
 USER MANUAL

By Galil Motion Control, Inc.

Galil Motion Control, Inc.
270 Technology Way

Rocklin, California 95765
Phone: (916) 626-0101

Fax: (916) 626-0102
Internet Address: support@galilmc.com

URL: www.galilmc.com

 Rev 2/04

DMC-31xx
Supplement

Manual Rev. 1.0

Using This Manual
This user manual provides information for proper operation of the DMC-31x2 and DMC-31x3
controllers. A separate supplemental manual, the Command Reference, contains a description of the
commands available for use with this controller.

Note: The DMC-31x2 and DMC-31x3 controllers are identical except the DMC-31x2 has 100 pin
high-density connectors for breaking out the signals and the DMC-31x3 has 96 pin DIN
connectors for breaking out the signals. The ICM/AMP-1900 and the ICM-2900 do not interface
to the DMC-31x3. Look in the appendix of the complete users manual for the controller pinouts.

Your DMC-31x2/31x3 motion controller has been designed to work with both servo and stepper type
motors. Installation and system setup will vary depending upon whether the controller will be used
with stepper motors or servo motors. To make finding the appropriate instructions faster and easier,
icons will be next to any information that applies exclusively to one type of system. Otherwise,
assume that the instructions apply to all types of systems. The icon legend is shown below.

Attention: Pertains to servo motor use.

Attention: Pertains to stepper motor use.

The DMC-31x2 and 31x3 controllers use identical hardware to the DMC-21x2 and DMC-21x3
controllers. This supplement contains information for setting up the firmware features contained in the
controller to allow distributed control. The examples contained in the DMC-21x2 and DMC-21x3
manual still pertain to the DMC-31xx controllers. Please refer to the DMC-21x2 and DMC-21x3 user
manual for complete operation of the controller. This supplement only contains differences due to the
distributed nature of the product.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design effective
error handling and safety protection as part of the machine. Galil shall not be liable or responsible for any
incidental or consequential damages.

DMC-31xx Supplement 2

Contents

CONTENTS ... 2

Ethernet Configuration...3
Communication Protocols ...3
Addressing...3
Ethernet Handles ...4
Global vs Local Operation...4
Operation of Distributed Control...5
Configuring the Distributed Network..6
Accessing the I/O of the Slaves...8
Handling Communication Errors ..9
Multicasting...9
Unsolicited Message Handling..10
IOC-7007 Support ...10
Modbus Support ..11
Other Communication Options..12

Data Record ...13
Data Record Map...13
Explanation of Status Information and Axis Switch Information ...16
Notes Regarding Velocity and Torque Information ..17
QZ Command..17
Using Third Party Software...17

3 DMC-31xx Supplement

Ethernet Configuration

Communication Protocols
The Ethernet is a local area network through which information is transferred in units known as
packets. Communication protocols are necessary to dictate how these packets are sent and received.
The DMC-31xx supports two industry standard protocols, TCP/IP and UDP/IP. The controller will
automatically respond in the format in which it is contacted.

TCP/IP is a "connection" protocol. The master must be connected to the slave in order to begin
communicating. Each packet sent is acknowledged when received. If no acknowledgement is
received, the information is assumed lost and is resent.

Unlike TCP/IP, UDP does not require a "connection". This protocol is similar to communicating via
RS232. If information is lost, the controller does not return a colon or question mark. Because the
protocol does not provide for lost information, the sender must re-send the packet.

Ethernet communication transfers information in ‘packets’. The packets must be limited to 470 data
bytes or less. Larger packets could cause the controller to lose communication.

NOTE: In order not to lose information in transit, Galil recommends that the user wait for an
acknowledgement of receipt of a packet before sending the next packet.

Addressing
There are three levels of addresses that define Ethernet devices. The first is the Ethernet or hardware
address. This is a unique and permanent 6 byte number. No other device will have the same Ethernet
address. The DMC-31xx Ethernet address is set by the factory and the last two bytes of the address are
the serial number of the controller.

The second level of addressing is the IP address. This is a 32-bit (or 4 byte) number. The IP address is
constrained by each local network and must be assigned locally. Assigning an IP address to the
controller can be done in a number of ways.

The first method is to use the BOOT-P utility via the Ethernet connection (the DMC-31xx must be
connected to network and powered). For a brief explanation of BOOT-P, see the section: Third Party
Software. Either a BOOT-P server on the internal network or the Galil terminal software may be used.
To use the Galil BOOT-P utility, select the registry in the DMC Smart Terminal or the DMC Net
Utility. If you open the registry, click the “Find Ethernet Controllers” button. After your controller
has been found, click the button to assign an IP address. After the IP address has been successfully
defined, highlight the controller and click the “Assign” button to add the controller to the registry.
Close the window, and then select the controller in the registry. Click the properties button and then
select the “Ethernet Parameters” tab. This tab will show you the various options of connection via
Ethernet (TCP/IP or UDP/IP). It will also give various options regarding how you would like to
receive unsolicited messages. Next enter the terminal and type in BN to save the IP address to the
controller's non-volatile memory. A full description of addressing the card may be found in Chapter 2
Getting Started.

CAUTION: Be sure that there is only one BOOT-P server running. If your network has DHCP or BOOT-P
running, it may automatically assign an IP address to the controller upon linking it to the network. In order to
ensure that the IP address is correct, please contact your system administrator before connecting the controller
to the Ethernet network.

DMC-31xx Supplement 4

The second method for setting an IP address is to send the IA command through the DMC-31xx main
RS-232 port. The IP address you want to assign may be entered as a 4 byte number delimited by
commas (industry standard uses periods) or a signed 32 bit number. (Ex. IA 124,51,29,31 or IA
2083724575) Type in BN to save the IP address to the controller's non-volatile memory.

NOTE: Galil strongly recommends that the IP address selected is not one that can be accessed across
the Gateway. The Gateway is an application that controls communication between an internal network
and the outside world.

The third level of Ethernet addressing is the UDP or TCP port number. The Galil controller does not
require a specific port number. The port number is established by the client or master each time it
connects to the controller.

Ethernet Handles
An Ethernet handle is a communication resource within a device. The DMC-31xx can have a
maximum of 8 Ethernet handles open at any time. When using TCP/IP, each connection to a device,
such as the host computer, requires an individual Ethernet handle. In UDP/IP, one handle may be used
for all the masters, but each slave uses one. (Pings and ARP's do not occupy handles.) If all 8 handles
are in use and a 9th master tries to connect, it will be sent a "reset packet" that generates the appropriate
error in its windows application.

