IMPLEMENTATION OF A CHECKPOINT-RESTART
SYSTEM

by

NAVEEN LANKE

B. Tech., Srikrishnadevaraya University,
Anantapur, India, 2004

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2006

Approved by:

Major Professor
Daniel Andresen, Ph.D.

ACKNOWLEDGEMENTS

I would like to express my thanks and gratitude to Dr Daniel Andresen, my major professor for
giving me constant encouragement, advice throughout this whole project as well as during my
Masters in Computer Science at Kansas State University. I also thank him for patiently clearing

my questions and giving me good leads during this project work.

I would like to thank Dr William Hankley and Dr Mitchell Neilsen for serving in my committee

as well as for their valuable cooperation during this project.

I would like to thank Mr Prashanth Palakollu for his help in setting up, configuring and installing
Fedora Linux on VM-Ware Player.

ABSTRACT

The main objective of the project is to checkpoint the current running process, save the
image and restart the process from where it is check pointed. A process may be migrated either
before it starts its execution (non-preemptive migration) or during the course of its execution
(preemptive process migration). Preemptive process migration is costlier than non-preemptive
process migration since the process environment must also accompany the process to its new
node for an already executing process. In the project, we deal with preemptive process migration

and here after the term process migration implicitly means preemptive process migration.

Checkpointing a given process is nothing but saving its state. The state usually includes
register set, address space, allocated resources, and other related process private data. Restart
mechanism resumes the process execution by restoring the checkpointed state of the process, on

the destination machine.

Checkpointing can be implemented at three levels namely kernel-level, user-level and
application-level. These levels differ in implementation, complexity, performance, transparency

and reusability.

TABLE OF CONTENTS

LIST OF FIGURES ..ottt sttt sttt sttt sbeeaesanen 3
LIST OF TABLES ...ttt ettt sttt ettt st sbe et et sbeetesanens 4
1. INTRODUCGTION ...ttt ettt ettt ettt ettt et e st e bt e saeeate st ensesseesseenseeneenseesesneans 5
Lo PLOCESS -ttt ettt et h e et e bt e et e bttt e s bt et e ebt e bt e it e enbeenaee 5
1.2 Motivation for Process MIZIatiOnccocuueiiiiiiriiieiniieeniieeriee ettt st siee e 5
1.3 Overview Of process MIZTAtIONccccueeirieeriiiieriiieeiiieeriteeriee et e et ee sttt e sireesbeeesbeeesabeeas 6
1.4 Introduction to Checkpoint and ReStartccecvieeiiiieiiiiieiiie e 7
1.4.1 Approaches to CheCKPOINTING........cccvvieiiieeiiieeiieeeiieeeiteesieeesaeeesaeeeeaeeeereeeaeeesnseeesnseens 8
Kernel-level CheCKPOINtINgc.ceiiiiiiiiiiiiieeiie ettt 8
User-level CheCKPOINTINGc.eiiiiiiiiiiiiiie ettt ettt ettt e eesabee s 8
Application-level CheCKPOINtINGc.viiiiiieiiiieeiiieeiiee ettt e ere e eereesreeesaeeeeaee s 8

2 Problem Definition..........couiiiiiiiiiiieiee ettt ettt ettt st e 9
2.1 Problem StateImMENtccueiiiiiriiriieiieeie ettt ettt et 9
2.2 Problem DESCTIPIONceiuiiiiiiiiiiieeeite ettt ettt ettt e et e e st e e sbbeesabeeesabeeesaneeas 9
2.3 ObjJectiVes Of the PIOJECTeeruiiiiiiiieiiteite ettt sttt ettt e s eeees 9

3 Requirements SPECITICALIONccuvieiiiiieeiieeeiieeeiieeeiee et e e siee et eeeae e e b e e eseaeeessaeesaaeesnseeesnseeenns 10
3.1 Hardware and SOTEWATE.........cocueiriiiiiiieeiieeeeet ettt s 10
3.2 Overview of the platform..........cooouiiiiiiiiiii e 10

4 SYSTEIM ANALYSIS ..uvteeieiieeiiiieeiiieeiie e ettt e eteeeeteeesteeestteeessaeeesaeesssaeessseeaasseeansseeesssasassseesssseessseesnns 11
4.1 System Requirement ANALYSISc.ceeecueiiriieiiiieiiieeeiieeeiteeeieeeeieeesveeeneaeeeeneeeaeeesnseeennnes 11
4.2 Sructured ANALYSIS ..cccuveiiiiiiiiiieeiiie ettt et 11

S SYSIEM DESIZN ...ttt ettt ettt e et e e et e st e e st e e sabt e e s bt e e sabeeenabeeea 15
T B B o 14 W € o ¥ | OSSPSR 15
I B T B B) ¥4 o DRSSPSR 16
5.3 ArChitecture DESI@Ncoouiiiiiiiiiiieieiee ettt e 17
5.4 User INterface DESIZNccuviiiiiiiiiiiiiiieeeie ettt sttt e e e 18
5.5 Process DESIZI ...couuiiiiiiiiiiieeeee ettt et 19

