
8.1
Demos and Tutorials

JProbe®

© 2009 Quest Software, Inc. ALL RIGHTS RESERVED.
This guide contains proprietary information protected by copyright. The software described in this guide is furnished
under a software license or nondisclosure agreement. This software may be used or copied only in accordance with
the terms of the applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's
personal use without the written permission of Quest Software, Inc.

If you have any questions regarding your potential use of this material, contact:
Quest Software World Headquarters
LEGAL Dept
5 Polaris Way
Aliso Viejo, CA 92656
www.quest.com
email: legal@quest.com
Refer to our Web site for regional and international office information.

Trademarks
Quest, Quest Software, the Quest Software logo, Aelita, Akonix, AppAssure, Benchmark Factory, Big Brother,
ChangeAuditor, DataFactory, DeployDirector, ERDisk, Foglight, Funnel Web, GPOAdmin, iToken, I/Watch, Imceda,
InLook, IntelliProfile, InTrust, Invirtus, IT Dad, I/Watch, JClass, Jint, JProbe, LeccoTech, LiteSpeed, LiveReorg,
MessageStats, NBSpool, NetBase, Npulse, NetPro, PassGo, PerformaSure, Quest Central, SharePlex, Sitraka,
SmartAlarm, Spotlight, SQL LiteSpeed, SQL Navigator, SQL Watch, SQLab, Stat, StealthCollect, Tag and Follow,
Toad, T.O.A.D., Toad World, vAMP, vAnalyzer, vAutomator, vControl, vConverter, vDupe, vEssentials, vFoglight,
vMigrator, vOptimizer Pro, vPackager, vRanger, vRanger Pro, vReplicator, vSpotlight, vToad, Vintela, Virtual DBA,
VizionCore, Vizioncore vAutomation Suite, Vizioncore vEssentials, Xaffire, and XRT are trademarks and registered
trademarks of Quest Software, Inc in the United States of America and other countries. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

Disclaimer
The information in this document is provided in connection with Quest products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of
Quest products. EXCEPT AS SET FORTH IN QUEST'S TERMS AND CONDITIONS AS SPECIFIED IN THE
LICENSE AGREEMENT FOR THIS PRODUCT, QUEST ASSUMES NO LIABILITY WHATSOEVER AND
DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST BE LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF QUEST HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest makes no representations or warranties with
respect to the accuracy or completeness of the contents of this document and reserves the right to make changes
to specifications and product descriptions at any time without notice. Quest does not make any commitment to
update the information contained in this document.

Third Party Information
See Third_Party_Contributions.htm in your JProbe \doc installation directory.

Demos and Tutorials
February 2009
Version 8.1

http://www.quest.com
mailto:legal@quest.com

Table of Contents
Introduction to This Guide ..7
About JProbe..8
About This Guide..8

How to Use This Guide...8
Where to Find Information Not in This Guide ...9

JProbe Documentation Suite..10
Core Documentation Set ..10
Feedback on the Documentation..10

Text Conventions..11
About Quest Software, Inc..11

Contacting Quest Software...12
Contacting Quest Support ..12
Quest Communities ..12

Memory Analysis Demos...13
Summary of Demos for Memory...14
LeakExample Tutorial...16

Step 1: Setting Up the Memory Leak Session..17
Step 2: Running the Memory Leak Session ...19
Step 3: Identifying Loitering Objects...21
Step 4: Investigating Loitering Objects ...21
Step 5: Running the Memory Leak Session with Improved Code ..24

Network Tutorial ...26
Step 1: Setting Up the Network Session ..27
Step 2: Running the Network Session..30

4 JProbe
Demos and Tutorials
Step 3: Identifying Large Allocations of Short-Lived Objects... 31
Step 4: Investigating Large Allocations of Short-Lived Objects ... 32
Step 5: Running the Network Session with Improved Code .. 34

Performance Analysis Demos.. 37
Summary of Demos for Performance .. 38
Philosopher’s Diner Tutorial... 40

Step 1: Setting Up the Diner Session .. 41
Step 2: Running the Diner Session.. 44
Step 3: Investigating the Deadlock .. 46
Step 4: Running the Diner Session with Improved Filters ... 47
Step 5: Finding the Cause of the Deadlock in the Source Code ... 49

Polynomial Tutorial .. 50
Step 1: Setting Up the Polynomial Session ... 51
Step 2: Running the Polynomial Session... 54
Step 3: Identifying and Investigating the Performance Bottleneck 54
Step 4: Running the Polynomial with Improved Code ... 55
Step 5: Measuring the Performance Improvement .. 58

Coverage Analysis Demos ... 61
Summary of Demos for Coverage ... 62
Adventure Tutorial ... 63

Step 1: Setting Your Global Options.. 63
Step 2: Setting Up the Session for the First Test Case ... 64
Step 3: Running the First Test Case.. 67
Step 4: Setting Up and Running the Second Test Case.. 68
Step 5: Merging the Test Case Results ... 70
Step 6: Assessing Your Test Case Coverage ... 71

JProbe Game Pack for JavaEE .. 73
Deploying the JProbe Game Pack Demo.. 74

System Requirements ... 74
Setting Environment Variables .. 75
Installing the Game Pack Demo .. 75

Table of Contents 5
Deploying the Game Pack Demo on Your Application Server ...76
Creating a User Account for Game Pack ...81
Running Game Pack with the JProbe Application..82
Game Pack Known Issues ...82

Loitering Objects Tutorial ...83
Step 1: Setting Up the Session ..84
Step 2: Starting the Session and the Game Pack ..85
Step 3: Running the Session..85
Step 4: Identifying Loitering Objects...86
Step 5: Investigating Loitering Objects ...87
Step 6: Running the Session with Improved Code...88

Object Cycling Tutorial ...88
Step 1: Setting Up the Session ..89
Step 2: Starting the Session and the Game Pack ..90
Step 3: Running the Session..91
Step 4: Identifying Object Cycling ..92
Step 5: Investigating Object Cycling...93
Step 6: Running the Session with Improved Code...93

Performance Bottleneck Tutorial ..94
Step 1: Setting Up the Session ..95
Step 2: Starting the Session and the Game Pack ..96
Step 3: Running the Session..97
Step 4: Identifying the Performance Bottleneck ...98
Step 5: Running the Session with Improved Code...99
Step 6: Measuring the Performance Improvement...100

Index..103

6 JProbe
Demos and Tutorials

Introduction to This Guide

This chapter provides information about what is contained in the Demos and Tutorials.
It also provides information about the JProbe documentation suite and Quest Software.

This chapter contains the following sections:

About JProbe...8
About This Guide...8
JProbe Documentation Suite...10
Text Conventions ... 11
About Quest Software, Inc... 11

8 JProbe
Demos and Tutorials
About JProbe
JProbe is an enterprise-class Java profiler that provides intelligent diagnostics on
memory usage, performance, and test coverage. It allows developers to quickly pinpoint
and repair the root cause of application code performance and stability problems that
obstruct component and integration integrity.

JProbe provides three types of analysis:

• Memory analysis allows a developer to identify and resolve Java memory leaks
and object cycling to ensure optimal program efficiency and stability.

• Performance analysis allows a developer to identify and resolve Java bottlenecks
and deadlocks to ensure optimal program performance and scalability.

• Coverage analysis allows a developer to identify unexecuted lines of code during
unit testing to ensure test coverage and program correctness.

JProbe also offers an Eclipse plug-in that provides intelligent code performance analysis
and problem resolution from within the Eclipse Java IDE.

About This Guide
This guide contains a summary of all the demo applications that ship with JProbe. It
also contains tutorials for some of the applications.

This guide is intended for Java developers who want to learn how to configure JProbe to
work with their application and run a JProbe analysis.

How to Use This Guide
A good place to start is with a demo designed for your Java platform, that is, Java SE or
Java EE. Next decide which JProbe analysis tool you are most interested in and work
through one of the tutorials for that tool.

By the end of your first tutorial, you should know the basic steps involved in running a
JProbe analysis. In particular, you will have learned how to complete the following
tasks:

• integrate JProbe with a Java SE or Java EE application

• start and run a JProbe analysis session

Introduction to This Guide 9
About This Guide
• identify a problem with the application using the data that JProbe collected

• investigate the problem

• rerun the session with improved code

Later you may choose to review some of the other demos and tutorials to gain a broader
understanding of the types of problems you can identify with JProbe.

Where to Find Information Not in This Guide
The following table shows where you can find other types of information:

Information about: Refer to:

Configuring JProbe to run
your application or
application server

• JProbe User Guide (PDF/online help)
• JProbe Plugins for Eclipse Guide

Running sessions from the
JProbe Console

JProbe User Guide (PDF/online help)

Using JProbe Plugins for
Eclipse

• JProbe Plugins for Eclipse Guide
• JProbe User Guide (online help)

Automating JProbe analysis
sessions using command line
utilities

JProbe Reference Guide (PDF)

Adding JProbe to an Ant
system

JProbe Ant Task User Manual (HTML)

System requirements,
licensing, and installation
notes

JProbe Installation Guide (PDF)

Known and resolved issues JProbe Release Notes (HTML)

10 JProbe
Demos and Tutorials
JProbe Documentation Suite
The JProbe documentation suite is provided in a combination of online help, PDF, and
HTML.

• Online Help: You can open the online help by clicking the Help icon on the JProbe
toolbar.

• PDF: The complete JProbe documentation set is available in PDF format on
SupportLink. The PDF documentation can also be found in the Documentation
folder on the JProbe DVD. The default location of the documentation after an
installation is <jprobe_home>/docs. Adobe® Reader® is required.

• HTML: Release Notes are provided in HTML and text format. The default location
of this document after an installation is <jprobe_home>/docs.

The Ant Tasks User Manual is also provided in HTML format. The default
location of this document after an installation is <jprobe_home>/automation/doc.
To open it, navigate to index.html.

Core Documentation Set
The core documentation set consists of the following files:

• Installation Guide (PDF)

• User Guide (PDF and online help)

• Reference Guide (PDF)

• Plugins for Eclipse Guide (PDF)

• Demos and Tutorials (PDF)

• Release Notes (HTML)

• Ant Tasks User Manual (HTML)

Feedback on the Documentation
We are interested in receiving feedback from you about our documentation. For
example, did you notice any errors in the documentation? Were any features
undocumented? Do you have any suggestions on how we can improve the
documentation? All comments are welcome. Please submit your feedback to the
following email address:

Introduction to This Guide 11
Text Conventions
am.docfeedback@quest.com

Please do not submit Technical Support related issues to this email address.

Text Conventions
The following table summarizes how text styles are used in this guide:

About Quest Software, Inc.
Quest Software, Inc., a leading enterprise systems management vendor, delivers
innovative products that help organizations get more performance and productivity from
their applications, databases, Windows infrastructure and virtual environments.
Through a deep expertise in IT operations and a continued focus on what works best,
Quest helps more than 90,000 customers worldwide meet higher expectations for
enterprise IT. Quest provides customers with client management as well as server and
desktop virtualization solutions through its subsidiaries, ScriptLogic and Vizioncore.
Quest Software can be found in offices around the globe and at www.quest.com.

Convention Description

Code Monospace text represents code, code objects, and command-
line input. This includes:
• Java language source code and examples of file contents
• Classes, objects, methods, properties, constants, and events
• HTML documents, tags, and attributes

Variables Monospace-plus-italic text represents variable code or
command-line objects that are replaced by an actual value or
parameter.

Interface Bold text is used for interface options that you select (such as
menu items) as well as keyboard commands.

Files, components,
and documents

Italic text is used to highlight the following items:
• Pathnames, file names, and programs
• The names of other documents referenced in this guide

http://www.quest.com

12 JProbe
Demos and Tutorials
Contacting Quest Software

Refer to our web site for regional and international office information.

Contacting Quest Support
Quest Support is available to customers who have a trial version of a Quest product or
who have purchased a commercial version and have a valid maintenance contract. Quest
Support provides around the clock coverage with SupportLink, our web self-service.
Visit SupportLink at: http://support.quest.com.

From SupportLink, you can do the following:

• Quickly find thousands of solutions (Knowledgebase articles/documents).

• Download patches and upgrades.

• Seek help from a Support engineer.

• Log and update your case, and check its status.

View the Global Support Guide for a detailed explanation of support programs, online
services, contact information, and policy and procedures. The guide is available at:
http://support.quest.com/pdfs/Global Support Guide.pdf.

Quest Communities
Get the latest product information, find helpful resources, and join a discussion with the
JProbe Quest team and other community members. Join the JProbe community at:
http://jprobe.inside.quest.com/.

Email info@quest.com

Mail Quest Software, Inc.
World Headquarters
5 Polaris Way
Aliso Viejo, CA 92656
USA

Web site www.quest.com

http://jprobe.inside.quest.com/
http://support.quest.com
mailto:info@quest.com
http://www.quest.com
http://support.quest.com/pdfs/Global Support Guide.pdf

1

Memory Analysis Demos

This chapter provides a summary of the Memory demo applications that ship with
JProbe and contains tutorials for some of these applications.

The source code and compiled classes for the Memory demos are located in the
<jprobe_home>/demos/memory directory.

This chapter contains the following sections:

Summary of Demos for Memory..14
LeakExample Tutorial ..16
Network Tutorial ..26

14 JProbe
Demos and Tutorials
Summary of Demos for Memory
The following table describes the purpose of the example applications.

Java SE Application Purpose More Information

Account.class This application creates an
account object and it is used by
the AccountInfo.class
application.

See the notes in
Account.java.

AccountInfo.class Displays three sets of account
information to illustrate the
impact of indirect object
instantiation.

See the notes in
AccountInfo.java.

LeakExample.class This example illustrates how an
obsolete collection reference
may cause loitering objects.
When the buttons are removed
from a panel, the JButton
objects are not removed from the
Java heap.

See the notes in
LeakExample.java.

Tutorial:
“LeakExample
Tutorial” on page 16

LeakExample2.class Similar to LeakExample.class,
this application registers the
buttons as listeners. The program
demonstrates loitering objects
caused by an obsolete listener.

See the notes in
LeakExample2.java.

Network.class This example simulates clients
(threads) connecting to a server
and querying a database.
Temporary objects are created
for the login data and for the
connection.

See the notes in
Network.java.

Tutorial: “Network
Tutorial” on page 26

Chapter 1: Memory Analysis Demos 15
Summary of Demos for Memory
JProbe also ships with a Java EE demo application called JProbe Game Pack. For more
information, see “JProbe Game Pack for JavaEE” on page 73.

Sim.class This example simulates a
network model in which a
connection is made to verify the
identity of the user. If the
identity of the user is validated,
the application extracts the
desired data from the database
and saves it in the result set.

See the notes in
Sim.java.

