: a = randg(3, 100)
[ready]: nane = "Carl os"
[ready]: x = 5.00

[ready]: show al

a o3 100 real defined at level =0
X o1 1 real defined at level = 0
ranp : 256 256 real defined at level =0
nane o1 6 string

[ready]: show
--- a..-

data type is : real
nunber of rows =3
nunber of colums = 100

maxi num val ue = 2.75168
m ni nrum val ue = -2.92469

shp2contour Shapefile to Contour Image
Syntax: shp2contour ($filename, bbox, size, recn)

Description: This function generates an image containing a view of the shapefile for a

given region and number of records. ‘$filename’ is a string containing the name of the
shapefile file, ‘bbox’ is a 1x4 array containing the bounding box of the region of interest
(Xmin, Ymin, Xmax, Ymax), ‘size’ is a 1x2 array containing the desired image size (rows,
columns), and ‘recn’ is either a Nx2 array or O. If ‘recn’ is a Nx2 array, the first column
contains the shapefile record id and the second column contains the value to use when drawing
the contour for that record; if it is 0, then all the shapefile records are used and the value
contained in the system variable M_plotcolor is used for the contour. The generated image can
be used as an overlay to another image.

Example: The following example illustrates the function.

¢ = shp2contour("d:\\tenp\\adm n98. shp", -180::-90::180::90, 180::360, 0)

view c
Output image of shp2contour
shp2fillimage Shapefile Image Fill
Syntax: shp2fillimage($filename, image, bbox, recn)
Description: This function is useful when performing polygon fill of shapefile records of

type 5 (polygons). ‘$filename’ is a string containing the name of the shapefile file, ‘image’ is
an array variable used as input to the polygon fill routine (it serves as a background image),

B-146¢ Appendix B : Internal Functions ProVIEW User’s Manual

‘bbox’ is a 1x4 array containing the bounding box of the region of interest (Xmin, Ymin,
Xmax, Ymax), and ‘recn’ can be a Nx2 array, a Nx1 array or 0. If ‘recn’ is a Nx2 array, for
each row, the first column contains the shapefile record id and the second column contains the
value to use to fill in the corresponding polygon; if it is a Nx1 array, the column vector
contains the shapefile ids to extract from the shapefile; and if it is 0, then all the shapefile
records are extracted. The value used to fill in the polygons in the second and third case is
determined by the content of the system variable M_plotcolor. The returned image is a
combination of the input image and the filled in polygons.

Example: The following example illustrates the function.

z = ones(180, 360) *100
¢ = shp2fillimge("d:\\tenp\\adm n98. shp", z, -180::-90::180::90, 0)

view c
Background Image (z)
Output image of shp2fillimage
shp2image Shapefileto Image
Syntax: shp2image($filename, image, bbox, recn, mode)
Description: This function is useful when performing polygon fill of shapefile records of

type 5 (polygons). ‘$filename’ is a string containing the name of the shapefile file, ‘image’ is
an array variable used as input to the polygon fill routine (it serves as a background image),
‘bbox’ is a 1x4 array containing the bounding box of the region of interest (Xmin, Ymin,
Xmax, Ymax), ‘recn’ can be a Nx2 array, a Nx1 array or 0, and ‘mode’ is a value that

ProVIEW User’'s Guide

Appendix B : Internal Functions B-147

determines the type of output generated: ‘0’ — fill polygon, ‘1’ — fill polygon using shapefile
record id as the fill value, and ‘2’ — region add. The following examples show the different
modes in action.

Mode 0 — Polygon Fill

This mode works exactly as shp2fillimage. If ‘recn’ is a Nx2 array, for each row, the first
column contains the shapefile record id and the second column contains the value to use to fill
in the corresponding polygons; if it is a Nx1 array, the column vector contains the shapefile ids
to extract from the shapefile; and if it is 0, then all the shapefile records are extracted. The
value used to fill in the polygons in the second and third case is determined by the content of
the system variable M_plotcolor. The returned image is a combination of the input image and
the filled in polygons.

Example; The following example illustrates the function.

z ones(180, 360) *100

shp2i mage("d: \\tenp\\ adm n98. shp", z, -180::-90::180::90, 0, 0)

c

Vi ew ¢

Background Image (z)

Output image

B-148+ Appendix B : Internal Functions ProVIEW User’s Manual

Mode 1 — Polygon Fill using Shapefile Record Id

In this mode the record id is used to fill in the polygons. If ‘recn’ is a Nx1 array, the column
vector contains the record ids to extract from the shapefile; if ‘recn’ is 0 then all the records are
extracted. Note that if ‘recn’ is a Nx2 array the second column is ignored.

Example: The following example illustrates the function.

z ones(256, 256) *100
¢ = shp2image("d:\\tenp\\sed. shp", z, -78.015::33.001::-74.992::36.009, 0, 1)

view c

show ¢

S

data type is © real
nunber of rows = 256

nunber of colums = 256
maxi mum val ue = 598
m ni mum val ue =0

/1 in this case 598 records were extracted

Output Image - Different colors represent different record ids

Mode 2 — Polygon Fill with Region Add

This mode is useful when trying to determine overlapping regions. As each polygon is being
filled in, the value of the pixels inside the polygon gets increment by the fill value for that
record. Inthisway if you assign the same fill value to every record, areas of overlap will have
agreater value than the fill value.

Example: The following example illustrates the function.

ProVIEW User’s Guide Appendix B : Internal Functions B-149

z = ones(256, 256) *100
Mplotcolor =1
¢ = shp2image("d:\\tenmp\\sed. shp", z, -78.015::33.001::-74.992::36.009, 0, 2)

view c

show ¢

el G ---

data type is : rea
nunber of rows = 256

nunber of colums = 256
maxi mum val ue =6
m ni nrum val ue =0

/1 the maximun value of 6 indicates there were overl apping regions;

/1 otherw se the maxi nrum val ue woul d have been 1

Output image — regions in yellow color represent areas where there was overlap (there were no
plygons in the black area; there was no overlap of polygons in the darker red area)

sign Sign of Array Elements
Syntax: sign(a) or asign
Description: Compute the sign of each element in the array. For every elementitin ‘a’

returns+1 if the element is greater than or equal to zero,-aratherwise. This function does
not accept complex inputs.

