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Chapter 1

Introduction

Arduino! is a popular open source and open hardware micro controller platform for various purposes,
mainly located in leisure time projects. Arduino comes along with a simple to use integrated development
environment, which contains the complete tool chain to write source code, to browse through samples
and libraries, to compile and link the software and to upload it to the board and flash it. The RTuinOS
project adds the programming paradigm of a real time operating system to the Arduino world.

Real time operating systems, or RTOS, strongly simplify the implementation of technical applications
which typically do things in a quite regular way, like checking inputs and setting outputs accordingly
every (fixed) fraction of a second. For example, the temperature controller for a heating installation could
be designed this way. Temperature sensors, which report the room temperatures are evaluated and the
burner and maybe some valves are controlled to yield the desired target temperature. Furthermore, using
a real time system the program could coincidentally and regularly update a display to provide feedback
— at the same or any other rate. Regular, time based programming can be done without the need of
CPU consuming waiting loops as used in the implementation of Arduino’s library functions delay and
delayMicroseconds. Real time operating systems characterize the professional use of micro controllers.

RTwuinOS is a small real time operating system (RTOS) for the Arduino environment. It is simple
to use and fits well into the existing Arduino code environment. It adds the concept of pseudo-parallel
execution threads to the sketches.

The traditional Arduino sketch has two entry points; the function setup, which is the place to put
the initialization code required to run the sketch and function loop, which is periodically called. The
frequency of looping is not deterministic but depends on the execution time of the code inside the loop.

Using RTuinOS, the two mentioned functions continue to exist and continue to have the same meaning.
However, as part of the code initialization in setup you may define a number of tasks having individual
properties. The most relevant property of a task is a C code function?, which becomes the so called task
function. Once entering the traditional Arduino loop, all of these task functions are executed in parallel
to one another and to the repeated execution of function loop. We say, loop becomes the idle task of the
RTOS.

A characteristic of RTuinOS is that the behavior of a task is not fully predetermined at compile time.
RTuinOS supports regular, time-controlled tasks as well as purely event controlled ones, where events
can be broadcasted or behave as mutex or semaphore. Tasks can be preemptive or interact cooperatively.
Task scheduling can be done using time slices and a round robin pattern. Moreover, many of these modes
can be mixed. A task is not per se regular, its implementing code decides what happens and this can
be decided context or situation dependent. This flexibility is achieved by the basic idea of having an
event, controlled scheduler, where typical RTOS use cases are supported by providing according events,

1See www.arduino.cc

2The GNU C compiler is quite uncomplicated in mixing C and C++ files. Although RTuinOS is written in C it’s no
matter do implement task functions in C++ if only the general rules of combining C and C++ and the considerations about
using library functions (particularly new) in a multi-tasking environment are obeyed. Non-static class member functions
are obviously no candidates for a task function.
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e.g. absolute-point-in-time-reached. If the task’s code decides to always wait for the same absolute-
point-in-time-reached event, then it becomes a regular task. However, situation dependent the same task
could decide to wait for an application sent event — and give up its regular behavior. In many RTOS
implementations the basic characteristic of a task is determined at compile time, in RTwinOS this is done
partly at compile time and partly at runtime.

RTwuinOS is provided as a single source code file which is compiled together with your other code,
which now becomes an RTuinOS application. In the most simple case, if you do not define any task,
your application will strongly resemble a traditional sketch: You implement your setup and your loop
function; the former will be run once at the beginning and the latter repeatedly.

RTuinOS on its own can’t be compiled, there need to be an application. RTuinOS is organized as
a package which combines the RTuinOS source file with some sample applications which are the test
cases at the same time. The source code of each sample application is held in a separate folder, named
tc<nn>. Any of these can be selected for compilation. You may add more folders, holding the source
code of your RTuinOS applications. A starting point of your application folder can be a copy of any of
the folders tc<nn>. The compilation always is the same. Run the makefile, where the name of the folder
(which doesn’t need to be tc<nn>) is an option on the command line. See section 4.2 for more.

This document introduces the basic concept of RTuinOS and gives an overview of its features and
limitations:

Chapter 2 explains the basic principles of operation. Some core considerations of the implementation
are highlighted, but the relevant documentation of the implementation is the code itself. It is commented
using doxygen?® tags; the compiled doxygen documentation is part of this project. It contains only the
documentation of the global objects of RTuinOS; to fully understand the implementation you will have
to inspect the source code itself, please refer to [1], [2], [3].

Chapter 3 lists and documents all elements of RTuinOS’ API.

Chapter 4 explains how to write a well-working RTuinOS-application. The chapter starts with a short
recipe, which guarantees soon success. Here is where you may start reading if you are already familiar
with the concept of an RTOS.

The manual closes with chapter 5, which gives an overview of possible improvements and still missing
and maybe later released features.

3See http://www.doxygen.org



Chapter 2

How does RTutnOS work?

In a traditional sketch, the function loop defines all actions which have to be executed. The execution
of the code is strictly sequential. loop may of course call any sub-routines, which may call others, but
this does not change the strictly sequential character of the execution of the statements. Therefore it is
difficult to execute specific actions at specific points in time. For example toggle the state of an LED
every seconds. This might still be easy to do if your sketch does nothing else — see Arduino’s standard
example blink —, but if you’re in the middle of a sketch, which e.g. transfers some data via the USB
port, it becomes ugly: You will have to merge some specific, the LED serving statements, into your USB
handling code. And the accuracy of the yielded timing will not be perfect.

Imagine, you could simply write two sketches. The USB communication stays as it is but a second
sketch, e.g. the sample sketch blink, is defined at the same time and will be executed, too. Now the USB
code is no longer spoiled with double-checking the state of the LED but nonetheless the LED will blink
as desired.

This actually is what RTuinOS offers. It’s however not a complete sketch but just a function — which
can of course be stored in a separate C source file —, which is executed in parallel. Write two such
functions, make them so called tasks and you get what you want.

How would this work? The Arduino board continues to have a single CPU, which is available for code
execution. The trick is to use it alternatingly to proceed with the one task and then with the other one.
If this switching between the tasks happens fast enough, than it’s just the same as if both would run at
the same time — only with limited execution speed.

Does alternating between the tasks happen regularly? It depends. Different patterns of alternating
between tasks are possible. The most simple pattern is to share the CPU in fixed portions between
the tasks. The ratio can be chosen. If we assume in our example that serving the USB port is more
challenging than flashing an LED, it would be reasonable to share the CPU by 95:5 rather than by 50:50.
This pattern is called round robin and fits well if the tasks are completely independent of each other (as
in our example) and if all of them continuously require the CPU — which is not the case in our example!

Toggling the LED state can be done by permanently observing a watch and switching the LED output
when it reaches the next mark. A traditional Arduino implementation of this strategy requires the CPU
indeed permanently and this is exactly how the sample sketch blink is implemented. In an RTOS you can
do it better. Tell the system when you want to toggle the LED state the next time and do nothing until.
Your task is inactive, does not require the CPU any more and is nonetheless executed again exactly at
the desired point in time. Two advantages arise. Your task does barely consume CPU power and the
regularity of the execution is very good. This pattern is the appropriate solution for our example. The
LED is blinking very regularly, and nearly all of the CPU performance can still be spend on the USB
task, which therefore behaves the same way as if there was no blinking LED at all.

The next pattern of sharing the CPU between different tasks is direct coupling of tasks. By means of
so called events a task can indicate a specific situation to any other task, which will then react on this
situation. For example, the LED should not constantly blink. It is now used to indicate the state of the
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USB communication by flashing a number of times if a significant state change occurs. The number of
flashes will notify what happened. The LED task will now use an event to become active and subsequently
it’ll use the execute-at-time pattern a number of times to realize the sequence of flashes. The LED stays
dark as long as the event is not posted to the task. After the blink sequence the task will again start to
wait for the next occurrence of the event.!. The active time of this task is still close to zero: Every time it
is executed it’ll just use a few statements to toggle the LED state and to inform the RTOS about the next
condition under which to become active again. The main task, which implements the communication can
proceed nearly as if there was no LED task. There’s however an extension to its implementation. In case
of a significant status change it has to indicate the number of according flashes and to post the event.
The former can be done by a write to a global variable and the latter is a simple call of an RTuinOS API
function. The global variable is shared by both tasks, the LED task will read it when being activated by
the event.

If there are more tasks the scenario becomes more complicated and we need a new term. If two tasks
tell the RTOS the time they want to be activated again, there is a certain chance, that it is the same
time. In this situation, if this point in time is reached, RTuinOS decides that both tasks are due — but
only one of them can get the CPU, i.e. can be activated. Which one is decided by priority. The priority
of a task is a static, predetermined property of a task. At compilation time, you will decide which of the
tasks has the higher priority and which is the one to get the CPU in the mentioned situation.

Similar: The tasks do not specify the same point in time but nearly the same. Obviously, the task
becoming due earlier will get the CPU. And when the other one becomes due a bit later it might still
desire to have the CPU. Will it continue to have it? It depends again on the priority of the tasks. If the
later due task has the higher priority, it’ll take over the CPU from the earlier task. The earlier task is
still due (as it didn’t return the CPU voluntarily so far) but no longer active. The later task is both, due
(it’s point in time has reached) and active (it got the CPU).

When the active, later task tells RTuinOS to no longer need the CPU, the earlier still due task will
again get the CPU and continue to execute.

If a task tells the system to momentarily no longer require the CPU (by notifying: ”Continue my
execution at/when”) we say it is suspended. If it becomes due again, we say it is resumed. If it is executed
again, we say it is activated.

There’s always one and only one active task. What if all tasks in the system did suspend themselves
because they are waiting for a point in time or an event? Now, there is a single task which must never
suspend itself. This task is called the idle task and RTuinOS can’t be compiled without such a task being
present.? The idle task doesn’t need to be defined in the code. RTuinOS uses the function loop as idle
task. All the code in function loop makes up task idle. If you don’t need an idle task (as all your code is
time or event controlled) just implement loop as an empty function body.

Not implementing the idle task is however a waste of CPU time. RTwuinOS spends all time in loop
when none of the other tasks is due. So if there are any operations in your application which can or
should be done occasionally it’s good practice to put them into the idle task. There’s no drawback, if
any task needs the CPU, idle is just waiting until the task has finished. The execution speed of task idle
is directly determined by the CPU consumption of the other tasks. Idle will never slow down the tasks,
but the tasks will slow down idle. Idle is a task of priority lower than all other priorities in the system.
Idle is a task which is never suspended but always due and sometimes active.

2.1 Implementation of RTuinOS’ Scheduler

The set of rules how to share the CPU between the different tasks is called the scheduler. Actually, RT-
uinOS is nothing else than the implementation of a scheduler.® Understanding the details of the decision

L An implementation of this pattern can be found in test application tc08

2Caution, if the idle task would ever try to suspend itself, a crash of the system would result.

3From the world of personal computers you will associate much more with the term operating system than just a task
scheduler. In fact, in this environment, the scheduler is just the most important part of the operating system, therefore
referred to as kernel, but surrounded by tons of utilities, mostly to support various I/O operations. In the embedded world
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rules implemented in RTuinOS is essential for writing applications that behave as desired. (An RTOS
can easily show effects which are neither expected nor desired.) The rules of RTuinOS’ scheduler will
become clear in the following documentation of its implementation.

In RTuinOS, a task is represented by a task object. All task objects are statically allocated, there’s no
dynamic creation or deletion.* The objects are configured in Arduino’s function setup and stay unchanged
from now (besides the continuous update of the runtime information by the scheduler, see below).

RTuinOS manages all tasks in lists. Please refer to figure 2.1 on page 15. There’s one list per priority.
All tasks having a specific priority form a priority class and this class is managed with the associated list.
The number of different priorities is determined at compile time by the application.

An additional list holds all tasks (of any priority) which are currently suspended.

Within a task object there are a few members which express a condition under which a suspended
task is resumed. (These members are empty or in a don’t care state when a task is due or active.) More
concrete, RTuinOS knows about a limited number of distinct events® and the mentioned condition is a
sub-set of these plus the following Boolean choice: will the task be resumed as soon as any event of the
sub-set is seen or does the task stay suspended until all events have been seen? Moreover, three of the
known events have a specific meaning; they are all timing related and have a parameter of kind when.

At system initialization time all tasks are put in state suspended. Consequently, the initial resume
condition is part of the task initialization. Typically, this condition is weak, like ”"resume immediately”.
However, a delayed resume is possible. Starting some regular tasks with differing delays may be advan-
tageous in order to avoid having too many tasks becoming due all at the same time. Furthermore, a task
may specify the initial resume by a broadcasted application event. And if a task implements the handler
of an application interrupt it will probably be initially resumed by this interrupt.

