
Lecture 19: Proxy-Server Based Firewalls

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 26, 2015
2:52pm

c©2015 Avinash Kak, Purdue University

Goals:

• The SOCKS protocol for anonymizing proxy servers

• Socksifying application clients

• The Dante SOCKS server

• An example of a client accessing an internet server through a

SOCKS proxy

• Squid for controlling access to web resources (and for web caching)

• The Harvest system for information gathering, indexing, and searching

• How to construct an SSH tunnel through a web proxy

1

CONTENTS

Section Title Page

19.1 Firewalls in General (Again) 3

19.2 SOCKS 7

19.2.1 SOCKS4 versus SOCKS5 10

19.2.2 Interaction Between a SOCKS Client and a SOCKS Server 11

19.2.3 Socksifying a Client-Side Application 16

19.3 Dante as a SOCKS Proxy Server 19

19.3.1 Configuring the Dante Proxy Server 22

19.3.2 Configuring SOCKS Clients 30

19.3.3 Anonymity Check 34

19.3.4 An Example of Accessing an Internet Server Through the 35
danted Proxy

19.4 The SQUID Proxy Server 41

19.4.1 Starting and Stopping the Squid Proxy Server 44

19.4.2 The Squid Cache Manager 49

19.4.3 Configuring the Squid Proxy Server 56

19.5 HARVEST: A System for Information Gathering 66
and Indexing

19.5.1 What Does Harvest Really Do? 67

19.5.2 Harvest: Gatherer 69

19.5.3 Harvest: Broker 72

19.5.4 How to Create a Gatherer? 73

19.5.5 How to Create a Broker? 82

19.6 Constructing an SSH Tunnel Through an HTTP Proxy 88

19.7 Homework Problems 93

Computer and Network Security by Avi Kak Lecture 19

19.1: FIREWALLS IN GENERAL (AGAIN)

• To expand on what was mentioned at the beginning of Lecture

18, firewalls can be designed to operate at any of the following

three layers in the TCP/IP protocol stack:

– the Transport Layer (example: packet filtering with iptables)

– the Application Layer (example: HTTP Proxy)

– the layer between the Application Layer and the Transport

Layer (example: SOCKS proxy)

• Firewalls at the Transport Layer examine every packet, check its

IP headers and its higher-level protocol headers (in order to figure

out, say, whether it is a TCP packet, a UDP packet, an ICMP

packet, etc.) to decide whether or not to let the packet through

and to determine whether or not to change any of the header

fields. (See Lecture 18 on how to design a packet filtering firewall.)

3

Computer and Network Security by Avi Kak Lecture 19

• A firewall at the Application Layer examines the requested ses-

sion for whether they should be allowed or disallowed based on

where the session requests are coming from and the purpose of

the requested sessions. Such firewalls are built with the help of

what are known as proxy servers.

• For truly application layer firewalls, you’d need a separate fire-

wall for each different type of service. For example, you’d need

separate firewalls for HTTP, FTP, SMTP, etc. Such firewalls are

basically access control declarations built into the applications

themselves. As a network admin, you enter such declarations in

the server config files of the applications.

• A more efficient alternative consists of using a protocol between

the application layer and the transport layer – this is sometimes

referred to as the shim layer – to trap the application-level calls

from intranet clients for connection to the servers in the internet.

[The shim layer corresponds to the session layer in the OSI model. See Lecture 16 for

the OSI model.]

• Using a shim layer protocol, a proxy server can monitor all session

requests that are routed through it in an application-independent

manner to check the requested sessions for their legitimacy. In

this manner, only the proxy server, serving as a firewall,

4

Computer and Network Security by Avi Kak Lecture 19

would require direct connectivity to the internet and the rest

of the intranet can ”hide” behind the proxy server. The com-

puters in the internet at large would not even know about the

existence of your machine on the local intranet behind the fire-

wall.

• When a proxy is used in the manner described above, it may also

be referred to as an anonymizing proxy.

• Some folks like to use anonymizing proxies for privacy reasons.

Let’s say you want to visit a web site but you do not wish for that

site to know your IP address, you can route your access through

a third-party anonymizing proxy.