Example; Generate a vector and then apply slgm function to the vector.
[ready]: a = geo(-2,7) /'l generate a row vector
[ready]: sign(a) /1 exanpl e of sign
row 0 =
1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00

sin Sine

Syntax: sin(a) or asin

B-150+ Appendix B : Internal Functions ProVIEW User’s Manual

Description: Compute the sine of each array element. Note that the input is expected in
radians.

sinc Sinc Function
Syntax: sinc(a) or a.sinc

Description: Evaluates the sinc function for each element in the input array. The sinc
function is defined as

sin(71x)
nx
Note that sinc(0) is evaluated as 1.

sinc(x) =

sinh Hyperbolic Sine
Syntax: sinh(a) or asinh
Description: Computes the hyperbolic sine of each array element.

The hyperbolic sine of x is evaluated as

. e —e”
sinh(x) =———.
(x) 5
skeleton Binary Conversion Filter
Syntax: skeleton(array)
Description: Converts an image to all 0's and 1's depending upon their amplitude. Thisis

used to show lines of maximum amplitude.

Example:

smodify String Replace

Syntax: smodify($string,$from,$to)
Description: Thisreplaces all occurrences of $from with $to in the string $string.
The output of this function can be set to a resultant string also.
Example: This replaces the ‘F’ in ‘Fun’ with a ‘G’ to form “Gun’.
[ready]: smodify(“Fun”,"F","G") I replaces “F” with “G”
Gun
sortr Row Wise Sorting
Syntax: sortr(a) or a.sortr

ProVIEW User’'s Guide

Appendix B : Internal Functions B-151

Description: Returns a sorted version, on a row basis, of the input array. The sorting
algorithm utilized is 'Heapsort’. The sorting is performed from small number to large number.

Example: Create an array and then perform arow wise sort of the array.
[ready]: a=randu(2,7) /'l create random 2x7 matri x
[ready]: a
row 0 =
0.41 0.72 0.63 0.39 0.62 0.50 0.98
row 1l =
0.79 0.17 0.01 0. 20 0.42 0.10 0.28
[ready]: sortr(a) /'l exanple of sort
row 0 =
0.39 0.41 0.50 0.62 0.63 0.72 0.98
row 1l =
0.01 0.10 0.17 0.20 0.28 0.42 0.79

spatf Spatial Filter

Syntax: spatf(a,n,m,function)

Description: Applies a user selected (or user defined) spatial filter to theinput array . The

filter is implemented over a moving window through out the whole input array. The
dimensions of the window are (N x M). The window must be able to fit within the dimensions

of ‘a’, otherwise an error message will be generated. The final argument, ‘function’, is the
name of a single argument internal MSHELL function which returns a scalar value, e.g., var,
mean, max, min, ...

Example; This module provides significant flexibility for performing arbitrary spatial
filtering functions. For example, the local mean and variance over the array ‘a’, using a N x N
window, can be computed, respectively, using the following MSHELL calls,

spatf(a, N, N, nean)
spatf(a, N, N, var).

Likewise, the local maximum over a 9 x 9 window can be computed with
spatf(a, 9,9, max).

sgrt Square Root
Syntax: sgrt(a) or asgrt
Description: Computes the square root of each array element in ‘a’. If any of the entries

in the input array are negative the output of the square root will be complex, i.e. sqrt(-1) =
0+1i, where i implies that the number is imaginary. Taking the square root of a complex array
is a valid operation.

stats Computes Basic Statistics
Syntax: stats(a) or astats
Description: Returns a row vector whose first element is the minimum value in ‘a’, its

second element is the maximum value in ‘a’, its third element is the mean value of the
elements of ‘a’, and its last element is the standard deviation of the elements of ‘a’.

str2float Converts Numeric String to Float
Syntax: str 2float ($string)

Description: Returns an array with float value(s) equal to that of the numeric string
'$string’ as if it had been evaluated at the command line. ‘$string’ can be comma delimited for
column separation and \n delimited for row signification.

See Also: str2int, strlen

B-152¢ Appendix B : Internal Functions ProVIEW User’s Manual

Example: The following is an example of str2float usage with a 2x3 array creation.

ready]: $str = "4.56, 34.25,67.02\nl12. 28, 34. 64, 3. 23" /] define string
vari abl e
[ready]: str2float($str) /1 exanpl e of str2fl oat
(10n0) X
row 0 =
4.56 34.25 67.02
row 1l =
12.28 34.64 3.23

str2int Converts Numeric String to I nteger
Syntax: str 2int($string)

Description: Returns an array with integer value(s) equal to that of the numeric string
'$string’ as if it had been evaluated at the command line. ‘$string’ can be comma delimited for
column separation and \n delimited for row signification.

See Also: str2float, strlen
Example: The following is an example afr2float usage with a 2x3 array creation.
ready]: $str = "4.56, 34.25,67.02\nl2. 28, 34. 64, 3. 23" /I define string
vari abl e
[ready]: str2int($str) /1 exanpl e of str2int
(1070) X
row 0 =
4,00 34.00 67.00
row 1 =
12.00 34.00 3.00

strlen Computes the Length of a String

Syntax: strlen($string)
Description: Returns a 1 x 1 array with the number of characters in a $string.
See Also: str2float, str2ind
Example: The following generates a string variable and then calculsitéloat,
sstr2ind, andstrlen of the variable.
[ready]: $str = "4, 356" /1 define string variable
[ready]: strlen($str) /1 exanple of srtlen

5

strlow2up Converts lowercase to uppercase

Syntax: strlow2up($lowercasg
Description: The output is a string whereby all lowercase characters have been changed to
uppercase.

strup2low Converts uppercase to lowercase

Syntax: strlow2up($uppercase
Description: The output is a string whereby all uppercase characters have been changed to
lowercase.

ProVIEW User’'s Guide

Appendix B : Internal Functions B-153

sum Sum All Elements

Syntax: sum(a) or asum
Description: Sum al the elements in the input array. The output of this operation is a
scalar, i.e.alx 1larray.
Example: With example for sumr.
sumc Sum Column Vectorsin an Array
Syntax: sumc(a) or asumc
Description: For each row in the input array, sum the values along the row. The output is a

column vector.