Please note, that events of kind mutex or semaphore must not be used as part of a task’s initial
resume condition. In many cases such a condition simply doesn’t define a suspended state; if the mutex
or semaphore (or better to say a counter value of it) is currently available the requesting task would not
be suspended — which is a must at the time of initializing the task objects as the RTuinOS kernel is not
yet running at this point in time.

2.2 Time based Events

The most relevant events of RTuinOS are absolute and relative time events. An absolute time event
means "resume task at given time”. A relative time event means "resume task after a given time span
counted from now”. You see, the latter — probably with time span zero — is the most typical initial resume
condition for a task. It’ll start immediately.

In the implementation a time event results from a system timer tic. The core of the scheduler is a clock
based interrupt. In RTuinOS this clock has a default clock rate of about 2 ms, but this can be altered
by the application code.® In the interrupt service routine (ISR), a variable holding the absolute, current
system time is incremented. (The rate of the interrupt is the unit of all timing operations regardless of
the actual physical value.) The new value of the system time is compared against the when parameter
of all suspended tasks which suspended with a resume-at condition. If there’s equality, the absolute time
event is notified to this task. For all tasks which had suspended themselves with a resume-after condition,
the when parameter of this condition is decremented. If it reaches null, the desired suspend time has
elapsed and the relative time event is notified to the task.

The third time based event is available only if the system is compiled with round robin feature. Now
a task may have a time slice defined. The time slice is the maximum time the task may continuously be

a real time operating system typically doesn’t offer much more than a scheduler and so does RTuinOS.

4Please, refer to section 5 for more detailed considerations about this.

5For good reasons the events are implemented by bits in an unsigned integer word. Currently, type uintl6-t is used as
it is a good trade off between number of events and performance. A change to wint8-t or wint32_t is possible but not trivial
as assembler code is affected. We thus have 16 such events.

SRTwuinOS uses timer 2 as source for clocking its system time. In Arduino this timer — intended for PWM output —
cycles with about 2 ms. RTuinOSdoesn’t change Arduino’s timer configuration in its standard configuration.
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active. This event is implemented directly, not as a bit, not as notification to the task. A round robin
task has a counter which is loaded with the time slice duration at activation time. In each system timer
tic it is decremented for the one and only active task (if it only is a round robin task). When the counter
reaches null it is reloaded and the task is immediately taken from the head of its due list and put at the
end of this list. This means the task stays due but will become inactive. Another task, the new head of
the list, is a more promising candidate for the new, active task.

The next step is to check the conditions of all suspended tasks. For each such task it is checked if its
resume condition is fulfilled, i.e. if all events it is waiting for have been posted to it meanwhile. If so, it
is taken out of the list of suspended tasks and placed at the end of the due list of the priority class the
task belongs to.

Now, after reordering the tasks in the several lists, the ISR finishes with looking for the new, active
task. The decision is easy. It loops over all due lists, beginning with the highest priority. The head of
the first found non-empty list is the new, active task. If all due lists are empty, the idle task is chosen.
The selected task is made active and the ISR ends.

2.3 Explicitly posted Events

Besides the system timer tic, the scheduler becomes active in two other situations. The first one is the
event explicitly posted by an application task. RTuinOS knows a predefined number of general purpose
events, which can be posted by one task and which another task can wait for. The latter task suspends
itself and specifies the event as resume condition. Under application defined conditions, the former task
calls the RTuinOS API function rtos_sendFEvent and the latter task will resume.

In this situation it depends on the priorities of the two tasks how rtos_sendEvent returns. If the event-
setting task has the same or higher priority rtos_sendFvent will immediately return like an ordinary
sub-routine. The other task becomes due but not active. If the event-receiving task has the higher
priority, rtos_sendEvent leads to temporary inactivation of the calling task and will return only when it
is activated again.

More in general, rtos_sendFEvent is implemented as a software interrupt (SWI) and behaves similar to
the system timer ISR. It notifies an ordinary, broadcasted event to all currently suspended tasks, which
are waiting for it and passes events of kind mutex or semaphore to the very task of highest priority, which
demanded to acquire it. The rest is done exactly as the system timer ISR does. rtos_sendEvent checks
the resume condition of all suspended tasks. Those tasks the condition of which is fulfilled are moved to
the end of their due list. Then the new active task is selected. This might be the same or another task.
The SWI ends with continuing the new, active task.

As a matter of fact, a call of rtos_sendEvent will never make the calling task undue (i.e. suspended),
outermost inactive. This is the reason, why rtos_sendEvent may even be called by the idle task.

Side note: There is a crosswise relationship between rtos_sendFEvent and the suspend commands.
From the bird’s eye view on the system task code switching appears as follows: The suspend function is
invoked but it returns out of a call of rtos_sendEvent of another task or out of the suspend command of
a task which became due meanwhile. If a task calls rtos_sendFEvent it doesn’t need to return but could
for example return out of the initially mentioned suspend command.

2.3.1 Events of Kind Mutex

An event can be a mutex, a synchronization object for mutual exclusion of tasks from a resource. The
kind of an event is specified at compile time, it’s part of the configuration of RTuinOS.

If a mutex event is in the set of explicitly posted events its handling differs from ordinary events.
While these are notified to all currently suspended tasks a mutex is notified to outermost one task. If one
or more suspended tasks are currently waiting for the mutex the one belonging to the highest priority
class will get it. If there are several suspended tasks of this class the one will get it, which waits for it
the longest. If there’s no suspended task waiting for the mutex it is stored inside RTuinOS and can be
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acquired later by any task. Saving a posted event for future use is different to ordinary events: They
have no effect if nobody is currently waiting for them.

Under all conditions a posted mutex event is recorded somewhere and the calling task looses the
ownership of the mutex. Either the ownership is immediately passed to a waiting task or the mutex is
stored in the kernel for later acquisition. The application needs to keep track of this. Normally, owning
a mutex means to a task to have access to a related, managed resource. In RTuinOS it can’t be queried
by an API call who currently is the owner of a mutex; actually RTuinOS isn’t even aware of it. The task
code needs to keep track about, e.g. by implementing a related Boolean variable.”

2.3.2 Events of Kind Semaphore

An event can also be a semaphore, a synchronization object for managing access to a pool of resources
shared between different tasks. The kind of an event is specified at compile time, it’s part of the config-
uration of RTuinOS.

If a semaphore event is in the set of explicitly posted events its handling differs from ordinary events.
While these are notified to all currently suspended tasks a semaphore is notified to outermost one task.
If one or more suspended tasks are currently waiting for the semaphore the one belonging to the highest
priority class will get it. If there are several suspended tasks of this class the one will get it, which waits
for it the longest. If there’s no suspended task waiting for the semaphore the counter of the semaphore
is incremented (the counter is implemented inside RTuinOS), indicating a released instance which is not
required by any task at the time being but which can be acquired in the future. Saving a posted event
for future use is different to ordinary events: They have no effect if nobody is currently waiting for them.

Under all conditions a posted semaphore event is recorded somewhere, it’s either notified to a waiting
task or it’s counted in the kernel, and the application needs to keep track of this. Normally, the acquired
number of instances of a semaphore (or its counter values respectively) corresponds with the number of
instances from a managed pool of resources the task was granted access to. The number of instances a
task has accumulated across a series of calls of rtos_waitForEvent and rtos_sendEvent can’t be queried
by an API call; actually RTuinOS isn’t even aware of it. The application code needs to keep track of,
e.g. by implementing a related counter variable.®

2.4 Application Interrupts

The last situation where the scheduler gets active is an application interrupt. By compile switch, you
can bind any AVR interrupt to the rtos_sendEvent function. The ISR of the interrupt source will call
rtos_sendFEvent. The event which is posted is no longer a general purpose event but dedicated to this
interrupt.

The actions are exactly the same as described for rtos_sendFEvent in section 2.3. Obviously, the ISR
is asynchronous to the task execution. If the posted event makes a task due which has a higher priority
than the interrupted task, the interrupted task is made inactive (but it remains still due) and the other
task will become active.

There’s only one use case for this kind of scheduler invocation. Typically, an application will define
a task of high priority waiting for the event. The interrupt triggers this dedicated task — indirectly via
the hidden call of rtos_sendEvent —, which actually serves as interrupt handler, doing all sort of things
which are needed by the interrupt. This tasks will be implemented as an infinite while-loop, where the

7Such a Boolean variable could be hidden in a C++ class embedding all calls of rtos_waitForEvent and rtos_sendEvent
into member functions like acquireMutexr and releaseMutexr. Each task would have its own, local object of this class.
However, this concept is simple only if waiting for combinations of events is excluded — which won’t be a painful restriction
for most applications.

8An appropriate way of doing could be a C++ class embedding all calls of rtos_waitForEvent and rtos_sendEvent
into member functions like acquireSemaphore and releaseSemaphore. However, this concept is simple only if waiting for
combinations of events is excluded — which is no painful restriction for most applications.



14 CHAPTER 2. HOW DOES RTUINOS WORK?

while-condition is the suspend command that waits for the interrupt event and where the body of the
loop is the actual handler of the interrupt.

2.5 Return from a Suspend Command

An important detail of the implementation of RTuinOS is the way information is passed back from the
scheduler to the application code. The direct interaction of the application code with the scheduler is
done with the suspend commands and function rtos_sendEvent in the RTuinOS API.

rtos_sendEvent takes a parameter — the set of events to be posted to the suspended tasks — but doesn’t
return anything. Here, the only complexity to understand is, that it won’t immediately return. It triggers
a scheduler act and won’t return until the calling task is the due task with highest priority. Which can
be the case between immediately and never in case of starvation.

The suspend commands take some parameters which specify the condition under which the task will
become due again, e.g. an absolute-time-event. While the task is suspended, the different scheduler acts
repeatedly double check whether a sufficient set of events has been posted to the task (see above). Each
posted event is stored in the task object. As soon as the posted set suffices, the task is moved from
the suspended list to the end of the due list of given priority class. From now on, since the task is no
longer suspended, no further events will be posted to this task and nor will they be stored in the task
object. Thus, the very set of events, which made the task due is now frozen in the task object. When the
task, which is due now, becomes the active task again the code flow of the task returns from the suspend
command it had initially invoked. At this occasion, the stored, frozen set of events, which had made the
task due is returned as return value of the suspend command.

By simply evaluating the return code a task can react dependent on which events it had made due.
This is of particular interest if a task suspends waiting for a combination of events. In practice this will
be most often the combination of an application event and a relative-time event, which this way gets the
meaning of a timeout. Obviously, the task needs to behave differently whether it received the expected
event or if a timeout occurred.

By the way, what has been said for the return from a suspend command also holds true for the initial
entry into a task function. Any task is initialized in suspended state. The first time it is released the code
flow enters the task function. What’s otherwise the return code of a suspend command is now passed to
the task function as function parameter. This way the task knows by which condition it has been initially
activated.

2.6 Summarizing the Scheduler Actions

The different actions of the scheduler are depicted in figure 2.1. The solid arrows indicate how task objects
are moved within and across the lists in different situations. The dashed arrows represent pointers to
particular task objects.

Under all circumstances, the active task — highlighted in green — is the head of the top most non-empty
list, i.e. the first due task in the order of falling priority. Because of the particular importance of this
task the scheduler permanently holds a pointer to this task object. One could say, that maintaining this
pointer actually is all the scheduler has to do.

The idle task object can be considered the only member of the due list of lowest possible priority.
This task is needed as fall back if no due task is found in any of the priority classes and the scheduler
has a constant pointer to this specific task object. If RTuinOS is idle both pointers have the same value;
they point to the idle task object.

Arrow 1 depicts the round robin action. Round robin activities can only apply to the currently active
task. If its time slice is elapsed, it is taken from the head of the due list and placed at the end of this
list. Naturally — and indicated by arrow 2 — the next object in the list becomes the new head of the list
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Figure 2.1: Scheduler of RTuinOS

and will therefore be the new active task.” If all tasks in this list are configured to have time slices (and
if there were no other resume conditions), the list is cycled and all tasks get the CPU for a predefined
amount of time.

Arrow 3 shows the effect of a suspend command. If the active task issues such a command, it is moved
from the head of its due list to the end of the list of suspended tasks. Again, arrow 2 shows how the next
task in the due list will become the new head and active task. However, if there was no second task in
this list, the head of a due list of lower priority would become the new active task. In our figure, this

could then be the head of priority list 1.

