

CANopen-DP PROFIBUS-DP / CANopen-Gateway

Software Manual

to Product C.2908.xx

CANopen-DP Software Manual Rev. 1.3 esd electronic system design gmbh Vahrenwalder Str. 207 • 30165 Hannover • Germany www.esd-electronics.com • Fax: 0511/37 29 8-68 Phone: 0511/37 29 80 • International: +49-5 11-37 29 80

<u>N O T E</u>

The information in this document has been carefully checked and is believed to be entirely reliable. **esd** makes no warranty of any kind with regard to the material in this document, and assumes no responsibility for any errors that may appear in this document. **esd** reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance or design.

esd assumes no responsibility for the use of any circuitry other than circuitry which is part of a product of esd gmbh.

esd does not convey to the purchaser of the product described herein any license under the patent rights of esd gmbh nor the rights of others.

esd electronic system design gmbh

Vahrenwalder Str. 207 30165 Hannover Germany

Phone:	+49-511-372 98-0
Fax:	+49-511-372 98-68
E-mail:	info@esd-electronics.com
Internet:	www.esd-electronics.com

USA / Canada: esd electronics Inc. 525 Bernardston Road Suite 1 Greenfield, MA 01301 USA

Phone:	+1-800-/32-8006
Fax:	+1-800-732-8093
E-mail:	us-sales@esd-electronics.com
Internet:	www.esd-electronics.us

Manual file:	I:\texte\Doku\MANUALS\CAN\CANopen-DP\Englisch\CANopen-DP_13S.en9
Date of print:	2007-05-22
Manual order No.:	C.2908.21

Described software version: Kev. 1.54, canoup_4

Changes in the chapters

The changes in the user's manual listed below affect changes in the <u>firmware</u> as well as changes in the <u>description</u> of the facts only.

Manual Rev.	Chapter	Changes versus previous version
	4.	New GSD-file version inserted
	5.	Structure of the chapter changed
	5.	Description of parameter Slave-PDO-Orientation inserted
	6.1	Figure for multiple acyclic transmission added
1.2	6.2.1	Chapter: "Example: Structure of the PROFIBUS-Write-Request for n = 5 SDOs" inserted
1.3	6.3.1	Chapter: "Example: Structure of the PROFIBUS-Read-Request for n = 5 SDOs" inserted
	6.4	Data type <i>Error</i> inserted in table 20
	6.5	Error-Codes 1, 5, 6, 7, 8, 10 and 11 do not apply
	9.	Chapter revised and newly structured
	10.	Chapter: "Editing the GSD File with a Text Editor" inserted

Technical details are subject to change without notice.

This page is intentionally left blank.

Contents

1. Overview	3
1.1 About this Manual	3
1.2 Introduction into Functionality of the Firmware	3
1.3 Configuration via PROFIBUS-DP	4
2. Functionality of the Local Firmware	5
2 1 PROFIBUS-Slave Address	5
2.1 Her Data	6
2.2 Osci Data	6
2.5 Watehold (Reaction Control)	6
2.5 Parameter Telegram (CAN Bit Rate)	0 6
2.6 Global-Control Services (FREEZE SYNC UNSYNC)	6
2.7 PROFIBUS-DP Profiles	6
3. Implementing and Diagnostics	7
3.1 Prerequisites for Implementation	7
3.2 Implementation	7
3.2.1 Procedure	7
3.2.2 Start-Up	8
3.2.3 Data Transfer	8
3.3 Diagnostics via LED Indication	9
3.4 Slave Diagnostics	10
3.4.1 Diagnostic Bytes 16	10
3.4.1.1 Station Status 1	11
3.4.1.2 Station Status 2	12
3.4.1.3 Station Status 3	13
3.4.1.4 Diagnostic Byte 4: Master-PROFIBUS Address	13
3.4.1.5 Diagnostic Bytes 5 and 6: Manufacturer Identification	13
3.4.2 External (Device Related) Diagnostic Bytes	14
3.4.3 Identifier Related Diagnostic Bytes	15
4. GSD File	16
5 Cyclic DDOFIDUS Date Transfer to CANonon	19
5.1 Course of Configuration via SIMATIC Manager	18
5.1 1 Set PROFIBILS Address	10
5.1.3 Assignment of the Slots and Setting the CANopen Node-ID	·· 1) 20
5.1.4 Configuration of a CANopen Node on a PLC-Slot	27
5.1.5 Save settings to Hard Disk	31
5.2 Description of Input Window 'Properties - DP Slave'	32
5.2 Description of input window Troperues DI Stave	
6. Acyclic PROFIBUS Data Transfer to CANopen	37
6.1 Mode of Operation	37
6.2 Structure of the PROFIBUS Write Request	39
6.2.1 Example : Structure of the PROFIBUS Write Request for $n = 5$ SDOs	40
6.3 Structure of the PROFIBUS-Read-Request	42
6.3.1 Example: Structure of the PROFIBUS-Read-Requests for $n = 5$ SDOs .	43
6.4 Data Format	44
0.5 Error Codes of the PROFIBUS at Acyclic Transfers to/from CANopen	45

Contents

6.5.1 Error-Numbers in DPV1 Parameter Value	. 46
7. CANopen Introduction	. 47
7 1 Definition of Terms	47
7 2 NMT Boot-up	48
7 3 CANopen Object Directory	48
7.4 Access on the Object Directory via SDOs	49
7.5 Access on Process Data via PDOs	51
7.6 Overview of Used CANopen Identifiers	. 52
8. CANopen Object Dictionary of the CANopen-DP-Gateway	. 53
9. CAN-Laver-2 Functions	54
9 1 Introduction	54
9.2 Configuration via SIMATIC Manager	55
9.2.1 Course of Configuration	55
9.2.2 Set PROFIBUS Address	56
9.2.3 Parameter Telegram (CAN-Bit Rate and Configuration)	. 57
9.2.4 Assigning the Slots of the DP-Slave	. 60
9.2.5 Configuration of Slots for the CAN-Layer-2 Data Exchange	. 61
9.2.6 Save Settings to Hard Disc	. 61
9.2.7 Description of the Window ' <i>Properties - DP-Slave</i> '	. 62
9.3 The Communication Window	. 64
9.3.1 Introduction	. 64
9.3.2 Configuration of the Communication Window	. 65
9.3.3 Format of Communication Window	. 66
9.3.3.1 Write Bytes of the Communication Window	. 66
9.3.3.2 Read Bytes of the Communication Window	. 67
9.3.4 Examples on the Communication Window	. 71
9.3.4.1 Transmitting Data	. 71
9.3.4.2 Receiving Data	. 73
10. Editing the GSD-File with a Text Editor	. 76
10.1 Example Module 1: Manufacturer-specific Data (SO: no)	. 81
10.2 Example Module 2: Manufacturer-specific Data (SO: yes)	. 83
11. Glossary	. 85
12. References	. 87

1. Overview

1.1 About this Manual

This manual describes the local firmware of the CANopen-DP.

CANopen-Implementation

The firmware controls the communication of CAN-bus devices via CANopen-protocol [1] with the PROFIBUS-DP (herein after referred to as PROFIBUS). The CANopen implementation supports CANopen-slave functions and basic CANopen-master functions (START, SYNC, Heartbeat).

The CANopen-DP supports cyclic PROFIBUS transfers according to PROFIBUS DP-V0 [2] as well as acyclic PROFIBUS transfers according to DP-V1 [2]. The cyclic PROFIBUS transfers are for process data (PDOs) and the acyclic for the CANopen-parameter setting (SDOs).

CAN-Layer 2

The firmware supports the communication on the CAN-bus on the level of CAN-Layer-2.

11-Bit and 29-Bit Identifier

The module CANopen-DP supports 11-bit and 29-bit CAN identifiers (CAN2.0A/B). The CANopen protocol according to DS-301 [1] supports 11-bit-CAN identifiers only, so the support of the 29-bit identifiers is restricted to the CAN-Layer-2 functions.

1.2 Introduction into Functionality of the Firmware

The gateway simulates a slave device with a defined number of input and output bytes to the PROFIBUS. After the gateway has been configured CANopen nodes can be addressed as PROFIBUS slaves.

The PROFIBUS output bytes are transmitted to the CAN bus. One to eight output bytes are assigned to an TxPDO at cyclical transfers. RxPDOs are assigned to the input bytes on CAN side. Received CAN data is treated as input data by the PROFIBUS.

Note:If the parameter Slave PDO-Orientation is set to 'yes' in the parameter telegram, CAN
frames are transmitted with standard TxPDO-identifiers on the outputs and CAN
frames are received with standard RxPDO-identifiers on the inputs.
If the parameter Slave PDO-Orientation is 'no' (default), the CAN frames are
transmitted via RxPDO-identifiers and they are received via TxPDO-identifiers.

The PROFIBUS station address is set directly at the CANopen-DP module by means of coding switches.

1.3 Configuration via PROFIBUS-DP

The CANopen-DP module is configured via the PROFIBUS. The Siemens SIMATIC Manager for S7, for example, can be used as a configuration tool. Here, the gateway is assigned with logical modules from which the CANopen Node-ID and the PDO-identifier result.

In the course of the configuration further parameters such as the PLC address, data direction and data length are assigned to the modules.

2. Functionality of the Local Firmware

The following figure represents the functionality of the firmware.

Fig. 1: Overview of functions of the CANopen-DP firmware

Note:If the parameter Slave PDO-Orientation is set to 'yes' in the parameter telegram, CAN
frames are transmitted at the outputs with standard TxPDO-identifiers and CAN
frames are received at the inputs with standard RxPDO-identifiers.
If the parameter Slave PDO-Orientation is 'no' (default), the CAN frames are
transmitted via RxPDO-identifiers and they are received via TxPDO-identifiers.

2.1 PROFIBUS-Slave Address

The CANopen-DP device simulates a slave module on the PROFIBUS side. The slave address is set by means of coding switches at the CANopen-DP. When switching on the module the hexadecimal PROFIBUS address set is requested. The settings have to be changed before switching the module on, because changes are ineffective during operation.

The address range which can be set is *hexadecimal* 03_h to $7C_h$ or *decimal* 3 to 124. If an address is set which is smaller than 3_h , address 3 is valid. If an address is set which is larger than $7C_h$ or larger than 124 (decimal), address 124 is valid.

The left coding switch (HIGH) is used to set the MSBs, while the LSBs are set by means of the right

coding switch (LOW) (refer to the hardware manual, chapter:"Setting of the PROFIBUS-Address via Coding Switches"[3]).

Note:

The PROFIBUS-slave address can *only* be set via coding switches. It *cannot* be programmed by means of a class 2 master via the command 'Set_Slave_Address'.

2.2 User Data

The CANopen-DP-module is equipped with a VPC3-type DP-slave controller and simulates a total of up to 244 bytes per data direction on the PROFIBUS.

During a cyclic transfer one to eight bytes each are assigned to a TxPDO or RxPDO .

2.3 Watchdog (Reaction Control)

The firmware can be run with activated or deactivated reaction control. It is recommendable, though, to run it with activated reaction control.

2.4 Diagnostics

The status of the LED displays and the DP-slave diagnostics can be used for diagnostics. The module supports five device-related diagnostic-bytes and if the heartbeat function is used 16 additional identifier-related diagnostic-bytes.

The diagnostics will be described in more detail on page 9.

2.5 Parameter Telegram (CAN Bit Rate)

In addition to the seven standard bytes of the configuration, the CANopen-DP module supports 16 device-specific bytes. Here, the DP master can change e.g. the CAN bit rate. Setting the bit rate by means of the parameter telegram is described on page 20.

2.6 Global-Control Services (FREEZE, SYNC, UNSYNC)

The Global-Control services are not yet implemented.

2.7 PROFIBUS-DP Profiles

The PROFIBUS-DP profiles are not being supported yet.

3. Implementing and Diagnostics

3.1 Prerequisites for Implementation

This chapter describes the implementation of the CANopen-DP module at a PROFIBUS which is controlled by a Siemens SIMATIC-S7-300 or S7-400.

In order to be able to implement the module as described here, you need the configuration program 'SIMATIC-Manager' with the tool 'HW-configurator'.

Note for CANopen:

Configure the CANopen-DP module absolutely first with the PLC via the SIMATIC-Manager as described in chapter: "5. Configuration with the SIMATIC Manager". Only after proper configuration the CANopen-DP module can be identified as CAN device!

3.2 Implementation

3.2.1 Procedure

Please make the following steps to implement the module:

1	Install and wire the CANopen-DP module (PROFIBUS, power supply, CAN bus, see hardware manual).
2	Set the PROFIBUS address of the CANopen-DP module via coding switches (HIGH = higher order bits, LOW = low-order bits)
3	Connect the PROFIBUS connector to the PROFIBUS interface of the CANopen-DP module.
4	Configure the settings of the CANopen-DP module in the PLC via the SIMATIC manager
	Switch on the power supply for the CANopen-DP.
5	Now the module has to run.
	The CANopen-DP module is now automatically configured via the PLC.

Note: Take into account that in particular the CAN bit rate and the module ID (CANopen) must be set via the PROFIBUS.

3.2.2 Start-Up

After switching on the power supply, the CANopen-DP module starts automatically. It does not have its own mains switch.

During start-up the LEDs "P" (PROFIBUS-DP status) and "D" (Profibus-DP data transfer) are flashing. The PROFIBUS address set via the coding switches is read in.

The CANopen-DP receives projection data from the DP master and evaluates the specifications in them. If the projection complies with the structure, the CANopen-DP device starts the data transfer.

3.2.3 Data Transfer

If the CANopen-DP device is configured, the data transfer starts automatically after start-up: If the PLC master changes transmission data of an output, the data is transmitted from the CANopen-DP module to the CAN bus. If the CANopen-DP module receives data on the CAN bus, then it provides the data for the PLC master.

The configuration is described in chapter: "5.1 Course of Configuration via the SIMATIC-Manager" from page 18.

3.3 Diagnostics via LED Indication

The function of LEDs has been defined by the firmware. In normal operation at least one of the four LEDs is flashing or constantly on.

The flash sequences which are listed in the following table are repeated about every six seconds.

Position of the LEDs

LED	Function	Status	Meaning	Error handling
		off	no power supply	check the 24 V power supply
C CAN bus	1x short flash	CAN error (morse signal 'E')	-	
(green)	status	3x long flash	CAN off (morse signal 'O')	-
		short-long-long	CAN warning ('W')	-
		on	CAN bus OK	-
		off	no power supply	check the 24 V power supply
D	DDOEIDUS	1x short flash	looking for bit rate	the connection to the DP master has failed, check the PROFIBUS connection (fault in wiring in PROFIBUS cable, short circuit, terminating impedance in wrong position?)
(green) DP status	2x short flashes	bit rate is monitored	check the PROFIBUS address specified	
	3x short flashes	waiting for parameter telegram	parameter telegram is faulty. Diagnostics via SIMATIC-Manager or system function SFC13 (DPNRM_DG) (see chap. 3.4)	
	4x short flashes	waiting for configuration telegram	configuration telegram is faulty. Diagnostics via SIMATIC-Manager or system function SFC13 (DPNRM_DG) (see chap. 3.4)	
		on	PROFIBUS OK	-
D	PROFIBUS-	off	no data exchange	-
(green)	DP data exchange	on	data exchange via PROFIBUS	-
S	daviaa stata	off	no power supply voltage	-
(green) device state	device state	on	power supply voltage on	-

Table 1: LED status

3.4 Slave Diagnostics

In addition to the six diagnostic bytes predefined in standard DIN EN 19245, part 3, the CANopen-DP supports five further device-related diagnostic bytes and when using the heartbeat function 16 further identifier related diagnostic bytes.