• There are free publicly available proxy servers that you can use

for such purpose. Check them out by entering a string like

“public proxy server” in a search engine window. You can also

use publicly available scanners to search for publicly available

proxy servers within a specific IP range. The website http:

//publicproxyservers.com claims to offer a marketing-pitch-free

listing of the public proxy servers.

• In addition to achieving firewall security, a proxy server operating

5

Computer and Network Security by Avi Kak Lecture 19

at the application layer or the shim layer can carry out data

caching (this is particularly true of HTTP proxy servers) that

can result in transfer speed improvement. If the gateway machine

contains a current copy of the resource requested, in general it

would be faster for a LAN client to download that copy instead

of the version sitting at the remote host.

• The SOCKS protocol (RFC 1928) is commonly used for designing

shim layer proxy servers.

• Note that a transport layer firewall based on packet filtering and

an application layer firewall implemented with the help of proxy

servers of the type presented in this lecture often coexists for en-

hanced security. [You may choose the former for low-level control over the traffic

and then use proxies for additional high-level control within specific applications and

to take advantage of centralized logging and caching made possible by proxy servers.]

6

Computer and Network Security by Avi Kak Lecture 19

19.2: SOCKS

• SOCKS is referred to as a generic proxy protocol for TCP/IP

based network applications.

• SOCKS, an abbreviation of ”SOCKetS”, consists of two compo-

nents: A SOCKS client and a SOCKS server.

• It is the socks client that is implemented between the application

layer and the transport layer; the socks server is implemented at

the application layer.

• The socks client wraps all the network-related system calls made

by a host with its own socket calls so that the host’s network calls

get sent to the socks server at a designated port, usually 1080.

This step is usually referred to as socksifying the client call.

• The socks server checks the session request made by the socksified

LAN client for its legitimacy and then forwards the request to the

7

Computer and Network Security by Avi Kak Lecture 19

server on the internet. Any response received back from the server

is forwarded back to the LAN client.

• For an experimental scenario where we may use socks, imagine

that one of your LAN machines has two ethernet interfaces (eth0

and eth1) and can therefore act as a gateway between the LAN

and the internet. We will assume that the rest of the LAN is on

the same network as the eth0 interface and that the eth1 interface

talks directly the internet. A socks based proxy server installed

on the gateway machine can accomplish the following:

– The proxy server accepts session requests from clients in the

LAN on a designated port. If a request does not violate any

security policies programmed into the proxy server, the proxy

server forwards the request to the internet. Otherwise the

request is blocked. This property of a proxy server to receive

its incoming LAN-side requests for different types of services

on a single port and to then forward the requests onwards

into the internet to specific ports on specific internet hosts

is referred to as port forwarding. Port forwarding is also

referred to as tunneling.

– The proxy server replaces the source IP address in the con-

nection requests coming from the LAN side with with its own

8

Computer and Network Security by Avi Kak Lecture 19

IP address. [So the servers on the internet side cannot see the actual IP addresses of the

LAN hosts making the connection requests. In this manner, the hosts on the LAN can maintain

complete anonymity with respect to the internet.] This ploy is frequently used

by business organizations to hide the internal details of their

intranets.

– Focusing specifically on the HTTP traffic, the above ploy

would cause all of the HTTP traffic emanating from the in-

tranet to get routed through the socks server where it would

be subject to various firewall rules and where, if desired, one

can provide logging facilities and caching of the web services.

9

Computer and Network Security by Avi Kak Lecture 19

19.2.1: SOCKS4 versus SOCKS5

• Version 4 (usually referred to as SOCKS4) lacks client-server au-

thentication. On the other hand, version 5 (usually referred to as

SOCKS5) includes built-in support for a variety of authentication

methods.

• SOCKS5 also includes support for UDP. So a SOCKS5 server can

also serve as a UDP proxy for a client in an intranet.

• Additionally, with SOCKS4, the clients are required to resolve

directly the IP addresses of the remote hosts (meaning to carry

out a DNS lookup for the remote hosts). SOCKS5 is able to move

DNS name resolution to the proxy server that, if necessary, can

access a remote DNS server.

10

Computer and Network Security by Avi Kak Lecture 19

19.2.2: Interaction Between a SOCKS Client and a

SOCKS Server

• To see how a socks client (more precisely speaking, a socksified

client) interacts with a socks server, let’s say that the client wants

to access an HTTP service on the internet.