Example; With example for sumr.

sumcum Row Wise Cumulative Sum

Syntax: sumcum(a) or a.sumcm
Description: For each row in the input array, compute the cumulative sum of values along
the row. The output will have the same dimensions as the input.
Example: With example for sumr.
sumr Sum Row Vectorsin an Array
Syntax: sumr(a) or a.sumr
Description: For each column in the input array, sum the values along the column. The

output is arow vector.

Example: The following generates an array and then calculates sum, sumc, sumcum,
and sumr of that array.

B-154« Appendix B : Internal Functions ProVIEW User’s Manual

[ready]
[ready]
row 0 =
2.00 4.00 2.00
row 1l =
1.00 7.00 10.00
row 2 =
5.00 5.00 5.00
[ready]: sum(x) /1 exanpl e of sum(x)
41.00
[ready]
[ready]: sunc(x) /1 exanpl e of sunc(x)
row 0 =
8. 00
row 1l =
18. 00
row 2 =
15. 00
[ready]
[ready]: sunmcum(x) /1 exanpl e of sunmcum x)
row 0 =
2.00 6.00 8.00
row 1l =
1.00 8.00 18.00
row 2 =
5.00 10.00 15.00
[ready]: sunt(Xx) /1 exanpl e of sunr(x)
row 0 =
8.00 16.00 17.00 [ready]:

x

randu(3, 3)*10 /1 generate a 3 x 3 array of random
ni nt (x) /'l integers in the range of 1 to 10

x

svd Singular Value Decomposition
Syntax: svd(A,U,D,V)
Description: Computes the singular value decomposition of an input matrix. The routine

used for this computation is derived from “Numerical Recipes in C”, see paefgrénces
and Further Readings’. This routine takes the input matrix, 'A’', and returns 'U’, 'D', and V',
which contain the singular value decomposition of ‘A’. The following equalities will hold:

U*u=1
VAV =1
A= UDV

Note that all the input variables must exist before calling this function.

Example: Performs the operation and then checks the result.
[ready]: a = randu(2,2) /] create a 2 x 2 random array
[ready]: a
row 0 =

0.23 0.36
row 1 =

0.16 0.55
[ready]: u=0; d=0; v=0 // initialize u,d,v prior to svd cal
[ready]: svd(a,u,d,vV) /1 call svd function
[ready]: u*d*v’ /1 test output
row 0 =

0.23 0.36
row 1 =

0.16 0.55

system I ssues Operating System Command

Syntax: system string
Description: This function allows you to issue an operating system command. It invokes

the operating system command processor to execute an operating system command, batch file,

ProVIEW User’s Guide Appendix B : Internal Functions B-155

or other program named by the string command. To be located and executed, the program
must be in the current directory or in one of the directories listed in the PATH string in the
environment. In the case of the string consisting of a an executable command, batch file, or
program, you will be returned to the ProVIEW prompt upon completion of the executable. If
the the string consists of a non-executable statement or is nullthen return to ProView will
require you to type " exit" at the DOS prompt. The COMSPEC environment variable is used
to find the command processor program file, so that file need not be in the current directory.

Example: The following operations illustrate the function.

[ready]: system "edit c:/autoexec. bat" /1 go to DOS, edit the file

[ready]: /1 when done returns to the [ready]:
/1 ProVIEWpronpt directly.

[ready]:

[ready]: system /1 opens a DOS wi ndow:

c:\>rem at the DOS pronpt you can execute operating

c:\>rem syst em conmands, batch files, or other DOS

c:\>rem prograns; when done type EXIT

c:\>exit rem to return to the ProVlI EW pronpt

[ready]: /'l ready to continue working

[ready]: /'l in ProVIEW

[ready]:

[ready]: system"dir/s/b > dir.Ist" I/ creats and stores a listing

[ready]: $list = readtext("dir.lst") /1 of files in a directory

B-156¢ Appendix B : Internal Functions ProVIEW User’s Manual

-T-

tan Tangent
Syntax: tan(a) or atan
Description: Compute the tangent of each array element. Note that the input is expected
in radians.
tanh Hyperbolic Tangent
Syntax: tanh(a) or atanh
Description: Compute the hyperbolic tangent of each array element.

The hyperbolic tangent of 'a is evaluated as
tanh(a;;) =sinh(a;;)/cosh(a;;) forali,j;

wherej and i are, respectively, row and column idices.

text Adds Text to an Array
Syntax: text(array, $text)
Description: Used to add text to an array versus just the screen image as in the following

command "textoverlay"; this command actually writes the text to the array.

textoverlay Annotates an I mage with Text

Syntax: textoverlay(image, $text, "Font", PointSize: :row#:: col#:: color::
overlay:: orientation)

Description: Thisisused to place atext overlay on an image where $text isthe

string to be displayed, and "Font" is a string specifying the font to use.
Row # and column# are the corresponding starting pixels for the text on the image.
Color isthe color of the text with the folowing possibilities:

0 = black

1 =dark gray
2 =blue

3 =cyan
4=gray

5 =yellow

6 = magenta
7 =red

8 =green

9 = white

The actual image is not modified with use of thisfunction. Itisjust
an overlay.

Overlay determines the background of the text where O gives a
background of white or 1 gives a transparent background. Orien
tation specifies whether the text is vertical (0) or horizontal (1).

textremove Removes Text from an Image

Syntax: textr emove(image,$text)

ProVIEW User’s Guide Appendix B : Internal Functions B-157

Description: Used to remove the desired string ($text) from an image if it was created
using the command textoverlay.

text2image Converts Text to an Image
Syntax: text2image($sexpr)

Description: Given a single line input string, text2image converts the input string into a
two dimensional array, where 'sexpr’ is a string expression Once the text exists in image form
it can be manipulated just as any other image.

Example; The ProVIEW screen of Figure 5 illustrates this application.
Fide Edit Hearch |mage Pot Data FuncSess Opersiors Wind os Help
ST [P Bl 1] Wed L L Al | 1" e L
= Image - eqohare w|=

L3

[ready]ll =ir = EpxElinaged"‘DB&EHE &1RPORT

[readw]: syokare = peada{''Cisprewisws|MICES fagubarn . che™ . “char'}®
[readw]lt uinw sgohare

[raady]: syobare{lB:. 183 = sLr

[readw]: uinw sgobare

[raadwl: _ ;

= | #| [

Figure5

trace Sum Diagonal Elements
Syntax: trace(a) or atrace
Description: Sums the elements on the diagonal of the input square array.