StalledStack.class This example shows how a
stalled stack reference can hold
objects in memory longer than
necessary. You could be using
the memory consumed by these
objects for other tasks. Uses
heap triggers.

See the notes in
StalledStack.java.

Strings.class Compares two algorithms: one
that creates large allocations of
string objects and one that does
not.

See the notes in
Strings.java.

Java SE Application Purpose More Information

16 JProbe
Demos and Tutorials
LeakExample Tutorial
The LeakExample program illustrates how an obsolete collection reference can anchor
entire trees of loitering objects in the Java heap.

This tutorial demonstrates how to use JProbe to identify loitering objects in your code
and how to reclaim memory by removing loitering JButton objects. The improved
code shows a 85.60% improvement in how much memory is used by the instances
allocated by LeakExample methods, and a 0.71% improvement in the overall memory
used for the entire program.

Note The values cited in this tutorial reflect the LeakExample running on Windows XP with
Sun JDK 1.6.0_10. You may see different values on your system, but the improvement in
memory use should still be evident.

The following table summarizes the types of information you need to know before
starting this tutorial.

This tutorial assumes that you are running JProbe on your local machine. You can find
more information about loitering objects in the JProbe User Guide.

This tutorial walks you through the following steps:

• Step 1: Setting Up the Memory Leak Session

• Step 2: Running the Memory Leak Session

• Step 3: Identifying Loitering Objects

• Step 4: Investigating Loitering Objects

• Step 5: Running the Memory Leak Session with Improved Code

Program: LeakExample.class

Use Case: Add buttons to a panel.
Remove buttons from a panel.

Architecture: Uses the class JButton to create buttons.

Hypothesis: JButton objects are removed from the heap when the buttons are
removed from the panel.

Chapter 1: Memory Analysis Demos 17
LeakExample Tutorial
Step 1: Setting Up the Memory Leak Session
In this step, you use the JProbe Configuration tool to create the session settings for this
tutorial. The following procedures mention only the settings that you need to change or
verify. If a setting is not mentioned, leave it blank or in its default state. The procedure
assumes that you are running JProbe locally on your computer.

To set up the session:

1 Click Tools > Create/Edit Settings.

The Create/Edit Settings dialog box appears.

2 In the Manage Configurations pane, click Java Application.

The JProbe Configuration Wizard appears.

3 Click Add.

4 In the Configuration Name text box, type LeakExample, then click Next.

5 In the Main Class field, select the Execute a class check box.

6 Click the browse button in the Main Class field and navigate to the
LeakExample.class file in the <jprobe_home>/demos/memory/leakexample
directory.

7 Click OK.

The following information is displayed:

• Main Class: demos.memory.leakexample.LeakExample
• Working Directory: <jprobe_home>

8 Click the browse button beside the Classpath field.

9 In the Classpath dialog box, click Add Working Directory, then click OK.

The working directory appears in the Classpath field.

10 Click Next.

The Select a Java Virtual Machine page appears.

11 If you want to change the default JVM, click the browse button beside the Java
Executable field and select another JVM in the Java Virtual Machines dialog box.

Alternatively, you can use the JVM that is installed with JProbe to run with the
tutorial. The java executable is <jprobe_home>/bin/jre/bin/java.exe.
Note Ideally, the JVM you select should be the version that was used to compile your

program.

18 JProbe
Demos and Tutorials
12 Click OK, then click Next.

The Specify Your Code page appears.

13 In the Category/Program Name text box, type DemoCategory (which specifies
the name of the category in which you want to include your code), then click
Next.

14 In the Select a JProbe Analysis page, ensure that the Memory option is selected.

15 On the Initial Recording tab, select the Data Recording Off check box, then
click Next.

This disables the data recording at initial JVM start.

16 In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

17 Click Save and save the configuration file (LeakExample_Mem_Settings.jpl) into
your working directory.

18 In the Configuration Complete page, select the Integrate check box and click
Finish.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: LeakExample.bat, and in Unix/Linux: LeakExample.sh).

19 In the Integrating LeakExample dialog box, use the browse button to navigate to
your working directory, and click Save to save the startup file.

The Integrating LeakExample dialog box presents the status of the operation.

Chapter 1: Memory Analysis Demos 19
LeakExample Tutorial
20 Select both check boxes (Close Create/Edit Settings tool on successful
integration and Run JProbe startup script on successful integration), and
click Close.

The JProbe Execution Console opens, then the LeakExample program starts,
displaying a window with Add and Remove buttons. You are now ready to run a
Memory analysis session.

Step 2: Running the Memory Leak Session
In this step, you exercise a use case on LeakExample that requires you to add buttons to
a panel and then remove them. As the use case runs, you can see how many JButton
objects have been added since the exercise started and how many remain in the heap
when it ends.

Note This procedure assumes that the LeakExample program is already running (for instructions
on how to execute the startup script, see step 20 in section “Step 1: Setting Up the Memory
Leak Session” on page 17.

Alternatively, you can run the startup script from the command line:

In a Windows command window: >LeakExample.bat

In a Unix or Linux sh shell: >LeakExample.sh

In a Unix or Linux csh or ksh shell: >./LeakExample.sh

20 JProbe
Demos and Tutorials
To run the session:

1 On the JProbe toolbar, click Attach to a Running Session .

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

2 Click OK.

After a few seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

3 Click Set Recording Level on the toolbar.

4 In the Set Recording Level dialog box, select Record Allocations and Stack
Traces For All Instances, then click OK.

5 In the Leak Example program window, click the Add button ten times.

Ten buttons (numbered 0 to 9) are added on the program window.

6 Click the Remove button ten times.

The ten buttons are deleted from the program window.

7 Click Set Recording Level on the toolbar.

8 In the Set Recording Level dialog box, select Data Recording Off, then click
OK.

JProbe takes a snapshot and displays it in the Snapshot Navigator panel.

9 Close the Leak Example program window.

Chapter 1: Memory Analysis Demos 21
LeakExample Tutorial
JProbe disconnects from the running session. After a few seconds, the Instances
view appears, displaying instances that were created during the use case.

Step 3: Identifying Loitering Objects
In this step, you look for loitering objects in the heap. Based on the hypothesis, you
should expect the count change for the JButton class to be zero, because you
removed all the buttons you added. In fact, the buttons are not removed and continue to
loiter in the heap.

To identify loitering objects:

1 In the Instances view, select Heap Count from the Investigate by list.

2 Type JButton in the Filter Classes field and press Enter to locate the JButton
class.
Note This field is case-sensitive.

The Instances list now displays only the JButton class.

The Recorded Count for JButton is 10, and the Dead Count is 0. This means
that the buttons were removed from the Leak Example program window, but not
from the Java heap.

Step 4: Investigating Loitering Objects
In this step, you find the live object that continues to hold a reference to the loitering
instances of JButton. From the Instances view, you can drill down to more detail on
JButton in the Instance Detail view. Then you can open the Source view to see the
code for the loiterer. You will find that the loitering JButton objects are being held by
obsolete collection references from the array JButton[].

To investigate loitering objects:

1 In the Instances view, select the JButton row and click Instance Detail on
the toolbar.

22 JProbe
Demos and Tutorials
The Instance Detail view appears, listing all the instances of JButton in the
heap.

2 In the upper table, click the first instance with an allocation time displayed, then

click Leak Doctor on the toolbar.

The Leak Doctor view appears.

3 Select the first instance and click Remove The Edge on the toolbar.

Chapter 1: Memory Analysis Demos 23
LeakExample Tutorial
A dialog box confirms that this instance is eligible to be garbage collected if you
free the removed edge from your application code.

4 Click OK.

The selected instance moves from the upper table to the lower one. Your next step
is to find the method that allocated the instance in order to understand why it is
not being removed.

5 Close the Leak Doctor view by clicking the x on the tab.

6 In the Instance Detail view, click the Trace tab to see the stack trace.

7 Right-click the LeakExample.addButtonToPanel() row and select Show
Allocated At Source to examine the source code for this allocating method.

The Source view displays the LeakExample.java source code. The line that
allocates the JButton is selected. It is located within the addButtonToPanel()
method. Below this method is the method that is supposed to remove the buttons:
removeButtonFromPanel().

24 JProbe
Demos and Tutorials
Notice that the line of code that removes buttons from the buttons[] array is
encased in an if statement; in essence, it is missing. You have confirmed that the
buttons[] array is the live object that is holding the loiterers in memory.
Note In Step 5: Running the Memory Leak Session with Improved Code you learn how to

remedy this problem, by running the code with the fix program argument, thus
proving that the original hypothesis is correct.

8 Close the Source view.

9 Optional: To find out how much memory is consumed by the loiterer, review the
Heap Memory column in the Instances view and the Keep Alive Size column in
the Instance Detail view.
Note The ~ sign in the Instances view’s Keep Alive Size column indicates an estimated

value for this metric. To calculate the actual size, right-click the JButton instance
and select Calculate Actual Keep Alive Size from the list.

You may be surprised at how many instances are held in memory by a single
JButton instance. The memory consumed by the loiterer and all its anchored
instances is about 10,240 bytes; the Keep Alive Size for a JButton instance is
856.
Note These numbers may vary depending on which JVM you used to run the Leak

Example.

10 Close the Instances and Instance Detail views.

Step 5: Running the Memory Leak Session with Improved Code
In this step, you need to add to the code a line that removes the buttons from the
buttons[] array. The LeakExample demo contains the fixed line of code; you just
need to add a program argument to your session settings to activate it. Note that in this
example, removing the loiterer does not free all the memory, because the memory
calculation includes some recursive references and because other objects in the program
continue to need some of the objects referenced by the loiterer.

After you rerun the session with the fixed code, you can clearly see in the Instances
view that both the Recorded Count and Dead Count for JButton are now 0, as
predicted by the hypothesis. However, in a real-life scenario where the effect of changes
is more widespread, you may need to compare the snapshots to see all the differences.
This tutorial walks you through how to do that comparison.

To verify the fixed code:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

Chapter 1: Memory Analysis Demos 25
LeakExample Tutorial
2 In the Manage Configurations pane, select LeakExample.

The configuration settings for the LeakExample appear in the right panel.

3 Click the Java Application tab and then click Edit.

4 Click the browse button beside the Application Arguments field.

5 In the Application Arguments dialog box, type fix in the upper field and click
OK.

The argument appears in the Application Arguments field.

6 Click Save and then Close.

7 Run the LeakExample startup script and then follow the instructions in Step 2:
Running the Memory Leak Session to exercise the same use case.

8 In the navigator, right-click the new snapshot with the improved code and select
Snapshot Differencing.

The Memory Difference dialog box opens. The new snapshot is displayed in the
Snapshot to Compare list.

9 Select the original snapshot with the loitering objects from the Baseline
Snapshot list.

10 Click OK.

The Memory Difference view appears, displaying the differences in data between
the two snapshots. Use the filters to display only the JButton objects.

You can see that in the new snapshot (obtained by using the improved code) there
are ten fewer JButton objects than in the original snapshot. The Recorded Count
and Heap Count are -10, and the Heap Memory is reduced by approximately
4,480 bytes. Therefore, the code modification fixed the problem.

26 JProbe
Demos and Tutorials
In the upper side of the view, you can also see that the LeakExample code now
uses memory more efficiently. The improved code reduced the Recorded Memory
use by 85.60%.

Network Tutorial
The Network program illustrates how over-allocating short-lived objects can cause the
garbage collector to run longer than necessary. Garbage collection takes time and
resources.

This tutorial demonstrates how to use JProbe to identify excessive garbage collections
in your code. The fixed code shows that it is often more efficient to reuse objects or
cache data.

Note The values cited in this tutorial reflect the Network example running on Windows XP
with Sun JDK 1.6.0_10. You may see different values on your system, but the improvement
in garbage collection overhead should still be evident.

The following table summarizes the types of information you need to know before
starting this tutorial.

The tutorial walks you through the following steps:

• Step 1: Setting Up the Network Session

• Step 2: Running the Network Session

• Step 3: Identifying Large Allocations of Short-Lived Objects

• Step 4: Investigating Large Allocations of Short-Lived Objects

• Step 5: Running the Network Session with Improved Code

Program: Network.class

Use Case: Connect from a client to a server, query a database, and return a
result to the client.

Architecture: See the comments in the Network.java source file.

Hypothesis: The program does not create unnecessary temporary objects.

Chapter 1: Memory Analysis Demos 27
Network Tutorial
Step 1: Setting Up the Network Session
To run a garbage collection analysis, you need to set up the session in the JProbe Create/
Edit Settings tool. The following procedures mention only the settings that you need to
change or verify. If a setting is not mentioned, leave it blank or in its default state. The
procedure assumes that you are running JProbe locally on your computer.

To set up the session:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, click Java Application.

The JProbe Configuration Wizard appears.

3 Click Add.

4 In the Configuration Name text box, type Network, then click Next.

5 Under Main Class, click Execute a class.

6 Click the browse button beside the Main Class field and navigate to the
Network.class file in the <jprobe_home>/demos/memory/network directory.

7 Click OK.

The following information is displayed:

• Main Class: demos.memory.network.Network
• Working Directory: <jprobe_home>

8 Click the browse button beside the Classpath field.

9 In the Classpath dialog box, click Add Working Directory, then click OK.

The working directory appears in the Classpath field.

10 Click Next.

The Select a Java Virtual Machine page appears.

11 If you want to change the default JVM, click the browse button beside the Java
Executable field, select another JVM in the Java Virtual Machines dialog box,
then click OK.

Alternatively, you can use the JVM that is installed with JProbe to run with the
tutorial. The java executable is <jprobe_home>/bin/jre/bin/java.exe.
Note Ideally, the JVM you select should be the version that was used to compile your

program.

28 JProbe
Demos and Tutorials
12 To ensure accurate allocation methods, disable the just-in-time compiler.
Note This step applies only to Sun or IBM JVMs. It does not apply to JRockit JVM.

a Click the browse button beside the Java Options field.

b In the Java Options dialog box, in the upper field, type -Xint.

c Click Parse Arguments.

The argument appears in the first line of the lower field.

d Click OK.

The Java Options field displays the program argument.

13 Click Next.

The Specify Your Code page appears.

14 In the Category/Program Name text box type DemoCategory (which specifies the
name of the category in which you want to include your code), then click Next.

15 In the Select a JProbe Analysis page, ensure that the Memory option is selected.

16 On the Initial Recording tab, select the Data Recording Off check box, then
click Next.

This disables the data recording at initial JVM start.

17 In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

18 Click Save and save the configuration file (Network_Mem_Settings.jpl) into your
working directory.

19 In the Configuration Complete page, select the Integrate check box and click
Finish.

Chapter 1: Memory Analysis Demos 29
Network Tutorial
JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Network.bat, and in Unix/Linux: Network.sh).

20 In the Integrating Network dialog box, use the browse button to navigate to your
working directory, and click Save to save the startup file.