6 IMPIEMENTATIONeeeiiieiiiieciieeetee et ete et e et e e et eeeteeesabeeestbeeessbeeensseeensseeensseeansseessseeensseenns 21
6.1 OVEIVIEW ..ottt ettt ettt et e e e be e st e e b e et esaeesareesaeeeaneenaneeareenaneean 21

6.2 RealiZAtION OF CRS ..ot e e e e e e e et ee e e e e e e e e e raeeeeeeeereanaaaaeas 21

6.3 The Library INTEITaCec.eeiiuiiieiiiecieeceeee ettt et e e 22
6.4 SUDSYSTEITIS...cuuvieiiiieiitie et te et e ettt ettt et e st e e sabe e e sttt e e sabee ettt e ssbeesabbeesabbeesabteesabeeesabeeenanes 23
T TSI, .ttt ettt ettt ettt et e e ab e e bt e e bt e e ettt e s ab e e e ab et e abe e e bt e e e bt e e ebbeeeabeeenabeeea 26
8 SCIEEINISNOLS ..ttt et e et e s bt e sttt e st e e s e e e sabeeenane 27
CONCLUSITON ...ttt ettt et e bbbt e s bt st e s bt e e bt e sbbeebeesabeenbeenaseeneees 29
9.1 LAMIEATIONS +.nvveeitieiieeiie ettt ettt ettt ettt ettt e sa e st e b st e bt e saneebeesateebeesaneeneenaneens 29
9.2 Scope fOr fULUIE WOTKcoocuiiiiiiiiiiiie e e 29
REFERENCES AND/OR BIBLIOGRAPHYc..oiiiiiiiiiiiieeeeee e 30
APPENDIX A L.ttt ettt ettt e b e et esat e et e st eteas 31
L. HOW 0 TNSTALL...eoniiiiiiieiieeeeece ettt ettt 31
2. HOW O TUIN .ttt ettt ettt et e st s bt e sae e et eesae e e bt e saneeneenaneean 31

LIST OF FIGURES

Figure 1 — Flow of execution of migrating ProCESScccuveerieerrireerrireenieeenieeenreeesireessneesseeennnes 6
Figure 2 — Context level DFD of the Process Migration SyStemcccveeeveeenieeenveesineeenineennns 12
Figure 3 — Level 1 DFD of Process Migration SYSteMc.eeevueeerieeenieeeniieeeiieesieeesieeesieeenne 13
FIgUIE 4 — MIZIAtE SYSIEIM ..eeeiuiiieeiiieieiiieenitieeeiiee et te ettt e et e e sttt e st teesabeeesabeeebbeesbbeesbaeesabeeesabeeenas 13
FIgUIE 5 — RESAIT SYSIEIMN...uuiieiiiieiiieeiieeeieeeeieeestee et e etteeetaeestaeessbeeessseeesseeesseeesneesnsneesnseesns 13
Figure 6 — State transition dia@raml.........cccuvieiieeeiiiieeiiieeiiee et e eieeesieeesaeeesaeeesareeesareessneesseeens 14
Figure 7 — Checkpoint file fOrmat............cccooiiiiiiiiiiiiiiiie e 16
Figure 8 — Layered Architecture of the Process Migration application...........cccccevvveeriiveennnennne 17
Figure 9 — The client-Server MOdelc..oooviiiiiiiiiiiiieiee et e see e 18
Figure 10 — Hierarchy CRartc.ooiiiiiiiiiieee ettt 19
FIgUIe 11 — APPIICALION ..uuvtiiiiiiiiiiieeeiie ettt ettt e et e et e et e e sabeeesabeeeas 22

LIST OF TABLES

TaDIE 1 = SEEMENLS....ccuiieeiiieeiiie ettt eteeeriee et e ettt e et eeetaeessteeessseeeessaeessseeessaeansseesnsseennseesnns

Table 2 — Memory
Table 3 — Header..

1. INTRODUCTION

1.1 Process
A process is basically a program in execution. It consists of the executable program
(code), the data and stack, program counter, stack pointer and other registers and all the

information needed to run the program.

Typically in any operating system, all the information about each process is stored in an
OS table called the process table which is an array of structures, one for each process currently in
existence and each process is uniquely identified with its Process Identifier (PID). In modern OS
a process runs in its own address space and is separate from other processes. A process interacts
with the operating system, or the kernel, by system calls; it can also communicate with other

processes by inter-process communication mechanisms provided by the operating system.