Example; Generate a square array and calculate trace.
[ready]: x = randg(3, 3)
[ready]: x
row 0 =
-0.85 0.94 0.16
row 1 =
1.23 -1.08 -0.46
row 2 =
-0.88 -0.80 0.41
[ready]: trace(x)
-1.52219

B-158+ Appendix B : Internal Functions ProVIEW User’s Manual

V Virtual Variable
Syntax: \%
Description: This variable is used to hold the virtual variable. All access to any array

opened virtually will be performed using this variable.

var Variance
Syntax: var (@) or avar
Description: Given an input array, ', var(a) computes the variance of the elementsin 'a.

The variance is computed using the following expression,

1-1J-1

1 2
var(a) = —— (a;; —@)” where,
‘J |:I 1= |=
l 1-1J-1
a=—— a. ;) isthesample mean of 'a ,for al j, i;
15 .:O,Zo(i) p j

wherej and i are, respectively, row and column indices.

varname Returnsthe Variable Name
Syntax: varname(variable)

Description: This command returns the name of the highlighted variable as a string. This
can be used after having used a user-defined menu command with an inputfocus call. This will
allow for the name of the variable to be known.

vartype Returnsthe Variable Type
Syntax: vartype(variable)

Description: Thisis used to pass the "type" of the specified variable to the screen so that
the user knows what "type" a particular variable is. "Type" is a number which can be one of
the following possibilities:

0 = means that the variable does not exist
1 =signifiesan integer or array
2 =dignifiesastring

Vclose Closes Virtual Variable Link
Syntax: Vclosa(V)
Description: This function is used to close the link between the virtual variable 'V’ and the

disk file it was previously attached to by Vopen.
See Also: Vnew,and Vopen.

vec2image Vector Format to | mage Format
Syntax: vec2image()

ProVIEW User’'s Guide

Appendix B : Internal Functions B-159

Description: From the command line or from a script file, use this command to enable the
display of any image variable, i.e.’'myimage’, that already exitsin memory.

view Enables Screen Display of an Image
Syntax: view myimage
Description: From the command line or from a script file, use this command to enable the

display of any image variable, i.e.’'myimage’, that already exitsin memory.

view4d Amplitude Enhanced | mage
Syntax: view4d(image,0,z,rot::tilt::nout::ns)

Description: Use this command to amplitude enhance any ‘image’ with ‘z’ values with a
rotation of ‘rot’, a tilt of ‘tilt’, and with number of rows and columns of ‘nout’. Also, one can
specify the sampling accuracy using the parameter ‘ns’ from 1 - 8, where 1 is most accurate
and 8 is the least.

Example: Within the view4d entry in the script file below, the ‘uvvis750.1lt’ file corresponds

to the lower image; in the top image this file has been altitude enhanced®jtdptgraphy
image ‘luntopo/4’.

Clermentose Cilodial Loree e Combined With Derived Allimetry Diata

B-160+ Appendix B : Internal Functions ProVIEW User’s Manual

EE < ¢
-
[

rE
5
!

I

R
[

Eaxtoesclay [HOOH, Jtaxt, "Tisan Baw Foman®,;

|
|Fr sefined Topa=Jrap Hap From MAEK fidpd”
i b T I

E_II- H-Plail, "Timas Hae Pamdl s | HiESEI1IEL L'le
Vnew Makes Disk Space for Virtual Image

Vnew($fname, nrows,ncols,bytes per_pixel)

Syntax:

Description: This function is used to allocate disk space in a disk file, where: '$fname’ is
the string variable holding the file name to use, 'nrows’ is the number of rows in $fname, 'ncols’
is the number of columns in $fname, and 'bytes per_Pixel’ is the number of bytes per pixel in
'$fname’. Returns status of 0 for good.

See Also: Vclose, Vopen.

Vopen Makes Virtual Variable Link to File
Syntax: V = Vopen($fname,M::N::format::offset,roi,access);
Description: This function establishes a link between the Virtual Variable 'V’ and a disk

file '$fname’, where: M is the number of rows in '$fname’, ‘N’ is the number of columns in
‘$fname’, byte format’ is determined by the list below, 'offset’ must be set to zero, and roi’ is a
valid rectangular region of interest within '$fname’. Also the access parameter has been added
to allow just read (access = 0) or read and write (access = 1).

ProVIEW Virtual variable for mats:

Format 1: Byte
Format 2: PC16
Format 3: Sunl6
Format 4: PC float
Format 5: Sun float
Format 6: PC32
Format 7: Sun32

ProVIEW User’'s Guide

Appendix B :

Internal Functions B-161

Format 8: PC16 unsigned
Format 9: Sunl6 unsigned

See Also: Vclose, Vnew.

Note that 'V’ is a special variable in ProVIEW, avirtual variable. With this variable you can
manipulate an image file which can be as large as the whole disk space available in the system.
If the user has a huge image in afile or is going to be working with an image that can not be
easily hold in memory, then he or she can still manipulate pieces of the large image using
ProVIEW'’s virtua variable.

Once a link is established between a file in disk and the virtual variable 'V’, then the user can
access rectangular regions of interest in the disk file for read or write operations (the user must
always provide a rectangular region of interest when writing or reading from the 'V’). The
following example illustrates the use of a virtua variable. It corresponds to the script file
flyby.msh located in the ProVIEW msh distribution directory.

Mcwd = "/ proview i mages/ cl enen/ noonbr us"
roi = wdef(0,0,1,1)
V = Vopen("al |l moon. chr",5760::11521::1::0,ro0i, 0);
flyby =0
vi ew flyby
i =0
whi | e(i <35){
neter("flyover virtual image",i/35*100)
angle = i/35*6.28
roi = wdef (2336+128*cos(angle), 6926+128*si n(angle), 256, 256)
flyby = V(roi)
i =i+l

meter("",-1)

vpftblinfo Virtual Region of I nterest
Syntax: image.vr oi
Description: Used to store a previously defined region of interest (make it virtual).