The Integrating Network dialog box presents the status of the operation.

21 Select both check boxes (Close Create/Edit Settings tool on successful
integration and Run JProbe startup script on successful integration), and
click Close.

The JProbe Execution Console opens, then the Network Simulation program
starts, displaying a window with icons representing elements of a network. You
are now ready to run a Memory analysis session.

30 JProbe
Demos and Tutorials
Step 2: Running the Network Session
In this step, you exercise the use case on the Network Simulation program. All you need
to do is to click the Start button in the Network Simulation program; the program
simulates clients (threads) connecting to a server and querying a database. It runs to
completion in about one minute (depending on your system setup), generating the data
that you need to assess the performance of the garbage collector.

Note This procedure assumes that the Network Simulation program is already running (for
instructions on how to execute the startup script, see step 21 in section “Step 1: Setting Up
the Network Session” on page 27.

Alternatively, you can run the startup script from the command line:

In a Windows command window: >Network.bat

In a Unix or Linux sh shell: >Network.sh

In a Unix or Linux csh or ksh shell: >./Network.sh

To run the session:

1 On the JProbe toolbar, click Attach to a Running Session .

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

2 Click OK.

After a few seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

3 From the Pools and GC Interval list, select Five Minutes.

4 Click Set Recording Level on the toolbar.

5 In the Set Recording Level dialog box, select Record Allocations, Stack Traces,
and Garbage Data For All Instances, then click OK.

This enables the recording of allocations, traces and garbage collection on all
instances.

6 In the Network Simulation program window, click Start.

Chapter 1: Memory Analysis Demos 31
Network Tutorial
When the red lines disappear in the Network Simulation window, the program has
finished.

7 Click Set Recording Level on the toolbar.

8 In the Set Recording Level dialog box, select Data Recording Off, then click
OK.

JProbe takes a snapshot and displays it in the Snapshot Navigator panel.

9 In the Network Simulation window, click Stop.

10 Close the Network Simulation window.

JProbe disconnects from the running session. After a few seconds, the Instances
view appears, displaying instances that were created during the use case.

Step 3: Identifying Large Allocations of Short-Lived Objects
The Heap Usage Chart indicates an excessive number of garbage collections.

To identify the short-lived objects:

1 In the Runtime Summary view, click the Memory Pools tab.

The peaks and valleys in the Memory Pools graph show that the objects being
collected are not alive very long before they are garbage collected.

2 In the Instances view, select Dead Count from the Investigate by list.

3 Click the Dead Count column header twice to sort the table by the classes with
the most garbage collected instances.

The top classes by Dead Count instances are String, StringBuffer, and
Sim$Connection. None of these instances remain alive at the end of the session.

32 JProbe
Demos and Tutorials
We know that StringBuffer is created by String objects, so String and
Sim$Connection are good candidates for further investigation.

Step 4: Investigating Large Allocations of Short-Lived Objects
In this step you investigate the short-lived objects identified in Step 3: Identifying Large
Allocations of Short-Lived Objects by looking at the source code. Remember that in this
example the code contains the fixed code as well. The problem areas are identified in
the code comments.

Note To discover where instances are allocated, drill down on an allocation hotspot to display its
stack trace in the Merged Allocation Points view. You can then look for your allocating
method in the stack trace and drill down on it to see the source code.

To investigate the garbage collected objects:

1 Right-click Sim$Connection and select Open Merged Allocation Points
View.

The upper pane of the Merged Allocation Points view displays the
Sim$Server.query method, which allocates instances of Sim$Connection.
The Source column indicates the line of code where this method occurs.

2 Right-click Sim$Server.query and select Show Allocated At Source.

Chapter 1: Memory Analysis Demos 33
Network Tutorial
The Source view opens, displaying the Sim.java source code at the line indicated
in the Source column (211).

Notice that each time a client sends a query to the server, the server creates a new
connection to the database that lasts until the connection is terminated. Also
notice that Connection is an inner class of Sim.

3 In the Instances view, right-click String and select Open Merged Allocation
Points View.

4 In the Merged Allocation Points view, right-click System Code and select
Expand To Next Branch Point.

5 In the lower panel of this view, right-click Sim$Client.start and select Show
Allocated At Source.

The Source view opens, displaying the Sim.java source code at the line indicated
in the Source column (286).

Notice that each time a client sends a query to the server, it creates temporary
strings to pass the login, password, and query. This is the source of most of the
String and StringBuffer instances that we saw in the Instances view. You
can now proceed with fixing the code.

34 JProbe
Demos and Tutorials
Step 5: Running the Network Session with Improved Code
Two key problems were discovered in the code: temporary connection objects are
created for each connection to the database, and temporary strings are created to pass
login, password, and query information. The program contains fixes to reduce the
number of temporary objects. You need to add program arguments to use the fixed code.
You can run the code with one or both of the fixes.

For the connection issue, use the -fc application argument. This problem is solved by
implementing a cache. If you review the cache fix in Sim.java, you will notice that there
are actually three caching options documented: SimpleCache, PoolCache, and
LocalCache. By default, the LocalCache fix is used. If you change the cache, you
need to recompile the program.

For the login issue, use the -fl application argument. The problem is solved by
introducing static String and StringBuffer classes that can be reused.

To verify that the fixed code improves memory use:

1 In the JProbe Console, select the snapshot and click Tools > Create/Edit
Settings.

The Create/Edit Settings dialog box opens, displaying the settings for the
Network program. To run the fixed program, you need to add program arguments.

2 Click the Java Application tab and click Edit.

3 Click the browse button beside the Application Arguments field.

4 In the upper text box in the Application Arguments dialog box, type:

-fl -fc

5 Click Parse Arguments.

The arguments appear in separate lines in the lower list.

6 Click OK.

The Application Arguments field in the Java Application tab displays the new
arguments.

7 Click Save and then Close.

Chapter 1: Memory Analysis Demos 35
Network Tutorial
8 Follow the instructions in Step 2: Running the Network Session to exercise the
same use case.

In the Memory Pools graph, the peaks and valleys on the graph are less
pronounced, which suggests that fewer objects are collected each time the
garbage collector runs.

9 In the Instances view, if necessary, select Dead Count from the Investigate by
list.

10 In the lower pane, click the Dead Count column header twice to sort the table by
the classes with the most garbage collected instances.

The Dead Count of String now reports 60 instances, down from more than
10,000 instances in the original example. The total number of Dead instances has
also decreased, from 33,000 in original example to 5,100 in the fixed code.

You will notice the following:

• The String count is much lower (60).
• The Sim$Connection count is even lower (5).
• java.awt.Dimension now has the highest dead count.

36 JProbe
Demos and Tutorials
11 To investigate java.awt.Dimension, right-click it and select Open Merged
Allocation Points View.

12 In the upper pane of the Merged Allocation Points view, right-click Sytem Code
end select Expand To Next Branch Point.

13 Right-click My Code and select Replace Category With More Detail.

14 Right-click the class with the large number of instances (3,977) and select Show
Allocated At Source.

You can see that the instances are the result of a getSize call on the main
Network Simulation window. Because it can be resized, the dimensions should
not be cached.

2

Performance Analysis Demos

This chapter provides a summary of the Performance demo applications that ship with
JProbe and contains tutorials for some of these applications.

The source code and compiled classes for the Performance demos are located in the
<jprobe_home>/demos/performance directory.

This chapter contains the following sections:

Summary of Demos for Performance ..38
Philosopher’s Diner Tutorial ..40
Polynomial Tutorial ..50

38 JProbe
Demos and Tutorials

Summary of Demos for Performance
The following table describes the purpose of the example applications.
The following table describes the purpose of the example applications.

Java SE Application Purpose More Information

Diner.class The application hangs and does
not terminate. This example
shows how you can use JProbe
to identify the threads involved
in a deadlock.

See the notes in
Diner.java.

Tutorial:
“Philosopher’s Diner
Tutorial” on page 40.

Files.class Compares the performance of
two algorithms: a buffered
Reader/Writer versus an
unbuffered DataInputStream/
Data OutputStream.

See the notes in
Files.java.

MethodCalls.class This application demonstrates
the JProbe’s ability to track
method calls by allowing the
user to control the number of
calls to specific methods.
Each button has a corresponding
ActionListener. When a
button is pressed, the
actionPerformed method
displays a message in the text
area. The user can see how
Performance tracks method calls
by comparing Performance’s
reported number of calls to each
method and the data displayed in
the text area.

See the notes in
MethodCalls.java.

Objects.class Compares the performance of
using objects versus primitives.

See the notes in
Objects.java.

Chapter 2: Performance Analysis Demos 39
Summary of Demos for Performance
JProbe also ships with a Java EE demo application called JProbe Game Pack Demo for
Java EE. For more information, see “JProbe Game Pack for JavaEE” on page 73.

Polynomial.class The application calculates a
polynomial expression using one
of two algorithms. This example
shows how you can use JProbe
to compare performance and
identify the more efficient
algorithm.

See the notes in
Polynomial.java.

Tutorial:
“Polynomial Tutorial”
on page 50

Strings.class This application uses two
alternative approaches to strip
embedded tabs from strings. You
can track the two methods and
compare their performance.

See the notes in
Strings.java.

Java SE Application Purpose More Information

40 JProbe
Demos and Tutorials

Philosopher’s Diner Tutorial
In this tutorial, you investigate a deadlock situation. The symptom of the problem is that
the program hangs and does not terminate.

Based on the class Dining Philosophers deadlock demonstration, the tutorial program
simulates five Philosophers seated around a table, each with a bowl of rice in front of
him or her. To eat their rice, there are only five chopsticks available to share among the
Philosophers. To eat the rice, a Philosopher must have two chopsticks. Once a
Philosopher is finished using a chopstick, that chopstick is available to any other
Philosopher seated at the table. There is no prescribed sharing pattern among the
Philosophers; sharing is random. The eventual result of this random sharing is a
deadlock, when each Philosopher waits indefinitely for another chopstick to become
available.

This tutorial illustrates how you can detect where a thread causing a deadlock is created
within your own code.

Causing Threads
A causing thread is one that is directly responsible for the deadlock. For example, a
situation might be that Philosopher 4 and Philosopher 2 are causing the deadlock
because Philosopher 4 is waiting for Philosopher 2 and vice versa.

Affected Threads
An affected thread is one that cannot make progress and is not part of the deadlock
cycle. Typically it is waiting for either a thread that is part of the cycle or another
affected thread. For example, a situation might be that Philosopher 0 is affected because
he/she is waiting for the chopstick held by Philosopher 2. Due to the fact that
Philosopher 2 and Philosopher 4 are deadlocked, the chopstick never becomes available
and Philosopher 0 waits indefinitely. Similarly, Philosopher 1 and Philosopher 3 are
waiting for Philosopher 0, but because Philosopher 0 cannot acquire a chopstick, neither
they would acquire any chopsticks.

The following table summarizes the types of information you need to know before
starting this tutorial.

Program: Diner.class

Use Case: Detect threads involved in the deadlock and identify the location for
code modifications.

Chapter 2: Performance Analysis Demos 41
Philosopher’s Diner Tutorial
The tutorial walks you through the following steps:

• Step 1: Setting Up the Diner Session

• Step 2: Running the Diner Session

• Step 3: Investigating the Deadlock

• Step 4: Running the Diner Session with Improved Filters

• Step 5: Finding the Cause of the Deadlock in the Source Code

Step 1: Setting Up the Diner Session
In this step, you set up a session to detect deadlock situations. You use the JProbe
Create/Edit Settings tool to create the session settings. The following procedures
mention only the settings that you need to change or verify. If a setting is not mentioned,
leave it blank or in its default state. The procedure assumes that you are running JProbe
locally on your computer.

To set up the session:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, click Java Application.

The JProbe Configuration Wizard appears.

3 Click Add.

4 In the Configuration Name text box, type Diner, then click Next.

Architecture: The threads are located in the
demos.performance.diners.philosopher.run() method.

1 Run the tutorial first using the following filter setting:
Action = Method Level

2 Stop the executing Diner demo and add a filter for
demos.performance.diners.philosopher.run() with
the following detail:
Action = Line Level

Hypothesis: Using filters can help you identify where a deadlock occurs in the
code.

42 JProbe
Demos and Tutorials

5 In the Main Class field, select the Execute a class check box.

6 Click the browse button beside the Main Class field and navigate to the
Diner.class file in the <jprobe_home>/demos/performance/diners directory.

7 Click OK.

The following information is displayed:

• Main Class: demos.performance.diners.Diner
• Working Directory: <jprobe_home>

8 Click the browse button beside the Classpath field.

9 In the Classpath dialog box, click Add Working Directory, then click OK.

The working directory appears in the Classpath field.

10 Click Next.

The Select a Java Virtual Machine page appears.

11 If you want to change the default JVM, click the browse button beside the Java
Executable field, select another JVM in the Java Virtual Machines dialog box,
and click OK.
Note Ideally, the JVM you select should be the version that was used to compile your

program.

12 Click Next.

The Specify Your Code page appears.

13 In the Category/Program Name text box type DemoCategory (which specifies the
name of the category in which you want to include your code), then click Next.

14 In the Select a JProbe Analysis page, ensure that the Performance option is
selected.

15 On the General tab, select the Detect Deadlocks check box.

16 On the Automation tab, select the Data Recording Off check box, then click
Next.

This disables the data recording at initial JVM start.

17 In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

Chapter 2: Performance Analysis Demos 43
Philosopher’s Diner Tutorial
18 Click Save and save the configuration file (Diner_Perf_Settings.jpl) into your
working directory.

19 In the Configuration Complete page, select the Integrate check box and click
Finish.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Diner.bat, and in Unix/Linux: Diner.sh).

20 In the Integrating Diner dialog box, use the browse button to navigate to your
working directory, and click Save to save the startup file.

The Integrating Diner dialog box presents the status of the operation.

21 Select both check boxes (Close Create/Edit Settings tool on successful
integration and Run JProbe startup script on successful integration), and
click Close.

44 JProbe
Demos and Tutorials

The JProbe Execution Console opens, then the Diner program starts, displaying a
window with icons representing the philosophers. The slider controls the number
of milliseconds that a Philosopher waits (“sleeps”) between chopstick attempts
(“eating”). You are now ready to run a Performance analysis session.

Step 2: Running the Diner Session
In this step, you start the session from the command line. Let the Diner program run
until a deadlock occurs. That said, in some cases a deadlock may not occur because the
programmed behavior of the philosophers is random. The program is sensitive to timing
on the computer and in the JVM.

Note This procedure assumes that the Diner program is already running (for instructions on how
to execute the startup script, see step 21 in section “Step 1: Setting Up the Diner Session”
on page 41.