The slave diagnostics can be requested by the following function components:

Automation device family	Number	Name
SIMATIC with IM 308-C	FB 192	FB IM308C
SIMATIC S7/M7	SFC 13	SFC DPNRM_DG

Table 2: Function component for requesting the slave diagnostics

3.4.1 Diagnostic Bytes 1...6

The assignment of these diagnostic bytes has been predefined in standard DIN EN 19425, part 3. Below, the status messages will be described in consideration of the CANopen-DP module.

The following designations will be used for this:

Byte number	Status-byte designation
1	station status 1
3	station status 2 station status 3
4 5	master-PROFIBUS address manufacturer-identification high byte
6	manufacturer-identification low byte

 Table 3: Diagnostic bytes 1...6

3.4.1.1 Station Status 1

Station status 1 contains error messages of the DP slave. If a bit is '0', no error applies. A bit set to '1' signalizes an error.

Bit	Error message if bit = '1'	Error handling	
0	DP slave cannot be addressed by the master	 correct PROFIBUS address set at the CANopen-DP? bus connector correctly wired? power supply available at CANopen-DP? power off/power on executed at CANopen-DP in order to read in DP address? 	
1	DP slave is not yet ready for data exchange	- wait until the CANopen-DP has completed start up	
2	The configuration data transmitted from DP master to DP slave do not correspond to the DP slave structure.	- check whether the station type and the CANopen-DP structure have been correctly entered via the configuration tool	
3	The slave has got external diagnostic data.	- request and evaluate external diagnostic data	
4	The requested function is not being supported by the DP slave.	- check projecting	
5	DP master cannot interpret the response of the DP slave.	- check bus structure	
6	Wrong setting.	- evaluate diagnostic bytes 10 and 11	
7	DP slave has already been set by another master.	 this bit is always '1', if you, e.g., just access the CANopen-DP by means of a PG or another DP-master. The PROFIBUS address of the setting master is in the diagnostic byte 'Master-PROFIBUS address'. 	

 Table 4: Bits of station status 1

3.4.1.2 Station Status 2

Station status 2 contains status messages to the DP slave. If a bit is '1', the corresponding message is active. A bit set to '0' signalizes an inactive message.

Bit	Error message if bit = '1'
0	DP slave has to be set again.
1	A diagnostic message occurred. The DP slave cannot operate until the error has been removed (static diagnostics).
2	This bit is always '1'.
3	The watchdog for the CANopen-DP is activated.
4	DP-slave has received freeze command.
5	DP-slave has received SYNC command.
6	This bit is always '0'.
7	DP-slave is deactivated.

Table 5: Bits of station status 2

3.4.1.3 Station Status 3

Station status 3 is reserved and without significance for the CANopen-DP.

3.4.1.4 Diagnostic Byte 4: Master-PROFIBUS Address

The PROFIBUS address of the master, which was the last to set the DP slave and has got reading and writing access to the DP slave, is stored in this byte.

3.4.1.5 Diagnostic Bytes 5 and 6: Manufacturer Identification

The manufacturer identification has been coded into two bytes. For the CANopen-DP module the designation $098E_h$ is returned.

3.4.2 External (Device Related) Diagnostic Bytes

The CANopen-DP module supports diagnostic bytes 7 to 11 for module-specific diagnostic messages.

Diagnostic bytes	Meaning					
16	defined in the PROFIBUS specification (see previous chapter)					
7	length specification for module-specific diagnostic information (here always 5)					
8	header byte: bits 05 contain the block length including header (here always 4)					
9	DP service (SAP) which led to error					
10	depending on status of byte 9:byte $9 = 3D_h$ setting (SAP61) faulty, byte 10 contains the number of the faulty setting bytebyte $9 = 3E_h$ configuration (SAP62) faulty, byte 10 contains the number of the faulty PROFIBUS module (= address of the simulated PLC module)					
11	 depending on status of byte 9: byte 9 = 3D_h setting (SAP61) faulty, byte 11 shows the PROFIBUS master with the correct values byte 9 = 3Ehex configuration (SAP62) faulty wrong length correct: length = word 1 16 byte 1 32 4 only one byte has been specified for identifier 5 format specification is missing wrong identifier Node-ID conflict: the Node-ID of another CANopen module, which is determined by the selection of the slot and the Node-ID of the CANopen-DP-Gateway are identical 8 wrong PDO length selected 					

 Table 6: Module-specific diagnostic bytes

3.4.3 Identifier Related Diagnostic Bytes

The CANopen-DP unit uses the diagnostic bytes 7 to 23 for heartbeat-diagnostic messages.

Diagnostic Byte	Meaning			
16	defined in the PROFIBUS specification (see preceding chapters)			
7	$= 50_{\rm h}$ (identifier related diagnostics, length 16 bytes)			
8	<pre>status of the heartbeat for CANopen node with Node-ID = 0 Node-ID = 7: bit 0: heartbeat-status Node-ID = 0 bit 1: heartbeat-status Node-ID = 1 : bit 7: heartbeat-status Node-ID = 7</pre>			
9	status of the heartbeat for CANopen-node with Node-ID = 8 Node-ID = 15: bit 0: heartbeat-status Node-ID = 8 bit 1: heartbeat-status Node-ID = 9 : bit 7: heartbeat-status Node-ID = 15			
:	:			
23	status of the heartbeat for CANopen-node with Node-ID = 120 Node-ID = 127: bit 0: heartbeat-status Node-ID = 120 bit 1: heartbeat-status Node-ID = 121 : bit 7: heartbeat-status Node-ID = 127			

Table 7: Identifier related diagnostic bytes

Value of the heartbeat status bit	Meaning
0	Participant is available and takes part in heartbeat
1	Heartbeat failed or participant not available

4. GSD File

Below, the GSD file (Device Master Data File) of the CANopen-DP module has been printed. The specification printed here are for orientation. Decisive is the data contained in the GSD file **codp098e.gsd**., included in the product package.

(c) esd electronic system design GmbH Hannover ; PROFIBUS-DP Geraetestammdatei Version: 1.1 Autor: Ulrich Hartmann 01.03.2005 uh 11.05.2005 uh 03.06.2005 uh 29.01.2007 uh Erstellungsdatum: V1.0 v1.1 Heartbeat configuration added Cl_Response_Timeout and SDO Timeout changed to 10s new flag 'slave pdo' V1.2 V1.3 29.01.2007 uh Art des Parameters (M) Mandatory (zwingend notwendig) ; (0) Optional (zusätzlich möglich) (D) Optional mit Default=0 falls nicht vorhanden
 (G) mindestens einer aus der Gruppe passend zur entsprechenden Baudrate #PROFIBUS DP ;--- Kapitel 2.3.2 GSD_Revision Allgemeine DP-Schluesselwoerter DP-Schldesselwoerter --; (M ab GSD_Revision 1) (Unsigned8)
; (M) Herstellername (Visible-String 32)
DP" ; (M) Herstellerbezeichnung des DP-Geraetes (Visible-String 32) = 3 = "esd" = "CANopen-DP" = "V1.0" Vendor_Name Model_Name ; (M) herstellerDezerbinding des DP-Geraetes (Visible-String 32) ; (M) Ausgabestand des DP-Geraetes (Visible-String 32) ; (M ab GSD_Revision 1) (Unsigned8 (1 bis 63)) (1234) ; (M) Gerätetyp des DP-Gerätes (Unsigned16) ; (M) DP-Geraetetyp 0: DP-Graetes 0: Profibus-DP (Unsigned8) ; (M) DP-Geraetetyp 0: DP-Slave (Unsigned8) ; (D) kein FMS/DP-Mischgeraet (Boolean) Revision Revision Number = 1 Ident_Number = 2446 Protocol Ident = 0 Station_Type = 0 = 0 FMS_supp Hardware_Release Software_Release ; (M) Hardware Ausgabestand des DP-Geraetes (Visible-String 32) ; (M) Software Ausgabestand des DP-Geraetes (Visible-String 32) = "V1.0" = "V1.2" = 1 ; (G) 9,6 kBaud wird unterstuetzt ; (G) 19,2 kBaud wird unterstuetzt ; fuer Gateway CAN-CBM-DP nicht moeglich (1234) 9.6_supp 19.2_supp ;31.25_supp = 1 = 1 45.45_supp 93.75_supp 187.5_supp = 1 ; (G ab GSD Revision 2) 45,45 kBaud wird unterstuetzt ; (G ab GSD_Revision 2) 45,45 kBaud ; (G) 93,75 kBaud wird unterstuetzt ; (G) 187,5 kBaud wird unterstuetzt ; (G) 500 kBaud wird unterstuetzt ; (G) 1,5 MBaud wird unterstuetzt = 1 = 1 500_supp 1.5M_supp = 1 = 1 = 1 ; (G ab GSD_Revision 1) 3 MBaud wird unterstuetzt ; (G ab GSD_Revision 1) 6 MBaud wird unterstuetzt ; (G ab GSD_Revision 1) 12 MBaud wird unterstuetzt 3M_supp 6M_supp 12M_supp = 1 = 1 MaxTsdr_9.6 MaxTsdr_19.2 = 60 : (G) = 60 (G) MaxTsdr_19.2 ;MaxTsdr_31.25 MaxTsdr_45.45 MaxTsdr_93.75 MaxTsdr_187.5 MaxTsdr_500 MaxTsdr_500 = 15 = 60 ; fuer Gateway CAN-CBM-DP nicht moeglich (1234) ; (G ab GSD_Revision 2) = 60 = 60 ; (G) ; (G) = 100; (G) MaxTsdr_1.5M MaxTsdr_3M = 150 ; (G) ; (G ab GSD Revision 1) = 250; (G ab GSD_Revision 1) ; (G ab GSD_Revision 1) MaxTsdr_6M = 450MaxTsdr 12M = 800 ; (b ab GSD_Revision 1) ; (D) keine redundante Uebertragungstechnik ; (D) RTS-Signalpegel (CNTR-P) Pin 4 des 9pol. SUB-D ; 0: nicht vorhanden 1: RS 485 2: TTL ; (D) Bedeutung der 24V Pins des 9pol. SUB-D (Pin 7 24V; Pin 2 GND) ; 0: nicht angeschlossen 1: Input 2: Output Redundancy Repeater_Ctrl_Sig = 0 = 0 24V_Pins = 0 ; Implementation_Type = "Visible-String" ; (1234)

 Nimplementation_rype
 Visible-offing (1934)

 Bitmap_Device
 = "CDPS00_N" ; (0 ab GSD_Revision 1)

 Bitmap_Diag
 = "CDPS00_D" ; (0 ab GSD_Revision 1)

 Bitmap_SF
 = "CDPS00_S" ; (0 ab GSD_Revision 1)

 ;--- Kapitel 2.3.4 DP-Slave-bezogene Schluesselwoerter --Freeze_Mode_supp = 0 ; (D) Der Freeze-Mode wird nicht unterstuetzt
Sync_Mode_supp = 0 ; (D) Die Sync-Mode wird nicht unterstuetzt
Auto_Baud_supp = 1 ; (D) Die Slave-Adresse kann vom Master nicht gesetzt werden
;User_Prm_Data_Len = 9 ; (D) Hoechstlaenge von User-Parameter-Daten ; Auto_Baug_supp = 1 ; (D) Die Slave-Adresse kann vom Master nicht gesetzt werden ;User_Prm_Data_Len = 9 ; (D) Hoechstlaenge von User-Parameter-Daten ;User_prm_Data=0x00,0x06,0x00,0x00,0x00,0x00,0xfi,0xff,0xff ; (O) User-Parameter-Daten (byte 7 - 15) Min_Slave_Intervall = 6 ; (M) Minimaler Abstand zwischen 2 DDLM_Data_Exchange-Aufrufen (xx * 100us) Modular_Station = 1 ; (D) 0: Kompaktstation 1: Modulare Station 244 ; (M falls modulare Station) Hoechstlaenge der Eingangsdaten einer Modularen Station
 240 ; (M falls modulare Station) Hoechstlaenge der Eingangsdaten einer Modularen Station
 240 ; (M falls modulare Station) Hoechstlaenge der Ausgangsdaten einer Modularen Station
 245 ; (O nur falls modulare Station) Groesste Summe der Ein- und Ausgangsdaten einer Modularen Station in Durben Max_Module Max_Input_Len Max Output Len Max_Data_Len Bytes DPV1 Slave = 1 : supports DPV1 C1_Max_Data_Len = 24; C1_Response_Timeout = 1100; Timeout = 1100 * 10ms = 11s C1_Read_Write_supp = 1; Diagnostic_Alarm_supp = 0; Process_Alarm_supp = 0; Process_Alarm_supp = 0; Pull_Plug_Alarm_supp = 0; Status_Alarm_supp = 0; Update_Alarm_supp = 0; Manufacturer_Specific_Alarm_supp = 0; Extra_Alarm_SAP_supp = 0; Module= "Dummy" Ox10 EndModule

Max_Diag_Data_Len Modul_Offset = 24 ; max. 24 Byte Diagnosedaten ; (D ab GSD_Revision 1) erste Steckplatznummer max_Diag_Data_Lien = 24 Modul_Offset = 0 Max_User_Prm_Data_Len = 19 PrmText=1 Text(0)=*1000 kbit/s" Text(1)=" 666.6 kbit/s" Text(3)=" 333.3 kbit/s" Text(3)=" 250 kbit/s" Text(4)=" 250 kbit/s" Text(5)=" 166 kbit/s" Text(6)=" 125 kbit/s" Text(9)=" 50 kbit/s" Text(10)=" 33.3 kbit/s" Text(11)=" 20 kbit/s" Text(12)=" 12.5 kbit/s" Text(13)=" 10 kbit/s" EndPrmText õ EndPrmText PrmText=2 Text(0)="No" Text(1)="Yes" EndPrmText PrmText=3 Text(0)="Yes' Text(1)="No" EndPrmText ExtUserPrmData=1 "CAN-Bitrate" Unsigned8 6 0-13 Prm Text Ref=1 EndExtUserPrmData ExtUserPrmData=2 "Communication Window" Bit(7) 0 0-1 Prm_Text_Ref=2 EndExtUserPrmData ExtUserPrmData=3 "Slave PDO orientation" Bit(6) 0 0-1 Prm_Text_Ref=2 EndExtUserPrmData ExtUserPrmData=4 "Heartbeat Configuration" Bit(5) 0 0-1 Prm_Text_Ref=2 EndExtUserPrmData ExtUserPrmData=5 "RTR-Frames" Bit(4) 0 0-1 Prm_Text_Ref=3 EndExtUserPrmData ExtUserPrmData=6 "CANopen-Slave" Bit(3) 0 0-1 Prm_Text_Ref=2 EndExtUserPrmData ExtUserPrmData=7 "CANopen-Master" Bit(2) 0 0-1 Prm_Text_Ref=2 EndExtUserPrmData=8 "Start-Frame" Bit(1) 0 0-1 Prm_Text_Ref=2 EndExtUserPrmData ExtUserPrmData=9 "Page-Mode" Bit(0) 0 0-1 Prm_Text_Ref=2 EndExtUserPrmData ExtUserPrmData=10 "ModuleID" Unsigned8 1 1-127 EndExtUserPrmData ExtUserPrmData=11 "WakeUp Time (0=Off, 255=Default)" Unsigned8 255 0-255 EndExtUserPrmData ExtUserPrmData=12 "Sync Time (0=0ff, 65535=Default)" Unsigned16 65535 0-65535 EndExtUserPrmData ExtUserPrmData=13 "Heartbeat Consumer Time (0=Off)" Unsigned16 0 0-65535 EndExtUserPrmData ExtUserPrmData=14 "Heartbeat Producer Time (0=Off)" Unsigned16 0 0-65535 EndExtUserPrmData ExtUserPrmData=15 "SDO Timeout" Unsigned16 1000 1-10000 EndExtUserPrmData ExtUserPrmData=16 "MPDO Identifier" Unsigned16 385 385-1791 EndExtUserPrmData Ext_User_Prm_Data_Ref(3)=1 Ext_User_Prm_Data_Ref(4)=2 Ext_User_Prm_Data_Ref(4)=3 Ext_User_Prm_Data_Ref(4)=4 Ext_User_Prm_Data_Ref(4)=5 Ext_User_Prm_Data_Ref(4)=6 Ext_User_Prm_Data_Ref(4)=7 Ext_User_Prm_Data_Ref(4)=8 Ext_User_Prm_Data_Ref(4)=9 Ext_User_Prm_Data_Ref(5)=10 Ext_User_Prm_Data_Ref(8)=11 Ext_User_Prm_Data_Ref(9)=12 Ext_User_Prm_Data_Ref(11)=13 Ext_User_Prm_Data_Ref(13)=14 Ext_User_Prm_Data_Ref(15)=15 Ext_User_Prm_Data_Ref(17)=16 Slave_Family = 9@CANopen@V01 ;OrderNumber = "C.2908.02"