Vrol Virtual Region of I nterest
Syntax: image.vr oi
Description: Used to store a previously defined region of interest (make it virtual).

B-162¢ Appendix B : Internal Functions ProVIEW User’s Manual

wclose Closes all Screen Windows
Syntax: wclose
Description: Closes all the windows presently opened in the ProVIEW environment.

wcolut[#] Color Look up Table

Syntax: wcolut[#]
Description: Used to list and define all three rows (red, green, blue) of a color look up
table.

O=gray

1=inverse gray
2=pseudocolor
3=inverse pseudocolor

4=user defined
wdef Define a Region of I nterest
Syntax: wdef(ul_row,ul_col,nrows,ncols)
Description: This function is used to define a region of interest or window, where:

'ul_row’ and 'ul_col’ are the upper left pixel coordinates of the region of interest; 'nrows’ and
'ncols’ are, respectively, the number of rows and columns contained in the region of interest.

Example: The following command defines roil to be a 16 x 16 rectangular region of
interest with upper left corner at row = 8 and col = 6.

[ready]: roil
[ready]: fro

wdef (8, 6, 16, 16)
f(roil) /'l extracts subinage

while While Loop
Syntax: while (condition) {
Statements
counter
}
Description: Thisisatype of loop which runs until the condition stated is
nolonger met.
wmove Move a Region of I nterest
Syntax: wmove(roi,row,col)
Description: Given a valid rectangular region of interest, 'roi’, originaly defined using

wdef this function will generate a new region of interest which is a trandlated version of the
input ROI, where 'row’ and 'col’ are the row and column coordinates of the upper left of the
translated region of interest, and 'roi’ is the input region of interest.

wolut[#] Wide Open Look Up Table
Syntax: wolut[#]

ProVIEW User’'s Guide

Appendix B : Internal Functions B-163

Description: This is used to apply one of the look-up-tables to a particular image. The
wolut isasingle row of 0 to 255 which then points to a particular combination of the three row
tables for red, green, and blue which have been previously defined.

O=gray

1=inverse gray
2=pseudocolor
3=inverse pseudocolor

4=user-defined
writea Write Array to Disk
Syntax: writea("fname",a,"mode")
Description: Write an array, 'a, to file 'fname’ on the disk in the indicated 'mode’, using

any of the supported formats

See Also: [readaon pagefi3]

writecolor Writesa Color Image
Syntax: writecolor ("path/filename.ext”, r, g ,b, "image type")

Description: Used to write a color image to disk using the three red(r), green(g), blue(b)
image color arrays. The image type string is simply the type of image to be written (bmp, tiff,

or ppm).
writef Formatted File Write
Syntax: writef(unit,"format" ,arrayname) or
writef(unit,"format",stringname)
Description: This function is used to perform a formatted write to a file unit which has

already being open using the openf command. Note that only one value or string can be
written at atime. The first command above is used for doing a formatted write of an already
existing 1 x 1 array into a file. The second command above is used for doing a formatted
string write into an aready open file. The format string follows a similar form to the 'C’
language formatting options, where %s is used for strings, and %f, %g, %e are used for
floating point numbers.

Example: Given that unit 1 has been already open with an openf statement, and that 'x’
isan array variable and 'name€’ is a string variable, then the following MSHELL statements are
legal writef statements,

status=writef(1,"Hello ny name is % \n", nane);
status=writef(1,"The tenperature is % degrees", x);
status=writef(1,"The value is \'n %t 2f", x);
status=writef(1,"%", x);

status=witef(1,"%", x);

wsize Size of a Region of Interest
Syntax: wsize(roi) or roi.wsize
Description: Given a valid rectangular region of interest, this function will return the

dimensions of the rectangular window defining the ROI.

wtile Tiles all Screen Windows
Syntax: wtile
Description: Tiles all the windows presently opened in the ProVIEW environment.

B-164+ Appendix B : Internal Functions ProVIEW User’s Manual

ProVIEW User’s Guide Appendix B : Internal Functions B-165

-X -

xcorr Cross Correlation
Syntax: xcorr(a,b)
Description: Perform the cross-correlation between two input arrays. There are no

specific restrictions on the two input arrays: they can be either real or complex and one or two
dimensional. If '@ has dimensions (N x M), and 'b’ has dimensions (P x Q) the resulting
ARRAY will have dimensions (N+P-1, M+Q-1). The implementation used in 'xcorr’ is
computationally efficient for small arrays. For large array sizes, an FFT implementation

should be considered.
See Also: Xcorrt
Example; Example with xcorrt.

xcorrfft Cross-Corrdation of two FFT's
Syntax: xcorrfft(FFT1, FFT2)

Description: This is used to find the cross-corrleation between two computed FFT’s of
certain previous arrays. This command is especially advantageous where a cross-correlation of
two large arrays would be processor comsumptive; therefore, an FFT (being much smaller)
would be much faster to compare.

xcorrt Truncated Cross Correlation
Syntax: xcorrt(ab)
Description: This function is similar to xcorr except that it only evaluates the cross

correlation in the range of the second array. This function, xcorrt, truncates the cross-
correlation results by only evaluating the cross-correlation over the range of 'b’. Note that 'a is
assumed to have odd dimensions.

Example; The following illustrates the use of xcorr and xcorrt,
[ready]: x = 2::4::2
[ready]: y = (0,2,1)
[ready]: z = xcorr(x,y) /'l exanple of xcorr
row 0 =
0.00 2.00 8.00 10.00 4.00
[ready]: zp = xcorrt(x,y) /1 exanple of xcorrt
[ready]: zp
row 0 =
2.00 8.00 10.00

xline Extract Pixel Values along Line Segment
Syntax: xline(a,rowl,col 1,row2,col2)
Description: This function extracts the pixel values along a line segment in an array. The

coordinates (rowl, coll) and (row2, col2) are, respectively, the start and end points of the line
segment. Note that xline(arowl,coll,row2,col2) is equivalent to the following MSHELL

instruction based on the bresen and complex funtions:
bresen(complex(col1::col2,rowl::row2)).

See Also: bresen.

Example: For the given an array, the following will calculate both the xline and the

a(besen(complex(0::3, 0::3))) transformations of the array.

