
1

Usability

Based on material by Michael
Ernst, UW and MIT

Announcements

n  CHECK YOUR GRADES
n  Quiz 1-9, HW 1-6, Exam 1-2 now all in LMS!
n  Feedback on Homework in Homework Server

n  HW7 grades released. Re-grade points will be applied
later as re-submit of HW7 is due December 11th

n  HW9 due December 11th
n  A GUI Interface for your path finding algorithm

n  Quiz 10 at the end of class
2

Revisit Visitor Pattern, Again

n  Common questions/mistakes
n  How do I “start” the Visitor?
n  How to I make the Visitor hold Context?
n  Can I change signature of accept or visit?
n  Use of Interpreter methods in Visitors

n  You shouldn’t call evaluate/print on Expressions
n  accept methods are the same for all Visitors
n  Functionality in visit methods, state stored in

Visitors
Fall 15 CSCI 2600, A Milanova 3

Visitor’s Task is to Traverse
Hierarchical Structure

n  Expression (x or true) and y
new AndExp(
 new OrExp(
 new VarExp(“x”),
 new Constant(true)
),
 new VarExp(“y”)
)

Fall 15 CSCI 2600, A Milanova 4

AndExp:
(x or true) and y

OrExp: x or true VarExp: y

VarExp: x Constant: true

right

right

left

left

We have a hierarchical structure:
AndExp is top, OrExp and VarExp are
below in the hierarchy, etc.

Starting the Visitor

BooleanExp myExp =
 new AndExp(
 new OrExp(new VarExp(“x”),new VarExp(“y”)),
 new VarExp(“z”)
);
CounterVisitor v = new CounterVisitor();
//or EvaluateVisitor v = new EvaluateVisitor(c);
//or InorderVisitor v = new InorderVisitor();

myExp.accept(v); // starts traversal at root

Fall 15 CSCI 2600, A Milanova 5

Visitor Implements Postorder
Traversal of the Composite

class AndExp extends BooleanExp {
 public void accept(Visitor v) {
 // call accept on all children, then visit
 left.accept(v); // traverses left subexp
 right.accept(v); // traverses right subexp
 v.visit(this); // after traversal
 }
}

// accept doesn’t know what kind of Visitor!
// works with all Visitors!
// No changes to the BooleanExp hierarchy
// required when adding new Visitors

Fall 15 CSCI 2600, A Milanova 6

2

The Visitor Pattern

7

BooleanExp

AndExp OrExp VarExp Constant
accept
 (Visitor v)

accept
 (Visitor v)

accept
 (Visitor v)

accept
 (Visitor v)

accept(Visitor v) Client

NotExp
accept
 (Visitor v)

2

2

1

1
1 1

The Visitor Pattern

Fall 15 CSCI 2600, A Milanova 8

Visitor
visit(Constant e)
visit(VarExp e)
visit(NotExp e)
visit(AndExp e)
visit(OrExp e)

EvaluateVisitor
visit(Constant e)
visit(VarExp e)
visit(NotExp e)
visit(AndExp e)
visit(OrExp e)

InrderVisitor
visit(Constant e)
visit(VarExp e)
visit(NotExp e)
visit(AndExp e)
visit(OrExp e)

Exercise: Write a Count Visitor that counts
#nodes in a BooleanExp object

class VarExp extends
 BooleanExp {
 void accept(Visitor v) {
 v.visit(this);
 }
}
class AndExp extends
 BooleanExp {
 BooleanExp leftExp;
 BooleanExp rightExp;
 void accept(Visitor v) {
 leftExp.accept(v);
 rightExp.accept(v);
 v.visit(this);
 }
}

9

class CounterVisitor
 implements Visitor {
 int count = 0;
 void visit(VarExp e)
 {
 count++;
 }
 void visit(Constant e)
 {
 count++;
 }
 void visit(AndExp e)
 {
 count++;
 }
 …
}

Exercise: Write PostorderVisitor, which prints
BooleanExp in postorder

class VarExp extends
 BooleanExp {
 void accept(Visitor v) {
 v.visit(this);
 }
}
class AndExp extends
 BooleanExp {
 BooleanExp leftExp;
 BooleanExp rightExp;
 void accept(Visitor v) {
 leftExp.accept(v);
 rightExp.accept(v);
 v.visit(this);
 }
}

10

class PostroderVisitor
 implements Visitor {

 void visit(VarExp e)
 {
 //print e.getString();
 }
 void visit(Constant e)
 {
 //print e.getValue();
 }
 void visit(AndExp e)
 {
 //print “AND”;
 }
 …
}