5. Cyclic PROFIBUS Data Transfer to CANopen

The CANopen-DP device is configured via the PROFIBUS. This chapter describes the configuration of the cyclic PROFIBUS data transfer of process data between PROFIBUS and CAN. Acyclic PROFIBUS data transfers can be performed as well, e.g. for the parameter passing. They are described from page 37 on.

5.1 Course of Configuration via SIMATIC Manager

Please follow the steps below to configure the CANopen-DP device:

1. Select CANopen-DP

Select menu *Hardware Catalogue* and there *Additional Field Devices* and *Gateway*. Select CANopen-DP there.

2. Set PROFIBUS address

Set the PROFIBUS address as described in chapter 5.1.1 on page 19.

- **3.** Parameter Telegram (set CAN bit rate, general configuration and CANopen module ID) Configure the settings by means of the parameter telegram as described in chapter 5.1.2 on page 20.
- **4.** Assignment of the Slots and setting the CANopen node-ID Assign the slots as described in chapter 5.1.3 on page 29.
- **5.** Configuration of the Slots (SPS-Adresse) Configure the slots as described in chapter 5.1.4 on page 31.

6. Save settings on hard disk

Save the settings as described in chapter 5.1.5 on page 31.

5.1.1 Set PROFIBUS Address

A window opens in which you have to specify the PROFIBUS station address.

Attention!: The *hexadecimal* address set at the coding switches has to be *converted* into a *decimal* value and entered here!

聞]NY Config -[SIMATIC 300(1)(Configuration)- dpvttest] 聞 Saton Edi Inset BJC Yew Gatons Window 변화		_ 6 ×
Image: CPU 31 PROFIBUS(1): DP-Mastersystem (1) X2 Image: PROFIBUS(1): DP-Mastersystem (1) X2 Image: PROFIBUS(1): DP-Mastersystem (1)	_	
Properties - PROFIBUS interface CANopen-DP General Parameters Address: Transmission rate: 1.5 Mbps Subnet: Stot 1 Stot 1 X1 X2 3 4 5 6 7 8 9 0 0K	New Properties Dejete	

Fig. 3: Setting the PROFIBUS address of the CANopen-DP

5.1.2 Parameter Telegram

The module 'DP slave' is now automatically inserted in the configuration window. Settings can be changed by means of the parameter telegram.

The parameter setting of the DP-Slave can be done in the Properties window which opens, if the header of the DP-slave window is double clicked (here line '(17) CANopen-Slave').

Image: Service Standard Image: Service							
1 PS 307 5A 2 S CPU 317-2 PN/DP X7 MP/DP PROFIBUS(1): DP master system (2)							
Image: Control State Image: Co							
Properties - DP slave Image: State in the PC sta							
Image: State Decision I Address I Address I Address I Address I Address No I 0 Universal module I Address I Address No 2 0 Universal module I Address No 3 0 Universal module I Address No 4 134/Universal module I Address Yes 5 I I I O Universal module I I I I I I I I I I I I I I I I I I I							
6 WakeUp Time (0+07ft, 255=0eFault) 255 8							
14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0							
21							
20 Image: Construction of the construction of							

Fig. 4: Setting the parameters in the DP-slave properties window

Description of Parameters:

CAN-Bitrate

For the bit rate the following selections can be made:

<i>Bit rate</i> [Kbit/s]] [Bit rate [Kbit/s]
1000] [100
666,6		66,6
500		50
333,3		33,3
250		20
166		12,5
125		10

Table 8: Setting the bit rate in 14 levels

Communication Window: (CW)	This parameter activates the Communication Window. It is described in detail on page 64.		
Slave PDO Orientation: (SO)	If this parameter is 'yes', CAN frames with standard-TxPDO- identifiers are transmitted via the outputs and CAN-frames with standard RxPDO-identifiers are received via the inputs (see table 15 page 30). If the parameter is 'no' (default), CAN-frames with RxPDO-identifiers are transmitted and CAN-frames with TxPDO-identifiers are received		
Heartbeat Configuration: (HC)	This parameter activates or deactivates the configuration of the Heartbeat monitoring and generation. It is described in detail on page 24.		
RTR-Frames: (NR)	Transmit RTR-frames for the Rx-identifiers configured via PROFIBUS.		
CANopen-Slave: (CS)	Configure gateway as CANopen slave.		
CANopen-Master: (CM)	Configure gateway as CANopen master.		
Start-Frame: (AS)	After wake-up time (in seconds) has expired, a start frame is transmitted, if the gateway is a master (autostart).		
Page-Mode: (PM)	Activate Page-Mode. Page mode is described in detail in the CAN-DP software manual [4]		

CW	SO	НС	NR	CS	СМ	AS	PM	Description
X	yes	no	yes	yes	no	X	no	 after wake-up time the module automatically transmits <i>128 dec</i> + <i>Module-No.</i> and is in 'Pre-Operational' status after a start frame has been received: transmission of Tx-PDO, transmit RTR-frames on PDO-RxId If parameter <i>SO</i> is 'yes', CAN-frames with standard-TxPDO-Identifiers are transmitted via the outputs and CAN-frames with standard-RxPDO-identifiers are received via the inputs.
x	yes	no	no	yes	no	X	no	 after wake-up time the module automatically transmits <i>128 dec</i> + <i>Module-No.</i> and is in 'Pre-Operational' status after a start frame has been received: output of TxId If parameter <i>SO</i> is 'yes', CAN-frames with standard-TxPDO-Identifiers are transmitted via the outputs and CAN-frames with standard-RxPDO-identifiers are received via the inputs.
x	no	no	yes	no	yes	no	no	 output of PDO-RxId after wake-up time transmit RTR-frames on PDO-TxId
x	no	no	no	no	yes	no	no	- after wake-up time, output of PDO-RxID
X	no	yes/ no	yes	no	yes	yes	no	 after wake-up time start frame, output of PDO- RxID, transmit RTR-frames on PDO-TxId
x	no	yes/ no	no	no	yes	yes	no	 after wake-up time start frame, output of PDO- RxID

Example for permissible combinations of the parameters:

x... status of the parameter without meaning here

Table 9: Example for permissible settings

Module-ID:

Node-ID of the Gateway as CANopen-node. The Node-ID under which the gateway is addressed is set via this byte.

Value range: 1 ... 127 (decimal)

Wakeup TimeVia parameter Wakeup Time a delay in seconds is specified. It
determines the time a module has to wait after a RESET or power-on,
before it starts to transmit data on the CAN bus.

The *Wakeup Time* specified here, overwrites the value of the *Wakeup Time* stored previously in the CANopen-DP gateway, if a value not equal '255' was specified. If '255' is specified, the value stored in the gateway will be used.

If parameter *Wakeup Time* is set to '0', the module does not wait, but starts the transmission of data as soon as they are available.

The Wakeup Time is specified as a decimal value, here.

Parameter	Value range [dec] in [s]	Description		
	0	Wakeup Time function off		
Wakeup Time	1254	Wakeup Time in seconds		
// wheelp _ the	255	Use current value from gateway (default)		

 Table 10: Function of parameter Wakeup Time

SYNC Time: The CANopen-DP device transmits as CANopen master cyclically the command SYNC for simple CANopen applications.

The cycle is specified in milliseconds.

SYNC Time is specified as a decimal value, here.

Parameter	Value range [dec] in [ms]	Description
	0	No SYNC transmissions possible
SYNC Time	165534	SYNC time in milliseconds (165534 ms)
	65535	Use current value from gateway (default)

 Table 11: Function of parameter SYNC Time

Heartbeat Consumer Time: The Heartbeat function can be used for mutual monitoring of the CANopen modules (particularly for detecting connection failures).

General Operation of the Heartbeat:

A module, the so-called heartbeat producer transmits cyclically a heartbeat message on the CAN bus with the node guarding identifier $(700_h + Node-ID, see [1])$. One or more heartbeat consumer receive the message.

If the message is not received within the heartbeat consumer time, a heartbeat event will be generated on the heartbeat consumer module. The heartbeat consumer time always has to be set to a higher value than the corresponding heartbeat producer time. A module can act as heartbeat consumer and producer at the same time.

Heartbeat Implementation on the CANopen-DP-Gateway:

The setting of the heartbeat parameters of the configured CANopen nodes (a configured node is e.g. slot 3 = Node-ID 3 on page 29) by the gateway can be activated or deactivated with the parameter *Heartbeat Configuration*. This parameter can be set in the same window as the *Heartbeat Consumer Time*.

If the parameter *Heartbeat Configuration* is set to YES, for <u>every</u> configured CANopen node the heartbeat producer time in CANopen object 1017_{h} of every node is set to the value of the parameter *Heartbeat Producer Time*.

In addition for <u>every</u> configured CANopen node the heartbeat consumer time in CANopen object 1016_h is set to the value of the parameter *Heartbeat Consumer Time* (the entry is always entered in sub-index 1 of object 1016_h [1]).

The figure 5 on page 25 shows the transmission of the heartbeat times via SDO-accesses in the objects of the configured nodes after the request of *Heartbeat Configuration*. The heartbeat time is also set on the CANopen-DP.

Before the heartbeat monitoring can be started by setting the parameter *Heartbeat Configuration* to YES, the *Parameter Heartbeat Producer Time* or/and *Heartbeat Consumer Time* have to be set to values unequal '0', otherwise the corresponding functions will not be activated.

Figure 6 on page 25 shows the heartbeat monitoring of the CANopen-DP by the other CANopen modules: The CANopen-DP is the heartbeat producer here. As heartbeat consumer the configured CANopen nodes monitor the transmission of the heartbeat of the CANopen-DP.

Figure 7 on page 26 shows the monitoring of the CANopen modules, which are configured as heartbeat producers by the CANopen-DP, which works as heartbeat consumer here.

Fig. 5: Setting of the heartbeat parameters on the CANopen slaves after setting *Heartbeat Configuration* to YES

Fig. 6: Acting as heartbeat producer the CANopen-DP is monitored by the configured CANopen nodes

Fig. 7: Acting as heartbeat consumer the CANopen-DP is monitoring the configured CANopen nodes, which are producing the heartbeats

Parameter	Value range [dec] in [ms]	Description
Heartbeat Consumer	0	no heartbeat consumer monitoring (= factory default setting)
<i>Time</i> 165535		Heartbeat Consumer Time (165535 ms)

Table 12: Value range of the *Heartbeat Consumer Time*

The CANopen-DP-Gateway can act as a heartbeat producer and heartbeat consumer at the same time. It monitors up to 126 heartbeat producers.

Caused by an interruption of the PROFIBUS-DP the heartbeat producer in the CANopen-DP is stopped and after the resumption of the PROFIBUS-DP-communication it is started again.

After the first reception of a configured heartbeat telegram (blank node numbers are not monitored) and after failure of the heartbeat (no telegram within the *Heartbeat Consumer Time*) a PROFIBUS-diagnostic telegram is transmitted with the following data content:

Octet 16: Octet 7: Octet 823:	complying with the standard = 50_h (Identifier related diagnostics, length 16 byte) Status of the heartbeat for node number 0127 (1. byte: bit 0: <i>Heartbeat-Status node No. 0</i> , bit 7: <i>Heartbeat Status node No. 7</i>		
	Int 7: Heartbeat-Status node No. 7,16. byte,bit 7: Heartbeat-Status node No. 127)		
	artbeat-Status node No. n = Heartbeat evaluation is OK node is not configured for heartbeat or heartbeat is configured but <i>Heartbeat Consumer</i>		

Heartbeat Producer Time: Here the cycle time is defined, with which the CANopen-DP-Gateway, or the configured CANopen modules transmit a heartbeat frame on the node guarding identifier.

Setting the heartbeat producer time to '0' stops the transmission of the heartbeat.

The heartbeat consumer time of the modules monitoring must always be higher than the heartbeat producer time of the heartbeat-transmitting module.

Caused by an interruption of the PROFIBUS-DP the Heartbeat-producer in the CANopen-DP is stopped and after the resumption of the PROFIBUS-DP-communication it is started again.

Parameter	Value range [dec] in [ms]	Description	
Heartbeat Producer	0	no heartbeat transmission (= factory default setting)	
<i>Time</i> 165535		Heartbeat Producer Time (165535 ms)	

 Table 13: Value range of the Heartbeat Producer Time

SDO Timeout: By means of the acyclic data transfer of the PROFIBUS (DP-V1) SDO-accesses on the CAN bus can be made.

Via the parameter *SDO Timeout* the monitoring of the SDO-transfer timeout can be activated, which causes the transmission of a PROFIBUS-diagnostic telegram when a timeout occurs.

If a SDO-read or SDO-write request is not answered within the given timeout-time with a corresponding response-message, a Profibus-DP diagnostic telegram with the *Error-Code 12* in Octet 3 will be transmitted (see page 45).

Parameter	Value range [dec] in [ms]	Description	
SDO Timeout	110000	SDO-timeout-time (110000 ms) Default: 1000 ms	

Table 14: Value range of the SDO Timeout time

MPDO Identifier: Here the value of the multiplex PDO-identifier [1] is entered, on which the CANopen-DP device transmits CAN frames to CANopen slaves.

The CANopen-DP supports only the "Destination Address Mode" (DAM) with Node-ID = '0', i.e. a broadcasting follows, at which <u>all</u> other modules are addressed.