1.2 Motivation for Process Migration

In days gone by, computers were prohibitively expensive. Most organizations had only a
small number of computers, and each computer operated autonomously. However, as the cost of
computers dramatically fell, it became reasonable to conceive the systems whose overall
computational power could be increased by using more than one processor to simultaneously do

the work on the same problem.

A common paradigm is explicit parallel programming: a programmer defines multiple
concurrent tasks, encapsulating each in an OS process, and each process is run on a different
processor. Most parallel programming environments decide where each process will be run at the
time the process is born. Once a process begins, it must remain resident on the same processor
until the completion of the task. Even if the scheduling of processes to processors turns out to be
suboptimal, it cannot be changed. Often it is impossible to predict how the load on the system

will change over time, and thus often impossible to optimally schedule processes to processors.

In an attempt to gain better performance, a number of researchers have developed a
different class of parallel execution environments that allow processes to move from processor to

processor dynamically at any point in the life of the process. A change in processor residency in

the middle of the lifetime of the process is typically called “PROCESS MIGRATION”. By
dynamically moving processes throughout their lifetimes, the system can potentially adapt better
to changes in load that could not be foreseen at the start of the tasks. Proponents of process
migration claim that this dynamic adaptation leads to a better system-wide utilization of

available resources than static process scheduling.

With a pool of processing nodes dedicated to servicing the user load, an efficient process
migration scheme can balance the user load effectively. Also, it is much more scalable. If the
control of the pool is appropriately designed (i.e., distributed), as many nodes as desired can be
added, incrementally, as the expected nominal load on the system increases. These are the goals

that motivated the development of process migration.
1.3 Overview of process Migration

Process migration is the relocation of a process from its current location (current node) to
another location (destination node). The flow of execution of a migrating process is illustrated in

the figure below

Source Destination
node node
Time Frocess P in ;
execUtion I
Execution :
suspended :
Freezing i Transfer of :
. | control :
L -Execution
: lresumed
I
Process P in
exeCUtion

Figure 1 — Flow of execution of migrating process

A process may be migrated either before it starts its execution (non-preemptive
migration) or during the course of its execution (preemptive process migration). Preemptive
process migration is costlier than non-preemptive process migration since the process
environment must also accompany the process to its new node for an already executing process.
In this project, we deal with preemptive process migration and here after the term process

migration implicitly means preemptive process migration.

The major sub activities involved in process migration are

1. Checkpointing (suspending and saving the state) the process on the source node.

2. Transferring the process state to the destination node.

3. Restarting (resuming the execution) the process on the destination node based on the saved

state, from exactly the point of suspension.

1.4 Introduction to Checkpoint and Restart

Checkpointing a given process is nothing but saving its state. The state usually includes
register set, address space, allocated resources, and other related process private data. Restart
mechanism resumes the process execution by restoring the checkpointed state of the process, on

the destination machine.
Ideally the checkpointing system should be able to save and restore the following:

e State of memory and CPU registers.
e Child processes of a checkpointed process.
e The status of open file descriptors held by the checkpointed process(es).

e The status of files mmap () ed by the checkpointed process(es).

1.4.1 Approaches to Checkpointing

Checkpointing can be implemented at three levels namely kernel-level, user-level and
application-level. These levels differ in implementation, complexity, performance, transparency

and reusability.
Kernel-level Checkpointing

In kernel-level checkpointing, the operating system supports checkpointing and restarting
processes. The checkpointing is transparent to applications; they do not have to be modified or

linked with any special library to support checkpointing.
User-level Checkpointing

Application programs to be checkpointed are linked with a checkpoint user library. Upon
checkpointing, a checkpoint-triggering signal is sent to the process. The functions in the
checkpoint library respond to the signal and save the information necessary to restart the process.
On restart, the functions in the checkpoint library restore the execution environment for the
process. To applications, checkpointing is transparent. But unlike kernel-level support,

applications must be relinked to allow checkpointing.
Application-level Checkpointing

Applications can be coded in a way to checkpoint themselves either periodically or in
response to signals sent by other processes. When restarted, the application must look for the

checkpoint files and restore its state.

2 Problem Definition

2.1 Problem Statement

To design and implement a transparent checkpoint /restart package for Linux Operating
system without entailing any changes to the kernel.
To design and develop a software system that migrate processes in a Linux network using

the checkpoint /restart package.

2.2 Problem Description

Process migration is the relocation of a process from its current location (current node) to
another node (the destination node). To migrate a process, we need to checkpoint its state,
transfer the state to the destination node and restart the process at the node.

The basic part is the checkpoint /restart system, which deals only with the mechanism of
checkpointing a process, and restarting the one checkpointed earlier. It does of course provide a
clean interface, but it is the duty of the upper layers to define their own policies. A wide range of
policies might be needed, depending on whether the main concern is load sharing (avoiding idle
time on one machine when another has a non-trivial work queue), load balancing (such as
keeping the work queues of similar length), or application concurrency (mapping application

processes to machines in order to achieve high parallelism).