Exercise: Write an Evaluate Visitor which
evaluates a BooleanExp

class VarExp extends
 BooleanExp {
 void accept(Visitor v) {
 v.visit(this);
 }
}
class AndExp extends
 BooleanExp {
 BooleanExp leftExp;
 BooleanExp rightExp;
 void accept(Visitor v) {
 leftExp.accept(v);
 rightExp.accept(v);
 v.visit(this);
 }
}

11

class EvaluateVisitor
 implements Visitor {
 // ??
 void visit(VarExp e)
 {
 // ??
 }
 void visit(Constant e)
 {
 // ??
 }
 void visit(AndExp e)
 {
 // ??
 }
 …
}

Outline of Today’s Class

n  Usability

n  Iterative Design
n  Design

n  Design principles

n  Implement
n  Low-fidelity prototypes

n  Evaluate
n  User testing

Fall 15 CSCI 2600, A Milanova 12

3

User Interface Hall of Shame

Fall 15 CSCI 2600, A Milanova. Source: Interface Hall of Shame 13

User Interface Hall of Shame

Fall 15 CSCI 2600, A Milanova. Source: Interface Hall of Shame 14

Better

Fall 15 CSCI 2600, A Milanova. Source: Interface Hall of Shame 15

User Interface Hall of Shame

16 Fall 15 CSCI 2600, A Milanova. Source: Interface Hall of Shame

You cannot directly edit the Date and
Time fields from the keyboard.
If you want to edit Time, you must click
on “Set Time”, which triggers the
“Clock” control, where you have to
use the mouse to move the Minute
and Hour hands.

Fall 15 CSCI 2600, A Milanova 17

Hall of Shame or Fame?

Hall of Shame or Fame?

Fall 15 CSCI 2600, A Milanova 18

4

Designing User Interfaces Is
Hard

n  You are not the user
n  Most software engineering is about

communicating with programmers
n  Who are a lot like us

n  UI is about communicating with users
n  Users are NOT like us

n  The user is ALWAYS right
n  Usability problems are the design’s fault
n  Hard lesson to learn: if the user consistently gets

stuck, this is not because the user is dumb, but
because the interface is poorly designed 19

Designing User Interfaces Is
Hard

n  … unfortunately, the user is not always right
n  The user cannot predict what they really want
n  1950’s experiment with telephone handsets

n  Users thought weight was fine
n  Actually, they really wanted half the weight

n  # of results displayed for a Google
search query
n  Users say they want 30
n  Actually, they really wanted 10

20

Iterative Design

n  UI development is an iterative process

n  Iterations can be costly

n  If the design turns out to be bad, you many have
to throw away most of your code

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 21

Design

8

Iterative Design

• UI development is an iterative process

• Iterations can be costly
– If the design turns out to be bad, you may have to

throw away most of your code

Design

ImplementEvaluate

Spiral Model

n  Use throw-away prototypes and cheap
evaluation for early iterations

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 22
9

Spiral Model

• Use throw-away prototypes and cheap
evaluation for early iterations

Design

ImplementEvaluate

Usability
n  Usability: how well users can use the

system’s functionality
n  Dimensions of usability

n  Learnability: is it easy to learn?
n  Efficiency: once learned, is it fast to use?
n  Safety: are errors few and recoverable?

n  Memorability: is it easy to remember what you
learned?

n  Satisfaction: is it enjoyable to use?

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 23

Usability Dimensions

n  Learnability
n  Efficiency
n  Safety
n  Simplicity (not a usability dimension)

n  Different dimensions vary in importance
n  Depends on the user
n  Depends on the task

n  Usability is only one aspect of the system

24

5

Learnability
IBM’s Real CD

Fall 15 CSCI 2600, A Milanova. Source: Interface Hall of Shame 25

Learnability

Fall 15 CSCI 2600, A Milanova. Source: Interface Hall of Shame 26

Learnability
LMS Create Weighted Column

Fall 15 CSCI 2600, A Milanova 27

Learnability
LMS Create Weighted Column

Fall 15 CSCI 2600, A Milanova 28

Facts About Memory & Learning

n  Working memory
n  Small: 7 ± 2 “chunks”
n  Short-lived: gone in ~10 seconds
n  Maintenance rehearsal is required to keep it

from decaying but costs attention
n  Long-term memory

n  Practically infinite in size and duration
n  Elaborative rehearsal transfer chunks to long-

term memory
Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 29

Working
Memory

Long-term
Memory

Design Principles for Learnability
n  Consistency

n  Similar things look similar, different things different
n  Terminology, location, …
n  Internal, external, metaphorical design

n  Use common, simple
words, not tech jargon!