Value range: $MPDO \ Identifier = 385 \dots 1791 \ (default value = 385)$ $= 181_h \dots 6FF_h \ (default-value = 181_h)$

5.1.3 Assignment of the Slots and Setting the CANopen Node-ID

Every simulated PLC-slot specifies a CANopen node. The Node-ID of a CANopen node results from the number of the slot selected.

Because the slots can only be assigned continuously, all slots up to the highest required Note: Node-ID have to be selected.

A maximum of 48 CANopen-nodes can be selected with one PDO respectively. Using several PDOs per node reduces the number of possible nodes.

The slots are selected, by double clicking the device 'Universal Module' in the hardware catalog with activated DP-slave window for every slot.

Fig. 8: Assignment of the slots and selection of the CANopen Node-ID

In the DP-slave window the assigned slots are represented by a '0' in the row "DP ID". In order to configure the selected slot in a properties window the entry has to be double clicked. Depending on the configuration the PLC enters a specific value for the DP-ID.

PDO	Value
TxPDO1	$180_{\rm h} + Node-ID$
TxPDO2	$280_{\rm h} + Node-ID$
TxPDO3	$380_{\rm h} + Node-ID$
TxPDO4	$480_{\rm h} + Node-ID$
RxPDO1	$200_{\rm h} + Node-ID$
RxPDO2	$300_{\rm h} + Node-ID$
RxPDO3	$400_{\rm h} + Node-ID$
RxPDO4	$500_{\rm h} + Node-ID$

The standard PDOs result from the *Node-ID* according to CiA-Standard DS-301:

Table 15: Coding of the CANopen-PDOs

Note:

If the parameter *Slave PDO-Orientation* is set to 'yes' in the parameter telegram, CAN frames are transmitted at the outputs with standard TxPDO-identifiers and CAN frames are received at the inputs with standard RxPDO-identifiers. If the parameter *Slave PDO-Orientation* is 'no' (default), the CAN frames are transmitted via RxPDO-identifiers and they are received via TxPDO-identifiers.

5.1.4 Configuration of a CANopen Node on a PLC-Slot

In order to configure the slots the slot entry has to be double clicked. The *Properties* window opens in which the simulated PLC-slot can be configured. To generate a CANopen node, in the properties window the I/O-Type "Out- input" has to be selected:

Properties - DP slav	e					X
Address / ID						
1/0 Туре:	Out- input	-			Direct Entry	
Output		11		Carrieland		1
Start: 0	ess: Length:	Bute	-		1	
End: 0		Inde				
Process image:	OB1 PI		7			
- Input-						
Addre	ess: Length:	Uni <u>t</u> :	_	Consistent over:	1	
End: 0		Грусе	Ľ		l	
Process image:	OB1 PI		~			
Data for Specific <u>M</u>	anufacturer:	00,00				
(Maximum 14 bytes	hexadecimal, sepa	rated by comm	na or bla	nk space)		
OK				Canc	el Help	

Abb. 9: Example: Configuration of a CANopen node

The individual parameters of the properties window are described in detail in the following chapter "Description of the properties window '*Properties - DP-Slave*'".

5.1.5 Save settings to Hard Disk

Now you have to save the settings via the menu points *Station/Save* to hard disc. Afterwards the settings are transmitted to the PLC by means of the menu points *Target System/Load in Unit*.

5.2 Description of Input Window 'Properties - DP Slave'

- *Address* In the *Address* field the PLC-I/O address is entered as a **decimal value**. The entries for inputs and outputs can be different.
- Length, Unit By means of the fields Length and Unit the number of data bytes for the DP-Slave is defined.
 The entered length must comply with the sum of the data bytes, which are transmitted via the parameter Length RxPDOx/TxPDOx in the field Data for specific Manufacturer (see page 35).

Value range:		
Unit = byte	=>	Length = 132
Unit = word	=>	Length = 116

Consistent over The entry in the field **Consistent over** specifies whether the data is to be transmitted as individual units (bytes, words, etc.) or as complete package (1...32 bytes) during a PLC-cycle. This function is only to be set to 'whole length' if actually required, because the transmission as 'Unit' is faster.

Note: If the data is to be transmitted consistently for the entire length, you have to specify this here *and* you have to use SFC14 and SFC15 (refer to Step7-PLC Manual).
Manufacturer Specific Data

..... In the field *Data for Specific Manufacturer* can be specified, which of the maximum four Rx- and TxPDOs per CANopen-node are used (see table 15/page 30) and the length- and format-parameters of the PDOs are specified, each divided by commas.

The parameters have to be entered as hexadecimal values !

received via TxPDO-identifiers.

Please note that the position of the bytes in the field *Manufacturer Specific Data* depends on the setting of the parameter *SlavePDO-Orientation*.

If the parameter *Slave PDO-Orientation* is set to 'yes' in the parameter telegram, CAN frames are transmitted at the outputs with standard TxPDO-identifiers and CAN frames are received at the inputs with standard RxPDO-identifiers. If the parameter *Slave PDO-Orientation* is 'no' (default), the CAN frames are transmitted via RxPDO-identifiers and they are

SlavePDO-Orientation = 'no'

The position of the bytes in the field *Manufacturer Specific Data* is defined as follows:

1. Byte	2. Byte			
Format-Byte TxPDO1	Format-Byte RxPDO1			
 	-			
 3. Byte	4. Byte	5. Byte	6. Byte	
 Length TxPDO1	Length RxPDO1	Format-Byte TxPDO2	Format-Byte RxPDO2	
	-			
 7. Byte	8. Byte	9. Byte	10. Byte	
 Length TxPDO2	Length RxPDO2	Format-Byte TxPDO3	Format-Byte RxPDO3	
	-			
 11. Byte	12. Byte	13. Byte	14. Byte	
 Length TxPDO3	Length RxPDO3	Format-Byte TxPDO4	Format-Byte RxPDO4	

SlavePDO-Orientation = 'yes'

The position of the bytes in the field *Data for Specific Manufacturer* is defined as follows:

1. Byte	2. Byte			
Format-Byte RxPDO1	Format-Byte TxPDO1			
 3. Byte	4. Byte	5. Byte	6. Byte	_
 Length RxPDO1	Length TxPDO1	Format-Byte RxPDO2	Format-Byte TxPDO2	_
 7. Byte	8. Byte	9. Byte	10. Byte	_
 Length RxPDO2	Length TxPDO2	Format-Byte RxPDO3	Format-Byte TxPDO3	
				-
 11. Byte	12. Byte	13. Byte	14. Byte	
 Length RxPDO3	Length TxPDO3	Format-Byte RxPDO4	Format-Byte TxPDO4	

General Rules for entries in the field *Data of Specific Manufacturer* (for examples, see page 36):

- 1. For every PDO, that should be used, the data length of a value higher than '0' has to be entered.
- 2. If only the leading PDOs are required, the entries for the following PDOs are not necessary (e.g. enter only RxPDO1, TxPDO1, RxPDO2 and Tx-PDO2).
- 3. If only the first PDOs, RxPDO1 and TxPDO1, are specified, the entry of the length is not applicable, i.e. only the format bytes in the first and second byte in the field *Data of Specific Manufacturer* are registered.
- 4. If there are PDOs missing within the parameter list, the bytes of this PDOs have nevertheless to be entered (with 00_h), to allow for the correct byte assignment for the following PDOs.
- 5. For the last RxPDO and the last TxPDO of a node <u>no</u> length entry has to be entered.

(The firmware calculates the remaining bytes in adding up the registered byte-lengths and subtracts this from the byte number calculated from the entries in the fields *Length* and *Unit*. The result is assigned to the last RxPDO and TxPDO respectively.)

Format Byte RxPDOx/TxPDOx:

The *Format Byte RxPDOx/TxPDOx* is used to convert the user data from Motorola format (high byte first = big endian) into Intel format (low byte first = little endian).

Attention: The *Format byte RxPDOx/TxPDOx* always has to be entered in hexadecimal form!

Background:

Messages which are longer than 1 byte are normally transmitted via a CANopen network in Intel format, while the Siemens PLC operates in Motorola format.

Starting with bit 7 of the format byte you can decide whether the following byte is to be converted as well, i.e. swapped, or not. If a '1' is specified for a byte, the following bytes are converted until the next '0' transmitted. The functionality can be explained best by means of an example.

Example:

A CAN telegram has got a date in Intel format in the first word, followed by 2 bytes which are not to be swapped and a long word in the last 4 bytes which is in Intel format again.

Binary the following representation results for the format byte:

Bit No.	7	6	5	4	3	2	1	0
Bit of format- byte	1	0	0	0	1	1	1	0
hex	8				E			
action	begin swap	end swap	unchanged	unchanged	begin swap	swap	swap	end swap
Data- bytes	1	2	3	4	5	6	7	8
CAN- frame	2 byte Intel format		byte 3	byte 4	4 byte Intel format			
PLC- data	2 byte Motorola format		byte 3	byte 4	4 byte Motorola format			

From this the format byte results in $8E_h$. If all eight bytes are to be swapped, for instance, value FE_h has to be specified for the format byte.

The lowest bit is generally without significance, because the telegram and therefore the formatting has been completed. The bit should always be set to 0.

Length RxPDOx/TxPDOx:

Here the length of the PDOs has to be entered.

- 0... data are not evaluated or transmitted
- 1...8 1...8 byte data are evaluated and transmitted

Note:The sum of all data bytes of all PDOs of one data direction
always has to be the same (or smaller), than the number of data-
bytes of the DP-slaves, defined in the fields *Length* and *Unit*
(RxPDO: Inputs; TxPDO: Outputs).

Note:	If the parameter Slave PDO-Orientation is set to 'yes' in the
	parameter telegram, CAN frames are transmitted at the outputs
U	with standard TxPDO-identifiers and CAN frames are received at
_	the inputs with standard RxPDO-identifiers.
	If the parameter Slave PDO-Orientation is 'no' (default), the
	CAN frames are transmitted via RxPDO-identifiers and they are
	received via TxPDO-identifiers.

Entry in the field Data of Specific	Reasonable entries for PLC-slot length		Manning	
Manufacturer [hex]	input	output	Meaning	
00,00	18	18	RxPDO1 und TxPDO1 with 18 byte each, no byte swapping	
8E,00	18	18	RxPDO1 with 18 byte data and byte swapping as described in the example on page 35 and TxPDO1 with 18 byte data without byte swapping	
00,00,01,02,00,00	29	310	no byte swapping, RxPDO1 with 1 byte length, TxPDO1 with 2 byte length, RxPDO2 with 18 byte length, TxPDO2 with 18 byte length	
00,00,08,08,00,00,08, 08,00,00,08,08,00,00	32	32	no byte swapping, all PDOs with 8 byte data length	

Examples for the Entries in *Manufacturer-specific Data* for Slave-PDO Orientation = yes:

Examples for the Entries in *Manufacturer-specific Data* for Slave-PDO Orientation = no:

Entry in the field Data of Specific	Reasonable entries for PLC-slot length		Meaning	
Manufacturer [hex]	input	output	Meaning	
00,00	18	18	TxPDO1 und RxPDO1 with 18 byte each, no byte swapping	
00, 8E	18	18	RxPDO1 with 18 byte data and byte swapping as described in the example on page 35 and TxPDO1 with 18 byte data without byte swapping	
00,00,02,01,00,00	310	29	no byte swapping, TxPDO1 with 2 byte length, RxPDO1 with 1 byte length, TxPDO2 with 18 byte length, RxPDO2 with 18 byte length	
00,00,08,08,00,00,08, 08,00,00,08,08,00,00	32	32	no byte swapping, all PDOs with 8 byte data length	

6. Acyclic PROFIBUS Data Transfer to CANopen

6.1 Mode of Operation

The CANopen-DP features the acyclic PROFIBUS data transfer for the transmission of parameters between PROFIBUS and CAN (PROFIBUS-protocol extension DP-V1). The principle of the data transmission for reading and writing of the parameter is identical for both directions:

- First a **DS-Write request** is transmitted, in which the direction of the transmission is defined (*Request Parameter* for reading of parameters and *Change Parameter* for writing of parameters respectively). Here you can specify if a SDO-read request or a SDO-write request is generated from the CANopen-DP.
- In the following **DS-Read request** the result of the operation is transmitted. For a *Request Parameter* (request $ID = 01_h$) a SDO-read request is generated, for a *Change Parameter* (request $ID = 02_h$) a SDO-write request is generated. As base of the parameter transmission the PROFIBUS profile *ProfiDrive* [2] is used. The complete procedure is already defined there.

CANopen-DP = **DP-Slave and DP-Master** CANopen-(SPS-S7) **CANopen-SDO-Client** SDO-Server DPV1 Write.req DB47 Parameter Request with data (parameter request) SDO Request Write.res (Read/WriteRequest) without data Read.req DB47 Reading or without data checking and acceptance Read.res(-) of the parameters without data SDO Response Read.req DB47 (Read/WriteResponse) without data Parameter Read.res Response with data (parameter response)

The following figure shows the conversion of the PROFIBUS-access in a SDO-transfer:

Fig. 10: Principle of the single acyclic parameter transmission

In a DS-Write-request also several objects can be written or requested.

