QUEST
SOFTWARE"

©JProbe’ s:

Demos and Tutorials

© 2009 Quest Software, Inc. ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished
under a software license or nondisclosure agreement. This software may be used or copied only in accordance with
the terms of the applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's
personal use without the written permission of Quest Software, Inc.

If you have any questions regarding your potential use of this material, contact:
Quest Software World Headquarters

LEGAL Dept

5 Polaris Way

Aliso Viejo, CA 92656

www.quest.com
email: legal@quest.com

Refer to our Web site for regional and international office information.

Trademarks

Quest, Quest Software, the Quest Software logo, Aelita, Akonix, AppAssure, Benchmark Factory, Big Brother,
ChangeAuditor, DataFactory, DeployDirector, ERDisk, Foglight, Funnel Web, GPOAdmin, iToken, I/Watch, Imceda,
InLook, IntelliProfile, InTrust, Invirtus, IT Dad, I/Watch, JClass, Jint, JProbe, LeccoTech, LiteSpeed, LiveReorg,
MessageStats, NBSpool, NetBase, Npulse, NetPro, PassGo, PerformaSure, Quest Central, SharePlex, Sitraka,
SmartAlarm, Spotlight, SQL LiteSpeed, SQL Navigator, SQL Watch, SQLab, Stat, StealthCollect, Tag and Follow,
Toad, T.O.A.D., Toad World, vAMP, vAnalyzer, vAutomator, vControl, vConverter, vDupe, VEssentials, vFoglight,
vMigrator, vOptimizer Pro, vPackager, vRanger, vRanger Pro, vReplicator, vSpotlight, vToad, Vintela, Virtual DBA,
VizionCore, Vizioncore vAutomation Suite, Vizioncore vEssentials, Xaffire, and XRT are trademarks and registered
trademarks of Quest Software, Inc in the United States of America and other countries. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

Disclaimer

The information in this document is provided in connection with Quest products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of
Quest products. EXCEPT AS SET FORTH IN QUEST'S TERMS AND CONDITIONS AS SPECIFIED IN THE
LICENSE AGREEMENT FOR THIS PRODUCT, QUEST ASSUMES NO LIABILITY WHATSOEVER AND
DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST BE LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF QUEST HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest makes no representations or warranties with
respect to the accuracy or completeness of the contents of this document and reserves the right to make changes
to specifications and product descriptions at any time without notice. Quest does not make any commitment to
update the information contained in this document.

Third Party Information
See Third_Party_Contributions.htm in your JProbe \doc installation directory.

Demos and Tutorials
February 2009
Version 8.1

http://www.quest.com
mailto:legal@quest.com

Table of Contents

INtrodUCEION 0 THIS GUITEcucviicieie bbbt 7
ADOUL JPFODE ... st 8
About This Guide

How to Use This Guide
Where to Find Information NOt in ThiS GUITEc.cvieeurriiiniiereenesscesees e 9
JProbe DOCUMENLAtION SUILE......c.veveeieeeicreieiseeis et 10
C0re DOCUMENLALION SEL.....uviveeiieiricieieetrine et 10
Feedback on the DOCUMENTALION.........c.ccviiriiniierrene e 10
TEXE CONVENTIONS.......erieeeieteteeciet ettt ettt bbbt 1
ADOUL QUESE SOMIWAIE, INC...vvvvivriritiicieieeee et r bbb b b 11
Contacting QUESE SOFIWAIE..........cuvrieiiriiieirireieire ettt 12
Contacting QUESE SUPPOMvuvveuirerireeeeiseseesise e sese s s seses s s esessses 12
QUESE COMMUNILIEScvcvvvviveie ettt bbbt bbb bbb s e 12

MEMOTY ANAIYSIS DEMOSc.vuvriiiieiriiieiietre et
Summary of Demos for Memory
LEAKEXAMPIE TULOMAL. ... vvevvrrceeiireieiseeess et ses st ns s snennns

Step 1: Setting Up the Memory Leak SESSION ... 17
Step 2: Running the Memory LEaK SESSIONccveveeirierrrseenisesersessseessssssesssssessssssssnssesens 19
Step 3: Identifying LOItENING ODJECEScucvriiieericiririreei et 21
Step 4: Investigating LOIEriNg ODJECESovvvervicrrrics e 21
Step 5: Running the Memory Leak Session with Improved Codecccooeevcinreninines 24
NETWOTK TULOFIAL ..ot 26
Step 1: Setting Up the NEtWOrk SESSIONccveieririiiririieirreeereis s 27

Step 2: Running the NetWork SESSION ... esessees 30

JProbe
Demos and Tutorials

Step 3: Identifying Large Allocations of Short-Lived ObJeCtS........c..oovevriiernevniennieinnns 31
Step 4: Investigating Large Allocations of Short-Lived ODJeCtScovvvveevicviiininnn 32
Step 5: Running the Network Session with Improved Codecccccovvvvivveinnienneeenns 34
Performance ANAIYSIS DEMOS ...ttt bbb 37
Summary of Demos for PEIOIMANCEccvierierrces e 38
PhiloSOpher's DINEr TULOHAL..........cev ettt 40
Step 1: Setting Up the DINEr SESSIONvuevveeerieisiercirisreissersiss s ssssssssssesssnees 41
Step 2: RUNNING the DINEE SESSION........cc vttt 44
Step 3: Investigating the DEAdIOCKcccvevriieeircrie s 46
Step 4: Running the Diner Session with Improved FIlters ... 47
Step 5: Finding the Cause of the Deadlock in the Source Codecccvvvvrrvrevircvriieenin, 49
POIYNOMIAI TULOHAL ..ot
Step 1: Setting Up the Polynomial Session
Step 2: Running the Polynomial SESSION.........c.cv e
Step 3: Identifying and Investigating the Performance Bottleneckccccovveevvrcvrircennnen. 54
Step 4: Running the Polynomial with Improved Code
Step 5: Measuring the Performance IMprovement...........ccoeveevnvsnnesnsssessesesessesssens
CoVerage ANAIYSIS DEIMOSc.cvieuriiiriiriiieirineseie ittt bbb bbbttt 61
Summary of DEMOS fOF COVEIAGE .. .vuvrevrrereiriererereiriseseess e snssens 62
AGVENTUIE TULOTIALcv. vttt 63
Step 1: Setting Your GIobal OPtioNS.........cocoveeriiiiircccessssis s 63
Step 2: Setting Up the Session for the First TSt CASEvvveeeveevniiessesreeseinens 64
Step 3: RUNNING the FIrst TESE CaSE.....cvviierriii st 67
Step 4: Setting Up and Running the Second TSt CaSe.......ccuvwvrrvienriineninersineeeeiseeenens 68
Step 5: Merging the Test Case Results
Step 6: Assessing YOour Test Case COVEIAJEc.veeeirerirereerriseiseneeesrseseeseeseesssessssssesees 71
JProbe Game Pack fOr JAVAEE ...t 73
Deploying the JProbe Game Pack DEMOccciuiriieirierrinieisisee s ssesssees 74
SYSIEM REQUIFEMENESvcecececieieiciisi sttt 74
Setting ENVIronment VAriableScoeirriirniinnieeieessee s sesssens 75

Installing the Game Pack DEMO ... 75

Table of Contents 5

Deploying the Game Pack Demo on Your Application SEIVETccevvenrinsneeninenns 76
Creating a User Account for Game PaCKcccccvvvvveveecriienssrssse e 81
Running Game Pack with the JProbe AppliCatioN............evviieeirieeniienseeseese e 82
Game Pack Known Issues

Loitering OBJECES TULOIALvveviereeiceeescreieieees et
Step 1: Setting UpP the SESSIONccvvviiiiiccesssssrn e 84
Step 2: Starting the Session and the Game Packccccevvevnenninnneenesseeen, 85
Step 3: RUNNING the SESSIONcvceceeeeiis s 85
Step 4: Identifying LOItering ODJECES......c.cvvierrirrrieirrereseees e 86
Step 5: Investigating Loitering ODJECES ... 87
Step 6: Running the Session with IMproved Code...........covnneneneneeseeen, 88

ODbject CYClNG TULOMIALcveveveierercescieieeess s r e 88
Step 1: Setting UpP the SESSIONcuevirieieisneen st snnes 89
Step 2: Starting the Session and the Game Packcccocovvenvniiciecese s 90
Step 3: RUNNING the SESSIONcviieeiirieieirieisire et 91
Step 4: Identifying ODJECt CYCING ...vcvvvviiccccssr e 92
Step 5: Investigating ObJECt CYCINGvevvieerriiceirieer e 93
Step 6: Running the Session with IMProved COde ..o 93

Performance Bottleneck TULOMAL..........ccvveruriierieirireee e
Step 1: Setting UpP the SESSIONccvvvvviviiccssssssss e
Step 2: Starting the Session and the Game Pack
Step 3: RUNNING the SESSIONvvcecieieiirececes e

Step 4: Identifying the Performance Bottleneck
Step 5: Running the Session with Improved Code
Step 6: Measuring the Performance IMProvement...........cooevveeeniennennniesrseseeseneneen, 100

JProbe
Demos and Tutorials

Introduction to This Guide

This chapter provides information about what is contained in the Demos and Tutorials.
It also provides information about the JProbe documentation suite and Quest Software.

This chapter contains the following sections:

Y00 = (o] - SRS 8
ADOUL TRIS GUILE .. .cvvviiisieicccce ettt b et n s 8
JProbe DOCUMENLALION SUILE......cvurieeerserceeieeisi st sesnnees 10
TEXE CONVENTIONS ...ttt bbbttt s ettt b s s s bbbt eb s s 1

ADOUL QUESE SORIWAIE, INC..viveveiririririteieeiie et b bbb s 1

8 JProbe
Demos and Tutorials

About JProbe

JPrabe is an enterprise-class Java profiler that provides intelligent diagnostics on
memory usage, performance, and test coverage. It allows devel opersto quickly pinpoint
and repair the root cause of application code performance and stability problems that
obstruct component and integration integrity.

JPrabe provides three types of analysis:

* Memory analysis allows a developer to identify and resolve Java memory leaks
and object cycling to ensure optimal program efficiency and stability.

» Performance analysis allows a developer to identify and resolve Java bottlenecks
and deadlocks to ensure optimal program performance and scalability.

» Coverage anaysis alows adeveloper to identify unexecuted lines of code during
unit testing to ensure test coverage and program correctness.

JProbe a so offers an Eclipse plug-in that providesintelligent code performance analysis
and problem resolution from within the Eclipse Java IDE.

About This Guide

This guide contains a summary of al the demo applications that ship with JProbe. It
also contains tutorials for some of the applications.

Thisguideisintended for Java devel opers who want to learn how to configure JProbe to
work with their application and run a JProbe analysis.

How to Use This Guide

A good place to start iswith ademo designed for your Java platform, that is, Java SE or
Java EE. Next decide which JProbe analysis tool you are most interested in and work
through one of the tutorials for that tool.

By the end of your first tutorial, you should know the basic steps involved in running a
JProbe analysis. In particular, you will have learned how to complete the following
tasks:

* integrate JProbe with a Java SE or Java EE application
« start and run a JProbe analysis session

Introduction to This Guide 9
About This Guide

 identify aproblem with the application using the data that JProbe collected

* investigate the problem

 rerun the session with improved code

Later you may choose to review some of the other demos and tutorialsto gain a broader
understanding of the types of problems you can identify with JProbe.

Where to Find Information Not in This Guide

The following table shows where you can find other types of information:

Infor mation about:

Refer to:

Configuring JProbe to run
your application or
application server

« JProbe User Guide (PDF/online help)
« JProbe Plugins for Eclipse Guide

Running sessions from the
JProbe Console

JProbe User Guide (PDF/online help)

Using JProbe Plugins for
Eclipse

« JProbe Plugins for Eclipse Guide
* JProbe User Guide (online help)

Automating JProbe analysis
sessions using command line
utilities

JProbe Reference Guide (PDF)

Adding JProbe to an Ant
system

JProbe Ant Task User Manual (HTML)

System requirements,
licensing, and installation
notes

JProbe Installation Guide (PDF)

Known and resolved issues

JProbe Release Notes (HTML)

10 JProbe

Demos and Tutorials

JProbe Documentation Suite

The JProbe documentation suite is provided in a combination of online help, PDF, and
HTML.

Online Help: You can open the online help by clicking the Help icon on the JProbe
toolbar.

PDF: The complete JProbe documentation set is available in PDF format on
SupportLink. The PDF documentation can aso be found in the Documentation
folder on the JProbe DVD. The default location of the documentation after an
installation is <jprobe_home>/docs. Adobes Readere is required.

HTML: Release Notes are provided in HTML and text format. The default location
of this document after an installation is <jprobe_home>/docs.

The Ant Tasks User Manual is also provided in HTML format. The default
location of thisdocument after an installation is <jprobe_home>/automation/doc.
To open it, navigate to index.html.

Core Documentation Set

The core documentation set consists of the following files:

Installation Guide (PDF)

User Guide (PDF and online help)
Reference Guide (PDF)

Plugins for Eclipse Guide (PDF)
Demos and Tutorials (PDF)
Release Notes (HTML)

Ant Tasks User Manual (HTML)

Feedback on the Documentation

We are interested in receiving feedback from you about our documentation. For
example, did you notice any errors in the documentation? Were any features
undocumented? Do you have any suggestions on how we can improve the
documentation? All comments are welcome. Please submit your feedback to the
following email address:

Introduction to This Guide 11
TextConventions

am.docfeedback@quest.com

Please do not submit Technical Support related issuesto this email address.

Text Conventions

The following table summarizes how text styles are used in this guide:

Convention

Description

Code

M onospace text represents code, code objects, and command-
lineinput. Thisincludes:

« Java language source code and examples of file contents

« Classes, objects, methods, properties, constants, and events
e HTML documents, tags, and attributes

Variables

M onospace-plus-italic text represents variable code or
command-line objects that are replaced by an actual value or
parameter.

Interface

Bold text is used for interface options that you select (such as
menu items) as well as keyboard commands.

Files, components,
and documents

Italic text is used to highlight the following items:
 Pathnames, file names, and programs
» The names of other documents referenced in this guide

About Quest Software, Inc.

Quest Software, Inc., aleading enterprise systems management vendor, delivers
innovative productsthat hel p organizations get more performance and productivity from
their applications, databases, Windows infrastructure and virtual environments.
Through a deep expertise in IT operations and a continued focus on what works best,
Quest helps more than 90,000 customers worldwide meet higher expectations for
enterprise IT. Quest provides customers with client management as well as server and
desktop virtualization solutions through its subsidiaries, ScriptLogic and Vizioncore.
Quest Software can be found in offices around the globe and at www.quest.com.

http://www.quest.com

12 JProbe
Demos and Tutorials

Contacting Quest Software

Email info@quest.com

Mail Quest Software, Inc.
World Headquarters

5 Polaris Way

Aliso Vigjo, CA 92656
USA

Web site www.quest.com

Refer to our web site for regional and international office information.

Contacting Quest Support

Quest Support is available to customers who have atrial version of a Quest product or
who have purchased acommercial version and have avalid maintenance contract. Quest
Support provides around the clock coverage with SupportLink, our web self-service.
Visit SupportLink at: http://support.quest.com.

From SupportLink, you can do the following:
* Quickly find thousands of solutions (Knowledgebase articles’/documents).
» Download patches and upgrades.
» Seek help from a Support engineer.
« Log and update your case, and check its status.

View the Global Support Guide for a detailed explanation of support programs, online
services, contact information, and policy and procedures. The guide is available at:
http: //support.quest.com/pdfs/Global Support Guide.pdf.

Quest Communities

Get the latest product information, find helpful resources, and join adiscussion with the
JProbe Quest team and other community members. Join the JProbe community at:
http://jprobe.inside.quest.conv.

http://jprobe.inside.quest.com/
http://support.quest.com
mailto:info@quest.com
http://www.quest.com
http://support.quest.com/pdfs/Global Support Guide.pdf

Memory Analysis Demos

This chapter provides a summary of the Memory demo applications that ship with
JProbe and contains tutorials for some of these applications.

The source code and compiled classes for the Memory demos are located in the
<jprobe_home>/demos/memory directory.

This chapter contains the following sections:

Summary of DEMOS fOr MEMOIY......c.crurriiririirereerisisisisesise et sesssssessss s sesssenssenes 14
LEaKEXAMPIE TULOTIAL veeeeieeeerieie ettt 16
NEEWOTK TULOTIAL 1ottt 26

14 JProbe
Demos and Tutorials

Summary of Demos for Memory

The following table describes the purpose of the example applications.

Java SE Application

Purpose

More I nformation

Account.class

Accountlnfo.class

LeakExample.class

LeakExample2.class

Network.class

This application creates an
account object and it is used by
the Accountinfo.class
application.

Displays three sets of account
information to illustrate the
impact of indirect object
instantiation.

This exampleillustrates how an
obsol ete collection reference
may cause loitering objects.
When the buttons are removed
from apanel, the JButton
objects are not removed from the
Java heap.

Similar to LeakExample.class,
this application registers the
buttonsaslisteners. The program
demonstrates loitering objects
caused by an obsolete listener.

This example simulates clients
(threads) connecting to a server
and querying a database.
Temporary objects are created
for the login data and for the
connection.

See the notesin
Account.java.

See the notesin
Accountinfo.java.

Seethe notesin
LeakExample.java.

Tutorial:
“LeakExample
Tutorial” on page 16

See the notesin
LeakExample2.java.

Seethe notesin
Network.java.

Tutorial: “Network
Tutoria” on page 26

Chapter 1: Memory Analysis Demos 15
Summary of Demos for Memory

Java SE Application Purpose More I nformation
Sm.class This example simulates a Seethe notesin
network model in which a Sm,java.

connection is made to verify the
identity of the user. If the
identity of the user is validated,
the application extracts the
desired data from the database
and savesit in the result set.

SalledSack.class This example shows how a See the notesin
stalled stack referencecan hold ~ SalledStack.java.
objectsin memory longer than
necessary. You could be using
the memory consumed by these
objects for other tasks. Uses

heap triggers.

Srings.class Compares two algorithms: one See the notesin
that creates large allocations of Srings.java.
string objects and one that does
not.

JProbe also ships with a Java EE demo application called JProbe Game Pack. For more
information, see “ JProbe Game Pack for JavaEE” on page 73.

16 JProbe
Demos and Tutorials

LeakExample Tutorial

The LeakExample program illustrates how an obsolete collection reference can anchor
entire trees of loitering objects in the Java heap.

Thistutorial demonstrates how to use JProbe to identify loitering objects in your code
and how to reclaim memory by removing loitering JButton objects. The improved
code shows a 85.60% improvement in how much memory is used by the instances
alocated by LeakExample methods, and a 0.71% improvement in the overall memory
used for the entire program.

