Chapter 22: General recommendations for the use of instruments

Julian Pietragalla and Alistair Pask

1. Correct use of instruments

Instructions may vary according to the make and model of your instrument. Refer the instrument user manual

for specific information (modes, measurement, data download etc.), further details and clarification.

Do:	Do not:
Do ensure that the operator is familiar with each	Do not use an instrument before it has equilibrated with
instrument, functionality, correct approach to take data,	ambient temperature and relative humidity (RH) as this
and expected readings before going into the field – it is	may affect the calibration and data. Take the instrument out
worth receiving advice and training from an experienced	of its protective case and turn on at least 10 minutes before
user and reading the user guide.	starting use.
Do take measurements consistently – this is very	Do not leave an instrument in direct sunlight/heat before
important. In particular, ensure that the instrument is	use as this can affect calibration and may cause incorrect
calibrated correctly before (and sometimes again during)	readings (especially for instruments with black cases).
use. Keep a careful eye on the data during measurement	When reading air temperature and RH, stand with your
to guard against erroneous data, and large variations	back to the sun so as not to expose the instrument to
within a plot.	direct sun during measurements.
Do maintain batteries of correct type, size and polarity. Recharge batteries fully before use (note that this may require overnight charging). Take spare batteries to the field to ensure that measurements are not interrupted.	Do not operate an instrument outside specified temperature and RH range for the instrument, as measurements taken may be incorrect (check the user guide for specifications). Excess heat and moisture/RH may cause permanent damage (note that instruments are typically not water resistant).
Do ensure to take the whole repetition with the same	Do not discard instruments after use. Remember to clean
instrument. If more than one instrument is available,	the instrument, return it to its protective case, and to the
cross-compare between instruments to check that	equipment store room. It is important that each instrument is
they are giving similar data.	stored clean, dry, dust-free and in the correct protective case.
Do always make data easy to interpret/process at a later	Do not discard malfunctioning instruments when anomalies
date. For example, when taking readings with a data	or problems have been noted during equipment use.
logger which records only basic information, at the end	Repairs and/or recalibrations to instruments may be
of each section take two blank readings without a sample	required which may involve returning the instrument to
in the sensor chamber as an 'end marker'.	the factory/specialist. This could take weeks or months.

2. Drying of samples

It is important that samples are dried to absolute dry weight (DW), i.e., 0% moisture. The DW refers to the sample weight reached after drying in a well ventilated/forced-draft oven (Figure 22.1A) at 60-75°C until constant weight (typically for at least 48h) (see Table 22.1).

When drying samples:

- Do not mix fresh samples with dry samples.
- Organize sampling to optimize use of the oven, and of oven space.
- Use a non-draft oven for drying open container samples (e.g., soil moisture samples; Figure 22.1B).

Set dryer temperature and time depending on the type of sample, estimated moisture content and capacity of the dryer:

Table 22.1. General drying temperatures and times for dry weight determination. Note that drying time may differ according oven drying capacity.

Material	Temperature (°C)	Time (hours)
Relative leaf water content	60-75	24
Grain moisture*	60-75	24-48
Biomass (maturity)	60-75	48
Root biomass	60-75	48
Biomass (emergence to grain-filling)	60-75	48-72
Soil moisture (gravimetric)	105	48

 Note that seed which potentially may be used for future trials should not be oven dried, as drying seed at temperatures >40°C and/or for long periods of time reduces their viability. Notes for drying samples for nutrient and/or metabolite analysis:

- Dry biomass samples at 60-75°C for N, P, K and water soluble carbohydrate determination.
- High drying temperatures >90°C for long periods may affect the nutrient content. Some specific metabolites analyses (e.g., enzymes, proteins etc.) require freeze drying of samples or heat drying at a precise temperature and duration. Ensure to check the specific procedural requirements of the laboratory.

Figure 22.1. Drying ovens: (A) large capacity forced-draft oven; and, (B) small capacity non-draft oven (suitable for drying open container samples; e.g., soil moisture samples).

3. Accurate weighing of samples

It is essential that accurate weights are recorded for sampled material. Poor weighing technique and/or incorrect use of the balance will cause significant data errors: either consistent (e.g., due to not removing the bag 'TARE' weight) or random (e.g., due to irregularly cooled oven dried samples).

Note that all balances are sensitive to changes in the environment, and that laboratory balances (both precision and analytical) are more sensitive than field scales (i.e., battery powered bench balance or spring mechanical scale). Follow manufacturer's instructions for installation, and:

- Keep level (use inbuilt spirit level).
- Keep on a stable, non-vibrating surface (e.g., a concrete plinth).
- Avoid areas near heaters, ovens or air conditioners.
- Avoid direct sun and air flows.
- Avoid sharing power circuits with high consumption items (e.g., a microwave oven).