2.3 Objectives of the project

Resource utilization is a problem that is present not only in distributed systems but also in
networked systems like a LAN of computers. In distributed systems efficient resource utilization
is achieved by distributing the load using process migration. In the context of networked
systems, process migration can lead to efficient overall system utilization by making use of the
idle workstations. The advantage of efficient system utilization at the coarse granularity level

(the process being the grain size), primarily motivated for undertaking this project.

3 Requirements Specification

3.1 Hardware and Software

» Pentium processor
» Ethernet Card
» Same Version of Linux Operating System

» ‘C’ Compiler

3.2 Overview of the platform

As the source code for Linux is open, I have chosen Linux Operating System because the
project needs kernel support. Most of the programming in the project is done in ‘C’ language.

For compiling these modules Linux supports a standard ‘C’ compiler called “GCC”.

Constraints

As the software is tightly coupled with the version of the operating system it only works
with the version that it is built with. With the advent of newer versions we need to do little or a
little modification to the source. Also all the systems in the LAN should be running the same

version of the Linux OS.

10

4 System Analysis
4.1 System Requirement Analysis
System analysis is the process of gathering and interpreting facts, diagnosing problems
and using the information to recommend improvements to the system. Basically ‘analysis’
specifies what the system should do. It does not state how the requirements are accomplished or
how the system is implemented.

The system should meet the following requirements

> Transparency : Transparency means whether user applications need to be
modified, recompiled or relinked, and whether at run time they know that they are

being checkpointed and restarted.

> Security : The security provided by the operating system should not be
violated. i.e. control should be exercised over the set of processes that can be

migrated by a particular user.

4.2 Structured Analysis
The process migration system is intended to migrate the given process to the given
destination node. The major sub activities involved in process migration are
1. Checkpointing (suspending and saving the state) the migrating process on the source node.
2. Transferring the process state to the destination node.
3. Restarting (resuming the execution) the process on the destination node based on the saved

state, from exactly the point of suspension.

4.2.1. Data modeling
The primary data objects and their attributes are given below
Segments

This object contains attributes of each segment in the address space of the process. Its attributes

are

segment_start segment_end protectionFlags isShared

Table 1 - Segments

11

Memory

This object contains information regarding the entire structure of the process’ address space.

start_code end_code

start_data end_data

start_brk

brk

start_stack

Start_mmap

arg_start

arg_end

env_start

env_end

Header

Table 2 — Memory

This object contains information regarding the checkpointed process and identifies a valid file

having a checkpointed image.

signature

num_segments

processldenfication

exec_file name

in_sys_call

Table 3 — Header

4.2.2. Functional modeling and Information flow

At the highest level the software can be viewed as an application that takes as input the

process id and the remote host id and resumes the execution at the remote host.

User process Id

Remote host name

Process Migration

System

remote host

Process is resumed at specified

»
»

Figure 2 — Context level DFD of the Process Migration system

This is further divided into “migrate” and “restartd” subsystems. The “migrate” system

consists of two subsystems, the “checkpoint” for saving the process state and “transfer” for

transferring the saved image to the remote host.

12

Process is
Process id Checkpointed
resumed at
» image is migrated remote
to remote host
Migrate Restartd

RHost name \J
»
L

Figure 3 — Level 1 DFD of Process Migration system

File

\ 4

\/

Process id
transferred
Checkpointed
to remote
) image in a file
Temporary file checkpoint > transfer
name \J

Figure 4 — Migrate system

The “restartd” daemon is subdivided into the receive daemon which receives the saved

image of a process and the “rstrt” which restart based on this image.

in remote host

v

) 4

Figure 5 — Restart system

Checkpointed image Checkpointed
image in a file Process restarted
Receive > rstrt
daemon

»
»

13

4.2.3. Behavioral modeling

The state transition diagram for the process migration system is given below

Error
Stop
A
done
“migrate”
Reading command :
restart »| checkpoint
commands
A
done
Process state
transferred
transfer <
Error
v
Error Report
AN <
7| Y
Errors
A Error

Figure 6 — State transition diagram

The process starts when the command is given at the terminal. When the checkpoint
signal is given the process is checkpointed and the image file is created. The image file is
transferred to another machine and it is restarted. At any time during the course of this process, if

any errors arise, appropriate error messages are displayed to the user.

14

5 System Design

The design is not limited to Linux, but I have chosen Linux as a platform for the

implementation.

The design of process migration involves the design of the following
e Checkpointing the process to be migrated (checkpoint sub-system)
e Transferring image of the process to the remote node (migrate sub-system)
e Resuming the process execution at the remote node using the checkpointed image (restart
sub-system)
Since checkpoint and restart are inter related, they are treated as a single unit called the

Checkpoint /Restart System (CRS).

