

Product Type : DLP Projector

Applicant : Qisda Corporation

Address : 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.

Trade Name : acer

Model Number : P1500, M342, PE-833, Q1P1301

Reference Number : TL-16931

Test Specification : EN 55022: 2010 +AC:2011 / Class B

EN 55024: 2010

EN 61000-3-2: 2006+A1:2009+A2:2009 / Class A

EN 61000-3-3: 2008

AS/NZS CISPR 22:2009+A1:2010 / Class B

Receive Date : Dec. 16, 2013

Test Period : Dec. 17 ~ Dec. 24, 2013

Issue Date : Jan. 17, 2014

Issue by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City, Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

<u>Taiwan Accreditation Foundation accreditation number: 1330</u>

Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Revised By
00	Dec. 27, 2013	Initial Issue	
01	Jan. 10, 2014	Revised report information.	Joyce Liao
02	Jan. 17, 2014	Revised report information.	Joyce Liao

Verification of Compliance

Issued Date: 2014/01/17

Product Type : DLP Projector

Applicant : Qisda Corporation

Address : 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.

Trade Name : acer

Model Number : P1500, M342, PE-833, Q1P1301

Reference Number : TL-16931

EUT Rated Voltage : AC 100-240V, 50-60Hz

Test Voltage : 230 Vac / 50 Hz

Applicable Standard : EN 55022:2010 +AC:2011 / Class B

EN 55024: 2010

EN 61000-3-2: 2006+A1:2009+A2:2009 / Class A

EN 61000-3-3: 2008

AS/NZS CISPR 22:2009+A1:2010 / Class B

Test Result : Complied

Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City,

Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

http://www.atl-lab.com.tw/e-index.htm

The above equipment has been tested by A Test Lab Techno Corp., and found compliance with the requirements set forth in the Electromagnetic Compatibility Directive 2004/108/EC and technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved By

(Cran Yang)

Reviewed By

(Testing Engineer) (Fran

(Manager)

TABLE OF CONTENTS

1	General Information	ວ
	1.1. Summary of Test Result	5
	1.2. Measurement Uncertainty	6
2	EUT Description	8
3	Test Methodology	9
	3.1. Decision of Test Mode	9
	3.2. EUT Exercise Software	9
	3.3. Configuration of Test System Details	10
	3.4. Test Site Environment	11
4	Emission Test	12
	4.1. Conducted Emission Measurement	12
	4.2. Radiated Interference Measurement	18
	4.3. Harmonics Current Measurement	28
	4.4. Voltage Fluctuation and Flicker	33
5	Immunity Test	37
	5.1. Electrostatic Discharge (ESD)	37
	5.2. Radiated Electromagnetic Field (RS)	44
	5.3. Electrical Fast Transient/Burst (EFT)	48
	5.4. Surge	51
	5.5. Conducted Susceptibility (CS)	54
	5.6. Power Frequency Magnetic Field (PMF)	58
	5.7. Voltage Dips and Interruption	61
6	FUT Photograph	64

1 General Information

1.1. Summary of Test Result

Emission						
Standard	Item	Result	Remark			
EN 55022:2010 +AC:2011 AS/NZS CISPR 22:2009+A1:2010	Conducted Emission	Conducted Emission PASS				
EN 55022:2010 +AC:2011 AS/NZS CISPR 22:2009+A1:2010	Radiated Emission	PASS	Meet Class B limit			
EN 61000-3-2:2006+A1:2009+A2:2009	Harmonic current emissions	PASS	Meet Class A limit			
EN 61000-3-3:2008	Voltage fluctuations & flicker	PASS	Meets the requirements			

Immunity					
Standard	Item Result		Remark		
EN 61000-4-2:2009	ESD	PASS	Meets the requirements of Criterion B		
EN 61000-4-3:2006 +A1:2008 +A2:2010	RS	PASS	Meets the requirements of Criterion A		
EN 61000-4-4:2004	EFT	PASS	Meets the requirements of Criterion B		
EN 61000-4-5:2006	Surge	PASS	Meets the requirements of Criterion B		
EN 61000-4-6:2009	CS	PASS	Meets the requirements of Criterion A		
EN 61000-4-8:2010	PMF	PASS	Meets the requirements of Criterion A		
EN 61000-4-11:2004	Voltage dips & voltage variations	PASS	Meets the requirements of Voltage Dips: 1) >95% reduction Criterion B 2) 30% reduction Criterion C Voltage Interruptions: 1) >95% reduction Criterion C		

The test results of this report relate only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

1.2. Measurement Uncertainty

Conducted Emission

The measurement uncertainty is evaluated as ± 2.02 dB.

Conducted Emissions (Telecommunication Ports)

The measurement uncertainty is evaluated as ± 2.02 dB.

Radiated Emission

The Vertical measurement uncertainty of 30MHz - 1GHz is evaluated as \pm 3.62 dB.

The Horizontal measurement uncertainty of 30MHz - 1GHz is evaluated as \pm 3.98 dB.

The Vertical measurement uncertainty of 1GHz - 6GHz is evaluated as \pm 3.07 dB.

The Horizontal measurement uncertainty of 1GHz - 6GHz is evaluated as \pm 3.11 dB.

Harmonic Current Emission

The measurement uncertainty is evaluated as ± 1.2 %.

Voltage Fluctuations and Flicker

The measurement uncertainty is evaluated as ± 1.5 %.

Electrostatic Discharge

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in ESD testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant ESD standards. The immunity test signal from the ESD system meet the required specifications in EN 61000-4-2 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.52 % and 2.69%.

Radiated susceptibility

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in RS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant RS standards. The immunity test signal from the RS system meet the required specifications in EN 61000-4-3 through the calibration for the uniform field strength and monitoring for the test level with the uncertainty evaluation report for the electrical filed strength as being 2.65 dB.

Electrical fast transient/burst

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in EFT/Burst testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant FT/Burst standards. The immunity test signal from the FT/Burst system meet the required specifications in EN 61000-4-4 through the calibration report with the calibrated uncertainty for the waveform of voltage. Frequency and timing as being 1.57% and 2.73%.

Surge

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in Surge testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant Surge standards. The immunity test signal from the Surge system meet the required specifications in EN 61000-4-5 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.58 % and 2.71%.

Conducted susceptibility

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in CS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant CS standards. The immunity test signal from the CS system meet the required specifications in EN 61000-4-6 through the calibration for unmodulated signal and monitoring for the test level with the uncertainty evaluation report for the injected modulated signal level through CDN and EM Clamp/Direct Injection as being 3.68 dB and 2.72 dB.

Power frequency magnetic field

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in PFM testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant PFM standards. The immunity test signal from the PFM system meet the required specifications in EN 61000-4-8 through the calibration report with the calibrated uncertainty for the Gauss Meter to verify the output level of magnetic field strength as being 1.8 %.

Voltage dips and interruption

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in DIP testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant DIP standards. The immunity test signal from the DIP system meet the required specifications in EN 61000-4-11 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.58 % and 2.72%.

2 **EUT Description**

Product	DLP Projector		
Trade Name	acer		
Model Number	P1500, M342, PE-833, Q1P1301 (The four model numbers differ from each other in selling region.)		
Modify Description	The P1500, M342, PE-833, Q1P1301 are modify form original report (1302CE17-01). Different parts are list below: 1.Main board: 5E.2E601.001 - Himax HX6A29 change to ADI ADV7612 2.FAN: (a) 2C.10153.181 change to 2C.10181.011 (b) 2C.10120.191 change to 2C.10182.011 3.Chip board: 5E.1TV23.001 change to 5E.2E623.001 4.Ballast wire: 5K.0PN05.011 change to 5K.2E601.001		
Reference Number	TL-16931		
Highest Frequency Generated	162 MHz		
Applicant	Qisda Corporation 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.		
Manufacturer (1)	Qisda (Suzhou) Co., Ltd. No. 169, Zhujiang Road, New District, Suzhou, Jiangsu 215129, P.R. China		
Manufacturer (2)	Qisda Mexicana S.A. De C.V. Calzada Venustiano Carranza, No. 88 Col. Plutarco Elias Calles 21376 Mexocali, B.C. Mexico C.P Mexico		
Manufacturer (3)	Qisda Optronics (Suzhou) Co., Ltd. No.169, Zhujiang Road, New District, Suzhou, Jiangsu 215129, P.R. China		
Manufacturer (4)	Qisda Corporation 157, Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan		

Component:

Component	Q'TY	Signal Cable Description
1). D-SUB Cable	1	Shielded, 1.8m with 2 cores
2). AC Power Cable	1	Non-Shielded, 1.8m

I/O Port Description:

I/O Port Types	Q'TY	Test Description
1). Audio in Port	1	Connected to PC
2). Audio out Port	1	Connected to Earphone
3). D-SUB IN Port	1	Connected to PC
4). D-SUB OUT Port	1	Connected to Monitor
5). Video Port	1	Connected to DVD Player
6). S-Video Port	1	Connected to DVD Player
7). HDMI Port	1	Connected to PC
8). Mini USB Port	1	Connected to PC
9). RS-232 Port	1	Connected to Terminal
10).AC Power Port	1	Connected to AC Power Cable

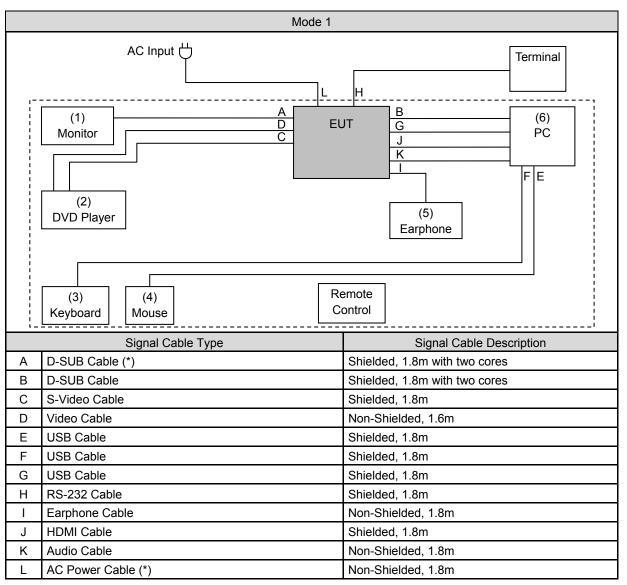
3 Test Methodology

3.1. Decision of Test Mode

3.1.1. The following test mode(s) were scanned during the preliminary test:

Pre-Test Mode
Mode 1: D-SUB in 1920 x 1080 / 60Hz + D-SUB out Mode
Mode 2: S-Video / 60Hz Mode
Mode 3: Video / 60Hz Mode
Mode 4: HDMI 1080P / 60Hz Mode

3.1.2. After the preliminary scan, the following test mode was found to produce the highest emission level.


Final Test Mode					
	Conducted Emission		Mode 1		
	Radiated Emission	Below 1GHz	Mode 1		
Emission	Radiated Emission	Above 1GHz	Mode 1		
	Harmonic current emissions		Mode 1		
	Voltage fluctuations & flicker		Mode 1		
	ESD		Mode 1		
	RS		Mode 1		
	EFT		Mode 1		
Immunity	Surge		Mode 1		
	CS		Mode 1		
	PMF		Mode 1		
	Voltage dips & voltage variations		Mode 1		

Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

3.2. EUT Exercise Software

1	Setup the EUT and simulators as shown on 3.3.
2	Turn on the power of all equipment.
3	Exercise the test program Burn in V5.3.
4	According to the user manual choose display mode and adjust resolution.
5	The projector (EUT) will start to operate and display the video figure from the signal source.
6	Adjust the projector (EUT) display brightness and contrast to maximum level.
7	Start to test till get the worst reading.
8	Repeat the above procedure (3) to (7).