The TH command may be used to indicate which handles are currently connected to and which are
currently free.

Global vs Local Operation
Each DMC-31xx controls one to seven axes of motion. The host computer can communicate directly
with any DMC-31xx using an Ethernet or RS-232 connection. When the host computer is directly
communicating with any slave DMC-31xx, all commands refer to the local axes beginning with A (X).
Direct communication with the DMC-31xx is known as LOCAL OPERATION.

The concept of Local and Global Operation also applies to application programming.

The DMC-31xx supports Galil’s Distributed Control System. This allows a combination of DMC-
31xx’s to be connected together as a single virtual 8-axis controller. In this system, one of the

5 DMC-31xx Supplement

controllers is designated as the master. The master can receive commands from the host computer that
apply to all of the axes in the system.

A simple way to view Local and Global Operation: When the host communicates with a slave
controller, it considers the slave as a local master controller. When the host communicates with a
master, it acts as a global multi-axis controller. Similarly, an application program residing in a slave
controller deals only with local motors such as A & B. An application program in a master deals with
all motors referenced as A through H.

The controllers may operate under both Local and/or Global Mode. In general, operating in Global
Mode simplifies controlling the entire system. However, Local Mode operation is necessary in some
situations; using Local Mode for setup and testing is useful since this isolates the controller. Specific
modes of motion require operation in Local Mode. Also, each controller can have a program,
including the slave controllers. When a slave controller has a program, this program would always
operate in Local Mode. The distributed system works by getting periodic updates from the slave
controllers. The update rate is set with the HC command. A complete listing of local and global
commands can be found at the end of this chapter.

Operation of Distributed Control
For most commands it is not necessary to be conscious of whether an axis is local or remote. For
instance to set the KP value for the A and C axes, the command to the master would be

 KP 10,,20

Similarly, the interrogation commands can also be issued. For example, the position error for all axes
would be TE. The position operand for the F axis would be_TPF.

Some commands inherently are sent to all controllers. These include commands such as AB (abort),
CN and TM. In addition, the * may be used to send commands to all controllers. For example

 SP*=1000

DMC-31xx Supplement 6

will send a speed of 1000 cts/sec to all axes. This syntax may be used with any configuration or
parameter commands.

Certain commands need to be launched specifically. For this purpose there is the SA command. In its
simplest form the SA command is

 SAh= "command string"

Here "command string" will be sent to handle h. For example, the SA command is the means for
sending an XQ command to a slave/server. A more flexible form of the command is

 SAh= field1,field2,field3,field4 ... field8

where each field can be a string in quotes or a variable.

For example, to send the command KI,,5,10; Assume var1=5 and var2=10 and send the command:

 SAF= "KI",var1,var2

When the Master/client sends an SA command to a Slave/server, it is possible for the master to
determine the status of the command. The response _IHh4 will return the number 1 to 4. One means
waiting for the acknowledgement from the slave. Two means a colon (command accepted) has been
received. Three means a question mark (command rejected) has been received. Four means the
command timed out.

If a command generates responses (such as the TE command), the values will be stored in _SAh0 thru
_SAh7. If a field is unused its _SA value will be -2^31.

Configuring the Distributed Network
A multi-axis distributed control system may be composed of DMC-31xx motion controllers along with
the IOC-7007 I/O controller. Before you configure the distributed system, you should choose which
DMC-31xx motion controller you would like to designate as the master controller. This controller will
handle the communication between the other controllers in the system to begin the appropriate
motions, and set the proper I/O bits. The master controller may be connected to from the host either
serially with RS-232 or Ethernet with UDP, or TCP. It is also possible for the master controller to
operate in a standalone mode. An IP address must be assigned to the master before the master can
configure the network either standalone or through the host. Up to 8 handles of communication may
be connected to and from the master controller. If the connection is made over TCP with TCP mixed
with UDP, 2 handles will be used for the connection to each slave.

Master Controller Configuration

The first step required to set up the master is to give the master controller an IP address. The IP
address may be assigned with the IA command serially, or by using the “Find Ethernet Controllers”
button in the Galil registry editor. The master controller may communicate with the host over serial or
Ethernet. It is also possible for the master to operate in a stand alone configuration after the distributed
network has been completely configured. After the master has been assigned an IP address, it is
possible to proceed configuring the remaining slave controllers to operate in a distributed manner. The
user must first know the serial numbers of the slave controllers, and the number of axes located on
each of the master and slave axes. The number of axes of the master may be queried on the master
controller with the ^R^V command before configuring any slaves. The ^R^V command will return the
number of the controller DMC-31xx. The third number in the model will tell you the number of axes.
For example if the response from ^R^V is DMC-3123, then you have a master with two axes of motion
control.

Querying for Slave Controllers

If the serial numbers and corresponding available axes of each slave are not known, then the HQ
command may be issued to search for motion controllers and I/O controllers without IP addresses. To

7 DMC-31xx Supplement

read the results of the HQ command, issue HQ? to the master controller. This will return the controller
type, number of motion axes available for the distributed network, and the serial number. The
controller types are 1 for motion controllers and 255 for the IOC-7007. A motion controller may be
found with the HQ command that can not be configured for distributed control. In this case, the
number of axes available will display as 0. The IOC-7007 will also show that there are 0 axes
available as it is purely an I/O controller. The serial numbers of the found controllers will also be
returned.

Figure 1- Examples of HA, HQ, and HC
Configuration order of the Slave Controllers

Before the slave controllers can be configured with the master, the master must know the order in
which the axes will be addressed. If an IOC-7007 is located in the system, its order should be
configured with jumpers located on the IOC-7007. It will not affect the axis selection of the motion
axes, but its order of configuration will dictate which Ethernet handles it will use for sending updates
to the master controller. For example, the master controller is a single-axis card. There are two single-
axis slave controllers, serial no. 550 and serial no. 5501. HA5500, 5501 will set the virtual B-axis to
controller 5500 and the virtual C-axis to controller 5501.