5.1 Design Goals

In this project, the goal is to design and implement an application for process migration

using a transparent checkpoint /restart system.
e Generic
The design to be implemented easily on any general-purpose operating system.
¢ Transparency to User Applications

Transparency means whether user applications need to be modified, recompiled or
relinked, and whether at run time they know that they are being checkpointed and
restarted. Generally speaking, adding support into the kernel leads to better
transparency and performance, but more implementation complexity and less
portability. I want the package to be general-purpose and able to checkpoint existing

applications transparently
e No Kernel Patches

All the current checkpoint /restart packages have one common drawback: they require
modification of existing code (either kernel or user applications), thus are difficult to
deploy. Moreover, not all operating systems have source code available, so it's not
always possible to patch the kernel. So, I want to implement the system with out

patching the existing kernel.

15

¢ Do As Much As Possible in User Space

Kernel programming is hard and error-prone. If any functionality can be done in user

space, it is better not to do it in the kernel.
5.2 Data Design

The checkpointed image of a process is saved in the following format

Header Memory structure

Segment Headers

Segments

Registers CWD size CWD

Figure 7 — Checkpoint file format

Header:

The header contains the information regarding the check pointed process viz. process
identification, process group, name of the program executed by the process etc. The header starts

with a signature “CRF” to signify that the file format is checkpoint /Restart File format.
Memory structure:

It contains information regarding the structure of the entire address space of the checkpointed

process. For example the start and end addresses of code, data and stack segments are stored.
Segment headers:

The segment headers contain information about each segment i.e, start and end addresses of the

segment, its protection flags, etc.

Segments:

The contents of each segment of the process’ address space are stored.
Registers:

The contents of the registers at the time the process is check pointed are stored so that they can

be restored when the process is restarted.

16

Size of current working directory:

Working directory of the check pointed process need to be saved so that the process can be

restarted in the same working directory. Since path of the current working directory is a variable,

its size is stored.

Current working directory:

The full path of the current working directory of the process is stored.

5.3 Architecture Design

In order to achieve the steps in process migration, with out violating the aforesaid design

goals, a layered architecture has been employed. Normally, user processes communicate with the

OS using the standard System Call Interface. Since transparency has to be achieved, CRS has

been designed as an application program that runs in the user space just as any other user

process. Given process identification, the corresponding process should be check pointed by the

application. To do so, it makes use of the library developed here. The advantage of providing

such a library interface is that any application such as a Periodic Check pointing application can

make use of it as shown in the figure. Process Migration application makes use of the CRS for

Check pointing and resuming the process to be migrated.

User

Process

Periodic
Checkpointing

User

Process

Process
Migration

CRS

Library Interface

¢

System Call Interface

Figure 8 — Layered Architecture of the Process Migration application

17

The library has been implemented in such a way that, with out modifying the kernel, the desired

functionality is achieved.

In order to migrate a process to a destination node, a client — server model has been used as

shown below
A network of Linux machines

M, Mz e M

restartd restartd restartd

Figure 9 — The client-Server model

At each node, there exist two applications: a “migrate” client and a “restart” daemon. To migrate
a process, the “migrate” application checkpoints the process and transfers its state to the
destination node where, the “restart” daemon receives the checkpointed state and restarts the

process.

5.4 User Interface Design
The interface of various subsystems of our software are given below
CRS:
* ck - [options] <pid> <file>
* resume <file>

Process Migration:

* migrate - [options] <file> <destination>

18

5.5 Process Design

The hierarchy chart of the system is shown below

PM

migrate restartd

ckpt transfer receive rstrt

do_checkpoint do_restart

Figure 10 — Hierarchy Chart

The pseudo code for various subsystems of the software is given below

Checkpoint

select the process to be checkpointed

if the process is not a checkpointable process then go to step 6
freeze the execution of the process

collect and save all the data regarding current state of the process

resume or stop the execution of the freezed process depending on the option given

SANE A o e

stop

restart

1. if the file containing the checkpointed image is not a valid checkpoint file, go to step 6

2. create a new process

3. change the working directory of the created process to the one that is saved in the
checkpointed image

4. read the state of the checkpointed process from the file and restore it in the new process

5. change the state of the process as “runnable”

6. stop
migrate
1. read the identification of the process to be migrated and the destination node
2. checkpoint the process state
3. transfer the checkpointed state to the destination node

restartd

1. receive the checkpointed image from the remote client

2. restart the process at the destination node using the checkpointed image

20

6 Implementation

6.1 Overview

As already said the checkpointing can be done at three levels, and here it is done in kernel
level. To checkpoint any arbitrary process, the checkpointing process must be in the kernel
mode. And for this it has to make a system call. But as of now the Linux OS do not provide
system calls for checkpointing a process. Adding a system call to the OS is not that simple and
also requires change of source code, which violates our primary design goal. But most operating
systems support dynamically loadable kernel modules. Kernel modules are typically loaded at
boot time or on demand when the kernel requires certain functionality. They provide some entry
points similar to system calls with which we can enter into kernel mode. Once the module is
loaded, it becomes part of the kernel address space and can access everything in the kernel. By
implementing part of the CRS as a kernel module, I have achieved virtually the same level of
transparency as kernel patches but avoided changing the kernel. This makes it much easier to
use. The process migration application makes use of the checkpoint and restart facilities provided by

the CRS.