3.3. Configuration of Test System Details

Note: (*) = Accessory by manufacturer

	Devices Description							
	Product Manufacturer Model Number Serial Number Power Core							
(1)	LCD Monitor	DELL	U2410f	CN-OJ257M-72872 -09J-01AL	Non-Shielded, 1.8m			
(2)	DVD Player	SONY	DVP-NS708HP	5202915	Non-Shielded, 1.5m			
(3)	Keyboard	HP	KU-0316	BC3870DVBVI1PJ	Power by PC			
(4)	Mouse	DELL	M-UK DEL3	HC7490C10LQ	Power by PC			
(5)	Earphone	Audio-technical	ATH-C101	N/A	N/A			
(6)	PC	DELL	Insprion 560 MT	724H6-U4239-PPXGK-2K WT3-K3F4HX16-96072	Non-Shielded, 1.8m			

3.4. Test Site Environment

Items	Test Item	Required (IEC 60068-1)	Actual
Temperature (°C)		15-35	26.0
Humidity (%RH)	EN 55022 CE	25-75	60.0
Barometric pressure (mbar)		860-1060	950
Temperature (°C)		15-35	26.0
Humidity (%RH)	EN 55022 RE	25-75	60.0
Barometric pressure (mbar)		860-1060	950
Temperature (°C)			26.0
Humidity (%RH)	EN 61000-3-2		60.0
Barometric pressure (mbar)			950
Temperature (°C)			26.0
Humidity (%RH)	EN 61000-3-3		60.0
Barometric pressure (mbar)			950
Temperature (°C)		15-35	22.5
Humidity (%RH)	EN 61000-4-2	30-60	49.5
Barometric pressure (mbar)		860-1060	950
Temperature (°C)			21.8
Humidity (%RH)	EN 61000-4-3		52.3
Barometric pressure (mbar)			950
Temperature (°C)		15-35	23.1
Humidity (%RH)	EN 61000-4-4	30-60	49.8
Barometric pressure (mbar)		860-1060	950
Temperature (°C)		15-35	24.8
Humidity (%RH)	EN 61000-4-5	10-75	51.3
Barometric pressure (mbar)		860-1060	950
Temperature (°C)			23.1
Humidity (%RH)	EN 61000-4-6		49.8
Barometric pressure (mbar)			950
Temperature (°C)		15-35	23.1
Humidity (%RH)	EN 61000-4-8	25-75	49.8
Barometric pressure (mbar)		860-1060	950
Temperature (°C)		15-35	23.1
Humidity (%RH)	EN 61000-4-11	25-75	49.8
Barometric pressure (mbar)		860-1060	950

4 Emission Test

4.1. Conducted Emission Measurement

4.1.1. Limit

A.C. Mains Conducted Interference Limit:

Frequency	Class A	(dBuV)	Class B (dBuV)		
(MHz)	Quasi-peak Average		Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: (1) The lower limit shall apply at the transition frequencies.

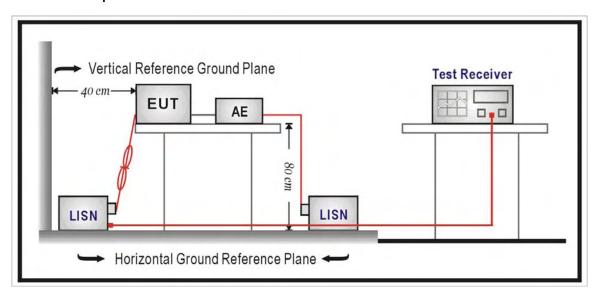
(2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

Telecommunication Port Conducted Interference Limits:

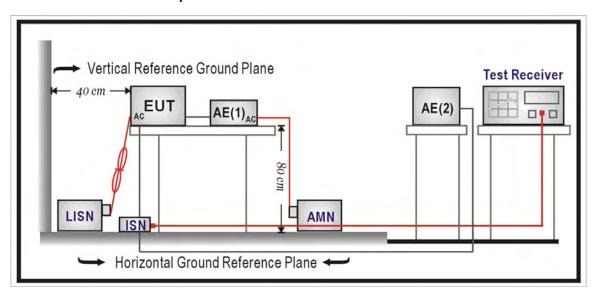
		Class A E	quipment		Class B Equipment				
Requirement (MHz)	Voltage Limit (dBμV)		Current Limit (dBµA)		Voltage Li	mit (dBµV)	Current Limit (dBµA)		
	QP	Avg.	QP	Avg.	QP	Avg.	QP	Avg.	
0.15 to 0.50	97 to 87	84 to 74	53 to 43	40 to 30	84 to 74	74 to 64	40 to 30	30 to 20	
0.50 to 30	87	74	43	30	74	64	30	20	

4.1.2. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Test Receiver	R&S	ESCI	100367	06/06/2013	(1)
LISN	R&S	ENV216	101040	03/04/2013	(1)
LISN	R&S	ENV216	101041	03/04/2013	(1)
T-LISN	FCC	FCC-TLISN-T2-02	20574	04/09/2013	(1)
T-LISN	FCC	FCC-TLISN-T4-02	20529	04/09/2013	(1)
T-LISN	TESQ	ISN-T8	34413	04/25/2013	(1)
Test Site	ATL	TE02	TE02	N.C.R.	


Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.



4.1.3. Test Setup

A.C. Mains Setup

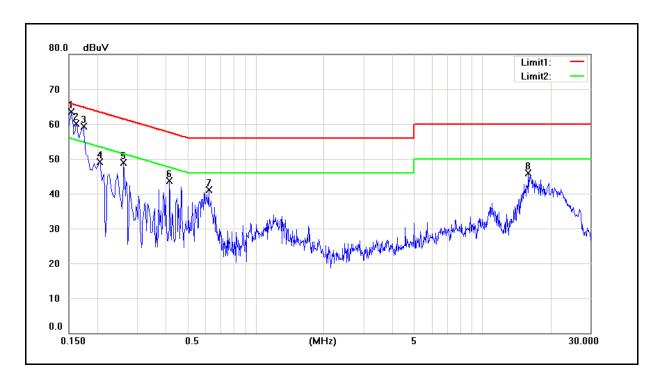
Telecommunication Port Setup

4.1.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

The mains voltage shall be supplied to the EUT via the LISN when the measurement of telecommunication port is performed. The common mode disturbances at the telecommunication port shall be connected to the ISN.

For A.C. mains conducted interference, measured both sides of A.C. lines and carried out using quasi-peak and average detector receivers of maximum conducted interference.


For telecommunication port interference measurement, using ISNs with suitable longitudinal conversion losses (LCL) as defined in the port of specification from manufacture, and the LCL shall be meet the related standard requirement. Measured the line and carried out using quasi-peak and average detector receivers of maximum conducted interference.

Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1.2, as applicable, including the average limit and the quasi-peak limit when using respectively (A.C. mains and telecommunication port), an average detector and quasi-peak detector measured in accordance with the methods described of related standard. Either the voltage limits or the current limits shall be met. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

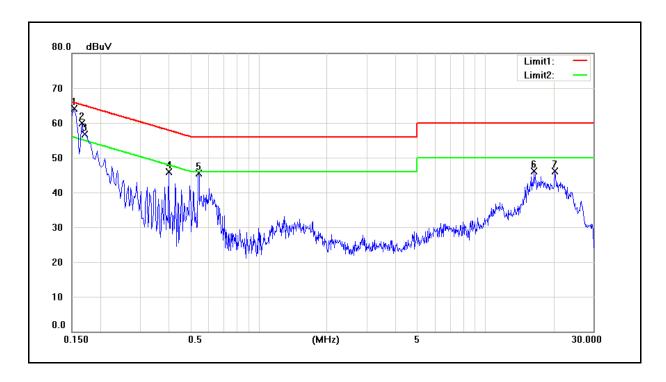
4.1.5. Test Result

Standard: EN 55022 Class B Line: L1 Conducted Emission Test item: Power: AC 230V/50Hz Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26(°C)/60%RH Mode: 1 2013/12/17 Date: Test By: Frank Lin Description:

No.	Frequency (MHz)	QP reading (dBuV)	AVG reading (dBuV)	Correction factor (dB)	QP result (dBuV)	AVG result (dBuV)	QP limit (dBuV)	AVG limit (dBuV)	QP margin (dB)	AVG margin (dB)	Remark
1	0.1540	50.56	32.03	9.62	60.18	41.65	65.78	55.78	-5.60	-14.13	Pass
2	0.1620	49.01	31.94	9.62	58.63	41.56	65.36	55.36	-6.73	-13.80	Pass
3	0.1740	46.06	32.07	9.62	55.68	41.69	64.77	54.77	-9.09	-13.08	Pass
4	0.2060	34.45	17.22	9.62	44.07	26.84	63.37	53.37	-19.30	-26.53	Pass
5	0.2620	30.96	13.63	9.62	40.58	23.25	61.37	51.37	-20.79	-28.12	Pass
6	0.4180	25.43	8.08	9.62	35.05	17.70	57.49	47.49	-22.44	-29.79	Pass
7	0.6220	25.86	15.68	9.64	35.50	25.32	56.00	46.00	-20.50	-20.68	Pass
8	16.0300	33.56	28.96	9.88	43.44	38.84	60.00	50.00	-16.56	-11.16	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).


