MPE JTAG Widget

v3.0

Microprocessor Engineering Limited




Copyright (© 2004, 2005, 2006, 2007, 2008 Microprocessor Engineering Limited
Published by Microprocessor Engineering



MPE JTAG Widget
User manual
Manual revision 3.0
20 March 2009

Software
Software version v3.0

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com



Table of Contents

1

Introduction ............ i 1
1.1 What does it doT .. ..o 1
1.2 About the MPE JTAG Widget . . ..ot e 1

1.2.1 Widget Hardware . .. .......ooii i 1
1.2.2 Widget Software......... ... 2
1.3 Getting started. ... ... o 2
1.3.1  Software installation ............ .. 2
1.3.2 Talking to the JTAG Widget ........cooiiiiiiii e 3
1.3.3 Selecting your CPU ... ... e 3
1.3.4 Programming external Flash.............. ... . ... ... .. .. ... 4
1.3.5 Optimising programing speed . ....... ...ttt 4
1.3.6 Debugging ARM code. ..... ..o 5
1.3.7 Saving compiled code ....... ... 5
1.3.8 Using other terminal emulators ......... .. ... ... . 5
1.3.9 Using Linux and Macs. . ... 5
1.4 About Forth .. ..o 6
1.5 About the manual . ... .. . 6
1.6 If disaster strikes ... ... ..o 6
1.7 Installing software upgrades . ......... ... 6
1.8 Development Kit Tools .. ...t 7
1.9 Technical SUPPOTt . . ..ot 7

How Forth is documented............................... 9
2.1 Forth words. .. ... ..o 9
2.2 Stack notation . ........ .. 10
2.3 Input text ..o e 11
2.4 Other markers . ... ... 12

First steps in debugging ARM code .................... 13
3.1 Number bases . . ..ot 13
3.2 Connecting the target. ... ... 13
3.3 Initialising the JTAG connection ..., 14
3.4 Stopping, Stepping and Restarting the CPU...... ... ... ... ... ... ... ....... 14
3.5 Displaying memory . ... ... 15
3.6 Disassembling target code...... ... ... . 16
3.7 Assembling target code ........... . 17
3.8 Target memory and peripherals........ ... .. ... . 17
3.9 Flash programming . ... ... ...ttt e 18
3.10  Standard CPU SUpport .. ... e 18

4 Further debugging techniques.......................... 19



ii MPE JTAG Widget
5 JTAG primitives ......oovtiiiiiii it ennnnn 21
5.1 JTAG PIN ACCESS -« vttt ettt e e e e e e e 21
5.2 Configuration . ... ...ttt 21
5.2.1 HwSel=NMIrevA . ... 22
5.2.2 HwSel=MPErevA . .. .. 22
5.3 JTAG Primitives . .. ... 22
5.4 TAP state machine access. ............. 24
5.5 Using multiple devices (daisy chain) ............. ... .. ... . i 26
5.6 Scan chain acCess. ... ... i 26
5.7 Read and write IR and DR..... .. ... 28
5.8 Test Code . ..o 28
6 ARMdebugchains............... ... 29
6.1 Instruction register .. ... ... ... ... 29
6.2 Test data registers.. ... ... 29
6.2.1 Instruction register..... ... ... ... . 29
6.2.2  ByPass . o i 29
6.2.3 Core 1D ... 29
6.2.4 Scan chain select........ ... . 30
6.3 Debug Registers. . ... ..o 32
6.3.1 DCC control (%00100, R/O). ... 32
6.3.2 Debug control (%00000, R/W) . ... 33
6.3.3 Debug status (%00001, R/W). ... 33
6.3.4 Debug register names ............. e 33
6.4 ARM JTAG Instructions . . .. .......outetiiniii e 34
6.5 Scan chain 1 ... ... 34
6.6 Scan chain 2 ... ... . 35
6.7 High level debug support........ ... 36
6.8 Modifying registers . ... ..o e 38
6.9 CPU halt, restart and context............ . i 38
6.10 CPU state display ... ..o 40
6.11 CPU Debug functions . ...ttt 40
6.12 Breakpoints. .. .. ... 41
6.13 Target memory t00ls .. ... e 42
6.14 Target CPU selection........ ... 42
6.15 Debug Comms Channel....... ... e 43
6.15.1  HOSE ACCESS - vt vttt et e 43
6.15.2 Target code ... ... 44
6.15.3 DCC console to0ls . ... ... 45

7 Target memory words . .......coiiiivrneernneeeeennnnnas 47
7.1 Big-endian host operations....... ... ... .. . . 47
7.2 Target memory and debug interface.......... ... ... 47
7.3 Target memory tools .. ... . 50
7.4 HOSE MEMOTY . ..ot 50

8 ARM disassembler .......coviiii ittt 53



9 ARM Assembler ........... ..., 55
9.1 Condition COAES . . ... 55
9.2 Number bases. .. ... 56
9.3 ARM instruction Set........ ... e 56
9.4 Thumb instruction set ... ... ... 57
9.5 Register naming .. ......... . 57
9.6 Immediate constants....... ... 58
9.7 Shift operations .. ...t 58
9.8 Addressing modes . ... 59

9.8.1 Pre-indexed addressing .. ....... ...t 59
9.8.2 Post-indexed addressing . ... 60
9.8.3 PC relative addressing . ... 60
9.8.4 Byte and half word addressing ................. . i 60
9.8.5 Register Lists ... ...t 61
9.8.6 MVL and ADR .. ... .o 61
9.9  Control StrUCTUTES . . . ..o 62
9.10  Labels. .. .o 62
9.11 Assembler error codes ........ ... 62

10 Flash programming harness..................cccc..... 65
10.1 Using supplied Flash drivers . ... ......... e 65
10.2  Writing your own Flash driver...... .. ... ... . 65

10.2.1 Resident code . ... 65
10.2.2 Driver file code ...... ..o 66

11 AT49BV1614 Flash programming ..................... 69
11,1 Configuration . ... 69
11.2  Flash Access rOUtInes . . . ..ottt e e e e 69
11.3 Code loaded into target RAM ... . 70
11.4 Programing the device. ... ... i 71

12 Atmel ATIISAM7xxx CPUs........cciiviiiiiiina... 73
12,1 T00lS . oo e 73
12.2 CPU definition . . . ..o e e e e e 73
12.3 Register definitions and utilities .......... ... 73
12,4 Board definition. ... 74
12,5 Hardware initialisation. ............. i e 74
12.6  Flash programming . ......... ...t 74
12,7 Code for target. ... ..ot 75
12.8 Programming with Xmodem ....... ... . ... . . 75
12,9 User InStructions .. ... 76

13 RAMIloader .......coouuiiiieiiiiiiiiiiiiiennnnn. 77
13.1 Code loaded into target RAM ........ .. 77

13.1.1 Writing to RAM . ... 7
13.1.2 Reading memoOry. ... ...ttt ettt e e e 78
13.2 Copying files to RAM and from memory .............. ..o i, 79

14 Further information............... ... ... ... .. ..., 81
141 MPE COUTSES . . ..ot 81
14.2 MPE consultancy .. ...... ... 81
14.3 Recommended reading. ... ... ... 82



MPE JTAG Widget



Chapter 1: Introduction 1

1 Introduction

This manual documents the MPE JTAG Widget software for ARM supplied with your JTAG
Widget. The underlying MPE ROM PowerForth software and the JTAG Widget hardware are
documented separately. PDF files in the DOCS folder are provided for the circuit diagram,
component layout and the default CPLD schematic.

1.1 What does it do?

The MPE JTAG Widget provides hardware and scripting software for debugging application
software and hardware.

The hardware has a USB connection to the host computer, and a JTAG interface using the
standard ARM 20 pin format to connect to the target device at data rates up to 8M bps.

The JTAG Widget has a 60MHz ARM CPU which you can control interactively through the
USB connection. On the host computer it is presented as another serial port so that you can
talk to the JTAG widget using a terminal emulator.

Additional I/O lines and a serial port can be connected to the target device and manipulated by
the JTAG widget, so allowing the JTAG widget to be used as a test stimulus generator. This is
extremely useful when narrowing down on faults that occur only very occasionally in the field.
If you write test scripts as tasks, they do not interfere with the debugging facilities.

The JTAG software provides low and high level functions for JTAG access to ARM and other
CPUs. The software is based around the Forth programming language. You can write your own
scripts and programs which can be downloaded, compiled and saved onto the JTAG Widget
ready for your next session. At the lowest level, talking directly to the JTAG widget through a
terminal emulator is using a very powerful command-line debugger with scripting facilities.

Because the JTAG Widget uses simple communications systems, it is very easy to write pro-
grams, DLLs and shared libraries on the host computer that interface the JTAG Widget to third
party compilers, IDEs and high level debuggers.

1.2 About the MPE JTAG Widget
1.2.1 Widget Hardware

The JTAG Widget consists of several main blocks:

Power All power is taken from the USB port. On board regulators generate 3.3 and 1.8
volt supplies.

CPU Philips LPC2106 with 128k Flash and 64k RAM,

USB FTDI FT245BM provides a fast comms link to the host PC, Mac, Linux or BSD
machine.

CPLD Xilinx XC32/64 which is user programmable using the Xilinx WebPack software,

downloadable free from www.xilinx.com or on CD for a minimal cost. This is pro-
grammed to provide JTAG signal buffering and level shifting.



2 MPE JTAG Widget

EEPROM Atmel AT24C512 with 64kb storage. This can be used for program sorage and for
configuration.

The hardware is complemented by its default software. The MPE PowerForth system provided
with the JTAG widget contains a Forth compiler and interpreter, multitasker, timebase, comms
utilities, flash utilities and maintenance tools, as well as the JTAG software.

1.2.2 Widget Software

The JTAG Widget software provides all the routines required for JTAG access to ARM7 and
ARMY9 CPUs. Because the software is based around a Forth interpreter, you can write your own
debugging scripts using the in-built commands, called words in Forth parlance.

The JTAG Widget is fast. An experiment using another device to program the Flash gave the
following results:

Wiggler 120 seconds
Widget 15 seconds

All our Flash and CPU drivers are supplied as source code. Using the supplied AIDE software
or a terminal emulator such as HyperTerm, you can download these drivers and compile them
on the JTAG Widget itself. You can write new Flash and CPU drivers yourself.

When you have programmed the Flash on your target board, you can use the JTAG Widget’s
debugging facilities to test your application. As with the Flash and CPU drivers, you can keep
the code in a text file on your PC and compile it on the JTAG Widget. There is a spare
serial port and several 1/O pins on the JTAG Widget are available on the JTAG IN and other
connectors. These can be used with your test code to provide signals to and from the board
under test.

The JTAG Widget uses the kernel software of the MPE USB Stamp. This is documented in the
file UsbStamp Code.pdf.

All the executable software supplied on the CD is for Windows. See later for use on Linux, Mac
and other operating systems.

1.3 Getting started
1.3.1 Software installation
Run the installer on the CD. This will prompt you for a directory/folder into which it will install

all the issue files. It will also add a group called "MPE JTAG widget" on your Start menu.
This includes a short cut to AIDE (see later).

Install the FTDI Windows USB drivers from the CD if not already installed. If you are using a
Mac or a Linux host, drivers are available free of charge from:

www.ftdichip.com

The Windows driver makes a USB connection appear as a COM port. To install it:



Chapter 1: Introduction 3

e Unzip the ZIP file in the USBDRIVERS folder to a new folder.

e Connect the USB Stamp to a USB port.

o If Windows asks you for a driver, point Windows to the folder you created in the first step. The
driver will then install. In some cases you may have to run the "Add New Hardware/Programs"
wizard. The FTDI application note AN232-03.PDF in the USBDRIVERS folder describes the

process in more detail.

1.3.2 Talking to the JTAG Widget

AIDE is an Integrated Development Environment (IDE) that includes a simple editor for your
source code and a terminal emulator (PowerTerm) tuned for use with the PowerForth on the
board. Use the Properties button on the PowerTerm toolbar to select the COM port. The baud
rate is irrelevant for the USB stamp board, but we normally set it to 115200. Note that the
USB COM port is not available until the board has been connected. On the Properties -> Server
and XMODEM page, ensure that the Enable File Server box is checked, and that Xmodem is
configured for 1024 byte blocks and CRC checking. When AIDE is closed, these settings will
become the defaults next time.

The board communicates to the host using the USB COM port mechanism provided by the
FTDI drivers. Connect the board to a USB port, which also provides the power for it. You may
need to use a powered USB hub with some boards. Press the Connect button on the PowerTerm
toolbar. Reset the board using the little button on the side. PowerForth will sign on.

Commands typed directly into the Forth interpreter do not execute until the ENTER/CR key
is pressed.

Write a simple Forth word, e.g.

: hello \ —-
cr cr ." Hello, world!" cr
Execute it:

= |

It will run. You can put the same code in a text file, conventionally with a .FTH extension such
as hello.fth. Compile the file (using AIDE and PowerTerm) with:

[include hello.fth j

The file will be compiled on the board and you can execute the word by typing HELLO again.

1.3.3 Selecting your CPU

The CPUs folder contains configuration code for several ARM devices. You can write new ones



4 MPE JTAG Widget

as required. Supported devices include the Philips LPC2xxx family and Atmel AT91 devices.
For families which include on-chip Flash, such as the Philips LPC2xxx, these files will include
the Flash programming code.

Before compiling the selected CPU file, edit it to select the required family member, crystal and
programming clock speeds. The following example shows how to set up and program a Philips
LPC2xxx device. You need not include the comments in what you type.

( N

include CPUs\LPC2xxx.fth \ compile the code

2214 selectLPC \ select family device

AllReset \ reset JTAG and target

initLPC \ set up target

0 $3D000 ProgLPC \ program whole device

= J

If you want to program a batch of devices you can define your own function.

(" N
: program \ --

2214 selectLPC

Al1Reset initLPC

0 $3D000 ProgLPC

b

- J

To save having to reload and retype this code, you can use turnkey to make it available at
powerup.

If you need help writing a CPU driver, contact MPE technical support. Please note that we will
need a hardware example for testing.

1.3.4 Programming external Flash

The Flash folder contains drivers for several Flash devices. You can modify these (or write your
own) for other devices.

After you have compiled the CPU configuration file, compile a suitable Flash driver and program
the device. Later chapters describe the facilities available for writing your own drivers. If you
need help writing a Flash driver, contact MPE technical support. Please note that we will need
a hardware example for testing.

1.3.5 Optimising programing speed

Programming speed is determined by the Flash, the Widget and the USB connection.

On AIDE’s Powerterm Properties -> Server and XMODEM page, ensure that the Enable File
Server box is checked, and that Xmodem is configured for 1024 byte blocks and CRC checking.
When AIDE is closed, these settings will become the defaults next time.

Make sure that the Widget uses 1024 byte blocks by configuring AIDE typing:
Xmodem-1k



Chapter 1: Introduction )

1.3.6 Debugging ARM code
The following chapters include an introduction to debugging applications with the JTAG Widget.
1.3.7 Saving compiled code
After you have configured and tested your configuration you can save it on the JTAG Widget
using the word Turnkey. Afterwards your code is always present when the JTAG Widget is

rebooted. This saves you having to recompile the configuration after each reboot, and is ideal
for production programming.

Save the compiled image:

[0 turnkey j

Either reset the board using the reset button or by typing:

[reboot }

The board will reboot, and your code will already be part of the system. You can check this by
typing words to see what functions are available.

You can clear out your previous work by typing EMPTY and rebooting:

[ampty reboot }

1.3.8 Using other terminal emulators

AIDE and PowerTerm are designed for use with the JTAG Widget and include a source file
server. If you prefer, you can use other terminal emulators, but you will lose some facilities.

Set HyperTerm or another terminal emulator to 115200 baud, 8 data bits, no parity, 1 or 2 stop
bits. Select the relevant COM port for the JTAG Widget and reset the Widget, which will then
sign on. If all else fails, reflash the system as described elswhere in this manual.

Please be aware that the standard Windows version of HyperTerm is very slow. A nuch faster
alternative is HyperTerminal Personal Edition from:

http://www.hilgraeve.com
1.3.9 Using Linux and Macs
The JTAG Widget’s USB interface is through an FTDI device and a driver that simulates a

serial device. Any operating system that can provide these facilities can be used with the JTAG
Widget.

The software you will need is a terminal emulator with XModem file transfer utilities.



6 MPE JTAG Widget

1.4 About Forth

Forth is an interactive programming language widely used for embedded systems ranging from
bomb disposal machines to embedded web servers, seismic data loggers and safety critical medical
equipment. The DOCS folder on the CD includes the book "Programing Forth" in PDF format,
ProgramForth.pdf and a Forth primer, fprimer.pdf. Also included on the CD is an evaluation
version of MPE’s VFX Forth for Windows. The latest version is available for free download
from

http://www.mpeforth.com

To run VFX Forth for Windows, send an email with your name, address and contact details to:

mailto://vEfxtrial@mpeforth.com

An installation key will then be provided.

1.5 About the manual

This manual is derived directly from the Forth source code used to generate the on-chip Forth.
The full source code is supplied with the MPE JTAG Widget Development Kit. Consequently
the documentation includes some words that do not have target entries in the on-chip Forth.

Some words and code routines are marked in the documentation as INTERNAL. These are
factors used by other words and do not have dictionary entries in the standalone Forth. They
are only accessible to users of the VFX Forth ARM Cross Compiler. This also applies to
definitions of the form:

n EQU <name>
PROC <name>

L: <name>

1.6 If disaster strikes

If you get the board into a bad state and it will not sign on, you may need to reload the
kernel program. Reprogram the board using the Philips ISP utility. The file to load is BINA-
RIES\JTAGuwidget.hex.

If the board still misbehaves, reload the flash with BINARIES\JTAGRECOVER.HEX and run
the board. This empties the serial EEPROM before signing on. Once you have seen the recovery
messages and PowerForth has signed on, you can use

[reflash

to reload JTAGWIDGET.IMG and carry on in the normal way.

1.7 Installing software upgrades

JTAG Widget firmware upgrades are released several times per year. The firmware delivery will
be a binary image file, usually called JTAGwidget.img. The procedure to install the upgrade is
as follows.



Chapter 1: Introduction 7

e 1) Connect a terminal, e.g. AIDE, to the Widget in the usual way.

e 2) Type Reflash and follow the instructions. If you cannot complete the operation, connect
a serial port to to the JTAG Widget, convert the image file to a HEX file and use the Philips
ISP loader to program the Widget’s internal Flash.

1.8 Development Kit Tools

If you have the development version of the JTAG Widget you will have the MPE Forth cross
compiler and all the JTAG Widget source code. Install the MPE Forth cross compiler and JTAG
Widget source code from the development CD.