6.2 Realization of CRS

The CRS can checkpoint and restart any arbitrary process with out linking with any other

library as it is the case with many other counterparts. Hence transparency is achieved.
CRS is realized as follows
1) Register a pseudo character device called /dev/crd (checkpoint restart device)

2) Write a device driver for this device with intended functionality, i.e basically the
checkpoint (do_checkpoint) and restart (do_restart) procedures are implemented as part

of the device driver.

3) To provide an abstraction a library is built which hides the details of the device and its

entry points (usually the IOCTL entry points used for any file).

4) The checkpoint (ckpt) and restart (rstrt) programs are implemented using this library

interface with out having to worry about the device, its entry points, parameters etc.

21

The above concept is illustrated as shown in the figure below,

Any other PM User programs
application ckpt rstrt

LIBRARY INTERFACE

checkpoint() restart()

CHECKPOINT/ RESTART DEVICE DRIVER

Open() close() ioctl() do_checkpoint() do_restart()

Figure 11 — Application

6.3 The Library Interface

The device file is encapsulated in a helper library and the following programming

interface is provided:
int checkpoint (int fd, int pid, int flags)

Three parameters are passed: descriptor of the file the checkpoint image should be written to, pid

of the target process and the flags.

Flags can be OR-ed by the following:
e CRS_KILL: If set, the target process is killed immediately, or it would continue to run.
e CRS_NO_BINARY_FILE: If set, code sections of the binary don't get dumped.

e CRS_NO_SHARED_LIBRARIES: If set, shared libraries don't get dumped.

22

These flags are taken from Epckpt. I have also learnt another thing from Epckpt that a file
descriptor be passed instead of a path name to the checkpoint routine. The kernel then writes
checkpoint image to this descriptor. In this way the image is not necessarily saved to local disk.
Instead, it can be sent directly to a remote machine via a socket. This significantly reduces the
checkpoint overhead for process migration. Also, I have used a function called “pack_write” of

Epckpt, to write the checkpointed image to a file, one page at a time.
int restart (const char * filename, int pid, int flags)

Three parameters are passed: file name of the checkpointed image, a pid and flags. This

function loads the image, and then replaces “current” process by the checkpointed process.
The last two parameters are mainly for notification after the process is resumed:

e pid: If the RESTART_NOTIFY flag is set, when the restart is finished the kernel will
send a SIGUSRI1 signal to the process specified by pid. If pid is 0, send it to the parent

process.

o flags: Two flags are supported. RESTART_NOTIFY tells the kernel to notify a certain
process when the restart is done, and RESTART_STOP tells the kernel to stop the
restarted process immediately (usually use RESTART_NOTIFY at the same time so that

another process can continue it).

As mentioned before, checkpointed image can be sent to a remote machine, by giving a socket
descriptor. The same thing can’t be done for restart i.e., receive checkpoint image from remote
machine and directly restart it without saving to the disk because, mmap() that is used while

restoring the process’ address space, requires a concrete file.

6.4 Subsystems
6.4.1. Internals of do_checkpoint()

This function is implemented as a part of the device driver. It also takes care of the
security issues i.e., it ensures that the user have required access privileges to the process being

checkpointed. The components of a process that are currently checkpointed are:

23

Address Space

The entire address space of the process, i.e., code, data, stack and the extended segment,
is checkpointed. All the addresses are “virtual” and are translated into physical addresses via
page directories and page tables. The operating system sets up page directories and page tables,

and then address translation is done by hardware automatically.

In Linux, each process has its own page directory and page tables that are initialized in a
“fork” and switched to in a context switch. All the processes have an address space from 0 to

4GB, but mapped to different physical memory regions due to their different page structures.

The kernel also has its own page directory and page tables, but it is special because it just
maps the physical address to itself. For instance, a pointer of 0x00004000 in a process may
actually points to a physical address of 0x01234000, but in the kernel a virtual address is exactly
its physical address.

During the checkpoint we need to access the target process' address space from the
kernel. Common C functions like strcpy wouldn't work because pointers in kernel and user
space have completely different meanings. Instead, the Linux provides a set of helper functions
(copy_from_user(), copy_to_user(), etc) that allow data transfer between kernel and the current

process.