The explanation of arrow 3 needs some refinement.
events of kind mutex and semaphore we indeed place the suspended task at the end of the list — but just

for sake of simplicity of the implementation. The list of suspended tasks is not ordered; actually it is not
a list but a pool of task objects. The situation differs if we have either mutex or semaphore events. Now
we really have an ordered list of suspended tasks. The list is ordered by task priority and the suspended
task is not put at the end but behind the last task of same or higher priority. This list order will strongly
facilitate the distribution of posted events of kind mutex or semaphore to the right receiver in a later call

If RTuinOS is compiled without support for

of rtos_sendFEvent.
Arrows 4 and 5 show how a suspended task becomes due again. In any call of either the system timer

ISR or rtos_sendFEvent all suspended tasks are checked if their resume condition became true. If so, the
task object is moved from the list of suspended tasks to the end of their due list. The due list a task
belongs to is predetermined at compile time, when the task priority is chosen. Actions 4 and 5 might
appear in the same timer tic or call of rtos_sendFvent or in different ones.

Arrow 5 shows the resume of a task of the highest known priority: Here, we have an example where
an event causes the interruption of a running task. The due list of the resumed task was empty before
this action. Thus the resume creates a due task object of new maximum priority — higher than that of
the task which was active so far. This less prior task is inactivated. From the perspective of the task
execution its code flow is interrupted. Note, that the inactivated task object is not moved! It remains
the head of its due list. The task is inactive but still due and still the first candidate for reactivation

within its priority class.

9This is not fully correct: If the round robin action takes place in the due list which has not the highest priority, it can
occasionally happen that a task of higher priority becomes due — and active — in the same timer tic.
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2.7 Task Switches

The basic principle of the scheduler is to switch between different tasks. The chapters before explained
the rules the scheduler applies to decide when and why to switch to which task. This section explains
how a task switch is done.

The CPU doesn’t know about tasks. It is a state machine, which has a set of registers, which determine
the next action in the next tic of the CPU clock. The most relevant register in this context is the program
counter (PC). It is a pointer to one specific word in the program memory (flash ROM). The word it points
to is the next CPU command, which will be executed. This next command will probably have an effect
on one or more of the CPU registers; it might for example command the CPU to add two data registers,
to add a constant to one of the data registers, to read a memory cell into a register or to write a register
into a memory cell. While the command is being executed the PC is incremented so that it points to the
next word in the program flash. The next command is selected. And so on. A program is build from
hundreds and thousands of these elementary commands. The sequence of commands form the program.

Since they are not endless it’s possible to have several such command sequences one after another in
the program memory. These different sequences now form the program code of the different tasks. The
main thing to do when switching between tasks is to alter the value of the program counter from the one
sequence to one of the others. There are dedicated CPU command to do so, like jump, which directly
loads the PC with the desired target address or rts and reti, which load the PC from the stack.

Obviously, a scheduler needs to be able to later continue the left command sequence, or task respec-
tively. The continuation needs to be seamless, to be done as if there had not been a switch to another
sequence at all. This means in the first place, that we remind the value the PC had before we forced it
to point to the other program sequence. But it also means that all the CPU’s data registers have exactly
the same value they used to have before the switch. This condition can only be fulfilled if we save the
contents of all registers prior to switching to another command sequence.

The AVR CPU has 32 general purpose data registers plus a status register. The scheduler holds a
task object for each task. It would be straight forward to have an array wint8_t saveReg[32+1] as member
of the task object and to place the register contents here. Yes, this would basically work well but there
is a much simpler and cheaper way to do: All the registers are pushed onto the stack. The ease of doing
starts with saving the PC: As we saw, a task switch is always initiated by either an interrupt or the call
of an APT function (a suspend function or rtos_sendEvent). Both machine operations start execution
with pushing the current PC onto the stack. As we intend to use the stack as storage location of all our
registers it’s fine to already have the PC here, where we want it to have. Saving the other registers on
the stack is as easy: The command set of any CPU contains a push command which directly stores the
contents of a data register onto the stack. For an AVR CPU this command is called push. Consequently,
all interrupt service routines and all API functions, which could initiate a task switch, start with 32 push
operations to save the general purpose data registers. (An important exception is mentioned in section
2.7.1.) This code sequence is completed by two simple CPU commands which also push the CPU’s status
register onto the stack.

The register pushing entry-commands of an ISR or a task switch causing API function basically enable
this function to change the PC to point to the code of another task (and thus to continue with that task).
Figuring out whether this is necessary will be the next step of these functions. Quite often this will not
be the case. In which case the function terminates by doing all in reverse order. All registers are read
and taken from the stack again. (They are ”popped” from the stack.) This includes the PC as very last
register — and the code execution continues where the interrupt had interrupted the task code, or behind
the API function respectively. This is like any ordinary interrupt service routine.

Saving the registers on the stack is easy but only half the battle. Different tasks can’t operate on
the same stack. A stack is the implementation of the paradigm of strictly hierarchical function calls and
nested sub-function calls and all the local data of these nested function invocations. The paradigm thus
of many high level languages, among which C/C++. This paradigm is not applicable to multi-tasking.
Tasks can be switched disregarding function entry and exit points; the activated task is not a sub-function
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of the left other task.'® Therefore, each task has its own, dedicated stack. Before switching from one task
to another we need to save the stack of the left task. At runtime, i.e. out of scope of memory allocation
and stack initialization considerations, the stack actually is completely represented by the pointer to its
current top — and this ”stack pointer” (the last CPU register to mention) is what we need to save also.
Here, we use an absolute storage location. The task object has a member to hold the stack pointer of
this task. The value of this object member is meaningful always and only while the task is inactive.

Before we proceed to the perhaps most difficult to understand detail, we will shortly summarize what
we saw so far:

All code, which can initiate a task switch is a function. Either an ISR or a dedicated API function.
All of these functions are well prepared to do a task switch as they push the PC, all data registers and
the status register onto the stack of the active task. We say, they save the ”CPU context” onto the task’s
stack. And in case a task switch should become necessary these functions know about a well-defined
memory location where to also save the stack pointer of the currently active task.

Now we reach the maybe most tricky detail, easy on the one hand but nonetheless a bit difficult to
see on the other hand. Let’s put it into a question: How could we ever get here to the point where we
are about to leave the currently active task? The answer: By the same kind of task switch from another
task into this task! Consequently, the other task will have done the same. In this instance, there will be
its dedicated stack and this stack will have all the saved registers of that task on its top (including the
PC). So, if we load the stack pointer of that task, we just have to do the same as if we’d return from the
task switch causing function back to the same task (see above): pop all registers and go ahead with that
task. !

Important to see: All tasks which are not currently active have been deactivated the same way; all
have left a stack with all registers including the PC on its top and all their stack pointers have been saved
at the well-defined, known location. A picture of a task switch could be as follows: Pushing the registers
on the stack is like climbing up a hill, from its top we jump to the top of any of the other hills around
and then we slide it down (i.e. restore the registers with the contents of this other hill).

Doing the good preparation of storing the CPU context onto the stack the complete task switch
reduces to nothing else than exchanging the value of the CPU’s stack pointer. The value of the still
active task is stored and the value of the newly activated task is loaded — that’s all. Then we leave the
task switch causing function and its simple register popping exit code loads the earlier saved context of
the new task just like that into the CPU.

The general story is complete if we mention the initialization. Before the first task becomes active
the still un-threaded initialization code of RTuinOS prepares the stack areas of all tasks as if these tasks
had been active before and as if they had then been suspended. This is done by the simple, assembler
code free C function prepareTaskStack. It places 33 bytes at the beginning of this memory area'? — and
these bytes will become the initial values of the data registers of the CPU when the task is activated the
very first time (general purpose and status registers). And in front of these 33 bytes it places the two
or three bytes of the wanted PC (depending on the type of AVR micro controller). At runtime this is
the program memory location where to continue a task; now at initialization time it’s obviously the start
address of the task or —in C — the pointer to the task function. The address where the last byte has been
placed is the value of the stack pointer that has to be stored in the task objekt.

When all stack areas are prepared the system timer interrupt is enabled and the first task activation
a little bit later can in no way be distinguished from any later task switch.

10Prove: To continue the left task it is not a prerequisite that the activated task terminates — in order to “return” to the
left task.

11 The program counter is popped as the last register with a command reti, ”return from interrupt”.

12The logical beginning is meant. This is the last memory address in the stack area. The AVR architecture lets the stack
grow from higher to lower memory addresses.
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2.7.1 Interrupt versus API Function

Basically all task switch causing functions behave as described in the previous section. Task switch causing
functions are either interrupt service routines or API functions. Interrupts can be the system timer tic
or an application interrupt. The API functions are either the suspend command rtos_waitForEvent3 or
function rtos_sendEvent to post an event.

There’s a significant difference between interrupt service routines and API functions. The API func-
tions can return a result to the calling code but an ISR won’t. When the ISR returns to a task (the one
it had interrupted or another one in case of a task switch) all data registers need to be in the exactly
same state as at the point of inactivation of this task. When API functions return, some registers may
be altered and some others need to be altered. Data registers which pass parameter information to the
function could be changed in the function without confusing the calling code after return. These ”"may
be changed” conditions are disregarded by RTuinOS; the registers will be restored even if this is not
necessary. Some other data registers, which are selected by the compiler to pass the function result back
to the calling code however need to be altered; just restoring them like the other registers would mean
not to return a meaningful function result. We only have the case of the suspend command uint16_t
rtos_waitForEvent; the GNU compiler lets such a function return its 16 Bit integer result in register pair
r24/r25.

Consequently, if a task switch activates a task, which had been deactivated by a suspend command,
the context restore operation differs. All registers but the register pair r24/r25 are restored and r24/r25
is loaded with the function result. The final command reti then pops the PC from the stack and the task
is continued (and will probably evaluate the function result in r24/r25 as one of its first operations).

Some details still need explanation. First the stack balance; please refer to figure 2.2. Since we save
the CPU context on the task stack we must always push and pop the same number of bytes at each task
switch. When restoring the context on return to an originally suspended task we will not restore r24/r25
from the stack (but load it with the function result) and therefore we must not push these registers when
saving the context. The context save operation on entry into a suspend command will save all registers
but r24/r25 - anticipating that these registers will not be restored later.

The task switch causing API function rtos_sendFvent is a void function. It doesn’t return a result
and all registers are thus saved on entry into rtos_sendFEvent and restored on return to the calling task.
(Which might be immediately or later because of releasing another, intermediately executed task of higher
priority.)

A second, less important detail is about how the register pair r24/r25 is loaded with the function
result. If the task switching code recognizes that the task to be activated had been suspended before it
pushes the function result onto the stack as a last action before leaving the function. The code sequence
to leave the task switch causing function (be it an ISR or an AP function) can now be identical under all
conditions: It pops all data registers, it pops the status register, it finally pops the PC and it’ll continue
with the new active task. This simple implementation idea requires that the save-context code pushes
the registers not in their natural order, r0...r31, but the registers r24/r25 need to be pushed as last
registers.

The last and important detail is about how to know whether an activated task had originally been
suspended or not. The consideration of this detail also answers the question where the function result of
the suspend commands comes from. The answers are depicted in figure 2.3.

A task object owns a member postedFventVec, which is null initially and when the task is active. It
is still null on entry in state suspended. While a task is in state suspended it listens to all broadcasted
events and it might wait for specific mutexes or semaphores. Whenever another task posts an event it is
double-checked if this event is relevant to the suspended task. If so, it is added to member posted Event Vec
of the suspended task. This variable holds the set of events, which have been received by the task since
it became suspended. As soon as the set of received events suffices to make the suspended task due again
this variable is no longer changed.

A task can become due also on another path through the state chart. At any time the active task can

13This includes the derived suspend commands rtos_delay and rtos_suspendTaskTill Time.
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Figure 2.2: Implementation of task switches. On the left-hand side for interrupt service routines. On
the right-hand side for the suspend commands: The only difference is to push or not to push the register
pair r25/1r25 on function entry. The API function rtos_sendFEvent is not shown; it is implemented like an

ISR, it pushes the register pair
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Figure 2.3: State model of a single task. The transition conditions are shown in default font, whereas the
transition actions are shown in italics. The task variable postedFEventVec is used as flag that indicates
whether the task is going to return from a suspend command or not.
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be inactivated because of any other task of higher priority becoming due (and active at the same time).
If it is a round robin task a task can be inactivated when its time slice is elapsed. Inactivation means to
transit from state active to state due.

The variable postedFEventVec is always null in state active. If the task transits from active to due the
variable is still null in state due and won’t be changed here. If and only if a task transits from suspended
to due the variable is not null. This way, the variable has a double meaning once we reach state due:
In the first place it holds the set of received events that made the task due. This is the return value of
the suspend command which originally made the task inactive. In the second place the variable holds
the Boolean information whether the task will return from either a suspend command (which expects
the result in r24/r25) or from an ISR or rtos_sendEvent (which must return with restored contents of
r24/125). This information is exploited by the task switching code.