• The first part of the interaction is similar to what happens be-

tween an SSH client and an SSH server — the server needs to

authenticate the client. This interaction is described below.

• The socks client opens a TCP connection with the socks server

on port 1080. The client sends a “Client Negotiation” packet sug-

gesting a set of different authentication methods that the server

could use vis-a-vis the client. This packet consists of the following

fields:

Client Negotiation: VER NMETHOD METHODS

1 1 1-255

with the one-byte VER devoted to the version number (SOCKS4

or SOCKS5), the one-byte NMETHOD devoted to the number of

methods that will be listed subsequently for client-server authen-

tication, and, finally, a listing of those methods by their ID num-

bers, with each ID number as a one-byte integer value. [The value

11

Computer and Network Security by Avi Kak Lecture 19

0x00 in METHODS field means no authentication needed, the value 0x01 means authentication according

to the GSSAPI (Generic Security Services Application Programming Interface), 0x02 means a user-

name/password based authentication, a value between 0x03 and 0x7E defines a method according to

the IANA naming convention, and the 0x80 through 0xFE values are reserved for private methods.

(IANA stands for the Internet Assigned Numbers Authority) Note if the method number returned

by the socks server is 0xFF, that means that the server has refused the method offered by the client.

Also note that GSSAPI (RFC 2743) is meant to make it easier to add client-server authentication to

an application as the modern practice is to expect all security software vendors to provide this API

in addition to any proprietary APIs. For example, if you wanted to use Kerberos for client-server

authentication, you could write your authentication code to GSSAPI.]

• If the socks proxy server accepts the client packet, it responds

back with a two-byte “Server Negotiation” packet:

Server Negotiation: VER METHOD

1 1

where the METHOD field is the authentication method that the

server wishes to use. The socks server then proceeds to authen-

ticate the LAN client using the specified method.

• After the authentication step, the socks client then sends the

socks proxy server a request stating what service it wants at what

address in the internet and at which port. This message, called

the “Client Request” message consists of the following fields:

Client Request: VER CMD RSV ATYP DST.ADDR DST.PORT

1 1 1 1 variable 2

12

Computer and Network Security by Avi Kak Lecture 19

where the 1-byte CMD field contains one of three possible values:

0x01 for “CONNECT”, 0x02 for “BIND”, 0x03 for “UDP As-

sociate”. [The ATYP field stands for the “Address Type” field. It takes one of three possible

values: 0x01 for IPv4 address, 0x02 for domain name, and 0x03 for IPv6 address. As you’d expect,

the length of the target address that is stored in the DST.ADDR field depends on what address type

is stored in the ATYP field. An IPv4 address is 4 bytes long; on the other hand, an IPv6 address 8

bytes long. Finally, the DST.PORT fields stores the the port number at the destination address. The

RSV field means “Reserved for future use.”]

• The client always sends a CONNECT (value of the 1-byte CMD

field) request to the socks proxy server after the client-server au-

thentication is complete. However, for services such as FTP, a

CONNECT request is followed by a BIND request. [The BIND request

means that the client expects the remote internet server to want to establish a separate connection

with the client. Under ordinary circumstances for a direct FTP service, a client first makes what is

known as a control connection with the remote FTP server and then expects the FTP server to make

a separate data connection with the client for the actual transfer of the file requested by the client.

When the client establishes the control connection with the FTP server, it informs the server as to

which address and the port the client will be expecting to receive the data file on.]

• After receiving the “Client Request” packet, the proxy server

evaluates the request taking into account the address of the client

on the LAN side, the target of the remote host on the internet

side and other access control rules typical of firewalls.

13

Computer and Network Security by Avi Kak Lecture 19

• If the client is not allowed the type of access it has requested, the

proxy server drops the connection to the client. Otherwise, the

proxy server sends one or two replies to the socks client. [The socks

server sends to the client two replies for BIND requests and one reply for CONNECT

and UDP requests.] These replies, different in the value of the REP

field (and possibly other fields depending on the success or failure

of the connection with the remote server) are called the “Server

Reply” are according to the following format:

Server Reply: VER REP RSV ATYP BND.ADDR BND.PORT

1 1 1 1 variable 2

where the BND.ADDR is the internet-side IP address of the socks

proxy server; it is this address that the remote server will commu-

nicate with. Similarly, BND.PORT is the port on the proxy server

machine that the remote server sends the information to.