Note The values cited in this tutorial reflect the LeakExample running on Windows XP with
Sun JDK 1.6.0_10. You may see different values on your system, but the improvement in
memory use should still be evident.

The following table summarizes the types of information you need to know before
starting thistutorial.

Program: LeakExample.class

Use Case: Add buttons to a panel.
Remove buttons from a panel.

Architecture: Usesthe class gBut ton to create buttons.

Hypothesis: JBut ton objects are removed from the heap when the buttons are
removed from the panel.

Thistutorial assumes that you are running JProbe on your local machine. You can find
more information about loitering objects in the JProbe User Guide.

This tutorial walks you through the following steps:
e Step 1: Setting Up the Memory Leak Session
e Step 2: Running the Memory Leak Session
e Step 3: ldentifying Loitering Objects
* Step 4: Investigating Loitering Objects
* Step 5: Running the Memory Leak Session with Improved Code

Chapter 1: Memory Analysis Demos 17
LeakExample Tutorial

Step 1: Setting Up the Memory Leak Session

In this step, you use the JProbe Configuration tool to create the session settings for this
tutorial. The following procedures mention only the settings that you need to change or
verify. If asetting is not mentioned, leave it blank or in its default state. The procedure
assumes that you are running JProbe locally on your computer.

To set up the session:
1 Click Tools> Create/Edit Settings.
The Create/Edit Settings dialog box appears.
2 Inthe Manage Configurations pane, click Java Application.
The JProbe Configuration Wizard appears.
Click Add.
In the Configuration Name text box, type LeakExample, then click Next.

In the Main Class field, select the Execute a class check box.

o 01~ W

Click the browse button in the Main Class field and navigate to the
LeakExample.classfile in the <jprobe_home>/demos/memory/leakexample
directory.

7 Click OK.
The following information is displayed:
¢ Main Class. demos .memory . leakexample . LeakExample
e Working Directory: <jprobe_home>
8 Click the browse button beside the Classpath field.
9 Inthe Classpath dialog box, click Add Working Directory, then click OK.
The working directory appears in the Classpath field.
10 Click Next.
The Select a Java Virtual Machine page appears.

11 If you want to change the default VM, click the browse button beside the Java
Executable field and select another VM in the Java Virtual Machines dial og box.

Alternatively, you can use the VM that isinstalled with JProbe to run with the
tutorial. The java executable is <jprobe_home>/bin/jre/bin/java.exe.

Note Ideally, the JVM you select should be the version that was used to compile your
program.

18 JProbe
Demos and Tutorials

12 Click OK, then click Next.
The Specify Your Code page appears.

13 In the Category/Program Name text box, type DemoCategory (which specifies
the name of the category in which you want to include your code), then click
Next.

14 In the Select a JProbe Analysis page, ensure that the M emory option is selected.

15 On the I nitial Recording tab, select the Data Recor ding Off check box, then
click Next.

This disables the data recording at initial VM start.
16 In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

Configuration Mame: : [LeakExample]
Configuration Type: © [Java Application]

Main Class: | [demos.memory.leakexample.LeakExample]
Application Arguments: © []

working Directory: © [C:\Program Files\JProbe\JProbe 8.1\]
Classpath: : [C:\Program Files\JProbe\JProbe 8.1\

Jawa Executable: : [C:\Program Files\JProbe'\JProbe 8.1\bin\jre'bin\java.exe]
Java Options: © []

Category Name: | [DemoCategory]

Analysis Type: : [memory]|

JPrabe Options: :]

JProbe Port #: : [52991]

Snapshot Basename: : []

17 Click Save and save the configuration file (LeakExample_Mem_Settings.jpl) into
your working directory.

18 In the Configuration Complete page, select the I ntegrate check box and click
Finish.
JProbe validates the configuration file and creates a startup script file (for
example, in Windows. LeakExample.bat, and in Unix/Linux: LeakExample.sh).

19 In the Integrating L eakExample dialog box, use the browse button to navigate to
your working directory, and click Save to save the startup file.

The Integrating LeakExample dialog box presents the status of the operation.

20 Select both check boxes (Close Create/Edit Settingstool on successful
integration and Run JProbe startup script on successful integration), and

Chapter 1: Memory Analysis Demos

1 Integrating LeakExample

Integration status:

Walidating JPL file with jplauncher. -~
JProbe jplauncher message :

JyuM located at"CAProgram FileswProbelPraobe 8 11binlrethinljava exe" is supporte
donel

Yalidating working directary . done!

Generating startup scripttext.. done!

Flease save JProbe startup script file to continue.

Script file : C:\JProbe\workspac i e hat

& JPL file : C:\JProbe\workspac ([kE! le_Mem_Sett
are generated successfully.

To launch your application with JProbe, run this script from the command line.

Integration complete. ~
¢

Close Create/Edit Settings kool on successful integration,

[[] Run JPrabe starkup script on successful integration.

Close

click Close.

The JProbe Execution Console opens, then the LeakExample program starts,

LeakExample Tutorial

19

displaying awindow with Add and Remove buttons. You are now ready to run a

Memory analysis session.

Step 2: Running the Memory Leak Session

In this step, you exercise a use case on LeakExample that requires you to add buttons to
apanel and then remove them. As the use case runs, you can see how many JButton

objects have been added since the exercise started and how many remain in the heap

when it ends.

Note

This procedure assumes that the LeakExample program is already running (for instructions
on how to execute the startup script, see step 20 in section “Step 1: Setting Up the Memory

Leak Session” on page 17.

Alternatively, you can run the startup script from the command line:

In a Windows command window: >LeakExample.bat

In a Unix or Linux sh shell: >LeakExample.sh

In a Unix or Linux csh or ksh shell: >. /LeakExample. sh

20 JProbe
Demos and Tutorials

To run the session:

1 On the JProbe toolbar, click Attach to a Running Session ¢5¢.

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

Attach to Running Session

Host Mame | IP Address: |localhost

Port #: {52991 v

[o H Cancel][Help

2 Click OK.
After afew seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

2 on the tool bar.

4 Inthe Set Recording Level dialog box, select Record Allocations and Stack
Traces For All Instances, then click OK.

5 Inthe Leak Example program window, click the Add button ten times.
Ten buttons (numbered 0 to 9) are added on the program window.

B Leak Example

Lol lalalla]lsl
Lo JlzJla]le]

6 Click the Remove button ten times.
The ten buttons are deleted from the program window.

on the toolbar.

8 Inthe Set Recording Level dialog box, select Data Recording Off, then click
OK.

JProbe takes a snapshot and displaysit in the Snapshot Navigator panel.

9 Closethe Leak Example program window.

Chapter 1: Memory Analysis Demos 21
LeakExample Tutorial

JPrabe disconnects from the running session. After afew seconds, the Instances
view appears, displaying instances that were created during the use case.

Step 3: Identifying Loitering Objects

In this step, you look for loitering objects in the heap. Based on the hypothesis, you
should expect the count change for the JButton classto be zero, because you
removed all the buttons you added. In fact, the buttons are not removed and continue to
loiter in the heap.

To identify loitering objects:
1 IntheInstances view, select Heap Count from the Investigate by list.

2 TypedButton intheFilter Classesfield and press Enter to locatethe JButton
class.

Note This field is case-sensitive.

The Instances list now displays only the JButton class.

Filter Classes w | [1618]

Hame: | Recorded Count | Heap Count ™ | Recorded Memory | Heap Memory | Keep Alive Size | Dead Count | Dead Memary | |
Total 151 16,105 7,720 1,189,088 1,189,088 7,527 332,312
javax.swing. JButton 10 12 4,480 5,376 ~10,112] 1

The Recorded Count for JButton is 10, and the Dead Count is 0. This means
that the buttons were removed from the Leak Example program window, but not
from the Java heap.

Step 4: Investigating Loitering Objects

In this step, you find the live object that continues to hold a reference to the loitering
instances of JBut ton. From the Instances view, you can drill down to more detail on
JButton in the Instance Detail view. Then you can open the Source view to see the
code for the loiterer. You will find that the loitering 7But ton objects are being held by
obsolete collection references from the array JButton(1].

To investigate loitering objects:

1 Inthe Instances view, select the JButton row and click Instance Detail = on
the toolbar.

22 JProbe
Demos and Tutorials

The Instance Detail view appears, listing al the instances of gButton in the
heap.

@ welcome * | @& Runtime Summary * | [& Instances * |Fﬁ‘ﬂ5tEﬂEE Detail *

i 2E

Mame Allocation Time Referrers & References keep Alive Size | Allocated At

javax.swing, JButton Ox1eS 448 00:49.570 3 7 840 LeakExample():80
javaz.swing. JButton Ox15e 448 00:48,570 3 27 940 LeakExample():a0
javax.swing, JButton Oxdd 448 00:47.399 a 27 840 LeakExample():60
javax.swing. JButton 0x170 448 00:48,789 3 27 840 LeakExample():80
javax.swing. JButton D162 448 00:49.008 3 27 840 LeakExample():a0
javax.swing. JButton 0x116 448 00:47.633 3 27 840 LeakExample():80
javax.swing JButton D128 448 00:47.851 3 27 840 LeakExample():a0
javax.swing, JButton Ox194 448 00:49,321 3 rd 840 LeakExample():80
javax.swing. JButton O0x13a 448 00:45,101 3 27 840 LeakExample():80
javax.swing. JButton 0z33e7 448 4 31 856 Trace was not collected hd
Referrers/References | Dominators | Trace
Referrers References
Marme: 4| Type | Field hame Field Name: 4| Type | Mame

ﬁo Jawabeans ProperyChangeSupport 0¢156 FIELD source
ﬁa Jjavax.swing.AbstractButton$Handler 0x153 FIELD this$0
1 jawar. Swing.JButton 11 0x1 4a4 ARRAY javax,swing. JButton [4]

ﬁo =clags= Javax.swing.JBu.. CLASS <casc®
ﬁa aaTexdinfo FIELD sun.st
% actionListener FIELD javax
ﬁ' actionMap FIELD javax
% appContext FIELD sun.a
% background FIELD javax
% border FIELD javax
% changeListener FIELD javax o

< | >

2 Inthe upper table, click the first instance with an alocation time displayed, then
click Leak Doctor Uﬁ on the toolbar.
The Leak Doctor view appears.

& welcome * | @ Runtime Summary * | [= Instances * | & Instance Detail *

@ Leak Doctor % |

v B

Instance; javax.swing JEutton Oxl4c

Name Comment Type | Fietd Mame [Ke
f‘a Jawax swing JButton [] 0x14a4 Recording Boundary ARRAY javax.swing. JButton [4]
javax.swing AbstractButtonEHandler 0x153 FIELD this$0
java.beans.PropertyChangeSupport Ox1 46 FIELD source
< >
Hame Comment: Type Field Name Kee|

|~
~

3 Select thefirst instance and click Remove The Edge ‘E on the toolbar.

Chapter 1: Memory Analysis Demos 23
LeakExample Tutorial

A dialog box confirms that thisinstanceis eligible to be garbage collected if you
free the removed edge from your application code.

Instance Eligible for Garbage Collection PZ|

& Congratulations, the instance can be garbage collected.
\,) Your next step is ta free the removed edges in your
application cade.

Click OK.

The selected instance moves from the upper table to the lower one. Your next step
isto find the method that allocated the instance in order to understand why it is
not being removed.

Close the Leak Doctor view by clicking the x on the tab.
In the Instance Detail view, click the Trace tab to see the stack trace.

Right-click the LeakExample.addButtonToPanel () row and select Show
Allocated At Source to examine the source code for this allocating method.

The Source view displays the LeakExample.java source code. The line that
allocatesthe gBut ton isselected. It islocated within the addBut tonToPanel ()
method. Below this method is the method that is supposed to remove the buttons:
removeButtonFromPanel ().

@ vwelcome * | @& Runtime Summary * | [Sinstances * | [Instance Detail * | [LeakExample java *

Line | Source

77 public void addButtonToPanslil { A
78 if {(mmButtons < buttons.length) {

5. valuel f {nunBu

81 ruttons [mmButtenst+l = btn;

82 removeButt mIndex [mmBenoveButtonst+] = mmButtons - 1;
8 panel. addiben) ;

a4 panel.validate();

85 panel. repainti);

86 }

&7 ¥

a8

89 public veid remcveButtonFrowFanel() {

20 if (mmBemoveButtons = 0} {

91 panel. renove (buctons| Tndes[111
92

k=] if (fixed) {

94 buttons [removeButtonIndex [mmBemoveButtons]] = mall;
95 1

9%

97 panel validate();

98 panel.repaint() ;

24

JProbe
Demos and Tutorials

Notice that the line of code that removes buttons from thebuttons[] array is
encased in an i £ statement; in essence, it ismissing. You have confirmed that the
buttons[] array isthelive object that is holding the loiterersin memory.

Note In Step 5: Running the Memory Leak Session with Improved Code you learn how to

remedy this problem, by running the code with the £1ix program argument, thus
proving that the original hypothesis is correct.

8 Closethe Source view.

Optional: To find out how much memory is consumed by the loiterer, review the
Heap Memory column in the Instances view and the Keep Alive Size columnin
the Instance Detail view.

Note The ~ sign in the Instances view's Keep Alive Size column indicates an estimated

value for this metric. To calculate the actual size, right-click the JBut ton instance
and select Calculate Actual Keep Alive Size from the list.

You may be surprised at how many instances are held in memory by asingle
JBut ton instance. The memory consumed by the loiterer and al its anchored
instancesis about 10,240 bytes; the Keep Alive Size for agButton instance is
856.

Note These numbers may vary depending on which JVM you used to run the Leak
Example.

10 Close the Instances and Instance Detail views.

Step 5: Running the Memory Leak Session with Improved Code

In this step, you need to add to the code a line that removes the buttons from the
buttons[] array. The LeakExample demo contains the fixed line of code; you just
need to add a program argument to your session settings to activate it. Note that in this
example, removing the loiterer does not free all the memory, because the memory
calculation includes some recursive references and because other objectsin the program
continue to need some of the objects referenced by the loiterer.

After you rerun the session with the fixed code, you can clearly seein the Instances
view that both the Recorded Count and Dead Count for JButton are now 0, as
predicted by the hypothesis. However, in areal-life scenario where the effect of changes
is more widespread, you may need to compare the snapshots to see all the differences.
This tutorial walks you through how to do that comparison.

To verify the fixed code:
1 Click Tools> Create/Edit Settings.
The Create/Edit Setting dialog box appears.

Chapter 1: Memory Analysis Demos 25
LeakExample Tutorial

2 Inthe Manage Configurations pane, select L eakExample.

The configuration settings for the LeakExample appear in the right panel.
3 Click the Java Application tab and then click Edit.
4 Click the browse button beside the Application Arguments field.

5 Inthe Application Arguments dialog box, type fix in the upper field and click
OK.

The argument appears in the Application Argumentsfield.
6 Click Save and then Close.

7 Run the LeakExample startup script and then follow the instructionsin Step 2:
Running the Memory Leak Session to exercise the same use case.

8 Inthe navigator, right-click the new snapshot with the improved code and select
Snapshot Differencing.

The Memory Difference dialog box opens. The new snapshot isdisplayed in the
Snapshot to Compare list.

9 Select the origina snapshot with the loitering objects from the Baseline
Snapshot list.

10 Click OK.

The Memory Difference view appears, displaying the differencesin data between
the two snapshots. Use the filters to display only the JBut ton objects.

@ Welcome * | @& Runtime Summary * | [Memory Difference X

Baseline: snapshot Other! snapshot_1

Percentage Size Change: Recorded -85, 60% | Heap -0.71% | Dead 1.27%

Filter Classes |JButton w[[1/821]

Mame | Recorded Count | Heap Count ¥ | Recorded Memory | Hesp Memory | Dead Count | Dead Memary ||
Tatal -121 -178 6,600 -8,352 49 4,200
javax.swing, Button -10 -10 4,480 4,480 10 4,480

You can see that in the new snapshot (obtained by using the improved code) there
areten fewer JButton objectsthan in the original snapshot. The Recorded Count
and Heap Count are -10, and the Heap Memory is reduced by approximately
4,480 bytes. Therefore, the code modification fixed the problem.

26 JProbe
Demos and Tutorials
In the upper side of the view, you can also see that the LeakExample code now
uses memory more efficiently. Theimproved code reduced the Recorded Memory
use by 85.60%.
Network Tutorial

The Network program illustrates how over-allocating short-lived objects can cause the
garbage collector to run longer than necessary. Garbage collection takes time and
resources.

Thistutorial demonstrates how to use JProbe to identify excessive garbage collections
in your code. The fixed code shows that it is often more efficient to reuse objects or
cache data.

Note The values cited in this tutorial reflect the Network example running on Windows XP
with Sun JDK 1.6.0_10. You may see different values on your system, but the improvement
in garbage collection overhead should still be evident.

The following table summarizes the types of information you need to know before
starting this tutorial.

Program: Network.class

Use Case: Connect from a client to a server, query a database, and return a
result to the client.

Architecture: See the commentsin the Network.java source file.

Hypothesis: The program does not create unnecessary temporary objects.

The tutorial walks you through the following steps:
» Step 1: Setting Up the Network Session
e Step 2: Running the Network Session
e Step 3: Identifying Large Allocations of Short-Lived Objects
e Step 4: Investigating Large Allocations of Short-Lived Objects
* Step 5: Running the Network Session with Improved Code

Chapter 1: Memory Analysis Demos 27
Network Tutorial

Step 1: Setting Up the Network Session

To run agarbage collection analysis, you need to set up the session in the JProbe Create/
Edit Settings tool. The following procedures mention only the settings that you need to
change or verify. If asetting is not mentioned, leave it blank or in its default state. The
procedure assumes that you are running JProbe locally on your computer.

To set up the session:

1

o 0~ W

Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

In the Manage Configurations pane, click Java Application.

The JProbe Configuration Wizard appears.

Click Add.

In the Configuration Name text box, type Network, then click Next.
Under Main Class, click Execute a class.

Click the browse button beside the Main Class field and navigate to the
Network.classfile in the <jprobe_home>/demos/memory/network directory.

Click OK.
The following information is displayed:

¢ Main Class. demos .memory.network.Network
e Working Directory: <jprobe_home>

8 Click the browse button beside the Classpath field.
9 Inthe Classpath dialog box, click Add Working Directory, then click OK.

The working directory appears in the Classpath field.

10 Click Next.

The Select a Java Virtual Machine page appears.

11 If you want to change the default VM, click the browse button beside the Java

Executable field, select another VM in the Java Virtual Machines dialog box,
then click OK.