The variable postedEventVec is cleared to null when activating the task, i.e. when doing the task
switch to this task. Now it is prepared for the next cycle active — due — active, or active — suspended
— due — active respectively.



Chapter 3

The API of RTuimnOS

This chapter introduces the different functions of RTuinOS’ application programming interface (APT).
The intention is to explain the meaning and use cases of the different API function, not all the details of
the function signatures. Please refer to the doxygen documentation which directly builds on the C source
code for details on function parameters, return values, side effects, etc.

3.1 Configuration of RTuinOS: rtos.config.template.h

Building an RTwinOS application starts with the configuration of the system. All elements of RTuinOS,
which require application dependent configuration have been placed in the file rtos.config.template.h. This
file is not part of the build, it’s just a template for the file which will actually by used. Copy the template
to your application source code and rename it to rtos.config.h. This is the name it has to have as this is
the name used in the #include statements in the code. Open the renamed file in a text editor and read
the comments. You’ll find a number of #define’s which you need to adjust according to the demands of
your application. The number of tasks (besides the idle task) you're going to use, the number of priority
classes they belong to and the size of these classes are the most evident settings. You may enable the
round robin strategy (by default it’s turned off ), you may configure your application interrupts and you
may chose the resolution of the system timer. Please find a more in detail discussion of some of these
topics below and in the comments in the source code.

3.2 Initialization of RTuinOS: setup

The RTwinOS application starts with a call of setup. This function is a callback from the Arduino startup
code (and the RTuinOS initialization code at the same time) into your application. If you do not provide
this function the linker will report a problem and refuse to build the executable. You may put all the
initialization code of your application here. And you need to place the specification of the tasks of your
application here. No other code location is possible to do this.

3.3 Specification of Tasks: rtos_initialize Task

From within setup you have to call rtos_initialize Task once per task. This function specifies the properties
of a task. It’s important to know, that the specific RTuinOS interrupts have not been started while setup
is executed. You may thus interfere with any data objects owned by your tasks without consideration of
race conditions and access synchronization.

The most important thing to specify is the executable code of the task, i.e. the task function. A
specific function pointer type, rtos_taskFunction_t, has been defined for this purpose. A task function is a

21
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void function with a single parameter. This parameter will pass the set of events to the task code, which
made the task due the very first time after system startup; in the most typical use cases this will be just
one of the two system timer events and may be ignored by the task code.

Typically, task functions cycle around (similar to the function loop in a traditional Arduino sketch).
Some other RTOS offer a task termination but RTuinOS doesn’t. In RTwinOS a task must never end. If
it ever did it would "return” to the reset vector of the Arduino board and your application would start
up again — and probably stay in a loop of repeatedly doing so.

The stack area of the task is specified by a pointer to a reserved address space in RAM and by the
length of this reserved area. Reserved means that your application has to allocate the necessary memory.
Since the stack area can never be changed at runtime it doesn’t make sense to consider some dynamic
allocation operations. Just define an array of wint8_t and pass its address and size.

Caution: Reserved also means that the specified stack area must never be touched by your application
code.

If you configured RTwinOS to support the round robin strategy you will specify the duration of the
time slices the task gets. Not all the tasks need to be subject to the round robin scheduling. If the
duration of the time slice is set to 0 there is no such behavior for this task; with other words its time
slice is of unlimited duration.

Another important part of the task specification is the initial resume condition. It is specified like
at runtime when using the suspend command rtos_waitForEvent; please refer to section 3.6 for details.
Your task will only start up if the condition specified now becomes true.

rtos_initialize Task uses an index to identify which task object is meant by the function call. The
index has no particular meaning besides being a kind of handle to the same task object when later using
the diagnostic functions rtos_getTaskOuverrunCounter and rtos_getStackReserve. The index needs to be
lower than the number of tasks but will not have an impact on the priority or order of execution of the
tasks.

3.4 Initialization of Application Interrupts: rtos_enableIRQ-
User<nn>

Your application may configure RTuinOS to use its own interrupts which trigger dedicated tasks. If you
configure an interrupt a callback into your application code is made as part of the system startup. The
function rtos_enableIRQUser<nn> is intended to release your interrupt <nn>. This typically means to
configure some hardware registers of a peripheral device and to finally set the so called interrupt mask
bit.

You must never try to do this as part of the general initialization code in setup: At this point in time
the task, which is coupled to the interrupt is not ready to run and releasing the interrupt now could cause
unpredicted behavior of the service routine of your interrupt.

On the other hand, when rtos_enableIRQUser<nn> is invoked, the RTuinOS system is up and running
(besides your interrupt) and all implications with respect to race conditions and data access synchroniza-
tion need to be considered.

Your application needs to enable the interrupt source but it doesn’t have to implement a service
routine. This routine is part of the RTuinOS implementation. Its standard action — which can not be
changed — is to post a dedicated event. Your application will surely specify a task of high priority which
cyclically waits for this event and implements the actual interrupt service code.

The specification of the interrupt source is one detail of the RTuinOS configuration made in rtos.con-
fig.h.

Currently, RTuinOS implements up to two application interrupts (i.e. <nn> is either 00 or 01), but
it’s simple and straight forward to extend the implementation to more interrupts if required.

After return from the last callback rtos_enableIRQUser<nn> your application is completely up and
running.
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3.5 The idle Task: loop

Once the system is started it cyclically calls the void function loop which has to be implemented by your
application. If you do not provide this function the linker will report a problem and refuse to build the
executable.

The repeated call of loop is the idle task of RTuinOS. This means the execution of this code is done
only if no other task requests the CPU. The execution speed of loop is directly dependent on the activities
of your tasks. Therefore it typically contains code which has no real time constraints.

A typical use case of the idle task is to put some diagnostic code here. For example, RTuinOS
permits to double-check the usage of the stack areas. (If a task would ever exceed its reserved stack area
an immediate crash is probable; which is a hard to find bug in the code.) This code is quite expensive
but when located in the idle task it doesn’t matter at all. The only impact of expensive code in the idle
task is that the results will be available somewhat later or less frequently. For a diagnostic function this
is typically uncritical.

RTuinOS supports typical use cases where always at least one task is due. An example is a couple of
tasks, all continuously running, and scheduled by the round robin strategy. They are cyclically activated
but never suspended. In this situation loop will never be called. However, as a prerequisite of successful
code linkage it’s nonetheless required to have it.

If no idle task is required or if there’s no idle time left simply implement loop as an empty function.

3.6 Suspend a Task: rtos_waitForEvent

A task in RTuinOS stays due as long as it desires. If it has finished or if it becomes dependent on the
work result of some other task or on an external event (reported by an application interrupt) it will
suspend itself voluntarily.

In a technical system, a task is often applied to do a regular operation, e.g. read and process the
input value from an analog-digital converter every Milli second.! Here, ”finished” would mean having
performed this action. When the value of this Milli second has been processed, the task would suspend
until the next Milli second interval begins. Suspending always includes a condition under which the
suspended state ends — in our example it would be the absolute timer event and its parameter when
would be set to the next Milli second. From the perspective of the task code flow, voluntarily suspending
always means to wait for something and doing nothing until. This explains the name of the suspend
function. With the view on the complete system, suspending means to return the CPU and to pass it to
other tasks, which currently don’t have to wait for whatever events.

In RTuinOS a task can suspend and wait

e until a point in time,
e for a while,
e until a set of events has been posted by other tasks (or a timeout has elapsed meanwhile),

e until at least one event out of a set has been posted by other tasks (or a timeout has elapsed
meanwhile).?

The signature of the suspend command has a set of events as bit vector (with up to 16 bits or events
respectively), a Boolean operator (all events required or any event releases the task) and a time parameter.

The events can be of any type, ordinary broadcasted, mutex or semaphore. Successfully waiting for
an event of kind mutex or semaphore means to acquire the synchronization object, or getting ownership
of the associated, managed resource respectively.

1n the RTuinOS default configuration the system timer tic is about 2 ms; a one Milli second task can’t be implemented
without a configuration change.

2 Actually, the first two conditions are special cases of the last two: The set of events to wait for just contains a timer
event but nothing else.
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static void regularTask (uintl6_t initialResumeCondition)
{
#define MY.TASK CYCLETIME 1 /% Unit is system timer tic, e.g. 1 ms x/
do
{
/* Actual task implementation: read ADC, process value... x/
read ADCAndProcesslms () ;
}
while (rtos_waitForEvent ( RTOSEVT_ABSOLUTE_TIMER
, /* waitForAllEvents x/ false
, /* when */ MY.TASK_CYCLE TIME

)

} /+ End of regularTask =/

Listing 3.1: Typical use case: regular task

The time parameter doesn’t care if no timer event is part of the set of events. If the absolute timer
event is in the set the time parameter has the meaning when. If the relative or delay timer event is in the
set the time parameter has the meaning after. Consequently, it is not allowed to have both timer events
in the set.

A bit specific is the parameter when of the absolute timer. The most typical use case of the absolute
timer event is the implementation of a regular task; in our example above a task, which is activated every
Milli second. See listing 3.1: The implementation will place the action into an infinite loop. The while
condition at the end of the loop will be a call of rtos_waitForEvent, addressing to the absolute timer event.
In each loop the next Milli second is passed as parameter when. This would require an accumulating
variable in the implementation, which is updated in every loop. To avoid this, the parameter when is
defined to be a difference, the difference to the last recent reference to the absolute timer. This would
mean in our typical use case, that parameter when becomes a constant. In every loop, the parameter
simply is 1 [ms] in the call of rtos_waitForEvent.

Please note, if a task waits for a set of events and it wants to be released when all events are posted to
the task, then the condition all does only refer to the application events (ordinary, mutex or semaphore)
but not to a timer event. Timer events will still release the task as soon as they occur. The meaning of
timer events being timeouts is not affected by the choice waiting for all or for any event.

3.6.1 Events of Kind Mutex

An event to wait for can be a mutex, a synchronization object for mutual exclusion of tasks from a
resource. The kind of an event is specified at compile time, it’s part of the configuration of RTuinOS,
see [4].

From the perspective of a task waiting for a mutex is just like waiting for ordinary broadcasted events.
The task is suspended until the mutex is available. This will be the case when the other task, which
currently owns the mutex will release it using rtos_sendEvent. Or immediately, if no other task currently
owns the mutex.

If a task suspends waiting for a mutex it can happen that rtos_waitForEvent doesn’t suspend the task
but immediately returns. Please refer to section 3.6.3 for more.

3.6.2 Events of Kind Semaphore

An event to wait for can be a semaphore, a synchronization object for managing access to a pool of
resources shared between different tasks. The kind of an event is specified at compile time, it’s part of
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the configuration of RTuinOS, see [4].

Waiting for a semaphore and getting it means to decrement the semaphores internal count. The task
is granted access to one instance of the resources which are managed by the semaphore.

Please note, that handling semaphores as Boolean valued events (being there or not being there)
hinders to provide a more generalized API to semaphores. In RTwinOS it is by principle impossible to
acquire several instances from the resource pool at once. An application which needs to have several
instances is obliged to repeat the invocation of rtos_waitForEvent that number of times. Although this
eventually leads to the required number of instances it’s not equivalent with respect to the distribution
pattern of the shared resources. The same consideration applies to returning/releasing a semaphore using
rtos_sendFEvent.

From the perspective of a task waiting for a semaphore is just like waiting for ordinary events. The
task is suspended until one instance (or counter value respectively) of the semaphore is available. This
will be the case when any other task releases such an instance using rtos_sendFvent. Or immediately, if
there’s currently at least one instance left in the semaphore.

If a task suspends waiting for a semaphore it can happen that rtos_waitForFvent doesn’t suspend the
calling task but immediately returns. Please refer to section 3.6.3 for more.

3.6.3 Notes on waiting for Events of Kind Mutex or Semaphore

It may happen that immediately available mutexes or semaphores satisfies the wait condition of the
calling task: It waits for any event among which an immediately available mutex or semaphore. Or it
waits for all events out of a set, but all of these are immediately available. If so, the call of function
rtos_waitForEvent won’t suspend the task. Instead rtos_waitForFvent simply returns like an ordinary
sub-routine and the return value indicates the acquired mutexes and semaphores.

If a task waits for one or more mutexes or semaphores it needs to evaluate the return code of the
function. If a set bit corresponds to a mutex event the task is the new owner of this mutex. If a set bit
corresponds to a semaphore event the task got access to one instance of the resource pool managed by
this semaphore. It’ll own the mutex or have access to the resource until it voluntarily releases the mutex
or semaphore using rtos_sendEvent. Since wait conditions can be complex, the return from the function
as such is no safe indication that a mutex or semaphore has been acquired by the task. The simplest
example is a wait for a mutex event with timeout and the timeout elapses before the mutex is released
by the it owning task.