Install the Philips ISP programmer software from the USBSTAMP\PhilipsIsp folder. This
requires a serial connection to the DB9 connector on the board. To use it, the link marked
BOOT on the board must be fitted. To run all other software this link must be open. The
Philips ISP software is only needed if the on-board Forth software becomes corrupted.

N.B. If you have problems with the on-board Flash programming routines, check the LPC2106
bootloader version using the Philips ISP software or by typing

IAPBootVer .dword

which will give something of the form:
0000:xxyy
where xx is the major version number and yy is the minor version number. If this number is less

than 0000:0134 (hexadecimal) or 1.52 (decimal) you should update the bootloader using ISP
software version 2.2.0 or greater. These are available on the MPE CDs and from

www.semiconductors.philips.com
/files/products/standard/microcontrollers/utilities/
1pc2000_flash_utility.zip
1pc2000_bl_update.zip

Note that v1.52 is only for the LPC2104/5/6 and v1.63 is required for other parts such as the
LPC2119/2129. A PDF file in the update describes how to perform the update.

1.9 Technical support

Technical support is available from your supplier in first instance, or from MicroProcessor En-
gineering.



MPE JTAG Widget

-

tel: +44 (0)23 8063 1441

fax: +44 (0)23 8033 9691

email: mpe@mpeforth.com
tech-support@mpeforth.com

web:  http://www.mpeforth.com

From North America, our telephone and fax numbers are:
011 44 23 8063 1441
011 44 23 8033 9691
901 313 4312 (access number to UK office)

-




Chapter 2: How Forth is documented 9

2 How Forth is documented

The Forth words in this manual are documented using a methodology based on that used for
the ANS standard document. As this is not a standards document but a user manual, we have
taken some liberties to make the text easier to read. We are not always as strict with our own
in-house rules as we should be. If you find an error, have a complaint about the documentation
or suggestions for improvement, please send us an email or contact us in some other way.

When you browse the words in the Forth dictinary using WORDS or when reading source code
you may come across some words which are not documented. These words are undocumented
because they are words which are only used in passing as part of other words (factors), or
because these words may change or may not exist in later versions.

"Documentation is like sex: when it is good, it is very, very good; and when it is bad, it is better
than nothing." - Dick Brandon

2.1 Forth words

Word names in the text are capitalised or shown in a bold fixed-point font, e.g. SWAP or SWAP.
Forth program examples are shown in a Courier font thus:

: NEW-WORD \ ab --ab
OVER DROP

If you see a word of the form <name> it usually means that name is a placeholder for a name you
will provide.

The notation for the glossary entries in this manual have two major parts:
e The definition line.

e The description.

The definition line varies depending on the definition type. For instance - a normal Forth word
will look like:

[: and \ n1 n2 -- n3 6.1.0720 }

The left most column describes the word NAME and type (colon) the center column describes
the stack effect of the word and the far right column (if it exists) will specify either the ANS
language reference number or an MPE reference to distinguish between ANS standard and MPE
extension words.

The stack effect may be followed by an informal comment separated from the stack effect by a
’s” character.

[: and \ x1 x2 —— x3 ; bitwise and j




10 MPE JTAG Widget

This is a "quick reference" comment.

When you read MPE source code, you will see that most words are written in the style:

( R
: foo \ nl n2 -- n3

\ *G This is the first glossary description line.

\ ** These are following glossary description lines.

b

- J

Most MPE manuals are now written using the DocGen literate programming tool available and
documented with all VFEX Forths for Windows, Linux and DOS. DocGen extracts documentation
lines (ones that start "\ *X ") from the source code and produces HTML or PDF manuals.

2.2 Stack notation

before -- after

where before means the stack parameters before execution and after means stack parameters
after execution. In this notation, the top of the stack is to the right. Words may also be shown
in context when appropriate. Unless otherwise noted, all stack notations describe the action of
the word at execution time. If it applies at compile time, the stack action is preceded by C: or
followed by (compiling)

An action on the return stack whill be shown

R: before -- after

Similarly, actions on the separate float stack are marked by F: and on an exception stack by E:.
The definition of >R would have the stack notation

Defining words such as VARIABLE usually indicate the stack action of the defining word
(VARIABLE) itself and the stack action of the child word. This is indicated by two stack ac-
tions separated by a ’;’ character, where the second action is that of the child word.

: VARIABLE \ -- ; -- addr

In cases where confusion may occur, you may also see the following notation:
: VARIABLE \ -—— ; -- addr [child]

Unless otherwise stated all references to numbers apply to native signed integers. These will be
32 bits on 32 bit CPUs and 16 bits on embedded Forths for 8 and 16 bit CPUs. The implied
range of values is shown as {from..to}. Braces show the content of an address, particularly for
the contents of variables, e.g., BASE {2..72}.

The native size of an item on the Forth stack is referred to as a CELL. This is a 32 bit item on a
32 bit Forth, and on a byte-addressed CPU (the vast majority, most DSP chips excluded) this
is a four-byte item. On many CPUs, these must be stored in memory on a four-byte address



Chapter 2: How Forth is documented 11

boundary for hardware or performance reasons. On 16 bit systems this is a two-byte item, and
may also be aligned.

The following are the stack parameter abbreviations and types of numbers used in the documen-
tation for 32 bit systems. On 16 bit systems the generic types will have a 16 bit range. These
abbreviations may be suffixed with a digit to differentiate multiple parameters of the same type.

-

Stack Number Range Field
Abbreviation Type (Decimal) (Bits)
flag boolean O=false, nz=true 32
true boolean -1 (as a result) 32
false boolean 0 32
char character {0..255} 8
b byte {0..255} 8
W word {0..65535%} 16
here word means a 16 bit item, not a Forth word
n number {-2,147,483,648 32
..2,147,483,647
X 32 bits N/A 32
+n +ve int {0..2,147,483,647} 32
u unsigned {0..4,294,967,295} 32
addr address {0..4,294,967,295} 32
a—addr address {0..4,294,967,295} 32
the address is aligned to a CELL boundary
c-addr address {0..4,294,967,295} 32
the address is aligned to a character boundary
32b 32 bits not applicable 32
d signed {-9.2€18..9.2¢18} 64
double
+d positive  {0..9.2e18} 64
double
ud unsigned {0..1.8e19} 64
double
sys 0, 1, or more system dependent entries
char character {0..255} 8

"text" text read from the input stream
-

Any other symbol refers to an arbitrary signed 32-bit integer unless otherwise noted. Because
of the use of two’s complement arithmetic, the signed 32-bit number (n) -1 has the same bit
representation as the unsigned number (u) 4,294,967,295. Both of these numbers are within the
set of unspecified weighted numbers. On many occasions where the context is obvious, informal
names are used to make the documentation easier to understand.

2.3 Input text

Some Forth words read text from the input stream (e.g the keyboard or a file). That text is
read from the input stream is indicated by the identifiers "<name>" or "text". This notation
refers to text from the input stream, not to values on the data stack.

Likewise, ccc indicates a sequence of arbitrary characters accepted from the input stream until



12 MPE JTAG Widget

the first occurrence of the specified delimiter character. The delimiter is accepted from the input
stream, but it is not one of the characters ccc and is therefore not otherwise processed. This
notation refers to text from the input stream, not to values on the data stack.

Unless noted otherwise, the number of characters accepted may be from 0 to 255.

2.4 Other markers

The following markers may appear after a word’s stack comment. These markers indicate certain
features and peculiarities of the word.

C The word may only be used during compilation of a colon definition.

I The word is immediate. It will be executed even during compilation, unless special
action is taken, e.g. by preceding it word with the word POSTPONE.

M Affected by multi-tasking

A user variable.



Chapter 3: First steps in debugging ARM code 13

3 First steps in debugging ARM code

After you have connected to the JTAG Widget using a terminal emulator, you can start debug-
ging an ARM target board and its code. The JTAG Widget is called the "host" and the board
you want to debug is called the "target". In turn, the PC or other USB master is the host for
the JTAG Widget.

3.1 Number bases

The number base in the Forth assembler can be indicated by the words BINARY DECIMAL and
HEX. In addition, numbers prefixed by the ‘§’, ‘#’, ‘%’ and ‘@’ characters are treated as special
cases. These characters affect the number base for that number only. Note that the characters
‘$” and ‘%’ follow Motorola usage. Note that the ‘#’ symbol attached to a number is not the
same as the # word that indicates immediate addressing.

Symbol Base Example

$ hex $55AA
# decimal #1234
/) binary %1011001
( octal @454

Hexadecimal numbers may also entered with a '0x’ prefix or an 'h’ suffix.

3.2 Connecting the target

The first step is to connect the target to the JTAG Widget’s "JTAG OUT" connector, J3 with
a ribbon cable. The J3 20 pin JTAG connector has the following pin out defined by ARM. Pin
1 is marked on the PCB and usually lines up with a stripe on the ribbon cable and a small mark
on the socket you plug in. See DUI0048F_-MICE2_2.pdf at www.arm.com for more details of the
20 pin interface. Input and Output in the table below are with respect to the JTAG Widget.

( 0
1 VTref/VCC 2 VCC Vtref from target, Vcc from target
3 nTRST 4 Gnd open collector output
5 TDI 6 Gnd output pulled up/down on target
7 TMS 8 Gnd output pulled up on target
9 TCK 10 Gnd output pulled up on target
11 RTCK 12 Gnd input
13 TDO 14 Gnd input
15 nSRST 16 Gnd input/output pulled up on target
17 DBGRQ 18 Gnd RFU
19 DBGACK 20 Gnd RFU
- J

The JTAG Widget uses level shifters inside a CPLD to interface the target JTAG signals to the
CPU inside the host JTAG Widget. Thus it needs a very small amount of power from the target
board. The power should in the range 1.8 to 3.3 volts. The signal lines are 5 volt tolerant.

Most ARM development boards use the standard ARM 20-pin connector standard. If your
board uses a different format, you will have to obtain or make an adaptor.



14 MPE JTAG Widget

3.3 Initialising the JTAG connection

Commands for the JTAG Widget are case-insensitive.

The JTAG Widget initialises itself when it is first powered up for a little-endian ARM 7. You
can confirm this by typing:

.target

If you need to repeat the initialisation of the JTAG Widget, type:

cold

If you have connected and powered up the target after the JTAG Widget has been powered up,
you may need to reset the target’s JTAG system and maybe the CPU itself. Not all ARMs have
separate JTAG (TRST) and CPU (SRST) signals. Type:

Al1Reset

to reset the JTAG widget and the target CPU. The target should start executing whatever code
it contains.

3.4 Stopping, Stepping and Restarting the CPU

Many operations such as register inspection can only be performed in debug mode with the CPU
stopped. The command to stop the CPU is StopCpu ( -- ).

( 0
stopcpu

RO = AOOO0:001F 8200:E9FF 0200:3744 0000:0001

R4 = 0200:EE00 5000:0000 0000:0020 0000:0004

R8 = 0200:585C 0000:0006 0200:COFO 0200:FFO00

R12 = 0200:FEFO 0200:FDEO 0200:52AC 0200:5298

CPSR = AOOO:001F N_C__ ___ SYS

SPSR = A000:001F N_C__ ___ SYS

( 0200:5290 101400EB ...k ) Dbl # $200A2D8 ok

- J

The status registers (CPSR and SPSR) are shown with the flag, I, F, and T bits displayed if
set. The mode bits are also decoded.

You can now single step the CPU using SingleStep ( -- ) or its synonym SS. Disassembly will
switch automatically between ARM and Thumb modes as required



Chapter 3: First steps in debugging ARM code 15
-

ss

RO = A000:001F 8200:E9FF 0200:3744 0000:0001
R4 = 0200:EE00 5000:0000 0000:0020 0000:0004
R8 = 0200:585C 0000:0006 0200:COFO 0200:FFO0
R12 = 0200:FEFO 0200:FDEO 0200:5294 0200:A2E0Q
CPSR = AOOO:001F N_C__ ___ SYS

SPSR = A000:001F N_C__ ___ SYS

( 0200:A2D8 O00OOOFE1l ...a ) mrs rO, cpsr ok
ss

RO = A0O00:001F 8200:E9FF 0200:3744 0000:0001
R4 = 0200:EE00 5000:0000 0000:0020 0000:0004
R8 = 0200:585C 0000:0006 0200:COFO 0200:FFO0
R12 = 0200:FEFO 0200:FDEO 0200:5294 0200:A2E4
CPSR = A000:001F N_C__ ___ SYS

SPSR = A000:001F N_C__ ___ SYS

( 0200:A2DC 01002DE9 ..-i ) stmdb r13 ! { r0 } ok
ss

RO = A0O00:001F 8200:E9FF 0200:3744 0000:0001
R4 = 0200:EE00 5000:0000 0000:0020 0000:0004
R8 = 0200:585C 0000:0006 0200:COFO 0200:FFO0
R12 = 0200:FEFO 0200:FDDC 0200:5294 0200:A2ES8
CPSR = A000:001F N_C__ ___ SYS

SPSR = A000:001F N_C__ ___ SYS

( 0200:A2E0 COOO80E3 @..c ) orr r0, rO, # $CO ok
ss

RO = AOOO:00DF 8200:E9FF 0200:3744 0000:0001
R4 = 0200:EE00 5000:0000 0000:0020 0000:0004
R8 = 0200:585C 0000:0006 0200:COFO 0200:FFO0
R12 = 0200:FEFO 0200:FDDC 0200:5294 0200:A2EC
CPSR = AOOO:001F N_C__ ___ SYS

SPSR = A000:001F N_C__ ___ SYS

( 0200:A2E4 00F021E1 .p'a ) msr cpsr_c, r0 ok
ss

RO = AOOO:00DF 8200:E9FF 0200:3744 0000:0001
R4 = 0200:EE00 5000:0000 0000:0020 0000:0004
R8 = 0200:585C 0000:0006 0200:COFO 0200:FFO0
R12 = 0200:FEFO 0200:FDDC 0200:5294 0200:A2F0
CPSR = A0O00:00DF N_C__ IF_ SYS

SPSR = A0O0O0:00DF N_C__ IF_ SYS

( 0200:A2E8 OEFOAOE1 .p a ) mov pc, rl4 ok

ss

RO = AOOO:00DF 8200:E9FF 0200:3744 0000:0001
R4 = 0200:EE00 5000:0000 0000:0020 0000:0004
R8 = 0200:585C 0000:0006 0200:COFO0 0200:FFO0
R12 = 0200:FEFO 0200:FDDC 0200:5294 0200:529C
CPSR = AOOO:00DF N_C__ IF_ SYS

SPSR = A000:00DF N_C__ IF_ SYS

( 0200:5294 04A02CE5 . ,e ) str rl10, [ ri12, # $-04 1 ! ok
-

When you are ready to resume normal operation, use RestartCPU ( —- ) to restart the CPU.
You can also use GoFrom ( addr -- ) to resume at a different address.




16

3.5 Displaying memory

MPE JTAG Widget

Target memory is displayed by the words BTdump, WTdump and LTdump. These three words all
require a starting address and a length (in bytes). They differ in that they display 8, 16 and 32
bit values respectively.

-
0 20 btdump
0000:0000 18 FO 9F E5 18 FO 9F E5 18 FO OF E5 18 FO OF E5 .p.e.p.e.p.e.p.e
0000:0010 18 FO OF E5 18 FO 9F E5 20 FF 1F E5 20 FF 1F E6 .p.e.p.e ..e e
0 20 wtdump
0000:0000 FO018 ES9F F018 ESOF FO018 ES9F FO18 E59F .p.e.p.e.p.e.p.
0000:0010 FO18 ES9F F018 EB9F FF20 ES1F FF20 E51F .p.e.p.e ..e ..e
ok
0 20 1tdump
0000:0000 E59F:F018 E59F:F018 ES9F:F018 E59F:F018 .p.e.p.e.p.e.p.e
0000:0010 EB9F:F018 E59F:F018 EB1F:FF20 E51F:FF20 .p.e.p.e ..e ..e
ok
-
3.6 Disassembling target code
You can disassembler a range of memory using DisAsm/AL ( addr len —- .
You can select the instruction set using ARM-32 ( -- ) and Thumb-1 ( -- ).
-
0 $40 disasm/al
( 0000:0000 18FO9FES .p.e ) 1dr pc, [ pc, # $18 1  ( @$20 = $6C )
( 0000:0004 18FO9FE5 .p.e ) 1ldr pc, [ pc, # $18 1  ( 0$24 = $00 )
( 0000:0008 18FO9FE5 .p.e ) 1ldr pc, [ pc, # $18 1  ( 0$28 = $00 )
( 0000:000C 18FO9FES .p.e ) 1dr pc, [ pc, # $18 1  ( @$2C = $00 )
( 0000:0010 18FO9FES .p.e ) 1dr pc, [ pc, # $18 1  ( @$30 = $00 )
( 0000:0014 18FO9FES .p.e ) 1dr pc, [ pc, # $18 1  ( @$34 = $00 )
( 0000:0018 20FF1FE6 ..e ) 1ldr pc, [ pc, # $-F20 1 ( Q@$FFFFF100 = $00 )
( 0000:001C 20FF1FE6 ..e ) 1ldr pc, [ pc, # $-F20 1 ( Q@$FFFFF104 = $00 )
( 0000:0020 6C000000 1... ) and .eq rO, r0, ri2 rrx
( 0000:0024 00000000 .... ) and .eq r0O, r0, r0
( 0000:0028 00000000 .... ) and .eq r0O, r0, r0
( 0000:002C 00000000 .... ) and .eq r0, r0, r0
( 0000:0030 00000000 .... ) and .eq r0, r0, r0
( 0000:0034 00000000 .... ) and .eq r0O, r0, r0
( 0000:0038 00000000 .... ) and .eq r0O, r0, r0
( 0000:003C 00000000 .... ) and .eq r0, r0, r0O ok
=
To disassemble a routine whose entry point is known, use DisAsm/F ( addr -- . Disassembly

will finish when either of the following instructions is encountered with no outstanding forward
branches up to a maximum of 512 bytes (128 ARM instructions).




Chapter 3: First steps in debugging ARM code 17

-
2003C78 disasm/f

( 0200:3C78 00402DE9 .@-i ) stmdb r13 ! { ri14 }

( 0200:3C7C OAFAFFEB .z.k ) bl # $20024AC

( 0200:3C80 30FAFFEB 0z.k ) bl # $2002548

( 0200:3C84 DAF9FFEB Zy.k ) bl # $20023F4

( 0200:3C88 00005AE3 ..Zc ) cmp rl0, # $00

( 0200:3C8C 04A09CE4 . .d ) 1dr r10, [ ri12 ], # $04
( 0200:3D00 04A09CE5 . .e ) 1ldr ri10, [ ri12, # $04 ]
( 0200:3D04 08CO8CE2 .@.b ) add ri2, ri2, # $08

( 0200:3D08 ESFFFFEA e..j ) b # $2003CA4

( 0200:3D0C 04A09CE5 . .e ) 1dr r10, [ ri2, # $04 ]
( 0200:3D10 08CO8CE2 .@.b ) add ri12, ri2, # $08

( 0200:3D14 OO80BDE8 ..=h ) 1ldmia r13 ! { pc }

AO bytes, 28 instructions. ok

N\

3.7 Assembling target code

To select the instruction set use ARM-32 ( -- ) or Thumb-1 ( -- ).