B-166¢ Appendix B : Internal Functions ProVIEW User’s Manual

a = hamm w4, 4) /1 generate a 4 x 4 array
a
(1070) X
row 0 =
0. 0064 0. 0432 0. 0800 0. 0432
row 1l =
0. 0432 0. 2916 0. 5400 0. 2916
row 2 =
0. 0800 0. 5400 1. 0000 0. 5400
row 3 =
0. 0432 0. 2916 0. 5400 0. 2916
xline(a,0, 0, 3 ,3) /'l exanple of xline
(1070) X
row 0 =
0. 0064 0. 2916 1. 0000 0. 2916
0. 0432
a(bresen(conpl ex(0::3,0::3)))
0. 0064 0.2916 1. 0000 0.2916
xlinec Extracts Coordinates of Line
Syntax: xlinec(image)
Description: Used to list the coordinates along a linear region of interest. Once the

command has been issued in the command window, then one is prompted to click the
endpoints of the desired linear region within the image of interest.

xlinev Extracts Vertices of Line
Syntax: xlinev(image)
Description: Used to list the vertices or end point of a linear region of interest. Once the

command has been issued in the command window, then one is prompted to click the
endpoints of the desired linear region within the image of interest.

xlut Look-Up-Table Transformation
Syntax: xlut(a,lut)
Description: Performs a permanent look up table transformation on the given input array

'a using a user supplied look-up-table, 'lut’.

Example: Suppose it isdesired to transform an array region of interest in image f using
an inverse ramp mapping. This can be done using,

f = reada("eqohare.chr","char")
roi = wdef (0, 0, 20, 30)
f(roi) = xlut(f(roi) , (255,0,1));

xpolyc Extracts Coordinates of a Polygon

Syntax: xpolyc(image)

Description: Used to list the coordinates along a polygonal region of interest. Once the
command has been issued in the command window, then one is prompted to click the vertices
of the desired polygonal region within the image of interest.

Xpolyv Extracts Vertices of a Polygon
Syntax: xpolyv(image)

ProVIEW User’s Guide Appendix B : Internal Functions B-167

Description: Used to list the vertices of a polygonal region of interest. Once the command
has been issued in the command window, then one is prompted to click the vertices of the
desired polygonal region within the image of interest.

B-168+Appendix B : Internal Functions ProVIEW User’s Manual

-Z-

zeropad Expand an I mage with Zeroes
Syntax: zer opad(a,n,m)

Description: Add zerosto the input array 'a, where n is the number of rows and m isthe
number of columns.

Example: Takesa?2 x 2 array and padsittoa3 x 5 array.

[ready]: x = (1::2)#(3::4)
[ready]
row 0 =
1.00 2.00
row 1l =
3.00
[ready]
[ready]
row 0 =
1.00
row 1l =
3.00 4.00 0.00 0.00 0.00
row 2 =
0.00 0.00 0.00 0.00 0.00

x

.00
= zeropad(x, 3,5)

N << N

00 0. 00 0. 00 0. 00

zeros Initialize Array to all Zeros
Syntax: zeros(n,m)
Description: Create an array in memory with all the elements set to 0.
Example: The following MSHELL statement will create the 512 x 512 array 'c’in

memory with all entries set to O.
c = zeros(512,512);

zZinterp Zero Order |nterpolation
Syntax: zinterp(f,x)
Description: Thisis used to perform zero-order interpolation on an array "f*, by

expanding the data to a range specified by the "x" array which will list the abscissa and
ordinate indices for each new desired element.

ProVIEW User’s Guide Appendix B : Internal Functions B-169

Appendix C : External Functions

| ntroduction

The external function list can be seen by linking to the following web
address: |http://www.actgate.com/pr oview/help/msf/default.htm|

The detailed descriptions and realtime examples of the external functions can
be seen at the above mentioned web address.

http://www.actgate.com/proview/help/msf/default.htm

	ProVIEW User's Manual
	Overview
	What Is ProVIEW ?
	Who Should Use ProVIEW?
	References and Further Readings

	Installation
	System Requirements
	Installing ProVIEW
	Technical Support

	Starting ProVIEW
	Start Procedure
	Communicating with the Interpreter
	Image Quality
	Useful Tips

	Graphical User Interface
	ProVIEW's Windows Environment
	Command Shell Window
	Image Window
	Script File Window
	Executing a Script File From the Graphical User Interface

	Plot Windows

	Menu Commands
	File
	File|New Script
	File|Open Script
	File|Save Script
	File|Save Script As
	File|Choose Font
	File|Open Image
	File|Open Image - Browse Button
	File|Open Image - Movie
	File|Open Image - File Formats
	File|Open Image - File Name

	File|Save Image
	File|Save Clipboard Bitmap
	File|Printer Setup
	File|Print
	File|Print Screen
	File|RunScript
	File|Exit

	Edit
	Edit|Edit System Variables

	Search
	Image
	Image|Display
	Image|Header
	Image|Text
	Image|Profile
	Image|Set ROI
	Image|Statistics
	Image|Plot Roi
	Image|Spreadsheet View
	Image|Zoom
	Image|Options
	Select LUT
	Modify LUT Box
	Color Offset
	Expand Button
	Dynamic Range

	Image|Edit Image Attributes
	Image|Set Units (Default and User Defined)

	Plot
	Plot|Plot
	Plot|Settings
	Plot|World

	Data
	Data|Load
	Data|Save
	Data|Fitting
	Data|Formatting
	Data|Series

	Functions
	Functions|Mathematical
	Functions|Trigonometric
	Functions|Statistical
	Functions|Random Numbers
	Functions|Ranking

	Operators
	Operators|Matrix
	Operators|Transforms
	Operators|Filtering

	Window
	Help
	Help|Content
	Help|Keyword search
	Help|About
	Help|System Info
	Help|Demo

	User

	MSHELL Interpreter Language
	Language Syntax
	Introduction
	Variable Names and Types
	Array Variables
	Intrinsic Attributes Associated with Array Variables

	String Variables
	System Variables
	Virtual Variable 'V'