Standard: EN 55022 Class B Line: N

Test item: Conducted Emission Power: AC 230V/50Hz Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: 1 Date: 2013/12/17

Test By: Frank Lin

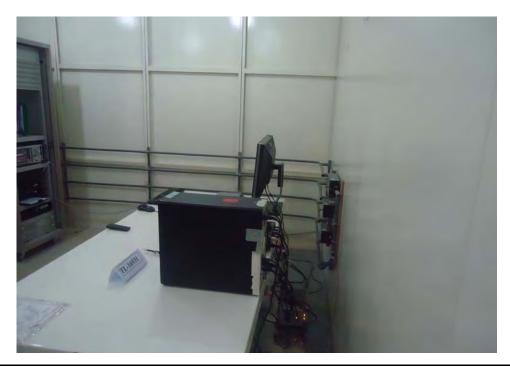
Description:

No.	Frequency (MHz)	QP reading (dBuV)	AVG reading (dBuV)	Correction factor (dB)	QP result (dBuV)	AVG result (dBuV)	QP limit (dBuV)	AVG limit (dBuV)	QP margin (dB)	AVG margin (dB)	Remark
1	0.1540	50.88	31.98	9.63	60.51	41.61	65.78	55.78	-5.27	-14.17	Pass
2	0.1660	48.86	32.48	9.63	58.49	42.11	65.16	55.16	-6.67	-13.05	Pass
3	0.1731	47.50	32.55	9.63	57.13	42.18	64.81	54.81	-7.68	-12.63	Pass
4	0.4020	26.86	8.47	9.63	36.49	18.10	57.81	47.81	-21.32	-29.71	Pass
5	0.5460	23.43	11.97	9.63	33.06	21.60	56.00	46.00	-22.94	-24.40	Pass
6	16.4140	32.40	25.27	9.96	42.36	35.23	60.00	50.00	-17.64	-14.77	Pass
7	20.2700	28.41	22.57	9.86	38.27	32.43	60.00	50.00	-21.73	-17.57	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

4.1.6. Test Photograph


Test Mode: Mode 1

Description: Front View of Conducted Test

Test Mode: Mode 1

Description: Back View of Conducted Test

4.2. Radiated Interference Measurement

4.2.1. Limit

Frequency	dBuV/m (Distance 10m)				
(MHz)	Class A	Class B			
30 ~ 230	40	30			
230 ~ 1000	47	37			

Note: The lower limit shall apply at the transition frequencies.

Frequency (MHz)		dBuV/m (Distance 3m)						
	Clas	ss A	Class B					
,	Average	Peak	Average	Peak				
1000 ~ 3000	56	76	50	70				
3000 ~ 6000	60	80	54	74				

Note: The lower limit shall apply at the transition frequencies.

Remark: 1. The tighter limit shall apply at the edge between two frequency bands.

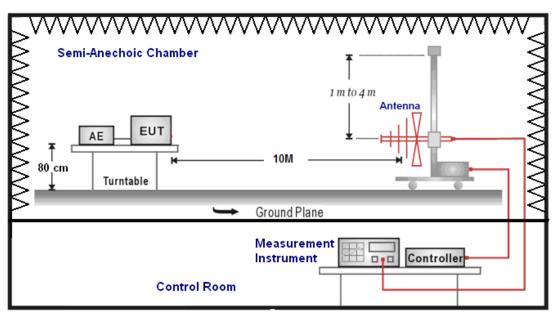
2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower

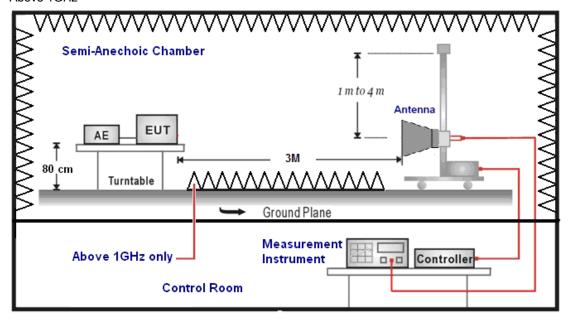
4.2.2. Test Instruments

	10 Meter Chamber										
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark						
Pre Amplifier	Agilent	8447D	2944A11120	01/10/2013	(1)						
Pre Amplifier	Agilent	8447D	2944A11119	01/10/2013	(1)						
Test Receiver	R&S	ESCI	100722	10/26/2013	(1)						
Test Receiver	R&S	ESCI	101000	12/03/2013	(1)						
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	9160-3268	06/05/2013	(1)						
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	9160-3273	11/29/2013	(1)						
Test Site	ATL	TE06	TE06	08/10/2013	(1)						

	3 Meter Chamber										
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark						
Spectrum Analyzer	Agilent	E4445A	MY46181986	05/16/2013	(1)						
Amplifier	Mini-Circuits	EM330	060545	11/18/2013	(1)						
Amplifier	Mini-Circuits	ZVA-213-S+	467900926	05/26/2013	(1)						
RF Pre-selector	Agilent	N9039A	MY46520255	05/16/2013	(1)						
Horn Antenna (1~18GHz)	ETS-Lindgren	3117	00128055	08/08/2013	(1)						
Test Site	ATL	TE09	TE09	05/09/2013	(1)						


Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.



4.2.3. Setup

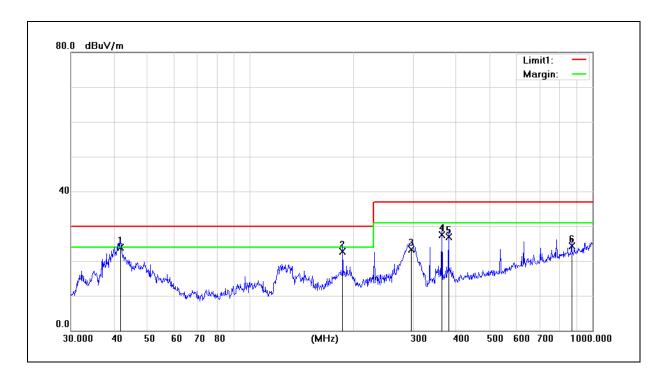
Below 1GHz

Above 1GHz

4.2.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. When the EUT is floor-standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 10 meters for under 1GHz, and 3 meter for above 1GHz if the highest internal source frequency of the EUT is higher than 108 MHz.


The highest internal source of a EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

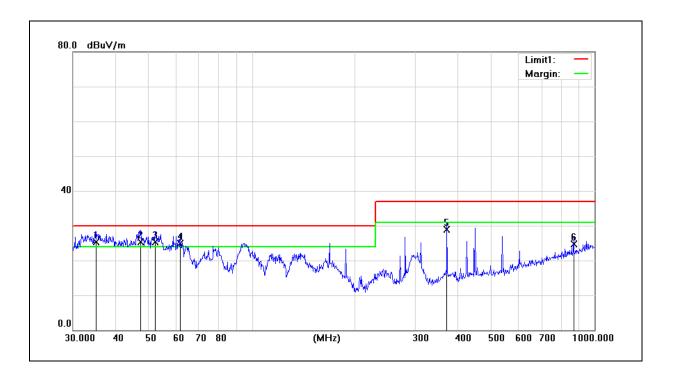
The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated on radiated measurement.

Radiated emissions were invested over the frequency range from 30MHz to1GHz using a receiver bandwidth of 120 kHz. Radiated was performed at an antenna to EUT distance of 10 meters.

4.2.5. Test Result

Standard: EN 55022 Class B Test Distance: 10m Test item: Radiated Emission Power: AC 230V/50Hz Model Number: P1500 Temp.(°C)/Hum.(%RH): 26(°C)/60%RH Mode: 1 2013/12/24 Date: Ant.Polar.: Horizontal Test By: Frank Lin

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
INO.	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remain
1	41.8596	39.13	-15.23	23.90	30.00	-6.10	200	210	QP
2	186.4410	38.12	-15.42	22.70	30.00	-7.30	300	199	QP
3	296.1836	35.42	-12.02	23.40	37.00	-13.60	300	264	QP
4	362.9844	38.42	-10.92	27.50	37.00	-9.50	400	360	QP
5	379.9141	37.43	-10.53	26.90	37.00	-10.10	400	17	QP
6	869.1302	25.65	-1.35	24.30	37.00	-12.70	200	73	QP


Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

Standard:EN 55022 Class BTest Distance:10mTest item:Radiated EmissionPower:AC 230V/50HzModel Number:P1500Temp.(°C)/Hum.(%RH):26(°C)/60%RH

 Mode:
 1
 Date:
 2013/12/24

 Ant.Polar.:
 Vertical
 Test By:
 Frank Lin

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
INO.	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remain
1	35.0048	40.62	-15.32	25.30	30.00	-4.70	100	129	QP
2	47.3255	39.65	-14.25	25.40	30.00	-4.60	200	310	QP
3	52.2080	39.64	-14.24	25.40	30.00	-4.60	100	245	QP
4	61.7781	39.78	-14.78	25.00	30.00	-5.00	300	27	QP
5	370.7023	38.49	-9.59	28.90	37.00	-8.10	200	319	QP
6	869.1302	24.12	0.58	24.70	37.00	-12.30	200	117	QP

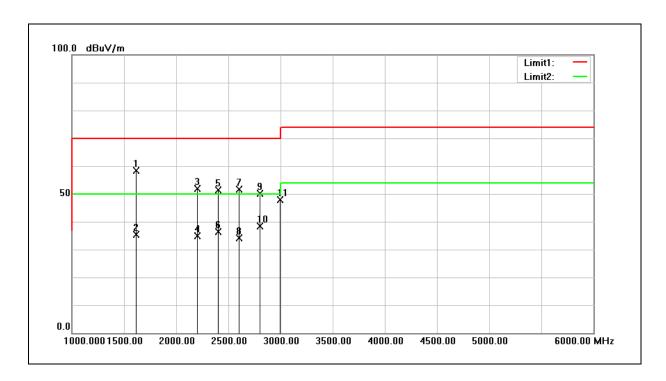
Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

Mode:

Report Number: 1312CE32-02

2013/12/17


Standard: EN 55022 Class B Test Distance:

Test item: Radiated Emission Power: AC 230V/50Hz

Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26(°C)/60%RH

Date:

1 (1GHz~6GHz) Ant.Polar.: Horizontal Test By: Frank Lin

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1615.000	80.73	-22.44	58.29	70.00	-11.71	peak
2	1615.000	57.82	-22.44	35.38	50.00	-14.62	AVG
3	2200.000	70.93	-19.06	51.87	70.00	-18.13	peak
4	2200.000	54.04	-19.06	34.98	50.00	-15.02	AVG
5	2400.000	70.14	-18.70	51.44	70.00	-18.56	peak
6	2400.000	55.13	-18.70	36.43	50.00	-13.57	AVG
7	2600.000	69.95	-18.24	51.71	70.00	-18.29	peak
8	2600.000	52.44	-18.24	34.20	50.00	-15.80	AVG
9	2800.000	67.90	-17.65	50.25	70.00	-19.75	peak
10	2800.000	56.07	-17.65	38.42	50.00	-11.58	AVG
11	2995.000	64.90	-17.09	47.81	70.00	-22.19	peak

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

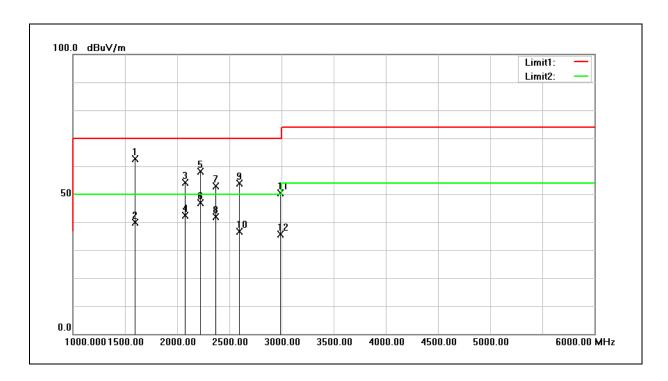
2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) - Pre-Amplifier gain (dB).