Assigning Slave Addresses

The final step in configuring the distributed network is setting up the total number of axes in the
distributed system, the frequency of updates between the master and slave controllers, the type of
connection (TCP or UDP), and the number of IOC-7007 controllers in the system. These operations
are configured with the HC command. To continue the previous example, if there are to be three axes
in the distributed system with the slave controllers sending updates to the master controller every 10
milliseconds over TCP/IP. The HC command setting would be HC 3,10,2,1. Since the communication
is over TCP, each slave controller will have two handles of communication open to the master. The

DMC-31xx Supplement 8

first handle is for sending commands and responses between the master and slave controllers. The
second handle is used to send the data update between the slave and the master. In this example, the
controller with serial number 5500 will communicate on handles A and B, 5501 on C and D, and 5503
on handle E. The three remaining handles could be used for communication with the host, or for
connection to some other device. After the devices have been configured, the status of handles
connected to the controller may be queried with the TH command.

Accessing the I/O of the Slaves
The I/O of the server/slaves is settable and readable from the master. The bit numbers are adjusted by
the handle number of the slave controller. Each handle adds 100 to the bit number. Handle A is 100
and handle H is 800. In a TCP/IP control setup with two handles per slave; it is imperative that you
send commands to the first handle designated as the “command” handle. In a UDP system, the single
handle per slave is used to address the I/O. For the IOC-7007, each handle adds 1000 to the bit
number. To set bit 61 if you are communicating on the C handle, the command would read SB3061.

The command TZ can be used to display all of the digital I/O contained in a distributed control system.
Specific slave controllers may be queried by issuing TZn where n is the specific Ethernet handle. Any
IOC-7007’s configured using the HC command will not be displayed with the TZ command. See the
Command Reference for more information on the TZ command.

Digital Outputs
For outputs, the SB and CB commands are used to command individual output ports, while the OP
command is used for setting bytes of data. The SB and CB commands may be set globally through the
master, while the OP command must be sent to the slave using the SA command.

9 DMC-31xx Supplement

Outputs may be set globally according to the following numbering scheme: Bitnum = (Slave Handle *
100) + Output Bit. For I/O located on motion controllers. For I/O located on the IOC-7007, Bitnum=
(Slave Handle * 1000) + Output Bit.

Set Bit 2 on a UDP distributed slave using the E handle for communication. The E handle would have
a numerical value of 500, plus the bit number of 2. The command would therefore become SB502.

Specific outputs in a distributed system may be read by using the @OUT[n] function, where n is the
corresponding bit number as defined above.

Output bits on an IOC-7007 may also be set through the master controller in a distributed network.
Please refer to the IOC-7007 Manual for information on setting and reading these I/O points.

Digital Inputs
Digital inputs may be addressed individually using the @IN[n] function, or in blocks using the TI
command. Both of these commands may be sent globally to the controller. The ‘n’ in the @IN[n]
function operates identically to the SB/CB syntax. This means that a specific input bit is referenced as
the slave handle number * 100 plus the input bit. The IOC-7007 is referenced by slave handle number
* 1000 plus the input bit.

Read input bit 4 on a TCP/IP distributed slave using the C handle for communication. The C handle in
this case would give a value of 300. Therefore, to read bit 4, the command would be MG@IN[304].
The MG in this case simply displays this data to the terminal.

The TI command may be used to read all inputs on a slave in blocks of 8. This is helpful if the slave
controller in question has a DB-28040 expanded I/O daughter card. The TI command uses the slave
handle number * 100 plus the block number to be read. The block number is only used if the
controller has the DB-28040 expansion option.

Inputs on an IOC-7007 may also be read through the master controller in a distributed network. Please
refer to the IOC-7007 Manual for information on setting and reading these points.

Analog Inputs
Each DMC-31xx controller may have eight 12-bit analog inputs if the DB-28040 has been added.
These inputs are read with the command @AN[n], where n is the input to be read n may be calculated
by the handle number * 100 plus the bit number for motion controllers and handle number * 1000 plus
the bit number for the IOC-7007.

Handling Communication Errors
A new automatic subroutine which is identified by the label #TCPERR, has been added. If a controller
has an application program running and the TCP or UDP communication is lost, the #TCPERR routine
will automatically execute. The #TCPERR routine should be ended with a RE command. In the UDP
configuration, the QW commands must be active in order for the #TCPERR routine on the master to
operate properly.

Multicasting
A multicast may only be used in UDP and is similar to a broadcast, (where everyone on the network
gets the information) but specific to a group. In other words, all devices within a specified group will
receive the information that is sent in a multicast. There can be many multicast groups on a network
and are differentiated by their multicast IP address. To communicate with all the devices in a specific
multicast group, the information can be sent to the multicast IP address rather than to each individual
device IP address. All Galil controllers belong to a default multicast address of 239.255.19.56. The
controller's multicast IP address can be changed by using the IA> u command.

DMC-31xx Supplement 10

The Galil Registry has an option to disable the opening of the multicast handle on the DMC-31xx. By
default this multicast handle will be opened.

Unsolicited Message Handling
Anytime a controller generates an internal response from a program, generates an internal error or
sends a message from a program using the MG command, this is termed an unsolicited message.
There are two software commands that will configure how the controller handles these messages; the
CW and the CF command.

The DMC-31xx has 8 Ethernet handles as well as 1 serial port where unsolicited messages may be
sent. The CF command is used to configure the controller to send these messages to specific ports. In
addition, the Galil Registry has various options for sending this CF command. For more information,
see the CF command in the DMC-21x3 Command Reference. The MG can also send the message to a
specific handle using the MG{Eh} syntax, where h is the handle. See the MG command in the
Command Reference for more information.

The CW command has two data fields that affect unsolicited messages. The first field configures the
most significant bit (MSB) of the message. A value of 1 will set the MSB of unsolicited messages,
while a value of 2 suppresses the MSB. The majority of software programs use a setting of CW2,
although the Galil Smart Terminal and WSDK will set this to CW1 for internal usage. If you have
difficulty receiving characters from the controller, or receive garbage characters instead of messages,
check the status of the CW command for a setting of CW2.

IOC-7007 Support
The IOC-7007 is an Intelligent Ethernet I/O controller that can be programmed in standard Galil
language. This module allows various configurations of TTL inputs, opto-isolated inputs, high power
outputs and relay switches to be used in the Galil distributed motion system. Each IOC-7007 may be
populated by up to seven IOM I/O modules.