Alternatively, you can run the startup script from the command line:

In a Windows command window: >Diner.bat

In a Unix or Linux sh shell: >Diner.sh

In a Unix or Linux csh or ksh shell: >./Diner.sh

To run the session:

1 On the JProbe toolbar, click Attach to a Running Session .

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

Chapter 2: Performance Analysis Demos 45
Philosopher’s Diner Tutorial
2 Click OK.

After a few seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

3 Click Set Recording Level on the toolbar.

4 In the Set Recording Level dialog box, select Full Encapsulation, then click OK.

This enables JProbe to collect data for all methods and the methods they call.

5 In the Diner program window, click Start.

The program stops when a deadlock occurs because each philosopher has only
one chopstick.
Tip If a deadlock occurs immediately, stop the program (click Stop) and start it again (click

Start).

Tip If a deadlock does not occur at all, click Stop, adjust the slider to a lower value, then
click Start to rerun the program. Repeat until a deadlock occurs.

When the deadlock occurs, the Runtime Summary view appears with the
Deadlocks tab on the foreground.

6 Click Set Recording Level on the toolbar.

7 In the Set Recording Level dialog box, select Data Recording Off, then click
OK.

46 JProbe
Demos and Tutorials

JProbe takes a snapshot and displays it in the Snapshot Navigator panel.

8 Close the Diner program window.

JProbe disconnects from the running session. After a few seconds, the Call Graph
view appears.

9 Close the Call Graph view by clicking the “x” on the tab; you do not need this
view to investigate deadlocks.

Step 3: Investigating the Deadlock
As presented in Step 2: Running the Diner Session, the JProbe Execution Console
reported a deadlock among four threads. Information about the deadlocks is contained
in the Deadlocks tab of the Runtime Summary view.

To see the deadlock information:

1 In the Runtime Summary view, click the Deadlocks tab (if not selected).

You can see that four threads are causing the deadlock, while one thread is
affected by the deadlock.
Note The thread IDs change each time you run this program.

2 Select a thread in the left panel.

The stack trace for that thread is displayed. The thread is created by the
Philosopher.run() method. If you select any of the other threads, you find
that they are also created by the same method.

Chapter 2: Performance Analysis Demos 47
Philosopher’s Diner Tutorial
Step 4: Running the Diner Session with Improved Filters
You have identified that the threads are created by the run() method in the Philosopher
class. In this step, you first edit the session settings to focus on the run() method, then
run the Diner program again. You will now be able to identify in the source code the
line number where the thread is created.

To edit the configuration settings and re-run the session:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, select Diner and then click Edit.

3 Click the Analysis Type tab, then the Filters tab.

You are now going to select a filter type that allows you to identify the causing
thread.

4 Click in the row below the existing filter and click the browse button.

5 Navigate to <jprobe_home>/demos/performance/diners/Philosopher.class,
expand its method list, and select run.

6 Click Open.

The method is displayed in the Data Collection Filter list.

7 Click on the Action cell for this row and select line.

48 JProbe
Demos and Tutorials

8 Click Save.

You can now rerun the session to find out the line number in the source code
where the thread is created.

9 Click Run, then click OK in the Run JProbe Configuration dialog box.

The JProbe Execution Console opens, then the Diner program starts, displaying a
window with icons representing the philosophers. The slider controls the number
of milliseconds that a Philosopher waits (“sleeps”) between chopstick attempts
(“eating”). You are now ready to run a Performance analysis session.

10 Close the Create/Edit Settings dialog box.

11 On the JProbe toolbar, click Attach to a Running Session .

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

12 Click OK.

After a few seconds the Runtime Summary view appears, with the Memory Pools
tab on the foreground.

13 Click Set Recording Level on the toolbar.

14 In the Set Recording Level dialog box, select Full Encapsulation, then click OK.

This enables JProbe to collect data for all methods and the methods they call.

15 In the Diner program window, click Start.

Chapter 2: Performance Analysis Demos 49
Philosopher’s Diner Tutorial
When the deadlock occurs, the Runtime Summary view appears with the
Deadlocks tab on the foreground.

16 Close the Diner program window.

JProbe disconnects from the running session. After a few seconds, the Call Graph
view appears.

Step 5: Finding the Cause of the Deadlock in the Source Code
The filter causes line numbers to be appended to the methods in the stack trace. This
makes it easy to locate the problem area in the code.

To identify the affected threads in stack traces:

1 In the Runtime Summary view, click the Deadlocks tab.

2 Select a thread in the left panel.

This time the method (shown in the right panel) has a number appended to it (85).
The number represents a line number in the source code.

3 In the Call Graph view, right-click the method
demos.performance.diners.Philosopher.run() and select Show
Source.

The Source view appears, with line number 85 in red. You can see that the
synchronized (ch1) block is causing the deadlock.

50 JProbe
Demos and Tutorials

Polynomial Tutorial
The Polynomial tutorial illustrates how an inefficient algorithm can significantly impact
the performance of your code, and how you can use JProbe to compare performance and
identify the more efficient algorithm.

Tip You only want to optimize algorithms in the critical path of your program; there is no point
tuning algorithms that are called very rarely. You also need to evaluate the overall impact on
the runtime of the program. If an inefficient algorithm takes a total of a few seconds to
execute, you may make it run faster, but the impact on the overall runtime of the program will
be negligible.

The program runs two algorithms for computing the following polynomial expression:

an * x
n + ... + a2 * x

2 + a1 * x + a0, where n=750

The original algorithm uses nested loops to calculate xn. The improved algorithm
implements Horner’s Rule for evaluating polynomial expressions, that is, it factors out
powers of x in the form:

(((...(an * x + an-1)...) x + a2) x + a1) + a0

Note The values cited in this tutorial reflect the Polynomial running on Windows XP with
Sun JDK 1.6.0_10. You may see different values on your system, but the performance
improvement between the algorithms should still be evident.

The following table summarizes the types of information you need to know before
starting this tutorial.

The tutorial walks you through the following steps:

• Step 1: Setting Up the Polynomial Session

Program: Polynomial.class

Use Case: Calculate a polynomial expression.

Architecture: Both polynomial calculations are in the evaluate() method. To
run the program, you need to set a program argument:
• N = Use nested loops (original algorithm)
• H = Use Horner’s Rule (alternate algorithm)

Hypothesis: Horner’s Rule is faster.

Chapter 2: Performance Analysis Demos 51
Polynomial Tutorial
• Step 2: Running the Polynomial Session

• Step 3: Identifying and Investigating the Performance Bottleneck

• Step 4: Running the Polynomial with Improved Code

• Step 5: Measuring the Performance Improvement

Step 1: Setting Up the Polynomial Session
To collect timing data on the original algorithm, you need to set up the session in the
JProbe Create/Edit Settings tool. The following procedures mention only the settings
that you need to change or verify. If a setting is not mentioned, leave it blank or in its
default state. The procedure assumes that you are running JProbe locally on your
computer.

To set up the session:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, click Java Applications.

The JProbe Configuration Wizard appears.

3 Click Add.

4 In the Configuration Name box, type Polynomial, then click Next.

5 Under Main Class, click Execute a Class.

6 Click the browse button beside the Main Class field and navigate to the
Polynomial.class file in the <jprobe_home>/demos/performance/polynomial
directory.

7 Click OK.

The following information is displayed:

• Main Class: demos.performance.polynomial.Polynomial
• Working Directory: <jprobe_home>

8 To use the nested loop algorithm, you need to enter a program argument.

a Click the browse button beside the Application Arguments field.

b In the upper field of the Application Arguments dialog, type: N

c Click Parse Arguments.

52 JProbe
Demos and Tutorials

The argument appears in the first line of the lower field.

d Click OK.

The Application Arguments field displays the program argument.

9 Click the browse button beside the Classpath field.

10 In the Classpath dialog box, click Add Working Directory, then click OK.

The working directory appears in the Classpath field.

11 Click Next.

The Select a Java Virtual Machine page appears.

12 If you want to change the default JVM, click the browse button beside the Java
Executable field, select another JVM in the Java Virtual Machines dialog box,
and click OK.
Note Ideally, the JVM you choose should be the version that was used to compile your

program.

13 Click Next.

The Specify Your Code page appears.

14 In the Category/Program Name text box type DemoCategory (which specifies the
name of the category in which you want to include your code), then click Next.

15 In the Select a JProbe Analysis page, ensure that the Performance option is
selected.

16 On the Automation tab, select the Full Encapsulation check box, then click
Next.

This enables JProbe to collect data for all methods and the methods they call,
from the initial JVM start.

17 In the Specify the JProbe Options page, click Next.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

Chapter 2: Performance Analysis Demos 53
Polynomial Tutorial
18 Click Save and save the configuration file (Polynomial_Perf_Settings.jpl) into
your working directory.

19 In the Configuration Complete page, select the Integrate check box and click
Finish.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Polynomial.bat, and in Unix/Linux: Polynomial.sh).

20 In the Integrating Polynomial dialog box, use the browse button to navigate to
your working directory, and click Save to save the startup file.

The Integrating Polynomial dialog box presents the status of the operation.

21 Select the Close Create/Edit Settings tool on successful integration check box,
and click Close.

You are now ready to run a Performance analysis session.

54 JProbe
Demos and Tutorials

Step 2: Running the Polynomial Session
In this step, you exercise the use case on the Polynomial program. All you need to do is
to start the Polynomial program. It runs to completion in about one minute (depending
on your system setup), generating the data that you need to assess the performance of
the “nested loops” algorithm.

To run the session:

1 On the JProbe toolbar, click Attach to a Running Session .

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

2 Click OK.

The Connection Indicator dialog box indicates that JProbe is looking for your
session.

3 Start the Polynomial program from the command line:

• In a Windows command window: >Polynomial.bat
• In a Unix or Linux sh shell: >Polynomial.sh
• In a Unix or Linux csh or ksh shell: >./Polynomial.sh

The Polynomial program starts and runs in a command window.

When the program is finished, the command window closes. JProbe takes a
performance snapshot and displays it in the Snapshot Navigator panel and in the
Call Graph view.

Step 3: Identifying and Investigating the Performance Bottleneck
By default, the snapshot taken at the end of the session is selected and the Call Graph
window opens automatically.

Note This simple program contains only the problem algorithm. In a real world program, you
would have to locate the target algorithm in the graph or method list. The Filter Methods

Chapter 2: Performance Analysis Demos 55
Polynomial Tutorial
field can help you narrow down the number of methods displayed. Include the full
package.class.

1 Select the Polynomial.evaluate() method in the graph or the list.

The method is highlighted in both the graph and the list.

The method was called only once and took 2,258 milliseconds to execute.
Note This value may vary when running this tutorial on a different platform. The actual

time is less important than the comparative difference between the two algorithms.

2 In the Snapshot Navigator, right-click the snapshot, select Save Snapshot As,
name the snapshot Polynomial, and click Save.

3 Close the Call Graph view.

Step 4: Running the Polynomial with Improved Code
The original algorithm is slower than expected. Based on the hypothesis, the algorithm
that implements Horner’s Rule should run faster.

To use the Horner’s Rule algorithm, you need a new program argument. You can either
edit the existing configuration or create a separate configuration to make it easy to
switch between tests. In this tutorial, you create a copy of the existing configuration and
edit it.

56 JProbe
Demos and Tutorials

To run and assess the Horner’s Rule algorithm:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, under Java Application, click Polynomial if
it is not already selected.

3 Click Copy.

The settings are copied from the original configuration.

4 In the Configuration Name text box, type PolynomialFixed as the name for the
new configuration.

5 Click the Java Application tab to change the program argument.

a Click the browse button beside the Application Arguments field.

b In the upper field of the Application Arguments dialog box, delete N and type:
H

c Click Parse Arguments.

The argument appears in the first line of the lower field.

d Click OK.

The Application Arguments field displays the program argument.

Chapter 2: Performance Analysis Demos 57
Polynomial Tutorial
6 Click Save then Save As, to save the configuration file
(PolynomialFixed_Perf_Settings.jpl) into your working directory.

7 Click Integrate.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: PolynomialFixed.bat, and in Unix/Linux:
PolynomialFixed.sh).

8 In the Integrating PolynomialFixed dialog box, use the browse button to navigate
to your working directory, and click Save to save the startup file.

The Integrating Polynomial dialog box presents the status of the operation.

9 Select the Close Create/Edit Settings tool on successful integration check box,
and click Close.

You are now ready to run a Performance analysis session using the fixed code.

10 On the JProbe toolbar, click Attach to a Running Session .

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

11 Click OK.

The Connection Indicator dialog box indicates that JProbe is looking for your
session.

12 Start the fixed Polynomial program from the command line:

• In a Windows command window: >PolynomialFixed.bat
• In a Unix or Linux sh shell: >PolynomialFixed.sh
• In a Unix or Linux csh or ksh shell: >./PolynomialFixed.sh

The PolynomialFixed program starts and runs in a command window.

When the program is finished, the command window closes. JProbe takes a
performance snapshot and displays it in the Snapshot Navigator panel and in the
Call Graph view.

13 In the Call Graph view, click the Call Graph tab, and select the
Polynomial.evaluate() method.

The method is highlighted in the Call Graph and the list.

58 JProbe
Demos and Tutorials

The method was called only once and took 270 milliseconds to execute.

14 In the Snapshot Navigator, right-click the snapshot, select Save Snapshot As,
name the snapshot PolynomialFixed, and click Save.

Step 5: Measuring the Performance Improvement
You know that the second algorithm runs much faster than the first one. In this step, you
will quantify the performance improvement using the Snapshot Difference window to
compare snapshots.

To measure the performance improvement:

1 In the Snapshot Navigator, right-click the PolynomialFixed snapshot and select
Snapshot Differencing.

The Performance Difference dialog box appears, with PolynomialFixed displayed
in the Snapshot to Compare list.

2 Select Polynomial from the Baseline Snapshot list and click OK.

Chapter 2: Performance Analysis Demos 59
Polynomial Tutorial
3 If the following warning dialog appears, click Yes.

The Snapshot Difference view appears, displaying the differences between the
two methods.

The number of calls to Polynomial.evaluate() did not change, but the
Cumulative Time has decreased by 1,988.
Note Negative values represent a performance improvement. Therefore, the Horner’s

Rule algorithm runs considerably faster than the nested loop algorithm.

60 JProbe
Demos and Tutorials

3

Coverage Analysis Demos

This chapter provides a summary of the Coverage demo applications that ship with
JProbe and a tutorial for one of these applications.

The source code and compiled classes for the Coverage demos are located in the
<jprobe_home>/demos/coverage directory.

This chapter contains the following sections:

Summary of Demos for Coverage ...62
Adventure Tutorial ...63

62 JProbe
Demos and Tutorials
Summary of Demos for Coverage
The following table describes the purpose of the example applications.