1 (1GHz~6GHz)

Mode:

Report Number: 1312CE32-02

2013/12/17


Standard: EN 55022 Class B Test Distance: 3m

Test item: Radiated Emission Power: AC 230V/50Hz

 $\label{eq:model_number:} \mbox{Model Number:} \qquad \mbox{P1500} \qquad \mbox{Temp.($^{\circ}_{\mathbb{C}}$)/Hum.($^{\circ}_{\mathbb{C}}$)} \qquad \mbox{26($^{\circ}_{\mathbb{C}}$)/60$\%RH}$

Date:

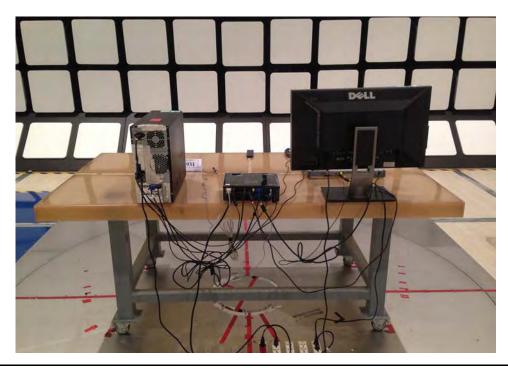
Ant.Polar.: Vertical Test By: Frank Lin

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1595.000	85.35	-22.60	62.75	70.00	-7.25	peak
2	1595.000	62.42	-22.60	39.82	50.00	-10.18	AVG
3	2075.000	73.49	-19.28	54.21	70.00	-15.79	peak
4	2075.000	61.67	-19.28	42.39	50.00	-7.61	AVG
5	2225.000	77.07	-19.02	58.05	70.00	-11.95	peak
6	2225.000	65.80	-19.02	46.78	50.00	-4.22	AVG
7	2370.000	71.67	-18.77	52.90	70.00	-17.10	peak
8	2370.000	60.63	-18.77	41.86	50.00	-8.14	AVG
9	2595.000	72.16	-18.25	53.91	70.00	-16.09	peak
10	2595.000	54.85	-18.25	36.60	50.00	-13.40	AVG
11	2990.000	67.43	-17.10	50.33	70.00	-19.67	peak
12	2990.000	52.84	-17.10	35.74	50.00	-14.26	AVG

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).


2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

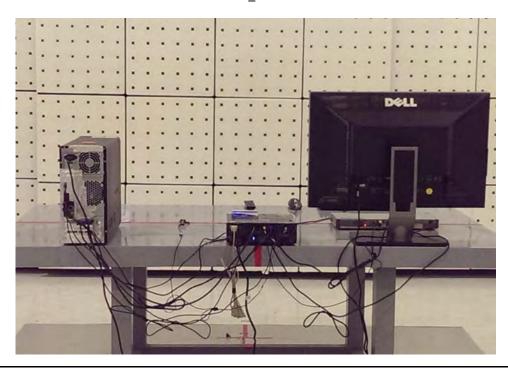
4.2.6. Test Photograph


Test Mode: Mode 1

Description: Front View of Radiated Emission Test _ Below 1GHz

Test Mode: Mode 1

Description: Back View of Radiated Emission Test _ Below 1GHz


Test Mode: Mode 1

Description: Front View of Radiated Emission Test _ Above 1GHz

Test Mode: Mode 1

Description: Back View of Radiated Emission Test _ Above 1GHz

4.3. Harmonics Current Measurement

4.3.1. Limit

Limits of Class A Harmonics Currents

Limits of Class A Harmonics Currents							
Harmonics Order	Maximum Permissible harmonic current	Harmonics Order	Maximum Permissible harmonic current				
n	(A)	n	(A)				
Odd I	narmonics	Even harmonics					
3	2.30	2	1.08				
5	1.14	4	0.43				
7	0.77	6	0.30				
9	0.40	$8 \leq n \leq 40$	0.23 * 8/n				
11	0.33						
13	0.21						
$15 \leq n \leq 39$	0.15 * 15/n						

Limits of Class B Harmonics Currents

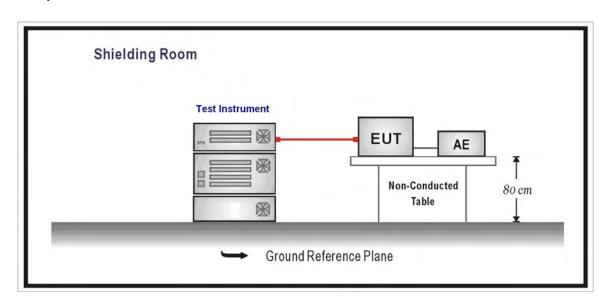
For Class B equipment, the harmonic of the input current shall not exceed the maximum permissible values given in table which is the limit of Class A multiplied by a factor of 1.5.

Limits of Class C Harmonics Currents

Harmonics Order Maximum Permissible harmonic current Expressed as a percentage of the input current at the fundamental frequency (%) 2 2 2 3 30 $\cdot \lambda^*$ 5 10 7 7 9 5 $11 \le n \le 39$ (odd harmonics only) A 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Elinits of Class & Harmonics Guiterts					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Harmonics Order					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	(%)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2				
7	3	30 · λ*				
$\begin{array}{c} 11 \leq n \leq 39 \\ \text{(odd harmonics only)} \end{array}$	5	10				
$\begin{array}{c} 11 \leq n \leq 39 \\ \text{(odd harmonics only)} \end{array}$	7	7				
(odd harmonics only)	9	5				
N in the principal of the state		3				
* λ is the circuit power factor						

Limits of Class D Harmonics Currents

Harmonics Order	Maximum Permissible harmonic current per watt	Maximum Permissible harmonic current
n	(mA/W)	(A)
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
$11 \le n \le 39$ (odd harmonics only)	3.85/n	See limit of Class A


4.3.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Power Harmonics Analyzers	EMC-Partner AG	HAR1000-1P	171	02/01/2013	(2)
Test Site	ATL	TE05	TE05	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

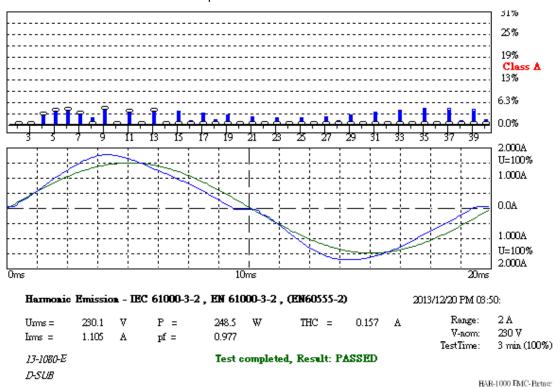
4.3.3. Setup

4.3.4. Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and the EUT is supplied in series with power analyzer from a power source having the same normal voltage and frequency as the rated supply voltage and the equipment under test. And the rated voltage at the supply voltage of EUT of 0.94 times and 1.06 times shall be performed.

A definition of the normal load or of the conditions for adequate heat discharge can usually be found in the EN publication corresponding to the equipment under test.

Equipment may have several separately controlled circuits. Each circuit is considered as a single piece of equipment if it can be operated independently and separately from the other circuits.


4.3.5. Test Result

Product	DLP Projector		
Test Item	Power Harmonics		
Test Mode	Mode 1		
Date of Test	2013/12/20	Test Site	TE05

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line European Limits

Note: For the following categories of equipment limits are not specified in this edition of the standard.

- -Equipment with a rated power of 75 W or less, other than lighting equipment.
- -Professional equipment with a total rated power greater than 1 kW;
- -Symmetrically controlled heating elements with a rated power less than or equal to 200 W;
- -Independent dimmers for incandescent lamps with a rated power less than or equal to 1 kW.

Urms =	230.1V	Freq =	50.013	Range:	2 A
Irms =	1.105A	lpk =	1.786A	cf =	1.616
P =	248.5W	S =	254.4VA	pf =	0.977
THDi =	14.2 %	THDu =	0.10 %	Class A	

Test - Time : 3min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz] 50	lavg [A] 1.0827	lavg%L [%]	Imax [A] 1.0969	lmax%L [%]	Limit [A]	Status
1 2	100	0.0000	0.0000	0.0029	0.2713	1.0800	PASS
3	150	0.0000	6.3387	0.1459	6.3423	2.3000	PASS
4	200	0.1438	2.7408	0.0120	2.7821	0.4300	PASS
4 5	250	0.0441	3.8681	0.0120	3.8870	1.1400	PASS
5 6	300	0.0122	4.0733	0.0123	4.1097	0.3000	PASS
7	350	0.0233	3.0267	0.0234	3.0438	0.7700	PASS
8	400	0.0233	0.0000	0.0234	1.7514	0.7700	PASS
9	450	0.0166	4.1447	0.0167	4.1809	0.4000	PASS
10	500	0.0000	0.0000	0.0006	0.3317	0.1840	PASS
11	550	0.0117	3.5535	0.0122	3.6991	0.3300	PASS
12	600	0.0000	0.0000	0.0004	0.2388	0.1533	PASS
13	650	0.0078	3.6977	0.0082	3.8946	0.2100	PASS
14	700	0.0000	0.0000	0.0002	0.1858	0.1314	PASS
15	750 750	0.0000	0.0000	0.0054	3.5807	0.1500	PASS
16	800	0.0000	0.0000	0.0010	0.8492	0.1150	PASS
17	850	0.0000	0.0000	0.0039	2.9514	0.1324	PASS
18	900	0.0000	0.0000	0.0011	1.0747	0.1022	PASS
19	950	0.0000	0.0000	0.0031	2.5770	0.1184	PASS
20	1000	0.0000	0.0000	0.0005	0.5307	0.0920	PASS
21	1050	0.0000	0.0000	0.0021	1.9368	0.1071	PASS
22	1100	0.0000	0.0000	0.0005	0.5838	0.0836	PASS
23	1150	0.0000	0.0000	0.0016	1.6222	0.0978	PASS
24	1200	0.0000	0.0000	0.0005	0.6369	0.0767	PASS
25	1250	0.0000	0.0000	0.0015	1.6276	0.0900	PASS
26	1300	0.0000	0.0000	0.0005	0.6900	0.0708	PASS
27	1350	0.0000	0.0000	0.0016	1.9043	0.0833	PASS
28	1400	0.0000	0.0000	0.0005	0.7430	0.0657	PASS
29	1450	0.0000	0.0000	0.0020	2.5174	0.0776	PASS
30	1500	0.0000	0.0000	0.0004	0.5971	0.0613	PASS
31	1550	0.0000	0.0000	0.0024	3.3637	0.0726	PASS
32	1600	0.0000	0.0000	0.0004	0.6369	0.0575	PASS
33	1650	0.0000	0.0000	0.0026	3.7598	0.0682	PASS
34	1700	0.0000	0.0000	0.0004	0.6767	0.0541	PASS
35	1750	0.0000	0.0000	0.0027	4.1775	0.0643	PASS
36	1800	0.0000	0.0000	0.0004	0.7165	0.0511	PASS
37	1850	0.0000	0.0000	0.0027	4.4162	0.0608	PASS
38	1900	0.0000	0.0000	0.0004	0.7563	0.0484	PASS
39	1950	0.0000	0.0000	0.0023	4.0202	0.0577	PASS
40	2000	0.0000	0.0000	0.0005	1.0615	0.0460	PASS