n  Recognition, not recall
n  Labeled buttons are better than commands
n  Combo boxes are better than text boxes 30

17

Design Principles for Learnability

• Consistency
– Similar things look similar,

different things different
– Terminology, location,

argument order, ...
– Internal, external, metaphorical

• Match the real world
– Common words, not tech jargon

• Recognition, not recall
– Labeled buttons are better than command languages
– Combo boxes are better than text boxes

Source: Interface Hall of Shame

6

Tech Jargon
UHLS Catalog Advanced Search

Fall 15 CSCI 2600, A Milanova 31

Visibility

Fall 15 CSCI 2600, A Milanova 32

Facts About Human Perception

n  Perceptual fusion: stimuli ~100ms apart
appear fused to our perceptual system
n  10 frames/sec is enough to perceive a moving

picture
n  Computer response < 100ms feels instantaneous

n  Color blindness: many users (~8% of all
males) can’t distinguish red from green

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 33
20

Some Facts About Human Perception

• Perceptual fusion: stimuli < 100ms apart
appear fused to our perceptual systems
– 10 frames/sec is enough to perceive a moving picture
– Computer response < 100 ms feels instantaneous

• Color blindness: many users (~8% of all males)
can't distinguish red from green

normal vision red-green deficient

Design Principles for Visibility

n  Make system state visible: keep the user
informed about what’s going on
n  Mouse cursor, selection highlight, status bar

n  Give prompt feedback
n  Response time rules-of-thumb:
< 0.1 sec seems instantaneous
0.1 – 1 sec user notices
1 - 5 sec display busy cursor
> 5 sec display progress bar

34 Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst

Facts About Motor Processing

n  Open-loop control
n  Motor processor runs by itself
n  Cycle time is ~ 70ms

n  Closed-loop control
n  Muscle movements are perceived and compared

with desired result
n  Cycle time is ~ 140ms

Fall 15 CSCI 2600, A Milanova. Slide due to Michael Ernst. 35

Perception Cognitive Motor Senses Muscles

Pointing Tasks: Fitts’s Law

n  How long does it take to move your hand to a
target of size S at distance D away?

n  E.g. moving mouse to target on screen

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 36

24

Pointing Tasks: Fitts’s Law

• How long does it take to reach a target?

– Moving mouse to target on screen
– Moving finger to key on keyboard
– Moving hand between keyboard and mouse

D

S

D

S

7

Fitts’s Law

n  T = RT + MT = a + b log (D/S)

n  log (D/S) is the index of difficulty of the

pointing task
Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 37

24

Pointing Tasks: Fitts’s Law

• How long does it take to reach a target?

– Moving mouse to target on screen
– Moving finger to key on keyboard
– Moving hand between keyboard and mouse

D

S

D

S

 Reaction time

 Movement time

Derivation of Fitts’s Law

n  Moving your hand is closed-loop control
n  Each cycle covers remaining distance d with

error εd
n  After two cycles, within ε2D of target

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 38

25

Analytical Derivation of Fitts’s Law

• Moving your hand to a target is closed-loop
control

• Each cycle covers remaining distance D
with error εD

• After 2 cycles, within ε2D of target
Position Velocity

Time Time

Path Steering Tasks: Steering
Law

n  Fitts’s Law applies only if path to target is
unconstrained

n  But the task is much harder if path is
constraint to a tunnel

n  Steering Law: T = RT + MT = a + b (D/S)

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 39

24

Pointing Tasks: Fitts’s Law

• How long does it take to reach a target?

– Moving mouse to target on screen
– Moving finger to key on keyboard
– Moving hand between keyboard and mouse

D

S

D D

Design Principles for Efficiency

n  Fitts’s Law and Steering Law
n  Make important targets

big, nearby, or at screen edges
n  Avoid steering tasks!

n  Provide shortcuts
n  Keyboard accelerators
n  Styles
n  Bookmarks
n  History

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 40

Usability Dimensions

n  Learnability
n  Efficiency
n  Safety

n  Simplicity

Fall 15 CSCI 2600, A Milanova 41

Mode Errors

n  Modes: states in which actions have different
meanings
n  E.g., vi’s insert mode vs. command mode

n  Avoiding mode errors
n  Eliminate modes entirely
n  Visibility of mode
n  Disjoint action sets in different modes