It is essential to select the type of balance according to the capacity and resolution demanded (Table 22.2; Figure 22.2). It is often observed that samples are weighed on inappropriate balances (e.g., weighing stems from the partitioning of 20 culms on a large precision balance rather than a small precision balance).

When weighing samples:

 Do not weigh hot samples direct from the oven –allow time for sample to cool to room temperature before weighing– to avoid incorrect readings and/or causing damage to the balance.

Table 22.2. Recommendations for the type of balance and minimum resolution required for the determination of sample weight of various sample types.

Sample	Typical weight (g)	Type of balance	Minimum resolution (g)
2 m ² plot grain weight FW	>1000	Industrial/retail bench	5
2 m ² plot biomass FW	>1000	Industrial/retail bench	5
100 culm sub-sample FW	500	Large precision	1
100 culm sub-sample DW	200	Medium precision	1
Sub-sample grain weight	50	Small precision	0.1
Soil moisture (of 100 g)	30	Small precision	0.1
20 culm stem biomass DW	20	Small precision	0.01
200 grain FW and DW	10	Small precision	0.01
Leaf samples for RWC	<2	Semi-analytical	0.001
Root biomass (of 100g)	<2	Semi-analytical	0.001

Where: FW = fresh weight; DW = dry weight; RWC = relative water content.

- Do not allow time for samples to absorb moisture after oven drying. Once dried, samples tend towards ambient humidity over time (this may be from hours to days depending on the RH and type of sample).
- Samples for precision weighing may be kept in a desiccator after drying (only appropriate for small quantities).
- Distribute the weight of the sample evenly across the balance plate.
- For small samples (<20 g), carefully empty the sample from the container (i.e., the bag, envelope etc.) into a specific weighing container (and remember to subtract the container weight from the total weight).
- For samples >20 g, keep the sample in its container to avoid losses (and remember to TARE the container weight).

Removing the container weight by using a 'TARE': When weighing samples in containers (e.g., a bag, envelope, tube etc.), remember to first 'TARE' this weight so that the weight of this container is deducted from the gross weight to give the sample weight. This is typically appropriate for samples >20 g.

To do this:

- Select an empty container which is otherwise identical to that of the samples (i.e., from the same box/packet, with the same ventilation holes/staples if any, etc.).
- Dry the empty container in the oven next to samples (for the same drying time).
- Before weighing samples, place this empty container on the balance and press 'RE-ZERO'/'TARE'.
- The balance should show zero with the empty container on the balance plate, or a negative value when the empty container is removed (and the plate is empty).

• Note that individual container weights may vary slightly. Ensure to select a good, representative TARE container.

An alternative to using a TARE container is to: (i) subtract the average DW weight of the containers (use 10+ empty containers to do this); or (ii) to weigh individual containers (as for the aluminum pots in the determination of soil moisture content, this volume, Chapter 17).

4. Typical ranges and units

It is recommended to keep all measurements in the same unit system; typically on the decimal scale (Tables 22.3 and 22.4).

Table 22.3. Useful units of measurement.

Multiple	Area / length	Weight
1,000,000	-	Ton (t)
10,000	Hectare (ha)	-
1,000	-	Kilogram (kg)
1	Meter (m / m ²)	Gram (g)
0.01	Centimeter (cm)	-
0.001	Millimeter (mm)	Milligram (mg)

Table 22.4. Typical units of data expression.

Sample	Measured as	Expressed as
Grain yield and biomass weights	g plot ⁻¹	g m ⁻² or t ha ⁻¹
Dry weight of culms and crop components (e.g. leaf lamina, leaf sheath, stem)	g per 20 culm sub-sample	g m ⁻² or g culm ⁻¹
Root biomass	g g soil ⁻¹	g cm ³ soil ⁻¹

Figure 22.2. Types of balances for physiological measurements, showing: (A) semi-analytical (3 d.p.); (B) small precision (2 d.p.); (C) medium/large precision (1 d.p.); and, (D) Industrial/retail bench balances (0 d.p.).

5. Suggestions on models of instruments

Reference to specific instruments is made in most chapters. The mention of trade names and commercial products are for information purposes only, and do not imply endorsement by CIMMYT. Prices quoted serve as a guideline – and will vary according to accessories, functionalities, taxes and customs fees. Table 22.5 provides details of suggested models of instruments.