The following figure shows the PROFIBUS access in n SDO-transfers:

Fig. 11: Principle of the multiple acyclic parameter transmission

6.2 Structure of the PROFIBUS Write Request

For the write request a PROFIBUS telegram with variable length and two address extensions is used. The data field of the telegram has the following structure:

Segment	Octet	Name	Description
	1.	Function_Num	Bit 7: 0: Request/Response OK 1: Response Error Frame Bit 60: Function_Num (5F _h for DS_Write)
-	2.	Slot_Number	0 (not evaluated)
	3.	Index	always 47 (see [2])
	4.	Length	length of user data
	5.	Request Reference, Handshake Counter	consecutive number, increased with every request
Request Header	6.	Request ID	01_h : Request Parameter 02_h : Change Parameter
	7.	Node-ID	CANopen Node-ID
	8.	No. of Parameters	number (n) of the SDOs in this request (here: $n = 1$)
	9.	Attribute	always 10 _h (see [2])
	10.	No. of elements	number of the elements, always 1
	11.	Index, High-Byte	parameter number, higher-order byte (is converted to CANopen index-high byte)
Parameter Address	12.	Index, Low-Byte	parameter number, lower-order byte (is converted in CANopen index-low byte)
	13.	Subindex, High-Byte	subindex, higher-order byte (not used in CANopen)
	14.	Subindex , Low-Byte	subindex, lower-order byte (is converted to CANopen subindex)
Parameter	15.	Format	data format (only existing, if request $ID = 02_h$ change parameter), data format see page 44
(only if Request-ID	16.	No. of values	number of values (only existing, if request-ID = 02_h change parameter)
$= 02_{\rm h}$)	17.	Values	values
	18.	Values	(only existing, if request-ID = $02_{\rm h}$ change parameter)

Table 16: Content of the data field PDU at "Write-Request with Data" (parameter-request)

Octet	Name	Description
1.	Function_Num	Bit 7: 0: request/response OK 1: response error frame Bit 60: <i>Function_Num</i> (5F _h for DS_Write)
2.	Slot_Number	0 (not evaluated)
3.	Index	47
4.	Length	length of the user data ,mirrored

Table 17: Content of the data field PDU at "Write-Response without Data"

Segment	SDO	Octet	Name	Description	
				Bit 7: 0: Request/Response OK	
		1.	Function_Num	1: Response Error Frame	
-	-	2	Slot Number	$\frac{D(\text{not evaluated})}{D(\text{not evaluated})}$	
		2.	Index	always 47 (see [2])	
		<i>J</i> .	Length	length of the user data	
			Request Reference		
Paguast		5.	Handshake Counter	consecutive number, increased with every request	
Header	-	6.	Request ID	01_h : Request parameter 02_h : Change parameter	
		7.	Node-ID	CANopen Node-ID	
		8.	No. of Parameters	number $(n = 5)$ of the SDOs in this request	
		9.	Attribute		
		10.	No. of elements		
	1	11.	Index, High-Byte	Parameter Address for the 1st SDO	
	1.	12.	Index, Low-Byte		
		13.	Subindex, High-Byte		
		14.	Subindex , Low-Byte		
	2.	15.	Attribute		
Parameter		16.	No. of elements		
Address		17.	Index, High-Byte	Parameter Address for the 2nd SDO	
for the		18.	Index, Low-Byte	Tarameter Address for the 2nd SDO	
SDOs		19.	Subindex, High-Byte		
1 5 (n)		20.	Subindex , Low-Byte		
	•	:	:	· · · · · · · · · · · · · · · · · · ·	
	5. (n)	33.	Attribute		
		34.	No. of elements		
		35.	Index, High-Byte	Parameter Address for the 5th (n, th) SDO	
		36.	Index, Low-Byte	Tarameter Address for the 5th (n-th.) 5DO	
		37.	Subindex, High-Byte		
		38.	Subindex , Low-Byte		
		39	Format (Byte)		
	1	40	No. of values (1)	Parameter Values for the 1st SDO	
	1.	41	Values (Byte 1)	(e.g: Transmission of a byte)	
		42	Values (0)		
D (43	Format (Word)		
Values	2	44	No. of values (1)	Parameter Values for the 2 nd SDO	
for SDOs	۷.	45	Values (Byte 1)	(e.g: Transmission of a word)	
1 5 (n)		46	Values (Byte 2)		
(only if	:	:	· ·		
= 02		55	Format (Double Word)		
- - n/		56	No. of values (1)		
	5(n)	57	Values (Byte 1)	Parameter Values for the 5th (n-th.) SDO	
	J. (II.)	58	Values (Byte 2)	(e.g.: Transmission of a double word)	
		59	Values (Byte 3)		
			60	Values (Byte 4)	

6.2.1 Example : Structure of the PROFIBUS Write Request for n = 5 SDOs

Table 18: Example for the content of the data field PDU at "Write-Response without Data" (n =5)

The number of the octets for the parameter address and the parameter values depends on the number (n) of the SDOs in the request.

The content of the telegrams (values) is always transmitted as word or double word, with the Most Significant Byte first (Big Endian).

If the value consists of an odd number of bytes, always a zero byte is appended.

6.3 Structure of the PROFIBUS-Read-Request

For the read request a PROFIBUS telegram with variable length and two address extensions is used. The data field of the telegram is composed of:

Octet	Name	Description
1.	Function_Num	Bit 7: 0 Bit 60: Function_Num ($5E_h$ for DS_Read)
2.	Slot_Number	0 (not evaluated)
3.	Index	47
4.	Length	length of the user data, (maximum)

Table 19: Content of the data field PDU at "Read-Request without Data"

Segment	Octet	Name	Meaning
	1.	Function_Num	Bit 7: 0: Request/Response OK 1: Response Error Frame Bit 60: <i>Function_Num</i> (5E _h for DS_Read)
-	2.	Slot_Number	0 (not evaluated)
	3.	Index	always 47 (see [2])
	4.	Length	length of the user data
	5.	Request Reference, Handshake Counter	consecutive number, increased with every request
Response	6.	Request ID	01_h : Request parameter 02_h : Change parameter
neader	7.	Node-ID	CANopen Node-ID
	8.	No. of Parameters	Number (n) of the SDOs in this request (here $n = 1$)
	9.	Attribute	always 10 _h (see [2])
	10.	No. of elements	number of the elements, always 1
	11.	Index, High-Byte	parameter number, higher-order byte (is converted to CANopen index-high byte)
Parameter Address	12.	Index, Low-Byte	parameter number, lower-order byte (is converted to CANopen index-low-byte)
	13.	Subindex, High-Byte	subindex, higher-order byte (is not used in CANopen)
	14.	Subindex , Low-Byte	subindex, lower-order byte (is converted to CANopen subindex)
Parameter	15.	Format	data format (only existing, if request-ID = 01_h request parameter), data format see page 44
(only if Request-ID	16.	No. of values	number of values (only existing, if request-ID = 01_h request parameter)
$= 01_{h}$)	17.	Values	values
	18.	Values	(only existing, if request-ID = 01_h request parameter)

Table 20: Content of the data field PDU at "Read-Response" (parameter-response)

6.3.1 Example: Structure of the PROFIBUS-Read-Requests for n = 5 SDOs

The number of the octets of the parameter address and the parameter values depends on the number (n) of the SDOs in the request.

Segment	SDO	Octet	Name	Description
		1.	Function_Num	Bit 7: 0: Request/Response OK 1: Response Error Frame Bit 60: Function Num (5E, for DS Read)
-	-	2.	Slot Number	0 (not evaluated)
		3.	Index	always 47 (see [2])
		4.	Length	length of the user data
		5.	Request Reference, Handshake Counter	consecutive number, increased with every request
Request	-	6.	Request ID	$01_{\rm h}$: Request parameter $02_{\rm h}$: Change parameter
Header		7.	Node-ID	CANopen Node-ID
		8.	No. of Parameters	number $(n = 5)$ of the SDOs in this request
		9.	Attribute	
		10.	No. of elements	
	1	11.	Index, High-Byte	Description A library Conductor (DO)
	1.	12.	Index, Low-Byte	Parameter Address for the 1st SDO
		13.	Subindex, High-Byte	
		14.	Subindex , Low-Byte	
	2.	15.	Attribute	
		16.	No. of elements	
Parameter		17.	Index, High-Byte	
Address		18.	Index, Low-Byte	Parameter Address for the 2nd SDO
$1 \dots 5$ (n)		19.	Subindex, High-Byte	
()		20.	Subindex , Low-Byte	
	:	:	· · · ·	· ·
	5. (n)	33.	Attribute	
		34.	No. of elements	
		35.	Index, High-Byte	Description Address for the 5th (, th) 9DO
		36.	Index, Low-Byte	Parameter Address for the 5th (<i>n</i> -th) SDO
		37.	Subindex, High-Byte	
		38.	Subindex , Low-Byte	
		39	Format (Byte)	
	1	40	No. of values (1)	Parameter Values for the 1st SDO
	1.	41	Values (Byte 1)	(e.g: Transmission of a byte)
		42	Values (0)	
		43	Format (Word)	
Parameter	2	44	No. of values (1)	Parameter Values for the 2nd SDO
for SDOs	۷.	45	Values (Byte 1)	(e.g: Transmission of a word)
1 5 (n)		46	Values (Byte 2)	
(only if	:	:		
Request-ID $= 01.$		55	Format (Double Word)	
U ¹ h)		56	No. of values (1)	
	5 (57	Values (Byte 1)	Parameter Values for the 5th (<i>n</i> -th) SDO
	5. (n.)	58	Values (Byte 2)	(e.g: Transmission of a double word)
		59	Values (Byte 3)	
		60	Values (Byte 4)	

Table 21: Example of the data field PDU at "Read-Request with Data" for n =5

6.4 Data Format

The data format has to be stated explicitly for every access. Depending on the format the conversion PLC-format <-> CANopen-format has to be carried out according to the rules listed below (the table below can e.g. be applied for SIEMENS S7, because the conversion of the data from little-endian to big-endian format is necessary).

Format	Format	Data Type	Data Type	Conversion
[dec]	[hex]	PROFIBUS	CANopen	PLC-Format <-> CANopen-Format
1	01	Boolean	Boolean	no
2	02	Integer8	INTEGER8	no
3	03	Integer16	INTEGER16	yes (2 byte)
4	04	Integer32	INTEGER32	yes (4 byte)
5	05	Unsigned8	UNSIGNED8	no
6	06	Unsigned16	UNSIGNED16	yes (2 byte)
7	07	Unsigned32	UNSIGNED32	yes (4 byte)
8	08	FloatingPoint	REAL32	yes (4 byte)
9	09	VisibleString	VisibleString	no
10	0A	OctetString	OctetString	no
33	21	N2 Normalized value (16 bit)	INTEGER16	yes (2 byte)
34	22	N4 Normalized value (32 bit)	INTEGER32	yes (4 byte)
65	41	Byte	UNSIGNED8	no
66	42	Word	UNSIGNED16	yes (2 byte)
67	43	Double Word	UNSIGNED32	yes (4 byte)
68	44	Error	Error	no

Table 22: Data format

The table below shows the order of the data bytes, for the PLC using the Motorola-format (big-endian, high-byte first) and CANopen the Intel-format (little endian, low-byte first):

Data length [bytes]	Order PLC	Order CANopen	Example PLC	Example CANopen
1	byte 1	byte 1	12 _h	12 _h
2	byte 1 byte 2	byte 2 byte 1	12 34 _h	34 12 _h
4	byte 1 byte 2 byte 3 byte 4	byte 4 byte 3 byte 2 byte 1	12 34 56 78 _h	78 56 34 12 _h

Table 23: Comparison of the byte orientation little/big-endian

6.5 Error Codes of the PROFIBUS at Acyclic Transfers to/from CANopen

Octet No.	Name	Meaning PLC	Meaning CANopen (SDO-abort code)
1	Function_Num	bit 7: 1: response error frame bit 60: Function_Num $(5E_h \text{ for DS}_Read, 5F_h \text{ for DS}_Write)$	-
2	Error_Decode	always 128 (DP-V1)	-
		bit 7 4: error class bits bit 3 0: error code bits	-
		error class = 09: reserved	-
3	Error Code 1	error class = 10: application error code = 0: read error error code = 1: write error error code = 1: write error error code = 8: version conflict error class=11: access error code = 0: error code = 0: invalid index error code = 2: invalid slot (Node-ID) error code = 3: type conflict error code = 4: invalid area error code = 9: invalid type error code = 12: timeout error error code = 13: service unsupported	not used not used INDEX != 47 slot (Node-ID) > 127 not used not used not used 0504 0000
		error code = 15: generic error	
		error class = 12: resource error code = 0: read constr. conflict error code = 1: write constr. conflict error code = 2: resource busy error code = 3: resource unavailable	not used not used not used no CAN-Ack or read-request without preceding write-request
4	Error Code 2	always 0	always 0

Table 24: Error codes at acyclic transfers

If communication to a CANopen-node is not possible (node is nonexistent or the communication is disturbed), the CANopen-DP Gateway transmits a SDO-abort according to CANopen-standard and reports the corresponding error (error class 11/error code 12).

All SDO-abort codes, which are not listed here and in table 25, cause a generic error (error class 11/error code 15).

If the *Node-ID* is 255 (see page 39), a MPDO (DAM-PDO, structure see [1]) is generated as broadcast. Because this service is unconfirmed, on PROFIBUS-side it is answered with response OK, or with error code error class 12/error code 3 (resource unavailable) in case of a CAN-Ack missing.

6.5.1 Error-Numbers in DPV1 Parameter Value

In case of an error (negative partial response) the parameter value has the following content:

Error No. (error number)	Error Name	Meaning CANopen (SDO-Abort-Code)
0x00	Impermissible index	06020000
0x01	Parameter value cannot be changed	06010000/1/2
0x02	Low or high limit exceeded	06090030/1/2
0x03	Faulty subindex, subindex can not be accessed	06090011
0x05	Incorrect data type	06070010/2/3
0x11	Request cannot be executed because of operating state	08000021
0x16	Parameter address impermissible	06040043

Format = error No. of values = 1 Value = error value = error number

 Table 25: Error numbers in DPV1 parameter responses

7. CANopen Introduction

Apart from basic descriptions of the CANopen, this chapter contains the most significant information about the implemented functions.

A complete CANopen description is too extensive for the purpose of this manual.

Further information can therefore be taken from the CANopen standard 'CiA Draft Standard 301' [1].

7.1 Definition of Terms

COB	Communication Object
Emergency-Id	Emergency Data Object
NMT	Network Management (Master)
PDO	Process Data Object
Rx	receive
SDO	Service Data Object
Sync	Sync(frame) Telegram
Tx	transmit

PDOs (Process Data Objects)

PDOs are used to transmit up to 8 byte process data. In the 'Receive'-PDO (RxPDO) process data is received. In the 'Transmit'-PDO (TxPDO) process data is transmitted.

SDOs (Service Data Objects)

SDOs are used to transmit module internal configuration- and parameter data. The object dictionary can be accessed via SDOs.

In opposition to the PDOs SDO-messages are confirmed. A write or read request on a data object is always answered by a response telegram with an error index.

NMT State Machine

For the control of the device functions all CANopen-devices feature an internal state machine. In the individual states only particular functions are permitted. The state transitions can be triggered by internal events (e.g. boot-up, error, reset) or by the NMT-master.

7.2 NMT Boot-up

After switching on every CANopen device obtains a phase of initialisation. The device automatically enters the Pre-Operational state directly after finishing the device initialisation.

Usually a telegram to switch from *pre-operational* status to *operational* status after boot-up is sufficient. For this the 2-byte telegram (01_h) , (00_h) , for example, has to be transmitted to CAN-identifier (0000_h) (= Start Remote Node all Devices).

7.3 CANopen Object Directory

The object directory is basically a (sorted) group of objects which can be accessed via the network. Each object in this directory is addressed with a 16-bit index. The index in the object directories is represented in hexadecimal format.

The index can be a 16-bit parameter in accordance with the CANopen specification or a manufacturerspecific code. By means of the MSBs of the index the object class of the parameter is defined.

Index [Hex]	Object	Example		
0001 009F	definition of data types	-		
1000 1FFF	Communication Profile Area	1001 _h : error register		
2000 5FFF	Manufacturer Specific Profile Area	-		
6000 9FFF	Standardized Device Profile Area	according to application profile DS 40x		
A000 FFFF	reserved	-		

Part of the object directory are among others:

Type and number of the supported objects depend on the corresponding CANopen module type.

7.4 Access on the Object Directory via SDOs

SDOs (Service Data Objects) are used to get access to the object directory of a device. They are used for initialisation of a device and for transmission of the parameters.

SDO-accesses are only possible if the CANopen module is in the state operational or pre-operational

The SDOs are transmitted on ID ' 600_h + NodeID' (request). The receiver responds the parameter on ID ' 580_h + NodeID' (response).