But now we want to access a process's address space that is not the current one. Suppose
we want to access the address addr in a process p. The physical address of addr is a function of
both p and addr. The kernel source provides functions for accessing a process’ address space.
These functions take care of the address translation and swapped out pages, i.e., if a swapped out
page need to be accessed, these functions swap in the required page and access it. We make use
of these functions while checkpointing a process which take p and addr as parameters and by
using p's page directory and page tables, they fetch the required pages from swap to main

memory.

24

Register Set

Register set is easy to do, as long as you know where it is. On Linux, there is a simple

connection between the locations of process' task structure and its register set location:

Assuming struct task_struct *p is a pointer to the task structure, the corresponding register set

location is:
struct pt_regs *regs = ((struct pt_regs *)(2*PAGE_SIZE + (long)p)) - 1;
CWD

The Current working directory in which the process was running is also saved in the

image and while resuming it is restored by calling 'chdir' in the user space.

6.4.2. Internals of do_restart()

This function does the exact reverse of do_checkpoint(). In LINUX, the process that is
running is identified by the global variable “current”. When this function is called by a process,
then its “address space” is restored with that of the saved one in checkpoint image. Similarly the
“register set” is also restored. It is ensured that the current working directory (CWD) is restored
in user space before issuing the call to do_restart(). Then the process is signaled to run or stop as

per the parameter flags.

6.4.3. Internals of migrate

The migrate program checkpoints the given process and sends the checkpointed process
image to the specified remote host by establishing a TCP connection with the Restartd server

residing at the remote host.
6.4.4. Internals of Restartd

The restartd is server daemon sleeps at the port 1023 and responds to only network
request for that port. After receiving request from the client it accepts the image and saves it to a
file and gives this file as input to the rstrt program. The rstrt program (which calls the do_restart(
)) is similar to the execve() system call in that, it restores the state of the checkpointed process
in to a newly created process and makes it the currently running process. The only difference is

that execve() does it from a binary file but rstrt does it from the checkpoint image file.

25

7 Testing

The software has been constructed and tested in small segments. Unit testing focuses
verification effort on the smallest unit of software design - the module. The following modules

have been identified and tested
do_checkpoint

do_restart

transfer

received

Since do_checkpoint and do_restart are like a function and its inverse, they should be
tested in conjunction. A process that is restarted from its checkpointed image should run exactly
from the point it was checkpointed. This forms the basis for testing the correctness of both
do_checkpoint and do_restart. At the lowest level, the information regarding data structures and
address space of the process that was restarted using its checkpointed image can be compared
with that of the checkpointed process. I have done this comparison using the process specific

information that is maintained in the /proc file system in Linux. The very purpose of /proc is this.

The interfaces between various modules have been successfully tested for correctness.
CRS has been tested for checkpointing and restarting a process on a workstation. “migrate” and
“restartd” have been tested in conjunction for migrating a process from one node to another on a
network. The “migrate” and “restartd” are client and server respectively. The client transfers the
checkpointed image over a TCP socket, which the server receives, by listening to a standard port
(1023). Testing these modules is simple because, it involves ensuring that the sent file is

received.

Finally I have verified that all system elements have been properly integrated and

perform allocated functions.

26

8 Screenshots

! =] root@ localhost:~f | E3 root® localhost~fckptchpt
5 File Edit Wiew Terminal Tabs Help File Edt Wiew Temminal Tabs Help
4 [root@localhost bin]# foo.ckpt [rootdlocalhost ckptl# foo.ckpt
Segnentation fault 20
| [zoot@localhost binl# ckpt Foo 21
foo: ckpt test progran (pid = 264%) 22
1 23
2 24
3 25
4 26
3 27
i 28
7 20
a 30
g a1
g 10 32
11 33
W1z 34
7 13 35
14 36
15 37
16 38
i 17 [rootdlocalhost ckpt]#
18 [TootE@localhost ckpt]#
o 14 [root@localhost ckpt]#
[Toot@localhost binl# foo. ckpt | [root@localhost ckpt]# |
« AH 8.1 at cmu =]
defines get_thread area and modify_ldt but implements only modify_1df D
Done
| [O FileMana.. [@ poo@ioc. | B oo@ioce. | [ckpie 1. | @ Mozilla Fir... [S rooi@loca.. [H]
& Apdlications Places Deskiop @R EVEH S al @ von Jui 10, 6503 PM

To demonstrate this application, we need a program that runs for a while. The sample
program used here prints numbers from 1. When checkpoint signal is given, the image is saved.
When the file containing the image is run, the process resumed and started printing from where it
was stopped.

This shows the basic checkpoint restart system. The process is restarted on the same

system. The migrating of the process is shown in the next page.