To define a target piece of assembler use:

<address> ORG(T)
ASSEMBLER

<ARM assembler code>
END-CODE

Use of the target assembler is covered in a separate chapter.

3.8 Target memory and peripherals

Individual memory locations can be read and written. See the chapter on "Target memory
words" for more detail. Because I/O is memory mapped on ARM systems, these words can be
used to read and write peripheral registers.

: blc(t) \ addr -- b

8 bit byte fetch.

: woc(t) \ addr -- w

16 bit halfword fetch.

: 1@c(t) \ addr -- 1

32 bit word fetch.

¢ x0c(t) \ addr -- x1 xh
64 bit word fetch.

: ble(t) \ b addr --

8 bit byte store.

: wle(t) \ w addr —-
16 bit halfword store.

: 1te(t) \ 1 addr —-



18 MPE JTAG Widget

32 bit word store.

: xte(t) \ x1 xh addr --
64 bit word store.

3.9 Flash programming

The Flash folder contains drivers for supported Flash devices. All drivers are supplied as source
code which can be compiled by the JTAG Widget. A later chapter describes:

e Using supplied drivers
e Writing your own drivers

3.10 Standard CPU support

As with Flash drivers, initialisation code for different CPUs is supplied as source code which
can be compiled by the JTAG Widget. These files are in the CPUs folder. See the Flash
Programming chapter for more details.



Chapter 4: Further debugging techniques

4 Further debugging techniques

In preparation

19



20

MPE JTAG Widget



Chapter 5: JTAG primitives

5 JTAG primitives

The 20 pin JTAG

connector has the following pin out defined by ARM.

DUIV048F-MICE2_2.pdf at www.arm.com.

21

See

-
1 VTref/VCC 2 VCC Vtref from target, Vcc from target
3 nTRST 4 Gnd open collector output
5 TDI 6 Gnd output pulled up/down on target
7 TMS 8 Gnd output pulled up on target
9 TCK 10 Gnd output pulled up on target

11 RTCK 12 Gnd input

13 TDO 14 Gnd input

15 nSRST 16 Gnd input/output pulled up on target

17 DBGRQ 18 Gnd RFU

\?9 DBGACK 20 Gnd RFU

5.1 JTAG pin access

The target TAP controller uses the JTAG signals as follows:

TCK

TMS

TDI

TDO

nTRST

clock input (output by us)

mode input (output by us) sampled on the RISING edge of TCK, and expected
to change on the falling edge of TCK. TMS should be high at the rising edge of

nTRST.

data input (output by us) sampled on the RISING edge of TCK, and expected to
change on the falling edge of TCK.

data output (input by us) changes on the FALLING edge of TCK, so we sample it
just before the rising edge of TCK.

Active low JTAG reset signal. n'TRST can be held low to disable JTAG in many
systems. It must be high to use JTAG. TMS should high at the rising edge of
nTRST. Asynchronous - independent of TCK.

The GPIO pin registers are:

IOPIN r/o
IOSET r/w
IOCLR w/o
IODIR r/w

read pin state
write 1 to set, read o/p state

write 1 to clear

0=i/p, 1=o/p

5.2 Configuration

These equates select the definitions for the NMI and MPE RevA and RevB boards. The TCK
active state can also be selected.

MPErevA equ hwSel
Select current hardware.

1 equ TCKactiveHi?
If set true, TCK is active high, and idles low.

\ -- flag




22 MPE JTAG Widget

5.2.1 HwSel=NMIrevA

The connections provided by the NMI ARM serial proto stamp are:

-
Pin Pin GPIO alternate functions
1 VCC 2 VCC 3v3 from LK13 or target
3 nTRST PO0.31 4 Gnd o/p TDO res res
5 TDI P0.30 6 Gnd o/p TDI res res
7 TMS P0.29 8 Gnd o/p TCK res res
9 TCK P0.28 10 Gnd o/p TMS res res

11 RTCK  P0.27 12 Gnd 1i/p TRST res res

13 TDO P0.26 14 Gnd 1i/p res res res

15 nSRST P0.22 16 Gnd o/p res res res

17 DBGRQ PO.2 18 Gnd RFU  SCL Cap0.0 res

\?9 DBGACK P0.3 20 Gnd RFU  SDA Mat0.0 res

5.2.2 HwSel=MPErevA

The connections provided by the MPE ARM USB proto stamp are:

-
Pin Pin GPIO alternate functions
1 vCC 2 VCC from target
3 nTRST PO0.26 4 Gnd o/p res res res
5 TDI P0.25 6 Gnd o/p res res res
7 TMS P0.22 8 Gnd o/p res res res
9 TCK P0.23 10 Gnd o/p res res res

11 RTCK P0.24 12 Gnd 1i/p res res res

13 TDO P0.27 14 Gnd 1i/p TRST res res

15 nSRST PO0.28 16 Gnd o/p TMS res res

17 DBGRQ PO.29 18 Gnd RFU TCK res res

19 DBGACK P0.30 20 Gnd RFU TDI res res

L P0.31 RFU TDO res res

5.3 JTAG primitives
#10 value /gbit \ —— n
Quarter bit delay value for software loops.

: SetJTAGspeed \ kHz --
Set the quarter bit delay to achieve the specified JTAG clock speed in Khz

create "“GPIO _GPIO , \ -- addr

Pointer to GPIO block

: nTRST1o ( —— ) nTRST "GPIO @ IOCLR + ! ;
Set TRST low

: nTRSThi ( == ) nTRST "GPIO @ IOSET + ! ;
Set TRST high

: TDIlo ( --) TDI "GPIO @ IOCLR + ! ;
Set TDI low

: TDIhi ( -- ) TDI "GPIDO @ IOSET + ! ;



Chapter 5: JTAG primitives 23

Set TDI high

: TMSlo ( -- ) TMS "GPIO @ IOCLR + ! ;
Set TMS low

¢ TMShi ( --) TMS "GPIO @ IOSET + ! ;
Set TMS high

: TCKlo ( -- ) TCK "GPIDO @ IOCLR + ! ;
Set TCK low

: TCKhi ( -- ) TCK "GPIO @ IOSET + ! ;
Set TCK high

: nSRST1o ( -=- ) nSRST "GPIO @ IOCLR + ! ;
Set nSRST low

: nSRSThi ( —— ) nSRST "GPIO @ IOSET + ! ;

Set nSRST high

: RTCK@ ( -- 0/1 ) ~GPIO @ IOPIN + @ RTCK and #RTCK rshift ;
Read state of RTCK.

: TDO@ ( -- 0/1 ) ~GPIO @ IOPIN + @ TDO and #TDO rshift ;
Read state of TDO.

: SRST@ ( —— 0/1 ) ~GPIO @ IOPIN + @ nSRST and #SRST rshift ;
Read state of SRST.

: InitJTAG \ -
Initialise JTAG system.

code TCKpulse \ —-
Pulse TCK high then low

code TDOread \ -- 0/1

Read TDO after the rising edge of TCK. TDO changes on the falling edge of TCK, and so the
first bit of a transfer is available after any state change. TDO is sampled on the rising edge of
TCK. TDO is written back to TDI to preserve the register when the update is performed.

code TDIwrite \ x —-—
if x is non-zero, write 1 to TDI, otherwise write 0. TDI is written out on/after the falling edge
of TCK, and is sampled by the target on the rising edge of TCK.

code TDIOxchg \ x1 mask -- x2

if x1.mask is non-zero, write 1 to TDI, otherwise write 0. TDI is written out on/after the falling
edge of TCK, and is sampled by the target on the rising edge of TCK. Replace the bit defined
by mask with the value read from TDO.

code TCKpulse \ --
Pulse TCK low then high

code TDOread \ -- 0/1

Read TDO after the rising edge of TCK. TDO changes on the falling edge of TCK, and so the
first bit of a transfer is available after any state change. TDO is sampled on the rising edge of
TCK. TDO is written back to TDI to preserve the register when the update is performed.

code TDIwrite \ x --
if x is non-zero, write 1 to TDI, otherwise write 0. TDI is written out on/after the falling edge
of TCK, and is sampled by the target on the rising edge of TCK.



24 MPE JTAG Widget

code TDIOxchg \ x1 mask -- x2

if x1.mask is non-zero, write 1 to TDI, otherwise write 0. TDI is written out on/after the falling
edge of TCK, and is sampled by the target on the rising edge of TCK. Replace the bit defined
by mask with the value read from TDO.

: CkTMShi \ —
Set TMS high and pulse TCK
: CkTMSlo \ --

Set TMS low and pulse TCK
5.4 TAP state machine access
This section deals with moving the JTAG state machine between its various states. State

numbers are as defined in the JTAG specification.

$0F equ jsTLR \ -- n
Test Logic Reset

$0E equ jsCIR \ -- n
Capture IR

$0D equ jsUIR \ -- n
Update IR

$0C equ jsRTI \ -- n
Run Test Idle

$0B equ jsPIR \ -- n
Pause IR

$0A equ jsShIR \ -- n
Shift IR

$09 equ jsE1IR \ -- n
Exitl IR

$08 equ jsE2IR \ -- n
Exit2 IR

$07 equ jsSelDRS \ --n
Select DR scan

$06 equ jsCDR \ -- n
Capture DR

$05 equ jsUDR \ -- n
Update DR

$04 equ jsSellIRS \ --n
Select IR Scan

$03 equ jsPDR  \ -- n
Pause DR

$02 equ jsShDR \ -- n
Shift DR

$01 equ jsEIDR \ -- n
Exitl DR



Chapter 5: JTAG primitives 25

$00 equ jsE2DR \ -- n

Exit2 DR

variable CurrSC \ -- addr

Holds the current scan chain number.

variable JTAGstate \ -- addr

Holds the current JTAG state,
.JTAGstate \ -~

Display the name of a JTAG TAP state.

: ShowJTAGstate \ --

Display the name of the current JTAG TAP state.

: goRTI \ --

Use the TMS and TCK signals to leave the JTAG TAP in the RUN-TEST/IDLE state by
clocking TMS high five times, and then TMS low once. This word is only used as a recovery
mechanism to get the JTAG system into a known state.

: UxR>RTI \ —-
Take the TAP from UDR or UIR to Run-Test/Idle.
: TargetReset \ --

Reset the target with a 10 ms low pulse on SRST. Note that on many ARM systems, this will
also reset the JTAG system.

: JTAGreset \ —

Use the nTRST signal to reset the JTAG logic (10 ms pulse), and leave JTAG in RUN-
TEST/IDLE state.

: AllReset \ -~
Resets the target and the JTAG system, leaving JTAG in Run-Test/Idle. Run at power up.

: UxRgoto \ state —-
Move the JTAG state machine from UxR to one of SeIDRS, SellRS, TLR and RTT.
: RTIgoto \ state —-

Move the JTAG state machine from RTIT to one of SelDRS, SellRS, TLR and RTI.

: SelDRSgoto \ state --

Move the JTAG state machine from SelDRS to one of SeIDRS, SellRS, TLR and RTI.
: JTAGgoto \ state --

Move the JTAG state machine to the selected state. This is principally used to get from Update-
xR to the next required state. It also handles going from Test-Logic-Reset and Run/Test-Idle. If
the current state is not the required state, an Update-xR, Test-Logic-Reset or Run/Test-IDLE
an error message is issued by a -2 THROW.

: gotoSDR \ --
Move to Select-DR state
: gotoSIR \ —-
Move to Select-IR state



26 MPE JTAG Widget

5.5 Using multiple devices (daisy chain)
Multiple JTAG devices can be placed in one JTAG chain. To select a specific device, the JTAG

instruction register is written with a sequence that selects one device but puts all other device
in BYPASS (all bits 1). After this, the data register for other devices will be 1 bit wide.

Instruction register, where the selected device has an instruction register that is n bits wide:

TDI
w bits x bits ... n bits ... y bits =z bits
TDO

Data register, where the selected device has an data register that is m bits wide:

TDI
1 bit 1 bit ... mbits ... 1 bit 1 bit
TDO

In order to use daisy chained devices, we need to know:
e The number of JTAG units at TDI before the unit we want to talk to,
e The total number of instruction register bits at TDI before the unit we want to talk to,
e The number of JTAG units after the unit we want to talk to before TDO,
e The total number of JTAG units after the unit we want to talk to before TDO.

0 value #IRpreTDI \ —-n
The number of instruction register bits before the TDI signal of the device we want to talk to.

0 value #IRpostTDO \ - n
The number of instruction register bits after the TDO signal of the device we want to talk to.

0 value #DRpreTDI \ --n

The number of devices (data register bits) before the TDI signal of the device we want to talk
to.

0 value #DRpostTDO \ --n

The number of devices (data register bits) after the TDO signal of the device we want to talk
to.

5.6 Scan chain access

This section provides routines to read and write the scan chains.

0 value MSatTDO? \ - n
If this value is non-zero, bits are read/written most significant first (msb nearest to TDO),
otherwise they are read/written least significant first (Isb nearest to TDO)

: MSatTDO ( --) 1 to MSatTDO? ;
Set the read/write direction to most significant bit first.

: LSatTDO ( -- ) 0 to MSatTD0O? ;
Set the read/write direction to least significant bit first.



Chapter 5: JTAG primitives 27

: #TCKpulses \'n--
Outputs n TCK pulses. TDI is unchanged and TDO is ignored.

[gR \ -- ; used to be called [xR
Start an IR or DR transfer from Select-xR, going to Shift-xR
[IR \ -

Start an IR transfer from Select-IR, going to Shift-IR and then shifting out any bits destined
for after TDO.
[DR \ -
Start an DR transfer from Select-DR, going to Shift-DR and then shifting out any bits destined
for after TDO.
: xRin \'n--x
Read n bits as x, staying in Shift-xR state. This word must not be used for the last bit.
: FinalxR \ u -- ; u non-zero
Clock the IR/DR by u bits, where u must not be zero. TDI is set to one and the last clock is
issued with TMS=1 to go to the JTAG Exit1-xR state.
: gRin] \ n #after -- x
Read the last n bits as x, followed by any BYPASS/unused bits, ending in Update-xR state.

: DRin] \n--x

Read the last n bits as x, followed by any unused bits, ending in Update-DR state.
: IRin] \'n--x

Read the last n bits as x, followed by any BYPASS bits, ending in Update-IR state.
: xRxchg \ x1 n -- x2

Read/write n bits out from x1 and in to x2, staying in Shift-xR state. This word must not be
used for the last bit.

: gRxchg] \ x1 n #after -- x2

Read/write n bits out from x1 and in to x2, followed by #after BYPASS /unused bits, ending
in Update-xR state.

: DRxchg] \ x1 n-- x2

Read/write n bits out from x1 and in to x2, followed by any unused bits, ending in Update-DR
state.

: IRxchg] \ x1 n -- x2

Read/write n bits out from x1 and in to x2, followed by any unused bits, ending in Update-IR
state.

: xRout \xn --

Write n bits from x, staying in Shift-xR state. This word must not be used for the last bit.

: gRout] \ x n #after —-—
Write n bits from x, followed by #after BYPASS/unused bits, ending in Update-xR state.

: DRout] \ xn --
Write n bits from x, followed by any unused bits, ending in Update-DR state.

: IRout] \ xn -~
Write n bits from x, followed by any BYPASS bits, ending in Update-IR state.



28 MPE JTAG Widget

5.7 Read and write IR and DR

This section provides words to read and write the JTAG Instruction and Data registers.

: DRread \'n--x
n bits (32 max) are read from TDO and returned as x. The TAP is moved to Select-DR-Scan
before starting, and is left in Update-DR.

: IRread \'n--x
n bits (32 max) are read from TDO and returned as x. The TAP is moved to Select-IR-Scan
before starting, and is left in Update-DR.

: DRurite \ xn --
Write the n (32 max) least significant bits of x to the data register. The TAP is moved to
Select-DR-Scan before starting, and is left in Update-DR.

: IRwrite \ xn --
Write the n (32 max) least significant bits of x to the instruction register. The TAP is moved
to Select-IR-Scan before starting, and is left in Update-DR.

5.8 Test code

This code is only compiled if the equate DIAGS? is non-zero at compile time.



Chapter 6: ARM debug chains 29

6 ARM debug chains

The ARMT specific data was extracted from ARM manuals DAT0028, DATI0038B and DDI0029G.
The ARMO specific data was extracted from ARM manuals DDI 0145A and DDI_0151C

6.1 Instruction register

This is 4 bits wide for ARM7/9 and 5 or 7 bits wide for XScale, with the least significant bit at
TDO. Select LSatTDO before shifting into the IR.

4 value /IR \ --n

Number of bits in the instruction register.

%0000 const cmdEXTEST

Connects selected scan chain between TDI and TDO ready for DR access.

%0010 const cmdSCAN_N

After issuing SCAN_N, a four bit scan chain number is put into the DR, which always returns
%10000 (LSatTDO). The selected scan chain number is placed between TDI and TDO.

%0011 const cmdSAMPLE %0011 const cmdPRELOAD

Production test only.

%0100 const cmdRESTART

Causes the core to restart, selects BYPASS mode, and exits debug mode when RUN-TEST/IDLE
is reached.

%0101 const cmdCLAMP
Selects BYPASS, and prevents UPDATE-DR affecting the data register. For scan chain 0 only.

6.2 Test data registers

6.2.1 Instruction register

4 bits, LSatTDO.

6.2.2 Bypass

A one bit register which always reads 0 and has no effect on update.
6.2.3 Core ID

32 bits, LSatTDO.

-
TDI
Bits 31..28 version
Bits 27..12 part number
Bits 11..1 manufacturer ID
Bit O always 1
TDO

N\




30 MPE JTAG Widget

Scan chain 0

Scan chain 0 accesses the ARMTTDMI core periphery. It is specified by ARM manual DDI0029G
as 105 bits:

TDI
Data bus 0..31 - D31 scanned out first MSatTDO
control signals
Address 31..0 - AO scanned out first LSatTDO
TDO

Scan chain 1

A 33 bit register.

TDI
Data bus 0..31 - D31 scanned out first MSatTDO
BREAKPT bit - first to appear

TDO

Scan chain 2

This 38 bit register/chain accesses the Embedded ICE registers. You must set INTEST after
SCAN_N(2).

TDI
1 bit R/W - O=read, 1=write
Addr 4..0 - register select, LSatTDO
Data 31..0 - data, LSatTDO

TDO

6.2.4 Scan chain select
ARMT

4 bits, LSatTDO. Always reads %1000.