Caution, properly keeping track of the ownership of mutexes and instances of semaphores is fully in
the responsibility of the application. RTwinOS won’t bother with who has which mutexes or semaphore.
It’ll accept a mutex/semaphore release command by any task regardless whether this task actually owns
it or not. By means of the return value of rtos_waitForEvent RTuinOS just provides the information to
the application to enable it to implement proper ownership handling.

3.6.4 rtos_suspendTaskTillTime

To further support the typical use case of regular tasks, there’s an abbreviation of the call of rtos_wait-
ForEvent as sketched in listing 3.1. Instead of calling rtos_waitForEvent one can call rtos_suspendTask-
TillTime. The only parameter of the function is the parameter when.

rtos_suspendTaskTillTime is implemented as preprocessor macro, so there’s no difference in compari-
son to directly using rtos_waitForEvent except for the readability of the code.

3.6.5 rtos_delay

Another abbreviated call of rtos_waitForEvent supports the condition ”wait for a while” (but not for any
specific event). You may use the preprocessor macro rtos-delay for this. The only macro parameter is
the timer parameter, which specifies the delay time (or the time to stay suspended respectively).
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There’s no difference in comparison to directly using rtos_waitForEvent except for the readability of
the code.

3.7 Awake suspended Tasks: rtos_sendFEvent

Timer events are entirely managed by the system, all other events will only occur if they are posted by
the application code. This can be done either by application interrupts or by invoking the API function
rtos_sendEvent.

The only parameter of the function is the set of events to be posted, implemented as a bit vector of 16
bits. Neither the timer events nor application interrupt events must be posted; there remain (dependent
on the configuration of RTuinOS) twelve to fourteen events, which are directly handled by the application
task code.

There are three kinds of events: Ordinary events, mutex events and semaphore events. The type of
each of the available events is defined at compile time as part of the configuration of RTuinOS done in [4].

There are predefined names for the available events, please refer to [2]. Regardless, you may also
define your own, suitable names. Each name is defined to be the value of the event bit; consequently,
sets of events can be expressed by sums or binary OR (|) terms of these names.

A typical use case of application handled events are producer-consumer models. One task prepares
some data and signals availability to the data consuming task by setting an event. Obviously, the
consumer starts with waiting for this event.

An ordinary event is broad-casted only to the currently suspended tasks and is not stored besides
that. If a task suspends shortly after another one has posted such an event, the suspended task will never
receive this event and may stay suspended forever.

Mutex and semaphore events differ and are the better choice to handle inter-task communication in
many use cases. Please, refer to sections 2.3.1 and 2.3.2 for details about the meaning and handling of
these kinds of events.

3.8 Data access: rtos_enter/leaveCriticalSection

In all relevant use cases, tasks will share some data. Some tasks will produce data, others will read it. If
your application has tasks of different priority, this becomes a matter. Except for a few trivial examples
like reading or writing a one Byte word, all data access is not atomic, i.e. can be interrupted by any
system interrupt. The software has to anticipate that this is an RTuinOS system timer interrupt or an
application interrupt which can easily cause a task switch. A task can be in-activated while it is busy
updating the data and another task can continue operating on the same, half way completed data. The
results are unpredictable and surely wrong. Be aware, even an atomic looking operation like ++u, where
u is a of type wint8_t, is unsafe and requires protection.

The pair of API functions rtos_enterCriticalSection and rtos_leaveCriticalSection makes any portion
of code which they enclose atomic — and thus safe with respect to shared access from different tasks.

rtos_enterCriticalSection simply inhibits all those interrupts, which can cause a task switch and
rtos_leaveCriticalSection re-enables all those interrupts.

An application may implement interrupts, which can set an RTuinOS event and cause a task switch.
These interrupts are obviously relevant to rtos_enter/leaveCriticalSection, they need to be inhibited also.
Consequently, if your application implements interrupts you will have to extend the default implementa-
tion of the pair of functions. The functions are implemented as preprocessor macros in the application
owned RTuinOS configuration file [4] and their modification should be straight forward.

The two functions do not save and restore the interrupt-inhibit state. After any rtos_leaveCritical-
Section, all interrupts are surely enabled. Therefore, the pairwise calls of the functions can’t be nested.
The code in the outer pairs wouldn’t be protected.

The pair of functions cli and sei from the AVR library nearly has the same meaning and can also
be used to make data access operations atomic. The difference is that they inhibit all interrupts. The
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responsiveness of the system could be somewhat degraded without need, e.g. the Arduino time functions
like delay or millis could suffer. On the other hand, these two functions are a bit cheaper in terms of
CPU load. We suggest to use them if the protected code sequence is rather short, e.g. just one or a few
simple assignments and to use rtos_enter/leaveCriticalSection otherwise.

In RTuinOS a task of higher priority will never become inactive in favor of a lower prioritized task
as long as it doesn’t suspend itself voluntarily. And if the task is not a round robin task it’ll even never
become inactive in favor of an equally prioritized task (as long as it doesn’t suspend itself). Therefore,

e a normal task of same or higher priority doesn’t need atomic operations to access data it shares
with other tasks of same or lower priority,

e a round robin task of higher priority don’t need atomic operations to access data it shares with
other tasks of lower priority.

But vice versa, their counterparts of same or lower priority of course need to protect their access code to
the same, shared data.

In cooperative systems tasks generally don’t need to protect their access to shared data as tasks
will never be interrupted at unforeseeable (and undesirable) points in time. In RTuinOS cooperative
multi-tasking applications are implemented by tasks all belonging to the same priority class.

To summarize,

e always put your data access code into a pair of protective functions if the task shares this data or
parts of it with at least one other task of higher priority,

e always put your data access code into a pair of protective functions if the task has round robin
characteristics and if it shares this data or parts of it with at least one other task of same or higher
priority,

e use rtos_enter/leaveCriticalSection as pair of protective functions if the access code is complex,

e use cli/sei as pair of protective functions if the access code is trivial.

3.8.1 Mutex versus Critical Section

Accessing shared data from different tasks can safely be done with different code patterns. The critical
section can be used or a mutex can be applied. There are significant differences and implications.

Using a mutex is a kind of contract between different tasks. They agree to access the shared data
only when they own the mutex and they promise to own it no longer than absolutely necessary. There’s
however no technical means which would ensure this; any task can actually access the shared data at
any time and corrupt it. Moreover, there’s no direct, visible link in the source code between the mutex
and the shared data. The code samples coming along with RTwinOS demonstrate two techniques to
overcome this: they either re-define the generic name of the mutex so that the relation to the shared
objects become apparent or they hide the operations to acquire and release the mutex in the same class
that implements the shared object.

A critical section is a technical mechanism, which hinders the scheduler to switch to any other task
(including interrupts and their handler tasks) while the enclosed code is executed. Handling an interrupt
or activating another task is moved in time until immediately after the execution of the code inside the
critical section.

Blocking the scheduler is the reason, why critical sections may be used only for short code sequences,
typically some update operations of a data structure. An example would be queue, which an element is ap-
pended to or popped off. The code to append and to pop (a few lines each) would be placed into a critical
section. It would already be bad style to place some debug or feedback code like Serial.printin(”Element
appended”) in the critical section. The execution of this operation takes much too long.

A very common code pattern when using critical sections is to have a local copy of the shared data
in the task. The critical section is just used to copy the shared data into the local copy; all further,
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time consuming processing and user feedback operates on the copy only and is of course done outside the
critical section. And the same vice versa for updating the shared data. An n-fold of data consumption is
the consequence, as each accessing task needs to have its local copy.

A mutex grants ownership to the shared data across any number of task switches. The scheduler stays
fully operational. Only those tasks, which also want to have the mutex (but uttered their demand a bit
later than the lucky one) are temporarily out of the loop. They are suspended. Please be aware, the
mutual blocking of tasks that all demand the same shared resource will probably be in conflict with the
requirement of having strictly regular tasks. If you have regular tasks, you will have to take care when
applying mutexes to organize them. Specifying a timeout when waiting for a mutex may be a way out.

Basically, a mutex could be acquired using rtos_waitForEvent and released using rtos_sendEvent for a
short, fast operation; the pair of functions could be used like the other pair rtos_enter/leaveCriticalSection.
However, this is much, much more expensive in terms of CPU load and must not be done if a critical
section is applicable. Examples, where a mutex reasonably replaces a critical section is when doing console
output with Serial or when accessing the LCD using the LiquidCrystal library.

3.9 Diagnosis: rtos_getTaskOverrunCounter

Each task has a built-in overrun counter. The meaning of this counter is well defined only for regular
tasks. These tasks want to become due at fixed points in time. If too many tasks have too much to do it
may happen that it is not possible to make a task due at the desired point in time. This is then a task
overrun event. It is counted internally. This function reads the current value of the counter for a given
task.

Using this function, the application can write some self-diagnostic code. However, if such events are
seen, there’s barely anything to do at runtime. Evaluating the counters should be considered a kind of
debug information, a hint at development and testing time that the implementation is still insufficient
and needs changes.

There are two pitfalls. The function checks for a task overrun as part of a suspend command submitted
by a task. It recognizes a task overrun if the demanded time of resume is found to be already over. The
current system time is compared to the demanded time of resume. The comparison may cause an
arithmetic overflow because of the limited length of the internally used system time. Particularly if an
application uses the 8 Bit system time there’s a significant probability of taking the false decision:

If a regular task chooses a too long period time a task overrun might be recognized where actually
no such overrun occurs. This will not only lead to a wrong counter value but also to bad task timing. A
task found to be overdue is made due immediately, which is the wrong decision in this case.

If a task excessively exceeds its nominal regular execution time the task overrun won'’t be recognized.
Task calls are silently skipped.

Please refer to section 4.3. Here you find a discussion how to choose the appropriate system time for
your application.

The function rtos_getTaskOverrunCounter may be called by any task. Please note, that the function
is not defined for the idle task, but may be called by the idle task for querying any of the other tasks.

3.10 Diagnosis: rtos_getStackReserve

A simple algorithm determines the usage of the task stacks. (In any RTOS, each task has its own,
dedicated stack.) The maximum size of the stacks is predetermined at compile time and determining
the actual stack usage at runtime is just a development tool. If the maximum stack size of any task is
exceeded the system will surely crash and the cause of the crash will be hard to find. Allocating the stack
sizes much too large is too expensive with respect to RAM usage. Therefore, by applying this function,
you can keep an eye on the actual stack usage during development and testing phase and reduce the
allocation to a reasonable value.
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There are two pitfalls. The algorithm searches the stack area for a specific byte pattern the complete
area has been initialized with, and which is typically not written into the stack at runtime. However, it
could be written at runtime with a low but significant probability. As a result, the actual stack usage
can be one Byte more than computed with a probability that must not be neglected. It’s however much
less probable that two such bytes will be written consecutively into the stack at runtime — the probability
that the computed number of bytes is too little by two is much less. And so forth. If you add a number
of five Byte to the computed stack usage the remaining probability that this is less than the actual stack
usage is negligible.

The current stack usage increases suddenly by 36 Byte in the instance of a system interrupt (the CPU
context of the interrupted task is saved onto the stack of this task). rtos_getStackReserve returns the
maximum stack usage so far (actually it returns the inverse value, the reserve, but this is equivalent).
This is a useful value once your testing code ran through all code paths, particularly through the deepest
nested sub-functions. You can ensure this by dedicated test routines. But can you also be sure that a
system interrupt occurred in the very instance of being inside the deepest nested sub-routine? If not, it’ll
surely happen sooner or later and another 36 Byte of stack will be consumed. It’s good practice to add
another 36 Byte to the computed stack usage.

Summarizing, you should add 41 Byte to the computed stack usage before reducing the stack size to
the really needed value.

The function rtos_getStackReserve may be called by any task. Please note, that the function is not
defined for the idle task, but may be called by the idle task for querying any of the other tasks.

3.11 Diagnosis: gsl_getSystemLoad

The measurement of the system load is an important development tool for RTOS applications. The
system load gives an indication of the average usage of the CPU, i.e. the time the CPU spends on task
execution in comparison to the time left, its idle time. This value completes the information provided
by the API function rtos_getTaskOverrunCounter. An accurate measurement of this quantity is difficult
and RTuinOS doesn’t really offer it. However, a simple algorithm has been implemented, that computes
a quite good and useful estimation of the CPU load.

The algorithm is available as a independent C source file. It had already been published in a previous
release of RTuinOS as part of one of the code samples. Now, the required files, [7]and [8], have been
integrated into the RTuinOS installation and can be used by any application just like that. Please note,
that it must still not be considered as a true part of RTuinOS.