• The REP field can take one of the following ten different values:

0x00: successful connection with the remote server

0x01: SOCKS proxy error

0x02: connection disallowed by the remote server

0x03: network not accessible

0x04: remote host not accessible

0x05: connection request with remote host refused

0x06: timeout (TTL expired)

0x07: SOCKS command not supported

0x08: address type not supported

0x09 through 0xFF: not defined

14

Computer and Network Security by Avi Kak Lecture 19

• If the connection between the proxy server and the remote server

is successful, the proxy server forwards all the data received from

the remote server to the socks client and vice versa for the dura-

tion of the session.

• About the security of the data communication between the socks

server and the remote service provider, note that since socks

works independently of the application-level protocols, it can

easily accommodate applications that use encryption

to protect their traffic. To state a case in point, as far as

the socks server is concerned, there is no difference

between an HTTP session and an HTTPS session.

Because, after establishing a connection, a socks proxy server

doesn’t care about the nature of the data that shuttles back and

forth between the LAN client and the remote host in the internet,

such a proxy server is also referred to as a circuit-level proxy.

15

Computer and Network Security by Avi Kak Lecture 19

19.2.3: Socksifying a Client-Side Application

• Turning a client-side application (such as a web browser, an email

client, and so on) into a socks client is referred to as socksifying

the client.

• For the commonly used socks server these days, Dante, this is

accomplished as simply as by calling

socksify name_of_your_client_application

provided you have installed the Dante client in the machine on

which you are trying to execute the above command.

• Let’s say you are unable to directly access an FTP server in the

internet because of the packet-level firewall rules in the gateway

machine, you might be allowed to route the call through the proxy

server running on the same machine by

socksify ftp url_to_the_ftp_resource

• For another example, to run your web browser (say, the Firefox

browser) through a socks proxy server, you would invoke

16

Computer and Network Security by Avi Kak Lecture 19

socksify firefox

By the way, when you socksify Firefox in this manner, you must

keep the browser’s connection settings at the commonly used

“Directly connect to internet” in the panel for Edit-Preferences-

Advanced-Network-Settings. You do NOT have to be logged in

as root to socksify a browser in this manner. [According to Michael

Shuldman of Inferno Nettverk, you can get your Firefox browser to work

through a socks server by just clicking on the “Manual Proxy Configura-

tion” tab in the window that comes up for Edit-Preferences-Advanced-

Network-Settings and entering the IP address and the port for the socks

proxy server.]

• In Section 19.3.4, I will present an example of socksifying a user-

created application program. There I’ll show a custom Perl client

script – DemoExptClient.pl – that can engage in an interactive

session with a custom Perl server script running on a remote host

in the internet. Ordinarily, the command-line invocation you’d

make on the LAN machine would be something like this:

DemoExptClient.pl moonshine.ecn.purdue.edu 9000

assuming that the hostname of the remote machine is moonshine.

ecn.purdue.edu and that port 9000 is assigned to the server script

running on that machine. In order to route this call through the

socks server (assuming you are running the Dante proxy server)

on your local gateway machine, all you’d need to do is to call

socksify DemoExptClient.pl moonshine.ecn.purdue.edu 9000

17

Computer and Network Security by Avi Kak Lecture 19

• The call to socksify as shown above invokes a shell script of that

name (that resides in /usr/bin/ in a standard install of Dante).

Basically, all it does is to set the LD_PRELOAD environment vari-

able to the libdsocks library that resides in the libdsocks.so

dynamically linkable file.

• By setting the LD_PRELOAD environment variable (assuming your

platform allows it), ‘socksify’ saves you from the trouble of having

to recompile your client application so as to redirect the system

networking calls to the proxy server. [As explained in the ‘README.usage’ doc-

ument that comes with the Dante install, this only works with non-setuid applications. The LD PRELOAD

environment variable is usually ignored by setuid applications. When a previously written client appli-

cation can be compiled and linked to dynamically, you can socksify it by linking it with the libdsocks

shared library by supplying the linking command with the ‘-ldsocks’ option assuming that the file

libdsocks.so is at the standard location (otherwise, you must provide the pathname to this loca-

tion with the ‘-L pathname’ option). If such dynamic linkage is not possible, you can always resort to

static recompilation of your client application. See the file ‘README.usage’ mentioned above for further

information on how to do this.]