ARM9

5 bits, LSatTDO. Always reads %10000.
4 value /scan \ -- n

Number of bits in the scan chain select register.

Scan chain 0

Scan chain 0 accesses the ARM9TDMI core periphery. It is specified by ARM manual
DDI_0145A as 184 bits:



Chapter 6: ARM debug chains 31

TDI
Data bus 0..31 - D31 scanned out first MSatTDO
control signals
Address 31..0 - AO scanned out first LSatTDO
TDO

Scan chain 1

A 67 bit register, 32 value, 32 instruction, 3 control

-
TDI
Instruction data 31..0, bit 31 first MSatTDO
SYSSPEED bit
BREAKPT bit
DDEN bit
Data bus 0..31 - DO scanned out first LSatTDO

TDO
.

Scan chain 2

This 38 bit register/chain accesses the Embedded ICE registers. You must set INTEST after
SCAN_N(2).

TDI
1 bit R/W - O=read, 1=write
Addr 4..0 - register select, LSatTDO
Data 31..0 - data, LSatTDO

TDO

Scan chain 3
Implementation specific external boundary scan.
Scan chain 4

Provides access to PA TAG RAM, 49 bits, bit 0 at TDO

-

TDI
438 - PA TAG sel TCK
47 - RAM enable
46 - 0dd not Even
45..40 - Scan index
39..33 - Scan reg
32 - PA TAG sync TCK
31..0 - WBPA

TDO

\

ARMS - Scan chain 15

For CP15 access, 40 bits, bit 0 at TDO



32 MPE JTAG Widget

-
TDI
1 bit R/W - O=read, 1=write
addr 5..0 - register select, LSatTDO
data 31..0 - instruction or data, LSatTDO
1 bit mode O=interpreted, 1=physical
TDO
- J

ARM966 - Scan chain 15

For CP15 access, 30 bits, bit 0 at TDO

TDI
1 bit R/W - O=read, 1=write
addr 5..0 - register select, LSatTDO
data 31..0 - instruction or data, LSatTDO
TDO

6.3 Debug Registers

Scan chain 2 is a 38 bit register/chain which accesses the Embedded ICE registers for ARM7
and ARM9s. You must set INTEST after SCAN_N(2).

TDI
1 bit R/W - O=read, 1=write
Addr 4..0 - register select, LSatTDO
Data 31..0 - data, LSatTDO

TDO

Data is read/written at update (NOT capture) according to the register address and the R/W
bit.

-
Address Width Register

%00000 4  Debug control

%00001 5 Debug status

%00010 8 Vector catch control (ARM9)
%00100 6 Debug comms channel (DCC) control
%00101 32 Debug comms channel (DCC) data
%01000 32 Watchpoint O address value

%01001 32 addr mask: O=compare, l=ignore
%01010 32 data value

%01011 32 data mask: O=compare, l=ignore
%01100 9 control value

%01101 8 control mask

%10000 32 Watchpoint 1 address value

%10001 32 addr mask: O=compare, l=ignore
%10010 32 data value

%10011 32 data mask: O=compare, l=ignore
%10100 9 control value

%10101 8 control mask




Chapter 6: ARM debug chains

6.3.1 DCC control (%00100, R/O)

Bits 31..26 Embedded ICE version

27..2 RFU
1 W=0=no data from CPU, W=1=data from CPU
0 R=0=can send to CPU, R=1=last not read

The CPU uses the following instructions to access the DCC in coprocessor 14.

MRC #14 0 Rd CRO CRO 0 \ read DCC control register
MCR #14 0 Rn CR1 CRO O \ write DCC data (send to CPU)
MRC #14 0 Rn CR1 CRO O \ read DCC data (recv from CPU)

6.3.2 Debug control (%00000, R/W)

Bit 2 INTDIS 1=disable IRQ and FIQ
Bit 1  DBGRQ 1=force debug request
Bit 0 DBGACK 1=force debug ACK

6.3.3 Debug status (%00001, R/W)

Bit 4 TBIT 0=ARM, 1=Thumb

Bit 3 cogent Debug memory access completed
Bit 2  IFEN Core IFEN signal

Bit 1 DBGRAQ status

Bit 0 DBGACK status

6.3.4 Debug register names
%00000 constant dbrControl \ - n
Debug Control

$00001 constant dbrStatus \ - n
Debug Status

%00100 constant dbrDCCcontrol \ =-n
DCC control

%00101 constant dbrDCCdata \ - n
DCC data
%01000 constant dbrWOAval \ --n

Watchpoint 0 address value

%01001 constant dbrWOAmask \ -=-n
Watchpoint 0 address mask

%01010 constant dbrWODval \ -=-n
Watchpoint 0 data value

%01011 constant dbrWODmask \ =-n
Watchpoint 0 data mask



34

%01100 constant dbrWOCval

Watchpoint 0 control value
%01101 constant dbrWOCmask
Watchpoint 0 address value
%10000 constant dbrWiAval
Watchpoint 1 address value

%10001 constant dbrWiAmask
Watchpoint 1 address mask

%10010 constant dbrWiDval
Watchpoint 1 data value

%10011 constant dbrWiDmask
Watchpoint 1 data mask

%10100 constant dbrWiCval

Watchpoint 1 control value

%10101 constant dbrWiCmask
Watchpoint 1 address value

MPE JTAG Widget

Note that the mask registers are XNOR. Matches occur when mask XNOR value==data = 1

for all bits. Setting a mask bit to 0 means that the bit ALWAYS matches.

-
mask | value | data | match
0 X X 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

K

6.4 ARM JTAG instructions

: SetIDCODE \ —
Output the IDCODE instruction

: SetINTEST \ —-
Output the INTEST instruction

: SetChain \n--

Select scan chain n (0..15) and issue INTEST. If the current chain is n, no action is taken. Set

CURRSC to -1 beforehand to force the action.

: ReadChipID \ -- id

Read the chip ID from scan chain 2.

6.5 Scan chain 1

This chain is used to force instructions and data into the instruction pipeline at debug speed,

aor to run instructions (memory access or branch) at system speed.

ARMT: A 33 bit register.




Chapter 6: ARM debug chains 35

TDI
Data bus 0..31 - D31 scanned out first MSatTDO
BREAKPT bit - first to appear

TDO

ARMY: A 67 bit register, 32 value, 32 instruction, 3 control

-
TDI
Instruction data 31..0, bit 31 first MSatTDO
SYSSPEED bit
BREAKPT bit

DDEN bit

Data bus 0..31 - DO scanned out first LSatTDO
TDO
\
: StepARM7 \ opcode mode -- data

Perform a single ARMY7 instruction at debug (mode=0) or system (mode=-1) speed, returning
the data read back.

: StepARM9 \ opcode mode data -- data’

Perform a single ARM9 instruction at debug (mode=0) or system (mode=-1) speed, returning
the data read back.

: StepCore \ opcode mode -- data

Perform a single instruction at debug (mode=0) or system (mode=-1) speed, returning the data
read back. The TAP is left in RTI state.

: SystemStep \ opcode --

Perform a single instruction at the current speed. Whether previous, current or next instruction
runs at system speed depends on the core type. The TAP is left in RTT state.

: DebugStep \ opcode --
Perform a single instruction at debug speed. The TAP is left in RTT state.
: DebugStepRead \ opcode -- data

Perform a single instruction at debug speed, returning the data read back. The TAP is left in
RTT state.

: DebugStepWrite \ data --
Perform an ARM NOP at debug speed, writing the given data. The TAP is left in RTI state.
: TDebugStepWrite \ data --
Perform a Thumb NOP at debug speed, writing the given data. The TAP is left in RTT state.

6.6 Scan chain 2
: WriteICE \ data reg# --

Write an ICEbreaker register, leaving the TAP in RTI.

: ReadICE \ reg# -- data
Read an ICEbreaker register, leaving the TAP in RTI.

.ICEregs \ -
Display ICEbreaker registers



36 MPE JTAG Widget

6.7 High level debug support

Some debug words affect ARM registers R0..R15 in the current mode. It is assumed that all
CPU registers are restored before any application code is executed and that they are saved
immediately on entry to debug state. Entry into debug mode from Thumb mode causes a
switch into ARM mode. If the T bit in the CPSR is set, return from debug mode will cause a
return to Thumb mode.

: doNOP \ -

Execute an ARM NOP at debug speed.

: doTNOP \ --

Execute a Thumb NOP at debug speed.

: doNOPread \ -- data

Execute an ARM NOP at debug speed and read data bus.

: Dstep+2 \ opcode --

Perform a debug step followed by two ARM NOPs.

: TDstep+2 \ opcode --

Perform a debug step followed by two Thumb NOPs.

: ReadReg \ reg# -- data

Read the contents of ARM register reg# in the current mode.
: WriteReg \ data reg# --

Write data to ARM register reg# in the current mode. Uses R14 which must be aligned.
: WriteReg2 \ data reg# --

Write data to ARM register reg# in the current mode. Uses R13 which must be aligned.
: ReadCPSR \ - x

Read the CPSR as x. Uses RO.

: ReadSPSR \ - x

Read the SPSR as x. Uses RO.

: WriteCPSR \ x --

Write x to the CPSR. Uses RO.

: WriteSPSR \ x --

Write x to the SPSR. Uses RO.

: WriteMaskRegs \ context mask —-

Set multiple registers from Widget memory. Mask is a bit map with bit 0 corresponding to
RO and bit 15 corresponding to R15/PC. Context is the address of Widget memory containg
RO..R15 in that order. Note that if you are using WRITEMASKREGS with WRITEMEMNEXT below to
write a block of memory, mask must specify a continuous set of registers starting with RO.

: ReadMaskRegs \ context mask --

Read multiple registers into Widget memory. Mask is a bit map with bit 0 corresponding to
RO and bit 15 corresponding to R15/PC. Context is the address of Widget memory containg
RO..R15 in that order. Note that if you are using READMASKREGS with READMEMNEXT below to
read a block of memory, mask must specify a continuous set of registers starting with R0. The
instruction

stmia ri14 ! { xxxx }

0 value LastICEstatus \ — x



Chapter 6: ARM debug chains 37

Returns the ICE status register value last read by Halted? below.

0 value StopStatus \ —-n

Contains the Debug Status register value read on entry to debug. Bit 4 is set if the CPU was
executing Thumb code.

: Halted? \ -- flag

Reads the Debug Status Register and returns true if the CPU is halted and in Debug mode.
Sets LastICEstatus as a side effect.

: WaitHalt \ —-

Wait a bit for the system to halt. If successful, the core is stopped and all memory operations are
complete. If the CPU cannot be halted, a -2 THROW occurs with an error string in > ABORTTEXT.
: IssueRestart \ --

Issue the RESTART JTAG instruction and go to RTI state.

: doMemIns \ opcode --

Perform a memory operation and wait for it to complete.

: ReadMem \ addr size -- data

Read data from target address addr, returning the data. Size should be 1, 2 or 4 to indicate the
data size. Data will be read using LDRB, LDRH or LDR instructions. Uses RO, R1.

: WriteMem \ data taddr size --

Write data to target address taddr. Size should be 1, 2 or 4 to indicate the data size. Data will
be read using LDRB, LDRH or LDR instructions. Uses R0, R1.

: WriteMemNext \ mask --

Write one or more registers to target memory using R14 as the address register. Mask is a bit
map with bit 0 corresponding to R0 and bit 15 corresponding to R15/PC. N.B. The LINK/R14
register is left pointing to the next target memory location.

: ReadMemNext \ mask --

Read one or more registers from target memory using R14 as the address register. Mask is a bit
map with bit 0 corresponding to RO and bit 15 corresponding to R15/PC. N.B. The LINK/R14
register is left pointing to the next target memory location.

: len>Mask \ n -- mask

Convert n bytes (64 max) to the memory mask for LDM and STM instructions. N must be a
multiple of 4.

: CopyInNext \ buffer len --

Copy the next len (32 max) bytes from the target. The target address is in CPU register R14.
Uses RO-R7, R14.

: CopyOutNext \ buffer len --
Copy the next len (32 max) bytes to the target. The target address is in CPU register R14.

: CopyMemIn \ taddr buffer len --

Copy len bytes (rounded up to 4 bytes) from target memory at taddr to Widget memory at
buffer. Both taddr and buffer must be 4-byte aligned. Uses R0-R7, R14.

: CopyMemQut \ buffer taddr len --

Copy len bytes (rounded up to 4 bytes) from Widget memory at buffer to target memory at
taddr. Both taddr and buffer must be 4-byte aligned. Uses RO-R7, R14.



38 MPE JTAG Widget

6.8 Modifying registers

After the target has been halted, the CPU context has been read into the CPUstate array.
These registers are the current state of the CPU and will be written back to the CPU when
it is restarted. You can read and write these registers as if they were host variables using the

Forth words @ and !. Register names are preceded by a ’h’ character, e.g. to set register 3 to
$55AA55A A you can use:

$55AA55AA hR3 !

struct /Context \ —— n

structure defining a context frame, which consists of registers R0..R15, CPSR and SPSR in that
order. The field names are CF.RO..CFR15, CF.CPSR and CF.SPSR.

/Context buffer: CPUstate \ -- addr
The primary CPU state information is held here. See /CONTEXT above.
\ -- addr

CPUstate cf.RO constant hRO
CPUstate cf.R1 constant hR1
CPUstate cf.R2 constant hR2
CPUstate cf.R3 constant hR3
CPUstate cf.R4 constant hR4
CPUstate cf.R5 constant hRS
CPUstate cf.R6 constant hR6
CPUstate cf.R7 constant hR7
CPUstate cf.R8 constant hRS8
CPUstate cf.R9 constant hRO
CPUstate cf.R10 constant hR10
CPUstate cf.R11 constant hR11
CPUstate cf.R12 constant hR12
CPUstate cf.R13 constant hR13
CPUstate cf.R14 constant hR14
CPUstate cf.R15 constant hR15
CPUstate cf.CPSR constant hCPSR
CPUstate cf.SPSR constant hSPSR

6.9 CPU halt, restart and context

#-5 cells value R15fix \ -- offset
The offset, in bytes, added to R15/PC after reading the CPU state. In ARM state, the result
is to leave PC-8 pointing to the next instruction to execute.

0 value StopReason \ --n
Returns 0 if the CPU entered debug from a breakpoint, or 1 for a watchpoint. A forced stop is
through a breakpoint.

: GetStopCodes \ --
Perform a debug NOP, storing the reason for the stop in STOPREASON. This the first thing done
by GetCPUstate.

: GetARMstate \ context --
Read the CPU state into a /CONTEXT structure in Widget memory at context. Performed when
the CPU is in ARM state.

#14 equ T1InOff7 \ --n



Chapter 6: ARM debug chains 39

ARMT: Value to subtract from PC on entry from Thumb state to point to next instruction to
execute.

#16 equ T1InOff9 \ --n

ARMY: Value to subtract from PC on entry from Thumb state to point to next instruction to
execute.

: GetThumbState \ context --
Read the CPU state into a /CONTEXT structure in Widget memory at context. Performed when
the CPU is in Thumb state, leaving it in ARM mode for debug operations.

: GetCPUstate \ context --

Read the CPU state into a /CONTEXT structure in Widget memory at context. This must be the
first thing done after stopping the core.

: WriteMaskData \ context mask --

Set multiple registers from Widget memory. Mask is a bit map with bit 0 corresponding to
RO and bit 15 corresponding to R15/PC. Context is the address of Widget memory containg
RO..R15 in that order. RO is used as the index register

: RestoreARM \ context --
From ARM mode, write back R0..R15 and stay in ARM mode.

: RestoreThumb \ context --
From ARM mode, write back R0..R15 and switch to Thumb mode.

: SetCPUstate \ context --
Write back the CPU state from a /CONTEXT structure in Widget memory at context.

: StopCore \ -~
Stop the CPU by a debug request. Used to to halt a normally running program. Sets (StopSta-
tus}.

B_$-7ins equ ARestartIns7 \ -- opcode
The ARMT branch instruction used to return from debug into ARM mode.

B_$-6ins equ ARestartIns9 \ -- opcode
The ARMY branch instruction used to return from debug into ARM mode.

: RestartARM \ —

Restart the CPU by filling the pipe. The required CPU state must have been set by SETCPUSTATE
above. ISSUERESTART is not performed. The CPU is already in ARM mode as a debug entry
has occurred.

0xE7F2E7F2 equ TRestartIns7 \ - x
Opcodes for ARM7 Thumb restart branch.

O0xE7F1E7F1 equ TRestartIns9
Opcodes for ARM9 Thumb restart branch.

: RestartThumb \ --

Restart the CPU by filling the pipe. The required CPU state must have been set by
SETCPUSTATE above. ISSUERESTART is not performed. The CPU is currently in Thumb mode
after SETCPUSTATE above.

: RestartCore \ —-

Restart the CPU by filling the pipe. The required CPU state must have been set by SETCPUSTATE
above. ISSUERESTART is not performed. If bit 5 of the CPSR in CpuState is set, the CPU is
restarted in Thumb mode, otherwise it is restarted in ARM mode.



40 MPE JTAG Widget

6.10 CPU state display
.xPSR \ x —-
Display x as status register contents in form:
<hex> <flags> <control> <mode>

.CPUstate \ context --
Display the contents of the given context buffer.

.NextIns \ -~
Disassemble and display the next instruction to be executed. This is the instruction at R15-8
for ARM, or R15-4 for Thumb, where the contents of R15 are taken from the CPUSTATE context
structure.
1 value ShowRegs?
Set this value non-zero to display the CPU registers at each step in SHOWCPU.

: ShowCPU \ --
Display the CPU state.

6.11 CPU Debug functions

These are the primary words needed by any command line debugger.

: -DbgInts \ --
Set the core INTDIS signal which forces the core to ignore interrupts.

: +DbgInts \ —-
Release the core INTDIS signal.

(StopCPU) \ --
Stop the CPU, bringing it into debug mode. The CPU state is saved in the CPUSTATE array,
and a THROW occurs if the CPU cannot be HALTed.

: StopCPU \ --

Stop the CPU, bringing it into debug mode. The CPU state is saved in the CPUSTATE array,
and a THROW occurs if the CPU cannot be HALTed. The CPU state is displayed. Interrupts are
disabled by -DBGINTS until RESTARTCPU unless you use +DBGINTS.

: HaltCPU \ —

If not already stopped, stop the CPU, save its state and apply -DbgInts.

: RestartCPU \ —-
Restart the CPU using the CPUSTATE array to provide the restart register contents.

: 7StopCPU \ -- wasrunning?

If the CPU is not halted, halt it using (STOPCPU) and return true (-1), otherwise return false
(0).

: 7RestartCPU \ flag --

If flag is non-zero, restart the CPU.

: +PCpipe \ pc -- pc’
Adds the ARM/Thumb pipeline offset determined by the CPSR.
: GoFrom \ addr --

Restart the CPU at the given target address.
: ssBreak \ -



Chapter 6: ARM debug chains 41

Execute the next instruction (at PC-8/4) using the ICEbreaker watchpoint unit.