There are barely prerequisites to apply the CPU load estimation in your RTwinOS application. Include
the header file gsl_systemLoad.h and call function gsl_getSystemLoad from the idle task. It returns the
estimated average CPU load after about a second of system observation time. Please refer to [8] and [7]
for details.

The idea of the load estimation is to compare the world time spent on a known sequence of machine
codes to the sum of CPU clock tics required by the sequence. The execution of the test sequence is done
in a task having a priority being lower as any relevant application task, typically the idle task. Due to
its low priority, this task will have an impact on the scheduling scheme of the other, observed application
relevant tasks. The ratio of the two time designations indicates the percentage of the world time the
CPU spends on the application relevant tasks but not the the test executing task. The value is a direct
measure for the average CPU load, if the duration of the test sequence execution is long in comparison
to the application task switches.

By principle, the implementation of the load estimation has the disadvantage of either consuming all
the system idle time or - if interleaved with other idle task operations - only returning estimated samples
of the system load. It depends on the application design and the configuration of the function how well
the samples match the reality.



Chapter 4

Writing an RTutnOS Application

4.1 Short Recipe

Create an empty folder in folder code/applications. The name of the folder is the name of your application.
Copy the configuration template file [3] into this folder and rename it to rtos.config.h.

Open rtos.config.h and configure the number of tasks, the number of different priority classes and the
size of these. Do not use empty priority classes, this wastes expensive memory. Priorities should always
be counted 0, 1, ..., max. Configure the number of mutexes and semaphores in use. Select the word
width of the system time. Often an eight Bit value will be sufficient. Please refer to 4.3. In general,
you’ll find a lot of hints and comments in the configuration file telling you what to do in detail.

Open a new C source file in the same folder. This file implements the core of your application. You
need two standard functions, setup and loop, your task functions and some static data.

Create a static array for each task. The type is wint8_t. This array will become the task’s stack
area. As a rule of thumb a size of 100 ... 200 Byte is a suitable starting point. Later, you may apply
rtos_getStackReserve to get a better idea.

Create empty task functions: static void taskFct(uintl16_t).

In setup you will call rtos_initialize Task once per task. Pass the pointer to the task function, the stack
area and specify the priority and the condition under which the task becomes initially due (probably:
immediately).

Create the empty function loop: void loop(void).

Now fill the task functions with useful functional code. Be aware, that a task function must never be
left, a system reset would be the consequence. Therefore, you will always implement an infinite loop, e.g.
using rtos_suspendTaskTillTime. Find an example in listing 4.1. loop may remain empty if you don’t
need idle operations.

static void tasklOms(uintl6_t initialResumeCondition)

{
do

{

/* Place actual task code here, e.g. the call of an external
function. x/
myActuall0MsTask () ;

}

while (rtos_suspendTaskTillTime (5 /* unit: 2ms */);

Listing 4.1: Typical task, regularly activated

30
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When implementing the functional code always be aware of the discussion of protecting the access to
data shared between tasks; please refer to section 3.8.

Compile your application using the generic makefile. Double-check your environment: The make tool
needs to be on the Windows/Linux search path and the environment variable ARDUINO_HOME needs
to point to your Arduino installation (see section 4.2.1). If you placed all your code in the single folder
created at the beginning, all you have to do now is to run

make -s APP=myFolderName build

Start your application using the makefile. Your Arduino board is connected via the USB cable. Be
this COMS6.! Now run

make -s APP=myFolderName COM_PORT=COM6 upload

The RTuinOS source file [1] must not be touched at all. Just open it for reading if you what to
understand how RTuinOS works.

4.2 The Makefile

RTwinOS as such can’t be compiled, it’s just a C source file which has to be compiled with your applica-
tion. (Without application code you’d end up with unresolved externals when linking the code.) However,
RTuinOS is distributed with some autonomous test cases which are true RTuinOS applications. All of
these can be built and uploaded using the make tool, which is part of the Arduino installation and the
makefile which is part of the RTuinOS distribution.

You can organize your applications similar to the test cases. Then you will be able to use the makefile
without changes for your application, too. Even if your application grows and needs a more complex
folder structure than the test cases to organize the source code you will still be able to use the makefile,
however with some simple changes.

Most often, you will do as follows: Open a Shell window (i.e. a Command Prompt or Powershell
window under Windows or Bash under Linux) and cd to the root directory of the RTuinOS folder. This
is where the file GNUmakefile is located. Connect your Arduino MEGA board? to the USB port, e.g.
port number 6. Now type

make -s APP=tc05 COM_PORT=COM6 upload

and test case (or application) tc05 is compiled and uploaded to the board. The Arduino board is
reset and the RTuinOS application is started. Now you might consider to open the Arduino IDE and
open the Serial Monitor (i.e. the console window) to see what’s going on. Later, you might replace the
default COM port in the makefile with your specific port number and the command line becomes even
shorter.

The makefile explains itself by calling make as follows. The command requires that the current
working directory is the root directory of RTuinOS. Calling make with target help will print a list of all
available targets to the console with a brief explanation:

make -s help

An RTuinOS application can’t be developed as a sketch in the Arduino IDE. We made some minor
changes of the Arduino file main.c, which would be lost when using the IDE. You may however continue
to use the IDE for console I/O if you use the object Serial for communication — which is particularly
useful during application development and which is supported by the makefile process even better than
by the IDE as the makefile enables you to have the I/O commands only conditionally in the code. Their
presence may be restricted to a development compilation configuration by means of a #ifdef DEBUG.

1Use the Arduino IDE to find out which port your board is connected to. Typically, after connecting your board it’ll be
the last port shown in menu Tools/Serial Port. Or open the Windows Device Manager and look at ”Ports (COM & LPT)”.
Here you find your connected board with name and assigned COM port.

20ther boards need some code customization first. Please, refer to section 4.7.
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4.2.1 Prerequisites

The name of the makefile is GNUmakefile. It is located in the root directory of the RTwinOS installation.
The makefile is compatible with the GNU make of Arduino 1.0.5, which is ”GNU Make 3.81”.

Caution: There are dozens of derivates of the make tool around and most of these are incompatible
with respect to the syntax of the makefile. Even GNU make 3.80 won’t work with RTuinOS’ makefile as
it didn’t know the macro $(info) yet. Furthermore, there are incompatible Windows ports of the GNU
make tool, e.g. by MinGW and Cygwin.

To run the make tool it might be required to add the path to the binary to the front of — to avoid
shadowing by an incompatible derivate of make — your Windows search path.? Inside your Arduino 1.0.5
installation, you’ll find the make tool as arduino-1.0.5/hardware/tools/avr/utils/bin/make.exe.

The makefile compiles the Arduino standard source files to the standard library core.a. To do so,
it needs to know, where the Arduino sources — which are not part of this project — are located. It
expects an environment variable ARDUINO_-HOME to point to the Arduino installation directory, e.g.
c:/ProgramFiles/arduino-1.0.5 on a Windows system. You will probably have to add such a variable to
your system variables as it is not defined by the Arduino standard installation process.

Another prerequisite of successfully running the makefile is that your application doesn’t have any
two source files of same name — although this would be basically possible with respect to compiler and
linker if they were located in different folders.

Finally, all relevant paths to executables and source files and the file names themselves must not
contain any blanks. This includes the path to the Arduino installation. If you are a Windows user, it
particularly means that you will have to reinstall Arduino if you should have placed it into the standard
installation path c:/Program Files/arduino-1.0.5.

4.2.2 Concept of Makefile

The makefile has a very simple concept. A list of source code directories is the starting point of all. All
of these directories are searched for C and C++ files. The found files are compiled and linked with the
Arduino library core.a.

Post processing steps create the binary files as required for upload to the Arduino board.

An optional, final rule permits to upload the binary code to the Arduino board. If your application
makes use of the USB communication with Serial all you still have to do on a Windows system to make
your application visibly run is an ALT-TAB to switch to the (open) Arduino IDE and a Ctrl-Shift-m to
open the console window.

On the compilation output side, for sake of simplicity of the makefile, the folder structure of the
source code is not retained. All compilation products (*.0, among more) of an RTuinOS application are
collected in a single output folder dedicated to this application. This is the reason, why there must never
be two source files of same name. Even myModule.c and myModule.cpp would lead to a clash.

In the Arduino IDE the library core.a is source code part of the sketch. It is rebuilt from source code
after a clean. The RTuinOS makefile also contains the rules to build core.a but it considers it a static
part of the software, which is in no way under development. It’ll be built if it’s not up-to-date but it’ll
neither be deleted and rebuilt in case of a rebuild (i.e. target clean) and nor does its build depend on
the compilation configuration.

As said, the compilation is mainly controlled by a list of source code directories. This list is imple-
mented as value of macro srcDirList. The default is to have two directories: The RTuinOS source code
directory code/RTOS and a second, variable directory. This directory is located in code/applications but
its name is provided by macro APP. This enables you to select an application for compilation simply by
stating APP=myRTuin0SApplication on the command line of make.

If your application demands more than a simple, flat directory to manage all its source files, you can
continue to use the makefile. The makefile knows a kind of ”callback”. If present, an application owned
makefile fragment is read prior to do compilation and linkage. This makefile fragment can override or

3 After installation, type make —version to find out.
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#ifdef DEBUG
/* Some self —diagnostic code x/

Serial.print (” Current stack reserve: 7);
Serial.println (rtos_getStackReserve (IDXMY_TASK));
if (rtos_getTaskOverrunCounter (IDXMY_TASK, /x doReset x/ true) != 0)

doBlinkLED (3 /* times */);
#endif

Listing 4.2: Usage of preprocessor switches supporting different compile configurations

extend the default value of the makefile variable srcDirList. Specify different folders or just add some.
The fragment is looked for by name: It needs to be called <appName>.mk, where <appName> is the
value of the makefile variable APP.

Folder Structure

The makefile is organized in different files. The entry point is the file GNUmakefile. This file name avoids
the need to use the make tool’s command line switch -f <makefileName> and it avoids conflicts withs
other, incompatible derivates of make.

File GNUmakefile only contains some settings common to all RTuinOS applications. Here, you would
e.g. find the default setting for the COM port to be used for upload of the compiled software (please see
4.2.5 also).

After reading these settings, the ”executable” makefile compileLinkAndUpload.mk is read. It is located
in the sub-folder makefile. It in turn builds on some sub-routines, which are implemented in further
included makefile fragments. All of these are located in the same sub-folder makefile.

4.2.3 Compilation Configurations

The makefile supports different compilation configurations. On makefile level, a configuration is nothing
else than a set of C preprocessor macros, which is passed on to the compiler. The meaning of the
configurations is completely transparent to the makefile and just depends on the usage of the preprocessor
macros in the C source code.

Two configurations are predefined (and used by the RTuinOS source code) and any additional number
of configurations can be created by a simple extension of the makefile.

The standard configurations are called DEBUG and PRODUCTION. DEBUG defines the C prepro-
cessor macro DEBUG and configuration PRODUCTION defines the C preprocessor macros PRODUC-
TION and NDEBUG.

Our recommendation is to place some appropriate self-diagnostic code in the C/C++ source code,
which is surrounded by preprocessor switches. This includes diagnostic output using the Serial.printin,
the USB communication with the Windows machine, which is particularly useful during development and
testing phase but usually not required in a true application of the Arduino board. An example can be
found in listing 4.2.

A specific example of such code is the macro ASSERT, which expands to nothing if DEBUG is not
defined (as in configuration PRODUCTION) but which double-checks some invariant code conditions
during development, when configuration DEBUG is used. Please see [5]. The RTuinOS code itself make
intensive use of ASSERT in order to report the most probable user errors in DEBUG configuration.

The configuration is chosen by the value of the makefile variable CONFIG. The default value is
DEBUG but this may be overridden on the command line of the makefile; please find an example:

make -s APP=myFolderName CONFIG=PRODUCTION COM_PORT=COM6 upload
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4.2.4 Selecting the Arduino Board

The target platform is selected as value of macro targetMicroController in the makefile. However, not
all Arduino boards are currently supported by the implementation of RTuinOS. If you select a micro
controller, which is not yet supported, you will run into error directives in the source code. Please refer
to section 4.7 for more.

The makefile has not been tested with any Arduino boards other than the Arduino Mega 2560. Please
be aware that additional changes on the makefile could be necessary: Different controllers may require
different command line options of compiler, linker and flash tool. These differences are not yet anticipated
by the makefile. You need to double-check all recipe lines, which are typically composed using macros
like targetMicroController, cFlags and [Flags.

You can use the Arduino IDE to find out, which command lines are appropriate in your specific
environment. In the file menu of the IDE you can navigate to the properties dialog. Here, you should
check the verbose output for both, compilation and upload. Now select, build and upload one of the
sample sketches in the IDE. Copy the contents of the IDE’s output window and paste them into a text
editor. You will find appropriate command lines for all the tools.