JProbe also ships with a Java EE demo application called JProbe Game Pack Demo for
Java EE. For more information, see “JProbe Game Pack for JavaEE” on page 73.

Java SE Application Purpose More Information

Adventure.class A text-based adventure
game in which you
navigate through a house.
The application ships
with two test case input
files. The test cases do
not provide 100%
coverage of the program
code.

See the notes in
Adventure.java.

Tutorial: “Adventure
Tutorial” on page 63

SwitchCaseTest.class This example
demonstrates conditional
coverage using a simple
switch/case statement.

See the notes in
SwitchCaseTest.java.

TryCatchFinallyTest.class This example
demonstrates how JProbe
tracks try-catch-finally
blocks.

See the notes in
TryCatchFinallyTest.java.

Chapter 3: Coverage Analysis Demos 63
Adventure Tutorial
Adventure Tutorial
This basic tutorial shows you how to evaluate the effectiveness of two test cases for a
text-based adventure game. The test cases are supplied as text files, which are specified
in program arguments. The files for the tutorial are available in the <jprobe_home>/
demos/coverage/adventure directory.

This tutorial does not create a baseline snapshot of the Adventure program because the
test cases hit methods in all classes. For more information about the baseline coverage
snapshot, see the JProbe User Guide.

Note The values cited in this tutorial reflect the Adventure program running on Windows
XP with Sun JDK 1.6.0_10. You may see different values on your system.

The following table summarizes the types of information you need to know before
starting this tutorial.

The tutorial leads you through the following steps:

• Step 1: Setting Your Global Options

• Step 2: Setting Up the Session for the First Test Case

• Step 3: Running the First Test Case

• Step 4: Setting Up and Running the Second Test Case

• Step 5: Merging the Test Case Results

• Step 6: Assessing Your Test Case Coverage

Step 1: Setting Your Global Options
Catch blocks are often hard to test. For this tutorial, we are going to remove the results
for catch blocks by setting a global option.

To set global options for the Coverage analysis tool:

1 In the JProbe Console, click Tools > Options on the toolbar.

Program: Adventure.class

Test Case: AdvTest1.txt, AdvTest2.txt

64 JProbe
Demos and Tutorials
2 Click Data Display > Coverage.

3 Select the Filter out Catch Blocks check box.

4 Click OK.

Step 2: Setting Up the Session for the First Test Case
In this step, you create a configuration for the Adventure program using the JProbe
Create/Edit Settings dialog box. The configuration includes the path to a text file that
contains the first test case.

To set up the first test case:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, click Java Application.

The JProbe Configuration Wizard appears.

3 Click Add.

4 In the Configuration Name text box, type Adventure_TestCase1, then click Next.

5 In the Main Class field, select the Execute a class check box.

6 Click the browse button beside the Main Class field and navigate to the
Adventure.class file in the <jprobe_home>/demos/coverage/Adventure directory.

7 Click OK.

The following information is displayed:

• Main Class: demos.coverage.adventure.Adventure

Chapter 3: Coverage Analysis Demos 65
Adventure Tutorial
• Working Directory: <jprobe_home>

8 Add the fully qualified path to the text file containing the first test case.

a Click the browse button beside the Application Arguments field.

b In the Application Arguments dialog, type the following in the upper field:
<jprobe_home>/demos/coverage/adventure/AdvTest1.txt

Note If there is a space in your JProbe home directory path, enclose the argument in
quotes.

c Click Parse Argument.

The argument appears in the first line of the lower field.

d Click OK.

The Arguments field displays the program argument.

9 Click the browse button beside the Classpath field.

10 In the Classpath dialog box, click Add Working Directory, then click OK.

The working directory appears in the Classpath field.

11 Click Next.

The Select a Java Virtual Machine page appears.

12 If you want to change the default JVM, click the browse button beside the Java
Executable field, select another JVM in the Java Virtual Machines dialog box,
and click OK.
Note Ideally, the JVM you select should be the version that was used to compile your

program.

13 Click Next.

The Specify Your Code page appears.

14 In the Category/Program Name text box type DemoCategory (which specifies the
name of the category in which you want to include your code), then click Next.

15 In the Select a JProbe Analysis page, ensure that the Coverage option is selected.

16 Click the Filters tab.

You should see the following default Include filter in the table:
demos.coverage.adventure.*.*().

17 Click Next and Next again to pass the Specify the JProbe Options page.

The Save the Configuration page appears, presenting a summary of the settings
defined for your configuration.

66 JProbe
Demos and Tutorials
18 Click Save and save the configuration file
(Adventure_TestCase1_Cov_Settings.jpl) into your working directory.

19 In the Configuration Complete page, select the Integrate check box and click
Finish.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Adventure_TestCase1.bat, and in Unix/Linux:
Adventure_TestCase1.sh).

20 In the Integrating Adventure_TestCase1 dialog box, use the browse button to
navigate to your working directory, and click Save to save the startup file.

The Integrating Adventure_TestCase1 dialog box presents the status of the
operation.

Chapter 3: Coverage Analysis Demos 67
Adventure Tutorial
21 Select the Close Create/Edit Settings tool on successful integration check box,
and click Close.

You are now ready to run a Coverage analysis session (test case #1).

Step 3: Running the First Test Case
To run the first test case:

1 On the JProbe toolbar, click Attach to a Running Session .

The Attach to Running Session dialog box appears, displaying the correct host
and port number.

2 Click OK.

The Connection Indicator dialog box indicates that JProbe is looking for your
session.

3 Start the Adventure program (test case #1) from the command line:

• In a Windows command window: >Adventure_TestCase1.bat
• In a Unix or Linux sh shell: >Adventure_TestCase1.sh
• In a Unix or Linux csh or ksh shell: >./Adventure_TestCase1.sh

The JProbe Execution Console opens and the program runs using the text file as
test case input for choices.

When the program is finished, the command window closes. JProbe takes a
coverage snapshot and displays it in the Snapshot Navigator panel and in the
Snapshot Browser view.

68 JProbe
Demos and Tutorials
Step 4: Setting Up and Running the Second Test Case
To run JProbe with a different test case, you need to change the program arguments for
your configuration. Because these are tests that may be modified and re-run, do this by
creating a second configuration based on the original, by copying and editing it.

To set up and run the second test case:

1 Click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, under Java Application, click
Adventure_TestCase1 if it is not already selected.

3 Click Copy.

The settings are copied from the original configuration.

4 In the Configuration Name box, type Adventure_TestCase2 as the name for the
new configuration.

5 Click the Java Application tab to change the program argument.

Chapter 3: Coverage Analysis Demos 69
Adventure Tutorial
a Click the browse button beside the Application Arguments field.

b In the Application Arguments dialog box, select the existing argument in the
lower box and click Delete.

c Edit the argument in the upper box as follows:

<jprobe_home>/demos/coverage/adventure/AdvTest2.txt
Note If there is a space in your JProbe home directory path, enclose the argument in

quotes.

d Click Parse Argument.

The argument appears in the first line of the lower field.

e Click OK.

The Application Arguments field displays the program argument.

6 Click Save then Save As, to save the configuration file
(Adventure_TestCase2_Cov_Settings.jpl) into your working directory.

7 Click Integrate.

JProbe validates the configuration file and creates a startup script file (for
example, in Windows: Adventure_TestCase2.bat, and in Unix/Linux:
Adventure_TestCase2.sh).

8 In the Integrating Adventure_TestCase2 dialog box, use the browse button to
navigate to your working directory, and click Save to save the startup file.

The Integrating Adventure_TestCase2 dialog box presents the status of the
operation.

9 Select the Close Create/Edit Settings tool on successful integration check box,
and click Close.

You are now ready to run a Coverage analysis session (test case #2).

10 On the JProbe toolbar, click Attach to a Running Session .

The Attach to a Running Session dialog box appears, displaying the correct host
and port number.

11 Click OK.

The Connection Indicator dialog box indicates that JProbe is looking for your
session.

12 Start the Adventure program (test case #2) from the command line:

• In a Windows command window: >Adventure_TestCase2.bat

70 JProbe
Demos and Tutorials
• In a Unix or Linux sh shell: >Adventure_TestCase2.sh
• In a Unix or Linux csh or ksh shell: >./Adventure_TestCase2.sh

The JProbe Execution Console opens and the program runs using the text file as
test case input for choices.

When the program is finished, the command window closes. JProbe takes a
coverage snapshot and displays it in the Snapshot Navigator panel.

13 Close the Snapshot Browser view.

Step 5: Merging the Test Case Results
In this step, you merge the snapshots taken during Step 3: Running the First Test Case
and Step 4: Setting Up and Running the Second Test Case, to get a complete picture of
the coverage provided by these two test cases.

You merge the snapshots using the jpcovmerge command line tool. Before you can use
this tool, you must save to the disk the two snapshots to be compared.

To merge the snapshots:

1 Save the snapshot taken during Step 3: Running the First Test Case to the disk.

a Right-click the snapshot and select Save Snapshot As.

b In the Save As dialog box, save the snapshot as <working_directory>\first.jpc.

2 Repeat step a to step b to save the snapshot taken during Step 4: Setting Up and
Running the Second Test Case as <working_directory>\second.jpc.

3 Click Start > Run and type the following, then click OK:
<jprobe_home>\bin\jpcovmerge <working_directory>\first.jpc
<working_directory>\second.jpc
<working_directory>\merged.jpc

4 On the JProbe Console, click File > Load Snapshot.

5 In the Open dialog box, select <working_directory>\merged.jpc and click Open.

The merged snapshot is selected and its content is displayed in the Snapshot
Browser view.

Chapter 3: Coverage Analysis Demos 71
Adventure Tutorial
Step 6: Assessing Your Test Case Coverage
After merging your test cases, you are now ready to investigate your results. By default,
JProbe displays results in terms of misses. A miss means that the code was not called
during your test cases.

To investigate your results:

1 In the Snapshot Browser view, expand the class tree in the upper pane to show all
of the classes in demos.coverage.adventure.

2 Click the % Missed Methods column heading in the upper pane to sort the table
from highest-to-lowest percentage of missed methods.

Methods are missed in three classes: Adventure, Logic, and RoomList. We
will investigate the first two classes.

By default, the Adventure program is selected in the top pane, which means that
the lower pane contains all the methods in the program.

3 In the upper pane, select the Adventure class.

The methods for the Adventure class are displayed in the lower pane.

72 JProbe
Demos and Tutorials
4 Right-click the main() method and click View Source to open the
<jprobe_home>\demos\coverage\adventure\Adventure.java source code.

The source code opens at a block of missed lines that are in an if statement, so
you know that the test case missed a condition. You have identified an
opportunity to expand the test suite with a new test case. In this case, you would
pass two input files as program arguments.

5 Click the button at the top of the coverage bar (to the right of the scroll bar) to
move to the next set of missed lines.

We can see that code is missed because input is not coming from the console. You
can ignore these misses.

6 Continue in this way until you have examined all the missed blocks of code, then
move on to the next missed class.

You have identified an area for improvement. If you like, you can modify the test
suite and redo the tutorial to see the improvement in overall coverage.

4

JProbe Game Pack for JavaEE

This section describes how to deploy the JProbe Game Pack demo software and
presents how to use JProbe with JavaEE applications that require a third-party
application server. The tutorials describe how to find two different kinds of memory
leaks with the Memory analysis tool and how to investigate a performance bottleneck
with the Performance analysis tool.

Note The Game Pack tutorials were created using JProbe 8.1, BEA WebLogic 10.0 application
server, and JDK 1.6.0_10 on Windows XP. You can use any of the supported application
servers listed in “System Requirements” on page 74, but your results may be different from
those seen in the tutorials.

This chapter contains the following sections:

Deploying the JProbe Game Pack Demo..74
Loitering Objects Tutorial...83
Object Cycling Tutorial ..88
Performance Bottleneck Tutorial ...94

74 JProbe
Demos and Tutorials
Deploying the JProbe Game Pack Demo
This section describes how to deploy the JProbe Game Pack demo on JBoss-Tomcat and
WebLogic application servers. For details, see:

• System Requirements

• Setting Environment Variables

• Installing the Game Pack Demo

• Deploying the Game Pack Demo on Your Application Server

• Creating a User Account for Game Pack

• Running Game Pack with the JProbe Application

• Game Pack Known Issues

System Requirements
The Game Pack demo requires the following environment:

• JProbe 8.1

• One of the following operating systems:

• Microsoft® Windows® 2003 or XP PRO SP2 or later
• Red Hat® AS 4.0 or 5.x
• Sun Solaris® SPARC 8.0, 9.0, or 10.0
• IBM AIX® 5L 5.3 or 6.1

• One of the following application servers:

• JBoss™ 3.2.1 with Apache Tomcat 5.0.24
• JBoss™ 4.0.1 SP1 with Apache Tomcat 5.0.30
• JBoss™ 4.2.2.GA
• BEA® WebLogic® Server 8.1 SP2
• BEA® WebLogic® Server 9.1 or 9.2
• BEA® WebLogic® Server 10.0

• Java EE SDK 1.6.0 or later

• One of the following browsers:

• FireFox

Chapter 4: JProbe Game Pack for JavaEE 75
Deploying the JProbe Game Pack Demo
• Microsoft IE
• Apple Safari

• Jakarta Ant 1.6.3 or later

For a list of JProbe supported platforms and installation instructions, see the JProbe
Installation Guide. The guide is available as a PDF file on the CD and in the JProbe
installation directory <jprobe_install>\doc.

You can download the supported versions of JBoss with Apache Tomcat from
SourceForge.net at: http://sourceforge.net/project/showfiles.php?group_id=22866.

You can download Ant 1.6.3 or later from the Apache Jakarta Project at:
http://jakarta.apache.org/ant/. Extract the files to a directory.

Setting Environment Variables
Before you begin, set up the following environment variables:

• ANT_HOME=<ant_install_dir>

• JPROBE_HOME=<jprobe_install_dir>

• If you are using JBoss, JBOSS_HOME=<jboss_install_dir>

• If you are using WebLogic Server, WL_HOME=<wlserver##_install_dir>

Add the following paths to your PATH environment variable (use the syntax appropriate
for your operating system):

• %ANT_HOME%\bin

• %JPROBE_HOME%

• If you are using JBoss, %JBOSS_HOME%

• If you are using WebLogic Server, %WL_HOME%

Installing the Game Pack Demo
For detailed installation instructions, see the JProbe Installation Guide.