Instrument	Brand	Model/s	Measurement level	Website
Ceptometer	Delta-T Devices	SunScan System, and SS1	Canopy	http://www.delta-t.co.uk/
ceptometer	Decagon Devices	AccuPAR LP-80	Canopy	http://www.decagon.com/
Chlorophyll	Opti-Sciences	OS1-FL, and OS-30p	Leaf	http://www.optisci.com/
fluorometer	Qubit Systems	Z990 FluorPen	Leaf	http://www.qubitsystems.com/
nuorometer	WALZ	PAM-2500, MINI-PAM	Leaf	http://www.walz.com/
	Hansatech Intruments	FMS 2, Pocket-PEA	Leaf	http://www.hansatech-instruments.com
Chlorophull motor			Leaf	
Chlorophyll meter	Minolta	SPAD 502 Plus		http://www.specmeters.com/
	Field Scout	CM 1000	Canopy	http://www.specmeters.com/
	Opti-Sciences	CCM-200	Leaf	http://www.optisci.com/
	Hansatech Intruments	CL-01	Leaf	http://www.hansatech-instruments.com
	Apogee	CCM-200	Leaf	http://www.apogeeinstruments.com/
	FT Green, LLC	At Leaf	Leaf	http://www.atleaf.com/
6	Qubit Systems	Z955 Nitrogen Pen	Leaf	http://www.qubitsystems.com/
nfrared	Sixth Sense	LT300	Canopy	http://www.instrumart.com/
thermometer	Mikron	MI-N14	Canopy	http://www.mikroninfrared.com/
	Extech	42540	Canopy	http://www.extech.com/instruments/
eaf area meter	Licor	LI-3100C, and LI-3000C	Leaf	http://www.licor.com/
	CID Bio-Science	CI-202, and CI-203	Leaf	http://www.cid-inc.com/
	Delta-T Devices	WinDIAS 3	Leaf	http://www.delta-t.co.uk/
eaf porometer	Delta-T Devices	AP4	Leaf	http://www.delta-t.co.uk/
	Decagon Devices	SC-1	Leaf	http://www.decagon.com/
Iormalized difference	NTech Industries	GreenSeeker Hand Held	Canopy	http://www.greenseeker.com/
egetation index	Holland Scientific	Crop Circle Handheld	Canopy	http://www.hollandscientific.com/
NDVI) Sensor	Field Scout	CM 1000 NDVI	Canopy	http://www.specmeters.com/
	Qubit Systems	Z950 NDVI	Leaf	http://www.qubitsystems.com/
hotosynthesis	LI-COR	6400-XT	Leaf/plant	http://www.licor.com/
system	PP Systems	CIRAS-2	Leaf/plant	http://www.ppsystems.com/
	CID Bio-Science	CI-340	Leaf	http://www.cid-inc.com/
	WALZ	GFS-3000	Leaf	http://www.walz.com/
	ADC	LCpro-SD	Leaf	http://www.adc.co.uk/
Plot combine	Wintersteiger	Classic	Plot	http://www.wintersteiger.com/
	Almaco	PMC 20, SPC 20	Plot	http://www.almaco.com/
ample mill (Grinder)	UDY Corporation	Cyclone	Grain/biomass	http://www.udyone.com/
	IKA	MF 10.1	Grain/biomass	http://www.ika.net/
	FOSS	Cyclotec 1093	Grain/biomass	http://www.foss.dk/
	Thomas Wiley	Model 4, and Mini	Grain/biomass	http://www.toss.uk/
`cholondor proceuro	,			
icholander pressure	Soil moisture	3000 Series, and 3005 Series	Leaf	http://www.soilmoisture.com/
chamber	Equipment Corp.		1	
	Skye	SKPM 1405/50	Leaf	http://www.skyeinstruments.com/
	PMS Instrument Company	Model 600	Leaf	http://www.pmsinstrument.com/
eed counter	Seedburo	801 Count-A-Pak	Grain	http://www.seedburo.com/
(automatic)	Pfeuffer	CONTADOR	Grain	http://www.pfeuffer.com/
eed counter (manual)	Seedburo	Placement Trays	Grain sample	http://www.seedburo.com/
oil corer set (electric	Eijkelkamp Agrisearch	Percussion drilling set with	Soil/root	http://www.eijkelkamp.com/
percussion hammer)	Equipment	light electrical percussion		
	A. 1. 1. A. 11	hammer	•	
Soil corer (tractor	Giddings Soil Sampling Co	#15	Soil/root	http://www.soilsample.com/
mounted)				
pectrometer	Spectral Evolution	PSR-2500	Canopy/leaf	http://www.spectralevolution.com/
	Ocean Optics	JAZ	Canopy/leaf	http://www.oceanoptics.com/
	PP-Systems	UniSpec SC, and UniSpec DC	Canopy/leaf	http://www.ppsystems.com/
	CID Bio-Science	CI-700 (leaf clip ready)	Leaf	http://www.cid-inc.com/
Spectroradiometer	ASD Inc	FieldSpec 3, AgriSpec, and	Canopy/leaf	http://www.asdi.com/
		HandHeld 2		
	Spectral Evolution	PSR-2500, and PSR-1100	Canopy/leaf	http://www.spectralevolution.com/
Thresher	Almaco	SBT and LPT	Plot/bundle sample	http://www.almaco.com/
/apor pressure	EliTech Group - Wescor	VAPRO 5600	Tissue sap	http://www.wescor.com/
osmometer				

Table 22.5. Suggested models of instruments (websites accessed August 2011).