27

= toota@localhost:~/bin)] B Other Linux 2.6.x kemnel Plaser ~ s C0-ROM (5 Floppy. 2
Eile Edit View Terminal Tabs Help ||:
[root@localhost ~1# cd bin
[root@localhost binl# ckpt test? File Edit View Search Tools Documents Help
Loop = 0 =
Loop = 1 = - @ A @ E] t]
Loop = 2 New Open Print Cut Copy Paste
iggi i Z ' count.txt I|Save [hecunen[ﬁlel
Loop = 5 Loop = 0
Loop = 6 Loop = 1
Loop = 7 Loop = 2
Loop = 8 _
Loop = 8 Loop = 3
[root@localhost binl# scp test2.ckpt 192.168.171.129:/root/bin/test2.ckpt Loop = 4
root@192.168.171.129's password: Loop = 5
test2.ckpt 100% 1793KB 1.8MB/s 00:00 Loop = 6
[root@localhost binl# scp count.txt 192.168.171.129:/root/bin/count. txt Loop = 7
root@192.168.171.129"s password: Loop = 8
count.txt 100% 90 0.1KB/s 00:00
Loop = 9

[root@localhost bin]# ‘

ckpt

@ (@ ot
& Applications Places Desktop %@@g?
)

Ln 11, Col 1

‘ root@lo. .. | @ root D bin

& VMware Plavd & Applications Places Desktop %@ag@
T A4

count.tx....

T direct input bo this virtual machine, press Cik:G & VMware Play

e

Here, the program is printing the numbers and also writing to a file. After the process is

checkpointed, the image file and the open file are transferred to the second machine.

| EBEthernst -

root@localhost:~/bin r root® localhd count.txt (~/bin) - gedit
Eile Edit View Terminal Tabs Help File Edit View Search Tools Documents Help

Eile Edit View Terminal Tabs Help
[root@localliost -1 ed bin [Toot@localhost ~1# cd bin count.txt X
[root@localhost bin]# ckpt test2 [root@localhost bin]# test2.ckpt

=10
11
12
13
14
15
16
17
18

N W N RS

[root@localhost bin]# scp test2.ckpt 192.168.171.129:/root/bin/{
root@192.168.171.129"'s password:

test2.ckpt 100% 1793KB 1.8M
[root@localhost bin]# scp count.txt 192.168.171.129:/root/bin/cc
To0ot@192.168.171.129"'s password:

count. txt 100% 90 0.1K
[root@localhost bin]# I

[root@localhost bin]# D

Ead
foo.ckpt

| Fy | ..
& Applications Places Desktop @@Q@ & & Applications Places Desktop e@@g & 0 Sat Jul :
<l < |

Ta direct input to this vitual machine, press Ciik G & VMware Playe

i4 start - 5} Other , X 3 - Pait

The process is resumed in the second machine. The process is able to write to the file

from where it was stopped.

28

CONCLUSION

The current version of the software runs in a network of homogeneous machines running
Linux operating system. The application is able to deal with normal processes and also process
that open files. When the current running process that opens a file is checkpointed, the image file
keeps track of the number of file descriptors that are open along with the file names, file
descriptors and the current offset. When the image file is run, based on the information saved,

the files are opened and the pointer is positioned based on the offset.

9.1 Limitations

The current version of our software can migrate only well defined, CPU bound processes. It

cannot deal with processes with the following
e child process
® signals
® socket communication
9.2 Scope for future work
Several applications like Load Balancing, Periodic Checkpointing can be developed by

making use of this Checkpoint Restart System. Also the application can be further enhanced to

overcome the aforesaid limitations.

29

REFERENCES AND/OR BIBLIOGRAPHY

[1]. Alessandro Rubini & Jonathan Corbet, “Linux Device Drivers”, 2nd Edition, 2001,
http://www.oreilly.com/catalog/linuxdrive2/

[2]. A survey of process migration schemes, Jeremy Elson.

www.circlemud.org/~jelson/writings/process-migration
[3]. M Beck et al. “Linux Kernel Internals”, 2™ edition Addison-Wesley, 2000

[4]. Andrew S. Tanenbaum, “Modern Operating Systems”, PHI Pvt. Ltd., 2000.

[5]. Roger S. Pressman, “Software Engineering — Practitioner’s Approach”, 3rd edition, McGraw-

Hill, Inc.

[6]. James Gardner, “Learning Unix”, 2™ edition.

30

APPENDIX A
USER MANUAL

1. How to install

1. Unzip the folder. Open a terminal and change the directory to the one where the folder is
placed.

2. Type “make install”

3. This will install the files necessary to run the application. The files are installed in “bin”

directory.

2. How to run

. Copy a sample program to the bin directory (test2.c, foo.c).

. Open a terminal and change the directory to “bin”.

. Tun “ckpt <program-name>"

. Checkpoint using *Z.

. Transfer the image file and any other files the program uses.

. Ex: scp <file> 192.168.171.129:/root/bin

. Open a terminal in the destination machine and change the directory to the “bin” directory.

. Tun “<program>.ckpt”

O 00 9 N L B~ W N =

. The process resumes from the point where it was check pointed.

31