If you chose to install examples during the JProbe installation, the Game Pack demo
files are installed automatically in the following directory structure:

JPROBE_HOME

demos\

http://sourceforge.net/project/showfiles.php?group_id=22866
http://ant.apache.org/

76 JProbe
Demos and Tutorials
gamepack\

 build\ (build and class files)

 dist\ (deploy files)

lib\ (JAR files)

src\ (source code)

support\ (support files)

Deploying the Game Pack Demo on Your Application Server
This section presents how to deploy the Game Pack demo on the following application
servers:

• Deploying the Game Pack Demo on JBoss

• Deploying the Game Pack Demo on BEA WebLogic Server 8.1 SP2

• Deploying the Game Pack on BEA WebLogic Server 9.x

• Deploying the Game Pack on BEA WebLogic Server 10.0

Deploying the Game Pack Demo on JBoss
Use the build properties file and build script provided. The following procedure
assumes that you have successfully installed and configured: Ant 1.6.3 or later, a
supported version of JBoss with Apache Tomcat, and JProbe 8.1. In addition, you need
to have defined an environment variable called JBOSS_HOME which points to your
JBoss home directory.

To deploy the Game Pack demo on JBoss:

1 In the <JPROBE_HOME>\demos\gamepack\build directory, edit the
build.properties file.

a Delete the pound sign (#) from the J2EEServer=JBossWithTomcat
statement.

b Add a pound sign (#) in front of the J2EEServer=Weblogic9.1 statement.

c Save the file.
Note A JBOSS_HOME environment variable is required for the build to work.

2 At a command prompt, navigate to the <JPROBE_HOME>\demos\gamepack
directory and enter the following command:

Chapter 4: JProbe Game Pack for JavaEE 77
Deploying the JProbe Game Pack Demo
ant deploy -f build\build.xml

A successful build includes the following types of messages:
deploy.tofolder:

[copy] Copying 1 file to C:\Program
Files\ApplicationServers\JBoss\jboss-
4.2.2.GA\server\default\deploy

[echo] INFO: 'C:\Quest_Software\JProbe_8.1\demos\gamepack/
dist/gamepack.ear

' has been deployed to 'C:\Program
Files\ApplicationServers\JBoss\jboss-4.2.2.GA

/server/default/deploy'.

BUILD SUCCESSFUL

3 Start JBoss using the <JBOSS_HOME>\bin\run.bat file.

4 To view the Game Pack, open a browser and enter:
http://localhost:<port>/gamepack/index

where <port> is Tomcat’s http port number. The default value is 8080.

Note The Ant build command given in this procedure packages and deploys the Game Pack files.
To rebuild the Game Pack from source and package and deploy it, use:
ant -f build\build.xml.

Deploying the Game Pack Demo on BEA WebLogic Server 8.1 SP2
To deploy the JProbe Game Pack on WebLogic Server 8.1, you use the WebLogic
Configuration Wizard. The following procedure assumes that you have successfully
installed and configured BEA WebLogic Server 8.1 SP2 and JProbe 8.1.

To deploy the Game Pack demo on BEA WebLogic Server 8.1 SP2:

1 Start the WebLogic Configuration Wizard.

• On Windows, click Start > Programs > BEA Weblogic Platform 8.1 >
Configuration Wizard.

• On UNIX, execute java -jar config.jar in the WL_HOME/weblogic81/
common/lib directory.

2 Select the Create a new WebLogic configuration check box and click Next.

78 JProbe
Demos and Tutorials
3 In the Locate Additional Templates field, click Browse and navigate to
<JPROBE_HOME>/demos/gamepack/support/deployment/Weblogic8.1/
templates/domains directory.

The WebLogic Configuration Templates tree refreshes to display a Quest
template folder.

4 Expand the entire Quest template folder.

5 Select Gamepack Domain and click Next.

6 For a default configuration, select the Express check box, then click Next.
Note Alternatively, for customizing configuration elements, such as server port numbers,

select the Custom check box. This adds several steps to the configuration process.

7 Make changes to the User name and User password and click Next.

8 Specify the server start mode by selecting the Development Mode check box.

9 Select a JDK from the available list (default is recommended), then click Next.

10 Specify the directory in which the WebLogic configuration will be created. The
default is in the user_projects directory of your WL_HOME. The default
configuration name is gamepack.

11 Click Create to create the domain in the selected directory.

12 When the configuration is created, click Done.

13 Start the Game Pack using your new configuration by executing the
startWebLogic.cmd command from the WL_HOME/user_projects/domains/
gamepack directory (or other directory if you made changes in the Configuration
Wizard).

14 To view the Game Pack, open a browser and type:
http://localhost:7001/gamepack/index

You can now stop WebLogic (by using the stopWebLogic.cmd command from
the WL_HOME/user_projects/domains/gamepack directory) and prepare to run
the Game Pack in JProbe.

Deploying the Game Pack on BEA WebLogic Server 9.x
To deploy the JProbe Game Pack on BEA WebLogic Server 9.x, you use the WebLogic
Configuration Wizard. The following procedure assumes that you have successfully
installed and configured BEA WebLogic Server 9.x and JProbe 8.1.

Chapter 4: JProbe Game Pack for JavaEE 79
Deploying the JProbe Game Pack Demo
To deploy the Game Pack demo on BEA WebLogic Server 9.x:

1 Start the WebLogic Configuration Wizard.

• On Windows, click Start > Programs > BEA Products > Tools >
Configuration Wizard.

• On UNIX, execute java -jar config.jar in the WL_HOME/weblogic9x/
common/lib directory.

2 Select the Create a new WebLogic domain check box and click Next.

3 Select the Base this domain on an existing template check box.

4 Click Browse and navigate to <JPROBE_HOME>/demos/gamepack/support/
deployment/Weblogic9.1/templates/domains directory, select gamepack.jar, and
click OK.

5 Click Next.

6 Configure the User name and User password and click Next (default is
recommended).

7 Specify the server start mode by selecting the Development Mode check box.

8 Select a JDK from the available list (default is recommended), then click Next.

9 To use the default configuration (recommended), select the No check box.
Note Alternatively, for customizing different configuration options, such as listen ports,

select the Yes check box. This adds several steps to the configuration process.

10 Specify the directory where the WebLogic domain will be created. The default is
in the user-projects/domain directory of your WL_HOME. The default domain
name is gamepack. You can leave the default directory or change it.

11 Specify the directory where WebLogic Applications will be stored. The default is
the user_projects/applications directory of your WL_HOME. You can leave the
default directory or change it.

12 Click Create to create the domain in the selected directory.

13 When the configuration is created, click Done.

14 Start the Game Pack using your new configuration by executing the
startWebLogic.cmd command from the WL_HOME/user_projects/domains/
gamepack directory (or other directory if you made changes in the Configuration
Wizard).

15 To view the Game Pack, open a browser and type:
http://localhost:7001/gamepack/index

80 JProbe
Demos and Tutorials
You can now stop WebLogic, by using the stopWebLogic.cmd command from
the WL_HOME/user_projects/domains/gamepack/bin directory (or other
directory if you made changes in the Configuration Wizard), and prepare to run
the Game Pack in JProbe.

Deploying the Game Pack on BEA WebLogic Server 10.0
To deploy the JProbe Game Pack on BEA WebLogic Server 10.0, you use the
WebLogic Configuration Wizard. The following procedure assumes that you have
successfully installed and configured BEA WebLogic Server 10.0 and JProbe 8.1.

To deploy the Game Pack demo on BEA WebLogic Server 10.0:

1 Start the WebLogic Configuration Wizard.

• On Windows, click Start > Programs > BEA Products > Tools >
Configuration Wizard.

• On UNIX, execute java -jar configwiz.jar in the WL_HOME/
wlserver_10.0/common/lib directory.

2 Select the Create a new WebLogic domain check box and click Next.

3 Select the Base this domain on an existing template check box.

4 Click Browse and navigate to <JPROBE_HOME>/demos/gamepack/support/
deployment/Weblogic10.3/templates/domains directory, select gamepack.jar, and
click OK.

5 Click Next.

6 Configure the User name and User password and click Next (default is
recommended).

7 Specify the server start mode by selecting the Development Mode check box.

8 Select a JDK from the available list (default is recommended), then click Next.

9 To use the default configuration (recommended), select the No check box.
Note Alternatively, for customizing different configuration options, such as listen ports,

select the Yes check box. This adds several steps to the configuration process.

10 Specify the directory where the WebLogic domain will be created. The default is
in the user-projects/domain directory of your WL_HOME. The default domain
name is gamepack. You can leave the default directory or change it.

11 Specify the directory where WebLogic Applications will be stored. The default is
the user_projects/applications directory of your WL_HOME. You can leave the
default directory or change it.

Chapter 4: JProbe Game Pack for JavaEE 81
Deploying the JProbe Game Pack Demo
12 Click Create to create the domain in the selected directory.

13 When the configuration is created, click Done.

14 Start the Game Pack using your new configuration by executing the
startWebLogic.cmd command from the WL_HOME/user_projects/domains/
gamepack directory (or other directory if you made changes in the Configuration
Wizard).

15 To view the Game Pack, open a browser and type:
http://localhost:7001/gamepack/index

You can now stop WebLogic, by using the stopWebLogic.cmd command from
the WL_HOME/user_projects/domains/gamepack/bin directory (or other
directory if you made changes in the Configuration Wizard), and prepare to run
the Game Pack in JProbe.

Creating a User Account for Game Pack
The first time that you start the Game Pack, you need to create a user account for
yourself.

To create a user account:

1 In the Game Pack demo home page, click Sign up as new user.

2 Type a user name and password in the User ID and Password fields.

3 Re-type the password in the Re-enter Password field.

4 Type the name you want to use for the games in the Name field.

5 Click Sign-up.

The Game Pack demo home page re-appears. The name you typed in the Name
field appears in the top left corner.

82 JProbe
Demos and Tutorials
You can now proceed to play Minesweeper or Match Game.

Running Game Pack with the JProbe Application
Follow a tutorial that matches the JProbe application you are using. You can open the
tutorials from the Game Pack demo by clicking the Tutorials link.

To run Game Pack with JProbe, you must complete the following generic tasks:

1 Integrate the JProbe application with your application server.

2 Set up your JProbe session.

3 Run the JProbe session to start the application server.

4 Connect the JProbe Console to the session.

5 When the application server is started, open a browser and go to:

For JBoss: http://localhost:8080/gamepack/index

For WebLogic Server: http://localhost:7001/gamepack/index

6 Exercise the use case.

Game Pack Known Issues
The following known issues have been identified:

• The Game Pack may not work with the evaluation version of WebLogic Server.
Use a fully licensed version of WebLogic or use JBoss.

Chapter 4: JProbe Game Pack for JavaEE 83
Loitering Objects Tutorial
• Minesweeper handles one selection at a time and does not buffer multiple tile
clicks.

• Right-clicking Minesweeper and selecting Open in New Window may cause
unexpected results.

• Opening multiple browser sessions for the same user may cause point calculation
issues.

Loitering Objects Tutorial
Minesweeper and the Match Game both offer a Loitering Objects mode. The Loitering
Objects mode demonstrates how an obsolete container reference can keep session beans
in the Java heap long after their usefulness is gone. In this tutorial, you see how you can
reclaim memory by removing loitering GameHandler objects.

Before beginning this tutorial, you need to deploy the Game Pack to the application
server of your choice. For more information, see “Deploying the JProbe Game Pack
Demo” on page 74.

Note The values cited in this tutorial reflect the Game Pack running on JBoss 4.2.2.GA, on
Windows XP.

The following table summarizes the types of information you need to know before
starting this tutorial.

The tutorial walks you through the following steps:

• Step 1: Setting Up the Session

• Step 2: Starting the Session and the Game Pack

• Step 3: Running the Session

Program: Game Pack demo: Match Game

Use Case: Play a few games without quitting.

Architecture: When the Start button is selected, create a GameHandler object to
run the game.

Hypothesis: The GameHandler object is removed from the heap when the game
ends.

84 JProbe
Demos and Tutorials
• Step 4: Identifying Loitering Objects

• Step 5: Investigating Loitering Objects

• Step 6: Running the Session with Improved Code

Step 1: Setting Up the Session
You use the JProbe configuration tool to create the session settings for this example. In
the setup procedure, only the settings that you need to change or verify are mentioned. If
a setting is not mentioned, leave it blank or in its default state. The following procedure
assumes that you are running JProbe locally on your computer.

To set up the session:

1 On the JProbe Console, click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, select JBoss and click Add.

3 In the Define a New Configuration screen, type a name in the Configuration
Name field, such as LoiteringObjects.

4 Click the appropriate version under JBoss and click Next.

5 Type the path to your server startup script in the text field or click and
navigate to it, then click Next.

6 In the Specify Your Code screen, in the Elements area, type the path to the
deployed gamepack.ear file (for example,
<jprobe_home>\demos\gamepack\dist\gamepack.ear) or click and navigate
to it.

7 Specify a Category/Program Name, then click Next.

8 In the Select a JProbe Analysis screen, under Analysis Type, select Memory, then
click Next.

9 Click Next again to pass the Specify the JProbe Options screen.

10 In the Save the Configuration screen, review the settings, then click Save and
browse to a location to save the settings file that you just created.

11 In the Configuration Complete screen, select Integrate, then click Finish.

Chapter 4: JProbe Game Pack for JavaEE 85
Loitering Objects Tutorial
12 In the Integrating dialog box, click to navigate to the location where you want
to save the startup script (for example, in Windows: run_WithJProbe.bat, and in
Unix/Linux: run_WithJProbe.sh), then click Save.

13 When you see the Integration complete message, select the Close Create/
Edit Settings tool on successful integration check box and click Close.

Step 2: Starting the Session and the Game Pack
In this step, you start JBoss using the startup script you created in the Step 1: Setting Up
the Session and connect to it from JProbe. Then you open a browser to run the Game
Pack demo.

To start the JProbe session and the Game Pack:

1 Start JBoss using the startup script:

In Windows: >C:\<jboss_home>\bin\run_WithJProbe.bat

In Unix/Linux (sh shell): >run_WithJProbe.sh

In Unix/Linux (csh or ksh shells): >./run_WithJProbe.sh

2 In the JProbe Console, click Attach to Session .

3 Click OK in the Attach to Running Session dialog box.

The Runtime Summary view opens, with the Memory Pools tab on the
foreground.

4 Open a browser and go to http://localhost:8080/gamepack/index.

The Game Pack Demo login page appears.

5 Enter your user ID and password and click Login.
Note The first time you do this, you need to create a user name and password for yourself.

For more information, see “Creating a User Account for Game Pack” on page 81.

Step 3: Running the Session
In this step, you work through a use case by playing three consecutive games. It does
not matter for the analysis whether you win or lose the games. However, it is important
that you start a session before you begin to play, or JProbe will not perform a garbage
collection. After you have played three games, you end the session, and JProbe takes a
snapshot.

86 JProbe
Demos and Tutorials
To run a game with the Loitering Objects fault:

1 In the Game Pack demo, click Play beside either Minesweeper or Match Game.
Note Both games have the same loitering object problem.