An SDO is structured as follows:

Identifier	Command code	Index		0.1.1.1	LCD	Dete Seld	MCD
		(low)	(high)	Sub-index	LSB	Data neld	MSB

Example:

600.+	23 _h	00	14 _h	01	$7F_h$	04 _h	00	00
Node-ID	(write)	(Index= (Receive-PDO	=1400 _h) D-Comm-Para)	(COB-def.)	D	ata (here CC)B-ID) = 047	7F _h

Description of the SDOs:

Command code . . The command code transmitted consists amongst others of the command specifier and the length. Frequently required combinations are, for instance:

 $40_{h} = 64_{dec}$: Read Request, i.e. a parameter is to be read $23_{h} = 35_{dec}$: Write Request with 32 bit data, i.e. a parameter is to be set

The module responds to every received telegram with a response telegram. This can contain the following command codes:

 $43_{h} = 67_{dec}$: Read Response with 32 bit data, this telegram contains the parameter requested $60_{h} = 96_{dec}$: Write Response, i.e. a parameter has been set successfully $80_{h} = 128_{dec}$: Error Response, i.e. the CAN-module reports a communication error

Frequently Used Command Codes

The following table summarizes frequently used command codes. The command frames must always contain eight data bytes. Notes on the syntax and further command codes can be found in DS-301 [1], chapter "Service Data Object".

Command	Number of data bytes	Command code [Hex]
Write Request (Initiate Domain Download)	1 2 3 4	2F 2B 27 23
Write Response (Initiate Domain Download)	-	60
Read Request (Initiate Domain Upload)	-	40
Read Response (Initiate Domain Upload)	1 2 3 4	4F 4B 47 43
Error Response (Abort Domain Transfer)	-	80

Index, Sub-Index . Index and sub-index address the parameter in the object dictionary.

Data Field The data field has got a size of up to four bytes and is always structured 'LSB first, MSB last'. The least significant byte is always in 'Data 1'. With 16-bit values the most significant byte (bits 8...15) is always in 'Data 2', and with 32-bit values the MSB (bits 24...31) is always in 'Data 4'.

Error Codes of the SDO Domain Transfer

The following error codes might occur (according to DS-301[1], chapter "Abort SDO Transfer Protocol"):

Error code [Hex]	Name	Description
0x05040001 0x06010000 0x06010002 0x06020000 0x06040043 0x06070010 0x06070012 0x06070013 0x06090011 0x06090030 0x06090031 0x06090032 0x08000000 0x08000021	SDO_CS_UNKNOWN SDO_WRONG_ACCESS SDO_WRITE_ONLY SDO_READ_ONLY SDO_WRONG_INDEX SDO_PARA_INCOMPATIBLE SDO_WRONG_LENGTH SDO_PARA_TO_LONG SDO_PARA_TO_SHORT SDO_VARA_TO_SHORT SDO_VALUE_EXCEEDED SDO_VALUE_EXCEEDED SDO_VALUE_TOO_HIGH SDO_VALUE_TOO_LOW SDO_OTHER_ERROR SDO_LOCAL_CONTROL	wrong command specifier wrong write access attempt to read a write only object attempt to write a read only object wrong index general parameter incompatibility reason wrong number of data bytes length of service parameter too high length of service parameter too low wrong sub-index transmitted parameter is outside the accepted value range value of parameter written too high value of parameter written too low general error data cannot be transferred or stored to the application because
		of local control

7.5 Access on Process Data via PDOs

During operation, the process data of a CANopen device are exchanged via PDOs.

There are four standard-PDOs per data direction available. The communication parameters of these RxPDOs and TxPDOs can be programmed via SDOs. The programmable communication parameters can be e.g. the COB-ID and the transmission type (e.g. sync/async).

Also via the communication parameters the PDOs are assigned with the objects of the object dictionary, which contain the relevant process data. The CANopen-standard DS-301 [1] defines default assignments of the PDOs with objects for some typical applications.

How many and which PDOs are supported by a CANopen device and which communication parameters can be changed depends on the individual CANopen-firmware of the devices.

7.6 Overview of Used CANopen Identifiers

CAN-identifier [hex]	Name	Length	Data [hex]	Description
0	NMT	2	01 xx	Start (Pre-operational -> Operational)
0	NMT	2	80 xx	Operational -> Pre-operational
0	NMT	2	81 xx	Reset
0	NMT	2	82 xx	Reset communication
80 _h	NMT	0	-	SYNC to all
$80_{\rm h} + Node-ID$	SDO	08 bytes	error code	Emergency message

The following table shows a short list of the significant general CANopen telegrams.

Node-ID... Node-ID of the responded CANopen module

xx... Node-ID of a CANopen-module or '00' for message to all CANopen-participants

8. CANopen Object Dictionary of the CANopen-DP-Gateway

Index [hex]	Sub index [dec]	Name	Data type	R/W	Default value
1000	-	Device Type	unsigned 32	ro	0000 0000 _h
1001	-	Error Register	unsigned 8	ro	00 _h
1005	-	COB-ID-Sync	unsigned32	rw	80 _h
1008	-	Manufacturer Device Name	visible string	ro	"CANopen-DP"
1009	-	Manufacturer Hardware Version	visible string	ro	x.yy (depending on version)
100A	-	Manufacturer Software Version	visible string	ro	x.yy (depending on version)
100C	-	Guard Time	unsigned 16	rw	0000 _h
100D	-	Life Time Factor	unsigned 8	rw	00 _h
1010	-	Store Parameter	unsigned 32	rw	no function
1011	-	Restore Parameter	unsigned 32	rw	no function
1016	126	Consumer Heartbeat Time	array	rw	00 _h
1017	-	Producer Heartbeat Time	unsigned 16	rw	00 _h
	0		unsigned 8	ro	number of entries=4
	1		unsigned 32	ro	vendor ID=00000017 _h
1018	2	Identity Object	unsigned 32	ro	prod. code= 22908002_{h} => C.2908.002
	3		unsigned 32	ro	software revision number=40001 _h
	4		unsigned 32	ro	serial number

For a detailed description of the objects refer to DS-301 [1].

Table 26: Implemented CANopen objects of the CANopen-DP-Gateway

9. CAN-Layer-2 Functions

9.1 Introduction

Note:

1

Besides the CANopen implementing the CANopen-DP device supports the CAN-Layer-2 functions.

If only CAN-Layer-2 functions are required, the CANopen-DP should not be used, but the unit "CAN-DP", which is optimized for CAN-Layer-2 applications.

Below the significant differences are listed, which result from the CAN-Layer-2-implementation of the CANopen-DP in reference to the functions described so far:

External (module specific) diagnostic bytes:

- byte 11 / error 7 and 8 are not defined

Identifier related diagnostic bytes:

- are inapplicable for CAN-Layer-2

Procedure of configuration:

- the device related parameter for CANopen (*Slave PDO orientation, SDO Timeout, Heartbeat* und *MPDO Identifier*, see page 20), that can be set via the parameter telegram (in the "Properties DP-Slave" window), do not affect the CAN-layer-2 functions.
- all CAN identifiers in the 11-bit and in the 29-bit CAN identifier range can be addressed.

Restrictions for the CANopen implementation:

- For the CAN-layer-2 data transfer with CAN-identifiers simulated slots of the PROFIBUS slaves are assigned, as for the cyclic data transfer via CANopen-PDOs. A double assignment is not possible, i.e. a slot can only be assigned once. This must be considered at the selection of the CANopen Node-ID, because the Node-ID is defined via the slot number selected.

9.2 Configuration via SIMATIC Manager

9.2.1 Course of Configuration

Note: If operation with simultaneous use of the CANopen and the CAN-Layer-2 function is required, the CANopen-configuration should always be carried out first, because the slot number is important here (= Node-ID). The slots which are not used for CANopen can be configured for the CAN-Layer-2 data transfer. The slot number is of minor importance for CAN-Layer-2 data transfer.

In the following the configuration of a CANopen-DP is described which has not already been configured. If a CANopen configuration has already been carried out, continue with the configuration as described on page 61.

1. Select CANopen-DP

Select menu *Hardware Catalogue* and then *Additional Field Devices* and *Gateway*. Select *esd CANopen-DP* there.

2. Set PROFIBUS address

Set the PROFIBUS address as described in chapter 9.2.2 on page 56.

- **3.** Parameter Telegram (set CAN bit rate, general configuration and CANopen module ID) Configure the settings by means of the parameter telegram as described in chapter 9.2.3 on page 57.
- **4.** Assignment of the Slots and setting the CANopen node-ID Assign the slots as described in chapter 9.2.4 on page 60.
- **5.** Configuration of the Slots (SPS-Adresse) Configure the slots as described in chapter 9.2.5 on page 61.

6. Save settings on hard disk

Save the settings as described in chapter 9.2.6 on page 61.

9.2.2 Set PROFIBUS Address

A window opens in which you have to specify the PROFIBUS station address.

Attention!: The *hexadecimal* address set via the coding switches has to be *converted* into a *decimal* value and entered here!

HW Config - [SIMAT	CE 300(1) (Configuration) dpv1test]	_	6 ×
■ 00 UR 1 P 2 V C X2 P 3 4 5 c	307 ! PROFIBUS(1): DP.Mastersystem (1) PROFIBUS(1): DP.Mastersystem (1)	End Image: Standaud Bolie: Standaud Image: Standaud Image: Standaud Image: Stan	□×1 † mi
 <!--</td--><td>Properties - PROFIBUS interface CANopen-DP Image: Control of the second sec</td><td></td><td>τ_s</td>	Properties - PROFIBUS interface CANopen-DP Image: Control of the second sec		τ _s

Fig. 12: Setting the PROFIBUS address of the CANopen-DP

9.2.3 Parameter Telegram (CAN-Bit Rate and Configuration)

The module 'DP slave' is now automatically inserted in the configuration window. Configuration settings can be changed by means of the parameter telegram.

The parameter setting of the DP-Slave can be done in the Properties window which opens, if the header of the DP-slave window is double clicked (here line '(17) CANopen-Slave').

Fig. 13: Setting the parameters in the DP-slave properties window

Description of Parameters:

CAN-Bit rate

For the bit rate the following selections can be made:

Bitrate [kbit/s]	Bitrate [kbit/s]
1000	100
666,6	66,6
500	50
333,3	33,3
250	20
166	12,5
125	10

 Table 27: Setting the bit rate in 14 levels

Communication Window: (CW)	: This parameter activates the Communication Window. It is described in detail on page 64.	
Slave PDO Orientation: (SO)	This parameter is only relevant for CANopen applications (see page 21).	
Heartbeat Configuration: (HC)	This parameter is only relevant for CANopen applications (see page 21).	
RTR-Frames: (NR)	Transmit RTR-frames for the Rx-identifiers configured via PROFIBUS.	
CANopen-Slave: (CS)	see page 21	
CANopen-Master: (CM)	see page 21	
Start-Frame: (AS)	see page 21	
Page-Mode: (PM)	Activate Page-Mode. Refer to the CAN-DP software manual [4] for a detailed description of Page-Mode.	
Module-ID:	see page 22	

Wakeup TimeVia parameter Wakeup Time a delay in seconds is specified. It
determines the time a module has to wait after a RESET or power-on,
before it starts to transmit data on the CAN bus.

The *Wakeup Time* specified here, overwrites the value of the *Wakeup Time* stored previously in the CANopen-DP gateway, if a value not equal '255' was specified. If '255' is specified, the value stored in the gateway will be used.

If parameter *Wakeup Time* is set to '0', the module does not wait, but starts the transmission of data as soon as they are available.

The *Wakeup Time* is specified as a decimal value, here.

Parameter	Value range [dec] in [s]	Description
	0	Wakeup time function off
Wakeun Time	1254	Wakeup time in seconds
// wheelp 1 mile	255	Use current value from gateway (default)

 Table 28: Function of parameter Wakeup Time

SYNC Time:

see page 23

9.2.4 Assigning the Slots of the DP-Slave

The number of slots to be used by the DPslave for data exchange is set by double clicking the device 'Universal Module' in the *hardware catalog* with activated DP-slave window for each byte.

In the DP-slave window the assigned slots are represented by a '0'.

Fig. 14: Assignment of the DP-slave slots

9.2.5 Configuration of Slots for the CAN-Layer-2 Data Exchange

In order to configure the slots the slot entry has to be double clicked. A properties window opens in which the simulated PLC-slots are configured. Below, two examples with 11-bit identifiers are shown:

Data direction:	input	Data direction:	output
PLC address:	172_d	PLC address:	172_d
Length:	6	Length:	6
Unit:	byte	Unit:	byte
Consistent for:	whole length	Consistent for:	whole length
Identifier:	0289_h	Identifier:	0309_h
Form byte:	$B8_h$	Form byte:	$B8_h$

DP Slave Properties	DP Slave Properties
Address / ID	Address / ID
I/D type: Input ▼ Direct Entry Input Address: Length: Unit: Consistent yia: Start: 172 6 ∰ Byte ▼ Total Length ▼ End: 177	I/O type: Dutput ▼ Direct Entry Output Address: Length: Unit Congistent via: Start: 172 6 ₩ Byte ▼ Total Length ▼ End: 177 Part process image No: 0 ₩
Part process image No: Image: Comment: Comment: (Manufacturer-specific data, max. [02,89,88] 14 bytes hexadecimal, separated by comma or space) DK Cancel	Comment: [Manufacturer-specific data, max. [03.09,B8] 14 bytes hexadecimal, separated by comma or space) DK Cancel

Fig. 5.2.3: Example: Configuration of input data

Attention!:	In order to guarantee that the module operates faultless, always at least one output
\triangle	(any unit) has to be configured. The PROFIBUS controller does not trigger an interrupt, if no output is defined! If no CAN-assignment is to be made when an output is defined, it is permissible to specify the value $07F8_{\rm h}$ as an identifier, here.

The individual parameters of the properties window will be explained in detail in the following chapter.

9.2.6 Save Settings to Hard Disc

Now you have to save the settings via menu points *Station/Save* to hard disc. Afterwards the settings are transmitted to the PLC by means of menu points *Target System/Load in Unit*.

9.2.7 Description of the Window 'Properties - DP-Slave'

I/O-Type In the field *I/O-Type* 'Input' or 'Output' has to be selected depending on the data direction required for CAN-Layer-2 applications. Other entries are not permissible. (The firmware distinguishes between CANopen- and CAN-Layer-2 data exchange by evaluation of this parameter.)
 Address In the *Address* field the PLC-I/O-address is entered as a **decimal value**.

- *Length*, *Unit* By means of the fields *Length* and *Unit* the number of data bytes is defined. (Length ≤ 8 bytes and 4 words respectively).
- *Consistent over* The entry in the field *Consistent over* specifies whether the data is to be transmitted as individual units (bytes, words, etc.) or as complete package (1...8 bytes or 16 bytes in Communication-Window) during a PLC-cycle. This function is only to be set to 'whole length' if required, because the transmission as 'Unit' is faster.

Note:If the data is to be transmitted consistently for the entire length,
you have to specify this here and you have to use SFC14 and
SFC15 (refer to Step7-PLC Manual).

Comment	In the field <i>Comment</i> the CAN identifier and then the control byte <i>form</i> (see
(Data for Specific	next page), each separated by comma, are transmitted in the two (four) first
Manufacturer)	bytes. The data format of all entries is hexadecimal (!).

E.g.: 20, 31, 45, 67, 00

If 'input' has been selected in the *I/O-Type* field, the CAN identifier entered there is regarded as an Rx-identifier by the PLC. If 'output' has been selected in the *I/O-Type*, the CAN identifier entered here is a Tx-identifier.

Background:

Messages which are longer than 1 byte are normally transmitted via a CANopen network in Intel notation, while the Siemens PLC operates in Motorola format.

Starting with bit 7 of the format byte you can decide whether the following byte is to be converted as well, i.e. swapped, or not. If a '1' is specified for a byte, the following bytes are converted up to and inclusive the next '0' transmitted. The functionality can be explained best by means of an example.