: ssICEstep \ —

Execute the next instruction (at PC-8/4) using the ICEbreaker single step unit.
: SingleStep \ —-

Execute the next instruction (at PC-8).

: StepFrom \ addr --

Restart the CPU at the given target address.

: ss \ -~

A synonym for SINGLESTEP.

: Steps \'n—-

Perform n steps without the register dump.

: InsSize \ —- 2]4

Returns 2 in Thumb mode or 4 in ARM mode according to the CPSR.
: SkipNext \ —-

Skip (do not perform) the next instruction.

: EnableIRQ \ -
Enable the IRQ by clearing the CPSR I bit. The CPU is halted and restarted if running.

: DisableIRQ \ -
Disable the IRQ by clearing the CPSR I bit. The CPU is halted and restarted if running.

: EnableFIQ \ —
Enable the FIQ by clearing the CPSR F bit. The CPU is halted and restarted if running.

: DisableFIQ \ —
Disable the FIQ by clearing the CPSR F bit. The CPU is halted and restarted if running.

6.12 Breakpoints

(SetHWBP) \ addrl lenl addr2 len2 --
Sets a hardware breakpoint. The CPU’s Watchpoint unit 0 is always used and Watchpoint unit
1 is used if len2 is non-zero.

Addr1/Lenl
represents the range of addresses in which a breakpoint will occur - lenl must be a
power of two, 4 for a single ARM instruction or 2 for a single Thumb instruction.
Addr2/Len2
represents the range of addresses in which a breakpoint will not occur - len2 must

be a power of two. If len2 is zero, no exclusion range is set, addr2 is ignored, and
Watchpoint unit 1 is not used.

The Addr values must be on a multiple of the len ranges.

: SetHWBP \ addrl lenl addr2 len2 --
If the CPU is running, stops it; applies a hardware breakpoint using the target CPU’s debug
unit; releases the INTDIS debug signal; and restarts the CPU.

Addri/Lenl
represents the range of addresses in which a breakpoint will occur - lenl must be a
power of two, 4 for a single ARM instruction or 2 for a single Thumb instruction.



42 MPE JTAG Widget

Addr2/Len2
represents the range of addresses in which a breakpoint will not occur - len2 must
be a power of two. If len2 is zero, no exclusion range is set, and addr2 is ignored.

The Addr values must be on a multiple of the len ranges. +DBGINTS is called and the CPU is
restarted immediately.

Note that this word does not wait for the breakpoint to be triggered. Use Halted? above or
WaitBreak below to check whether the breakpoint has occurred.

: SetBreak \ addr —-

Set a breakpoint at the given address. Uses SetHWBP. The instruction length depends on whether
ARM or Thumb mode has been selected.

: ClearBreak \ —

Clear breakpoints.

: WaitBreak \ ms -- running?

Wait for up to ms milliseconds for a breakpoint to occur, returning non-zero if the CPU is still

running. If the CPU is halted, the CPU state is saved and 0 is returned. Interrupts are disabled
by -DBGINTS until RESTARTCPU unless you use +DBGINTS.

6.13 Target memory tools

These are words used by the xxx(T) version for JTAG access to the target. They are unlikely
to be required by user application code.

: be(J) \ addr -- b
Fetch a byte at target addr.

: we(J) \ addr -- w
Fetch a 16-bit halfword at target addr.

: 10(J) \ addr -- 1
Fetch a 32-bit word at target addr.

: b1 (D) \ b addr --
Write a byte at target addr.

:w!(J) \ w addr --
Write a 16-bit halfword at target addr.

: 11 \ 1 addr --
Write a 32-bit word at target addr.

: count(j) \ addr -- addr’ len
Get the address and length of a byte-counted string at target addr.

6.14 Target CPU selection

create ARM7le \ -- addr
Table describing target memory accesses for a little endian ARMTY.

create ARM7be \ -- addr
Table describing target memory accesses for a big endian ARMT.

create ARM9le \ —— addr



Chapter 6: ARM debug chains 43

Table describing target memory accesses for a little endian ARM9.

create ARM9be \ -- addr
Table describing target memory accesses for a big endian ARM9.

create ARM9Ele \ -- addr
Table describing target memory accesses for a little endian ARMIE.

create ARM9Ebe \ -- addr
Table describing target memory accesses for a big endian ARM9E.

(setCPU) \ addr --
Set the active pointers to a CPU type table.

(setARM7) \ --
Set generic ARM7 parameters

(setARM9) \ —-
Set generic ARM9 parameters

: CPU=ARMT71le \ —-
Select little-endian ARMT7 as the current target. This is the power-up default for the JTAG
Widget.

: CPU=ARM7be \ -
Select big-endian ARMT as the current target.

: CPU=ARM9le \ —
Select target memory accesses for a little-endian ARMY.

: CPU=ARM9be \ -
Select target memory accesses for a big-endian ARMY.

: CPU=ARM9Ele \ —-
Select target memory accesses for a little-endian ARMYE.

: CPU=ARM9Ebe \ —-
Select target memory accesses for a big-endian ARMYE.

6.15 Debug Comms Channel

The Debug Comms Channel acts as a UART that takes no pins on the CPU. It can transfer
up to 32 bits at a time, and can be accessed by the host through the ICE registers and by the
target CPU using coprocessor instructions.

6.15.1 Host Access

These words are present on the host. The following section contains code that can be used as
the basis of ARM target code.

: DCChKey? \ -- x
Returns non-zero when the Widget can read data from the CPU.

: DCChKey \ - x
Waits until DCC data is available and returns it.

: DCChEmit? \ - n
Returns non-zero when the DCC is ready to receive a new character.

: DCChEmit \ x —-



44 MPE JTAG Widget

Waits until the target CPU is ready to read new data and then sends the given data from the
Widget.

: DCChType \ haddr len --
Writes a byte string from the Widget to the CPU via the DCC, one byte at a time.

: DCChCR \ -
Write a CR/LF pair via the DCC.

create ConsoleDCC \ -- addr ; OUT managed by upper driver

JTAG Widget Generic I/O device for comms via the DCC. CONSOLEDCC can be used as a device
used by the Forth Widget for interaction. The device used may be changed by a phrase of the
form:

<device> dup opvec ! ipvec !

6.15.2 Target code

These words are present in MPE Forth systems on ARM targets.
((

code readDCCcr \ -- x
\ Read the DCC control register and return the value read.
\ Bitl The W bit is O if the DCC write register can accept data
\ from the CPU.
\ BitO The R bit is 0 if the DCC read register is empty.
str tos, [ psp, # -4 1 !
mrc #14 0 tos ¢r0 cr0 O
next,
end-code

code writeDCCAr \ x --

\ Write a 32 bit value to the DCC data register.
mcr #14 0 tos crl cr0 O
1dr tos, [ pspl, # 4
next,

end-code

code readDCCdr \ -- x

\ Read the DCC data register and return the 32 bit value read.
str tos, [ psp, # -4 1 !
mrc #14 0 tos crl cr0 O
next,

end-code

: DCCemit \ char —-
\ Write a character to the DCC.
begin
readDCCcr bitl and 0=
until
writeDCCdr

: DCCkey? \ -- flag
\ Return true if the DCC read register has a character



Chapter 6: ARM debug chains 45

\ available to be read.
readDCCcr bitO and 0<>

: DCCkey \ -- char
\ Wait until the host/debugger has written a character to
\ the DCC and return it.

begin

DCCkey? 0=

while
[ tasking? ] [if] pause [then]

repeat

readDCCdr

: DCCtype \ caddr len --
\ Write a string to the DCC channel.
bounds 7do i c@ DCCemit loop

: DCCcr \ -
\ Write a CR/LF pair of characters to the DCC channel.
#13 DCCemit #10 DCCemit

6.15.3 DCC console tools

Before the DCC console is started on the host, remember to set the target to use the DCC
channel for its I/O. This code is only compiled if the multitasker has been compiled.

: DCCconsole \ —-
Runs the DCC as a console until the user presses the <ESC> key (character 0x1B).

0 value DCCio? \ -- flag
TRUE when the DCC console task is running.

task DCCtask \ —- task
The task for the DCC console.

: +DCCio \ —
Run DCCconsole as a task if it is not already running. The task can be stopped at any time by
pressing <ESC> (character 0x1B).

: -DCCio \ -
Stop the DCC console task.



46

MPE JTAG Widget



Chapter 7: Target memory words 47

7 Target memory words

The target memory interface has been generalised to permit the system software to support
more than one CPU type.

7.1 Big-endian host operations

Note that these functions have to be capable of fetching 32 bit cells from 16 bit aligned addresses,
not just from 32 bit aligned addresses.

Note also that these routines assume a byte-addressed CPU.

: wo(n) \ addr -- ulé
Network order 16 bit fetch.

: w!'(n) \ ul6 addr —-
Network order 16 bit store.

: 0(n) \ addr -- u32
Network order 32 bit fetch.

' (n) \ u32 addr --
Network order 32 bit store.

:w,(n) \ w ——
Network order W,

> (n) \ x --

Network order version of , (comma).

7.2 Target memory and debug interface

Each target CPU type is described by a table in the host using the /target data structure
below. The memory functions are for CPUs with native data of that size. If the target CPU
does not support 32 or 64 bit operations or they are not simulated by the host software, fill in
the table with the xt of BADMEMOP below.

struct /target \ -- size
Describes the target memory data. The counted name string is not included in the returned
size.

int .options \ holds target options
int .tsize \ target cell/register size in address units
int .taligned \ xt of target ALIGNED alignment operation
int .tcount \ xt of target COUNT equivalent
int .8@ \ xt for 8 bit byte fetch
int .160Q \ xt for 16 bit halfword fetch
int .320 \ xt for 32 bit word fetch
int .640 \ xt for 64 bit xword fetch, returns double
int .8! \ xt for 8 bit byte store
int .16! \ xt for 16 bit halfword store
int .32! \ xt for 32 bit word store
int .64! \ xt for 64 bit xword store, uses double
\

int .memin xt for memory copy from target to host



48 MPE JTAG Widget

int .memout \ xt for memory copy from host to target
int .there \ xt to return assembly/compilation address
int .torg \ xt to set assembly/compilation address
0 field .tname \ target name as a byyte-counted string

end-struct

Target options are defined by the .options field, whose top four bits define the CPU type, and
affect the the interpretation of bits 27..0. bit# function 0 0=little endian, 1=big-endian 1 1=has
ARM instruction set 2 1=has Thumbl instruction set 3 1=has Thumb2 instruction set 4 1=has
Jazelle 5..7T RFU 8..11 JTAG type, 0=ARM7,1=ARM9,2=XScale/IR5,3=XScale/IR7 12 ARM9
debug control register, 0=ARM9/920, 1=ARM9xE 12..27 RFU 28..31 CPU type, 0=ARM

$00000006 constant ARM7TDMIoptions \ -- x
default bit mask for ARM7TDMI operation.

$00000106 constant ARM9options \ -- x
Bit mask for ARM9 operation. Variations among ARMY types are configured using other bits
described above.

$00001106 constant ARM9Eoptions \ -- x
Bit mask for ARM9E operation.

$0000 constant ARM7type \ -- x
Basic ARMYT type in bits 8..11.
$0100 constant ARM9type \ -- x
Basic ARMY type in bits 8..11.
bitl2 constant ARM9Edebug \ - x

Selects 6 bit debug control register in bit 12.

0 value TargetMem \ -- haddr
Returns the address of the current target description table.

0 value DefTarget \ -- haddr
Returns the address of the default target description table.

0 value TargetISA \ - n
Returns the current target instruction set used by the disassembler and assembler. The values
returned are dependent on bits 31..28 above.

0 constant ArmISA \ -0
Use ARM 32 bit instructions.

1 constant ThumblISA
Use Thumbl instructions.

2 constant Thumb2ISA

Use Thumb?2 instructions, e.g. for Cortex. Not yet supported.
: ARM-32 \ -

Select ARM mode for assembler

: Thumb-1 \ -

Select ARM mode for assembler

: Thumb? \ -- flag
Return true if the assembler is in either Thumb mode.



Chapter 7: Target memory words

: CPUtype \ -- cputype
Returns the CPU type in bits 8..11.
: ARM9Ecpu? \ -- flag

Returns true for an ARMYE with the 6 bit debug control register.

: BadMemOp \ —-
Aborts with an error message.

: BadCPU \ -

Aborts with an error message.

: BigEnd? \ - n

Returns O=little endian, 1=big-endian

: cell(t) \ - n
Return size of target cell

: aligned(t) \ addr -- addr’
Align address to next cell boundary.

: count (t) \ addr -- addr’ len
Return address and length of a counted string.
: bec(t) \ addr - b

8 bit byte fetch.

1 wlc(t) \ addr -- w

16 bit halfword fetch.

: 10c(t) \ addr - 1

32 bit word fetch.

¢ x0c(t) \ addr -- x1 xh

64 bit word fetch.

: blc(t) \ b addr --

8 bit byte store.

: wle(t) \ w addr —-
16 bit halfword store.

: 1le(t) \ 1 addr --
32 bit word store.

¢ xlc(t) \ x1 xh addr --
64 bit word store.

: MoveIn(t) \ taddr haddr len --
Move len (bytes, address units) from the target to the host.

: MoveOut (t) \ haddr taddr len --
Move len (bytes, address units) from the host to the target.

: here(t) \ -- taddr
Return the address at which target assembly or compilation will take place.

: org(t) \ taddr --
Set the address at which target assembly or compilation will take place.

: allot (t) \'n--



50 MPE JTAG Widget

Add n address units (normally bytes) to the address at which target assembly or compilation
will take place.

.Target \ —-
Display the current target CPU.

: tw@(h) \ addr -- w
Fetch a 16 bit target word from host memory, returning it as a target value adjusted for byte
ordering.

: tle(h) \ addr - 1
Fetch a 32 bit target word from host memory, returning it as a target value adjusted for byte
ordering.

: tw! (h) \ v addr --
Store a 16 bit target word into host memory, adjusting it for byte ordering.

: tl!(h) \ 1 addr --
Store a 32 bit target word into host memory, adjusting it for byte ordering.

7.3 Target memory tools
: BTdump \ addr len --
Display (dump) len bytes of target memory starting at addr. Addr is four byte aligned.

: WTdump \ addr len -- ; dump 16 bit half words
Display (dump) len bytes of target memory starting at addr as 16 bit half-words. Addr is four
byte aligned.

: LTdump \ addr len -- ; dump 32 bit long words
Display (dump) len bytes of target memory starting at addr as 32 bit words. Addr is four byte
aligned.

7.4 Host memory

The host memory version is provided so that ARM tools such as the disassembler can be used
with both host and target.

1 org \ addr --

Set the address at which assembly/compilation starts in the host.

create HostARM \ -- addr
Table describing host memory accesses.

: CPU=Host \ —-
Select memory accesses from host memory.

: TargetMem? \ -- flag
Returns true if memory accesses are to a target.

variable dp(t) \ -- haddr

A host variable containing the target address at which the next assembly or compilation will
occur.

: primhere(t) \ -- taddr

The target address at which the next assembly or compilation will occur.

: primorg(t) \ taddr --
Set the target address at which the next assembly or compilation will occur.



Chapter 7: Target memory words

: $op> \ caddr -- opcode

Put string in output buffer and return current opcode.
.loreg \'n--

Apply three-bit mask and display register.
.loreg, \'n--

Apply three-bit mask and display register with a trailing comma.

: .RdRn -

Display two low registers.
.RdRnImm3 \ caddr --

Display two low registers and a three bit immediate.
.RARnImm5 \ caddr --

Display two low registers and a five bit immediate.
.RdRnRm \ caddr --

Display three low registers.
.swi/bkpt \ caddr -- ; SWI and BKPT

decode SWI instructions.

: dT1dpiF8 \ caddr -- ; string is opcode
Display two hi/lo registers.

: dTimemF2 \ -~
Display load/store 3 regs instruction.

.TRegMask \ mask --
Display 8 bit register mask.

.condBr8 \ -
Display 8 bit conditional branch.

: dTbri1l \ —-
Decode 11 bit unconditional branch.

.bl/blxoff1l \ --
Decode BL/BLX # label instruction pair.

.blx/undef \ -
Undefined instruction or BLX second instruction.

: dTadjustSP \ —-
Decode "adjust stack" instructions.

: decodeT8 \ -- flag ; true if processed
Decode instructions selected by the top 8 bits.

: decodeT6 \ -- flag ; true if processed
Decode instructions selected by the top 6 bits.

: decodeT7 \ -- flag ; true if processed
Decode instructions selected by the top 7 bits.

: decodeT5 \ -- flag ; true if processed
Decode instructions selected by the top 5 bits.

: decodeT4 \ -- flag ; true if processed
Decode instructions selected by the top 4 bits.

instructions

ol



52

MPE JTAG Widget



Chapter 8: ARM disassembler 53

8 ARM disassembler

The disassembler works with target code over specified ranges. It uses the target memory
software interface defined in a separate chapter.

You can select the instruction set using ARM-32 ( -- ) and Thumb-1 ( —- ).

: DISASM/al \ addr len --
Disassemble from addr for len bytes.

: disasm/ft \ from to --
Disassemble from address FROM to address TO.

: disasm/f \ from --

Disassemble from address FROM. The NEXT, macro is displayed as a NEXT, macro. The
display stops when the first NEXT, macro is encountered with no outstanding forward branch,
or if the forward branch is over 256 bytes.

: Hdasm \ --
Disassemble a Forth word on the JTAG Widget.



o4

MPE JTAG Widget



Chapter 9: ARM Assembler 55

9 ARM Assembler

The internal assembler can be used to create new ARM definitions on the target CPU and the
JTAG Widget itself. To keep the code size down, the facilities and error-checking provided by
target versions of the assembler are rudimentary compared to those of hosted assemblers.

First select the required CPU type from one of:

arm7 arm70 arm700 arm710 arm7d arm70d arm7dm
arm70dm arm7tdm arm7tdmi arm8 arm810 SA-110
ArmArchb

You can select the instruction set using ARM-32 ( -- ) and Thumb-1 ( —- ).

To define a target piece of assembler use:

<address> ORG(T)
ASSEMBLER

<ARM assembler code>
END-ASM

To define a procedure on the host use:

CODE <name>
<ARM assembler code>
END-CODE

CODE and END-CODE temporarily select CPU=host during the assembly. If there is an error during
assembly, the target memory selection will not be restored by END-CODE.

To define a named procedure on the host use:

PROC <name>
<ARM assembler code>
ENDPROC
here <name> - constant <name-len>

When <name> is referred to later the host address is returned. This permits you to refer to
<name> in another piece of assembler. The main use of PROC, however, is for writing position-
independent pieces of code that will later be copied to a target ARM board for execution. Note
how the length of the code can be found.