- 1. Dynamic limits were applied for this test. The highest harmonics values in the above table may not occur at the same window as the maximum harmonics/limit ratio.
- 2. According to EN61000-3-2 paragraph 7 the note 1 and 2 are valid for all applications having an active input power >75W. Others the result should be pass.

4.3.6. Test Photograph

Test Mode: Mode 1

Description: Front View of Power Harmonics Test

4.4. Voltage Fluctuation and Flicker

4.4.1. Limit

The following limits apply:

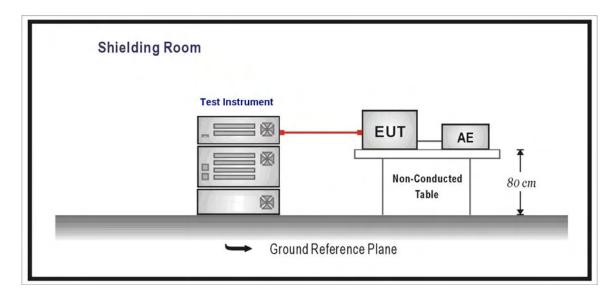
- -- the value of P_{st} shall not be greater than 1.0;
- -- the value of P_{lt} shall not be greater than 0.65;
- -- the value of d(t) during a voltage change shall not exceed 3.3 % for more than 500 ms;
- -- the relative steady-state voltage change, dc, shall not exceed 3.3 %;
- -- the maximum relative voltage change, d_{max}, shall not exceed;
- a) 4 % without additional conditions;
- b) 6 % for equipment which is:
- -- switched manually, or
- -- switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.

Note: The cycling frequency will be further limited by the P_{st} and P_{1t} limit.

For example: a d_{max} of 6% producing a rectangular voltage change characteristic twice per hour will give a P_{1t} of about 0.65.

- c) 7 % for equipment which is:
- -- attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or
- -- switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

P_{st} and P_{1t} requirements shall not be applied to voltage changes caused by manual switching.


4.4.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Power Harmonics Analyzers	EMC-Partner AG	HAR1000-1P	171	02/01/2013	(2)
Test Site	ATL	TE05	TE05	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

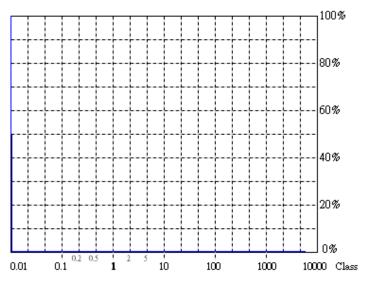
Note: N.C.R. = No Calibration Request.

4.4.3. Setup

4.4.4. Test Procedure

The EUT is supplied in series with power analyzer from a power source having the same normal voltage and frequency as the rated supply voltage and the equipment under test. And the rated voltage at the supply voltage of EUT of 0.94 times and 1.06 times shall be performed.

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.


During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

4.4.5. Test Result

Product	DLP Projector		
Test Item	Flicker		
Test Mode	Mode 1		
Date of Test	2013/12/20	Test Site	TE05

Test Result: Pass Status: Test Completed

Plt and limit line

 Actual Flicker (Fli):
 0.00

 Short-term Flicker (Pst):
 0.07

 Limit (Pst):
 1.00

 Long-term Flicker (Plt):
 0.07

 Limit (Plt):
 0.65

 Maximum Relative

 ♥olt. Change (dmax):
 0.00%

 Limit (dmax):
 4.00%

Relative Steady-state
Voltage Change (dc): 0.14%
Limit (dc): 3.30%

Maximum Interval exceeding 3.30% (dt): 0.00ms
Limit (dt>Lim): 500ms

2013/12/20 PM 04:03:

Flicker Emission - IEC 61000-3-3, EN 61000-3-3, (EN60555-3)

Umrs = 229.7 V P = 248.6 W Imrs = 1.107 A pf = 0.977

Range: 2 A V-nom: 230 V TestTime: 10 min (100%)

13-1080-E Test completed, Result: PASSED
D-SUB

HAR-1000 EMC-Partner

229.7V Urms = 50.000 Freq = Range: 2 A Irms = 1.107A lpk = 1.787A 1.614 248.6W S 254.4VA 0.977 pf

Test - Time : 1 x 10min = 10min (100 %)

LIN (Line Impedance Network): L: 0.24ohm +j0.15ohm N: 0.16ohm +j0.10ohm

Limits: Plt : 0.65 Pst : 1.00 dmax : 4.00 % dc : 3.30 %

dtLim: 3.30 % dt>Lim: 500ms

Test completed, Result: PASSED

4.4.6. Test Photograph

Test Mode: Mode 1

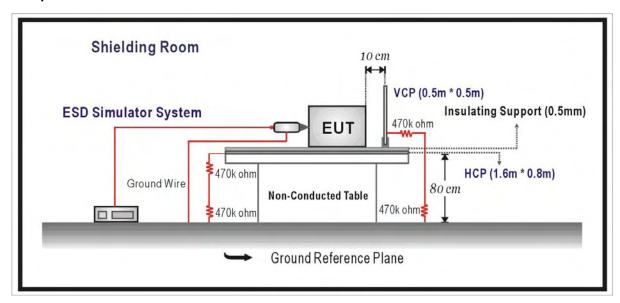
Description: Front View of Flicker Test

5 Immunity Test

5.1. Electrostatic Discharge (ESD)

5.1.1. Test Specification

EN 61000-4-2								
Environmental Phenomena Units Test Specification Performance Criterion								
	Enclosure Port							
Electroctatic Discharge ±8 Air Discharge								
Electrostatic Discharge	kV (Charge Voltage)	±4 Contact Discharge	ט					


5.1.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Discharge Gun	Noiseken	ESS-2002	ESS05Y4736	03/14/2013	(1)
0.8m Height Wooden Table	N/A	N/A	N/A	N.C.R.	
Test Site	ATL	TE04	TE04	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

5.1.3. Setup

5.1.4. Test Procedure

The discharges shall be applied in two ways:

- a) Contact discharges to the conductive surfaces and coupling planes: The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test point be available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.
- b) Air discharges at slots and apertures and insulating surfaces: On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with EN 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the HCP (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

5.1.5. Test Result

Product	DLP Projector		
Test Item	Electrostatic Discharge		
Test Mode	Mode 1		
Date of Test	2013/12/24	Test Site	TE04

	Air Discharge														
Test						Test L	evels							Results	
Points	± 2 kV	Criterion	± 4 kV	Criterion	± 6 kV	Criterion	± 8 kV	Criterion	± 10 kV	Criterion	± 15 kV	Criterion	Pass	Fail	Note
Front		⊠А □В	\boxtimes	⊠А □В		⊠А □В	\boxtimes	□А ⊠В	⋈	□А ⊠В	\boxtimes	□А ⊠В	\boxtimes		Note 1
Back	\boxtimes	⊠А □В	\boxtimes	⊠А □В	\boxtimes	⊠А □В	\boxtimes	□А ⊠В		□А ⊠В	\boxtimes	□A ⊠B	\boxtimes		Note 1
Left	\boxtimes	⊠А □В	\boxtimes	⊠А □В	\boxtimes	⊠А □В	\boxtimes	□А ⊠В		□А ⊠В	\boxtimes	□A ⊠B	\boxtimes		Note 1
Right	\boxtimes	⊠а □в	\boxtimes	⊠а □в	\boxtimes	⊠а □в	\boxtimes	□а ⊠в		□а ⊠в	\boxtimes	□а ⊠в	\boxtimes		Note 1
Тор	\boxtimes	⊠а □в	\boxtimes	⊠а □в	\boxtimes	⊠а □в	\boxtimes	□а ⊠в		□а ⊠в	\boxtimes	□а ⊠в	\boxtimes		Note 1
Bottom	\boxtimes	⊠а □в	\boxtimes	⊠а □в	\boxtimes	⊠А □В	\boxtimes	□а ⊠в	\boxtimes	□а ⊠в	\boxtimes	□а ⊠в			Note 1

	Contact Discharge														
Test						Test	Levels							Results	
Points	± 2 kV	Crite	erion	± 4 kV	Crite	erion	± 6 kV	Crite	erion	± 8 kV	Crite	erion	Pass	Fail	Note
Front		□A	□В		□A	□В		□A	□В		□A	□В			
Back	\boxtimes	⊠A	□В		⊠A	□В		⊠A	□В		⊠A	□В	\boxtimes		Note 1
Left		□A	□В		□A	□В		ΠA	□В		□A	□В			
Right		□A	□В		□A	□В		□A	□В		□A	□В			
Тор		□A	□В		□A	□В		□A	□В		□A	□в			
Bottom	\boxtimes	⊠A	□в		⊠A	□в		⊠A	□В		⊠A	□в	\boxtimes		Note 1

	Ground Shield of All I/O connectors														
						Cont	act Di	scharge							
						Test L	evels							Results	
Test Points	± 2 kV		mance erion	± 4 kV		mance erion	± 6 kV		mance erion	± 8 kV		mance erion	Pass	Fail	Note
Audio in Port	\boxtimes	⊠A	□В	\boxtimes	⊠A	□В	\boxtimes	⊠A	□В		⊠A	В	\boxtimes		Note 1
Audio out Port	\boxtimes	⊠A	□В	\boxtimes	⊠A	□В	\boxtimes	⊠A	□В		⊠A	В	\boxtimes		Note 1
D-SUB IN Port	\boxtimes	⊠A	□в	\boxtimes	⊠A	□В	\boxtimes	⊠A	□В		⊠A	□В	\boxtimes		Note 1
D-SUB OUT Port	\boxtimes	⊠A	□В		⊠A	□В	\boxtimes	⊠A	□В		⊠A	□В	\boxtimes		Note 1
Video Port		⊠A	□в		⊠A	□в		⊠A	□в		⊠A	□в	\boxtimes		Note 1
S-Video Port		⊠A	□в		⊠A	□в		⊠A	□в		⊠A	□в	\boxtimes		Note 1
HDMI Port	\boxtimes	⊠A	□в		⊠A	□в		⊠A	□в		⊠A	□в	\boxtimes		Note 1
Mini USB Port		⊠A	□В		⊠A	□В	\boxtimes	⊠A	□В	⊠	⊠A	□В	\boxtimes		Note 1
RS-232 Port		⊠A	□В		⊠A	□В	\boxtimes	⊠A	□В		⊠A	□В	\boxtimes		Note 1

For the tested points to EUT, please refer to attached page.