	Statements
	Calling Syntax for Numeric Functions
	Unary Numeric Function Syntax

	Comments
	Operator Precedence
	Region of Interest Manipulation
	ROI
	GROI

	Program Flow Control and Relational Operators
	IF Statement
	While Statement
	Control Expression with Numeric Values
	Relational Operators
	Equality Operators
	Logical Operators

	Control Expression with Strings

	Look-Up-Table Manipulation
	Output LUTs

	ProVIEW Script Files (.msf,.msh,.vsh)
	Function Files (.msf)
	Syntax

	Include Files (.msh)
	Virtual Include Files (.vsh)
	Example - movie.msh

	// read input list of image files, 'rm.lst', from hard disk
	Importing Data into ProVIEW
	Exporting Data out of ProVIEW

	Internal Functions
	Classes of Built-in Functions

	Math Error Handling
	Extendibility of the Environment
	Dynamic Data Exchange
	User Provided Functions as Dynamic Link Libraries (DLL)

	ProVIEW Web Interface
	Elements of Forms

	Recent Changes
	Added Functions
	Updated Functions

	Appendix A : Function Tree
	Introduction
	Categories of ProVIEW™s MSHELL Functions
	A

	Appendix B : Internal Functions
	ProVIEW™s MSHELL Internal Functions (by Category):
	Filtering
	Freq_Ops
	DCT
	FFT

	Spatial_Ops
	Correlation_Ops
	Local_Statistics
	Morphological
	Resampling
	Interpolation

	Geo_Xform
	Intensity_Mapping
	Look-Up-Table Operators

	IO
	Data_Formats
	Virtual
	VPF
	Shapefile

	Matrix_Vector_Algebra
	Plot
	Region_Ops
	Groi_Logical
	Interactive_Selection
	Overlapping_Regions

	Satellite_Image_Mapping
	Statistics
	Sorting

	String_Ops
	System
	Trigonometric Functions
	Useful
	Data_Formatting
	Flow Control and Relational Operators
	Image Display
	Image Attributes
	Image Window Attributes

	Internal Functions - Alphabetical List
	- Symbols -
		(a,b,s[,n])	Generate a 1-D or 2-D ramp
		+		Array Addition
		-		Array Subtraction
		*		Matrix Multiplication
		*.		Array Element Multiplication
		\		Continuation Line delimiter
		//		Single Line Comment Delimiter
		/		Array Division by Scalar
		/.		Element Array Division
		^		Raise Array Elements to a Power
		'		Matrix Transpose
	::		Concatenate Arrays or Strings
		#		Column Augmentation
		=		Assignment
		:		Array Interval Delimiter
		Logical Relational Operators
			 <		Less Than Operator
			 >		Greater Than Operator
			 <=		Less Than or Equal To Operator
			 >=		Greater Than or Equal To Operator
			 ==		Equivalent To Operator
			 != 		Inequivalent To Operator
			&&		Logical AND Operator
			 ||		Logical OR Operator

		�- A -
		abs		Absolute Value
		acos		Inverse Cosine
		addmenuitem	Adds a User Defined Menu Item
		all		Allows for ﬁallﬂ Variables to be included
		aoi		Active Region of Interest
		asin		Inverse Sine
		atan		Inverse Tangent
		atan2		Inverse Tangent

		�- B -
		blackw	Blackman-Harris Window
		blinterp	Bi-linear Interpolation
		bresen	Compute Line Segment Points
		bthresh	Binary Threshold

		�- C -
		callDLL	Calls a DLL for execution
		ceil		Find the Ceiling of an Array
		centroid	Finds the centroid of an object
		closef		Close a File
		cmirror	Mirrors an Image Column Wise
		colplot	Plots a Row from an Array
		cmplxoverlap	Adds a User Defined Menu Item
		complex	Creates a Complex Array
		conj		Array Conjugate
		contour	Generates a contour plot
		convol	Discrete Convolution
		convolt	Truncated Discrete Convolution
		convtoi	Convert Row Vector to Image
		convtov	Convert Image to Row Vector
		cos		Cosine
		cosh		Hyperbolic Cosine
		covm		Covariance Matrix Estimation

	�- D -
		dbclose	Closes access to an external database
		dbconnect	Connects to an external database
		dbsqltr	Transacts with an external database
		dct8x8	Discrete Cosine Transform (8x8)
		DDEExec	Signal Decimation
		DDEInit	Signal Decimation
		DDEPoke	Signal Decimation
		DDEReqS	Signal Decimation
		DDEReqV	Signal Decimation
		DDETerm	Signal Decimation
		decimate	Signal Decimation
		dworld	draws world contours

		�- E -
		else		else conditional
		END		Ends Execution of a Script
		eqindex	Equality Index
	eqindexS	Equality Index String
		evaltext	Evaluates a String
		exit		Exit MSHELL/ProVIEW
		exp		Inverse-Natural Logarithm

		�- F -
		fft		1-D Fast Fourier Transform
		fft2		2-D Fast Fourier Transform
		fileinfo	Returns detailed information of a file
		filesize	Returns the size of a file
		findfiles	Locate Files in Directory Structure
	float2str	Converts Float Array to a String
		floor		Floor of Input Array
		fmod		Floating-Point Modulus
		free		Free Variable from Memory

		�- G -
		gauss		N-Dimensional Gaussian Density
		geclipto	Greater or Equal Clip to
		geindex	Greater than or Equal Index
		geo		Geometric Series
		getenv	Get Environment Variable
		getline	Finds Line Matching String Pattern
		getpos	Finds String Position Within a Line
		getshpinfo	Gets Shapefile Header Information
		gtclipto	Greater than Clip to
		gtindex	Greater than Index

		�-H-
		hammiw	Hamming Window
		help		Invokes the Help Utility
		heqlut	Histogram Equalization LUT
	hist		Histogram Generator
		hist255	Histogram of 8 bit data
		hyplut	Hyperbolic Histogram LUT

		�- I -
		iboxlist	Input Box List
		idct8x8	Inverse Discrete Cosine Transform (8x8)
		ident		Generate an Identity Array
		If		If Conditional
	ifft		Inverse 1-D FFT
		ifft2		Inverse 2-D FFT
		imag		Imaginary Part
		include	Invoke an MSHELL Script File
		Include	System Script Files
		index		Index of Non-Zero Elements
		inputbox	Prompt User for Input
		inputfocus	Captures Array with Current Focus
		int		Integer part
		int2str	Converts an Integer Array to a String
	invm		Inverse of an Array
		itoa		Integer to Ascii