2 Select the Loitering Objects option.
Note Clicking the link displays the option’s definition.

3 In the JProbe Runtime Summary view, click Set Recording Level on the
toolbar.

4 In the Set Recording Level dialog box, select Record Allocations and Stack
Traces For All Instances, then click OK.

5 In the Game Pack demo, click Start and play the game.

6 When the game ends, play the game twice more (without quitting) for a total of
three complete games.

7 Click Quit.

8 In the Runtime Summary view, click Set Recording Level on the toolbar.

9 In the Set Recording Level dialog box, select Data Recording Off, then click
OK.

JProbe takes a snapshot and displays it in the Snapshot Navigator panel.

10 In the Snapshot Navigator, right-click the snapshot, select Save Snapshot As, and
navigate to where you want to save the snapshot.

11 Name the snapshot loitering_objects and click Save.

The new name is displayed in the Snapshot Navigator.

12 Click Detach from Running Session .
Note You can also close your application server and the Game Pack demo browser.

The session snapshot appears in the snapshot navigator and (after a few seconds)
the Instances view appears.

Step 4: Identifying Loitering Objects
In this step, you look for loitering objects in the heap. The Heap Count column is the
first place to look. In general, you should expect objects created during a session to be
removed at the end of it. In fact, the GameHandler objects are not removed, and three
instances of this object continue to loiter in the heap.

Chapter 4: JProbe Game Pack for JavaEE 87
Loitering Objects Tutorial
To identify loitering objects:

1 If the loitering_objects snapshot is not open, right-click it in the snapshot
navigator and select Open Instances View.

The Instances view appears.

2 In the Filter Classes field, type *.GameHandler and press Enter to display only
the GameHandler class.

The Heap Count for GameHandler is 3, not 0 (zero) as hypothesized.

Step 5: Investigating Loitering Objects
In this step, you find the live object that continues to hold a reference to the loitering
instances of GameHandler in the heap. You start in the Instances view, then drill down
to Instance Detail and the Memory Leak views, and discover that the loitering
GameHandler objects are being held by an obsolete container reference. To look for a
solution, you open the Source view and review the code for the allocating method.

To investigate loitering objects:

1 If the snapshot is not open, right-click it in the snapshot navigator and select the
Open Instances View.

The Instances view appears.

2 Filter the method list by typing *.GameHandler in the Filter Classes field and
pressing Enter.

3 Select the GameHandler class and click Instance Detail .

The Instance Detail view opens. The three loitering GameHandler objects are
displayed in the instances list. You can see the stack trace of method calls in the
Allocated At column.

4 Click the Trace tab and scroll down the method list to the methods belonging to
the subpackages of the demos.gamepack.web.game package and find a method
called EJBControllerImpl.startGame().

The startGame() method calls the getGameHandlerRemote() method,
which in turn sets off a series of calls to JBoss methods that eventually causes the
bean to be created. Therefore, the getGameHandlerRemote() method is the
most likely candidate for investigation, because it is the last Game Pack method
before the series of application server calls.

88 JProbe
Demos and Tutorials
5 Right-click the
demos.gamepack.web.game.EJBControllerImpl.getGameHandlerRemo
te() method and select Show Allocated At Source.

6 If you are prompted for the source code, navigate to <jprobe_home>/demos/
gamepack/src/demos/gamepack/web/game, select EJBControllerImpl.java, and
click Open.

The Source view opens, highlighting line 197 of the code. This line represents the
method call from the getGameHandlerRemote() method to the application
server’s create method, which creates the beans.

Now that you found the method that creates the loitering GameHandler objects,
you are close to finding out where the objects should be removed. Scrolling down
to line 124, you find that the resetGameHandlerRemote() method is the
problem method. When the Loitering Objects mode is selected, the
_gameHandlerRemote.remove() method is not called, so the references to the
GameHandler objects are never removed.

Tip It is good programming practice to pair your calls to create and remove objects close together.

Step 6: Running the Session with Improved Code
You can re-run Minesweeper or Match Game in Normal mode with the corrected code.
Repeat Step 1: Setting Up the Session through Step 3: Running the Session, selecting
Normal mode instead of Loitering Objects and not re-naming the snapshot. You will
see in the Instances view that the Heap Count for GameHandler is now 0, as predicted
by the hypothesis.

This example demonstrates how to use JProbe to identify and remove loitering objects
from your code.

Object Cycling Tutorial
The Match Game offers an Object Cycling mode. The Object Cycling mode
demonstrates how over-allocating short-lived objects can cause the garbage collector to
run more frequently than necessary. Garbage collection takes time and resources. The
Normal mode shows that it is often more efficient to reuse strings.

Chapter 4: JProbe Game Pack for JavaEE 89
Object Cycling Tutorial
Before beginning this tutorial, you need to deploy the Game Pack to the application
server of your choice. For more information, see “Deploying the JProbe Game Pack
Demo” on page 74.

Note The values cited in this tutorial reflect the Game Pack running on JBoss 4.2.2.GA, on
Windows XP.

The following table summarizes the types of information you need to know before
starting this tutorial.

The tutorial walks you through the following steps:

• Step 1: Setting Up the Session

• Step 2: Starting the Session and the Game Pack

• Step 3: Running the Session

• Step 4: Identifying Object Cycling

• Step 5: Investigating Object Cycling

• Step 6: Running the Session with Improved Code

Step 1: Setting Up the Session
You use the JProbe configuration tool to create the session settings for this example. In
the setup procedure, only the settings that you need to change or verify are mentioned. If
a setting is not mentioned, leave it blank or in its default state. The following procedure
assumes that you are running JProbe locally on your computer.

To set up the session:

1 On the JProbe Console, click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

Program: Game Pack Demo: Match Game

Use Case: Play three games without quitting.

Architecture: Object Cycling: Use string concatenation.
Normal: Append to an existing string buffer object.

Hypothesis: The program does not create unnecessary temporary string objects.

90 JProbe
Demos and Tutorials
2 In the Manage Configurations pane, select JBoss and click Add.

3 In the Define a New Configuration screen, type a name in the Configuration
Name field, such as ObjectCycling.

4 Click the appropriate version under JBoss and click Next.

5 Type the path to your server startup script in the text field or click and
navigate to it, then click Next.

6 In the Specify Your Code screen, in the Elements area, type the path to the
deployed gamepack.ear file (for example,
<jprobe_home>\demos\gamepack\dist\gamepack.ear) or click and navigate
to it.

7 Specify a Category/Program Name, then click Next.

8 In the Select a JProbe Analysis screen, under Analysis Type, select Memory, then
click Next.

9 Click Next again to pass the Specify the JProbe Options screen.

10 In the Save the Configuration screen, review the settings, then click Save and
browse to a location to save the settings file that you just created.

11 In the Configuration Complete screen, select Integrate, then click Finish.

12 In the Integrating dialog box, click to navigate to the location where you want
to save the startup script (for example, in Windows: run_WithJProbe.bat, and in
Unix/Linux: run_WithJProbe.sh), then click Save.

13 When you see the Integration complete message, select the Close Create/
Edit Settings tool on successful integration check box and click Close.

Step 2: Starting the Session and the Game Pack
In this step, you start JBoss using the startup script you created in Step 1: Setting Up the
Session and connect to it from JProbe. Then you open a browser to run the Game Pack
demo.

To start the JProbe session and the Game Pack:

1 Start JBoss using the startup script:

In Windows: >C:\<jboss_home>\bin\run_WithJProbe.bat

In Unix/Linux (sh shell): >run_WithJProbe.sh

Chapter 4: JProbe Game Pack for JavaEE 91
Object Cycling Tutorial
In Unix/Linux (csh or ksh shells): >./run_WithJProbe.sh

2 In the JProbe Console, click Attach to Session .

3 Click OK in the Attach to Running Session dialog box.

The Runtime Summary view opens, with the Memory Pools tab on the
foreground.

4 Open a browser and go to http://localhost:8080/gamepack/index.

The Game Pack Demo login page appears.

5 Enter your user ID and password and click Login.
Note The first time you do this, you need to create a user name and password for yourself.

For more information, see “Creating a User Account for Game Pack” on page 81.

Step 3: Running the Session
In this step, you turn on garbage monitoring so that you can see how many objects are
garbage collected during your use case. You work through a use case by playing three
consecutive games. It does not matter for the analysis whether you win or lose the
games. However, it is important that you start a use case before you begin to play, or
JProbe will not perform a garbage collection. After you have played three games, you
end the use case, and JProbe takes a snapshot.

To run a game with the Object Cycling fault:

1 In the Game Pack demo, select Play beside Match Game.

2 Select the Object Cycling option.
Note Clicking the link displays the option’s definition.

3 In the JProbe Runtime Summary view, click Set Recording Level on the
toolbar.

4 In the Set Recording Level dialog box, select Record Allocations, Stack Traces,
and Garbage Data For All Instances and click OK.

5 In the Game Pack demo, click Start and play the game.

6 When the game ends, play the game twice more (without quitting) for a total of
three complete games.

7 Click Quit.

8 In the Runtime Summary view, click Set Recording Level on the toolbar.

92 JProbe
Demos and Tutorials
9 In the Set Recording Level dialog box, select Data Recording Off, then click
OK.

JProbe takes a snapshot and displays it in the Snapshot Navigator panel.

10 In the Snapshot Navigator, right-click this snapshot, select Save Snapshot As,
and navigate to where you want to save the snapshot.

11 Name the snapshot object_cycling and click Save.

The new name is displayed in the Snapshot Navigator.

12 Click Detach from Running Session .
Note You can also close your application server and the Game Pack demo browser.

The Instances view appears after a few seconds,.

Step 4: Identifying Object Cycling
In this step, you look for classes and methods that allocate short-lived objects.

The Garbage Collections chart in the GC Data tab displays steep spikes, which means
that some set of objects is garbage collected soon after being created. In the Instances
view, look for classes with high Dead Count values and no or very few instances still
alive. In this example, you can see that many instances of StringBuffer were
allocated and garbage collected. None of the instances are still alive. When you review
the results, you see that most of the StringBuffer objects were allocated by
*_StringConcatenation methods in the MatchGameRenderer class.

To identify short-lived objects:

1 If the object_cycling snapshot is not open, right-click it in the Snapshot Navigator
and select Open Instances View.

The Instances view appears.

2 Select Dead Count from the Investigate by list, and sort the table by Dead
Count.

You can see that many String and StringBuffer instances are immediately
garbage collected (that is, high Dead Count values and low Recorded Count
values).

3 Drill into the Merged Allocation Points and Call Traces views, by right-clicking
the StringBuffer instance and selecting the Open Merged Allocation Points
View and Open Call Traces View, respectively.

Chapter 4: JProbe Game Pack for JavaEE 93
Object Cycling Tutorial
You can see that most of the StringBuffer objects were allocated by
renderGameMap_StringConcatenation,
renderGamePlay_StringConcatenation, and
renderSnapshot_StringConcatenation methods in the
MatchGameRenderer class, demos.gamepack.matchgame package.

Step 5: Investigating Object Cycling
In Java, the JVM converts string concatenations into StringBuffer objects, which
means that each concatenation creates a new object with a very short life span. This is a
less efficient way to handle strings.

Take a look at the source code to see exactly how the application works. The
_StringConcatenation methods are in the MatchGameRenderer.java source
code. You can use any editor to examine the allocating methods, but it makes it easier to
find the method if your editor has a search feature. Remember that in this case the code
contains the fixed code as well.

To investigate the garbage collected objects:

1 Navigate to <jprobe_home>/demos/gamepack/src/demos/gamepack/matchgame
and open the MatchGameRenderer.java file in a source code editor.

2 Search for the top method: renderGamePlay_StringConcatenation.

3 Observe that the method contains many string concatenations. If you scroll down
to find renderSnapshot_StringConcatenation and then
renderGameMap_StringConcatenation, you can see that these methods also
use string concatenation.

Step 6: Running the Session with Improved Code
The file MatchGameRenderer.java also contains methods that offer a better way to
handle the strings. While you have the source code open, you can scroll to find these
improved methods:

• renderGamePlay_StringBufferAppend

• renderSnapshot_StringBufferAppend

• renderGameMap_StringBufferAppend

94 JProbe
Demos and Tutorials
If you want, you can re-run this tutorial using Normal mode, which uses the improved
methods. When you check the Instances view, you should see that the number of short-
lived StringBuffer objects is reduced significantly.

This example demonstrates how to use JProbe to identify and remove object cycling
problems in your code.

Performance Bottleneck Tutorial
The Minesweeper game can be played in the Method Time mode. This mode
demonstrates a performance bottleneck caused by an inappropriate algorithm that is
used for rendering the Minesweeper game board as one large image. For comparison,
you can play the game in the Normal mode, which creates the game board as a table
containing HTML links to images.

Before beginning this tutorial, you need to deploy the Game Pack to the application
server of your choice. For more information, see “Deploying the JProbe Game Pack
Demo” on page 74.

Note The values cited in this tutorial reflect the Game Pack running on JBoss 4.2.2.GA, on
Windows XP.

The following table summarizes the types of information you need to know before
starting this tutorial.

The tutorial walks you through the following steps:

Program: Game Pack Demo, Minesweeper Game
Entry point of interest: GameController.doGet

Use Case: Run minesweeper and select one tile.

Architecture: Method Time: The game board is constructed with images on the
server-side, encoded as a single image, and sent to the browser. You
may notice the image jumps when a tile is selected.
Normal: The game board is created as a table of links to images.

Hypothesis: Encoding is slow. Creating the game board with links to images will
be faster and smoother, especially if the images are cached by the
browser.

Chapter 4: JProbe Game Pack for JavaEE 95
Performance Bottleneck Tutorial
• Step 1: Setting Up the Session

• Step 2: Starting the Session and the Game Pack

• Step 3: Running the Session

• Step 4: Identifying the Performance Bottleneck

• Step 5: Running the Session with Improved Code

• Step 6: Measuring the Performance Improvement

Step 1: Setting Up the Session
You use the JProbe configuration wizard to create the session settings for this example.
In the setup procedure, only the settings that you need to change or verify are
mentioned. If a setting is not mentioned, leave it blank or in its default state. The
following procedure assumes that you are running JProbe locally on your computer.

To set up the session:

1 On the JProbe Console, click Tools > Create/Edit Settings.

The Create/Edit Setting dialog box appears.

2 In the Manage Configurations pane, select JBoss and click Add.

3 In the Define a New Configuration screen, type a name in the Configuration
Name field, such as PerformanceBottleneck.

4 Click the appropriate version under JBoss and click Next.

5 Type the path to your server startup script in the text field or click and
navigate to it, then click Next.

6 In the Specify Your Code screen:

a In the Elements area, type the path to the deployed gamepack.ear file (for
example, <jprobe_home>\demos\gamepack\dist\gamepack.ear) or click
and navigate to it.

b Click Create Filters.