Alternatively, you can use the VM that isinstalled with JProbe to run with the
tutorial. The java executable is <jprobe_home>/bin/jre/bin/java.exe.

Note Ideally, the JVM you select should be the version that was used to compile your
program.

28 JProbe
Demos and Tutorials

12 To ensure accurate allocation methods, disable the just-in-time compiler.
Note This step applies only to Sun or IBM JVMs. It does not apply to JRockit JVM.
a Click the browse button beside the Java Options field.
b Inthe Java Options dialog box, in the upper field, type -xint.
¢ Click Parse Arguments.
The argument appearsin the first line of the lower field.
d Click OK.
The Java Options field displays the program argument.
13 Click Next.
The Specify Your Code page appears.

14 In the Category/Program Name text box type DemoCategory (which specifiesthe
name of the category in which you want to include your code), then click Next.

15 In the Select a JProbe Analysis page, ensure that the Memory option is selected.

16 On the Initial Recording tab, select the Data Recor ding Off check box, then
click Next.

This disables the datarecording at initial VM start.
17 In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

Configuration Mame: | [Network]
Configuration Type: © [Java Application]

Main Class: | [demos.memory.network.Network]
Application Arguments: @ []

WWarking Directary. © [C:\Program Files\JProbe\JProbe 8.1\]
Classpath. : [C:\Program Files\JProbe\JProbe 8.1\|

Java Executahle: | [C:\Program Files\JProbeJProbe 8.1'bin\jre\binijava.exe]
Java Options: : [-Xint]

Category Mame: : [DemoCategory]

Analysis Type: | [(memory]

JProbe Options: | []

JProbe Port & © [52991)

Snapshot Basename: : []

18 Click Save and save the configuration file (Network_Mem_Settings.jpl) into your
working directory.

19 In the Configuration Complete page, select the I ntegrate check box and click
Finish.

Chapter 1: Memory Analysis Demos 29
Network Tutorial

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Network.bat, and in Unix/Linux: Network.sh).

20 In the Integrating Network dialog box, use the browse button to navigate to your
working directory, and click Save to save the startup file.

The Integrating Network dialog box presents the status of the operation.

124 Integrating Network

Integration status:

Checking JPL file existence . done!

Saving current settings in JPLfile... done!

Walidating JPL file with jplauncher.

JProbe jplauncher message :

VM located at"CProgram FileswProbeWProbe 8.11kinyrethinljava.exe" is supported.
donel

Yalidating working directary... done!

Generating startup script text done!

Flease save JProbe startup script file to continue.

Script file : C:\JProbe'\workspac i k.bat

& JPL file : C:\JProbe\worksp: (0 k_Mem_Settings.jpl
are generated successfully.

To launch your application with JProbe, run this script from the command line.

Integration complete

Close CreateEdit Settings tool on successful integration.

[[] Run JProbe startup seript on successful integration.

Clase

21 Select both check boxes (Close Create/Edit Settingstool on successful
integration and Run JProbe startup script on successful integration), and
click Close.

The JProbe Execution Console opens, then the Network Smulation program

starts, displaying a window with icons representing elements of a network. You
are now ready to run aMemory analysis session.

Network Simulation Q@E|

30

JProbe

Demos and Tutorials

Step 2: Running the Network Session

In this step, you exercise the use case on the Network Smulation program. All you need
to doisto click the Sart button in the Network Smulation program; the program
simulates clients (threads) connecting to a server and querying a database. It runsto
completion in about one minute (depending on your system setup), generating the data
that you need to assess the performance of the garbage collector.

Note

This procedure assumes that the Network Simulation program is already running (for
instructions on how to execute the startup script, see step 21 in section “Step 1: Setting Up
the Network Session” on page 27.

Alternatively, you can run the startup script from the command line:
In a Windows command window: >Network.bat
In a Unix or Linux sh shell: >Network.sh

In a Unix or Linux csh or ksh shell: >. /Network. sh

To run the session:

1

4 Click Set Recording Level

On the JPrabe toolbar, click Attach to a Running Session e

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

Attach to Running Session

Host Name | IP Address: |localhost

Port #: {52991 v

[t [(cnel | [ree

Click OK.

After afew seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

From the Pools and GC Interval list, select Five Minutes.

on the toolbar.

In the Set Recording Level dialog box, select Record Allocations, Stack Traces,
and Garbage Data For All Instances, then click OK.

This enables the recording of allocations, traces and garbage collection on all
instances.

In the Network Simulation program window, click Start.

Chapter 1: Memory Analysis Demos 31
Network Tutorial

When the red lines disappear in the Network Simulation window, the program has
finished.

7 Click Set Recording L evel on the toolbar.

8 Inthe Set Recording Level dialog box, select Data Recor ding Off, then click
OK.

JProbe takes a snapshot and displaysit in the Snapshot Navigator panel.
9 Inthe Network Simulation window, click Sop.
10 Close the Network Simulation window.

JProbe disconnects from the running session. After afew seconds, the Instances
view appears, displaying instances that were created during the use case.

Step 3: Identifying Large Allocations of Short-Lived Objects
The Heap Usage Chart indicates an excessive number of garbage collections.
To identify the short-lived objects:

1 Inthe Runtime Summary view, click the Memory Pools tab.

The peaks and valleys in the Memory Pools graph show that the objects being
collected are not alive very long before they are garbage collected.

Memory Pools

Mb

Memory Pacls
MEden Space 4
Esurvivar Space
Erenured Gen
DOlavailzble

1

0
00:00:20 00:00:40 00:01:00 00:01:20 000140 00:02:00 0002120 00:02:40 00:03:00 00:03:20

2 IntheInstances view, select Dead Count from the Investigate by list.

3 Click the Dead Count column header twice to sort the table by the classes with
the most garbage collected instances.

The top classes by Dead Count instances are string, StringBuffer, and
sim$Cconnection. None of these instances remain dive at the end of the session.

32

JProbe
Demos and Tutorials

Fileer Classes [+ | [528 | 529]

Wame Recorded Count | Heap Count | Recorded Memory | Heap Memory | Kesp Alive Size | Dead C... 7| Dead Memory | |
Tatal 5,025 17,09 BL,176 1,057,855 1,057,338 33,436 854,320
Javalang String 3 2,801 7z 67,224 199,352 10,060 1,40 &

java.lang StringBuffer i 3 0 48 280 10,002

y.sim.Sim$Connection

i i 0 i 0 5,000 X
java.awt.Rectangle i i 0 i 0 g1 20,184
java.util.concurrent.locks. AbstractQueuedSy. . 0 7 0 224 ~224 639 20,448
java.lang.ref WeakRsference z 34 48 816 ~BL6 195 4,680
sun.awt.EventQueueltem 0 0 0 0 0 185 2,960
fava,awt EventQuesltsm i i 0 i 0 182 4,368
java.lang.management. MemaryLisage i i 0 i 0 10 4,400

0 0 0 0 0

java.awt.event. MauseEvent

We know that stringBuffer iscreated by string objects, so string and
Sim$Connection are good candidates for further investigation.

Step 4: Investigating Large Allocations of Short-Lived Objects

In this step you investigate the short-lived objectsidentified in Step 3: Identifying Large
Allocations of Short-Lived Objects by looking at the source code. Remember that in this
exampl e the code contains the fixed code as well. The problem areas are identified in
the code comments.

Note To discover where instances are allocated, drill down on an allocation hotspot to display its
stack trace in the Merged Allocation Points view. You can then look for your allocating
method in the stack trace and drill down on it to see the source code.

To investigate the garbage collected objects:

1 Right-click sim$Connection and select Open Merged Allocation Points
View.

The upper pane of the Merged Allocation Points view displays the
Sim$Server .query method, which allocates instances of sim$Connection.
The Source column indicates the line of code where this method occurs.

Narne: | cumulative Count ¥ | Cumulstive Memary | Source |
Bl demos.memary.sim SimgServer.queryint, java lang Sting, java... 5,000 80,000 Sim.java:21l
=] d 16]] il 000
=

dermos. mermory sim. Sim.runf) 5,000 80,000 Sim.java:41i3
"java lang.Thread.runf) 5,000 0,000 Mok Avalable

2 Right-click sim$server.query and select Show Allocated At Source.

Chapter 1: Memory Analysis Demos 33
Network Tutorial

The Source view opens, displaying the Sm.java source code at the line indicated
in the Source column (211).

Line | Source

214 Result result = new Resulti);
215 commect. query(login, password, request, result);

216 conmect.release();
z1g if (Sim.this.fixConnection) {
219 cache. freeConnectioniid);

220 ¥

222 return result;

Notice that each time a client sends a query to the server, the server creates anew
connection to the database that |asts until the connection is terminated. Also
notice that Connection isaninner class of sim.

In the Instances view, right-click string and select Open Merged Allocation
Points View.

In the Merged Allocation Points view, right-click system Code and select
Expand To Next Branch Point.

In the lower panel of thisview, right-click sim$Client.start and select Show
Allocated At Source.

The Source view opens, displaying the Sm.java source code at the line indicated
in the Source column (286).

Line | Source

262 if {Sim.this. fixLogin) { ~
283 result = server.queryiprimaryRey % 5, login, pswud,

284 quary);

285 } else {

287 + primaryKey, "my_password®,

288 "SELECT customer FROM sales WHERE location = "

269 + primaryKey + " AND product = "

a0 + product);

Notice that each time a client sends a query to the server, it creates temporary
strings to pass the login, password, and query. Thisis the source of most of the
String and StringBuffer instancesthat we saw in the Instances view. You
can now proceed with fixing the code.

34

JProbe
Demos and Tutorials

Step 5: Running the Network Session with Improved Code

Two key problems were discovered in the code: temporary connection objects are
created for each connection to the database, and temporary strings are created to pass
login, password, and query information. The program contains fixes to reduce the
number of temporary objects. You need to add program arguments to use the fixed code.
You can run the code with one or both of the fixes.

For the connection issue, use the - £c application argument. This problem is solved by
implementing acache. If you review the cachefix in Sm.java, you will notice that there
are actually three caching options documented: SimpleCache, PoolCache, and
LocalCache. By default, the Localcache fix isused. If you change the cache, you
need to recompile the program.

For thelogin issue, use the -£1 application argument. The problem is solved by
introducing static string and stringBuf fer classesthat can be reused.

To verify that the fixed code improves memory use:

1 Inthe JProbe Console, select the snapshot and click Tools > Create/Edit
Settings.

The Create/Edit Settings dialog box opens, displaying the settings for the
Network program. To run the fixed program, you need to add program arguments.

2 Click the Java Application tab and click Edit.

3 Click the browse button beside the Application Arguments field.

4 Inthe upper text box in the Application Arguments dialog box, type:
-f1 -fc

5 Click Parse Arguments.
The arguments appear in separate lines in the lower list.

6 Click OK.

The Application Arguments field in the Java Application tab displays the new
arguments.

Application Arguments:

] G

e

7 Click Save and then Close.

Chapter 1: Memory Analysis Demos 35
Network Tutorial

8 Follow theinstructionsin Step 2: Running the Network Session to exercise the
same use case.

In the Memory Pools graph, the peaks and valleys on the graph are less
pronounced, which suggests that fewer objects are collected each time the
garbage collector runs.

Memary Pools

Mb

Memory Pools
WEden Space
Esurvivor Space
ETenured Gen
Davailable

00:00:25 00:00:35 00;00:45 00:00:55 00:01:05 00:01:15

9 Inthe Instances view, if necessary, select Dead Count from the Investigate by
list.

10 In the lower pane, click the Dead Count column header twice to sort the table by
the classes with the most garbage collected instances.

Filter Classes [* v | [532 1 532]

Narme Recorded Colnt Heap Count | Recorded Memory | Heap Memory | Keep Alive Size | Dead €., ¥| Dead Memary [|
Tatal 5,029 17,094 81,208 1,058,504 1,058,504 5,170 98,376
java,awt.Dimension i i 0 0 0 3,977 63,632 A~
java.awt Rectangle 0 0 0 0 0 449 10,778
java.lang.ref. \WeakReference 2) 4 816 ~316 B 2,160
sun.awt. EventQueueliem 0 0 0 0 0 50 1,280
jawa,ant Eventqueneltsm]] 0] 0 bl 1,848
java.util.concurrent. locks. 4, .. 1 7 32 224 ~224 &1 1,952
java.lang. String E] 2,793 72 67,178 188,632 &0 1,440
java.lang.management. Mem...]] 0] 0 50 2,000
java.awit Paink 0 0 0 0 0 w0 &40
jawa,amit event. MoussEvant]] 0] 0] 2,520

java awt.event. InvocationE. . 0 0 il o 0 31 1735
java,util HashMap$Entry o 507 a0 14,568 ~22,640 2 576
javalang.reflect. Field 2 b 144 432 a0 ed 1,584 ~

The Dead Count of string now reports 60 instances, down from more than
10,000 instances in the original example. The total number of Dead instances has
also decreased, from 33,000 in original example to 5,100 in the fixed code.

You will notice the following:

¢ Thestring count is much lower (60).

¢ Thesim$Connection count iseven lower (5).

* java.awt.Dimension how hasthe highest dead count.

36 JProbe

Demos and Tutorials

11 To investigate java.awt . Dimension, right-click it and select Open Merged
Allocation Paints View.

12 In the upper pane of the Merged Allocation Points view, right-click Sytem Code
end select Expand To Next Branch Point.

13 Right-click My Code and select Replace Category With More Detail.

14 Right-click the class with the large number of instances (3,977) and select Show
Allocated At Source.

226
227
223
229
230
23l
232
233
234
235
236
237
238
239
240
241
242
243

e | Source

Dimension d =
int width = d.width;
int height = d.height;
gr.setColor (server_dh_state 7 Coler.red : Color.white);
gr.drawline({int} {server_db_connection(0] * widthj,
tint) {server db_connection(l] * heighti,
{int) {server_db_comnection([Z] * widech),
{int) {server_db_connection[3] * heighti);
gr.drawline({int} {server_db_connection(0] * width + 1,
tint) {server db_connection(l] * heighti,
{int) {server_db_connection[Z] * wideh + 1,
{int) {server_db_connection[3] * heighti);
for fimt i o= D; i < §; it4)
gr.setColoriclient_server states(i] 7 Color.red : Color.white);
gr.dravlinei(int) {client_server_comnections[i][0] * widech),
{int) (client_server_cormections[il [1] * height - 1},
{int) {client_server_commections[il[2] * width),

tint) {client server comnections[il[3] * height]);

You can see that the instances are the result of agetsize call onthe main
Network Smulation window. Because it can be resized, the dimensions should
not be cached.

2

Performance Analysis Demos

This chapter provides a summary of the Performance demo applications that ship with
JProbe and contains tutorials for some of these applications.

The source code and compiled classes for the Performance demos are located in the
<jprobe_home>/demos/performance directory.

This chapter contains the following sections:

Summary of DemOos for PErOIMANCE ...t 38
PhiloSOPher’s DINEr TULOTIALc.veererieeriieieireeieis ettt 40
POIYNOMIGI TUOTIALv.vvveeceieeeiscce et ettt 50

38 JProbe
Demos and Tutorials

Summary of Demos for Performance

The following table describes the purpose of the example applications.

Java SE Application

Purpose

More I nformation

Diner.class

Files.class

MethodCalls.class

Objects.class

The application hangs and does
not terminate. This example
shows how you can use JProbe
to identify the threads involved
in a deadlock.

Compares the performance of
two algorithms: a buffered
Reader/Writer versus an
unbuffered Datal nputStream/
Data OutputStream.

This application demonstrates
the JProbe’s ability to track
method calls by allowing the
user to control the number of
calls to specific methods.

Each button has a corresponding
ActionListener. When a
button is pressed, the
actionPerformed method
displays a message in the text
area. The user can see how
Performance tracks method calls
by comparing Performance’s
reported number of callsto each
method and the datadisplayed in
the text area.

Compares the performance of
using objects versus primitives.

See the notesin
Diner.java.

Tutorial:
“Philosopher’s Diner
Tutorial” on page 40.

Seethe notesin
Filesjava.

See the notesin
MethodCalls.java.

Seethe notesin
Objects.java.

Chapter 2: Performance Analysis Demos 39
Summary of Demos for Performance

Java SE Application Purpose More I nformation

Polynomial.class The application calculates a Seethe notesin
polynomial expression usingone Polynomial .java.
of two algorithms. This example
shows how you can use JProbe Tutorial:

to compare performance and “Polynomial Tutorial”
identify the more efficient on page 50
algorithm.

Srings.class This application uses two See the notesin

alternative approaches to strip Srings.java.
embedded tabs from strings. You

can track the two methods and

compare their performance.

JProbe also ships with a Java EE demo application called JProbe Game Pack Demo for
Java EE. For more information, see “ JProbe Game Pack for JavaEE” on page 73.

40

JProbe

Demos and Tutorials

Philosopher’s Diner Tutorial

In thistutorial, you investigate a deadlock situation. The symptom of the problem isthat
the program hangs and does not terminate.

Based on the class Dining Philosophers deadlock demonstration, the tutorial program
simulates five Philosophers seated around a table, each with abowl of ricein front of
him or her. To eat their rice, there are only five chopsticks available to share among the
Philosophers. To eat the rice, a Philosopher must have two chopsticks. Once a
Philosopher is finished using a chopstick, that chopstick is available to any other
Philosopher seated at the table. There is no prescribed sharing pattern among the
Philosophers; sharing is random. The eventual result of thisrandom sharingisa
deadlock, when each Philosopher waits indefinitely for another chopstick to become
available.

Thistutoria illustrates how you can detect where athread causing a deadlock is created
within your own code.

Causing Threads

A causing thread is one that is directly responsible for the deadlock. For example, a
situation might be that Philosopher 4 and Philosopher 2 are causing the deadlock
because Philosopher 4 iswaiting for Philosopher 2 and vice versa.

Affected Threads

An affected thread is one that cannot make progress and is not part of the deadlock
cycle. Typicaly it iswaiting for either athread that is part of the cycle or another
affected thread. For example, a situation might be that Philosopher 0 is affected because
he/she iswaiting for the chopstick held by Philosopher 2. Due to the fact that
Philosopher 2 and Philosopher 4 are deadl ocked, the chopstick never becomes available
and Philosopher 0 waits indefinitely. Similarly, Philosopher 1 and Philosopher 3 are
waiting for Philosopher 0, but because Philosopher 0 cannot acquire achopstick, neither
they would acquire any chopsticks.

The following table summarizes the types of information you need to know before
starting this tutorial.

Program: Diner.class

Use Case: Detect threads involved in the deadlock and identify the location for
code modifications.

Chapter 2: Performance Analysis Demos 41
Philosopher’s Diner Tutorial

Architecture: The threads are located in the
demos .performance.diners.philosopher.run () method.