There’s a pit-fall: When running the flash tool avrdude the Arduino IDE uses a protocol which
unfortunately requires an additional, preparatory reset command. This protocol works with the makefile
only if you press the reset button shortly before avrdude is run, which is at least inconvenient if not
unacceptable. The makefile uses a quite similar protocol, which works well and doesn’t require the reset.
Place -cWiring in the command line of avrdude instead of —~cstk500v2.

4.2.5 Selecting the USB Port

The USB (or COM) port which is used for the connection between PC and Arduino board has to be
known by the rule, which uploads (and flashes) the compiled and linked application. You can specify the
port as part of the command line of the makefile (type e.g. COM_PORT=COMS).

However, in your specific environment you’ll probably end up with the always same port designation,
so it might be handy to choose this port designation as the makefile’s default. Look for the initial
assignment of macro COM_PORT in the makefile.

4.2.6 Weaknesses of the Makefile
Unsafe Recognition of Dependencies

The makefile includes the compiler generated *.d files. The *.d files contain makefile rules, which describe
the dependencies of object files on source files. They are created as ”side-effect” of the compilation of a
source file. This means, they are not present at the very beginning and after a clean and they are invalid
after source code or configuration changes which have an impact on the actual tree of nested include
statements. Particularly in the latter situation the recognition of dependencies is not reliable and the
compilation result could be bad. Moreover, if a header file is renamed or removed then it’s problematic,
that it is still referenced by the rules in the *.d files. Make aborts with a message like: ”Don’t know how
to make ....h"

Consequently, in all cases of non-trivial changes of preprocessor macros and include statements or
when renaming or removing header filer you should always call the rules to rebuild the application.

g+ versus gcc

The makefile compiles all source files regardless on their file name extension with g+, i.e. the source
code is always treated as a C++ file. This is an a bit strange decision, which has been adopted from the
original Arduino IDE, which behaves the same. There’s no technical drawback of doing so, the generated
machine code is just the same. The problem rather is that one easily and unintendedly writes C++
statements in a file he believes to be a C source files. The compiler won’t complain about. RTwuinOS
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itself should be clean C source code and can be compiled with gcc also. (It’s trivial to change the makefile
to do so; there are anyway separate rules for *.c and *.cpp files.) However, when compiling *.c as C and
*.cpp as C++ one has to properly use the extern ”C” declaration, when accessing C headers from C++
files. This has not been done in the RTuinOS samples as we followed the Arduino style.*

4.3 Configuring the System Time

A central element of RTuinOS is its system time. This time is e.g. the parameter of a suspend command
if a task wants to wait until a specific point in time or for a specific while. Many of the operations
in RTuinOS and its application code deal with the system time. Therefore, we decided to make the
implementation type of the system time subject to the configuration of the application; you have to
customize the type in your application’s copy of rtos.config.h. In many situations a short one Byte
integer will be sufficient, but not in general. The intention of this section is to explain all implications of
the type choice to enable you to choose the optimal, shortest possible type for your application.

4.3.1 The Unit of the System Time

The system time is a cyclic integer value. The unit is the period time of the main interrupt, which
is associated with the system time. Each interrupt will clock the time by one unit. If the use case of
RTwuinOS is a traditional scheduling of regular tasks of different priorities it’s good practice to choose the
period time of the fastest regular task as unit of the system time. This yields the best performance, or
the least system overhead respectively. But in general the unit of the system time doesn’t matter with
respect to the function of RTuinOS and the time even doesn’t need to be regular.

All time related operations use the tic of the system time as unit. The delay time of rtos_delay can for
example be specified only in multiples of this unit. The application required resolution of these timing
conditions will determine the tic duration of the system time. (And your application will configure the
driving interrupt source accordingly.) With respect to system overhead this resolution should be chosen
as low as acceptable. Each timer interrupt causes at least one save and restore operation of the complete
CPU context and this becomes a significant CPU load if the tic duration is about or even below 1 ms.

4.3.2 Recommended Timer Tic for regular Tasks

If applicable and if the application uses regular tasks we strongly recommend to choose the timer tic
duration identical with the period time of the fasted task. Now each interrupt will really cause a task
switch and there’s no (useless) overhead just to clock the time. The timing resolution is identical to the
task period. This means that the fastest task can barely operate with timeouts, for example if it needs to
wait for events posted by other tasks. The only timeout condition it can use is to state the next regular
due time. Nonetheless, reasonable error handling code is still possible as the task code can distinguish
between becoming active because of the received event, the timeout or because it’s its normal due time.

4.3.3 Upper Limit of the Task Period Time

The task period time of a regular task must not be greater than half the maximum of the system
time. In practice, this is a limitation only if using the 8 Bit time. Now, the parameter of a call to
rtos_suspendTaskTillTime must not exceed 127. The task overrun recognition can fail if this rule is
disregarded.

A task overrun recognition is implemented in RTuinOS to support the use case of regular tasks. The
system decides on a task overrun if a task referring to the absolute timer demands to be resumed in the
past. The implementation uses signed operations, which undergo an arithmetic overflow at the middle of
the binary range of the data type. This is where the limitation comes from.

4We guess that the Arduino designers decided to so because they wanted to disburden the users from understanding
these kind of things and from using extern ”C”.
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Here’s an example of the normal situation: The tic duration of the system time is 1 ms and a regular
task of 100 ms period time is implemented. The system time has 8 Bit. An infinite loop is implemented,
which uses while (rtos_suspendTaskTillTime (100)) as always true condition. Given the task execution
takes between 45 and 67 ms the RTuinOS code will safely find the next demanded due time between 55
and 33 ms in the future. It won’t see a task overrun as 100-45 and 100-67 both is positive in the chosen
8 Bit signed arithmetics. Given a bad, too long task execution time of e.g. 102 ms RTuinOS would
recognize a task overrun as 100-102 is negative.

Let’s assume the period time of the same regular task would be changed to 180 ms. There’s definitely
no risk of getting into task overruns. However, at the end of the task execution, when the next resume
time is demanded it depends if this demanded time is seen in the future or in the past. If the execution
took 67 ms the remaining time to suspend the task is 180-67=113, which is a positive number, whereas
180-45=135 in case of the shorter task execution time is interpreted as the negative number -121 in the
chosen 8 Bit signed arithmetics. For RTuinOS the demanded resume time is seemingly in the past and
it decides on a task overrun.

Caution, the false decision on a task overrun, which actually isn’t an overrun, is much worse than just
an increment of the diagnostics counter (see rtos_getTaskOverrunCounter). If the demanded resume time
of a task is found to be in the past this task is not suspended but made due immediately. Our example
task would not be made due (and active) every 180 ms but irregularly depending on its actual execution
time. This is the real fault!

To avoid this problem the period time of regular tasks must not exceed half the range of the chosen
system timer. If a task period of 127 tics to too little you will have to choose the 16 Bit time, which
produces of course more system overhead.

As a simple implication for systems applying regular tasks, the ratio of period times of slowest and
fastest task is limited by half the range of the chosen system timer. If you implement regular tasks of e.g.
10 ms, 100 ms and 1000 ms period time, this could be handled with a wint8_t (ratio 1:100). If you want
to have an additional 1 ms task, uint8_t will no longer suffice (ratio 1:1000), you need at least wint16_t.
(uint32-t is probably never useful.)

4.3.4 Unrecognized Task Overruns

The shorter the chosen type of the system time the higher the probability of not recognizing task overruns
when implementing regular tasks: Due to the cyclic character of the time definition a time in the past is
seen as a time in the future if it is over more than half the maximum integer number. This leads to the
wrong decision whether we have a task overrun or not. See the example:

Data type be wint8_t. A task is implemented as regular task of 100 units period time. Thus, at the end
of the functional code it suspends itself with time increment 100 units. Let’s say it had been resumed at
time 123. In normal operation — no task overrun — it will end e.g. 87 tics later, i.e. at 210. The demanded
next resume time is 123+100 = 223, which is seen as +13 in the future. If the task execution was too
long and ended e.g. after 110 tics, the system time was 123+110 = 233. The demanded resume time 223
is seen in as 10 tics in the past and a task overrun is recognized.® A problem appears at excessive task
overruns. If the execution had e.g. taken 230 tics the current time was 123 + 230 = 353 — or 97 due to
its cyclic character. The demanded resume time 223 is 126 tics ahead, which is considered a future time
— no task overrun is recognized.® The problem appears if the overrun lasts more than half the cycle time
of the system time. With uint16_t this problem becomes negligible.

4.3.5 Summary
Here’s a short summary of the system time data type discussion:

e Choose the data type of the system time as short as possible

5When a task overrun is recognized the task becomes due immediately. The task call is not omitted but made somewhat
too late.
60ne call of the task has been silently omitted and the next one is timely again.
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e Choose the duration of the timer tic as long as acceptable. If applicable make it identical with the
period time of the fastest task

e The duration of the timer tic is the resolution of timeout operations

e The task period time of a regular task must not exceed half the range of the chosen system time
data type. False task overrun recognitions and resulting bad task timing would probably be the
consequence

e The maximum reasonably expected time a task could exceed its nominal period time should be no
more than half the range of the chosen system time data type. A task overrun would otherwise not
be recognized as such

Choosing the type is done with macro RTOS_DEFINE_TYPE_OF_SYSTEM_TIME, please refer to
[4].

4.4 Configuring the System Timer Interrupt

The interrupt service routine (ISR), which clocks the system time and which performs all related actions
like resuming tasks, which are waiting for a timer event, is a core element of the implementation of
RTwinOS. The implementation leaves it however open, which actual hardware event, i.e. which interrupt
source, is associated with the service routine. In the standard configuration, the interrupt source is the
overrun event of the timer 2 (TIMER2_-OVF), but this can easily be changed by the application.

In the AVR environment, an ISR is implemented using the macro ISR as function prototype. A
specific interrupt source is associated with the ISR by the macro’s parameter. The name of the interrupt
source is stated. A pre-defined, micro controller dependent list of available interrupt sources exists,
please refer to [6], section 14. In RTuinOS the parameter of macro ISR, the name of the interrupt source,
is implemented as other macro RTOS_ISR_.SYSTEM_TIMER_TIC, which is defined in the application
owned configuration file [4]. By simply changing the macro definition any other interrupt source can be
chosen.

Typically, a few hardware related operations are needed to make a peripheral device a useful interrupt
source. In case of timers, the timing conditions have to be stated (how often to see an interrupt); and
generally, most peripherals require to set a so called interrupt mask bit in order to enable it as interrupt
source.

The RTuinOS standard configuration uses timer 2 as is in the Arduino standard configuration. Ar-
duino uses this timer for PWM output and has chosen appropriate settings. The only thing RTuinOS
adds to the configuration of the timer is to set the interrupt mask bit of the overflow event. The fre-
quency of the interrupt is not changed, the Arduino PWM functionality is not affected at all. The
Arduino configuration causes an overflow event about every 2 ms.” This is thus the standard system
clock of RTuinOS.

The hardware configuration of the interrupt source is done in the void function rtos_enableIRQTi-
merTic. The function is implemented as a weak function. In the terminology of the GNU compiler
this means that the application may redefine the same function. Rather than getting a linker error
message ("doubly defined symbol”) the linker discards the RTuinOS implementation and will instead
put the application’s implementation in the executable code. The standard implementation is overridden
by simply re-implementing the same function in the application code. Caution: The signature of the
overriding function needs to be identical, the type attribute weak must however not be used again.

The application will put all operations to configure the interrupt source selected by macro RTOS_-
ISR_.SYSTEM_TIMER_TIC into its implementation of the function and timer 2 will become like it used
to be in the Arduino standard environment.

"The precise value can be found as a macro in the RTuinOS configuration file [4]. Changing the definition of this macro
belongs to the code adaptations, which are required if the system timer interrupt is reconfigured.
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Another, related code modification has to be made by the application programmer. The function
pair rtos_enter/leaveCriticalSection inhibits and re-enables all those interrupts, which may lead to a task
switch — which the timer interrupt evidently belongs to (see section 3.8). If you change the interrupt
source, i.e. if you alter the value of macro RTOS_ISR_.SYSTEM_TIMER_TIC, you will have to modify
the code of these functions accordingly. They are implemented as macros in the application owned
configuration file [4] and can thus be changed easily.

Please, find an example of a re-configured system timer as code sample tc05 in the RTuinOS distri-
bution.

4.5 Using Application Interrupts

RTuinOS supports two application interrupts. The application configures the hardware interrupt source
and associates it with the already existing interrupt service routine. The ISR itself must never be
changed. It sets a specific pre-defined event, which is related to the application interrupt. Setting the
event is done like any task could do using the API function rtos_sendEvent. The intended use case is
that your application has a task which cyclically suspends itself waiting for this interrupt related event
and which is hence awaken each time the interrupt occurs. This task is than the actual handler, which
implements all required operations to do the data processing.