The table is populated with the filters available for your application.

c Select the My Application Filters check box.

All application filters are now selected and Action set to include. JProbe can
use these application filters as default data collection filters when performing a
Performance analysis.

96 JProbe
Demos and Tutorials
d Specify a Category/Program Name, then click Next.

7 In the Select a JProbe Analysis screen:

a Under Analysis Type, select Performance.

b In the General tab, select the Detect Deadlocks check box.

c In the Filters tab, ensure that all collection filters are selected and set Action to
line for each of them.

d Click Next.

8 Click Next again to pass the Specify the JProbe Options screen.

9 In the Save the Configuration screen, review the settings, then click Save and
browse to a location to save the settings file that you just created.

10 In the Configuration Complete screen, select Integrate, then click Finish.

11 In the Integrating dialog box, click to navigate to the location where you want
to save the startup script (for example, in Windows: run_WithJProbe.bat, and in
Unix/Linux: run_WithJProbe.sh), then click Save.

12 When you see the Integration complete message, select the Close Create/
Edit Settings tool on successful integration check box and click Close.

Step 2: Starting the Session and the Game Pack
In this step, you start JBoss using the startup script you created in the Step 1: Setting Up
the Session and connect to it from JProbe. Then you open a browser to run the Game
Pack demo.

Note The first time you do this, you need to create a user name and password for yourself.

To start the JProbe session and the Game Pack:

1 Start JBoss using the startup script:

In Windows: >C:\<jboss_home>\bin\run_WithJProbe.bat

In Unix/Linux (sh shell): >run_WithJProbe.sh

In Unix/Linux (csh or ksh shells): >./run_WithJProbe.sh

2 In the JProbe Console, click Attach to Session .

3 Click OK in the Attach to Running Session dialog box.

Chapter 4: JProbe Game Pack for JavaEE 97
Performance Bottleneck Tutorial
The Runtime Summary view opens, with the Memory Pools tab on the
foreground.

4 Open a browser and go to http://localhost:8080/gamepack/index.

The Game Pack Demo login page appears.

5 Enter your user ID and password and click Login.
Note The first time you do this, you need to create a user name and password for yourself.

For more information, see “Creating a User Account for Game Pack” on page 81.

Step 3: Running the Session
In this step, you exercise the use case by selecting one tile. It does not matter for the
analysis whether the tile reveals a number or a mine. In Method Time mode, the entire
game board is redrawn on the server-side, encoded, and sent to the browser. You should
find that the game responds slowly.

To run a game with a performance bottleneck:

1 In the Game Pack, click Play beside Minesweeper.

2 Select the Method Time option.
Note Clicking the link displays the option’s definition.

3 In the JProbe Runtime Summary view, click Set Recording Level on the
toolbar.

4 In the Set Recording Level dialog box, select Full Encapsulation and click OK.

5 In the Game Pack, click Start and click any one tile.

6 Click Quit.

7 In the Runtime Summary view, click Set Recording Level on the toolbar.

8 In the Set Recording Level dialog box, select Data Recording Off, then click
OK.

JProbe takes a snapshot and displays it in the Snapshot Navigator panel.

9 In the Snapshot Navigator, right-click this snapshot, select Save Snapshot As,
and navigate to where you want to save the snapshot.

10 Name the snapshot minesweeper_methodtime and click Save.

The new name is displayed in the Snapshot Navigator.

98 JProbe
Demos and Tutorials
11 Click Detach from Running Session .
Note You can also close your application server and the Game Pack demo browser.

The Call Graph view appears after a few seconds.

Step 4: Identifying the Performance Bottleneck
In this tutorial, you use the Call Graph view to identify a hotspot. A hotspot is an
expensive method, one that takes more time than necessary to run. The hotspot method
may be the performance bottleneck or the method may call another method that causes
the slowdown. In this example, you find two expensive third-party methods that are
called by one of the Game Pack methods.

To identify the performance bottleneck:

1 Right-click the minesweeper_methodtime snapshot and select the Open Call
Graph View.

2 Select Cumulative Time from the Color By list.
Tip You can change the default Red-Gray color scheme. Right-click the color scale

(located between the graph and the list) and select a different color scheme.

Nodes on the left of the graph are bright red, because each node contains the
cumulative time of its children and their call trees. As you follow a branch to the
right, the red color fades, because the cumulative time of each node includes
fewer method call trees.

3 Identify the critical path.

In this case, we know from our preliminary work that the critical path of the
Game Pack demo is started by the call to GameController.doGet.

The parallel branch, started by GameImageServlet.doGet, is actually initiated
from a method in the main call tree. The GameImageServlet.doGet branch
does the work of encoding the completed minesweeper game board image for the
browser.
Note In this example, we focus only on the critical path. However, later when you compare

these results against the Minesweeper game in Normal mode, you will find that the
encoding servlet is no longer required by the improved algorithm, which saves all the
time used by this branch.

4 To isolate the critical path, select GameController.doGet method and click
Isolate Subtree on the toolbar.

Chapter 4: JProbe Game Pack for JavaEE 99
Performance Bottleneck Tutorial
Percentages are recalculated to include only the call trees for this method. The
cumulative time for the GameController.doGet method is therefore 100%.

5 Follow the brightest nodes in the branch from left to right until the bright color
fades or you reach the end of the branch. In this example, the last nodes are
MediaTracker.waitForID() and Toolkit.getDefaultToolkit().
Note You may need to expand the branch to see the last nodes.

Toolkit.getDefaultToolkit() displays in the graph as an encapsulated
node. To view this node, you might have to increase the number of nodes that are
displayed in the Call Graph.

Tip You may notice a small lock icon on some of the nodes. The lock means that data on
the method was encapsulated. By default, details are encapsulated for third party and
framework methods. Method level detail is only set for your packages, which focuses
your analysis on your own code. For more information, see Encapsulate Filter in the
online help.

6 Select MediaTracker.waitForID(). In the method list (lower panel), you can
see that the method time is 274 ms and it is called 200 times.

7 Select Toolkit.getDefaultToolkit. The method time is 1 ms and it is called
200 times.

Both hotspot methods are from the java.awt framework methods. You cannot
modify the code for these methods; all you can do is change how or if you call
them. You need to find which of the Game Pack methods initiates the calls to
these methods.

8 Travel the call tree back to GameImageManager.loadImage and then to
MineSweeperRenderer.renderMineMapImage_MethodTime. This is the
method that starts the process that calls the java.awt methods.

Conclusion: The performance bottleneck is caused by the Game Pack method
renderMineMapImage_MethodTime calling these expensive, third-party methods for
every tile in the game board.

Step 5: Running the Session with Improved Code
After you discover the performance bottleneck, you can choose how best to fix your
code. Review the source code. You could attempt to call a less expensive method or you
might choose an entirely new algorithm to do the same task. For the Game Pack demo,
we decided to use a different way to build the game board, one that does not require that
the images be loaded and encoded on the server side. Instead, the game board is simply
a table of HTML links. If image caching is enabled in the browser, the images are stored
and used locally; otherwise, the links point to images on the Web server.

100 JProbe
Demos and Tutorials
To run the session with improved code:

1 Restart the session following the instructions in Step 2: Starting the Session and
the Game Pack.

2 Repeat Step 3: Running the Session, but select Normal mode instead of the
Method Time option, and save the snapshot as minesweeper_normal.

3 Right-click minesweeper_normal and select the Open Call Graph View.

4 To isolate the critical path, select GameController.doGet and click Isolate
Subtree on the toolbar.

Percentages are recalculated to include only the call trees for this method. The
cumulative time for the GameController.doGet method is therefore 100%.

5 Follow the path of red nodes to find the method that contains the new algorithm.
In this example, it is called renderMineMapImage_Normal.

The new method renderMineMapImage_Normal runs faster than the original
renderMineMapImage_MethodTime method. Also, the new method does not
require the encoding servlet, so overall the program is even faster.

6 Exit the Game Pack Demo and end the session. Close the browser.

Step 6: Measuring the Performance Improvement
You know that the image caching algorithm runs much faster than the original
compression algorithm. To quantify the improvement, use the Snapshot Difference tool
to compare snapshots.

To measure the performance improvement:

1 In the JProbe Snapshot Navigator, right-click the minesweeper_normal snapshot
and select Snapshot Differencing.

The Performance Difference dialog box appears. The selected snapshot is
displayed in the Snapshot to Compare field.

2 Select minesweeper_methodtime from the Baseline Snapshot list, and click OK.

If you isolated on different methods, you see a message informing you that the
snapshots have different transformations. The isolate action, among others, is
removed automatically to ensure that you are comparing the same data set.

The Performance Difference view opens. By default, only the classes with
differences are displayed.

Chapter 4: JProbe Game Pack for JavaEE 101
Performance Bottleneck Tutorial
3 To see the impact that changing the algorithm had on the servlet, isolate the
doGet method by typing *.doGet() in the Filter Methods field.

The GameController.doGet and GameImageServlet.doGet methods are
the only methods displayed. A negative number in the Cumulative Time column
means an improvement. The Normal mode offers a 76% improvement over the
Method Time mode, which is a significant difference.
Note The actual percentage may be different on your system.

This example demonstrates how, in your own code, an inefficient algorithm can
significantly impact performance. Of course, you only want to optimize algorithms in
the critical path of your program; there is no point tuning algorithms that are called very
rarely. You also need to evaluate the overall impact on the runtime of the program. If an
inefficient algorithm takes a total of a few seconds to execute, you may make it run
faster, but the impact on the overall runtime of the program would be negligible.

102 JProbe
Demos and Tutorials

Index

A
about JProbe 8
about Quest Software 11
Adventure tutorial 63

C
contacting Quest 12
coverage analysis

demos, summary of 62
tutorials, case effectiveness Java SE 63

coverage effectiveness, Java SE tutorial 63
creating, Game Pack user accounts 81

D
deadlock, Java SE tutorial 40
demos

Java EE, Game Pack 73
Java SE

coverage analysis 61
memory analysis 13
performance analysis 37

deploying, Game Pack demo 74
Diner tutorial 40
documentation

core 10
feedback 10
suite 10

E
environment variables, setting 75

G
Game Pack

creating user accounts 81
deploying demo 76
installing 75
running with JProbe 82
setting environment variables 75
system requirements 74

I
inefficient algorithm, Java SE tutorial 50
installing, Game Pack 75

J
Java coverage effectiveness 63
Java EE

loitering objects tutorial 83
object cycling tutorial 88
performance bottleneck tutorial 94

Java SE
deadlock tutorial 40
inefficient algorithm tutorial 50
leak example tutorial 16
object over-allocation 26

104 JProbe
Demos and Tutorials
L
LeakExample tutorial 16
Loitering Objects tutorial 83

M
memory analysis

demos, summary of 14
tutorials

leak example Java SE 16
loitering objects Java EE 83
object cycling Java EE 88
object over-allocation Java SE 26

memory leak, Java SE tutorial 16

N
Network tutorial 26

O
Object Cycling, Java EE tutorial 88
object over-allocation, Java SE tutorial 26

P
performance analysis

demos, summary of 38
tutorials

bottleneck Java EE 94
deadlock Java SE 40
inefficient algorithm Java SE 50

Performance Bottleneck tutorial 94
Polynomial tutorial 50

R
running Game Pack with JProbe 82

S
support 12

T
technical support 12
text conventions 11
tutorials

coverage, case effectiveness Java SE 63
memory

leak example Java SE 16
loitering objects Java EE 83
object cycling Java EE 88
object over-allocation Java SE 26

performance
bottleneck Java EE 94
deadlock Java SE 40
inefficient algorithm Java SE 50

	Introduction to This Guide
	About JProbe
	About This Guide
	How to Use This Guide
	Where to Find Information Not in This Guide

	JProbe Documentation Suite
	Core Documentation Set
	Feedback on the Documentation

	Text Conventions
	About Quest Software, Inc.
	Contacting Quest Software
	Contacting Quest Support
	Quest Communities

	Memory Analysis Demos
	Summary of Demos for Memory
	LeakExample Tutorial
	Step 1: Setting Up the Memory Leak Session
	Step 2: Running the Memory Leak Session
	Step 3: Identifying Loitering Objects
	Step 4: Investigating Loitering Objects
	Step 5: Running the Memory Leak Session with Improved Code

	Network Tutorial
	Step 1: Setting Up the Network Session
	Step 2: Running the Network Session
	Step 3: Identifying Large Allocations of Short-Lived Objects
	Step 4: Investigating Large Allocations of Short-Lived Objects
	Step 5: Running the Network Session with Improved Code

	Performance Analysis Demos
	Summary of Demos for Performance
	Philosopher’s Diner Tutorial
	Step 1: Setting Up the Diner Session
	Step 2: Running the Diner Session
	Step 3: Investigating the Deadlock
	Step 4: Running the Diner Session with Improved Filters
	Step 5: Finding the Cause of the Deadlock in the Source Code

	Polynomial Tutorial
	Step 1: Setting Up the Polynomial Session
	Step 2: Running the Polynomial Session
	Step 3: Identifying and Investigating the Performance Bottleneck
	Step 4: Running the Polynomial with Improved Code
	Step 5: Measuring the Performance Improvement

	Coverage Analysis Demos
	Summary of Demos for Coverage
	Adventure Tutorial
	Step 1: Setting Your Global Options
	Step 2: Setting Up the Session for the First Test Case
	Step 3: Running the First Test Case
	Step 4: Setting Up and Running the Second Test Case
	Step 5: Merging the Test Case Results
	Step 6: Assessing Your Test Case Coverage

	JProbe Game Pack for JavaEE
	Deploying the JProbe Game Pack Demo
	System Requirements
	Setting Environment Variables
	Installing the Game Pack Demo
	Deploying the Game Pack Demo on Your Application Server
	Creating a User Account for Game Pack
	Running Game Pack with the JProbe Application
	Game Pack Known Issues

	Loitering Objects Tutorial
	Step 1: Setting Up the Session
	Step 2: Starting the Session and the Game Pack
	Step 3: Running the Session
	Step 4: Identifying Loitering Objects
	Step 5: Investigating Loitering Objects
	Step 6: Running the Session with Improved Code

	Object Cycling Tutorial
	Step 1: Setting Up the Session
	Step 2: Starting the Session and the Game Pack
	Step 3: Running the Session
	Step 4: Identifying Object Cycling
	Step 5: Investigating Object Cycling
	Step 6: Running the Session with Improved Code

	Performance Bottleneck Tutorial
	Step 1: Setting Up the Session
	Step 2: Starting the Session and the Game Pack
	Step 3: Running the Session
	Step 4: Identifying the Performance Bottleneck
	Step 5: Running the Session with Improved Code
	Step 6: Measuring the Performance Improvement

	Index

		2009-02-24T12:13:48-0500
	Owen Turner
	For security and accessibility