The IOC-7007 Ethernet I/O controller may be used in a distributed system and commanded by the
master controller. The HC command is used to specify total number of IOC-7007 controllers within
that distributed system. Once configured, the I/O of that IOC-7007 becomes incorporated in the
distributed system, much the same as board level I/O of the DMC-31xx slaves.

Inputs of the IOC-7007 are read using the standard @IN[n] and TI commands as follows:

 @IN[n] where n is the IOC-7007 input bit to be read. n is calculated with the equation n =
(HandleNum * 1000) + BitNum. HandleNum is the numeric value of the IOC-7007 handle (1 – 8)
while BitNum is the specific bit number on the IOC to be read.

 TIn where n is the IOC-7007 input slot to be read. n is calculated with the equation n =
(HandleNum * 1000) + SlotNum. Again, HandleNum is the numeric value of the IOC-7007 handle (1
– 8). SlotNum corresponds to the location of the IOM input module in the 7 slots of the IOC-7007 (0 –
6). This will return either an 8 bit or 16 bit decimal value depending on which IOM input module is
being used.

Outputs of the IOC-7007 are set and cleared using the standard SB and CB commands, as well as with
the OQ and OB commands. Outputs can be read with the @OUT[n] command. These commands
operate as follows:

 SBn or CBn where n is the IOC-7007 output to be set or cleared. n is calculated identically to
the @IN[n] configuration, with n = (HandleNum * 1000) + BitNum.

 @OUT[n] where n is the IOC-7007 output to be read. This uses the same n configuration as
SB and CB.

 OQn,m where n is the IOC-7007 output location and m is the data to be written. Specifically,
n = (HandleNum * 1000) + SlotNum where HandleNum is the numeric value of the IOC-7007 handle

11 DMC-31xx Supplement

(1 – 8) and SlotNum is the slot number of the IOM output module to be written to (0 – 6). m is the
decimal representation of the data written to the 4 (0 – 15) or 8 (0 – 255) output points of the IOM
module.

Please refer to the IOC-7007 manual for complete information on how to configure, read and write
information to the IOC-7007 Ethernet I/O module.

Modbus Support
The Modbus protocol supports communication between masters and slaves. The masters may be
multiple PC's that send commands to the controller. The slaves are typically peripheral I/O devices
that receive commands from the controller.

When the Galil controller acts as the master, the IH command is used to assign handles and connect to
its slaves. The IP address may be entered as a 4 byte number separated with commas (industry
standard uses periods) or as a signed 32 bit number. A port number may also be specified, and should
be set to 502, which is the Modbus defined port number. The protocol must be TCP/IP for use with
Modbus over Ethernet. Otherwise, the controller will not connect to the slave. (Ex.
IHB=151,25,255,9<502>2 - This will open handle #2 and connect to the IP address 151.25.255.9, port
502, using TCP/IP)

An additional protocol layer is available for speaking to I/O devices. Modbus is an RS-485 protocol
that packages information in binary packets that are sent as part of a TCP/IP packet. In this protocol,
each slave has a 1 byte slave address. The DMC-31xx can use a specific slave address or default to the
handle number.

The Modbus protocol has a set of commands called function codes. The DMC-31xx supports the 10
major function codes:

Function Code Definition

01 Read Coil Status (Read Bits)

02 Read Input Status (Read Bits)

03 Read Holding Registers (Read Words)

04 Read Input Registers (Read Words)

05 Force Single Coil (Write One Bit)

06 Preset Single Register (Write One Word)

07 Read Exception Status (Read Error Code)

15 Force Multiple Coils (Write Multiple Bits)

16 Preset Multiple Registers (Write Words)

17 Report Slave ID

The DMC-31xx provides three levels of Modbus communication. The first level allows the user to
create a raw packet and receive raw data. It uses the MBh command with a function code of –1. The
format of the command is

MBh = -1,len,array[] where len is the number of bytes

DMC-31xx Supplement 12

 array[] is the array with the data

The second level incorporates the Modbus structure. This is necessary for sending configuration and
special commands to an I/O device. The formats vary depending on the function code that is called.
For more information refer to the Command Reference.

The third level of Modbus communication uses standard Galil commands. Once the slave has been
configured, the commands that may be used are @IN[], @AN[], SB, CB, OB, and AO. For example,
AO 2020,8.2 would tell I/O number 2020 to output 8.2 volts.
If a specific slave address is not necessary, the I/O number to be used can be calculated with the
following:

 I/O Number = (HandleNum*1000) +((Module-1)*4) + (BitNum-1)
Where HandleNum is the handle number from 1 (A) to 8 (H). Module is the position of the module in
the rack from 1 to 16. BitNum is the I/O point in the module from 1 to 4.

If an explicit slave address is to be used, the equation becomes:

I/O Number = (SlaveAddress*10000) + (HandleNum*1000) +((Module-1)*4) + (Bitnum-1)

To view an example procedure for communicating with an OPTO-22 rack, refer to the appendix of the
DMC-21x3 users manual.

Other Communication Options

User Defined Ethernet Variables
It may be necessary within a distributed system to share information that is not contained as position,
torque, velocity or other control data. The DMC-31xx provides 2 user defined variables that are
passed as part of the QW record shared among the distributed system. In this way, it is not necessary
for a single controller to write variable data directly to all the other controllers in the system.

ZA and ZB are two user defined variables which are passed with the QW record at each update. Data
that is written to these variables is then seen by the master DMC-31xx in the system.

Handle Switching
By default, when initiating a communication session with a DMC-31xx controller, the first available
handle is used. If no handles have been assigned to the controller, the A handle is chosen. The
command HS allows the user to switch this connection to another handle, freeing up the initial handle
or trading with another currently used handle. Or, once handles have been defined, the HS command
may be used to switch handles to prioritize slave locations and I/O locations.

Handle Restore on Communication Failure
There are instances within an Ethernet system, whether UDP or TCP/IP, when a handle may become
disconnected without closing properly. An example of this would be a simple cable failure, where the
Ethernet cable of a certain slave becomes detached.

The command HR is used to enable a mode in which the master controller, upon seeing a failure on a
handle, will attempt to restore that handle. This is helpful when a distributed system is already fully
configured and a slave is lost. The #TCPERR routine can be used to flag the error, while the handle
restore will attempt to reconnect to the slave until the problem is fixed. This makes it unnecessary to
re-run the setup for the entire distributed system.