9.1 Condition codes

The ARM is different from many processors in that most instructions can be executed condition-
ally depending on the processor status flags, by appending one of the mnemonics in the table



56 MPE JTAG Widget

below to the instruction. An instruction without a condition suffix is assumed to use .AL. Note
that most instructions (except the test and compare instructions) do not set the status flags by
default. This has to be done with the .S suffix:

( )
ADD .S RO, R1, R2 \ Add, set condition codes

ADD .NE .S RO, R1, R2 \ if NE and set condition codes

N J
( h
ARM Condition ARM Condition

.CS carry set .NE not equal or non-zero

.CC carry clear .GE greater than or equal

.PL  plus - positive or zero .LT 1less than

.MI minus - negative .GT greater than

.VS overflow set .LS unsigned less than or equal (same)

.VC overflow clear .HS unsigned greater than or equal (same). Same
.LE less than or equal .LO unsigned less than. Same as CC

.EQ equal or zero .HI unsigned greater than

.AL Always (default)

- J

9.2 Number bases

The number base in the Forth assembler can be indicated by the words BINARY DECIMAL and
HEX. In addition, numbers prefixed by the ‘§’, ‘#’, ‘%’ and ‘@’ characters are treated as special
cases. These characters affect the number base for that number only. Note that the characters
‘$” and ‘%’ follow Motorola usage. Note that the ‘#’ symbol attached to a number is not the
same as the *fo{#2} word that indicates immediate addressing.

Symbol Base Example

$ hex $55AA
# decimal #1234
h binary %1011001
@ octal 0454

Hexadecimal numbers may also entered with a ’0x’ prefix or an "h’ suffix.

9.3 ARM instruction set

The ARM instruction set is highly orthogonal. All data processing instructions work on the
contents of registers and immediate constants only. Any data held in memory has to be loaded
into a register, manipulated, then saved back to memory using one of the memory transfer
instructions. This may appear to be restrictive, but due to the large number of general-purpose
registers available for ’scratch’ storage, memory read/writes can be kept to a minimum. The
assembler is of the prefix variety, with the instruction mnemonic preceding its parameters. Valid
instructions are:

as CS



Chapter 9: ARM Assembler 57

( N
B | BL cond expression

MOV | MVN cond S Rd op2

CMN | CMP | TEQ | TST cond P Rn op2

ADC | ADD | AND | BIC | EOR | ORR | RSB | RSC | SBC |
SUB cond S Rd Rn op2

MRS <cond> Rd psr
MSR <cond> psr Rm
MSR <cond> psrf Rm
MSR <cond> psrf #expression

MUL <cond> <S> Rd Rm Rn
MLA <cond> <S> Rd Rm Rs Rn

UMULL | SMULL | UMLAL | SMLAL <cond> <S> RdLo RdHi Rm Rs

LDR | LDRB | LDRH | STR | STRB | STRH <cond> Rd address <!>
LDMFD | LDMED | LDMFA | LDMEA | LDMIA | LDMIB | LDMDA | LDMDB |
STMFD | STMED | STMFA | STMEA | STMIA | STMIB | STMDA |

STMDB <cond> Rn <!> Rlist <°>

SWP | SWPB <cond> Rd Rm [ Rn ]

SWI <cond> expression

CDP <cond> CP# operation CRd CRn CRm info

LDC | LDCL | STC | STCL <cond> CP# CRd address

MCR | MRC <cond> CP# operation Rd CRn CRm info
= J

Two pseudo instructions MVL and ADR are also available. NOP is supported as synonym for:

@IOV RO, RO J

9.4 Thumb instruction set

The full Thumb-1 instruction set is supported. The MOV instruction can be used for low
(RO..R7) or high (R8..R15) registers. The CPY pseudo instruction is supported, and is usually
used if a high register (R8..R15) is involved. Note that unlike MOV, CPY does not affect the
flags but according to the ARM ARM v2, the result is UNPREDICATBLE if two low registers
are used.

9.5 Register naming

There are fifteen general-purpose registers available in any mode. These are named RO through
R15. Coprocessor registers are named CRO through CR15. The Current Program Status Regis-
ter and Saved Program Status Register are named CPSR and SPSR respectively. If transferring
just the status flags then use



o8 MPE JTAG Widget

CPSR _¢c _x _s _f

where the valid field definers are:

_C _X _S _F _CXSF _FSXC _ALL

Standard ARM names are also available. SP refers to R13 (commonly used as a stack pointer),
LINK refers to R14 (the link register), and PC refers to R15 (the program counter). Forth
register names can be used in place of the standard register names. These are TOS LP UP RSP
and PSP. These can be assigned to different ARM registers. All register names can be used with
or without a trailing comma. This makes for code that is more readable to the seasoned ARM
programmer. Character case is not important.

9.6 Immediate constants

Rather then specify the name of a register whose contents are to be used in an operation, it is
possible with many instructions to specify a numeric value which is encoded with the opcode
mnemonic at assembly time. When the word # is encountered, the assembler recognises that
the following input is to be interpreted as a numeric value. The value itself can be prefixed with
the usual number base selectors such as # for decimal, $ for hexadecimal, % for binary and @
for octal:

ADD R2, R3, # $32 \ Add $32 to contents of R3
\ and place result in R2

Note that in the UK, there may be confusion with some printers between the hash symbol "#’
and the pound symbol .

There are restrictions regarding the range of immediate constants that can be used. As men-
tioned before each instruction and its operands are encoded as a single 32-bit value on the ARM.
Some of the 32 bits are given over to the instruction type, suffices, and destination register etc.
leaving only 12 bits to represent the constant. These 12 bits do not allow all immediate values
to be used, so the 12 bits are split into two fields. One, 8-bits wide, specifies the constant while
the other 4-bit wide field specifies a value to shift the constant by (this is actually a rotate right
by the shift value times two places). This widens the range of immediate constants that can be
used, but has the restriction that not every number in the full 32-bit range can be used.

Note that the range of negative immediate constants that can be represented is very limited
as these appear to the ARM to be very large numbers i.e. -1 = $FFFFFFFF, and the larger
a number is the harder it is to represent using the method described above. Judicial use of
instructions such as CMN (compare negative), MVN (move inverted data - not negated!) and
RSB (reverse subtract) can get around this problem.

9.7 Shift operations

Most data processing instructions allow operand two (the second source operand) to be specified
as a shifted register. Here the contents of the register can be shifted at run-time by either a
fixed amount or by the contents of another register. This can be done with one of the ARM’s
shift instructions, e.g.



Chapter 9: ARM Assembler 59

ADD RO, R2, R7 LSL # 4 \ R7 logically shifted left
\ by 4

BIC R2, R4, R7 ASR R6 \ R7 arithmetically shifted
\ right by the contents of R6

Note that the contents of the register being shifted are not changed by the shift. The shifted
value is only used during the instruction to calculate the new value to be stored in the destination
register. Shift operations supported by the ARM are:

( 0
Instruction Purpose
LSL # n or LSL Rn Logical shift left
ASL # n or ASL Rn Arithmetic shift left (identical to LSL)
LSR # n or LSR Rn Logical shift right
ASR # n or ASR Rn Arithmetic shift right
ROR # n or ROR Rn Rotate right
ROR Rotate right with extend - (no shift value or
register is needed as the shift is by one bit)
- J

Note that as with immediate constants, if the shift is by a fixed amount it should be preceded
by the # symbol to inform the assembler that it is not dealing with a register.

9.8 Addressing modes

The ARM data processing instructions all work on the contents of registers and immediate
operands. To transfer data to and from single registers and memory either the LDR, STR, LDC
or STC instructions and their variants have to be used. Addresses can be specified in three
ways.

9.8.1 Pre-indexed addressing

Pre-indexed addressing allows an offset to be added to (or subtracted from) an address held in
a base register to form the address from which data is to be transferred. The address has the
following format:

[ Rn offset ]
Where Rn is the base register name and the optional offset is either:

e A simple register
e An immediate constant
e A shifted register

The address expression must be terminated by a ’]’. The initial [’ is not strictly necessary but
leads to code that is more readable for experienced ARM programmers. P simple or shifted
register offset needs to be prefixed with ++ or — indicating whether the contents of the register
should be added or subtracted from the base register. Immediate constants do not use the
8/4-bit field format but rather range from -4095 to 4095. Shifted registers can only be shifted
by a constant preceded by the # symbol and not by the contents of another register.

The address calculated by combining the base and offset registers is often useful in subsequent
loads and stores, especially when a sequence of memory locations are to be accessed. Use the



60 MPE JTAG Widget

! operator after the closing | to enable the write back feature of the ARM. This will write the
calculated address back into the base register for subsequent instructions to use.

( N
Instruction Address

LDR Rd, [ Rn ] Load from Rn. Treated as LDR Rd, [ Rn, # O ]

LDR Rd, [ Rn, ++ Rm ] Load from Rn plus Rm

ILDR Rd, [ Rn, -—- Rm ] ! Load from Rn minus Rm with write back

LDR Rd, [ Rn, ++ Rm LSL # 5 ] ! Load from Rn plus Rm shifted logically left five
LDR Rd, [ Rn, # 20 ] Load from Rn plus twenty

LDR Rd, [ Rn, # -40 ] ! Load from Rn minus forty with write back
S J

9.8.2 Post-indexed addressing

Post-indexed addresses have the following form:
[ Rn ] offset

Note that the closing | can be used interchangeably with |, in the same manner as register names,
to aid readability by experienced ARM programmers.

Post-indexed addressing adds the offset to the base register Rn after the data has been transferred
from the address held in the base register. This implies that write back always occurs so it is
not necessary to specify it. It can be used however to force non-privileged mode for the transfer
cycle (same as the T suffix on some ARM assemblers). The offset is specified in exactly the
same way as for pre-indexed addressing. Examples of post-indexed addressing are:

N
Instruction Address

ILDR Rd, [ Rn ], ++ Rm Load from Rn then add Rm to Rn

LDR Rd, [ Rn ], -—— Rm Load from Rn then subtract Rm from Rn

LDR Rd, [ Rn ], ++ Rm LSL # 5 Load from Rn then add Rm, shifted logically left

IDR Rd, [ Rn ], -—— Rm LSL # 5 Load from Rn then subtract Rm, shifted logically
LDR Rd, [ Rn 1, # 20 Load from Rn then add 20 to Rn

IDR Rd, [ Rn ], # -40 Load from Rn then subtract 40 from Rn

\ J

9.8.3 PC relative addressing

The assembler also recognises addresses specified as either an absolute number or an assembler
label, e.g.

LDR R2, # $600 \ Load from memory location $600
LDR R2, label \ Load from the address marked by label

Addresses specified using PC relative addressing are actually converted into pre-indexed ad-
dresses that load from the program counter (R15) plus or minus an immediate constant. This
means that the address of the desired memory location has to lie within 4096 bytes of the address
of the instruction referencing it. The assembler will take into account the effects of pipelining
on the program counter when calculating the value of the offset.

9.8.4 Byte and half word addressing

The instructions LDRB and STRB plus LDRH and STRH (on later ARM architectures) can be

places wit

five place
left five



Chapter 9: ARM Assembler 61

used to transfer bytes or half words between memory and registers. Byte loads and stores only
utilise the bottom 8 bits of the destination register and half words only the bottom 16 bits. The
contents of the rest of the register are ignored on a store, and zeroed on a load from memory.
Unlike word memory transfers, byte loads and stores do not have to be aligned, but half word
transfers should be aligned to a two-byte boundary.

9.8.5 Register lists

Multiple registers can be loaded from and stored to memory using the LDM and STM instruc-
tions. The format is:

LDMxx Rd, ! { Ra, Rb, Rx-Ry, ... } ~
STMxx Rd, ! { Ra, PC, LINK, Re-Rf } ~

Rd contains the base address to where registers are stored or loaded from, followed by an optional
! to indicate that write back is required. A register list enclosed by { and } follows. The order of
the registers to be stored is of no significance (they are always stored so that the lowest register
is at the lowermost address and the highest register at the uppermost address) and up to a
maximum of sixteen can be specified. Any register name, with or without a trailing comma, can
be used. Ranges can be specified with a dash -. The following are all legal ways of specifying
the same list of registers:

{ RO R1 R2 R6 R12 }
{ RO-R2, R6, R12 }
{ R6, R12, RO-R2 }

Each register can only be specified once. The optional final ~ sets the status flags when loading
the PC from memory with the LDMxx instruction. It can also be used to force loading and
storing of user bank registers in non-user modes.

9.8.6 MVL and ADR

As indicated earlier, a common source of problems when programming with ARM assembler
is the restriction placed on the range of immediate constants that can be used with the data
processing instructions. To get around this the pseudo instruction MVL can be used to move
any signed/unsigned 32-bit number into a register.

MVL R2, # 127653

The MVL pseudo instruction will attempt to use a single MOV or MVN instruction if possible,
but may generate up to four ARM instructions to get the value into the register.

The ADR pseudo instruction performs a similar function but is used to move a 32-bit address
into a register.

ADR label

Due to the possibility that a label might be forward referenced and need ’fixing up’ later on in
the compilation, the ADR instruction will always generate a MOV and three ORR instructions.



62

9.9 Control structures

MPE JTAG Widget

There are assembler equivalents to the Forth control structures. The available structures are:

( )
cc IF, ... THEN,

cc IF, ... ELSE, ... THEN,

BEGIN, ... cc UNTIL,

BEGIN, ... cc WHILE, ... REPEAT

BEGIN, . AGAIN,

- J
where cc is one of the condition codes in the table below.

( )
ARM Forth Condition ARM Forth Condition

.CS C8S, carry set .NE NE, not equal or non-zero

.CC CC, carry clear .GE GE, greater than or equal

.PL PL, plus - positive or zero .LT LT, less than

.MI MI,  minus - negative .GT GT, greater than

.VS VS, overflow set .LS LS, wunsigned less than or equal (same)
.VC VC, overflow clear .HS HS, unsigned greater than or equal (sg
.LE LE, less than or equal .LO LO, unsigned less than. Same as CC

.EQ EQ, equal or zero .HI HI, unsigned greater than

AL Always (default)

- J
9.10 Labels

Ten named labels are provided. They are defined at the current location by
L$x:

where x is 1..10, are are referenced by:
L$x

Labels retain their value until reused. Consequently labels may not be forward referenced.

9.11 Assembler error codes

$101
$102
$103
$104
$105
$106
$107
$108
$109
$10A

immediate value won'’t fit format
branch to unaligned address

12 bit offset out of range
condition code not set

not in range -128..+127

not a general purpose register
not a coprocessor register
processor status register

8 bit offset out of range

8 bit offset out of range

ime) .

Same &



Chapter 9: ARM Assembler

$10B
$10C
$10D
$10E
$10F
$111
$112
$113
$114
$115
$116
$117
$118
$119
$11A
$11B
$11C

invalid register

invalid for this CPU variant

internal software error - report to MPE
unconsumed reference

stack depth changed

error if not in range -32768..32767
invalid forward reference type - report to MPE
not enough registers defined

register not of right type

immediate shift count out of range
shift must be immediate

invalid addressing mode

registers needed here

invalid register range

bad addressing mode before register list
R15 not permitted here

24/26 bit branch range exceeded



64

MPE JTAG Widget



Chapter 10: Flash programming harness 65

10 Flash programming harness

When using the JTAG Widget for production programming, you should take care to initialise
the CPU before running Flash programming code. Some ARM CPUs boot from a 32kHz or
other relatively low-speed crystal and must be initialised for the best programming speeds.
Examples files for different CPU files are in the CPUs folder. Note that Flash support for ARM
microcontrollers with internal Flash may also be found in the CPU specific files in thein the
CPUs folder, for example CPUs\LPC2zzz.fth.

10.1 Using supplied Flash drivers

The supplied drivers are in the Flash folder. While talking to the JTAG Widget using AIDE,
type:
include Flash\AT49bv1614.fth

to compile the driver code. Then perform a similar operation for the initialisation code for your
CPU, e.g.

include CPUs\55800A.fth
This process adds additional commands to program the Flash and to initialise the CPU.

If you are reprograming an existing application that has already initialised and mapped memory,
you just need to set FlashBase and RamBase to point to the base of the Flash to be programmed
and to the RAM for the programming code.

For a blank board with nothing in the Flash, you usually need to perform the following opera-
tions:

e Program the CPUs clock to a suitable operating speed - some ARMs start at 32kHz!
e Program the chip select unit and improve the memory access timings.
e Enable your new memory mappings.

Since some CPUs do not permit you to unmap once a system has been remapped, you may
have to read the current settings and use those. In the majority of cases, the Flash you want
to program is the boot Flash connected to chip select zero. The RAM used by the Flash
programming code is usually remapped from its initial high address to zero.

Once you have all the settings correct and can program the Flash correctly, you can save the
compiled code in the JTAG Widget’s EEPROM. This avoids having to download the drivers at
the start of each session. See TurnKey for more details. When you change devices or CPU, use
Empty to remove the old drivers.

10.2 Writing your own Flash driver

10.2.1 Resident code

This code allows certain parts of the Flash programming system to be common to all Flash
types and CPUs. Writing a Flash driver can be approached by by copying and converting an
existing file in the Flash folder.



66 MPE JTAG Widget

Flash programming is based on three values which contain pointers to the start of the Flash in
the target, the start of RAM in the target, and a sector table in the JTAG Widget that describes
the Flash sector layout.

$02000000 value RAMbase \ -- addr

Returns the base adress of the target RAM used to hold the flash programming code. The initial
value can be overriden as required.

$01000000 value FlashBase \ -- addr
Returns the base address of the current Flash device.
required.

The initial value can be overriden as

0 value Sectab \ -- addr
Gives the address of a table containing the number of sectors and starting offset of each sector,

plus a dummy start address which enables the size of the last sector to be calculated. The
following example is for an Atmel AT49BV1614.

-
create FL29BV1614 \ —— addr
#39 ,
$00000000 , $00002000 $00004000 $00006000
$00008000 , $0000A000 $0000C000 $0000E000
$00010000 , $00020000 $00030000 $00040000
$00050000 , $00060000 $00070000 $00080000
$00090000 , $000A0000 $000B0O000O $000C0000
$000D0000 , $000E0000 $000F0000 $00100000
$00110000 , $00120000 $00130000 $00140000
$00150000 , $00160000 $00170000 $00180000
$00190000 , $001A0000 $001B0000O $001C0000
$001D0000 , $001E0000 $001F0000
$00200000 \ dummy

FL29bv1614 to SecTab
N

\ set sector table pointer

When a Flash driver is loaded it will set SecTab.

: SectorN \ n -- addr len
Convert sector number to base address and length

: FindSecNum \ addr -— n

Find the sector number containing address addr. If addr is outside the internal Flash range, n
is set to -1.