1 Runthetutorial first using the following filter setting:
Action = Method Level

2 Stop the executing Diner demo and add afilter for
demos .performance.diners.philosopher.run () With
the following detail:

Action = Line Level

Hypothesis: Using filters can help you identify where a deadlock occursin the
code.

The tutorial walks you through the following steps:
e Step 1: Setting Up the Diner Session
e Step 2: Running the Diner Session
* Step 3: Investigating the Deadlock
* Step 4: Running the Diner Session with Improved Filters
» Step 5: Finding the Cause of the Deadlock in the Source Code

Step 1: Setting Up the Diner Session

In this step, you set up a session to detect deadlock situations. You use the JProbe
Create/Edit Settings tool to create the session settings. The following procedures
mention only the settings that you need to change or verify. If a setting is not mentioned,
leaveit blank or in its default state. The procedure assumes that you are running JProbe
locally on your computer.

To set up the session:
1 Click Tools> Create/Edit Settings.
The Create/Edit Setting dialog box appears.
2 Inthe Manage Configurations pane, click Java Application.
The JProbe Configuration Wizard appears.
3 Click Add.
4 Inthe Configuration Name text box, type Diner, then click Next.

42

JProbe

Demos and Tutorials

10

11

12

13

14

15
16

17

In the Main Class field, select the Execute a class check box.

Click the browse button beside the Main Class field and navigate to the
Diner.classfile in the <jprobe_home>/demos/performance/diners directory.

Click OK.

The following information is displayed:

e Main Class; demos .performance.diners.Diner

¢ Working Directory: <jprobe_home>

Click the browse button beside the Classpath field.

In the Classpath dialog box, click Add Working Directory, then click OK.
The working directory appears in the Classpath field.

Click Next.

The Select a Java Virtual Machine page appears.

If you want to change the default VM, click the browse button beside the Java
Executable field, select another VM in the Java Virtual Machines dialog box,
and click OK.

Note Ideally, the JVM you select should be the version that was used to compile your
program.

Click Next.
The Specify Your Code page appears.

In the Category/Program Name text box type DemoCategory (which specifiesthe
name of the category in which you want to include your code), then click Next.

In the Select a JProbe Analysis page, ensure that the Perfor mance option is
selected.

On the Gener al tab, select the Detect Deadlocks check box.

On the Automation tab, select the Data Recor ding Off check box, then click
Next.

This disables the data recording at initial VM start.
In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

18

19

20

Chapter 2: Performance Analysis Demos
Philosopher’s Diner Tutorial

Configuration Mame: : [Diner]
Configuration Type: : [Java Application)

Main Class: | [demeos.performance.diners.Diner]
Application Arguments: © []

Warking Directary. © [C:\Program Files\WProbe'JProbe 8.1\
Classpath: . [C:\Program Files\JProbe\JProbe 8.1']

Jawva Executable: : [C:!\Program Files\JProbe\JProbe 8.1'bin'jre‘bin\java.exe]
Java Options: : []

Category Name: : [DemoCategory]

Analysis Type: : [performance]

JPrabe Options: : []

JPrabe Port #: ; [52991]

Snapshot Basename: : []

Click Save and save the configuration file (Diner_Perf_Settings.jpl) into your
working directory.

In the Configuration Compl ete page, select the | ntegrate check box and click
Finish.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Diner.bat, and in Unix/Linux: Diner.sh).

In the Integrating Diner dialog box, use the browse button to navigate to your
working directory, and click Save to save the startup file.

The Integrating Diner dialog box presents the status of the operation.

@ Integrating Diner

Inteqration status:

Checking JPL file existence... donel

Saving current seftings in JPLfile... done!

Validating JPL file with jplauncher

JProbe jplauncher message

JyM located at"CAProgram FilesuProbellProbe & 1ibinyjrethinljava exe" is supported
done!

Validating waorking directory . done!

Generating startup scripttext.. done!

Flease save JProbe startup script file to continue,

Script file : C:\JProbe\workspace'tutorialsidiners'Diner.hat

& JPL file : C:\JProbe\workspace'tutorials\diners\Diner_Perf_Settings.jpl

are generated successfully.

To launch your application with JProbe, run this script from the command line.

Integration complete v
Close CreatefEdit Settings tool on successful integratian,

[Run JProbe starbup seript on successful integration.

Close:

21 Select both check boxes (Close Create/Edit Settingstool on successful

integration and Run JProbe startup script on successful integration), and
click Close.

43

44

JProbe

Demos and Tutorials

The JProbe Execution Console opens, then the Diner program starts, displaying a
window with icons representing the philosophers. The slider controls the number
of milliseconds that a Philosopher waits (“sleeps’) between chopstick attempts
(“eating”). You are now ready to run a Performance analysis session.

50 milliseconds

Step 2: Running the Diner Session

In this step, you start the session from the command line. Let the Diner program run
until a deadlock occurs. That said, in some cases a deadlock may not occur because the
programmed behavior of the philosophersisrandom. The program is sensitiveto timing
on the computer and in the VM.

Note

This procedure assumes that the Diner program is already running (for instructions on how
to execute the startup script, see step 21 in section “Step 1: Setting Up the Diner Session”
on page 41.

Alternatively, you can run the startup script from the command line:
In a Windows command window: >Diner .bat
In a Unix or Linux sh shell: >Diner.sh

In a Unix or Linux csh or ksh shell: >. /Diner.sh

To run the session:

1

On the JProbe toolbar, click Attach to a Running Session ':5'.

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

Chapter 2: Performance Analysis Demos 45
Philosopher’s Diner Tutorial

Attach to Running Session

Host Name | IP Address: |localhost

Port #: |52991 A

[oK }[Cancel][Help

2 Click OK.

After afew seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

3 on the toolbar.

4 Inthe Set Recording Level dialog box, select Full Encapsulation, then click OK.
This enables JPrabe to collect data for all methods and the methods they call.
5 Inthe Diner program window, click Start.

The program stops when a deadlock occurs because each philosopher has only
one chopstick.

Tip If adeadlock occurs immediately, stop the program (click Stop) and start it again (click
Start).

Tip If a deadlock does not occur at all, click Stop, adjust the slider to a lower value, then
click Start to rerun the program. Repeat until a deadlock occurs.

When the deadlock occurs, the Runtime Summary view appears with the
Deadlocks tab on the foreground.

@ welcoms * | 9 Runtime Summary *

Configure Poals... Paols and GC Interval:| One Minute b4 Classes Loaded: 1379 Classes Unloaded: 0

Memory Pools | GC Data | Deadiocks

Deadlock I0: 1

e e :h A 4 threads causing
‘thread "Philosopher 4" stalled due to thread "Philosopher 1 1 oth Ffected
thread "Philosapher 2" blocked by thread "Philosopher 3" oEners secs
+thread "Philasopher 3" blocked by thread "Philosopher 0"
“-thread "Philosopher 0" blocked by thread "Philosopher 1"

Causing Threads:
Philosopher 1 (ID:185615732)
Philosopher 2 (ID:185589012)
Philosopher 3 (ID:198510868)
Philosopher 0 (ID:195049492)

Affected Threads:
Philosopher 4 (ID:185126164)

[Riscording: Ful Encapsulstion

6 Click Set Recording L evel on the toolbar.

7 Inthe Set Recording Level dialog box, select Data Recor ding Off, then click
OK.

46 JProbe
Demos and Tutorials

JProbe takes a snapshot and displaysit in the Snapshot Navigator panel.
8 Closethe Diner program window.

JProbe disconnects from the running session. After afew seconds, the Call Graph
view appears.

9 Closethe Cal Graph view by clicking the “x” on the tab; you do not need this
view to investigate deadlocks.

Step 3: Investigating the Deadlock

As presented in Step 2: Running the Diner Session, the JProbe Execution Console
reported a deadlock among four threads. |nformation about the deadlocks is contained
in the Deadl ocks tab of the Runtime Summary view.

To see the deadlock information:

1 Inthe Runtime Summary view, click the Deadlockstab (if not selected).
You can see that four threads are causing the deadlock, while one thread is
affected by the deadl ock.

Note The thread IDs change each time you run this program.

2 Select athread in the left panel.

& welicome * | 9 Runtime Summary *
— =
* BuTeE
Pools and GC Interval:| One Minute - Classes Loaded: 1379 Classes Unloaded: 0

Memory Pools | GC Data | Deadlocks

Dead\\:l(k 4 threads (ausmg 1 others affected Stack trace For: Philosopher 1 (ID:185619732)
hread sopher 1" blocked by thread "Philos:

lost
i " thread "Philasopher 4* stalled due o thread Ph\lusupherl dd f diners. Philosoph
i -thread "Philosopher 2* blocked by thread "Philosopher 3 void demes, perfrmance. dners. Phiosopher.runt)
~thread "Philosopher 3" blocked by thread “Philosopher 0
“~thread “Philosopher 0" blocked by thread “Philosopher 1"

[Recording: OFF

The stack trace for that thread is displayed. The thread is created by the
Philosopher.run () method. If you select any of the other threads, you find
that they are also created by the same method.

Chapter 2: Performance Analysis Demos 47
Philosopher’s Diner Tutorial

Step 4: Running the Diner Session with Improved Filters

You have identified that the threads are created by the run () method in the Philosopher
class. In this step, you first edit the session settings to focus on the run () method, then
run the Diner program again. You will now be able to identify in the source code the
line number where the thread is created.

To edit the configuration settings and re-run the session:

1

6

7

Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

In the Manage Configurations pane, select Diner and then click Edit.
Click the Analysis Type tab, then the Filter stab.

You are now going to select afilter type that allows you to identify the causing
thread.

Click in the row below the existing filter and click the browse button.

Navigate to <jprobe_home>/demos/performance/diner 5/Phil osopher.class,
expand its method list, and select run.

i Open @‘
Lockin: |3 diners “ FrmEE
Y 3 image =-Phiosopher
|_.‘9 chopstick.class o <init
My Recent @ Diner$l.cass - gotHowMany Chopsticks
Documents |/ Dinerg2. class
= @ Diner$3.class
@ Dir.var.class fstop
Desktop Philosopher$i class ... whichPhilasapher
Philosopher. class
Y PhilosopherPanel.class
My Documents
TOR012977
_)i Fie pame: [Philosopher.class
My Network
Places Files of type: | 1ava Classes (and Containers) v

The method is displayed in the Data Collection Filter list.
Click on the Action cell for thisrow and select line.

48

JProbe
Demos and Tutorials

Data Collection Filters (package. dlass.method()) Action

demos.performance. diners.®.*() method -~
demas perfarmance.diners, Philosopher. run() line =
method
encapsulated

line

native

8 Click Save.

You can now rerun the session to find out the line number in the source code
where the thread is created.

9 Click Run, then click OK in the Run JProbe Configuration dialog box.

The JPrabe Execution Console opens, then the Diner program starts, displaying a
window with icons representing the philosophers. The slider controls the number
of milliseconds that a Philosopher waits (“sleeps’) between chopstick attempts
(“eating”). You are now ready to run a Performance analysis session.

10 Closethe Create/Edit Settings dialog box.

11 On the JProbe toolbar, click Attach to a Running Session ':5'.

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

Attach to Running Session

Host Mame | IP Address: |localhost

Port #: |52991 A

l oK 1[Cancel l[Help

12 Click OK.
After afew seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

2 on the tool bar.

14 Inthe Set Recording Level dialog box, select Full Encapsulation, then click OK.
This enables JProbe to collect data for all methods and the methods they call.

15 In the Diner program window, click Start.

Chapter 2: Performance Analysis Demos 49
Philosopher’s Diner Tutorial

When the deadlock occurs, the Runtime Summary view appears with the
Deadlocks tab on the foreground.

16 Close the Diner program window.

JProbe disconnects from the running session. After afew seconds, the Call Graph
view appears.

Step 5: Finding the Cause of the Deadlock in the Source Code

Thefilter causes line numbers to be appended to the methods in the stack trace. This
makes it easy to locate the problem areain the code.

To identify the affected threads in stack traces:
1 Inthe Runtime Summary view, click the Deadlocks tab.

2 Select athread in the left panel.

Thistime the method (shown in the right panel) has anumber appended toiit (85).
The number represents aline number in the source code.

@ welcome * | @ Runtime Summary * | B call Graph *
= B
v BwwRE

Paols and GC Interval:| One Minute hd lasses Loaded: 1379 Classes Unloaded: 0

Memory Pools | GC Data | Deadiocks
=-Deadlock: 4 threads causing, 1 others affected Stack trace For: Philasopher 1 (ID:198247700)

ilosapher 1" blocke: thread Pl oher 2
read "Philosopher 4" stalled due to thread "Philosopher 1 void demos. performance. diners. Philosopher run():65

: d "Philosopher 2" blocked by thread "Philosopher 3
S-thread "Philasopher 3" blocked by thread "Philosopher 0"
*-thread "Philosopher 0" blocked by thread "Philosopher 1"

3 Inthe Cal Graph view, right-click the method
demos .performance.diners.Philosopher.run () and select Show

Source.

The Source view appears, with line number 85 in red. You can see that the
synchronized (chl) block iscausing the deadlock.

50

JProbe
Demos and Tutorials

Polynomial Tutorial

The Polynomial tutorial illustrates how an inefficient algorithm can significantly impact
the performance of your code, and how you can use JProbe to compare performance and
identify the more efficient algorithm.

Tip You only want to optimize algorithms in the critical path of your program; there is no point
tuning algorithms that are called very rarely. You also need to evaluate the overall impact on
the runtime of the program. If an inefficient algorithm takes a total of a few seconds to
execute, you may make it run faster, but the impact on the overall runtime of the program will
be negligible.

The program runs two algorithms for computing the following polynomial expression:

2

ap *x'+ ... +a; *x* +a *x + ap, where n=750

The original algorithm uses nested loops to calculate x". The improved algorithm
implements Horner’s Rule for evaluating polynomial expressions, that is, it factors out
powers of x in the form:

(((...(ap * X + ap_1)...) X + az) x + ai) + ag

Note The values cited in this tutorial reflect the Polynomial running on Windows XP with
Sun JDK 1.6.0_10. You may see different values on your system, but the performance
improvement between the algorithms should still be evident.

The following table summarizes the types of information you need to know before
starting thistutorial.

Program: Polynomial.class
Use Case: Calculate a polynomial expression.

Architecture: Both polynomial calculations arein the evaluate () method. To
run the program, you need to set a program argument:
» N = Use nested loops (original algorithm)
« H = Use Horner’s Rule (alternate algorithm)

Hypothesis: Horner’s Rule is faster.

The tutorial walks you through the following steps:
e Step 1: Setting Up the Polynomia Session

Chapter 2: Performance Analysis Demos
Polynomial Tutorial

Step 2: Running the Polynomial Session

Step 3: Identifying and Investigating the Performance Bottleneck
Step 4: Running the Polynomial with Improved Code

Step 5: Measuring the Performance Improvement

Step 1: Setting Up the Polynomial Session

To collect timing data on the original algorithm, you need to set up the session in the

51

JProbe Create/Edit Settings tool. The following procedures mention only the settings
that you need to change or verify. If asetting is hot mentioned, leave it blank or inits
default state. The procedure assumes that you are running JProbe locally on your
computer.

To set up the session:

1

oo o1 B W

Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

In the Manage Configurations pane, click Java Applications.
The JProbe Configuration Wizard appears.

Click Add.

In the Configuration Name box, type Polynomial, then click Next.
Under Main Class, click Execute a Class.

Click the browse button beside the Main Class field and navigate to the
Polynomial.classfile in the <jprobe_home>/demos/performance/polynomial
directory.

Click OK.

The following information is displayed:

¢ Main Class. demos .performance.polynomial.Polynomial

¢ Working Directory: <jprobe_home>

To use the nested loop algorithm, you need to enter a program argument.
a Click the browse button beside the Application Argumentsfield.

b Inthe upper field of the Application Arguments dialog, type: N

¢ Click Parse Arguments.

52

JProbe

Demos and Tutorials

10

11

12

13

14

15

16

17

The argument appearsin the first line of the lower field.
d Click OK.
The Application Arguments field displays the program argument.
Click the browse button beside the Classpath field.
In the Classpath dialog box, click Add Working Directory, then click OK.
The working directory appears in the Classpath field.
Click Next.
The Select a Java Virtual Machine page appears.

If you want to change the default VM, click the browse button beside the Java
Executable field, select another VM in the Java Virtual Machines dialog box,
and click OK.

Note Ideally, the JVM you choose should be the version that was used to compile your
program.

Click Next.
The Specify Your Code page appears.

In the Category/Program Name text box type DemoCategory (which specifiesthe
name of the category in which you want to include your code), then click Next.

In the Select a JProbe Analysis page, ensure that the Performance optionis
selected.

On the Automation tab, select the Full Encapsulation check box, then click
Next.

This enables JProbe to collect data for all methods and the methods they call,
from theinitial VM start.

In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

Chapter 2: Performance Analysis Demos 53
Polynomial Tutorial

Configuration Mame: : [Polynomial]
Configuration Type: : [Java Application]

Main Class: . [demos.performance.polynomial.Polynomial]
Application Arguments: © [N]

Working Directory: @ [C:\Program Files\JProbe\JProbe 8.1\]
Classpath: : [C:\Program Files\JProbe'JProbe 8.1\]

Java Executahle: | [C:\Program Files\JProbe\JProbe 8.1'bin\jre\binjava.exe|
Java Options: 1 []

Category Name: : [DemoCategory]

Analysis Type: | [performance]

JProbe Options: :]

JProbe Port #: © [52991]

Snapshot Basename: - []

18 Click Save and save the configuration file (Polynomial_Perf_Settings.jpl) into
your working directory.

19 In the Configuration Complete page, select the I ntegrate check box and click
Finish.
JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Polynomial .bat, and in Unix/Linux: Polynomial.sh).

20 Inthe Integrating Polynomia dialog box, use the browse button to navigate to
your working directory, and click Save to save the startup file.

The Integrating Polynomial dialog box presents the status of the operation.

B Integrating Polynomial

Integration status:

Checking JPL file existence... donel

Saving current settings in JPL file... done!

“alidating JPL file with jplauncher..

JProbe jplauncher message

JyM [ocated at"CiFProgram FilesWProbelProbe 8. 1hinyrethinljava exe” is supported.
donel

“alidating working directary... done!

Generating startup scripttext . done!

Please save JProbe startup scriptfile to continue.

Script file : C:\JProbe'worl i Iy ialPoly ial.bat

& JPL file : C:\JProbe'worl i Iy ialPoly ial_Perf_Settings.jpl
are generated successfully.

To launch your application with JProbe, run this script from the command line.

Integration complete.