Note: This function is only available if the system has been configured using the automatic handle
configuration command, HC.

13 DMC-31xx Supplement

Waiting on Handle Responses
The operation of the distributed network has commands being sent to the master controller, which then
distributes these commands to the slave axes in the system. For example, the command
PR10,10,10,10,10,10,10,10 sent to the master becomes packets of PR10,10, PR10, or possibly
PR10,10,10,10 sent by the master to each of the slaves in the system depending upon the number of
axes on each slave. When the slave receives this command from the master, a colon or question mark
is generated and sent back to the master to acknowledge the command.

The HW command allows the user to select whether or not the master will wait on this colon response
from the slave. If the HW is set to 0, the master will not wait for these responses. This results in faster
command execution but could cause problems if any slave errors are generated. The setting HW1, on
the other hand, insures that the master knows of any slave errors but does result in a slightly increased
command execution time as it waits for these responses.

Data Record
The DMC-31xx can provide a block of status information with the use of a single command, QR. This
command, along with the QZ command can be very useful for accessing complete controller status.
The QR command will return 4 bytes of header information and specific blocks of information as
specified by the command arguments: QR ABCDEFGHS

Each argument corresponds to a block of information according to the Data Record Map below. If no
argument is given, the entire data record map will be returned. Note that the data record size will
depend on the number of axes.

NOTE: A, B, C, & D can be interchanged with X, Y, Z, & W respectively.

Data Record Map

DATA TYPE ITEM BLOCK
UB 1st byte of header Header
UB 2nd byte of header Header
UB 3rd byte of header Header
UB 4rth byte of header Header
UW sample number I block
UB general input bank 0 I block
UB general input bank 1 I block
UB general input bank 2 (DB-28040) I block
UB general input bank 3 (DB-28040) I block
UB general input bank 4 (DB-28040) I block
UB general input bank 5 (DB-28040) I block
UB general input bank 6 (DB-28040) I block
UB general output bank 0 I block
UB general output bank 1 I block
UB general output bank 2 (DB-28040) I block
UB general output bank 3 (DB-28040) I block
UB general output bank 4 (DB-28040) I block
UB general output bank 5 (DB-28040) I block
UB general output bank 6 (DB-28040) I block

DMC-31xx Supplement 14

UB error code I block
UB general status I block
UW segment count of coordinated move for S plane S block
UW coordinated move status for S plane S block
SL distance traveled in coordinated move for S plane S block
UW segment count of coordinated move for T plane T block
UW coordinated move status for T plane T block
SL distance traveled in coordinated move for T plane T block
UW A axis status A block
UB A axis switches A block
UB A axis stopcode A block
SL A axis reference position A block
SL A axis motor position A block
SL A axis position error A block
SL A axis auxiliary position A block
SL A axis velocity A block
SW A axis torque A block
SW Analog Input 1 A block
UW B axis status B block
UB B axis switches B block
UB B axis stopcode B block
SL B axis reference position B block
SL B axis motor position B block
SL B axis position error B block
SL B axis auxiliary position B block
SL B axis velocity B block
SW B axis torque B block
SW Analog Input 2 B block
UW C axis status C block
UB C axis switches C block
UB C axis stopcode C block
SL C axis reference position C block
SL C axis motor position C block
SL C axis position error C block
SL C axis auxiliary position C block
SL C axis velocity C block
SW C axis torque C block
SW C axis analog input C block
UW D axis status D block
UB D axis switches D block
UB D axis stopcode D block
SL D axis reference position D block
SL D axis motor position D block
SL D axis position error D block
SL D axis auxiliary position D block

15 DMC-31xx Supplement

SL D axis velocity D block
SW D axis torque D block
SW D axis analog input D block
UW E axis status E block
UB E axis switches E block
UB E axis stopcode E block
SL E axis reference position E block
SL E axis motor position E block
SL E axis position error E block
SL E axis auxiliary position E block
SL E axis velocity E block
SW E axis torque E block
SW E axis analog input E block
UW F axis status F block
UB F axis switches F block
UB F axis stopcode F block
SL F axis reference position F block
SL F axis motor position F block
SL F axis position error F block
SL F axis auxiliary position F block
SL F axis velocity F block
SW F axis torque F block
SW F axis analog input F block
UW G axis status G block
UB G axis switches G block
UB G axis stopcode G block
SL G axis reference position G block
SL G axis motor position G block
SL G axis position error G block
SL G axis auxiliary position G block
SL G axis velocity G block
SW G axis torque G block
SW G axis analog input G block
UW H axis status H block
UB H axis switches H block
UB H axis stopcode H block
SL H axis reference position H block
SL H axis motor position H block
SL H axis position error H block
SL H axis auxiliary position H block
SL H axis velocity H block
SW H axis torque H block
SW H axis analog input H block

NOTE: UB = Unsigned Byte, UW = Unsigned Word, SW = Signed Word, SL = Signed Long Word

DMC-31xx Supplement 16

Explanation of Status Information and Axis Switch Information

Header Information - Byte 0, 1 of Header:
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8

1 N/A N/A N/A N/A I Block
Present
in Data
Record

T Block
Present
in Data
Record

S Block
Present
in Data
Record

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

H Block
Present
in Data
Record

G Block
Present
in Data
Record

F Block
Present
in Data
Record

E Block
Present
in Data
Record

D Block
Present
in Data
Record

C Block
Present
in Data
Record

B Block
Present
in Data
Record

A Block
Present
in Data
Record

Bytes 2, 3 of Header:
Bytes 2 and 3 make a word that represents the Number of bytes in the data record, including the

header. Byte 2 is the low byte and byte 3 is the high byte

NOTE: The header information of the data records is formatted in little endian.

General Status Information (1 Byte)
BIT 7 BIT 6 BIT

5
BIT
4

BIT
3

BIT 2 BIT 1 BIT 0

Program
Running

N/A N/A N/A N/A Waiting for
input from IN
command

Trace On Echo On

Axis Switch Information (1 Byte)
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Latch
Occurred

State of
Latch
Input

N/A N/A State of
Forward
Limit

State of
Reverse
Limit

State of
Home
Input

SM
Jumper
Installed

Axis Status Information (2 Byte)
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8

Move in
Progress

Mode of
Motion

PA or
PR

Mode of
Motion

PA only

(FE)
Find
Edge in
Progress

Home
(HM) in
Progress

1st Phase
of HM
complete

2nd Phase
of HM
complete
or FI
command
issued

Mode of
Motion

Coord.
Motion

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Negative
Direction
Move

Mode of
Motion

Contour

Motion
is
slewing

Motion is
stopping
due to ST
or Limit
Switch

Motion is
making
final
decel.