\ addr -- start len

Find the start and length of the sector containing address addr. If len is zero, the sector was
not found and start is set to addr.

: FindSector

: 3dup 3dup ;
Useful for src/dest/len operations.

10.2.2 Driver file code

If you need to support a device for which we have not provided a driver, start from a suitable
existing driver in the Flash folder. It will benefit all JTAG Widget users if you contribute it
back for inclusion in the JTAG Widget software distribution.



Chapter 10: Flash programming harness 67

There are two approaches that can be taken for Flash programming of ARM systems.

1) The direct approach is to use the Widget’s memory read/write tools to run memory
cycles. Because a huge number of bits have to be shifted out on the JTAG chain,
this is very slow, sometimes only a few hundred bytes per second.

2) The faster approach is to copy some flash programming code to the target and
execute it. This is our standard approach and permits programming speeds of
10-20 kbytes per second or more, depending on CPU and Flash speeds. See
Flash\AT}9bv161}.fth for an example of this approach.

The file Flash\AT/9bv161}.fth contains driver source code which can be used as the basis of
a new driver. To improve compilation speed, you can remove the coments if you trust your
understanding of the code!

The next chapter describes the file Flash\AT49bv161/.fth, but there is no substitute for reading
the source code. The overall sequence is:

e Frase the Flash using direct access to target memory. This is usually satisfactory because of
time taken for the sectors to erase.

e Copy programming code into target RAM. The programming code is later run and fed with
data to be programed.

e The host programming code links the programming code into into the file transfer facilities
on the JTAG Widget.

e Set up the initial conditions in target CPU registers, so that R4 contains the base address of
the Flash and R5 contains the first address to be programed.

e Execute the programming code in target RAM. The JTAG Widget feeds it with data from
the file transfer tools and receives error counts back.

e When the file transfer and programming have finished, stop the target CPU. You may also
have to switch the Flash back normal operation mode.

The following words are provided for copying code to ARM targets using the DCC comms
channel.

(SendDCC) \ haddr len --
Send len bytes from haddr to the target. Haddr and Len must be four-byte aligned.

: SendDCC \ haddr len --

Send the length len as a count of four byte units, len bytes from haddr into the current target
memory address (held in target R5), and receive the error count which is added to #PrgErrs.
Haddr and Len must be four-byte aligned.

: XbuffToDCC \ —-

Send the required number of bytes bytes from X-BUFFER into the memory pointed to by target
R5. See the XModem chapter for more details.

.Xresult \ len’ status --
Display the results returned by RecvXmodem. See the XModem chapter for more details.

.Stopped \ -
Display message to say CPU is stopped.

: +tWriteTarget \ tdest hproc hlen --



68 MPE JTAG Widget

Initialise and start the target’s RAM writing routine. Flashbase and RAMbase must already
have been set up. The required parameters are:

tdest Start address to program in Flash
hproc Start of the routine to copy to target RAM
hlen Length of the routine to copy to target RAM
DefTarget -> TargetMem \ Force transfers to target
HaltCPU #10 ms \ halt CPU
cr ." Copying write code to target RAM"
#PrgErrs off \ no errors yet
RAMbase swap CopyMemOut \ -- tdest ; copy code to RAM
assign XbuffToDCC to-do From-Buffer \ set Xmodem routine
#10 ms
CpuState tuck cf.r5 ! \ -- haddr ; set tdest
Flashbase over cf.r4 !
$CO swap cf.cpsr or! \ disable FIQ and IRQ
cr ." Starting target write code"
RAMbase goFrom #10 ms \ start target program

: -WriteTarget \ --
Stop the target’s RAM writing routine.
HaltCPU .Stopped



Chapter 11: AT49BV1614 Flash programming 69

11 AT49BV1614 Flash programming

This code is used by the JTAG Widget to write to the Flash for storing applications. The code
is designed for use with an Atmel AT49BV1614 device on a 16 bit bus. The size of each sector
is given by the sector table.

This code is hardware and CPU dependent because of bus width and cache considerations. This
code was tested on an Atmel EB55 board.

11.1 Configuration

This section configures the base address of the target Flash, the start address of the RAM that
holds the target Flash programming routine, and disables cacheing of the Flash. Edit this file
before compiling it so that the target hardware is used correctly.

$01000000 to FlashBase
Define the default base address of the current Flash device.

$02000000 to RAMbase

Define the default base address of the RAM used for the programing code.

Some CPUs, e.g. MIPS and some ARMs use a particular address range to determine whether
the access should be cached or uncached. During Flash programming, all accesses to the Flash

should be uncached and write buffers should be turned off. The following is for for a Samsung
53C4510B CPU.

: ForceUncached \ addr -- addr’
bit26 or ;

If your CPU does not have a cache or if caching is never enabled for Flash access, use the
following code. : ForceUncached ; \ addr — addr’

: ForceUncached ; \ addr -- addr’
Convert a target address into its uncached form. Defaults to NOOP.

11.2 Flash Access routines

create FL49bv1614 \ -- addr
Table containing the number of sectors and starting offset of each sector, plus a dummy start
address which enables the size of the last sector to be calculated.

: FlUnlock \ -
Unlock the flash.
: F1Cmd \ command --

Unlock the flash and write the command.

: FlReset \ -
Reset device after AutoSelect command.

: F11d \ -- manid devid
Get manufacturer’s ID, should be $20 $E2 for the ST M29F040B device.

: SecErase \ secaddr -- ; erase sector
Erase the sector at the given address.



70 MPE JTAG Widget

(EraseFlash) \ dest dlen --

Erase the flash sectors covering dlen bytes at dest.

11.3 Code loaded into target RAM

This section contains code that is copied to target RAM for execution. It is position independent.
The two subroutines labelled DCCemit and DCCkey are the same for all ARM7 CPUs and Flash
devices.

arm7tdmi \ select min CPU required

Proc Writel614 \ do not execute this on host

ahead, \ forward unconditional branch
\ DCCemit - in: RO=x32, destroys: Rl
1$1:

begin,

mrc #14 0 rl cr0 cr0 O \ read DCC control reg
and .s r1, ri, # $02 \ test bit 1
eq, until, \ 0 for ready to write
mcr #14 0 rO crl cr0 O \ write DCC data reg
mov  pc, link \ return

\ DCCkey - out: RO=x32, destroys: Rl
1$2:
begin,
mrc #14 0 rl cr0 cr0 0 \ read DCC control reg
and .s r1, r1, # $01 \ test bit O
ne, until, \ 1 for ready to read
mrc #14 0 rO crl cr0 0 \ read DCC data reg
mov  pc, link \ return

\ Wr16 - in: R4=FlashBase, R5=addr, R6=x16, R8=#errs

\ - out: R5=addr+2, R8=tterrs
\ - destroys: RO, R1, R2, R3
\ unlock, write command, write data
1$3:
mov rl, # $55 \ offset = $5555
orr rl, ri, # $5500
mov rl, rl 1sl # 1 \ but address is for 16 bit unit
mov r0, # $AA \ first unlock byte
strth r0, [ r4 ++ r1 ]
mov r2, # $AA \ offset = $2AAA
orr r2, r2, # $2A00
mov r2, r2 1sl # 1 \ but address is for 16 bit unit
mov r0, # $55 \ second unlock byte
strh r0, [ r4 ++ r2 ]
mov  rO, # $AO \ write command code

orr 10, r0O, # $A000

strh r0, [ r4 ++ rl1 ]

bic r2, r6, # $FF000000 \ clear high 16 bits for later compare
bic r2, r2, # $00FF0000

strh r2, [ r5 ] \ write data



Chapter 11: AT49BV1614 Flash programming 71

\ poll data until done or errored out

mov  rO, # $4000 \ time out counter
begin,
ldrh r3, [ r5 1] \ read data back
cmp 12, r3 \ same?
ne, while,
cmp 10, #0 \ timed out?

ne, while,
sub r0, rO, # 1
repeat, then,

cmp r2, r3 \ same?

add .ne r8, r8, # 1 \ no, update error count
add r5, r5, # 2 \ step destination address
mov  pc, link \ return

\ Main - in: R4=FlashBase, R5=dest, uses: R7=count, R8=tterrs

then, \ patch up AHEAD,
begin, \ main loop
mov 18, # O \ clear error counter
bl L$2 \ DCCkey for block size in cells
mov .s r7, r0 \ R7 := loopcount
b .eq $ \ spin if zero - indicates last block
begin,
bl L$2 \ DCCkey for 32 bit data
mov r6, r0
bl 1$3 \ write low 16 bits
mov r6, r6 lsr # #16
bl 1$3 \ write high 16 bits
sub .s r7, r7, # 1
eq, until,
mov  r0, r8 \ error count
bl 1$1 \ DCCemit for error count
again,
mov  pc, link \ keeps disassembler happy
EndProc

here Writel614 - constant Lenl614 \ image length to copy to target.

11.4 Programing the device

: Progl614 \ addr len --

Given the address and maximum length of the target memory to be programed, erase the target
Flash, and read and program the target memory from a host file in binary image format. The
file is uploaded into the JTAG Widget using the XModem 128/1024 byte block protocol. See
RecvXmodem in the XModem chapter of the manual for more details of the XModem system.



72

MPE JTAG Widget



Chapter 12: Atmel AT91SAMT7xxx CPUs 73

12 Atmel AT91SAMT7xxx CPUs

The file CPUs\jwSAM?7.fth is an example of coding CPU and Flash drivers for a single chip
ARM. Other files are provided for the NXP/Philips LPC2xxx and ST STR91x families. The
techniques used are very similar to those used for the Flash drivers.

12.1 Tools
! equ \x —— ; —— x
A synonym for CONSTANT, useful when interactively compiling code that will later be cross

compiled.

: buffer: \ size —- ; -- addr
Create a buffer of the given size. At run-time the address is returned.

12.2 CPU definition

This section is used for selecting CPU variants.

CPU=ARMT71e
select CPU type
Define CPU type in use

$00 #16 1shift equ 7s
$01 #16 1shift equ 7x
$11 #16 1shift equ 7xc

Tx #256 or value SAMpart \ -- cpu# ; selects Flash stuff

$00100000 to FlashBase
Tell the JTAG Widget where the target Flash starts.

$00200000 to RAMbase
Tell the JTAG Widget where the target RAM starts.

12.3 Register definitions and utilities

This section defines the base addresses and offsets required to access the memory controller unit.

$FFFFFFOO equ _MC_BASE
_MC_BASE equ _MC

$00 equ MC_RCR \ Remap Control
$04 equ MC_ASR \ Abort Status
$08 equ MC_AASR \ Abort Address Status
$60 equ MC_EFCO \ EFCO Registers
$60 equ MC_FMRO \ Flash Mode

$64 equ MC_FCRO \ Flash Command
$68 equ MC_FSRO \ Flash Status
$70 equ MC_EFC1 \ EFC1

$70 equ MC_FMR1 \ Flash Mode

$74 equ MC_FCR1 \ Flash Command
$78 equ MC_FSR1 \ Flash Status

\ offset from MC_EFC0/1



74 MPE JTAG Widget

$00 equ MC_FMR \ Flash Mode

$04 equ MC_FCR \ Flash Command

$08 equ MC_FSR \ Flash Status
: mc@ \ offset -- x

Read 32 bits from an offset in the MC.

: mc! \ x offset --
Write 32 bits to an offset in the MC.

12.4 Board definition
#18432000 value XtalHz \ -- hz
Master oscillator crystal clock rate in HZ.

#48110000 value /MCK \ -- hz
Target MCK speed used by InitPLLs below.

1 value #FWS \ —
Number of Flash wait states

/MCK #1000000 / 1+ value #FMCN1 \ -- n
Number of clocks in lus.

#FMCN1 3 2 */ 1+ value #FMCN1.5 \ -- n
Number of clocks in 1.5us.

12.5 Hardware initialisation
.Tcpu \ —-

Display cpu description.
.settings \ --

Display current CPU settings.

: InitFlash \ —-
Initialise the target Flash wait states.

: InitPLLs \ -~
Initialise the target main oscillator and PLL.

: InitSAM7 \ -
Perform a full initialisation of the CPU.

12.6 Flash programming

The 256k flash is divided into 16 regions of 16kb which can be locked. The Flash is programmed
in pages of 256 bytes. The Flash controller includes a 256 byte buffer. A page is written by
writing 32 bit words to the address to be programmed until the buffer contains 256 bytes and
then issuing a page write command. Pages are 256 byte aligned.

: WaitRdy \ -- status
Wait until the Flash is ready and return the status.

: SetFMCN \ nmcn --
Write the value into the FMCN field of MC_FMRO.

: PageCmd \ taddr cmd -- cmd’



Chapter 12: Atmel AT91SAMT7xxx CPUs 75

Given a target address, find its page number and merge the page number and the access key
into the command.

: doF1Cmd \ cmd -- status
Perform the given Flash command, wait for completion and return the status value.

: Prog256 \ haddr taddr -- status
Program a 256 byte page at host haddr to target memory at taddr. Return the FSRO register
contents.

: ProgBuff \ haddr len taddr --
Program a host block to target memory. Len is forced to a 256 byte unit.

12.7 Code for target

Proc WriteSAM \ do not execute this on host
This procedure is copied into the target and contains the the Flash erase and program tools.

12.8 Programming with Xmodem

#1024 constant /FlashBuff \ -- len
Size of Flash data buffer. Must be at least 1024 bytes to allow for Xmodem-1k transfers.

/FlashBuff buffer: FlashBuff \ -- addr
Buffer for assembling packets destined for Flash.

FlashBuff /FlashBuff + constant FlashBuffEnd \ -- addr
End+1 of buffer

FlashBuff value pFlashBuff \ -- addr
pointer into assembly buffer

FlashBase value Tptr \ -- addr
Target address at which FlashBuff will next be programmed.

: initXbuff \ —-
Initialise pointers

: FlushXbuff \ -
Output to SAMT7x and reset buffer.

: FlushLast \ -
Write remaining buffered input to target.

: XtoBuff \ --
Transfer the required number of bytes bytes from X-BUFFER into target memory or the Flash
buffer. See the XModem chapter for more details.

: +WriteSAM7 \ tdest --
Initialise and start the target’s RAM writing routine. Flashbase and RAMbase must already
have been set up. The required parameter is the start address in target Flash.

: -WriteSAM7 \ --
Stop the target’s RAM writing routine.

: ProgSAM7 \ addr len --

Given the address and maximum length of the target memory to be programed, erase the target
Flash, and read and program the target memory from a host file in binary image format. The
file is uploaded into the JTAG Widget using the XMODEM 1k byte block protocol. See BIN-UP
in the XMODEM chapter of the manual for more details.



76 MPE JTAG Widget

12.9 User instructions

decimal

cr
cr .( Set up for )

.settings

cr .( Edit this file to change the defaults.)

cr .( To change part selection use, for example:)
cr .( T7x #256 or to SAMpart )

cr .( To reset target and JTAG, use:)

cr .(  AllReset)

cr .( To initialise selected CPU, use:)

cr .( initSAM7 )

cr .( To Flash from a host file, use:)

cr .( <addr> <len> ProgSAM7 )

cr .( Number base is DECIMAL. Use HEX to change.)

cr



Chapter 13: RAM loader 7

13 RAM loader

This code is used by the JTAG Widget to write files to target RAM, as is often required when
testing applications in RAM before committing them to Flash. The code can be used with any
ARM device that supports DCC comms.

13.1 Code loaded into target RAM
This section contains code that is copied to target RAM for execution. It is position independent.

13.1.1 Writing to RAM

Proc RAMwriter \ do not execute this on host

ahead, \ forward unconditional branch
\ DCCemit - in: RO=x32, destroys: Rl
18$1:
begin,
mrc #14 0 rl cr0 cr0 0 \ read DCC control reg
and .s rl, ri, # $02 \ test bit 1
eq, until, \ 0 for ready to write
mcr #14 0 r0 crl cr0 O \ write DCC data reg
mov  pc, link \ return

\ DCCkey - out: R0O=x32, destroys: Rl
1$2:
begin,
mrc #14 0 rl cr0 cr0 O \ read DCC control reg
and .s rl, ri, # $01 \ test bit O
ne, until, \ 1 for ready to read
mrc #14 0 r0 crl cr0 O \ read DCC data reg
mov  pc, link \ return

\ Main - in: R4=FlashBase, R5=dest, uses: R7=count, R8=t#terrs

then, \ patch up AHEAD,
begin, \ main loop
mov r8, # 0 \ clear error counter
bl L$2 \ DCCkey for block size in cells
mov .s r7, r0 \ R7 := loopcount
b .eq $ \ spin if zero - indicates last block
begin,
bl L$2 \ DCCkey for 32 bit data

str r0O, [ r5 ], # 4
sub .s r7, r7, # 1

eq, until,

mov  r0, r8 \ error count

bl 1381 \ DCCemit for error count
again,

mov  pc, link \ keeps disassembler happy
EndProc

here RAMwriter - constant RWlen \ image length to copy to target.



78 MPE JTAG Widget

13.1.2 Reading memory

Proc MemReader \ do not execute this on host

ahead, \ forward unconditional branch
\ DCCemit - in: RO=x32, destroys: Rl
1$1:

begin,

mrc #14 0 rl cr0 cr0 O \ read DCC control reg
and .s ril, ri, # $02 \ test bit 1, W
eq, until, \ 0 for ready to write
mcr #14 0 r0 crl cr0 O \ write DCC data reg
mov  pc, link \ return

\ DCCkey - out: R0=x32, destroys: Rl
1$2:
begin,
mrc #14 0 rl cr0 cr0 0 \ read DCC control reg
and .s r1, r1, # $01 \ test bit 0, R
ne, until, \ 1 for ready to read
mrc #14 0 rO crl cr0 O \ read DCC data reg
mov  pc, link \ return

\ Main - in: R4=FlashBase, R5=src, uses: R7=count, R8=#errs

then, \ patch up AHEAD,
mrc #14 0 rO crl cr0 0 \ read DCC data reg to discard junk
begin, \ main loop
mov r8, # 0 \ clear error counter
bl L$2 \ DCCkey for block size in cells
mov .s r7, r0 \ R7 := loopcount
b .eq $ \ spin if zero - indicates last block
begin,
ldr O, [ 51, # 4
bl L$1 \ DCCemit for 32 bit data
sub .s r7, r7, # 1
eq, until,
mov  r0, r8 \ error count
bl 11 \ DCCemit for error count
again,
mov  pc, link \ keeps disassembler happy
EndProc

here MemReader - equ MRlen \ image length to copy to target.

: RecvDCC \ haddr len --

Read len bytes from the current target memory address (held in target R5) into host memory
at haddr. Haddr and Len must be four-byte aligned.

: DCCtoXBuff \ -

Get the required number of bytes bytes into X-BUFFER from the target memory pointed to by
target R5. See the XModem chapter for more details.

(WaitDCCkey) \ -- flag

Wait for up to 1 second for a character.