Close Create/Edit Settings tool on successful integration.

[[]Run JProbe startup script on successful integration.

Close

21 Select the Close Create/Edit Settingstool on successful integration check box,
and click Close.

You are now ready to run a Performance analysis session.

54

JProbe
Demos and Tutorials

Step 2: Running the Polynomial Session

In this step, you exercise the use case on the Polynomial program. All you needtodois
to start the Polynomial program. It runsto completion in about one minute (depending
on your system setup), generating the data that you need to assess the performance of
the “nested loops” algorithm.

To run the session:

1 On the JProbe toolbar, click Attach to a Running Session ':5'.

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

Attach to Running Session

Host Mame | IP Address: |localhost

Port #: |52991 A

l oK 1[Cancel I[Help

2 Click OK.

The Connection Indicator dialog box indicates that JProbe is looking for your
session.

3 Start the Polynomial program from the command line:
¢ InaWindows command window: >Polynomial .bat
¢ InaUnixor Linux shshell: >Polynomial.sh
e InaUnix or Linux csh or ksh shell: >. /Polynomial.sh
The Polynomial program starts and runs in a command window.

When the program is finished, the command window closes. JProbe takes a
performance snapshot and displays it in the Snapshot Navigator panel and in the
Call Graph view.

Step 3: Identifying and Investigating the Performance Bottleneck

By default, the snapshot taken at the end of the session is selected and the Call Graph
window opens automatically.

Note This simple program contains only the problem algorithm. In a real world program, you
would have to locate the target algorithm in the graph or method list. The Filter Methods

Chapter 2: Performance Analysis Demos 55
Polynomial Tutorial

field can help you narrow down the number of methods displayed. Include the full
package.class.

1 Selectthe pPolynomial.evaluate () method in the graph or thelist.
The method is highlighted in both the graph and the list.

@ welcome * | B Runtime Summary * |E'¢Ca\| Graph * ‘

T cwmfomeeme v 45 E TG la e @ ©

-1 1 1 1 1 | |1 | | §E& 0

Call Tres |{ call Graph |

Filter Methods * v [616]

Name | calls | Cumulative Time %[Method Time | Avg Cumulative Time | Avg Method Time | Catches | Exception Exits | |
jarva.lang.String.equalstjava.lang. Cbisct) 1 0 0 o 0 0 0
Java.ia PrintStream. printincjava.bang.String) 1 0 0 0 0 0 0

Java.lo.PrinkStream. prink(java.lang. String) 751 43 43 i

demos. perfarms olynomial. ev: 2,258

demos. performance. polynomial. Polynomial, main(jav. . 1 2,256 0 2,258
<rook:> o 2,258 o o 0 o o

The method was called only once and took 2,258 milliseconds to execute.

Note This value may vary when running this tutorial on a different platform. The actual
time is less important than the comparative difference between the two algorithms.

2 Inthe Snapshot Navigator, right-click the snapshot, select Save Snapshot As,
name the snapshot Polynomial, and click Save.

3 Closethe Call Graph view.

Step 4: Running the Polynomial with Improved Code

The original algorithm is slower than expected. Based on the hypothesis, the algorithm
that implements Horner’s Rule should run faster.

To use the Horner’s Rule algorithm, you need a new program argument. You can either
edit the existing configuration or create a separate configuration to make it easy to
switch between tests. In thistutorial, you create a copy of the existing configuration and
edit it.

56 JProbe

Demos and Tutorials

To run and assess the Horner’s Rule algorithm:

1

Click Tools > Create/Edit Settings.
The Create/Edit Setting dialog box appears.

In the Manage Configurations pane, under Java Application, click Polynomial if
itisnot aready selected.

Click Copy.
The settings are copied from the original configuration.

In the Configuration Name text box, type Polynomial Fixed as the name for the
new configuration.

Click the Java Application tab to change the program argument.
a Click the browse button beside the Application Arguments field.

b Inthe upper field of the Application Arguments dialog box, deleten and type:
H

¢ Click Parse Arguments.
The argument appearsin the first line of the lower field.
d Click OK.
The Application Arguments field displays the program argument.

*Configuration Mame:
PalynomialFized

Analysis Type | Java Application | My Code | JProbe | JvM

*Main Class:

(%) Execute a class

(O Execute a Jar file with manifest Main-Class

demas. petformance. polynomial. Polynamial ()

*Wfarking Directary:
C:yProgram Files\JProbel Probe 8.1}

]

Application Arguments;

*Classpath:

*- Required Field

Save Cancel

10

11

12

13

Chapter 2: Performance Analysis Demos 57
Polynomial Tutorial

Click Save then Save As, to save the configuration file
(PolynomialFixed Perf Settings.jpl) into your working directory.

Click Integrate.

JPrabe validates the configuration file and creates a startup script file (for
example, in Windows: Polynomial Fixed.bat, and in Unix/Linux:
Polynomial Fixed.sh).

In the Integrating Polynomial Fixed dialog box, use the browse button to navigate
to your working directory, and click Save to save the startup file.

The Integrating Polynomial dialog box presents the status of the operation.

Select the Close Create/Edit Settingstool on successful integration check box,
and click Close.

You are now ready to run a Performance analysis session using the fixed code.

On the JPraobe toolbar, click Attach to a Running Session e

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

Click OK.

The Connection Indicator dialog box indicates that JProbe islooking for your
session.

Start the fixed Polynomial program from the command line:

¢ InaWindows command window: >PolynomialFixed.bat

¢ InaUnix or Linux sh shell: >PolynomialFixed.sh

e InaUnix or Linux csh or ksh shell: >. /PolynomialFixed.sh

The Polynomial Fixed program starts and runs in acommand window.

When the program is finished, the command window closes. JProbe takes a
performance snapshot and displays it in the Snapshot Navigator panel and in the
Call Graph view.

In the Call Graph view, click the Call Graph tab, and select the
Polynomial.evaluate () method.

The method is highlighted in the Call Graph and the list.

58

JProbe
Demos and Tutorials

@ Wwelcome * | Runtime Summary % |\";‘£Ca\l Graph ¥ ‘

T oo ¥ O WIEE Mws © O

1 1 1 1 1 1 1 1 K& 0

Call Tree | Call Graph |

Fiter Methods [+ vl s8]
| calls | Cumulative ... * | Method Time | Avg Cumulative Time | Avg Method Time | Catches | Exception Exits | |
0 0 0

Name

java.lang String. equalsiava.lang.Object) 2 0
Javanio.PrintStream. printingjava.lang. String) 1 1
java.io.Printstream. print{java.lang. String) 751 247 247

<rootx a 7l 1)

The method was called only once and took 270 milliseconds to execute.

14 Inthe Snapshot Navigator, right-click the snapshot, select Save Snapshot As,
name the snapshot Polynomial Fixed, and click Save.

Step 5: Measuring the Performance Improvement

You know that the second algorithm runs much faster than the first one. In this step, you
will quantify the performance improvement using the Snapshot Difference window to

compare snapshots.
To measure the performance improvement:

1 Inthe Snapshot Navigator, right-click the PolynomialFixed snapshot and select
Snapshot Differencing.

The Performance Difference dial og box appears, with Polynomial Fixed displayed
in the Snapshot to Compare list.

1% Performance Difference E‘

Select Snapshots

Baseline Snapshot:
Snapshot to Compare: |PolynomialFixed w

2 Select Polynomial from the Baseline Snapshot list and click OK.

Chapter 2: Performance Analysis Demos 59
Polynomial Tutorial

3 If thefollowing warning dialog appears, click Yes.

Warning

92 The selected snapshaots may not be from the same application. The difference resulks
¥ may not be meaningful. Continue?

[[] Dan't ask me about this again

The Snapshot Difference view appears, displaying the differences between the
two methods.

@ welcome ¥ |9 Runtime Summary * | [f Call Graph % | [Performance Difference %

!

Fiter Mathads [+ v 16j6] Baseline: Pobynomial Other: PobynomialFixed
Name | Calls | Cumulative ... 4] Method Tme | Avg Cumulative Time | AvaMethod Time | Catches | Excention Exits ||
demas. performance. polynomial Polyromil evaluzte... 0 -1,988 2,192 1,988 2,192 [0
demos, performance. palynomial Polynomial. maindjav. .. o -1,987 o -1,987 o o o
<rant» 0 -1,987 0 0 0 0 0
Java.lang String.equals(java lang. Obect) 1 0] 0 0 0]
Java.io.PrintStream,printin(javalang.String) 0 1 1 1 1 0 0
Java.Io.PrintStream. print{java. lang. String)] 204 204 0 o o]

The number of callsto Polynomial.evaluate () did not change, but the
Cumulative Time has decreased by 1,988.

Note Negative values represent a performance improvement. Therefore, the Horner’s
Rule algorithm runs considerably faster than the nested loop algorithm.

60 JProbe
Demos and Tutorials

Coverage Analysis Demos

This chapter provides a summary of the Coverage demo applications that ship with
JProbe and atutorial for one of these applications.

The source code and compiled classes for the Coverage demos are located in the
<jprobe_home>/demos/coverage directory.

This chapter contains the following sections:

Summary of DEMOS fOr COVEIAJEvvuvvevriririrercrrieisisisesesise e e iesssses s esessssssss s sssssnsesenssenes 62
AAVENTUIE TULOTIAL 1.vvvviereieieececce ettt bbb st b et n s 63

62 JProbe
Demos and Tutorials

Summary of Demos for Coverage

The following table describes the purpose of the example applications.

Java SE Application

Purpose

More I nformation

Adventure.class

SwitchCaseTest.class

TryCatchFinallyTest.class

A text-based adventure
game in which you
navigate through a house.
The application ships
with two test case input
files. The test cases do
not provide 100%
coverage of the program
code.

This example
demonstrates conditional
coverage using asimple
switch/case statement.

This example
demonstrates how JProbe
tracks try-catch-finally
blocks.

See the notesin
Adventure.java.

Tutorial: “Adventure
Tutorial” on page 63

Seethe notesin
SwitchCaseTest.java.

Seethe notesin
TryCatchFinallyTest.java.

JProbe also ships with a Java EE demo application called JProbe Game Pack Demo for
Java EE. For more information, see “ JProbe Game Pack for JavaEE” on page 73.

Chapter 3: Coverage Analysis Demos 63
Adventure Tutorial

Adventure Tutorial

This basic tutorial shows you how to evaluate the effectiveness of two test cases for a
text-based adventure game. The test cases are supplied astext files, which are specified
in program arguments. The files for the tutorial are available in the <jprobe_home>/
demos/coverage/adventure directory.

Thistutorial does not create a baseline snapshot of the Adventure program because the
test cases hit methodsin al classes. For more information about the baseline coverage
snapshot, see the JProbe User Guide.

Note The values cited in this tutorial reflect the Adventure program running on Windows
XP with Sun JDK 1.6.0_10. You may see different values on your system.

The following table summarizes the types of information you need to know before
starting this tutorial.

Program: Adventure.class

Test Case: AdvTestl.txt, AdvTest2.txt

The tutorial leads you through the following steps:
e Step 1: Setting Your Global Options
» Step 2: Setting Up the Session for the First Test Case
* Step 3: Running the First Test Case
» Step 4: Setting Up and Running the Second Test Case
e Step 5: Merging the Test Case Results
e Step 6: Assessing Your Test Case Coverage

Step 1: Setting Your Global Options

Catch blocks are often hard to test. For this tutorial, we are going to remove the results
for catch blocks by setting a global option.

To set global options for the Coverage analysis tool:

1 Inthe JProbe Console, click Tools > Options ¥ on the toolbar.

64

JProbe
Demos and Tutorials

2 Click Data Display > Coverage.
3 Select the Filter out Catch Blocks check box.

General

CsVExport Show Bar Chart For Percentage Metrics

|) Data Display Filter out Catch Blocks
i @ Memory
Parformance Metric Calors

Lo

Source Files Runtime Hit: .
Missed Lines: .
Missed Conditions:
Mo Data for Line: .

Filtered Catch Block Calor: .

4 Click OK.

Step 2: Setting Up the Session for the First Test Case

In this step, you create a configuration for the Adventure program using the JProbe
Create/Edit Settings dialog box. The configuration includes the path to atext file that
contains the first test case.

To set up thefirst test case:

1 Click Tools> Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 Inthe Manage Configurations pane, click Java Application.
The JProbe Configuration Wizard appears.
Click Add.
In the Configuration Name text box, type Adventure TestCasel, then click Next.
In the Main Class field, select the Execute a class check box.

oo o1 B W

Click the browse button beside the Main Class field and navigate to the
Adventure.classfile in the <jprobe_home>/demos/coverage/Adventure directory.

7 Click OK.
The following information is displayed:

* Main Class. demos . coverage.adventure.Adventure

10

11

12

13

14

15
16

17

Chapter 3: Coverage Analysis Demos 65
Adventure Tutorial

e Working Directory: <jprobe_home>

Add the fully qualified path to the text file containing the first test case.

a Click the browse button beside the Application Argumentsfield.

b Inthe Application Arguments dialog, type the following in the upper field:

<jprobe_home>/demos/coverage/adventure/AdvTestl. txt

Note If there is a space in your JProbe home directory path, enclose the argument in
quotes.

¢ Click Parse Argument.
The argument appearsin the first line of the lower field.
d Click OK.
The Arguments field displays the program argument.
Click the browse button beside the Classpath field.
In the Classpath dialog box, click Add Working Directory, then click OK.
The working directory appearsin the Classpath field.
Click Next.
The Select a Java Virtual Machine page appears.

If you want to change the default VM, click the browse button beside the Java
Executable field, select another VM in the Java Virtua Machines diaog box,
and click OK.

Note Ideally, the JVM you select should be the version that was used to compile your
program.

Click Next.
The Specify Your Code page appears.

In the Category/Program Name text box type DemoCategory (which specifiesthe
name of the category in which you want to include your code), then click Next.

In the Select a JProbe Analysis page, ensure that the Cover age option is selected.
Click the Filterstab.

You should see the following default Include filter in the table:
demos.coverage.adventure.*.* ().

Click Next and Next again to pass the Specify the JProbe Options page.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

66

JProbe

Demos and Tutorials

18

19

20

Canfiguration Mame: : [Adventure_TestCase1]
Configuration Type: : [Java Application]

Main Class: : [demos.coverage.adventure Adventure]

Application Arguments: : [C/Program Files/JProbe/JProbe8.1/demos/coverage/adventure/AdvTest] .txt]
Working Directory: : [C:\Program Files\JProbe\JProbe 8.1\]

Classpath: © [C:\Program Files\JProbe\JProbe 8.11]

Jawa Executable: : [C:\Program Files\JProbe\JProbe 8.1\bin\jre'bin\java.exe]
Java Options: © []

Category Name: : [DemoCategory]

Analysis Type: : [coverage]

JPrabe Options:]

JPrabe Port #: . [52991]

Snapshot Basename: : []

Click Save and save the configuration file
(Adventure_TestCasel Cov_Settings.jpl) into your working directory.

In the Configuration Complete page, select the I ntegrate check box and click
Finish.
JProbe validates the configuration file and creates a startup script file (for

example, in Windows. Adventure TestCasel.bat, and in Unix/Linux:
Adventure TestCasel.sh).

In the Integrating Adventure TestCasel dialog box, use the browse button to
navigate to your working directory, and click Save to save the startup file.

The Integrating Adventure_TestCasel dialog box presents the status of the
operation.

Q] Integrating Adventure_TestCasel

Integration status:

Checking JPL file existence.. donel

Sawing current settings in JPL file... done!

Yalidating JPL file with jplauncher.

JProhe jplauncher message ©

JYM located at"CiProgram FilesWProbeWProbe 8. 1hinlrethinljava exe" is supported.
donel

“alidating working directary... done!

Generating startup scripttext . done!

Flease save JProbe startup scriptfile to continue.

Script file : C:\WJProbe'worl i nture_TestCasel.bat

& JPL file : C:\JProbeiwor i nture_TestCase1_Cov_Settings.jpl
are generated successfully.

To launch your application with JProbe, run this script from the command line.

Integration complete

Close Create/Edit Ssttings taol on successful integration.

[[] Run JPrabe startup script on successful integration.

Close

Chapter 3: Coverage Analysis Demos 67
Adventure Tutorial

21 Select the Close Create/Edit Settingstool on successful integration check box,
and click Close.

You are now ready to run a Coverage analysis session (test case #1).

Step 3: Running the First Test Case
To run thefirst test case:

1 Onthe JProbetoolbar, click Attach to a Running Session ¢3¢ .

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

Attach to Running Session

Host Name | IP Address: |localhost

Port #: {52991 ~

[o H Cancel][Help

2 Click OK.
The Connection Indicator dialog box indicates that JProbe islooking for your
session.
3 Start the Adventure program (test case #1) from the command line:
¢ InaWindows command window: >Adventure_TestCasel.bat
e |naUnix or Linux sh shell: >adventure_TestCasel.sh
e |InaUnix or Linux csh or ksh shell: >. /adventure_TestCasel.sh

The JProbe Execution Console opens and the program runs using the text file as
test case input for choices.

When the program is finished, the command window closes. JProbe takes a
coverage snapshot and displaysit in the Snapshot Navigator panel and in the
Snapshot Browser view.

68 JProbe
Demos and Tutorials

@ welcome * | B Coverage Session * | B Snapshot Browser *

Show Gnly Methods with Missed | Lines ¥ | == 0% +

Methad Method Missed | % Missed Lines | MissedLi.., ¥| Tatallines [|
demos. coverage, adventurs. Adventure. maintjava. ang.String [1) Mo 71.4 I 10 14
demes.coverage. adventure. Adventure. cleanupl) ves 100.0 I B 3
demos. coverage. adventurs.Room, showDirsctions() Yes 100.0 6 6
demos.coverage, adventure. Roomlist. <t =(java. lang. String) ves 1000 I H 3
demos.coverage, adventure, Room, checkSelection{java.lang, String) vos 100.0 I 5 5
demos.coverage, adventure, Room. setAssociatedNamestin 1 ves 1000 I 4 4
demos.coverage, adventurs, Room, setDirections(javalang String [11 vos 100.0 I 4 4
demos. coverage. adventure. Adventure. <init >{java.lang. String} Mo 222 M 2 9
demos.coverage, adventure. Adventure. ritiaizeRoomList() Na ol H 5
demos.coverage, adventurs. Adventure. plav) ves 100.0 I 2 H
demos.coverage, adventure. Adventure. printUsagel) ves 1000 - H 2
demos.coverage, adventurs, Room, <init=() ves 100.0 I 2 H
demos. coverage. adventure.Room setDescription(java.lang. String) Yes 100.0 I 2 z
demes.coverage. adventure. Room, sethiameint] ves 100.0 I H H
demos. coverage. adventurs.Room, sethumDirections(int) Yes 100.0 2 z
demos.coverage, adventure, Room, showDescrigtiont) ves 1000 - 2 2
demos.coverage, adventurs, Raom, <init ={demas. coverage. adventure. RoomList) Mo oo 0 1z
demos.coverage, adventure. Roomlist, <t =(java. o InputStrean) Na oo 0 s
demos.coverage, adventurs, Roomilist inkislizeDataijavs.io. InputStream) Mo oo 0 4
demos. coverage. adventure.RoomList readLine() Mo 0.0 0 1
demos.coverage, adventure. Roomlist. readWard() Na oo 0 7

Step 4: Setting Up and Running the Second Test Case

To run JProbe with a different test case, you need to change the program arguments for
your configuration. Because these are tests that may be modified and re-run, do this by
creating a second configuration based on the original, by copying and editing it.