Latch is
armed

Off-On-
Error
occurred

Motor
Off

17 DMC-31xx Supplement

Coordinated Motion Status Information for plane (2 Byte)
BIT 15 BIT

14
BIT 13 BIT 12 BIT 11 BIT

10
BIT 9 BIT 8

Move in
Progress

N/A N/A N/A N/A N/A N/A N/A

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

N/A N/A Motion is
slewing

Motion is
stopping due
to ST or
Limit
Switch

Motion is
making
final
decel.

N/A N/A N/A

Notes Regarding Velocity and Torque Information
The velocity information that is returned in the data record is 64 times larger than the value returned
when using the command TV (Tell Velocity). See command reference for more information about
TV.

The Torque information is represented as a number in the range of +/-32767. Maximum negative
torque is -32767. Maximum positive torque is 32767. Zero torque is 0.

QZ Command
The QZ command can be very useful when using the QR command, since it provides information
about the controller and the data record. The QZ command returns the following 4 bytes of
information.

BYTE # INFORMATION
0 Number of axes present

1 Number of bytes in general block of data record

2 Number of bytes in coordinate plane block of data record

3 Number of Bytes in each axis block of data record

Using Third Party Software
Galil supports ARP, BOOT-P, and Ping, which are utilities for establishing Ethernet connections. ARP
is an application that determines the Ethernet (hardware) address of a device at a specific IP address.
BOOT-P is an application that determines which devices on the network do not have an IP address and
assigns the IP address you have chosen to it. Ping is used to check the communication between the
device at a specific IP address and the host computer.
The DMC-31xx can communicate with a host computer through any application that can send TCP/IP
or UDP/IP packets. A good example of this is Telnet, a utility that comes with most Windows
systems. In the absence of the Galil Windows Terminal software, the Telnet terminal may be used for
communication with the DMC-3425 Ethernet controller. The Windows Hyperterminal may also be
used for communication.

DMC-31xx Supplement 18

Global vs. Local Command Listing
Command Validity Description

AB Global Stops motion and programs on all controllers in the distributed network

AC Global Sets accelerations on all axes specified

AD Global Trip point set for after distance on a specific axis in the network

AE Local Logic to monitor for amplifier errors should take place on the local controller

AF Global Configures axes to accept Analog Feedback (local controller requires DB-28040)

AG Global Sets the gain for the specified axis

AI Local Trip point to wait for a specific I/O to change states

AL Global Arms latch for the specified axis

AM Global Trip point to wait for the profiled motion to be completed

AO Global Sets the analog output voltage on an IOC-7007

AP Global Trip point to wait for an absolute position on a specific axis

AR Global Trip point to wait for a relative distance to be moved

AS Global Trip point set to wait for the specified axis to reach a speed

AT Local Trip point to wait for a specific amount of time

AU Local Setting for the bandwidth of the local amplifier

AV Local Trip point for after a vector distance has passed

AW Local Amplifier Bandwidth calculation

BA Local Brushless Axis setting used with commutation of a sinusoidal drive (do not use with AMP-20540)

BB Global Brushless Phase Beginning may be set globally, but setup of a sinusoidal axis is done locally

BC Local Brushless commutation may be used when configuring a sinusoidal axis

BD Local Brushless degrees may be used locally when configuring a sinusoidal axis

BG Global Begin motion on specified axes

BI Global
May be used to configure inputs for hall inputs when configuring a sinusoidal axis (do not use
with AMP-20540)

BK Local Sets a breakpoint at a specific line number for debug purposes

BL Global Reverse software limit set in counts

BM Global
Configures the brushless modulus may be set globally, but sinusoidal axis configuration
must be completed locally

BN Local Burns the local parameters into non volatile memory

BO Global Sets a voltage offset to an axis configured for sinusoidal operation

BP Local Burns the local program into non volatile memory

BR Global Brushed axis set for a specific axis that is also associated with an AMP-20540

BS Local Brushless axis used to configure a sinusoidal axis (do not use with AMP-20540)

BV Local Burns the local variables to non volatile memory

BZ Local Brushless zero is used for configuration of sinusoidal axes (do not use with AMP-20540)

CA Local Coordinate Axes selector used for vector or linear interpolation modes

CB Global Clears a specified bit

CD Local Contour Data points may be sent locally

CE Global Configure the encoder for quadrature/pulse and direction

CF Local Configure the handle to be used for unsolicited messages

CM Local Setup contour mode on a local axis

19 DMC-31xx Supplement

CN Local Configure the local setup of limit switch and home switch activity

CO Local Configure the setup of outputs on local extended I/O (Requires DB-28040 on the local controller)

CR Local Configures the parameters for a circle in the vector mode of local axes
CS Local Clear Sequence of vector/linear interpolation moves
CW Local Copyright information/Data Adjustment Bit
DA Local Deallocate local arrays
DC Global Set axis specific declarations
DE Global Define auxiliary encoder positions
DL Local Download program to local controller
DM Local Allocate space for arrays on the local controller
DP Global Define position of main encoder
DT Local Delta time for contour mode
DV Local Configure dual loop mode for a specific axis
EA Local Set up ecam mode for local axis

EB Global
Enables the ecam mode for the specific axis (when commanded globally ecam
parameters must be set up locally)

EC Local ECAM counter used when entering ECAM table information
ED Local Edit the local program space
EG Global ECAM go on a specific master position by axis (ECAM tables must be set up locally)
ELSE Local ELSE statement may be used in a local program
EM Global ECAM Modulus defines the change in position over one cycle of the master
EN Local Program or Subroutine end for a local program
ENDIF Local Endif statement for a local program
EO Local Sets the echo to off or on for communications
EP Local ECAM Interval for the local ECAM table
EQ Global ECAM quit for the specified axis
ER Global Error limit for the specified axis
ES Local Elliptical scale for local axes in vector/linear interpolation modes
ET Local Ecam Table point
FA Global Sets the feedforward acceleration for the specified axis.
FE Global Find the edge of the home switch for the specified axis
FI Global Find the index for the specified axis
FL Global Sets the forward software limit for the specified axis
FV Global Sets the feedforward velocity for the specified axis