		- L -
		ladd2groi	Local Add to Groi
		leclipto	Lower or Equal Clip to
		leindex	Lower or Equal Index
		linterp	Linear Interpolation
		loadDLL	Loads a DLL for Execution
		log		Natural Logarithm
		log10		Base 10 Logarithm
		ltclipto	 Lower than Clip to
		lthresh	Less than Threshold
		ltindex	Lower Index

		�- M -
		M_		System Variables
	Plot Related Variables
	Image Display Related Variables
	Text Output
	Time Related Variables
		System Related Variables
	Math Related

		m_		Array Window Operators
		makecmplx	Makes a scalar into a complex vector
		max		Maximum in Array
		maxmin	Maximum and Minimum in Array
		maxof	 Element by Element Maximum
		maxr 		Row Maximum
		mbox		Text Box
		mean		Mean of Array Elements
		median	Compute Median Value
		medianr	Row Wise Median
		menusel	Selects a Menu Item in a List
		meter		Displays a Metering Toolbar
	min		Minimum in Array
		minof		Element by Element Minimum
		minr		Row Minimum
		momentr	Row Wise Moment

		�- N -
	ncaddvar		NetCDF Add Variable
	ncinq		NetCDF File Inquiry
	ncinqvar		NetCDF Variable Inquiry
	ncnew		Create new NetCDF file
	ncols		Number of Columns
	ncread		NetCDF Variable reader
	ncvarattstr		NetCDF Variable Attribute String
	ncvarattval		NetCDF Variable Attribute Value
		ncwrite		NetCDF Write Variable
	ncwriteatt		NetCDF Write Attribute
		nint		Nearest Integer
		nlines		Returns number of Lines
		nrows		Number of Rows

	- O -
		ones		Initialize an Array to all ones
		openf		Open a file for Formatted I/O

	- P -
		pause		Suspend Execution for N Seconds
		pixval		Displays Pixel Status of Mouse
		plot		Plot a Vector
		plot2image	Plots an Image from Input
		plot3d		3-D Plot or Mesh Plot
		polyfill	Fills an Image with Polygons
	print		Formatted Print

		�- Q -
		qgauss	Area Under Gaussian Density
		qgaussinv	Inverse of qgauss

	- R -
		randg		Gaussian Random Number Generator
		randinit	Random Number Seed Initializer
		randu		Uniform Random Number Generator
		rcoeff		Correlation Coefficient
		reada		Read Array or Image
		readf		Formatted File Read
		readtext	Loads Text File
		real		Real Part of an Array
		regionand	Defines a ROI as Common of Two
	return	Returns From an Include File
		rfill		Fills a subregion
		rindex	Range Index
		rmirror	Row Mirror
	rowplot	Plots a Row from Array

	- S -
		$string	String Access Control
		SatVIEW	Geometry Info. for Satellite Images
		Detailed Description of SatVIEW Computed Values:

		SatVIEWpix	Geometry Info.
		save		Saves an Array to Disk
		scale255	Scale to 8-bit Range
		select		Selects an Output Look-Up Table
	setcwd	Sets the current working directory
		setroi		Interactively sets an ROI
		shiftc		Cyclic Shift of an Image
		shiftt		Shift an Array or Image
		show		Display Variables Information
		shp2contour	Shapefile to Contour Image
		shp2fillimage	Shapefile Image Fill
	shp2image	Shapefile to Image
		sign		Sign of Array Elements
		sin		Sine
		sinc		Sinc Function
		sinh		Hyperbolic Sine
		skeleton	Binary Conversion Filter
		smodify	String Replace
		sortr		Row Wise Sorting
		spatf		Spatial Filter
		sqrt		Square Root
		stats		Computes Basic Statistics
		str2float	Converts Numeric String to Float
		str2int	Converts Numeric String to Integer
		strlen		Computes the Length of a String
		strlow2up	 Converts lowercase to uppercase
		strup2low	Converts uppercase to lowercase
		sum		Sum All Elements
		sumc		Sum Column Vectors in an Array
		sumcum	Row Wise Cumulative Sum
		sumr		Sum Row Vectors in an Array
		svd		Singular Value Decomposition
		system	Issues Operating System Command

	- T -
		tan		Tangent
		tanh		 Hyperbolic Tangent
		text		Adds Text to an Array
		textoverlay	 Annotates an Image with Text
		textremove	Removes Text from an Image
		text2image	 Converts Text to an Image
		trace		Sum Diagonal Elements

		�- V -
		V		Virtual Variable
		var		Variance
		varname	Returns the Variable Name
		vartype	Returns the Variable Type
		Vclose	Closes Virtual Variable Link
		vec2image	Vector Format to Image Format
		view		Enables Screen Display of an Image
		view4d	Amplitude Enhanced Image
		Vnew		Makes Disk Space for Virtual Image
		Vopen	Makes Virtual Variable Link to File
		vpftblinfo	Virtual Region of Interest
		vroi		Virtual Region of Interest

		�- W -
		wclose	Closes all Screen Windows
		wcolut[#]	Color Look up Table
		wdef		Define a Region of Interest
		while		While Loop
		wmove	Move a Region of Interest
		wolut[#]	Wide Open Look Up Table
		writea		 Write Array to Disk
		writecolor	Writes a Color Image
		writef		Formatted File Write
		wsize		Size of a Region of Interest
		wtile		Tiles all Screen Windows

	- X -
		xcorr		Cross Correlation
		xcorrfft	Cross-Correlation of two FFT's
		xcorrt		Truncated Cross Correlation
		xline		Extract Pixel Values along Line Segment
		xlinec		Extracts Coordinates of Line
		xlinev		Extracts Vertices of Line
		xlut		Look-Up-Table Transformation
		xpolyc	Extracts Coordinates of a Polygon
		Xpolyv	Extracts Vertices of a Polygon

	- Z -
		zeropad	Expand an Image with Zeroes
		zeros		Initialize Array to all Zeros
		zinterp	Zero Order Interpolation

	Appendix C : External Functions
	Introduction