To set up and run the second test case:
1 Click Tools> Create/Edit Settings.
The Create/Edit Setting dialog box appears.

2 Inthe Manage Configurations pane, under Java Application, click
Adventure TestCasel if it isnot already selected.

3 Click Copy.
The settings are copied from the original configuration.

4 Inthe Configuration Name box, type Adventure_TestCase? as the name for the
new configuration.

5 Click the Java Application tab to change the program argument.

10

11

12

Chapter 3: Coverage Analysis Demos 69
Adventure Tutorial

a Click the browse button beside the Application Argumentsfield.

b Inthe Application Arguments dialog box, select the existing argument in the
lower box and click Delete.

¢ Edit the argument in the upper box as follows:

<jprobe_home>/demos/coverage/adventure/AdvTest2. txt

Note If there is a space in your JProbe home directory path, enclose the argument in
quotes.

d Click Parse Argument.
The argument appearsin the first line of the lower field.
e Click OK.
The Application Arguments field displays the program argument.

Click Save then Save As, to save the configuration file
(Adventure_TestCase? Cov_Settings.jpl) into your working directory.

Click Integrate.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows. Adventure_TestCase2.bat, and in Unix/Linux:
Adventure_TestCase2.sh).

In the Integrating Adventure TestCase2 dialog box, use the browse button to
navigate to your working directory, and click Save to save the startup file.

The Integrating Adventure_TestCase2 dialog box presents the status of the
operation.

Select the Close Create/Edit Settings tool on successful integration check box,
and click Close.

You are now ready to run a Coverage analysis session (test case #2).

On the JPraobe toolbar, click Attach to a Running Session ';5' .

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

Click OK.

The Connection Indicator dialog box indicates that JProbe islooking for your
session.

Start the Adventure program (test case #2) from the command line:

¢ InaWindows command window: >Adventure_TestCase2.bat

70

JProbe

Demos and Tutorials

¢ InaUnix or Linux sh shell: >adventure_TestCase2.sh
e |InaUnix or Linux csh or ksh shell: >. /adventure_TestCase2.sh

The JProbe Execution Console opens and the program runs using the text file as
test case input for choices.

When the program is finished, the command window closes. JProbe takes a
coverage snapshot and displays it in the Snapshot Navigator panel.

13 Close the Snapshot Browser view.

Step 5: Merging the Test Case Results

In this step, you merge the snapshots taken during Step 3: Running the First Test Case
and Step 4: Setting Up and Running the Second Test Case, to get a complete picture of
the coverage provided by these two test cases.

You merge the snapshots using the jpcovmerge command line tool. Before you can use
thistool, you must save to the disk the two snapshots to be compared.

To merge the snapshots:

1

Save the snapshot taken during Step 3: Running the First Test Case to the disk.
a Right-click the snapshot and select Save Snapshot As.
b Inthe Save Asdialog box, save the snapshot as <working_directory>\first.jpc.

Repeat step ato step b to save the snapshot taken during Step 4: Setting Up and
Running the Second Test Case as <working_directory>\second.jpc.

Click Sart > Run and type the following, then click OK:

<jprobe_home>\bin\jpcovmerge <working_directory>\first.jpc
<working_directory>\second. jpc
<working_directory>\merged. jpc

On the JProbe Console, click File > L oad Snapshot.
In the Open dialog box, select <working_directory>\merged.jpc and click Open.

The merged snapshot is selected and its content is displayed in the Snapshot
Browser view.

Chapter 3: Coverage Analysis Demos 71
Adventure Tutorial

Step 6: Assessing Your Test Case Coverage

After merging your test cases, you are now ready to investigate your results. By default,
JProbe displays results in terms of misses. A miss means that the code was not called
during your test cases.

To investigate your results:

1

In the Snapshot Browser view, expand the class tree in the upper pane to show all
of theclassesin demos.coverage.adventure.

Click the % Missed M ethods column heading in the upper pane to sort the table
from highest-to-lowest percentage of missed methods.

Methods are missed in three classes. Adventure, Logic, and RoomList. We
will investigate the first two classes.

Mame: %o Missed Classes % Missed Methods ¥ % Missed Lings %o With Line Data
DemoCategory 59.3

£ #% demos.coverage. advanture 0.0 63.6 I 59.3 I 100.0

=l Room - 90.0 DN | 0.7 I 100.0

= Adventure - 57.1 5.3 [100.0

= RoomList - 20.0 26,1 Il 100.0

By default, the Adventure program is selected in the top pane, which means that
the lower pane contains all the methods in the program.

In the upper pane, select the Adventure class.
The methods for the Adventure class are displayed in the lower pane.

@ welcome * | [8i Snapshot Browser *

v i

Mame: ‘ % Missed Classes | % Missed Methods ¥ | % Missed Lines | % "With Line Data |
DemoCategory 0.0 63.6 N 59.3 I 100.0
= 8% demos. coverage adventure 0.0 63.6 NN 59,5 I 100.0

= Room ° 90,0 I | 707 100.0
= Adventure B 57.1 — -1 —
= RoomList - 20.0 Wl 26.1 Il 100.0

Shaw Gy Methods with Missed

Method Methaod Missed | % Wissed Lines | Missed Lines ¥ | Total Lines | ‘
demos.coverage. adventure. Adventure.mainijava.lang, String [1 Mo 71.4 I 10 14

age venture. Adventure, <init»() es 100.0 & &
demos.caverags. adventurs. Adventurs. ceanup() Yas 100.0 | & &
demos.coverage. adventure. Adventure, <inik>(java lang.String) Mo z22z:m 2 El
demos.coverage. adventure, Adventure.initializeRoomList{) Mo 25,0l z &
demos. coverage. adventure, Adventure. play() Yes 100.0 I z 2
demos.caverage. adventurs. Adventurs. print Isags() Yas 100.0 z z

72 JProbe
Demos and Tutorials

4 Right-click themain () method and click View Source to open the
<jprobe_home>\demos\coverage\adventure\Adventure.java source code.

The source code opens at a block of missed linesthat arein an i £ statement, so
you know that the test case missed a condition. You have identified an
opportunity to expand the test suite with a new test case. In this case, you would
pass two input files as program arguments.

5 Click the [=] button at the top of the coverage bar (to the right of the scroll bar) to
move to the next set of missed lines.

We can see that code is missed becauseinput is not coming from the console. You
can ignore these misses.

6 Continuein thisway until you have examined all the missed blocks of code, then
move on to the next missed class.

You have identified an areafor improvement. If you like, you can modify the test
suite and redo the tutorial to see the improvement in overall coverage.

A

JProbe Game Pack for JavakEE

This section describes how to deploy the JProbe Game Pack demo software and
presents how to use JProbe with JavaEE applications that require a third-party
application server. The tutorials describe how to find two different kinds of memory
leaks with the Memory analysis tool and how to investigate a performance bottleneck
with the Performance analysistool.

Note The Game Pack tutorials were created using JProbe 8.1, BEA WebLogic 10.0 application
server, and JDK 1.6.0_10 on Windows XP. You can use any of the supported application
servers listed in “System Requirements” on page 74, but your results may be different from
those seen in the tutorials.

This chapter contains the following sections:

Deploying the JProbe Game PaCk DEMO.........ccveuirerireieeeiirsisissreesi s sssssssessssssesssssssssssesenns 74
Loitering OBJECES TULOMAL. ... vttt 83
ObJeCt CYCING TULOMAI 1...vvvveereeieeeisesceeierees et e sss s sns e es s snssennes 88

Performance BOtIENECK TULOMALccocvcveiiriiicieri st 94

74 JProbe
Demos and Tutorials

Deploying the JProbe Game Pack Demo

This section describes how to deploy the JProbe Game Pack demo on JBoss-Tomcat and
WebL ogic application servers. For details, see:

e System Reguirements

e Setting Environment Variables

« Installing the Game Pack Demo

» Deploying the Game Pack Demo on Your Application Server
» Creating aUser Account for Game Pack

* Running Game Pack with the JProbe Application

¢ Game Pack Known Issues

System Requirements
The Game Pack demo requires the following environment:
+ JProbe8.1
» One of the following operating systems:
¢ Microsoft® Windows® 2003 or XP PRO SP2 or later
* Red Hat® AS 4.0 or 5.x
* Sun Solaris® SPARC 8.0, 9.0, or 10.0

* IBMAIX® 5L 530r6.1
» One of the following application servers:

¢ JBoss™ 3.2.1 with Apache Tomcat 5.0.24

e JBoss™ 4.0.1 SP1 with Apache Tomcat 5.0.30
e JBoss™ 4.2.2.GA

« BEA® WebLogic® Server 8.1 SP2

e BEA® WebLogic® Server 9.1 or 9.2

« BEA® WebLogic® Server 10.0

Java EE SDK 1.6.0 or later

One of the following browsers:

* FireFox

Chapter 4: JProbe Game Pack for JavaEE 75
Deploying the JProbe Game Pack Demo

¢ Microsoft |IE
e Apple Safari
o JakartaAnt 1.6.3 or later

For alist of JProbe supported platforms and installation instructions, see the JProbe
Installation Guide. The guide is available as a PDF file on the CD and in the JProbe
installation directory <jprobe_install>\doc.

You can download the supported versions of JBoss with Apache Tomcat from
SourceForge.net at: http://sourceforge.net/project/showfiles.php?group_id=22866.

You can download Ant 1.6.3 or later from the Apache Jakarta Project at:
http://jakarta.apache.org/ant/. Extract the filesto a directory.

Setting Environment Variables
Before you begin, set up the following environment variables:
* ANT HOME=<ant_install_dir>
* JPROBE_HOME=<jprobe_install_dir>
* If you are using JBoss, JBOSS_HOME=<jboss_install dir>
* |If you are using WebL ogic Server, wL._HOME=<wlserver## install dir>

Add the following pathsto your paTH environment variable (use the syntax appropriate
for your operating system):

* 3ANT_ HOMES%\bin
* 3JPROBE_HOMES
e If you are using JBOsS, $JBOSS_HOME%

e If you are using WebL ogic Server, $WI,_HOMES

Installing the Game Pack Demo
For detailed installation instructions, see the JProbe Installation Guide.

If you choseto install examples during the JProbe installation, the Game Pack demo
files are installed automatically in the following directory structure:

JPROBE_HOME

demos\

http://sourceforge.net/project/showfiles.php?group_id=22866
http://ant.apache.org/

76

JProbe

Demos and Tutorials

gamepack\
build\ (build and classfiles)
dist\ (deploy files)
lib\ (JARfiles)
src\ (source code)

support\ (support files)

Deploying the Game Pack Demo on Your Application Server

This section presents how to deploy the Game Pack demo on the following application
servers:

Deploying the Game Pack Demo on JBoss

Deploying the Game Pack Demo on BEA WebL ogic Server 8.1 SP2
Deploying the Game Pack on BEA WebL ogic Server 9.x

Deploying the Game Pack on BEA WebL ogic Server 10.0

Deploying the Game Pack Demo on JBoss

Use the build properties file and build script provided. The following procedure
assumes that you have successfully installed and configured: Ant 1.6.3 or later, a
supported version of JBoss with Apache Tomcat, and JProbe 8.1. In addition, you need
to have defined an environment variable called sBoss_HoME which points to your
JBoss home directory.

To deploy the Game Pack demo on JBoss:

1

In the <JPROBE_HOME>\demos\gamepack\build directory, edit the
build.propertiesfile.

a Delete the pound sign (#) from the J2EEServer=JBossWithTomcat
statement.

b Addapound sign (#) in front of the J2EEServer=weblogic9.1 statement.
¢ Savethefile.
Note A JBOSS_HOME environment variable is required for the build to work.

At acommand prompt, navigate to the <JPROBE_HOME>\demos\gamepack
directory and enter the following command:

Chapter 4: JProbe Game Pack for JavaEE 77
Deploying the JProbe Game Pack Demo

ant deploy -f build\build.xml
A successful build includes the following types of messages:
deploy.tofolder:

[copy] Copying 1 file to C:\Program
Files\ApplicationServers\JBoss\jboss-
4.2.2.GA\server\default\deploy

[echo] INFO: 'C:\Quest_Software\JProbe_8.1\demos\gamepack/
dist/gamepack.ear

' has been deployed to 'C:\Program
Files\ApplicationServers\JBoss\jboss-4.2.2.GA

/server/default/deploy'.

BUILD SUCCESSFUL

Start JBoss using the <JBOSS HOME>\bin\run.bat file.

To view the Game Pack, open a browser and enter:
http://localhost:<port>/gamepack/index

where <port> is Tomcat's http port number. The default value is 8080.

Note

The Ant build command given in this procedure packages and deploys the Game Pack files.
To rebuild the Game Pack from source and package and deploy it, use:
ant -f build\build.xml.

Deploying the Game Pack Demo on BEA WebLogic Server 8.1 SP2

To deploy the JProbe Game Pack on WebL ogic Server 8.1, you use the WebL ogic
Configuration Wizard. The following procedure assumes that you have successfully
installed and configured BEA WebL ogic Server 8.1 SP2 and JProbe 8.1.

To deploy the Game Pack demo on BEA WebLogic Server 8.1 SP2:

1

Start the WebL ogic Configuration Wizard.

e OnWindows, click Sart > Programs > BEA Weblogic Platform 8.1 >
Configuration Wizard.

¢ OnUNIX, execute java -jar config.jar inthe WL_HOME/weblogic81/
common/lib directory.

Select the Create a new WebL ogic configuration check box and click Next.

78

JProbe

Demos and Tutorials

10

11
12
13

14

In the Locate Additional Templates field, click Browse and navigate to
<JPROBE_HOME>/demos/gamepack/support/depl oyment/\\ebl ogic8.1/
templates/domains directory.

The WebL ogic Configuration Templates tree refreshes to display a Quest
template folder.

Expand the entire Quest template folder.
Select Gamepack Domain and click Next.
For a default configuration, select the Express check box, then click Next.

Note Alternatively, for customizing configuration elements, such as server port numbers,
select the Custom check box. This adds several steps to the configuration process.

Make changes to the User name and User password and click Next.
Specify the server start mode by selecting the Development M ode check box.
Select aJDK from the available list (default is recommended), then click Next.

Specify the directory in which the WebL ogic configuration will be created. The
default isin the user_projects directory of your WL_HOME. The default
configuration name is gamepack.

Click Createto create the domain in the selected directory.
When the configuration is created, click Done.

Start the Game Pack using your new configuration by executing the
startWebLogic.cmd command from the WL_HOME/user_projects/domains/
gamepack directory (or other directory if you made changes in the Configuration
Wizard).

To view the Game Pack, open a browser and type:
http://localhost:7001/gamepack/index

You can now stop WebL ogic (by using the stopWebLogic . cmd command from
the WL_HOME/user_projects/domains/gamepack directory) and prepare to run
the Game Pack in JProbe.

Deploying the Game Pack on BEA WebLogic Server 9.x

To deploy the JProbe Game Pack on BEA WebL ogic Server 9.x, you use the WebL ogic
Configuration Wizard. The following procedure assumes that you have successfully
installed and configured BEA WebL ogic Server 9.x and JProbe 8.1.

Chapter 4: JProbe Game Pack for JavaEE 79
Deploying the JProbe Game Pack Demo

To deploy the Game Pack demo on BEA WebLogic Server 9.x:

1

10

11

12
13
14

15

Start the WebL ogic Configuration Wizard.

¢ OnWindows, click Sart > Programs > BEA Products > Tools >
Configuration Wizard.

¢ OnUNIX, execute java -jar config.jar inthe WL_HOME/weblogicox/
common/lib directory.

Select the Create a new WebL ogic domain check box and click Next.
Select the Base thisdomain on an existing template check box.

Click Browse and navigate to <JPROBE_HOME>/demos/gamepack/support/
deployment/\Webl ogic9.1/templ ates/domains directory, select gamepack.jar, and
click OK.

Click Next.

Configure the User name and User password and click Next (defaultis
recommended).

Specify the server start mode by selecting the Development M ode check box.
Select aJDK from the available list (default is recommended), then click Next.
To use the default configuration (recommended), select the No check box.

Note Alternatively, for customizing different configuration options, such as listen ports,
select the Yes check box. This adds several steps to the configuration process.

Specify the directory where the WebL ogic domain will be created. The default is
in the user-projects/domain directory of your WL_HOME. The default domain
name is gamepack. You can leave the default directory or change it.

Specify the directory where WebL ogic Applicationswill be stored. The default is
the user_projects/applications directory of your WL_HOME. You can leave the
default directory or changeit.

Click Createto create the domain in the selected directory.
When the configuration is created, click Done.

Start the Game Pack using your new configuration by executing the
startWebLogic.cmd command from the WL_HOME/user_projects/domaing/
gamepack directory (or other directory if you made changes in the Configuration
Wizard).

To view the Game Pack, open a browser and type:
http://localhost:7001/gamepack/index

80

JProbe

Demos and Tutorials

You can now stop WebL ogic, by using the stopwWebLogic.cmd command from
the WL_HOME/user_projects/domains/gamepack/bin directory (or other
directory if you made changesin the Configuration Wizard), and prepare to run
the Game Pack in JPraobe.

Deploying the Game Pack on BEA WebLogic Server 10.0

To deploy the JProbe Game Pack on BEA WebL ogic Server 10.0, you use the
WebL ogic Configuration Wizard. The following procedure assumes that you have
successfully installed and configured BEA WebL ogic Server 10.0 and JProbe 8.1.

To deploy the Game Pack demo on BEA WebLogic Server 10.0:

1

10

11

Start the WebL ogic Configuration Wizard.

¢ OnWindows, click Sart > Programs > BEA Products > Tools >
Configuration Wizard.

¢ OnUNIX, execute java -jar configwiz.jar inthe WL_HOME/
wiserver_10.0/common/lib directory.