Example:

A CAN telegram has got a date in Intel format in the first word, followed by two bytes which are not to be swapped and a long word in the last four bytes in Intel format again.

Binary the following representation results for the format byte:

Bit No.	7	6	5	4	3	2	1	0
Bit of <i>format-</i> <i>byte</i>	1	0	0	0	1	1	1	0
hex		8	3			H	Ŧ	
action	begin swap	end swap	unchanged	unchanged	begin swap	swap	swap	end swap
	<u> </u>		1				1	
Data- bytes	1	2	3	4	5	6	7	8
CAN- frame	2 b Intel f	yte ormat	byte 3	byte 4		4 b Intel f	yte format	
PLC- data	2 b Motorol	yte a format	byte 3	byte 4		4 b Motorol	yte a format	

From this the format byte results in $8E_h$. If all eight bytes are to be swapped, for instance, value FE_h is specified for the format byte.

The lowest bit is generally without significance, because the telegram and therefore the formatting has been completed. The bit should always be set to 0.

9.3 The Communication Window

9.3.1 Introduction

The cyclic PROFIBUS-accesses address the CANopen PDO-objects of the configured CANopennodes. Via acyclic accesses the CANopen SDO-accesses can be carried out.

The *Communication Window* features the option to access <u>all</u> CAN-identifiers on the layer-2-level, without CANopen-support.

In the Communication Window only one PLC-address is needed to access different Tx-identifiers and different Rx-identifiers. This is possible, because the identifiers of the CANopen-modules are transmitted as parameters together with the data at each access.

The disadvantage of the Communication Window is the lower data flow, though. Therefore we recommend to use the Communication Window for non-time-critical accesses only (e.g. parameterisation).

Attention: The data length must always be 16 bytes in the configuration! The identifier to be used is always $FFEF_h!$

The Communication-Window is described in detail on the following pages.

9.3.2 Configuration of the Communication Window

The Communication Window is configured via PROFIBUS. An entry for each the transmission and reception of data via the Communication Window is required. The firmware only accepts these two entries.

The following two pictures show the required properties. Apart from the PLC-address and the specifications for the SYNC time in the comment bytes 4 and 5, all parameters have been specified. Even the identifier cannot be selected freely! Consistently the whole length has always to be specified! A shared PLC address or different PLC addresses are permissible for input and output direction.

Data direction:	output
PLC address:	any (example: 30)
Length:	16 (always)
Unit:	byte
Consistent for:	whole length!
Identifier:	FFEF _h (always)
Form byte:	00 _h
Sync time:	$00\ 00_{\rm h}$

DP Slave Properties	DP Slave Properties
Address / ID	Address / ID
I/O type: Input Direct Entry Input Address: Length: Unit: Consistent via:	I/O type: Output ▼ Direct Entry Output
Start: 30 16 Byte Total Length End: 45 Part process image Ng.: 1 Comment: (Manufacturer-specific data, max.) [FF.EF.00.00.00, 14 bytes hexadecimal, separated by comma or space)	Comment: [Manufacturer-specific data, max. 14 bytes hexadecimal, separated by comma or space)
OK Cancel Help	OK Cancel Help

Fig. 5.4.1: Configuring the input path of the Communication Window

Fig. 5.4.2: Configuring the output path of the Communication Window

9.3.3 Format of Communication Window

The 16 bytes of the Communication Window are assigned differently, according to data direction.

9.3.3.1 Write Bytes of the Communication Window

(command setting and transmitting of data PLC -> CANopen -> CAN)

Bytes of Communication Window	Contents
1 2	high byte of CAN identifier (identifier bits [15] 108) low byte of CAN identifier (identifier bits 70)
3 4	with 11-bit CAN identifier byte 3 and 4 always '0' with 29-bit CAN identifier byte 3: identifier bits 2824 byte 4: identifier bits 2316
5 6 7 8 9 10 11 12	data byte 1 data byte 2 data byte 3 data byte 4 data byte 5 data byte 6 data byte 7 data byte 8
13	data length for transmission jobs (Tx)
14	PLC loop counter (has to be incremented in pulse with OB1 in order to tell the gateway the OB1 cycle)
15	sub command (always set to '0')
16	command (description refer page 68)

 Table 29: Write bytes of the Communication Window

9.3.3.2 Read Bytes of the Communication Window

(command acknowledge and	reception of data	CAN -> CANopen -	> PLC)
	1	1	

Bytes of the Communication Window	Contents	
1 2	as long as no received data are available $EEEE_h$, otherwise high byte of CAN identifier (identifier bits [15] 108) low byte of CAN identifier (identifier bits 70)	
3 4	with 11-bit CAN identifier byte 3 and 4 always '0' with 29-bit CAN identifier byte 3: identifier bits 2824 byte 4: identifier bits 2316	
5 6 7 8 9 10 11 12	data byte 1 data byte 2 data byte 3 data byte 4 data byte 5 data byte 6 data byte 7 data byte 8	
13	number of data bytes received	
14	return of the PLC-loop counter which has been transmitted to the gateway via the last PROFIBUS telegram	
15	return of the sub command	
16	error code of the read function (not supported at the moment)	

 Table 30: Read bytes of the Communication Window

The following table shows commands which are currently being supported. The sub command is not yet being evaluated and should always be set to '0' at command call, therefore.

Command	Function
1	transmit data
3	receive data at enabled Rx-identifiers
4	enable Rx-identifier for data reception
5	deactivate reception (command 4)
6	transmits an RTR frame
7	executes command 4 and command 6
(11)	(reserved)
20	If the gateway is configured as CANopen master: Cyclical transmission of the CANopen SYNC command (ID 80_h , len = 0)

 Table 31: Commands of Communication Window

Attention: A command is only completely processed, if, when reading the Communication Window, byte 14 of the CANopen-DP-module provides the value of the PLCloop counter which was assigned at the command call. Before the following command is called, it is therefore necessary to check byte 14 first!

Explanations of the commands:

Command 1: Send data

In order to send data via the Communication Window the CAN identifier has to be specified in bytes 1 and 2 (or 1...4 for 29-bit identifiers). In addition to the number of bytes to be transmitted, a PLC-loop counter has to be specified. The loop counter has to be realised by the user. It is required to provide the CAN open-DP-gateway with the OB1-cycle of the PLC.
Command 3: Reception on enabled Rx-identifiers

The reception of data requires the CAN-Rx-identifiers which are to receive data to be enabled (see command 4).

After reception command 3 has been written, read accesses to the Communication Window will give you the data structure shown on page 67. The Rx-data is received asynchronously to the PLC-cycle. Until valid data has been received the value $EEEE_h$ will be returned in the first bytes in read accesses. Only after valid data has been received the Rx-identifier of the read frame in the first bytes becomes readable. In addition, the read command which requested the reception of data is assigned by means of the returned PLC-loop counter in byte 14.

The CANopen-DP module has got a FIFO-memory for 255 CAN-frames to buffer the received Rx-data. If several Rx-frames are to be received on one Rx-identifier, or if frames of various Rx-identifiers enabled for reception are received, the data is not lost, as long as the PLC reads out the FIFO memory quicker than it is being filled.

Command 4: Enabling Rx-identifiers for reception

By means of this command the Rx-identifier whose data is to be received has to be enabled. More than one Rx-identifier can be enabled at the same time. For this, the command has to be called an according number of times.

Command 5: Deactivate reception (command 4)

After this command has been called no data is received any longer on the specified Rx-identifiers.

Command 6: Sending an RTR-frame

By means of this command a remote-request frame is transmitted. Prior to the transmission the reception on the Rx-identifier has to be enabled by command 4.

Command 7: Executes command 4 and command 6

See there.

Command 20: Cyclical transmission of the CANopen command SYNC

The CANopen-DP device can cyclically transmit the command SYNC for simple CANopen applications.

The command is transmitted as shown in the table above. The cycle is specified e.g in the properties window in bytes 4 and 5 when the Communication Window is configured (refer to page 65).

The cycle is specified in milliseconds. Value range: $0...FFFE_{h}(0...65534 \text{ ms})$

Attention: In order to guarantee that all CANopen users have received their new data when they receive the SYNC command, the cyclical transmission command of the SYNC command cannot interrupt transmission of a DP-telegram on the CAN. That means that the SYNC command is delayed until the DP-telegram has been transmitted, if its transmission and the transmission of a SYNC command coincide.

This can result in slight changes of time in the cyclical transmission of the SYNC command.

Attention: SYNC Time can be set in two different ways:

- 1. In the parameter telegram in the DP-properties window (see page 20)
- 2. Via byte 4 and 5 of the Communication window (see page 65)

These specifications are equal, i.e. the last specification made is valid!

output e.g. here: 30 16 (always) byte

 $\begin{array}{c} 00_{\rm h} \\ 00 \ 00_{\rm h} \end{array}$

entire length!

FFEF_h (always)

9.3.4 Examples on the Communication Window

9.3.4.1 Transmitting Data

- 1. Basic Setting of the Communication Window The basic settings have to be made only once when setting up the Communication Window.
- 1.1 Activating the Communication Window during the configuration of the DP-gateway (see page 58) *Communication Window:* yes
- 1.2 Definition of the 16 input and output bytes of the Communication Window (see page 65) e.g.

Data direction:	input	Data direction:
PLC-address:	e.g. here: 30	PLC-address:
Length:	16 (always)	Length:
Unit:	byte	Unit:
Consistently via:	entire length!	Consistently via:
Identifier:	FFEF _h (always)	Identifier:
Form byte:	00 _h	Form byte:
Sync time:	00 [°] 00 _h	Sync time:

1.3 Program PLC-loop counter

8-bit loop counter for handshake function between PLC and gateway

	PLC-Cycle (Pseudo Code):
1	Read Byte 14 (returned loop counter) of ' Read Bytes of Communication-Windows' (refer to page 67)
2	Compare Byte 14 of the ' Read Bytes of Communication-Windows' with PLC-loop counter byte 14 of the ' Write Bytes of Communication-Windows' (refer to page 66), if unequal go to 6., if equal go to 3.
3	Increase PLC-loop counter (Byte 14) of ' Write Bytes of Communication-Window' (refer to page 66)
4	Evaluation of ' Read Bytes of Communication-Windows' (refer to page 67), i.e. the evaluation of the answer to the last command or received CAN frame (depending on the application).
5	Send new 'Write Bytes of Communication-Window' (refer to page 66) with increased loop-counter value of 3. and if necessary new application data.
6	Continue PLC program (new request at the next program cycle)

2.	Start Transmission	Command by	Writing the 16	Bytes of the	Communication	Window
----	--------------------	------------	----------------	--------------	---------------	--------

Byte of Communication Window	Contents	Example here [hex]
1 2	high byte of CAN-identifier (identifier bit [15] 108) low byte of CAN-identifier (identifier bit 70)	00 12
3 4	bytes 3 and 4 always '0' for 11-bit identifier	00 00
5 6 7 8 9 10 11 12	data byte 1 data byte 2 data byte 3 data byte 4 data byte 5 data byte 6 data byte 7 data byte 8	00 01 02 03 04 05 06 07
13	data length for transmission commands (Tx)	08
14	PLC-loop counter	8-bit counter
15	sub-command (always set to '0')	00
16	command 'transmit data'	01

The data bytes 0...8 are transmitted on Tx-identifier 0012_h .

In order to acknowledge the execution of the command a read access to byte 14 of the Communication Window should follow. It has to have the same value of the PLC-loop counter as when the command was called.

9.3.4.2 Receiving Data

1. Basic Setting of the Communication Window

The basic settings of the Communication Window have already been described in the example above 'Transmitting Data'.

2. Receiving Data

2.1 Enabling the Rx-Identifier for Reception

In this example the data of the Rx-identifier 0123_{h} are to be received.

Byte of Communication Window	Contents	Example here [hex]
1 2	high byte of CAN-identifier (identifier bit [15] 108) low byte of CAN-identifier (identifier bit 70)	01 23
3 4	bytes 3 and 4 always '0' for 11-bit identifier	00 00
5 6 7 8 9 10 11 12	data byte 1 data byte 2 data byte 3 data byte 4 data byte 5 data byte 6 data byte 7 data byte 8	00 00 00 00 00 00 00 00 00
13	data length for transmission command (Tx)	00
14	PLC-loop counter	8-bit counter
15	sub-command (always set to '0')	00
16	command 'Enable Rx-Identifier'	04

In order to acknowledge the execution of the command a read access of byte 14 of the Communication Window should be made with every command call. It has to have the same value of the PLC-loop counter as it had when the command was called.

Byte of Communication Window	Contents	Example here [hex]
1 2	high byte of CAN-identifier (identifier bit [15] 108) low byte of CAN-identifier (identifier bit 70)	01 23
3 4	bytes 3 and 4 always '0' for 11-bit identifier	00 00
5 6 7 8 9 10 11 12	data byte 1 data byte 2 data byte 3 data byte 4 data byte 5 data byte 6 data byte 7 data byte 8	00 00 00 00 00 00 00 00 00
13	data length for transmission commands (Tx)	00
14	PLC-loop counter	8-bit counter + n
15	sub-command (always set to '0')	00
16	command 'Read Rx-Identifier'	03

2.2 Initiate Reception of Data of the Enabled Rx-Identifier

2.3 Reading the Data

After an undetermined time the Rx-data is received and can be accessed by reading the Communication Window. Since the data is received asynchronously to the PLC-cycles the Communication Window has to be read again and again until the data was received (polling). By comparing the values of the PLC-loop counter you can determine, whether the data received is the correct data from the read command.

A read access returns the following bytes:

Byte of Communication Window	Contents	Example here [hex]
1 2	high byte of CAN-identifier (identifier bit [15] 108) low byte of CAN-identifier (identifier bit 70)	01 23
3 4	bytes 3 and 4 always '0' for 11-bit identifier	00 00
5 6 7 8 9 10 11 12	data byte 1 data byte 2 data byte 3 data byte 4 data byte 5 data byte 6 data byte 7 data byte 8	AA BB CC DD EE FF 00 11
13	data length	08
14	PLC-loop counter	8-bit counter + n
15	returned sub-command (without significance)	00
16	error code of the read function (without significance)	00

2.4 Deactivate Reception of Data on this Rx-Identifier

Byte of Communication Window	Contents	Example here [hex]
1 2	high byte of CAN-identifier (identifier bit [15] 108) low byte of CAN-identifier (identifier bit 70)	01 23
3 4	bytes 3 and 4 always '0' for 11-bit identifiers	00 00
5 6 7 8 9 10 11 12	data byte 1 data byte 2 data byte 3 data byte 4 data byte 5 data byte 6 data byte 7 data byte 8	00 00 00 00 00 00 00 00 00
13	data length for transmission commands (Tx)	00
14	PLC-loop counter	8-bit counter + m
15	sub-command (always set to '0')	00
16	command 'Disable Rx-Identifier'	05

If no further data is to be received on this identifier, the reception is to be disabled again.

10. Editing the GSD-File with a Text Editor

We recommend to configure the module with a PROFIBUS configuration tool, as e.g. the SIMATIC manager.

Not every PROFIBUS configuration software supports the "Universal Module" (see chapter: "5. Configuration with the SIMATIC Manager").

If the "Universal Module" is not supported, the GSD-file has to be adapted via a text editor.