(Blue arrow mark for Air Discharge and red arrow mark for Contact Discharge)

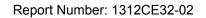
	Discharge To Horizontal Coupling Plane								
		Test L	evels				Results		
Side of EUT	± 2 kV	± 4 kV	± 6 kV	± 8 kV	Pass	Fail	Perfori Crite		Note
Front	⊠	⊠			\boxtimes		⊠A	□В	Note 1
Back	\boxtimes	\boxtimes			\boxtimes		⊠A	□в	Note 1
Left	\boxtimes	\boxtimes			\boxtimes		⊠A	□В	Note 1
Right	⊠	⊠			\boxtimes		⊠A	□в	Note 1

	Discharge To Vertical Coupling Plane								
		Test L	evels				Results		
Side of EUT	± 2 kV	± 4 kV	± 8 kV	Pass	Pass Fail Performance Criterion			Note	
Front	\boxtimes	\boxtimes			\boxtimes		⊠A	□В	Note 1
Back	⊠	⊠			\boxtimes		⊠A	□в	Note 1
Left	⊠	⊠			\boxtimes		⊠A	□в	Note 1
Right	\boxtimes	×			\boxtimes		⊠A	□В	Note 1

Note 1: Criterion A: There was no change compared with initial operation during the test. Criterion B: Air discharge \pm 8 kV, \pm 10 kV, \pm 15 kV, the flash on the screen and can be self recover. The \pm 10 kV, \pm 15 kV was only for acer specification.

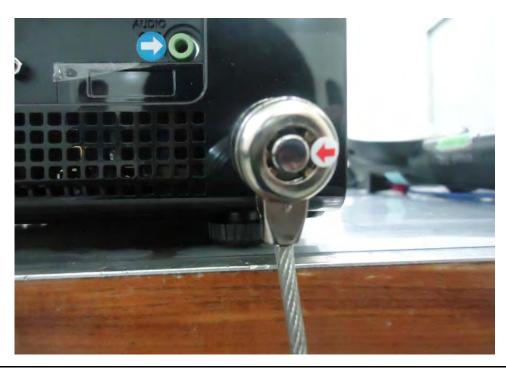
5.1.6. Test Photograph

Test Mode: Mode 1


Description: Front View of ESD Test

Test Mode: Mode 1

Description: Close View of ESD Test


Test Mode: Mode 1

Description: Close View of ESD Test

Test Mode: Mode 1

Description: Close View of ESD Test


Test Mode: Mode 1

Description: Close View of ESD Test

Test Mode: Mode 1

Description: Close View of ESD Test

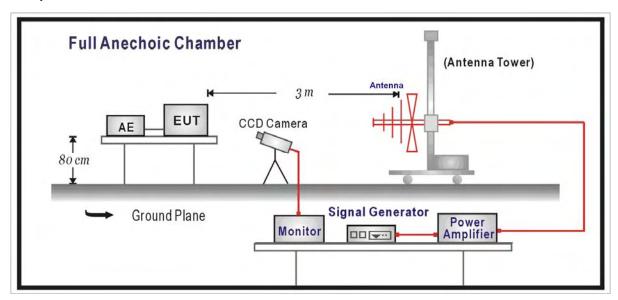
5.2. Radiated Electromagnetic Field (RS)

5.2.1. Test Specification

EN 61000-4-3								
Environmental Phenomena	Units	Test Specification	Performance Criterion					
Enclosure Port								
Test Frequency Range	MHz	80-1000						
RF Electromagnetic Field	V/m(Un-modulated, rms)	3	Α					
Amplitude Modulated	% AM (1kHz)	80						

EUT tested in accordance with the specifications given by the standard of EN 61000-4-3.

Step : 1%
Step time : 3 Second


5.2.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
SMB 100A SIGNAL GENERATOR	R&S	SMB100A	100724	03/06/2013	(2)
NRP-Z91 POWER SENSOR	R&S	NRP-Z91	100611	07/15/2013	(1)
NRP-Z91 POWER SENSOR	R&S	NRP-Z91	100611	07/14/2013	(1)
NRP POWER METER	R&S	NRP	101591	07/15/2013	(1)
Solid State Power Amplifier	BONN ELEKTRONIK	BLWA 0830-160/100/40D	87050	N.C.R.	
Signal Generator Module	R&S	SM300 Module	102209	N.C.R.	
Broad-Band Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9120	BBHA 9120 E388	N.C.R.	
Test Site	ATL	TE07	888009	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

5.2.3. Setup

5.2.4. Test Procedure

The test procedure was in accordance with EN 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10 -3 decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

5.2.5. Test Result

Product	DLP Projector	DLP Projector							
Test Item	Radiated Susce	eptibility							
Test Mode	Mode 1								
Date of Test	2013/12/23			Test Site	TE07				
Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion	Result				
80 ~ 1000	Н	0	3	⊠A □B	PASS				
80 ~ 1000	V	0	3	⊠A □B	PASS				
80 ~ 1000	Н	90	3	⊠A □B	PASS				
80 ~ 1000	V	90	3	⊠A □B	PASS				
80 ~ 1000	Н	180	3	⊠A □B	PASS				
80 ~ 1000	V	180	3	⊠A □B	PASS				
80 ~ 1000	Н	270	3	⊠A □B	PASS				
80 ~ 1000	V	270	3	⊠A □B	PASS				

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test
Criterion B: Operate as intended after the test
Criterion C: Loss/Error of function

ш	/ taditional information		
	There was no observab	le degradation in performance.	
	EUT stopped operation	and could / could not be reset by operator at	V/m
	at frequency	_MHz.	

No false alarms or other malfunctions were observed during or after the test.

5.2.6. Test Photograph

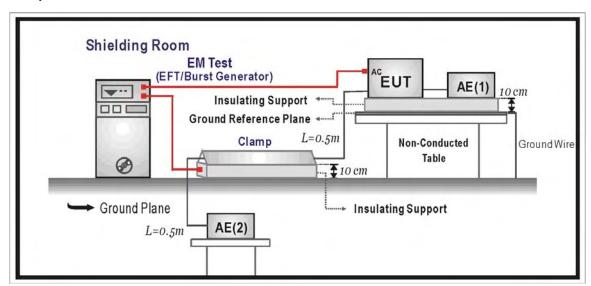
Test Mode: Mode 1

Description: Front View of RS Test

5.3. Electrical Fast Transient/Burst (EFT)

5.3.1. Test Specification

	EN 61000-4-4						
Item	Environmental Phenomena	Units	Test Specification	Performance Criterion			
I/O a	nd communication ports						
Fast	Transients Common Mode	kV (Peak) Tr/Th ns Rep. Frequency kHz	<u>+</u> 0.5 5/50 5	В			
Input	DC Power Ports						
Fast Transients Common Mode		kV (Peak) Tr/Th ns Rep. Frequency kHz	<u>+</u> 0.5 5/50 5	В			
Input	Input AC Power Ports						
Fast Transients Common Mode		kV (Peak) Tr/Th ns Rep. Frequency kHz	<u>+</u> 1 5/50 5	В			


5.3.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/07/2013	(1)
Test Site	ATL	TE08	TE08	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

5.3.3. Setup

5.3.4. Test Procedure

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- c) The duration time of each test sequential was 1 minute.
- d) The transient/burst waveform was in accordance with EN 61000-4-4, 5/50ns.

5.3.5. Test Result

Product		DLP Projector	DLP Projector					
Test Item		Electrical Fast	Transient/Burs	st				
Test Mode		Mode 1						
Date of Test	ite of Test 2013/12/21 Test S			Test Site		TE08		
Test Point	Polarity	Test Level (kV)	Inject Time (Second)	Inject Method		mance erion	Result	Observation
L	±	1	60	Direct	⊠A	□в	PASS	
N	±	1	60	Direct	⊠A	□В	PASS	
PE	±	1	60	Direct	⊠A	□В	PASS	
L+N	±	1	60	Direct	⊠A	□В	PASS	
L+PE	±	1	60	Direct	⊠A	□в	PASS	
N+PE	±	1	60	Direct	⊠A	□В	PASS	
L+N+PE	±	1	60	Direct	⊠A	□В	PASS	

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test
Criterion B: Operate as intended after the test
Criterion C: Loss/Error of function

Additional Information
There was no observable degradation in performance.
EUT stopped operation and could / could not be reset by operator at ______ V/m
at frequency ______MHz.

No false alarms or other malfunctions were observed during or after the test.