Select the Create a new WebL ogic domain check box and click Next.
Select the Base this domain on an existing template check box.

Click Browse and navigate to <JPROBE_HOME>/demos/gamepack/support/
deployment/Webl ogic10.3/templates/domains directory, select gamepack.jar, and
click OK.

Click Next.

Configure the User name and User password and click Next (default is
recommended).

Specify the server start mode by selecting the Development M ode check box.
Select aJDK from the available list (default is recommended), then click Next.
To use the default configuration (recommended), select the No check box.

Note Alternatively, for customizing different configuration options, such as listen ports,
select the Yes check box. This adds several steps to the configuration process.

Specify the directory where the WebL ogic domain will be created. The default is

in the user-projects/domain directory of your WL_HOME. The default domain
name is gamepack. You can leave the default directory or change it.

Specify the directory where WebL ogic Applications will be stored. The default is
the user_projects/applications directory of your WL_HOME. You can leave the
default directory or changeit.

Chapter 4: JProbe Game Pack for JavaEE 81
Deploying the JProbe Game Pack Demo

12 Click Createto create the domain in the selected directory.

13 When the configuration is created, click Done.

14 Start the Game Pack using your new configuration by executing the

startWebLogic.cmd command from the WL_HOME/user_projects/domains/
gamepack directory (or other directory if you made changes in the Configuration
Wizard).

15 To view the Game Pack, open a browser and type:

http://localhost:7001/gamepack/index

You can how stop WebL ogic, by using the stopwWebLogic.cmd command from
the WL_HOME/user_projects/domains/gamepack/bin directory (or other
directory if you made changesin the Configuration Wizard), and prepare to run
the Game Pack in JProbe.

Creating a User Account for Game Pack

Thefirst timethat you start the Game Pack, you need to create a user account for
yourself.

To create a user account:

g AW N

In the Game Pack demo home page, click Sign up as new user.
Type a user name and password in the User 1D and Password fields.
Re-type the password in the Re-enter Password field.

Type the name you want to use for the gamesin the Namefield.
Click Sign-up.

The Game Pack demo home page re-appears. The name you typed in the Name
field appearsin the top left corner.

82 JProbe
Demos and Tutorials

Hi New User

Your |atest score is 10 points ﬁ

Select a game to play:

Minesweeper Play
Match Game Play

Config Tutorials Logout

You can now proceed to play Minesweeper or Match Game.

Running Game Pack with the JProbe Application

Follow atutorial that matches the JProbe application you are using. You can open the
tutorials from the Game Pack demo by clicking the Tutorialslink.

To run Game Pack with JProbe, you must complete the following generic tasks:
Integrate the JProbe application with your application server.

Set up your JProbe session.

Run the JProbe session to start the application server.

Connect the JProbe Console to the session.

g A W N

When the application server is started, open a browser and go to:
For JBoss:. http://localhost: 8080/gamepack/index

For WebL ogic Server: http://localhost: 7001/gamepack/index

6 Exercisethe use case.

Game Pack Known Issues
The following known issues have been identified:

« The Game Pack may not work with the evaluation version of WebL ogic Server.
Use afully licensed version of WebL ogic or use JBoss.

Chapter 4: JProbe Game Pack for JavaEE 83
Loitering Objects Tutorial

* Minesweeper handles one selection at atime and does not buffer multipletile
clicks.

» Right-clicking Minesweeper and selecting Open in New Window may cause
unexpected results.

» Opening multiple browser sessions for the same user may cause point calculation
issues.

Loitering Objects Tutorial

Minesweeper and the Match Game both offer a L oitering Objects mode. The Loitering
Objects mode demonstrates how an obsol ete container reference can keep session beans
in the Java heap long after their usefulnessis gone. In thistutorial, you see how you can
reclaim memory by removing loitering GameHandler objects.

Before beginning this tutorial, you need to deploy the Game Pack to the application
server of your choice. For more information, see “ Deploying the JProbe Game Pack
Demo” on page 74.

Note The values cited in this tutorial reflect the Game Pack running on JBoss 4.2.2.GA, on
Windows XP.

The following table summarizes the types of information you need to know before
starting thistutorial.

Program: Game Pack demo: Match Game
Use Case: Play afew games without quitting.

Architecture: When the Start button is selected, create a GameHandler object to
run the game.

Hypothesis: The GameHandler object is removed from the heap when the game
ends.

The tutorial walks you through the following steps:
e Step 1: Setting Up the Session
e Step 2: Starting the Session and the Game Pack
e Step 3: Running the Session

84

JProbe

Demos and Tutorials

Step 4: Identifying Loitering Objects
Step 5: Investigating Loitering Objects
Step 6: Running the Session with Improved Code

Step 1: Setting Up the Session

You use the JProbe configuration tool to create the session settings for this example. In
the setup procedure, only the settings that you need to change or verify are mentioned. If
asetting is not mentioned, leave it blank or in its default state. The following procedure
assumes that you are running JProbe locally on your computer.

To set up the session:

1

9

On the JPrabe Console, click Tools > Create/Edit Settings.
The Create/Edit Setting dialog box appears.
In the Manage Configurations pane, select JBoss and click Add.

In the Define a New Configuration screen, type a name in the Configuration
Name field, such as L oiteringObjects.

Click the appropriate version under JBoss and click Next.

Type the path to your server startup script in the text field or click [--] and
navigate to it, then click Next.

In the Specify Your Code screen, in the Elements area, type the path to the
deployed gamepack.ear file (for example,

<jprobe_home>\demos\gamepack\dist\gamepack.ear) or click [.-] and navigate
toit.

Specify a Category/Program Name, then click Next.

In the Select a JProbe Analysis screen, under Analysis Type, select Memory, then
click Next.

Click Next again to pass the Specify the JProbe Options screen.

10 Inthe Save the Configuration screen, review the settings, then click Save and

browse to alocation to save the settings file that you just created.

11 Inthe Configuration Complete screen, select I ntegrate, then click Finish.

Chapter 4: JProbe Game Pack for JavaEE 85
Loitering Objects Tutorial

12 Inthe Integrating dialog box, click [--] to navigate to the location where you want
to save the startup script (for example, in Windows: run_WthJProbe.bat, and in
Unix/Linux: run_WthJProbe.sh), then click Save.

13 When you seethe Integration complete message, select the Close Create/
Edit Settingstool on successful integration check box and click Close.

Step 2: Starting the Session and the Game Pack

In this step, you start JBoss using the startup script you created in the Step 1: Setting Up
the Session and connect to it from JProbe. Then you open a browser to run the Game
Pack demo.

To start the JProbe session and the Game Pack:
1 Start JBoss using the startup script:
In Windows:. >C: \<jboss_home>\bin\run_wWithJProbe.bat
In Unix/Linux (sh shell): >run_withJProbe.sh
In Unix/Linux (csh or ksh shells): >. /run_withJProbe.sh

2 Inthe JProbe Console, click Attach to Session &5¢.
3 Click OK inthe Attach to Running Session dialog box.

The Runtime Summary view opens, with the Memory Pools tab on the
foreground.

4 Open abrowser and go to http://local host: 8080/gamepack/index.
The Game Pack Demo login page appears.
5 Enter your user ID and password and click L ogin.

Note The first time you do this, you need to create a user name and password for yourself.
For more information, see “Creating a User Account for Game Pack” on page 81.

Step 3: Running the Session

In this step, you work through a use case by playing three consecutive games. It does
not matter for the analysis whether you win or lose the games. However, it isimportant
that you start a session before you begin to play, or JProbe will not perform a garbage
collection. After you have played three games, you end the session, and JProbe takes a
snapshot.

86 JProbe

Demos and Tutorials

To run a game with the Loitering Objects fault:

1

10

11

12

In the Game Pack demo, click Play beside either Minesweeper or Match Game.
Note Both games have the same loitering object problem.

Select the L oitering Objects option.

Note Clicking the link displays the option’s definition.

In the JProbe Runtime Summary view, click Set Recording L evel
toolbar.

In the Set Recording Level dialog box, select Record Allocations and Stack
Traces For All Instances, then click OK.

In the Game Pack demo, click Sart and play the game.

When the game ends, play the game twice more (without quitting) for atotal of
three complete games.

Click Quit.

In the Runtime Summary view, click Set Recording Level £ on the toolbar.

In the Set Recording Level dialog box, select Data Recor ding Off, then click
OK.

JProbe takes a snapshot and displaysit in the Snapshot Navigator panel.

In the Snapshot Navigator, right-click the snapshot, select Save Snapshot As, and
navigate to where you want to save the snapshot.

Name the snapshot loitering_objects and click Save.
The new name is displayed in the Snapshot Navigator.

Click Detach from Running Session &,
Note You can also close your application server and the Game Pack demo browser.

The session snapshot appears in the snapshot navigator and (after afew seconds)
the Instances view appears.

Step 4: Identifying Loitering Objects

In this step, you look for loitering objects in the heap. The Heap Count column is the
first place to look. In general, you should expect objects created during a session to be
removed at the end of it. In fact, the GameHandler oObjects are not removed, and three
instances of this object continue to loiter in the heap.

Chapter 4: JProbe Game Pack for JavaEE 87
Loitering Objects Tutorial

To identify loitering objects:

1

If the loitering_objects snapshot is not open, right-click it in the snapshot
navigator and select Open I nstances View.

The Instances view appears.

In the Filter Classesfield, type * . GameHandler and press Enter to display only
the GameHandler class.

The Heap Count for GameHandler is 3, not 0 (zero) as hypothesi zed.

Step 5: Investigating Loitering Objects

In this step, you find the live object that continuesto hold a reference to the loitering
instances of GameHandler in the heap. You start in the Instances view, then drill down
to Instance Detail and the Memory Leak views, and discover that the loitering
GameHandler Objects are being held by an obsolete container reference. To look for a
solution, you open the Source view and review the code for the allocating method.

To investigate loitering objects:

1

If the snapshot is not open, right-click it in the snapshot navigator and select the
Open Instances View.

The Instances view appears.

Filter the method list by typing * . GameHandler in the Filter Classes field and
pressing Enter.

Select the GameHandler classand click I nstance Detail =

The Instance Detail view opens. The three loitering GameHandler objects are
displayed in the instances list. You can see the stack trace of method callsin the
Allocated At column.

Click the Trace tab and scroll down the method list to the methods belonging to
the subpackages of the demos . gamepack . web . game package and find amethod
caled EJBControllerImpl.startGame ().

The startGame () method calls the getGameHandlerRemote () method,
which in turn sets off a series of callsto JBoss methods that eventually causes the
bean to be created. Therefore, the getGameHandlerRemote () method isthe
most likely candidate for investigation, becauseit is the last Game Pack method
before the series of application server calls.

88 JProbe
Demos and Tutorials

5 Right-click the
demos .gamepack.web.game.EJBControllerImpl.getGameHandlerRemo

te () method and select Show Allocated At Source.

6 If you are prompted for the source code, navigate to <jprobe_home>/demos/
gamepack/src/demos/gamepack/web/game, select EJBControllerImpl.java, and
click Open.

The Source view opens, highlighting line 197 of the code. Thisline representsthe
method call from the getGameHandlerRemote () method to the application
server's create method, which creates the beans.

Now that you found the method that creates the loitering GameHandler objects,
you are close to finding out where the obj ects should be removed. Scrolling down
toline 124, you find that the resetGameHandlerRemote () method isthe
problem method. When the Loitering Objects mode is selected, the
_gameHandlerRemote.remove () method isnot called, so the referencesto the
GameHandler objects are never removed.

Tip Itis good programming practice to pair your calls to create and remove objects close together.

Step 6: Running the Session with Improved Code

You can re-run Minesweeper or Match Game in Normal mode with the corrected code.
Repeat Step 1: Setting Up the Session through Step 3: Running the Session, selecting
Normal modeinstead of L oitering Objects and not re-naming the snapshot. You will
seein the Instances view that the Heap Count for GameHandler is now 0, as predicted
by the hypothesis.

This example demonstrates how to use JProbe to identify and remove loitering objects
from your code.

Object Cycling Tutorial

The Match Game offers an Object Cycling mode. The Object Cycling mode
demonstrates how over-allocating short-lived objects can cause the garbage collector to
run more frequently than necessary. Garbage collection takes time and resources. The
Normal mode shows that it is often more efficient to reuse strings.

Chapter 4: JProbe Game Pack for JavaEE
Object Cycling Tutorial

Before beginning this tutorial, you need to deploy the Game Pack to the application
server of your choice. For more information, see “ Deploying the JProbe Game Pack
Demo” on page 74.

89

Note The values cited in this tutorial reflect the Game Pack running on JBoss 4.2.2.GA, on
Windows XP.

The following table summarizes the types of information you need to know before
starting thistutorial.

Program: Game Pack Demo: Match Game
Use Case: Play three games without quitting.

Architecture: Object Cycling: Use string concatenation.
Normal: Append to an existing string buffer object.

Hypothesis: ~ The program does not create unnecessary temporary string objects.

The tutorial walks you through the following steps:
» Step 1: Setting Up the Session
* Step 2: Starting the Session and the Game Pack
* Step 3: Running the Session
* Step 4: Identifying Object Cycling
* Step 5: Investigating Object Cycling
* Step 6: Running the Session with Improved Code

Step 1: Setting Up the Session

You use the JProbe configuration tool to create the session settings for this example. In

the setup procedure, only the settings that you need to change or verify are mentioned.

If

asetting is not mentioned, leaveit blank or in its default state. The following procedure

assumes that you are running JProbe locally on your computer.
To set up the session:
1 On the JProbe Console, click Tools > Create/Edit Settings.
The Create/Edit Setting dialog box appears.

90

JProbe

Demos and Tutorials

10

11

12

13

In the Manage Configurations pane, select JBoss and click Add.

In the Define a New Configuration screen, type a name in the Configuration
Name field, such as ObjectCycling.

Click the appropriate version under JBoss and click Next.
Type the path to your server startup script in the text field or click [--] and
navigate to it, then click Next.

In the Specify Your Code screen, in the Elements area, type the path to the
deployed gamepack.ear file (for example,

<jprobe_home>\demos\gamepack\dist\gamepack.ear) or click [--] and navigate
toit.

Specify a Category/Program Name, then click Next.

In the Select a JProbe Analysis screen, under Analysis Type, select Memory, then
click Next.

Click Next again to pass the Specify the JProbe Options screen.

In the Save the Configuration screen, review the settings, then click Save and
browse to a location to save the settings file that you just created.

In the Configuration Complete screen, select I ntegrate, then click Finish.

In the Integrating dialog box, click [-] to navigate to the location where you want
to save the startup script (for example, in Windows: run_WthJProbe.bat, and in
Unix/Linux: run_WthJProbe.sh), then click Save.

When you seethe ITntegration complete message, select the Close Create/
Edit Settingstool on successful integration check box and click Close.

Step 2: Starting the Session and the Game Pack

In this step, you start JBoss using the startup script you created in Step 1: Setting Up the
Session and connect to it from JProbe. Then you open a browser to run the Game Pack

demo.

To start the JProbe session and the Game Pack:

1

Start JBoss using the startup script:
In Windows: >C:\<jboss_home>\bin\run_WithJProbe.bat

In Unix/Linux (sh shell): >run_withJProbe.sh

Chapter 4: JProbe Game Pack for JavaEE 91
Object Cycling Tutorial

In Unix/Linux (csh or ksh shells): >. /run_withJProbe.sh

In the JProbe Console, click Attach to Session ¢5¢.
Click OK in the Attach to Running Session dialog box.

The Runtime Summary view opens, with the Memory Pools tab on the
foreground.

Open a browser and go to http://local host: 8080/gamepack/index.
The Game Pack Demo login page appears.
Enter your user 1D and password and click L ogin.

Note The first time you do this, you need to create a user name and password for yourself.
For more information, see “Creating a User Account for Game Pack” on page 81.

Step 3: Running the Session

In this step, you turn on garbage monitoring so that you can see how many objects are
garbage collected during your use case. You work through a use case by playing three
consecutive games. It does not matter for the analysis whether you win or lose the
games. However, it isimportant that you start a use case before you begin to play, or
JProbe will not perform a garbage collection. After you have played three games, you
end the use case, and JProbe takes a snapshot.

To run a game with the Object Cycling fault:

1
2

In the Game Pack demo, select Play beside Match Game.
Select the Object Cycling option.
Note Clicking the link displays the option’s definition.

toolbar.

In the Set Recording Level dialog box, select Record Allocations, Stack Traces,
and Garbage Data For All Instances and click OK.

In the Game Pack demo, click Start and play the game.

When the game ends, play the game twice more (without quitting) for atotal of
three complete games.

Click Quit.

In the Runtime Summary view, click Set Recording L evel on the toolbar.

92 JProbe
Demos and Tutorials

9 Inthe Set Recording Level dialog box, select Data Recor ding Off, then click
OK.

JPrabe takes a snapshot and displaysit in the Snapshot Navigator panel.

10 In the Snapshot Navigator, right-click this snapshot, select Save Snapshot As,
and navigate to where you want to save the snapshot.

11 Name the snapshot object_cycling and click Save.
The new nameis displayed in the Snapshot Navigator.

12 Click Detach from Running Session & .

Note You can also close your application server and the Game Pack demo browser.

The Instances view appears after afew seconds,.

Step 4: Identifying Object Cycling
In this step, you look for classes and methods that allocate short-lived objects.

The Garbage Collections chart in the GC Datatab displays steep spikes, which means
that some set of objects is garbage collected soon after being created. In the Instances
view, look for classes with high Dead Count values and no or very few instances still
alive. In this example, you can see that many instances of stringBuffer were
allocated and garbage collected. None of the instances are still alive. When you review
the results, you see that most of the stringBuf fer objects were alocated by
*_StringConcatenation methodsin the MatchGameRenderer class.

To identify short-lived objects:

1 If theobject_cycling snapshot isnot open, right-click it in the Snapshot Navigator
and select Open Instances View.

The Instances view appears.

2 Select Dead Count from the Investigate by list, and sort the table by Dead
Count.

You can see that many string and stringBuf fer instances areimmediately
garbage collected (that is, high Dead Count values and low Recorded Count
values).

3 Drill into the Merged Allocation Points and Call Traces views, by right-clicking
the stringBuf fer instance and selecting the Open Merged Allocation Points
View and Open Call Traces View, respectively.

Chapter 4: JProbe Game Pack for JavaEE 93
Object Cycling Tutorial

You can see that most of the stringBuf fer objects were allocated by
renderGameMap_StringConcatenation,
renderGamePlay_StringConcatenation, and
renderSnapshot_StringConcatenation methodsin the
MatchGameRenderer Class, demos . gamepack .matchgame package.