The configuration of a module is made by means of a configuration frame, whose content is entered in the GSD-file.

The frame of the configuration is sub-divided in three octets (see also PROFIBUS-Specification, Normative Part 8, page 738, Fig. 16):

Octet 1: Number_of_the_manufacturer-specific data Octet 2: Number_of_output_bytes Octet 3: Number_of_input_bytes Octet 4: Manufacturer-specific_configuration_byte

Octet 17: Manufacturer-specific_configuration_byte

The octets have the following meaning:

Octet 1: Number_of_manufacturer-specific_data

Because the CANopen-DP always uses a specific ID-format to represent a connected CAN-module, the identifier-byte has the following structure (see also PROFIBUS-Specification- Normative-Part-8, page 737):

	MSB							LSB
Bit-No.:	7	6	5	4	3	2	1	0
Content:	00: free pla 01: Input 10: Output 11: In/Outj	ace put	always 0	always 0	Length of th 0010 for 0110 for 1010 for 1110 for PD	he manufact the PDO1 the PDO1 a the PDO1, I the PDO1, I O4	urer-specific nd PDO2 PDO2 and Pl PDO2., PDO	data: DO3 3 and

Bit-No.:	7	6	5	4	3	2	1	0
Content:	1	1	0	0	1	0	1	0

Example Octet 1:

= 0xCA Module is an input and output (0xCO) and 10 bytes manufacturer-specific data (PDO1, PDO2 and PDO3) will follow.

Octet 2: Number_of_output_bytes

Octet 2 gives the consistency, the structure (byte/word) and the number of the output bytes. Length bytes of the output as seen from the PROFIBUS master (see also PROFIBUS-Specification-Normative-Part-8, page 738)

	MSB										LS	В
Bit-No.:	7	6	5	5	4	ŀ		3	2	1	0	
Content:	Consistency over 0: byte or word 1: complete length	Length- format 0: byte- structure 1: word- structure		5 0 1	4 0 1	Nu Bit 3 0 :	2 0 1	er of c 1 0	Dutput byt N 1 byte, 63 bytes,	es Ieaning resp. 1 word : resp. 63 wo	d rds	

Note:If the parameter Slave PDO-Orientation is set to 'yes' in the parameter telegram, CAN
frames are transmitted at the outputs with standard TxPDO-identifiers.If the parameter Slave PDO-Orientation is 'no' (default), the CAN frames are
transmitted via RxPDO-identifiers.

The number of the output bytes is the summation of all RxPDO-lengths (for SlavePDO-Orientation 'no'), or summation of all TxPDO-lengths (for SlavePDO-Orientation 'yes')

Example Module 1:

The parameter *Slave PDO-Orientation* is set to 'no' in the parameter telegram. The length of RxPDO1 is 8 bytes, the length of RxPDO2 is 5 bytes and the length of RxPDO3 is 3 bytes

Bit-No.:	7	6	5	4	3	2	1	0
Content:	0	0	0	0	1	1	1	1

 $= 0 \times 0 F$

16 bytes RxPDO output data

Example Module 2:

The parameter *Slave PDO-Orientation* is set to 'yes' in the parameter telegram. The length of TxPDO1 is 7 bytes, the length of TxPDO2 is 4 bytes and the length of TxPDO3 is 6 bytes

Bit-No.:	7	6	5	4	3	2	1	0
Content:	0	0	0	1	0	0	0	0

= 0x10

17 bytes TxPDO output data

Octet 3: Number_of_input_bytes

Octet 3 gives the consistency, the structure (byte/word) and the number of the input bytes. Length bytes of the input as seen from the PROFIBUS master (see also PROFIBUS-Specification-Normative-Part-8, page 738)

	MSB										LSB
Bit-No.:	7	6	5		Z	1		3	2	1	0
Content:	Consistency over 0: byte or word 1: complete length	Length- format 0: byte- structure 1: word- structure		5 0 1	4 0 1	Nu Bit 3 0 : 1	2 0 1	1 0 1	Dutput byt M 1 byte, 63 bytes,	es feaning resp. 1 wor : resp. 63 wo	d ords

The number of the input bytes is the summation of all TxPDO-lengths (for SlavePDO-Orientation 'no'), or summation of all RxPDO-lengths (for SlavePDO-Orientation 'yes')

Example Module 1:

The parameter *Slave PDO-Orientation* is set to 'no' in the parameter telegram. The length of TxPDO1 is 7 bytes, the length of TxPDO2 is 4 bytes and the length of TxPDO3 is 6 bytes

Bit-No.:	7	6	5	4	3	2	1	0
Content:	0	0	0	1	0	0	0	0

= 0x10 17 bytes TxPDO input data

Example Module 2:

The parameter *Slave PDO-Orientation* is set to 'yes' in the parameter telegram. The length of RxPDO1 is 8 bytes, the length of RxPDO2 is 5 bytes and the length of RxPDO3 is 3 bytes

Bit-No.:	7	6	5	4	3	2	1	0
Content:	0	0	0	0	1	1	1	1

= 0x0F 16 bytes RxPDO input data

i

Octet 4, 5 ... 17: Manufacturer-specific_configuration_byte

The content of octet 4 -17 depends on the setting of parameter Slave PDO-Orientation.

If the parameter Slave PDO-Orientation is set to 'yes' in the parameter telegram, CAN Note: frames are transmitted at the outputs with standard TxPDO-identifiers and CAN frames are received at the inputs with standard RxPDO-identifiers. If the parameter Slave PDO-Orientation is 'no' (default), the CAN frames are transmitted via RxPDO-identifiers and they are received via TxPDO-identifiers.

0.4.4	Manufacturer-specific data				
Octet	Slave PDO Orientation: no	Slave PDO Orientation: yes			
4	Format byte TxPDO1	Format byte RxPDO1			
5	Format byte RxPDO1	Format byte TxPDO1			
6	Length TxPDO1	Length RxPDO1			
7	Length RxPDO1	Length TxPDO1			
8	Format byte TxPDO2	Format byte RxPDO2			
9	Format byte RxPDO2	Format byte TxPDO2			
10	Length TxPDO2	Length RxPDO2			
11	Length RxPDO2	Length TxPDO2			
12	Format byte TxPDO3	Format byte RxPDO3			
13	Format byte RxPDO3	Format byte TxPDO3			
14	Length TxPDO3	Length RxPDO3			
15	Length RxPDO3	Length TxPDO3			
16	Format byte TxPDO4	Format byte RxPDO4			
17	Format byte RxPDO4	Format byte TxPDO4			

Octet	Manufacturer-specific Data	Entry	Meaning
4	Format byte TxPDO1	0x00	no byte-swapping
5	Format byte RxPDO1	0x00	no byte-swapping
6	Length TxPDO1	0x07	-
7	Length RxPDO1	0x08	-
8	Format byte TxPDO2	0x00	no byte-swapping
9	Format byte RxPDO2	0x00	no byte-swapping
10	Length TxPDO2	0x04	-
11	Length RxPDO2	0x05	-
12	Format byte TxPDO3	0x00	no byte-swapping
13	Format byte RxPDO3	0x00	no byte-swapping

10.1 Example Module 1: Manufacturer-specific Data (SO: no)

The configuration-frame for module 1 has the following structure and has to be inserted into the GSD-file.

Example for manual GSD-file entries:

Meaning of the entries:

1...

Unambiguous reference number (1...65535)

entries under Module=:

"Name of the module" ... Comment to name the module

- Octet 1: 0xCA... Module is an in- and output (0xC0) and 10 bytes of manufacturer- specific data (1. PDO, 2. PDO und 3. PDO) will follow.
- Octet 2: 0x0F... Consistency over byte, the length-format is byte-structure (0x0F) and 16 bytes output data are transferred (0x0F = 16...1).
- Octet 3: 0x10... Consistency over byte, the length-format is byte-structure (0x10) and 17 bytes input-data are transferred (0x10 = 17...1).

Editing the GSD File with a Text Editor

Manufacturer-specific data:

Octet 4: 0x00	Format byte TxPDO1	0x00	no byte-swapping, i.e. the order of the data is not changed
Octet 5: 0x00	Format byte RxPDO1	0x00	no byte-swapping
Octet 6: 0x07	Length TxPDO1	0x07	length of TxPDO1: 7 bytes
Octet 7: 0x08	Length RxPDO1	0x08	length of RxPDO1: 8 bytes
Octet 8: 0x00	Format byte TxPDO2	0x00	no byte-swapping
Octet 9: 0x00	Format byte RxPDO2	0x00	no byte-swapping
Octet 10: 0x04	Length TxPDO2	0x04	length of TxPDO2: 4 bytes
Octet 11: 0x05	Length RxPDO2	0x05	length of RxPDO2: 5 bytes
Octet 12: 0x00	Format byte TxPDO3	0x00	no byte-swapping
Octet 13: 0x00	Format byte RxPDO3	0x00	no byte-swapping

The length of TxPDO3 results from the length byte for input less the lengths of TxPDO1 and TxPDO2: 17 bytes input data - 7 bytes TxPDO1

- 4 bytes TxPDO2

6 bytes for TxPDO3

The length of RxPDO3 results from the length byte for output less the lengths of RxPDO1 and RxPDO2:

- 16 bytes input data
- 8 bytes RxPDO1
- 5 bytes RxPDO2

3 bytes for RxPDO3

Attention!: Please note, that the GSD-file has to be renamed. The file name may be maximum 8 characters long. Some configuration-software for the PROFIBUS Master does not operate with longer file names.

Octet	Manufacturer specific data	Entry	Meaning
4	Format byte RxPDO1	0x00	no byte-swapping
5	Format byte TxPDO1	0x00	no byte-swapping
6	Length RxPDO1	0x08	-
7	Length TxPDO1	0x07	-
8	Format byte RxPDO2	0x00	no byte-swapping
9	Format byte TxPDO2	0x00	no byte-swapping
10	Length RxPDO2	0x05	-
11	Length TxPDO2	0x04	-
12	Format byte RxPDO3	0x00	no byte-swapping
13	Format byte TxPDO3	0x00	no byte-swapping

10.2 Example Module 2: Manufacturer-specific Data (SO: yes)

The configuration-frame for module 2 has the following structure and has to be inserted into the GSD-file.

Example for manual GSD-file entries:

Meaning of the entries:

2... Unambiguous reference number (1...65535)

entries under Module=:

"Name of the module"	Comment to name the module

Octet 1: 0xCA	Module is an in- and output (0xC0) and 10 bytes of manufacturer- specific
	data (1. PDO, 2. PDO und 3. PDO) will follow.

- Octet 2: 0x10... Consistency over byte, the length-format is byte-structure (0x10) and 17 bytes output data are transferred (0x10 = 17...1).
- Octet 3: 0x0F... Consistency over byte, the length-format is byte-structure (0x0F) and 16 bytes input data are transferred (0x0F = 16...1).

Editing the GSD File with a Text Editor

Manufacturer-specific data:

Octet: 0x00	Format byte RxPDO1	0x00	no byte-swapping, , i.e. the order of the data is not changed
Octet 5: 0x00	Format byte TxPDO1	0x00	no byte-swapping
Octet 6: 0x08	Length RxPDO1	0x08	length of RxPDO1: 8 bytes
Octet 7: 0x07	Length TxPDO1	0x07	length of TxPDO1: 7 bytes
Octet 8: 0x00	Format byte RxPDO2	0x00	no byte-swapping
Octet 9: 0x00	Format byte TxPDO2	0x00	no byte-swapping
Octet 10: 0x05	Length RxPDO2	0x05	length of RxPDO2: 5 bytes
Octet 11: 0x04	Length TxPDO2	0x04	length of TxPDO2: 4 bytes
Octet 12: 0x00	Format byte RxPDO3	0x00	no byte-swapping
Octet 13: 0x00	Format byte TxPDO3	0x00	no byte-swapping

The length of TxPDO3 results from the length byte for output less the lengths of TxPDO1 and TxPDO2:

17 bytes output-data - 7 bytes TxPDO1 - 4 bytes TxPDO2

6 bytes for TxPDO3

The length of RxPDO3 results from the length byte for input less the lengths of RxPDO1 and RxPDO2: 16 bytes input-data - 8 bytes RxPDO1

5 bytes RAPDO1

- 5 bytes RxPDO2

3 bytes for RxPDO3

Attention!: Please note, that the GSD-file has to be renamed. The file name may be maximum 8 characters long. Some configuration-software for the PROFIBUS Master does not operate with longer file names.

11. Glossary

PROFIBUS-DP/PLC-Terms

Master	Master devices control the data transfer on the PROFIBUS. A master can transmit messages without request.
Slave	Slave devices are peripheral devices such as in-/output devices, valves, drives and transducers. They have no bus access authorization, i.e. they can only accept received messages or transmit messages to the master on request.
Class 1 Master	PROFIBUS controller which controls its decentral peripheral devices via cyclic data transfer.
Class 2 Master	PROFIBUS controller which acyclically exchanges data with a slave.

CAN/CANopen Terms

CAN	Controller Area Network
CAN-Layer-2	Layer of the OSI-Layer model On the level of CAN-Layer-2 control and management structures are not supported as under CANopen which is classified as CAN-Layer-7.
CANopen Node	CANopen module A CANopen node can feature master or/and slave functions.
CiA	CAN in Automation e.V. Association for the development of CAN in industrial applications.
СОВ	Communication Object
Communication Window	Window for the transmission of CAN data on CAN-Layer-2 level
Frame	Also called message General term for a CAN message which consists of control and user data.
DS-xxx	Draft Standard SomeCAN-standards can be downloaded directly from the CiA-homepage: www.can-cia.org
Emergency Data Object	Emergency data
Heartbeat	Cyclical recurring message for the monitoring of the operability of a CANopen module.
Master	CANopen Master CANopen module which carries out control tasks on the CAN-bus.
Node-ID	CAN open-node number Number for identification of a CAN open-node (1127_d) . The PDO-identifier result from the Node-ID.
NMT	Network Management (Master)
PDO	Process Data Object The real-time data transfer of process data is performed by PDOs. The data transfers are not acknowledged.
RTR	Remote Request CAN-frame which requests another CAN-module to transmit data.
Rx	receive

MPDO	Multiplexed PDO Via this PDO all modules can be addressed with a single CAN-frame simultaneously (Broadcast).
Page Mode	CAN-Layer-2 function to control more than 48 CAN-identifier in a PROFIBUS-telegram, see [4]
SDO	Service Data Object With SDOs communication and parameter data can be transferred. The data transfers are receipted.
Slave	CANopen-Slave
START	Start-frame to start the CANopen-module
SYNC	Synchronisation-frame is used to synchronise the CANopen-modules
Тх	transmit

12. References

- [1] CANopen CiA Draft Standard 301 Version 4.02, February 13, 2002 www.can-cia.org
- PROFIBUS Specification, PROFIdrive-Profil Drive Technology Version 3.1.2, September 2004 Order No: 3.172 www.profibus.com
- [3] CAN-DP/CANopen-DP, PROFIBUS-DP / CAN-Gateway, Hardware Manual Rev. 1.1, Marc 5, 2006 esd electronic system design gmbh *www.esd-electronics.com*
- [4] CAN-DP, PROFIBUS-DP / CAN-Gateway, Software Manual Rev. 1.2, February 02, 2007 esd electronic system design gmbh *www.esd-electronics.com*