GA Local
Sets the master axis for the specified axis (gearing may only occur with axes on the same
controller)

GM Global Sets the gantry mode for the specified axis

GR Global
Sets the Gear ratio for the specified axis (gearing may only occur with axes on the same
controller)

HM Global Home the specified axis
HS Local Switch ethernet handles

DMC-31xx Supplement 20

HX Local Halt the specified program thread
IA Local Set the IP address
IF Local If statement for a local program
IH Local Open/Close ethernet handle specified
II Local Designate input for an input interrupt
IL Global Sets the integrator Limit for the specified axes
IP Global Increment Position on specified axes
IT Global Motion smooting constant for specified axes
JG Global Jog for specified axes
JP Local Jump to specified program location
JS Local Jump subroutine to specified local subroutine
KD Global Sets the derivative constant for the specified axes
KI Global Sets the integrator for the specified axes
KP Global Sets the proportional constant for the specified axes
KS Global Sets the stepper smoothing constant for the specified axes
LA Local List the declared arrays on the local controller
LC Global Sets the stepper axes into a low current mode
LE Local Linear sequence end
_LF* Global Forward limit switch operand
LI Local Linear interpolation segment
LL Local List local program labels
LM Local Declare axes for linear interpolation mode
_LR* Global Reverse limit switch opearnd
LS Local List local program
LV Local List local variables
LZ Local Format the number of leading zeros returned
MB Local Modbus Command
MC Global Motion complete on the specified axes
MF Global Motion forward specified distance on the specified axis
MG Local Message command
MO Global Motor off for the specified axes
MR Global Motion reverse specified distance on the specified axis
MT Global Motor type for the specified axes
MW Local Modbus wait
NB Global Notch filter bandwidth
NF Global Notch filter frequency
NO Local No operation on program line
NZ Global Notch filter zero
OB Global Output specifed bits based on logic
OC Local Specify the output compare pulse and reoccurrence rate

21 DMC-31xx Supplement

OE Global Off on error function specified by axis
OF Global Offset command for the specified axes
OP Local Sets the states of multiple outputs
PA Global Position absolute for the specified axes
PF Local Sets the format for returned position information
PL Local Sets the constant of the pole filter
PR Global Position relative for the specified axes
QD Local Array upload
QH Local Returns hall states when connected with AMP-20540
QR Local Data record command for the local controller
QU Local Array upload
RA Local Record array function
RC Local Begins the array record
RD Local Sets what data to record
RE Local Return from error routine
RI Local Return from interrupt routine
RL Global Report latched position
RP Global Reports the reference position
RS Local Reset the local controller
^R^S Local Master reset the local controller
^R^V Local Returns the local controller model and firmware revision
SA Local Send ASCII command to the specified communication handle
SB Global Set the specifed output bit
SC Global Returns the stop code for the various axes
SH Global Servo here for the specified axes
SL Local Single line step through
SP Global Sets the speed for the specified axes
ST Global Stops the motion of the specified axes
TA Local Tells the status of any amplifier errors when used with AMP-20540
TB Local Tell the status byte of the local control
TC Local Tell the error code from the command in error
TD Global Tell auxiliary encoder position
TE Global Tell the following error
TH Local Returns the status information of local ethernet handles
TI Local Tells the status of the specified inputs
TIME Local Operand containing the free running clock on the controller
TK Global Sets the peak torque limit for the specified axes

TL Global
Sets the average torque limit for the specified axes when used with AMP-20540 or AMP-
20440

TM Local Sets the servo update rate

DMC-31xx Supplement 22

TN Local Sets the tangent axes for a vector move
TP Global Tells the position of the specified axes
TR Local Trace the program execution of the local program
TS Global Tells the status of the switches on the specified axes
TT Global Tells the voltage command output of the specified axes
TV Global Tells the velocity of the specified axes
TW Local Sets the timeout for the MC command
TZ Global Tells the status of the I/O for the distributed system
UL Local Upload the local program
VA Local Sets the vector acceleration
VD Local Sets the vector deceleration
VE Local End of vector sequence
VF Local Sets the displayed format of variables
VM Local Sets the specified axes in vector mode
VP Local Vector position command
VR Local Vector ratio
VS Local Sets the vector speed
VT Local Sets the constant for vector smoothing
WC Local Trip point for contour data
WH Local Tells what handle the executed command came from
WT Local Trip point telling the controller to wait n samples
XQ Local Execute program
ZS Local Zero program stack

23 DMC-31xx Supplement

 Supplemental Commands

DMC-31xx Supplement 24

HA
FUNCTION: Handle Assignment

DESCRIPTION:

The HA command establishes the connection order for the slave controllers in a distributed
system. This command must be executed in order for the HC command to configure and
assign the slaves with the proper IP addresses within the distributed system. The
arguments given with the command are the serial numbers of the slave controllers in the
system. If you do not know the serial numbers of the controllers in your system, you may
query them by issuing the HQ command to the master controller. The master controller
must have a valid IP address before it can execute the HQ command.

ARGUMENTS: HA n,n,n,n,n,n,n where

n represents the serial numbers of the slave controllers in the system. The system may have a
total of 8 axes. Each slave may have as few as 1 axis and as many as 7 axes.

USAGE: DEFAULTS:
While Moving Yes
In a Program Yes
Command Line Yes
Controller Usage DMC-31xx

OPERAND USAGE:

 _Han contains the serial number of the appropriate slave where n may range from 0 to 7.

RELATED COMMANDS:
IA Internet Address
IH Internet Handle
HQ Handle Query
QW Slave data records

EXAMPLES:
HA 5522,5533 Assigns the connection order of slaves in a distributed system. The

controller with serial number 5522 will be slave 1 and the controller with
serial number 5533 will be slave 2.

HC4,20,2,0 Configures a 4 axis system with two TCP/IP handles per slave. The data
update interval is set to 20 milliseconds. For each slave, the TCP?IP
handle will be used for the data update.

IA 151,12,53,89 Assigns the controller with the address 151.12.53.89
HQ Queries the network for controllers without IP addresses issuing Boot-P

packets.
HQ? Returns the results of the HQ command. The results contain serial

numbers along with the number of axes available on each controller. It
may be required to wait 5-10 seconds for the HQ process to complete.