Chapter 13: RAM loader 79

: RecvDCCto \ haddr len --
Read len bytes from the current target memory address (held in target R5) into host memory
at haddr. Haddr and Len must be four-byte aligned.

13.2 Copying files to RAM and from memory

: WriteRAM \ taddr len --

Given the address and maximum length of the target memory to be programed, copy a host
file in binary image format into target RAM. The target address must be 4-byte aligned. The
file is uploaded into the JTAG Widget using the XModem 128/1024 byte block protocol. See
RecvXmodem in the XModem chapter of the manual for more details of the XModem system.

: RecvMem \ taddr len --

Given the address and maximum length of the target memory to be read, copy it into a host
file in binary image format. The target address and length must be 4-byte aligned. The file
is uploaded from the JTAG Widget using the XModem 128/1024 byte block protocol. See
RecvXmodem in the XModem chapter of the manual for more details of the XModem system.



80

MPE JTAG Widget



Chapter 14: Further information 81

14 Further information

14.1 MPE courses

MicroProcessor Engineering runs the following standard courses, which can be held at MPE or
at your own site:

e Architectual Introduction to Forth (AIF): A three-day course for those with little or no
experience of Forth, but with some programming experience. The AIF course provides an
introduction to the architecture of a Forth system. It shows, by teaching and by practical
example how software can be coded, tested and debugged quickly and efficiently, using
Forth’s interactive abilities.

e Embedded Software for Hardware Engineers (ESHE): A three-day course for hardware
and firmware engineers needing to construct real-time embedded applications using Forth
cross-compilers. Includes multitasking and writing interrupt handlers.

Custom courses are available

e Quick Start Course (QSC): A very hands-on tailored course on your site using your own
hardware, and includes installation of a target Forth on your hardware, approaches to
writing device drivers, designing a framework for your application and whatever else you
need. The course is usually three days long.

e Other custom courses we provide are for Open Boot and Open Firmware. These are derived
from the AIF course above.

14.2 MPE consultancy

MPE is available for consultancy covering all aspects of Forth and real-time software and hard-
ware development. Apart from our Forth experience, MPE staff have considerable knowledge of
embedded hardware design, Windows, Linux and DOS.

Our software orbits the earth, will land on comets, runs construction companies, laundries,
vending machines, payment terminals, access control systems, theatre and concert rigging, anaes-
thetic ventilators, art installations, trains, newspaper presses and bomb disposal machines.

We have done projects ranging from a few days to major international projects covering several
years, continents and many countries. We can operate to fixed price and fixed term contracts.
Projects by MPE cover topics such as:

e Custom compiler developments, including language extensions such as SNMP, and new
CPU implementations,

e Custom hardware design and compiler installations,

e Portable binary system for smart card payment systems,
e Machinery controllers,

e Connecting instrumentation to web sites,

e Virtual memory systems,

e Code porting to new hardware or operating systems.

We also have a range of outside consultants covering but not limited to:

e Communications protocols



82 MPE JTAG Widget

Windows device drivers

All aspects of Linux

Safety critical systems

Project management (including international)
14.3 Recommended reading

A current list of books on Forth may be found at:
http://www.mpeforth.com/books.htm

For an introduction to Forth, and all available in PDF or HTML:
e "Programming Forth" by Stephen Pelc. About modern Forth systems.
e "Starting Forth" by Leo Brodie. A classic, but very dated.
e "Thinking Forth" by Leo Brodie. A classic.

For more experienced Forth programmers:
e "Object Oriented Forth" by Dick Pountain
e "Scientific Forth" by Julian Noble

Other miscellaneous Forth books:
e "Forth Applications in Engineering and Industry" by John Matthews

e "Stack Machines: The New Wave" by Philip J Koopman Jr

All of these books can be supplied by MPE.



Index

Index
!
(M) o 47
#1000000 . . ..o 74
#drposttdo......... ... ... .. .l 26
#drpretdi....... ... ... ... 26
BEWs . 74
#irposttdo......... ... ... .. ..l 26
#irpretdi........... ... ...l 26
#tckpulses......... ... ... ... ...l 27
op> L 51
(eraseflash) ............ ..., 70
(senddce) ... 67
(setarm7) ..o 43
(setarm9) ....... ... ... 43
(setcpu) ... 43
(sethwbp) ... 41
(SEOPCPU) ..ottt 40
(waitdcckey) ... 78
+
+dbgints ... ... 40
+decio ... 45
FPCPipe . ... 40
twritesam?............ ... 75
+writetarget............. ...l 67
9
L) 47
-dbgints....... ... ... 40
—dCCIO o 45
—writesam7 . ... ... 75
—writetarget.......... ... ...l 68
DbL/blxoffll. e 51
Jblx/undef ... ... 51
.condbr8... ... ... 51
cpustate.......... ... i 40
iceregs ... ... 35
jtagstate............ ...l 25
loreg ..o 51

83
NEXEINS . oottt 40
TATI . oot 51
rdrnimm3 . ... ... 51
rdrnimmb ... ... 51
TATNTIN . oottt e e e e e e e 51
settings......... ... . ... ...l 74
.stopped . ... 67
SWL/DRPE .« 51
Ltarget ... 50
BCPU .o 74
stregmask. ... 51
CEDPST e 40
xresult ... 67
JCOMEEXt . vttt 38
Jflashbuff......... ... ... ... . i 75
T <P 29
JICK e 74
/abit . 22
JSCAIL « vt e 30
Jtarget ... 47
?
PrestartCpu. ...t 40
PSLOPCPU . oot 40
@)
[T PN 47
5 27
[gr . 27
5 27
gPio ... .. 22
3
B e 74
3dUp .. 66
A
aligned(t) ............. i 49
allot(t) e 49
allreset . ...t 25
ATM=32 .o 48
Arm7be . ... 42
ATMTIE .ot 42
arm7tdmioptions .............. ... ... ... ... 48



84

ATMTEYPE .« o oot et 48
armObe . ... 43
arm9ebe . ... ... 43
armOeCcpu? ... ... 49
armOele . ... ... 43
arm9eoptions.......... ... ...l 48
armOle ... ... 42
arm9options........... ... ... il 48
ArmOtYPe . .. oot 48
ATMISA « o e vttt e e 48
B

b (G o 42
ble(t) oo 17, 49
bQ(F) - o 42
bQc(t) ..o 17, 49
badepu.......... 49
badmemop............. .. ... ..ol 49
bigend?....... ... .. ... 49
btdump ......... ... ... 50
buffer: ......... ... ... Lo 38, 73, 75
C

CeLI(t) « ottt 49
cktmshi ... ... 24
CREMSLO .ot 24
clearbreak . .......couiiitiii 42
cmdClamp .. ...t 29
cmdextest ........ ... 29
cmdrestart............. . ... il 29
cmdsample .. ....... ... ...l 29
CMASCAN_TN . .ottt e e e e et e e e 29
cons0ledCC . .o vt 44
constant ... 48
copyimmext........... .. .. i 37
COPYMEMIN .. ...ttt 37
COPYMEMOUL . ..ot 37
copyoutnext................. ... 37
count (J) ..o 42
count (t) ..ot 49
cpu=arm7be.......... ... il 43
cpu=arm7le . ...t 43, 73
cpu=armObe................ i 43
cpu=arm9ebe........... ... ... ool 43
cpu=arm9ele............ ...l 43
cpu=armOle...................... il 43
cpu=host .......... ... ... ... L 50
CPULYPE . oot 49
Lo o of = o 25
D

dbrcontrol........ ... ... . i 33
dbrdcccontrol.......... ... ... ... 33
dbrdcecdata........... ... .. 33
dbrstatus........... .. .. .. i 33
dbrwOamask.......... ... 33
dbrwOaval ........... ... .. ... .. ... ... 33
dbrwlcmask ... .....ooiiii 34
dbrwlcval .. ....oi 34
dbrwOdmask............ ... .. .. i 33

dbrwOdval .. ... ... 33

MPE JTAG Widget

dbrwlamask............cuitiiiii ., 34
dbrwlaval ...t 34
dbrwlcmask......... ..ot 34
dbrwlcval .. ... 34
dbrwldmask.........c.uiiii 34
dbrwldval .. ... ... 34
deccconsole. . ... 45
ACChCT oottt 44
dechemit . ... ... 43
dechemit? .. .. i 43
dechkey ... 43
decchkey? . ... 43
dechtype . ..o 44
ACCioT ot 45
dectask ..o 45
decctoxbuff........ .. ... ... .. 78
debugstep.............. ... 35
debugstepread................ ... . ... . 35
debugstepwrite ........... ... ... . L.l 35
decodetd . ... ... 51
decodethb . ... ... ... . 51
decodetbB . ... ... 51
decodetT .. ... . i 51
decodet8 ... ... 51
deftarget .............. ... .. ... 48
disablefiq.........oouuiiiiiiiiiiii 41
disableirq......c.ooviiiiniiin i 41
disasm/al ...........iiririi 53
disasm/f ... 53
disasm/ft.........o i 53
doflemd . .....oiti 75
domemins . .........iii i e 37
dOMOP .. oot 36
donopread..............oiiiiiiiii 36
dotnop . ... 36
AP(E) oo 50
drin] ... 27
drout] ... ... 27
drread .......... 28
Arwrite . ... . 28
drxchgl ......... ... 27
dstep+2... ... 36
Atldpif8 . .. 51
dtimemf2 . ... ... .. .. ... 51
dtadjustsp............... i 51
dtbrll .. e 51
E

enablefiq. ... .ot 41
enableirq....... ...t 41
EQU Lttt 21, 39, 73
F

finalxr ... 27
findsecnum.............. ... ... 66
findsector..... ...t 66
f140bvi1614 . . ... e 69
flashbase ............... ... ... ... ..... 66, 69, 73
flemd . ... 69
Flad .. 69
flreset ... o 69
flunlocK . ... 69



Index

flushlast....... ...t 75
flushxbuff........... ... .. ... . ... ... .. 75
forceuncached.............. ... .. ... .. ... .. ..., 69

G

getarmstate.............. ... . ... Ll 38
getcpustate.......... ... ... L.l 39
getstopcodes............. ... ... il 38
getthumbstate.................... ... ........ 39
gofrom..... ... .. ... . 40
BOTLi ..o 25
gotosdr ........ ... 25
gotosir ... ... ... 25
grinl ... ... 27
groutl ... ... 27
grxchgl ... 27

H

haltcpu........... .. 40
halted? . ... o 37
hdasm...... ... 53
here(t) ... 49
hostarm. ... ..ot 50

I

initflash.......... ... ... i 74
indtjtag.. ... 23
indtplls .. ... 74
indtsam? . ... . 74
initxbuff ... ... ... 75
ANSSiZe . ot 41
irind ... 27
irout] .. ... 27
irread ... ... 28
ArWrite . ..o 28
irxchgl ... 27
issuerestart............. ... . . .. 37

Jscdr ... 24
JSCAT o 24
jseldr ... .. 24
jselir ... ... .. 24
jse2dr ... 25
JSE21r ... 24
JSpAr .. 24
JSPAT o 24
FSTEL oo 24
jsseldrs . ... ... 24
jsselirs . ... ... 24
JSShAT ..o 24
jsshir ... ... .. 24
JSELr .o 24
FSUAL oo 24
JSUIT o 24
jtaggoto ... ... ... 25
jtagreset ...... ... ...l 25
jtagstate........... ... ...l 25

85
L
L () 42
Lre(t) oo 17, 49
1OCH) oo 42
1QC(E) o 17, 49
lasticestatus...........ciiiiiitiinnn.. 36
1en>masK . .o oot it 37
1sattdo ..ot 26
ltdump ... 50
M
o 74
MCQ .t 74
movein(t) .. ..o 49
moveout (£) ... ... 49
msattdo ... .. 26
msattdo? . ... 26
N
nsrsthi...... ... . . . . 23
NSYStlo ..ot 23
ntrsthi ... 22
Ntrstlo ... 22
O
L et e e e e 50
org(t) oo 49
|
Pagecmd .. ... 74
primhere(t) ............. .. ... ... .. 50
primorg(t) ... ..o 50
Progl6ld ... ... ... ... 71
PTog256 ... ... 75
progbuff..... .. ... .. ... ... 75
PTOGSAMT . oottt ettt et et 75
R
Tambase .. ... 66, 69, 73
readchipid........... ... . ... .ol 34
TAdCPST . ..ot 36
readicCe . ...t 35
readmaskregs............. ..ot 36
TEAAMEIM . . o v ottt ettt et e 37
readmemnext ... .......uiti i 37
readreg ... ..ottt 36
TeAdSPST . ..ot 36
TECVACT + ottt ettt ettt e 78
TeCVACCEO . o ittt i e 79
=Y (1= 1 P 79
restartarm. . ...... ...t 39
resStartCore . ..ot 39
restartCpu... ...t 40
restartthumb.................................. 39
TESTOT@ATM. . o v ittt ettt et e 39
restorethumb.................................. 39
TECRO . .t 23



86

S

SECETASE .. vttt et 69
sectab....... .. 66
SECLOTM . ... i 66
seldrsgoto.............. ... ...l 25
senddcC .. ... 67
setbreak.............. .. ... ... 42
setchain........... ... ... .. il 34
setcpustate................ ... 39
setfmen........ ... L 74
sethubp........ ... i 41
setidcode........... ... ... .l 34
setintest......... ... .. ... il 34
setjtagspeed........... ... ... il 22
showepu...........o i 40
showjtagstate................. ... ... ... ... 25
showregs?...... ... ... . ... ...l 40
singlestep........... ... ... 41
skipnext ....... ... 41
STStQ . ... 23
T 41
ssbreak ........ ... ... . 40
SSicestep. ..ot 41
steparm?.......... ... ... .. 35
steparmQ........ ... 35
stepcore....... ... .. 35
SEePfrom. . ..o 41
SEEPS .. 41
stopcore....... ... 39
SEOPCPU . ..t 40
stopreason.............. ... ... il 38
stopstatus............. ... .. ... L 37
systemstep................ i 35

T

tlinoff7 ... . ... 38
tlinoff9. ... . ... .. 39
targetisa........... .. ... 48
targetmem.................. ...l 48
targetmem?......... ... ...l 50
targetreset................ ... ... 25
tckactivehi?. ... ... ... . il 21
tckhi ... 23
teklo ..o 23
tckpulse ... ... 23
tdebugstepwrite .............. ... ... ...l 35
tdihi ... ... 22
tdilo .. ..o 22
tdioxchg............ ... 23, 24
tdiwrite. .. ... . 23
tdo@ ... 23
tdoread ........ ... .. 23
tdstep+2. ... ... 36
thumb-1........ ... ... . ... 48

thumb? ... 48

MPE JTAG Widget

thumblisa.......... ... 48
thumb2isa...........iiii i 48
10 (h) o 50
TLOCH) oot 50
tmshi . ... 23
BMS L0 o ot 23
trestartins7......... ... .. ... 39
trestartinsO......... ... ... 39
twl(h) o 50
twQ(h) .. 50

uxr>rti ... 25
UXTEOTO .ottt 25

W) 42
W (M) o 47
wle(b) oo 17, 49
Wy (D) o 47
WO(F) oo 42
WO(I) ..o 47
WOC(E) oottt 17, 49
waitbreak..............iiii i 42
waithalt ...... ... 37
waitrdy ....... ... 74
Writecpsr......... ... 36
writeice...... ... ... 35
writemaskdata............. ... 39
writemaskregs................ ... .. ... ... 36
WEAtEMEM . . .ttt e et 37
writememnext........ ...t 37
WEAteTaAM . vttt et e e et e e 79
Writereg........... .. ... 36
writereg2.............. ... ... 36
WEAiteSaAmM . ..ottt 75
Writespsr.......... ... ... ...l 36
wbdump ... ... 50

xte(b) oo 18, 49
XOC(L) ..o 17, 49
xbufftodcc....... ... .. .. 67
a5« 27
XTOUE oottt 27
Xrxchg ... ... 27
xtalhz .. 74
xtobuff .. ... 75



	Introduction
	What does it do?
	About the MPE JTAG Widget
	Widget Hardware
	Widget Software

	Getting started
	Software installation
	Talking to the JTAG Widget
	Selecting your CPU
	Programming external Flash
	Optimising programing speed
	Debugging ARM code
	Saving compiled code
	Using other terminal emulators
	Using Linux and Macs

	About Forth
	About the manual
	If disaster strikes
	Installing software upgrades
	Development Kit Tools
	Technical support

	How Forth is documented
	Forth words
	Stack notation
	Input text
	Other markers

	First steps in debugging ARM code
	Number bases
	Connecting the target
	Initialising the JTAG connection
	Stopping, Stepping and Restarting the CPU
	Displaying memory
	Disassembling target code
	Assembling target code
	Target memory and peripherals
	Flash programming
	Standard CPU support

	Further debugging techniques
	JTAG primitives
	JTAG pin access
	Configuration
	HwSel=NMIrevA
	HwSel=MPErevA

	JTAG primitives
	TAP state machine access
	Using multiple devices (daisy chain)
	Scan chain access
	Read and write IR and DR
	Test code

	ARM debug chains
	Instruction register
	Test data registers
	Instruction register
	Bypass
	Core ID
	Scan chain select

	Debug Registers
	DCC control (%00100, R/O)
	Debug control (%00000, R/W)
	Debug status (%00001, R/W)
	Debug register names

	ARM JTAG instructions
	Scan chain 1
	Scan chain 2
	High level debug support
	Modifying registers
	CPU halt, restart and context
	CPU state display
	CPU Debug functions
	Breakpoints
	Target memory tools
	Target CPU selection
	Debug Comms Channel
	Host Access
	Target code
	DCC console tools


	Target memory words
	Big-endian host operations
	Target memory and debug interface
	Target memory tools
	Host memory

	ARM disassembler
	ARM Assembler
	Condition codes
	Number bases
	ARM instruction set
	Thumb instruction set
	Register naming
	Immediate constants
	Shift operations
	Addressing modes
	Pre-indexed addressing
	Post-indexed addressing
	PC relative addressing
	Byte and half word addressing
	Register lists
	MVL and ADR

	Control structures
	Labels
	Assembler error codes

	Flash programming harness
	Using supplied Flash drivers
	Writing your own Flash driver
	Resident code
	Driver file code


	AT49BV1614 Flash programming
	Configuration
	Flash Access routines
	Code loaded into target RAM
	Programing the device

	Atmel AT91SAM7xxx CPUs
	Tools
	CPU definition
	Register definitions and utilities
	Board definition
	Hardware initialisation
	Flash programming
	Code for target
	Programming with Xmodem
	User instructions

	RAM loader
	Code loaded into target RAM
	Writing to RAM
	Reading memory

	Copying files to RAM and from memory

	Further information
	MPE courses
	MPE consultancy
	Recommended reading

	Index