The application interrupt 0 is enabled in your application by turning the preprocessor switch RTOS_-
USE_APPL_INTERRUPT_00 from RTOS_FEATURE_OFF to RTOS_.FEATURE_ON. Now, the related
ISR will be compiled and one of RTwinOS’ general purpose events is renamed into RTOS_EVT_ISR_-
USER_00 indicating the specific meaning this particular event gets; it should never be set by an ordinary
task.

The existing ISR is associated with the interrupt source your application demands by means of macro
RTOS_ISR_USER_00. The value of this macro is set to the name of the interrupt source. A table of
available interrupt sources is found in the manual of your specific controller, see e.g. [6], section 14, for
the micro controller of the Arduino Mega board.

The switch RTOS_-USE_APPL_INTERRUPT_00 and the macro RTOS_ISR_USER_00 are found in
the application owned configuration file [4].

The associated interrupt source needs to be configured to fire interrupt events. Most often, the
interrupt sources are peripheral devices, which have some hardware registers which must be configured.
For example, a regular timer interrupt would require to set the operation mode of the timer/counter
device, the counting range and the condition, which triggers the interrupt. You will have to refer to your
CPU manual to find out. All required settings to configure the interrupt are implemented in the callback
function rtos_enableIRQUser00.

rtos_enableIRQ User00 does not have a default implementation, a linker error will occur if you do not
implement it in your application code. Caution: It is invoked by the RTwinOS initialization code at a
time when all tasks are already configured (setup has completed) and when the system timer of RTuinOS
is already running. This means that all multi-tasking considerations already take effect. You need to
anticipate task switches and resulting race conditions. Actually, the invocation of rtos_enableIRQUser00
is done early from within the idle task, just before loop is executed the very first time.® Consider to use
the function pair rtos_enter/leaveCriticalSection to sort out all possible problems.

When using application interrupts another, related code modification has to be made by the appli-
cation programmer. The function pair rtos_enter/leaveCriticalSection inhibits and re-enables all those
interrupts, which may lead to a task switch — which your interrupt evidently belongs to (see section 3.8).
The functions need to additionally inhibit and re-enable the interrupt you choose as source. They are
implemented as macros in the application owned configuration file [4] and can thus be changed easily.

8Take care designing your application: If you define a set of tasks, which do not leave any time for ideling your application
interrupts won’t be safely started. Take a set of always due round robin tasks as an example. Consider to start those tasks
with a delay.
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void rtos_enableIRQUser00 (void)

{
/* Inhibit all task—switch relevant interrupts. x/
rtos_enterCrtiticalSection ();

/* Configure the peripheral device to produce your application
interrupt but do not enable the interrupt in its interrupt mask
register yet. x/

/* Re—enable all task—switch relevant interrupts. Since you modified
the implementation of rtos_leaveCrtiticalSection this will also
set the appropriate bit in the mask register of your peripheral. x/
rtos_leaveCrtiticalSection ();

Listing 4.3: Initialization of an application interrupt

Please consider that rtos_leaveCriticalSection partly implements what rtos_enableIRQUser00 is ex-
pected to do, refer to listing 4.3 for more.

The second available application interrupt 1 is handled accordingly, you just have to replace the index
00 by 01 in all function and macro names referred to before.

4.6 Usage of Arduino Libraries

The biggest problem using RTuinOS is the lack of adequate multi-tasking libraries. It’s not generally
forbidden to still use the Arduino libraries but this introduces some risks.

For some reasons an existing library function can not be used just like that:

Particularly when addressing to hardware devices, strict timing conditions can exist. In an RTOS,
when a task is suspend for an unpredicted while, this can make an operation timeout and fail. However,
even in a single threaded system, the code execution speed is not fully predictable as it depends on
compiler settings and interruptions by all the system interrupts. Particularly, if serving the hardware
device is done in a task of high priority the discontinuity of the code execution should not be that much
worse in comparison to a single tasking system that a timeout becomes a severe risk. Accordingly, time
critical code should not be placed in the idle task.

Existing library functions could use static data, i.e. data which is not local to the invocation of the
function. This can be data defined using the keyword static but also hardware registers, which do exist
only in a single, global instance. In this case arbitrary invocation from different tasks will surely produce
unpredictable results including the chance of a crash. Since most Arduino library functions deal with
hardware entities, it’s highly probable that they belong to this group.

Using the Arduino libraries is still possible if your tasks cooperatively share the global entities. If
there’s e.g. only one task which serves the PWM outputs and which lets other tasks access them only
indirectly — via application owned, safely implemented inter-task communication.

A specific example is the global object Serial, which performs high level, stream based communication
via USB. There’s obviously no chance to access this channel in an uncontrolled, arbitrary fashion by several
tasks. However, if only a single tasks does the console output at a time it works fine, even if this task is the
most heavily interrupted idle task. By experience, Serial is quite tolerant against timing discontinuities
of the invoking code and can be used for debugging purpose during application development.

Moreover, Serial is implemented as blocking function; the call of e.g. println returns only after all
characters have been processed. Therefore the object can be successfully passed on from one task to
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another after return from a println. Any task gets its turn to write a message. This can be done by a
mutex or by non-preemptive, cooperative multitasking.

When RTuinOS’ function setup is executed, no multi-tasking is active yet. Here you can use the
Arduino libraries without more. In particular, you can initialize all required ports and devices and the
communication with Serial.

It’s similar for library LiquidCrystal. The implementation is basically thread-safe; the library can be
used. Of course, the tasks must cooperatively implement a mutual exclusion when accessing the display.
The source code contains some hardware-required delays, which are of course not implemented RTOS
conform and which could be replaced by rtos_delay as an improvement of the library for RTuinOS.

The delay is implemented using Arduino’s library function delayMicroseconds, which is based on a
CPU consuming waiting loop. This does not necessarily mean that task switches are inhibited or delayed;
just avoid to use the library in a task of high priority. Nonetheless, the CPU time is lost; these function
calls raise the CPU load without need.’

Most of the significant, CPU consuming delays occur in the initialization of the display and this can
be done in setup before multitasking actually takes place. The only other undesired delays are found in
the control commands clear and home — if these are avoided or if their waste of CPU time causes no pain
there’s no concern to use LiquidCrystal from RTuinOS tasks.

Despite of all, using a library developed for single tasking in a multi-tasking environment remains a
risk, which must not be taken in a production system. In a production system, any library function needs
to be reviewed and maybe modified before using it. Fortunately, all Arduino code is available as source
code, so that a code review can be done.

4.6.1 Changes of Arduino’s main Function

The file main.cpp of the Arduino standard sketch has been replaced by main.c of RTwinOS. The imple-
mentation of the contained function main is nearly the same. The standard sketch finally enters a short,
infinite loop, which repeatedly invokes the application’s ”task-function” loop. The same loop continues
to exist in RTuinOS (although it has been moved to the end of rtos_initRTOS) with one major change:
In the standard sketch the loop contains the following code, which is executed alternatingly with function
loop:

if (serialEventRun) serialEventRun();

This function implements a kind of dispatcher for characters received via the serial channels. Clients can
define their handlers by overriding ”weak” empty default handlers. It depends on the optional handlers
if this would continue to work well with the RTuinOS task scheduler. We decided not to put the call into
the RTuinOS code. Whoever knows to need it can consider to place the statement into function loop of
his RTuinOS application. Now, the behavior is just the same as in the standard sketch — besides all the
obvious differences because of task switches.

4.7 Support of different Arduino Boards

RTuinOS has been developed on an Arduino Mega 2560 board and this is the only supported board so
far. There are some obvious dependencies on the micro controller:

e The size of the program counter is three Byte for an ATmega2560 but only two Byte for some other
derivates

e The availability of peripheral devices depends on the micro controller and moreover,

e the naming of the registers may differ between micro controllers even for the same peripheral.

9 Arduino’s delay function delay is different. It compares the desired return time with the global system time, which is
updated by an interrupt. If a task using delay is interrupted by other tasks and if the time it gets re-activated again is
ahead the desired return time it’ll not continue to loop and consume the CPU like delayMicroseconds would.
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The implementation of RTuinOS uses a preprocessor switch based on the macro -_AVR_ATmega2560-_
from the AVR library anywhere we have such an obvious platform dependency. The else case is ”imple-
mented” as error directive so that you are directly pointed to all these code locations by simply doing a
compilation with another micro controller selected in the makefile.

All code locations, where such an error directive is placed are easy and straight forward to modify.
You will find some guidance in the code comments close to the error directives. Nonetheless, we decided
to not try an implementation as it would be not tested.

Unfortunately, there’s a remaining risk, that there are more platform dependencies than currently
anticipated in the code. This can only be found out by doing the migration and testing. Feedback is
welcome.

The makefile controlled build process depends on the Arduino board, too. An obvious change is the
specification of the micro controller in use when compiling the code. However, there are more changes
required in the makefile. Please refer to section 4.2.4 for more.



Chapter 5

Outlook

We hope that RTuinOS is deemed useful as it is and that it adds some value to the Arduino world.
Nonetheless, we are aware that it has its limitations and that a lot of improvements are imaginable and
some even feasible. Some ideas and comments have been collected here.

The lists which hold the due tasks are implemented as arrays of fixed length. All priority classes
use a list of identical length. This has been decided just because of the limitations of constant compile
time expressions and macros. The code would run without any change if the rectangular array holding
all lists would be replaced by a linear array of pointers, which are initialized to point to class-individual
linear arrays. This construction would save RAM space in applications which have priority classes of
significantly differing size. Besides some saved RAM and the less transparent initialization on application
side! there’s absolutely no difference of both approaches and therefore the urgency of this change isn’t
considered high enough to actually do it.

Currently, the idle task is described by an additional object in the task array — although it lacks most
of the properties of a true task. Actually, only the stack pointer save location and the (always zero) vector
of received events are in use. If the task object is split into two such objects (holding the properties of all
tasks and holding the properties of true tasks only) some currently wasted bytes of RAM could be saved.

The priority of a task could be switched at runtime if only the arrays are large enough — but this is
anyway in the responsibility of the application. The implementation is simple as it is close to existing
code. The API function would be implemented as software interrupt similar to the suspend commands.
The active task would be taken out of its class list and put at the end of the targeted class list. The list
lengths would be adapted accordingly. Then the normal step of looking for the now most due task and
making this the active one would end the operation. rtos_sendEvent would probably be the best fitting
starting point of the implementation. This idea has not been implemented as we don’t see a use case for
it.

Currently, the round robin time (including round robin mode on/off by setting the time to 0) is
predetermined at compile time — but without any technical need. It would be easily possible to change it
by API call at runtime. If we specify that a change shall not affect the running time slice it’s very easy
as the call of this function won’t cause a task switch. A software interrupt is not required, just write the
reload value of the round robin counter in an atomic operation.

There’s no strong technical reason, why a task should not end. At the moment the return address
of a task function is the reset address of the micro controller. By modifying prepare TaskStack it could
become any other address, e.g. the address of a function implemented similar to the suspend commands.
It would not put the active task into the list of suspended tasks but in a new list of terminated tasks.
This list is required as task termination makes sense only if there’s also a chance to create new ones.
The list of terminated tasks would be the free-list of objects to reuse whenever a new task is created at

1We don’t like to do dynamic initialization using a loop and a call of malloc inside in an embedded environment. This
would probably consume administrative RAM space on the heap in the same magnitude than what can be saved by the
changed layout of the RTuinOS data structure.
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runtime.

Starting a new task at runtime would mean to let prepareTaskStack operate on a currently unused
task object and to place the object in a critical section into the list of suspended tasks. As currently, the
application is responsible for obeying the size of the lists, in particular if there’s still room in the targeted
priority class.

Since we do not want to introduce dynamic memory allocation into the application, any started task
needs to be pre-configured. It has to be decided if under these circumstances terminating/restarting a
task has a big advantage over just suspending existing tasks permanently.

Regardless of these and many other imaginable improvements, we consider RTwinOS to be a complete
and useful real time operating system. Its limited capabilities are a well chosen trade off with the
capabilities of the AVR target system which offers only little RAM space and no overwhelming CPU
power. Most real time applications, that are feasible with this architecture should not be too demanding
for our system and will surely benefit from being built on RTuinOS.
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Version 1.3, 3 November 2008
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<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in
a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a section
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does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document straight-
forwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent
image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
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cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version of
the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

CENCERES

Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
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J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for
a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various original doc-
uments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
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You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the re-
quirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights
to use it.
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10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration”
(or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first
published under this License somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
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