5.3.6. Test Photograph

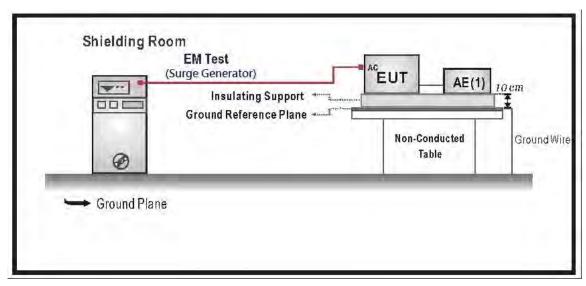
Test Mode: Mode 1

Description: Front View of EFT Test – AC Mains Port

5.4. Surge

5.4.1. Test Specification

	EN 61000-4-5						
Item	Environmental Phenomena Units Test Specification		Performance Criterion				
Signa	al Ports and Telecommunication	Ports(See 1) and 2))					
Surges Line to Ground		Tr/Th us kV	1.2/50 (8/20) ± 1	В			
Input	DC Power Ports						
Surge Line t	es to Ground	Tr/Th us kV					
Input	Input AC Power Ports						
	es to Line to Ground	Tr/Th us kV kV	1.2/50 (8/20) ± 1 ± 2	В			


5.4.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/07/2013	(1)
Test Site	ATL	TE08	TE08	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

5.4.3. Setup

5.4.4. Test Procedure

a) For EUT power supply:

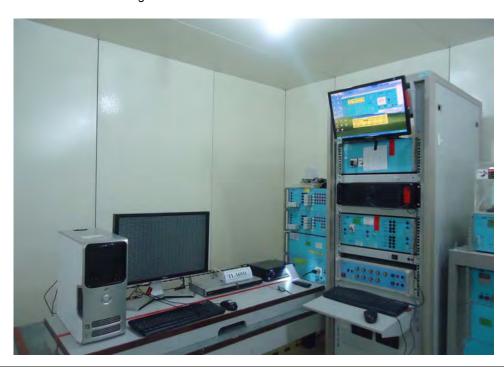
The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT:
 - The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT: The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

5.4.5. Test Result

Product	DLP Project	DLP Projector					
Test Item	Surge						
Test Mode	Mode 1						
Angle	0, 90, 180, 2	0, 90, 180, 270					
Date of Test	2013/12/24	2013/12/24			TE08		
Inject Line	Polarity	Voltage (kV)	Time Interval (Second)	Inject Method	Perforr Crite		Result
L+N	±	1	60	Direct	⊠A	□В	Pass
L+PE	±	2	60	Direct	⊠A	□В	Pass
N+PE	±	2	60	Direct	⊠A	□В	Pass
L+N+PE	±	2	60	Direct	⊠A	□в	Pass

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.


Criterion A: Operate as intended during and after the test	
Criterion B: Operate as intended after the test	
Criterion C: Loss/Error of function	
Additional Information	
☐ EUT stopped operation and could / could not be reset by operator at	V/m
at frequencyMHz.	
No false alarms or other malfunctions were observed during or after the test.	

5.4.6. Test Photograph

Test Mode: Mode 1

Description: Front View of Surge Test – AC Mains Port

5.5. Conducted Susceptibility (CS)

5.5.1. Test Specification

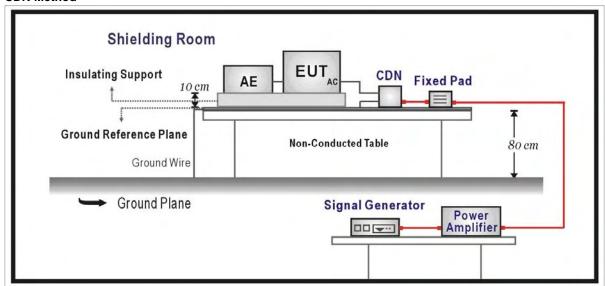
EN 61000-4-6						
Environmental Phenomena	Units	Test Specification	Performance Criterion			
Signal Ports and Telecommunic	ation Ports					
	MHz	0.15-80				
Radio-Frequency Continuous Conducted	V (rms, Un-modulated)	3	Α			
	% AM (1kHz)	80				
Input DC Power Ports						
	MHz	0.15-80				
Radio-Frequency Continuous Conducted	V (rms, Un-modulated)	3	Α			
Continuodo Contactod	% AM (1kHz)	80				
Input AC Power Ports						
	MHz	0.15-80				
Radio-Frequency Continuous Conducted	V (rms, Un-modulated)	3	Α			
Seminasas Semanata	% AM (1kHz)	80				

EUT tested in accordance with the specifications given by the standard of EN 61000-4-6.

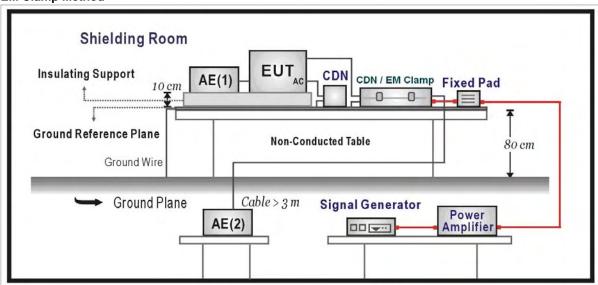
Step : 1%
Step time : 3 Second

5.5.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Signal Line Coupling Decoupling Network	FCC	FCC-801T2-RJ11	8017	07/15/2013	(1)
Signal Line Coupling Decoupling Network	FCC	FCC-801T4-RJ45	8018	07/15/2013	(1)
Signal Line Coupling Decoupling Network	FCC	FCC-801-M2/M3-16A 8030	8030	07/15/2013	(1)
EM Injection Clamp	FCC	F-203I-23MM	8576	07/15/2013	(1)
NRP-Z91 POWER SENSOR	R&S	NRP-Z91	100613	07/15/2013	(1)
Amplifiers	ar	75A250A	328729	N.C.R.	(1)
De-coupling Network	FCC	F-203I-23MM- DCN	8234	N.C.R.	
Test Site	ATL	TE08	TE08	N.C.R.	


Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.



5.5.3. Setup

CDN Method

EM Clamp Method

5.5.4. Test Procedure

The EUT shall be tested within its intended operating and climatic conditions.

The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5×10^{-3} decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts was made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

5.5.5. Test Result

Product	DLP Projector						
Test Item	Conducted Suscept	Conducted Susceptibility					
Test Mode	Mode 1	Mode 1					
Date of Test	2013/12/21	2013/12/21			TE08		
Frequency Band (MHz)	Field Strength (Vrms)	Inject Port	Inject Method	Performance Criterion	Result		
0.15 ~ 80	3	AC Mains	CDN-M3	⊠A □B	PASS		

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

•	
Criterion A: Operate as intended during and after the test	
Criterion B: Operate as intended after the test	
Criterion C: Loss/Error of function	
Additional Information	
☐ EUT stopped operation and could / could not be reset by operator at	V/m
at frequencyMHz.	
No false alarms or other malfunctions were observed during or after the test.	

5.5.6. Test Photograph

Test Mode: Mode 1

Description: Front View of CS Test – AC Mains Port

5.6. Power Frequency Magnetic Field (PMF)

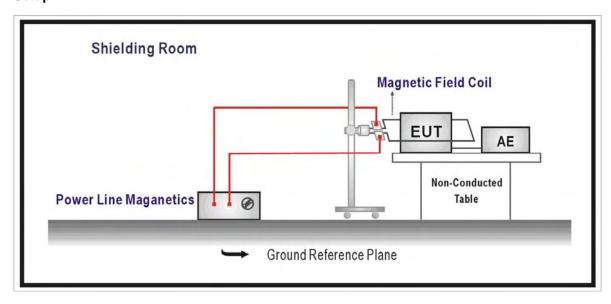
5.6.1. Test Specification

	EN 61000-4-8						
Item	Environmental Phenomena	Performance Criterion					
Enclosu	Enclosure Port						
	Power-Frequency Magnetic Field	Hz A/m (r.m.s.)	50 1	А			

EUT tested in accordance with the specifications given by the standard of EN 61000-4-8.

Orientation : X, Y, Z

Test time : 180 Second


5.6.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/07/2013	(1)
Magentic Field Antenna	EMC-PARTNER AG	MF1000-1	155	02/01/2013	(1)
Test Site	ATL	TE08	TE08	N.C.R.	

Remark: ⁽¹⁾ Calibration period 1 year. ⁽²⁾ Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

5.6.3. Setup

5.6.4. Test Procedure

- a). The equipment was configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b). The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c). The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d). The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

5.6.5. Test Result

Product	Digital Projector						
Test Item	Power Frequency Magnetic Field						
Test Mode	Mode 1						
Date of Test	2013/12/23	2013/12/23 Test Site TE08					
Polarization	Frequency (Hz)	Magnetic Strength (A/m)	Performance Criterion		Result		
X Orientation	50	1	⊠A □B		PASS		
Y Orientation	50	1	⊠A	□в	PASS		
Z Orientation	Z Orientation 50 1 $\boxtimes A$				PASS		

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report

level is shown on the report.	
Criterion A: Operate as intended during and after the test	
Criterion B: Operate as intended after the test	
Criterion C: Loss/Error of function	
Additional Information	
☐ EUT stopped operation and could / could not be reset by operator at	V/m
at frequencyMHz.	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

5.6.6. Test Photograph

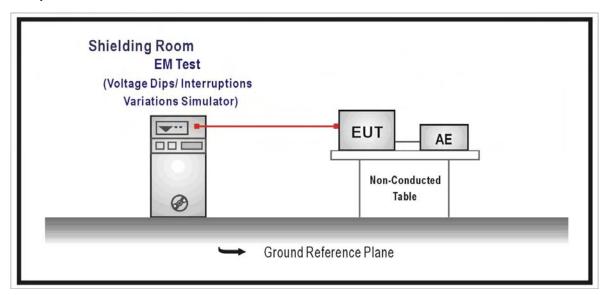
Test Mode: Mode 1

Description: Front View of PMF Test

5.7. Voltage Dips and Interruption

5.7.1. Test Specification

EN 61000-4-11							
Environmental Phenomena	Units Test Specification		Performance Criterion				
Input AC Power Ports							
	0	% Reduction	В				
	0.5	Period	В				
Voltage Dips	70	% Reduction	С				
Vollage Dips	25	Period	C				
	0	% Reduction	С				
	250	Period	C				


5.7.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/07/2013	(1)
Test Site	ATL	TE08	TE08	N.C.R.	

Remark: ⁽¹⁾ Calibration period 1 year. ⁽²⁾ Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

5.7.3. Setup

5.7.4. Test Procedure

The EUT and its load are placed on a table which is 0.8 meter above a metal ground plane measured 1m*1m min. And 0.65mm thick min. And projected beyond the EUT by at least 0.1m on all sides. The power cord shall be used the shortest power cord as specified by the manufacturer.

For Voltage Dips/ Interruptions test:

The selection of test voltage is based on the rated power range. If the operation range is large than 20% of lower power range, both end of specified voltage shall be tested. Otherwise, the typical voltage specification is selected as test voltage.

The EUT is connected to the power mains through a coupling device that directly couples to the Voltage Dips and Interruption Generator.

The EUT shall be tested for 30% voltage dip of supplied voltage and duration 25 Periods,

for 95% voltage dip of supplied voltage and duration 0.5 Periods with a sequence of three voltage dips with intervals of 10 seconds, and for 95% voltage interruption of supplied voltage and duration 250 Periods with a sequence of three voltage interruptions with intervals of 10 seconds.

Voltage phase shifting are shall occur at 0^{0} , 45^{0} , 90^{0} , 135^{0} , 180^{0} , 225^{0} , 270^{0} , 315^{0} of the voltage.