• All of the presentation so far has been from a Linux perspec-

tive. There is an implementation of the socks protocol, called

SocksCAP, that enables Windows based TCP and UDP network-

ing clients to traverse a socks firewall. Visit http://www.socks.

permeo.com/ for further information.

18

Computer and Network Security by Avi Kak Lecture 19

19.3: DANTE AS A SOCKS PROXY
SERVER

• Dante, available from http://www.inet.no/dante/, is a popularly

used implementation of the socks protocol. The current version of

Dante (the version you download through your Synaptic Package

Manager) is 1.1.19. Visit http://www.inet.no/dante/docs for

links to documentation pages for Dante.

• A standard install of Dante will give you the following configura-

tion files:

/etc/danted.conf the server configuration file

/etc/dante.conf the client configuration file

• Start the server by executing as root:

/etc/init.d/danted start

You can verify that the server is running by executing in a com-

mand line ‘ps aux | grep dante’ that will return something like

the following:

19

Computer and Network Security by Avi Kak Lecture 19

nobody 8455 0.0 0.0 24136 652 ? Ss 01:51 0:00 /usr/sbin/danted -D

nobody 8456 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8457 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8458 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8459 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8460 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8461 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

root 8466 0.0 0.0 9456 944 pts/4 S+ 01:51 0:00 grep --color=auto dante

Although you can stop the server by executing in a command line

‘/etc/init.d/danted stop’, should that not kill all the processes

above, you can also invoke ‘killall danted’. [According to Michael

Shuldman of Inferno Nettverk, not killing all the child processes when you terminate

the main server process is less disruptive to the socks clients. If you kill the main server

process because, say, you want to upgrade your Dante server, the still-alive child server

processes would continue to serve the socks clients that are already connected. Subse-

quently, after you restart the main server process, any new clients would be handled

by the new server process and its children, whereas the old clients would continue to

be served by the previously created child server processes. For further information, see

http://www.inet.no/dante/doc/faq.html#processes_do_not_die.]

• Although you would normally start up the Dante server through

the start/stop/restart script in /etc/init.d/ as indicated above,

when you are first learning socks, you would be better off firing

up the executable directly with the ‘-d’ option so that it comes up

in the debug mode. The command line for this in the standard

Ubuntu install of Dante is

/usr/sbin/danted -d

Note that the option is ‘-d’ and NOT ‘-D’. (The former stands for

“debug mode” and the latter for“detach mode” for running the

20

Computer and Network Security by Avi Kak Lecture 19

Dante server in the background. When you bring up the server

with the command string shown above, you can actually see the

server setting up the child processes for accepting requests from

the socks clients, the server reaching out to a DNS server for IP

lookups, and then finally accessing the services requested by the

client. See Section 19.12 for a small example.

• However, before you fire up the server in any manner at all, you’d

want to edit the server configuration file /etc/danted.conf and

the client configuration file /etc/dante.conf. The next couple of

sections address this issue.

21

Computer and Network Security by Avi Kak Lecture 19

19.3.1: Configuring the Dante Proxy Server

• For our educational exercise, we will assume that our socks proxy

server based firewall is protecting a 192.168.1.0/24 intranet

and that the interface that connects the firewall machine with

the internet is eth0. We will therefore not worry about client-

server authentication here.

• The server config file, /etc/danted.conf, consists of three sections:

– Server Settings

– Rules

– Routes

• With regard to the options in the “Server Settings” section of the

config file:

logoutput: Where the log messages should be sent to.

internal: The IP address associated with the proxy server (I

chose 127.0.0.1) and the port it will monitor (1080 by default).

What is needed is the IP address of the host on which the

proxy server is running. Since my proxy clients will be on the

22

Computer and Network Security by Avi Kak Lecture 19

same machine as the proxy server, it makes sense to use the

loopback address for the proxy server.

external: The IP address that all outgoing connections from the

server should use:

– This will ordinarily be the IP address of the interface on

which the proxy server will be communicating with rest of

the internet.

– You can also directly name the interface (such as eth0) that

the proxy server will use for all outgoing connections, which

is what I have done. It will now automatically use the IP

address associated with that interface. This is convenient

for DHCP assigned IP addresses.