Step 5: Investigating Object Cycling

In Java, the VM converts string concatenations into stringBuf fer objects, which
means that each concatenation creates a new object with avery short life span. Thisisa
less efficient way to handle strings.

Take alook at the source code to see exactly how the application works. The
_StringConcatenation methods arein the MatchGameRenderer. java source
code. You can use any editor to examine the allocating methods, but it makesit easier to
find the method if your editor has a search feature. Remember that in this case the code
contains the fixed code as well.

To investigate the garbage collected objects:

1 Navigate to <jprobe_home>/demos/gamepack/src/demos/gamepack/matchgame
and open the MatchGameRenderer.java file in a source code editor.

2 Search for thetop method: renderGamePlay_StringConcatenation.

3 Observe that the method contains many string concatenations. If you scroll down
to find renderSnapshot_StringConcatenation and then
renderGameMap_StringConcatenation, you can seethat these methods also
use string concatenation.

Step 6: Running the Session with Improved Code

The file MatchGameRenderer.java also contains methods that offer a better way to
handl e the strings. While you have the source code open, you can scroll to find these
improved methods:

* renderGamePlay StringBufferAppend
« renderSnapshot_StringBufferAppend

* renderGameMap_StringBufferAppend

94

JProbe
Demos and Tutorials

If you want, you can re-run this tutorial using Normal mode, which uses the improved
methods. When you check the Instances view, you should see that the number of short-
lived stringBuf fer objectsisreduced significantly.

This example demonstrates how to use JProbe to identify and remove object cycling
problemsin your code.

Performance Bottleneck Tutorial

The Minesweeper game can be played in the Method Time mode. This mode
demonstrates a performance bottleneck caused by an inappropriate algorithm that is
used for rendering the Minesweeper game board as one large image. For comparison,
you can play the game in the Norma mode, which creates the game board as a table
containing HTML linksto images.

Before beginning this tutorial, you need to deploy the Game Pack to the application
server of your choice. For more information, see “Deploying the JProbe Game Pack
Demo” on page 74.

Note The values cited in this tutorial reflect the Game Pack running on JBoss 4.2.2.GA, on
Windows XP.

The following table summarizes the types of information you need to know before
starting thistutorial.

Program: Game Pack Demo, Minesweeper Game
Entry point of interest: GameController.doGet

Use Case: Run minesweeper and select onetile.

Architecture: Method Time: The game board is constructed with images on the
server-side, encoded as a single image, and sent to the browser. You
may notice the image jumps when atileis selected.

Normal: The game board is created as a table of linksto images.

Hypothesis: Encoding is slow. Creating the game board with links to images will
be faster and smoother, especialy if the images are cached by the
browser.

The tutorial walks you through the following steps:

Chapter 4: JProbe Game Pack for JavaEE 95
Performance Bottleneck Tutorial

» Step 1: Setting Up the Session

* Step 20 Starting the Session and the Game Pack

* Step 3: Running the Session

« Step 4: ldentifying the Performance Bottleneck

* Step 5: Running the Session with Improved Code
e Step 6: Measuring the Performance Improvement

Step 1: Setting Up the Session

You use the JProbe configuration wizard to create the session settings for this example.
In the setup procedure, only the settings that you need to change or verify are
mentioned. If asetting is not mentioned, leave it blank or in its default state. The
following procedure assumes that you are running JProbe locally on your computer.

To set up the session:
1 Onthe JProbe Console, click Tools > Create/Edit Settings.
The Create/Edit Setting dialog box appears.
2 Inthe Manage Configurations pane, select JBoss and click Add.

3 Inthe Define a New Configuration screen, type a name in the Configuration
Name field, such as PerformanceBottleneck.

4 Click the appropriate version under JBoss and click Next.

5 Type the path to your server startup script in the text field or click [-] and
navigate to it, then click Next.

6 Inthe Specify Your Code screen:
a Inthe Elements area, type the path to the deployed gamepack.ear file (for

example, <jprobe_home>\demos\gamepack\dist\gamepack.ear) or click [--]
and navigatetoit.

b Click CreateFilters.
Thetable is populated with the filters available for your application.
¢ Select the My Application Filters check box.

All application filters are now selected and Action set to include. JProbe can
use these application filters as default data collection filters when performing a
Performance analysis.

96 JProbe
Demos and Tutorials

d Specify a Category/Program Name, then click Next.
7 Inthe Select a JProbe Analysis screen:
a Under Analysis Type, select Performance.
b Inthe General tab, select the Detect Deadlocks check box.

¢ IntheFilterstab, ensurethat al collection filters are selected and set Action to
line for each of them.

d Click Next.
8 Click Next again to pass the Specify the JProbe Options screen.

9 Inthe Save the Configuration screen, review the settings, then click Save and
browse to alocation to save the settings file that you just created.

10 Inthe Configuration Complete screen, select I ntegrate, then click Finish.
11 Inthe Integrating dialog box, click [-] to navigate to the location where you want

to save the startup script (for example, in Windows: run_WthJProbe.bat, and in
Unix/Linux: run_WthJProbe.sh), then click Save.

12 When you seethe Integration complete message, select the Close Create/
Edit Settingstool on successful integration check box and click Close.

Step 2: Starting the Session and the Game Pack

In this step, you start JBoss using the startup script you created in the Step 1: Setting Up
the Session and connect to it from JProbe. Then you open abrowser to run the Game
Pack demo.

Note The first time you do this, you need to create a user name and password for yourself.

To start the JProbe session and the Game Pack:
1 Start JBoss using the startup script:
In Windows; >C:\<jboss_home>\bin\run_WithJProbe.bat
In Unix/Linux (sh shell): >run_withJProbe.sh

In Unix/Linux (csh or ksh shells): >. /run_withJProbe.sh

2 Inthe JProbe Console, click Attach to Session ':j'.
3 Click OK in the Attach to Running Session dialog box.

Chapter 4: JProbe Game Pack for JavaEE 97
Performance Bottleneck Tutorial

The Runtime Summary view opens, with the Memory Pools tab on the
foreground.

Open a browser and go to http://local host: 8080/gamepack/index.
The Game Pack Demo login page appears.
Enter your user ID and password and click L ogin.

Note The first time you do this, you need to create a user name and password for yourself.
For more information, see “Creating a User Account for Game Pack” on page 81.

Step 3: Running the Session

In this step, you exercise the use case by selecting onetile. It does not matter for the
analysis whether the tile reveals a number or amine. In Method Time mode, the entire
game board is redrawn on the server-side, encoded, and sent to the browser. You should
find that the game responds slowly.

To run a game with a performance bottleneck:

1
2

10

In the Game Pack, click Play beside Minesweeper.

Select the Method Time option.
Note Clicking the link displays the option’s definition.

In the JProbe Runtime Summary view, click Set Recording L evel
toolbar.

In the Set Recording Level dialog box, select Full Encapsulation and click OK.
In the Game Pack, click Start and click any onetile.
Click Quit.

In the Runtime Summary view, click Set Recording L evel on the toolbar.

In the Set Recording Level dialog box, select Data Recor ding Off, then click
OK.

JProbe takes a snapshot and displaysit in the Snapshot Navigator panel.

In the Snapshot Navigator, right-click this snapshot, select Save Snapshot As,
and navigate to where you want to save the snapshot.

Name the snapshot minesweeper _methodtime and click Save.
The new name is displayed in the Snapshot Navigator.

98

JProbe

Demos and Tutorials

11 Click Detach from Running Session &,

Note You can also close your application server and the Game Pack demo browser.

The Call Graph view appears after afew seconds.

Step 4: Identifying the Performance Bottleneck

In thistutorial, you use the Call Graph view to identify a hotspot. A hotspot is an
expensive method, one that takes more time than necessary to run. The hotspot method
may be the performance bottleneck or the method may call another method that causes
the slowdown. In this example, you find two expensive third-party methods that are
called by one of the Game Pack methods.

To identify the performance bottleneck:

1

Right-click the minesweeper_methodtime snapshot and select the Open Call
Graph View.

Select Cumulative Time from the Color By list.

Tip You can change the default Red-Gray color scheme. Right-click the color scale
(located between the graph and the list) and select a different color scheme.

Nodes on the left of the graph are bright red, because each node contains the
cumulative time of its children and their call trees. Asyou follow abranch to the
right, the red color fades, because the cumulative time of each node includes
fewer method call trees.

Identify the critical path.

In this case, we know from our preliminary work that the critical path of the
Game Pack demo is started by the call to GameController.doGet.

The parallel branch, started by GameTmageServilet.doGet, isactualy initiated

from amethod in the main call tree. The GameImageServlet.doGet branch

does the work of encoding the completed minesweeper game board image for the

browser.

Note In this example, we focus only on the critical path. However, later when you compare
these results against the Minesweeper game in Normal mode, you will find that the

encoding servlet is no longer required by the improved algorithm, which saves all the
time used by this branch.

To isolate the critical path, select GameController.doGet method and click
I solate Subtree ‘- on the toolbar.

Chapter 4: JProbe Game Pack for JavaEE 99
Performance Bottleneck Tutorial

Percentages are recal culated to include only the call trees for this method. The
cumulative time for the GameController.doGet method istherefore 100%.

5 Follow the brightest nodes in the branch from left to right until the bright color
fades or you reach the end of the branch. In this example, the last nodes are
MediaTracker.waitForID() and Toolkit.getDefaultToolkit ().

Note You may need to expand the branch to see the last nodes.
Toolkit.getDefaultToolkit () displays in the graph as an encapsulated

node. To view this node, you might have to increase the number of nodes that are
displayed in the Call Graph.

Tip You may notice a small lock icon on some of the nodes. The lock means that data on
the method was encapsulated. By default, details are encapsulated for third party and
framework methods. Method level detail is only set for your packages, which focuses
your analysis on your own code. For more information, see Encapsulate Filter in the
online help.

6 SelectMediaTracker.waitForID().Inthe method list (lower panel), you can
see that the method timeis 274 msand it is called 200 times.

7 Select Toolkit.getDefaultToolkit. Themethodtimeisl msanditiscalled
200 times.

Both hotspot methods are from the java . awt framework methods. You cannot
modify the code for these methods; al you can do is change how or if you call
them. You need to find which of the Game Pack methods initiates the calls to
these methods.

8 Travel the call tree back to GameImageManager . loadImage and thento
MineSweeperRenderer.renderMineMapImage_MethodTime. Thisisthe
method that starts the process that callsthe java . awt methods.

Conclusion: The performance bottleneck is caused by the Game Pack method
renderMineMapImage_MethodTime calling these expensive, third-party methods for
every tile in the game board.

Step 5: Running the Session with Improved Code

After you discover the performance bottleneck, you can choose how best to fix your
code. Review the source code. You could attempt to call aless expensive method or you
might choose an entirely new algorithm to do the same task. For the Game Pack demo,
we decided to use a different way to build the game board, one that does not require that
the images be loaded and encoded on the server side. Instead, the game board is simply
atable of HTML links. If image caching is enabled in the browser, theimages are stored
and used locally; otherwise, the links point to images on the Web server.

100

JProbe

Demos and Tutorials

To run the session with improved code:

1

Restart the session following the instructionsin Step 2: Starting the Session and
the Game Pack.

Repeat Step 3: Running the Session, but select Nor mal mode instead of the
Method Time option, and save the snapshot as minesweeper_normal.

Right-click minesweeper _normal and select the Open Call Graph View.
To isolate the critical path, select GameController.doGet and click I solate
Subtree *t- on the toolbar.

Percentages are recal culated to include only the call trees for this method. The
cumulative time for the GameController.doGet method istherefore 100%.

Follow the path of red nodes to find the method that contains the new agorithm.
In thisexample, it iscalled renderMineMapImage_Normal.

The new method renderMineMapImage_Normal runsfaster than the origina
renderMineMapImage_MethodTime method. Also, the new method does not
require the encoding servlet, so overall the program is even faster.

Exit the Game Pack Demo and end the session. Close the browser.

Step 6: Measuring the Performance Improvement

You know that the image caching algorithm runs much faster than the original
compression agorithm. To quantify the improvement, use the Snapshot Difference tool
to compare snapshots.

To measure the performance improvement:

1

In the JProbe Snapshot Navigator, right-click the minesweeper _normal snapshot
and select Snapshot Differencing.

The Performance Difference dialog box appears. The selected snapshot is
displayed in the Snapshot to Compare field.

Select minesweeper_methodtime from the Baseline Snapshot list, and click OK.

If you isolated on different methods, you see a message informing you that the
snapshots have different transformations. The isolate action, among others, is
removed automatically to ensure that you are comparing the same data set.

The Performance Difference view opens. By default, only the classes with
differences are displayed.

Chapter 4: JProbe Game Pack for JavaEE 101
Performance Bottleneck Tutorial

3 To seetheimpact that changing the algorithm had on the servlet, isolate the
doGet method by typing *.doGet () inthe Filter Methods field.

The GameController.doGet and GameImageServlet .doGet methods are
the only methods displayed. A negative humber in the Cumulative Time column
means an improvement. The Normal mode offers a 76% improvement over the
Method Time mode, which isasignificant difference.

Note The actual percentage may be different on your system.

This example demonstrates how, in your own code, an inefficient algorithm can
significantly impact performance. Of course, you only want to optimize algorithms in
the critical path of your program; there is no point tuning algorithms that are called very
rarely. You also need to evaluate the overall impact on the runtime of the program. If an
inefficient algorithm takes atotal of afew seconds to execute, you may make it run
faster, but the impact on the overall runtime of the program would be negligible.

102 JProbe
Demos and Tutorials

Index

A

about JProbe 8
about Quest Software 11
Adventure tutorial 63

C

contacting Quest 12
coverage analysis
demos, summary of 62
tutorials, case effectiveness Java SE 63

coverage effectiveness, Java SE tutorial 63

creating, Game Pack user accounts 81

D

deadlock, Java SE tutorial 40
demos
Java EE, Game Pack 73
Java SE
coverage analysis 61
memory analysis 13
performance analysis 37
deploying, Game Pack demo 74
Diner tutorial 40
documentation
core 10
feedback 10
suite 10

E

environment variables, setting 75

G

Game Pack
creating user accounts 81
deploying demo 76
installing 75
running with JProbe 82
setting environment variables 75
system requirements 74

inefficient algorithm, Java SE tutorial 50
installing, Game Pack 75

J

Java coverage effectiveness 63
Java EE

loitering objects tutorial 83

object cycling tutorial 83

performance bottleneck tutorial 94
Java SE

deadlock tutorial 40

inefficient algorithm tutorial 50

leak example tutorial 16

object over-allocation 26

104 JProbe
Demos and Tutorials

L

LeakExample tutorial 16
Loitering Objects tutorial 83

M

memory analysis
demos, summary of 14
tutorials
leak example Java SE 16
loitering objects Java EE 83
object cycling Java EE 88
object over-allocation Java SE 26
memory leak, Java SE tutorial 16

N
Network tutorial 26

0
Object Cycling, Java EE tutorial 88

object over-allocation, Java SE tutorial 26

P

performance analysis
demos, summary of 38
tutorials
bottleneck Java EE 94
deadlock Java SE 40
inefficient algorithm Java SE 50
Performance Bottleneck tutorial 94
Polynomial tutorial 50

R
running Game Pack with JProbe 82

S
support 12

T

technical support 12
text conventions 11
tutorials
coverage, case effectiveness Java SE 63
memory
leak example Java SE 16
loitering objects Java EE 83
object cycling Java EE 88
object over-allocation Java SE 26
performance
bottleneck Java EE 94
deadlock Java SE 40
inefficient algorithm Java SE 50

	Introduction to This Guide
	About JProbe
	About This Guide
	How to Use This Guide
	Where to Find Information Not in This Guide

	JProbe Documentation Suite
	Core Documentation Set
	Feedback on the Documentation

	Text Conventions
	About Quest Software, Inc.
	Contacting Quest Software
	Contacting Quest Support
	Quest Communities

	Memory Analysis Demos
	Summary of Demos for Memory
	LeakExample Tutorial
	Step 1: Setting Up the Memory Leak Session
	Step 2: Running the Memory Leak Session
	Step 3: Identifying Loitering Objects
	Step 4: Investigating Loitering Objects
	Step 5: Running the Memory Leak Session with Improved Code

	Network Tutorial
	Step 1: Setting Up the Network Session
	Step 2: Running the Network Session
	Step 3: Identifying Large Allocations of Short-Lived Objects
	Step 4: Investigating Large Allocations of Short-Lived Objects
	Step 5: Running the Network Session with Improved Code

	Performance Analysis Demos
	Summary of Demos for Performance
	Philosopher’s Diner Tutorial
	Step 1: Setting Up the Diner Session
	Step 2: Running the Diner Session
	Step 3: Investigating the Deadlock
	Step 4: Running the Diner Session with Improved Filters
	Step 5: Finding the Cause of the Deadlock in the Source Code

	Polynomial Tutorial
	Step 1: Setting Up the Polynomial Session
	Step 2: Running the Polynomial Session
	Step 3: Identifying and Investigating the Performance Bottleneck
	Step 4: Running the Polynomial with Improved Code
	Step 5: Measuring the Performance Improvement

	Coverage Analysis Demos
	Summary of Demos for Coverage
	Adventure Tutorial
	Step 1: Setting Your Global Options
	Step 2: Setting Up the Session for the First Test Case
	Step 3: Running the First Test Case
	Step 4: Setting Up and Running the Second Test Case
	Step 5: Merging the Test Case Results
	Step 6: Assessing Your Test Case Coverage

	JProbe Game Pack for JavaEE
	Deploying the JProbe Game Pack Demo
	System Requirements
	Setting Environment Variables
	Installing the Game Pack Demo
	Deploying the Game Pack Demo on Your Application Server
	Creating a User Account for Game Pack
	Running Game Pack with the JProbe Application
	Game Pack Known Issues

	Loitering Objects Tutorial
	Step 1: Setting Up the Session
	Step 2: Starting the Session and the Game Pack
	Step 3: Running the Session
	Step 4: Identifying Loitering Objects
	Step 5: Investigating Loitering Objects
	Step 6: Running the Session with Improved Code

	Object Cycling Tutorial
	Step 1: Setting Up the Session
	Step 2: Starting the Session and the Game Pack
	Step 3: Running the Session
	Step 4: Identifying Object Cycling
	Step 5: Investigating Object Cycling
	Step 6: Running the Session with Improved Code

	Performance Bottleneck Tutorial
	Step 1: Setting Up the Session
	Step 2: Starting the Session and the Game Pack
	Step 3: Running the Session
	Step 4: Identifying the Performance Bottleneck
	Step 5: Running the Session with Improved Code
	Step 6: Measuring the Performance Improvement

	Index

		2009-02-24T12:13:48-0500
	Owen Turner
	For security and accessibility