25 DMC-31xx Supplement

HC
FUNCTION: Handle Configuration

DESCRIPTION:

The HC command configures and establishes communications for a master/slave system. The
command is executed in the master controller and addresses all slaves and IOC modules
in the system. After the HC command is initiated, the master responds to the slave and
IOC bootp requests and assigns corresponding IP addresses in the order assigned by the
HA command. The master then opens handles and initiates the slave update packets
(QW).

The IP address for the master controller must be established with the IA command or
DMCNet software prior to the HC command being issued. The master will assign IP
addresses to these controllers as it receives the bootp packets. The slave controllers must
not be assigned IP addresses or they will not be sending out bootp packets.

ARGUMENTS: HCa,b,c,d where

a is the total number of axes in the system

b is the slave update interval (QW) in milliseconds.

c is the communication protocol for the slave communications

 1 = UDP (1 handle used)

 2 = TCP/IP (2 handles used)

 3 = TCP/IP used for Command Handle, UDP used for QW update Handle

d is the total number of IOC-7007 modules in the system

HC? Returns the present setting of the HC command

USAGE: DEFAULTS:
While Moving Yes
In a Program Yes
Command Line Yes
Controller Usage DMC-3xxx

OPERAND USAGE:

 _HC contains a 1 if the handle configuration is in progress

 contains a 2 if the handle configuration has completed successfully

 contains a 0 if the handle configuration failed or has not been issued

RELATED COMMANDS:
IA Internet Address
IH Internet Handle
HA Handle Assignment
HQ Handle Query
QW Slave data records

EXAMPLES:
IA 151, 12,53,89 Assigns the controller with the addresses 151.12.53.89
HQ Queries the network for controllers without IP addresses issuing Boot-P

packets.

DMC-31xx Supplement 26

HQ? Returns the results of the HQ command. The results contain serial
numbers along with the number of axes available on each controller. It
may be required to wait 5-10 seconds for the HQ process to complete.

HA 5522,5533 Assigns the connection order of slaves in a distributed system. The
controller with serial number 5522 will be slave 1 and the controller with
serial number 5533 will be slave 2.

HC4,20,2,0 Configures a 4 axis system with two TCP/IP handles per slave. The data
update interval is set to 20 milliseconds. For each slave, one TCP/IP
handle will be used for sending commands while the other TCP/IP handle
will be used for the data update.

HC6,30,1,0 Configures a 6 axis system with a single UDP handle per slave at updates
of 30 msec. The single UDP handle is used for both sending commands
and receiving data packets.

#AUTO
HC 3,250, 2

Example program that will automatically run when controller is powered
up (#AUTO). HC command configures a 3 axis system with a 250 msec
update rate.

#LOOP;JP#LOOP,_HC<>2
MG”Connected”EN

#Loop routine causes controller to wait for successful connection before
continuing execution of code.

Hint: Use a WT (Wait) or #LOOP; JP#LOOP,_HC<>2 when issuing the HC command in a program
to allow enough time for slaves to be configured correctly before executing any other commands.

27 DMC-31xx Supplement

HQ
FUNCTION: Handle Query

DESCRIPTION:

The HC command queries the network for controllers that are issuing bootp packets. Only
motion controllers without IP addresses will be issuing bootp packets. To see the results
of the command, issue the HQ? after the command has completed executing. It may be
necessary to wait 5-10 seconds for HQ to complete. This command must be issued to the
master controller.

The IP address for the master controller must be established with the IA command or
DMCNet software prior to the HQ command being issued.

ARGUMENTS: HQ

HQ? returns the controllers found without IP addresses in the format a,b,c where

a = controller type 1 for motion controllers and 255 for the IOC-7007

b = number of motion axes available

c = the serial number of the controller

If the HQ command has not completed execution, HQ? returns “1”

USAGE: DEFAULTS:
While Moving Yes
In a Program Yes
Command Line Yes
Controller Usage DMC-3xxx

RELATED COMMANDS:
IA Internet Address
IH Internet Handle
HA Handle Assignment
QW Slave data records

EXAMPLES:
HQ Queries the network for controllers without IP addresses issuing Boot-P

packets.
HQ? Returns the results of the HQ command. The results contain serial

numbers along with the number of axes available on each controller. It
may be required to wait 5-10 seconds for the HQ process to complete.

IA 151, 12,53,89 Assigns the controller with the addresses 151.12.53.89
HA 5522,5533 Assigns the connection order of slaves in a distributed system. The

controller with serial number 5522 will be slave 1 and the controller with
serial number 5533 will be slave 2.

HC4,20,2,0 Configures a 4 axis system with two TCP/IP handles per slave. The data
update interval is set to 20 milliseconds. For each slave, one TCP/IP
handle will be used for sending commands while the other TCP/IP handle
will be used for the data update.

HC6,30,1,0 Configures a 6 axis system with a single UDP handle per slave at updates
of 30 msec. The single UDP handle is used for both sending commands
and receiving data packets.

	Contents
	Ethernet Configuration
	Communication Protocols
	Addressing
	Ethernet Handles
	Global vs Local Operation
	Operation of Distributed Control
	Configuring the Distributed Network
	Accessing the I/O of the Slaves
	Digital Outputs
	Digital Inputs
	Analog Inputs

	Handling Communication Errors
	Multicasting
	Unsolicited Message Handling
	IOC-7007 Support
	Modbus Support
	Other Communication Options
	User Defined Ethernet Variables
	Handle Switching
	Handle Restore on Communication Failure
	Waiting on Handle Responses

	Data Record
	Data Record Map
	Explanation of Status Information and Axis Switch Information
	Header Information - Byte 0, 1 of Header:
	Bytes 2, 3 of Header:
	General Status Information (1 Byte)
	Axis Switch Information (1 Byte)
	Axis Status Information (2 Byte)
	Coordinated Motion Status Information for plane (2 Byte)

	Notes Regarding Velocity and Torque Information
	QZ Command
	Using Third Party Software

	Supplemental Commands
	
	HA
	HC
	Hint: Use a WT (Wait) or #LOOP; JP#LOOP,_HC<>2 when issuing the HC command in a program to allow enough time for slaves to be configured correctly before executing any other commands.�HQ