Fall 15 CSCI 2600, A Milanova 42

8

Confirmation Dialogs

Fall 15 CSCI 2600, A Milanova 43
30

Confirmation Dialogs

Confirmation Dialogs: Deleting
files in the LMS file system

Fall 15 CSCI 2600, A Milanova 44

I selected the files and clicked Delete

Confirmation Dialogs: Deleting
files in the LMS file system

Fall 15 CSCI 2600, A Milanova 45

Not done! Confirmation dialog pops up. Clicked OK

Confirmation Dialogs: Deleting
files in the LMS file system

Fall 15 CSCI 2600, A Milanova 46

Still not done! Clicked Submit and finally done!
Another issue with file system: behavior inconsistent
with other systems.

Design Principles for Error
Handling (Safety)

n  Use confirmation dialogs sparingly
n  Prevent errors as much as possible

n  Selection is better than typing
n  Avoid mode errors
n  Disable illegal commands
n  Separate risky command from common ones

n  Support Undo

47 Fall 15 CSCI 2600, A Milanova

Design Principles for Error
Handling (Safety)

n  Good error messages
n  Precise
n  Speak the user’s language
n  Constructive help
n  Be polite

48

Source: Interface Hall of Shame

9

Simplicity

Fall 15 CSCI 2600, A Milanova. Slide by Michael Ernst. 49 32

Simplicity

Source: Alex Papadimoulis

Simplicity, Google Back in 2003

Fall 15 CSCI 2600, A Milanova 50

33

Simplicity

Simplicity, Google Now

Fall 15 CSCI 2600, A Milanova 51

Simplicity, Google Now

Fall 15 CSCI 2600, A Milanova 52

Design Principles for Simplicity

n  “Less is More!”
n  Omit extraneous information, graphics & features

n  Good graphic design
n  Few well-chosen colors and fonts
n  Group with whitespace

n  Use concise language
n  Choose labels carefully

Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 53

Document Your System

n  Write the user manual
n  Program and UI metaphors
n  Key functionality
n  Do not include: exhaustive list of all menus

n  What is hard to do?
n  Who is your target audience?

n  Power users need a manual
n  Casual users might not

n  Piecemeal online help is no substitute
Fall 15 CSCI 2600, A Milanova. Slide from Michael Ernst 54

10

Outline of Today’s Class

n  Usability

n  Iterative Design
n  Design

n  Design principles

n  Implement
n  Low-fidelity prototypes

n  Evaluate
n  User testing

Fall 15 CSCI 2600, A Milanova 55

Low-fidelity Prototype

n  Paper is a very fast and effective prototyping tool
n  Sketch windows, menus, dialogs, widgets
n  Crank out lots of designs and evaluate them

n  Hand-sketching is OK --- even preferable
n  Focus on behavior & interactions, not fonts & colors
n  Similar to design of your ADTs and classes

n  Paper prototypes can even be executed!
n  Use pieces to represent windows, dialogs, menus
n  Simulate computer’s responses by moving pieces

around and writing on them
Fall 15 CSCI 2600, A Milanova. Slide due to Michael Ernst 56

User Testing

n  Start with a prototype
n  Write up a few representative tasks

n  Short but non-trivial
n  E.g., “add this meeting to calendar”,
n  E.g., “type this letter and print it”

n  Find a few representative users
n  3 is often enough to find obvious problems

n  Watch them do tasks with the prototype

Fall 15 CSCI 2600, A Milanova. Slide due to Michael Ernst 57

How to Watch Users
n  Brief the user first

n  “I’m testing the system, not testing you”
n  “If you have trouble, it’s the system’s fault”
n  “Feel free to quit at any time”
n  Ethical issues: informed consent

n  Ask user to think aloud
n  Be quiet!

n  Don’t help, don’t explain, don’t point out mistakes
n  Two exceptions: prod user to think aloud, and move

on to the next task when stuck
n  Take lots of notes 58

Watch for Critical Incidents

n  Critical incidents: events that strongly affect
task performance or satisfaction

n  Usually negative
n  Errors
n  Repeated attempts
n  Curses

n  Can also be positive
n  “Cool!”
n  “Oh, now I see.”

59 Fall 15 CSCI 2600, A Milanova. Slide due to Michael Ernst

Summary

n  You are not the user
n  Keep human capabilities and design

principles in mind
n  Iterate over your design
n  Write documentation
n  Make cheap, throw-away prototypes
n  Evaluate them with users

60 Fall 15 CSCI 2600, A Milanova. Slide due to Michael Ernst