5.7.5. Test Result

Product	DLP Projector							
Test Item	Voltage Dips and Interruption Measurement							
Test Mode	Mode 1							
Angle	0~360 degree	0~360 degree Step 45 degree						
Date of Test	2013/12/23				Test Site		TE08	
Test Voltage (Vac)	Voltage Reduction (%)	Test Duration (ms)	Performance C	Test Result		Observation		
	>95	10	⊠A □B □C		Pass		Note1	
230	30	500	⊠A □B □C		Pass		Note1	
	>95	5000	□A □B [⊠c	Pass		Note2	
	>95	10	⊠A □B [□с	Pass		Note1	
100	30	500	⊠A	□С	Pass		Note1	
	>95	5000	AB [⊠C	Pass		Note2	

ote 1:	The	e acceptance criteria were met, and the EUT passed the test.							
	Crit	terion A : Operate as intended during and after the test							
	Crit	iterion B : Operate as intended after the test							
	Crit	terion C : Loss/Error of function							
		Additional	Information						
		EUT stopp	ped operation and coul	d / could not be	e reset by operator at	dBuV(V) a	t frequency		
		MHz.							
	\boxtimes	No false a	larms or other malfund	tions were obs	served during or after the	test.			
			<i>.</i>						

Note 2: The power is temporary off and can be reset by the operator.

5.7.6. Test Photograph

Test Mode: Mode 1

Description: Front View of Dips Test

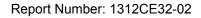
6 EUT Photograph

(1) EUT Photo

(2) EUT Photo

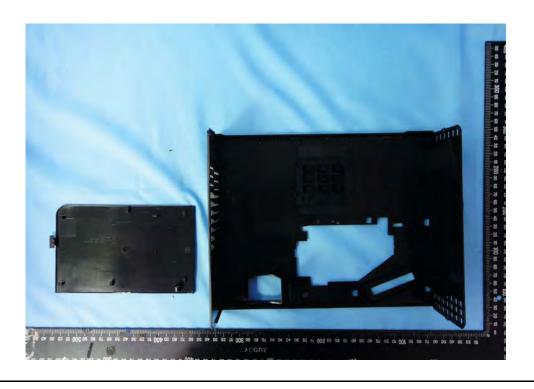
(3) EUT Photo

(4) EUT Photo



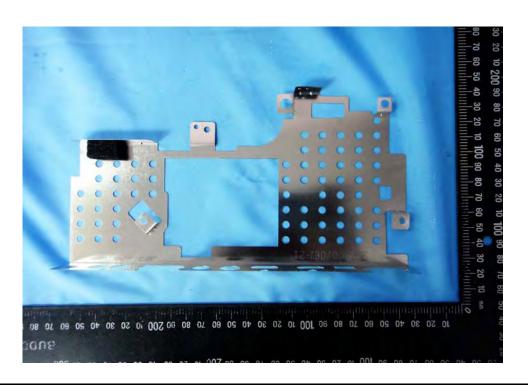
(5) EUT Photo

(6) EUT Photo



(7) EUT Photo

(8) EUT Photo



(9) EUT Photo

(10)EUT Photo

(11)EUT Photo

(12)EUT Photo

(13)EUT Photo

(14)EUT Photo

(15)EUT Photo

(16)EUT Photo

(17)EUT Photo

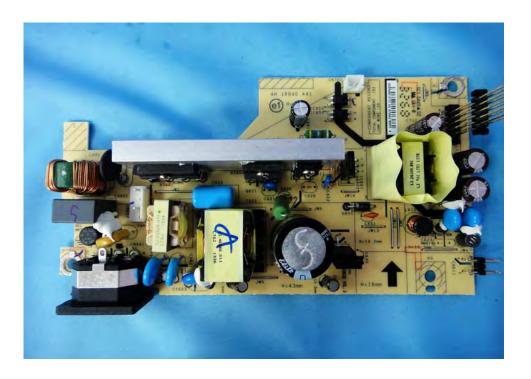
(18)EUT Photo

(19)EUT Photo

(20)EUT Photo

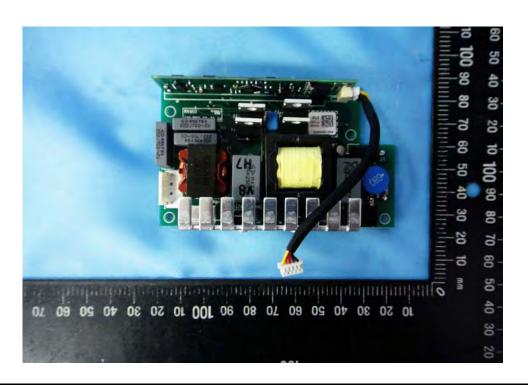
(21)EUT Photo

(22)EUT Photo

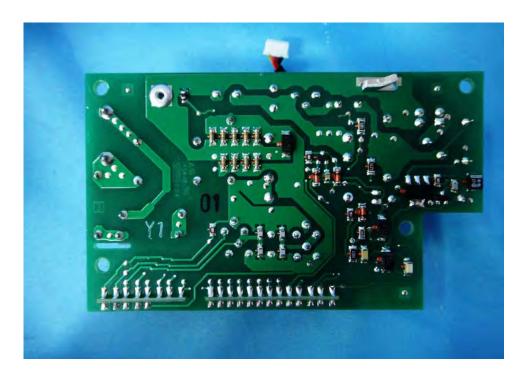


(23)EUT Photo

(24)EUT Photo

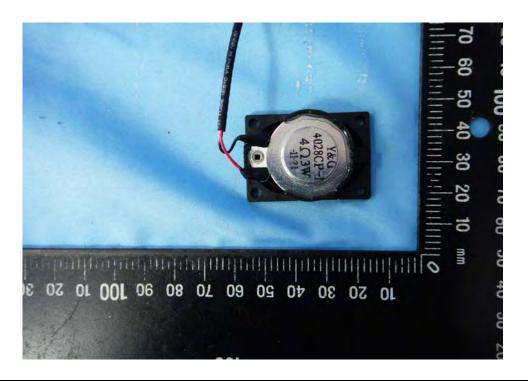


(25)EUT Photo


(26)EUT Photo

(27)EUT Photo

(28)EUT Photo

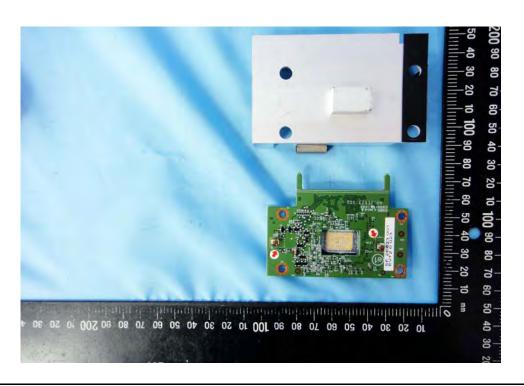

(29)EUT Photo

(30)EUT Photo


(31)EUT Photo

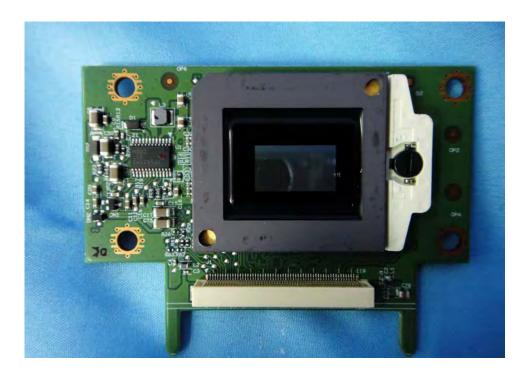

(32)EUT Photo

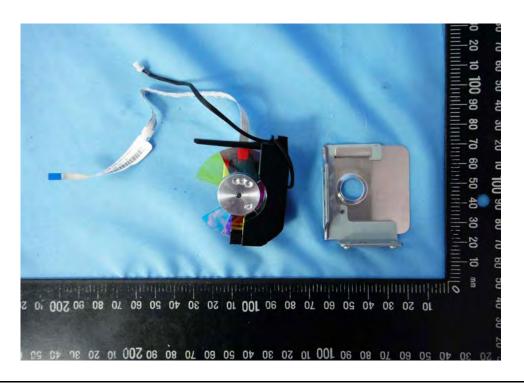

(33)EUT Photo

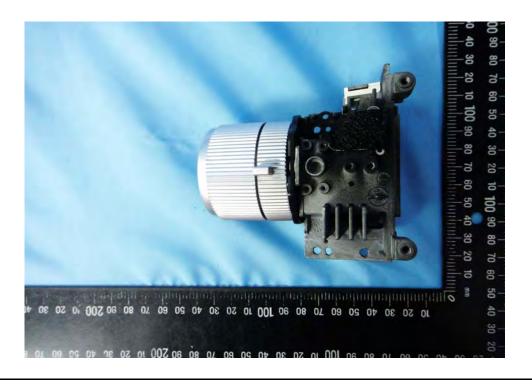

(34)EUT Photo

(35)EUT Photo

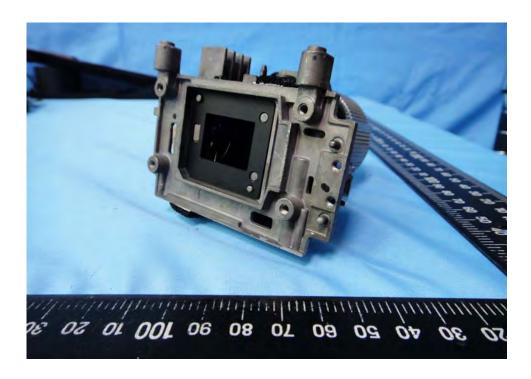
(36)EUT Photo



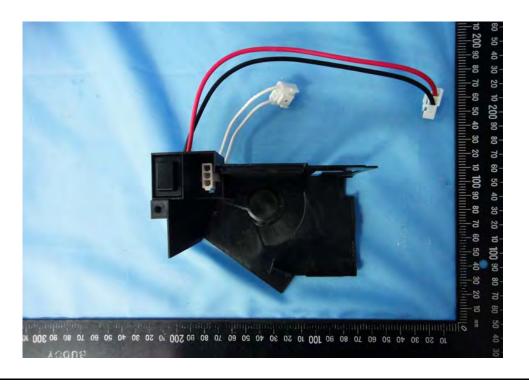

(37)EUT Photo


(38)EUT Photo

(39)EUT Photo


(40)EUT Photo

(41)EUT Photo


(42)EUT Photo

(43)EUT Photo

(44)EUT Photo

(45)EUT Photo

(46)EUT Photo

(47)EUT Photo

(48)EUT Photo

(49)EUT Photo

(50)EUT Photo

(51)EUT Photo

(52)EUT Photo