– About using a fictitious IP address for all outgoing con-

nections from the server, it probably won’t work since –

at least ordinarily — your outgoing interface (eth0, eth1,

wlan0, etc) can only work with a legal IP address that an

upstream router can understand. [It appears that the only

way to take advantage of the anonymity offered by a socks server is

if you route your personal outgoing traffic through a socks server run

by a third party. Now the recipients of your traffic will see the IP

address of that party.]

– If for some reason (that is difficult to understand) you use a

socks proxy behind a home or a small-business router, you

23

Computer and Network Security by Avi Kak Lecture 19

won’t gain any anonymity from the outgoing IP address

used by the SOCKS server since the router will translate

the outgoing (the source) IP address into what is assigned

to router by the ISP anyway.

method: Methods are for authenticating the proxy clients. Re-

member that a socks server and a socks client do not have to

be on the same machine or even on the same local network.

user.privileged: If client authentication requires that some other

programs be run, the system would need to run them with cer-

tain specified privileges. For that purpose, you can create a

user named proxy if you wish and set this option accordingly.

Ignore it for now since we will not be doing any client au-

thentication. [According to Michael Shuldman of Inferno Nettverk, when the

server is used in a production setting, it would need to run “at least temporarily”

with an effective ID of 0 (that is, as root) in order to read the system password

file (which would be the /etc/shadow for Linux) so that it can later verify the

passwords provided by the socks clients. This becomes particularly necessary if

you chose ‘method: username’ for the previous option.] [To elaborate on the

“at least temporarily” phrase, let’s say that user.privileged is set to root

and user.notprivileged is set to nobody, the server will run with the default

privileges of nobody all the time except when the server needs to, for example,

authenticate a client on the basis of the passwords in, say, /etc/shadow. At that

moment, the server would elevate its privileges to the root level, extract the needed

information from system password file, and then revert back to the default privilege

level of nobody.]

24

Computer and Network Security by Avi Kak Lecture 19

user.notprivileged: This specifies as to what read/write/execute

privileges the server should be set to when running in the de-

fault non-privileged mode. Set it to nobody which means that

the server would have no permissions at all with respect all

the other files in the system.

• Rules: There are two kinds of rules:

– Rules, first kind: There are rules that control as to which

socks clients are allowed to talk to the proxy server. These

are referred to as client rules. All such rules have the client

prefix as in

client pass {

from: 127.0.0.0/24 port 1-65535 to: 0.0.0.0/0

}

client pass {

from: 192.168.1.0/24 port 1-65535 to: 0.0.0.0/0

}

client block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

These rules say to allow all local socks clients on the same

machine and all socks clients on the local LAN to talk to the

SOCK proxy server on this machine. The third rule says to

deny access to all other socks clients. Note that “to:” in these

rules is the address on which the socks server will accept a

connection request from a socks client. And, of course, as

you’d expect, “from:” is the source IP address of the client.

25

Computer and Network Security by Avi Kak Lecture 19

– Rules, the second kind: These are rules that control as

to what remote services the proxy server can be asked to talk

to (in the rest of the internet) by a socks client. These rules do

NOT carry the client prefix. Be careful here since how

you set up these rules may dictate whether or not

the proxy server can successfully carry out DNS

lookups. The comment statements in the danted.conf file

recommend that you include the first of the four rules shown

below for this section. But if you do, your proxy server will

not be able talk to the local DNS server. In my danted.conf

file, these rules look like:
Comment out the next rule since otherwise local DNS will not work

#block {

from: 0.0.0.0/0 to: 127.0.0.0/8

log: connect error

#}

pass {

from: 127.0.0.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 192.168.1.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

The second rule says that any local socks client will be able to

call on any service anywhere for a TCP or UDP service. The

third rule does the same for any socks client in the local LAN.

The fourth rule blocks all other socks client requested services.

Note that “to:” in these rules is the final destination of the

request from a socks client. And “from:” carries the same

26

Computer and Network Security by Avi Kak Lecture 19

meaning as before — it is the source address of a socks client.

• In the second set of rules shown above (the ones without the

client prefix), it is possible to allow and deny specific services

with regard to specific client source addresses and client final

destination addresses. See the official /etc/danted.conf file for

examples.

• The third and final section of the /etc/danted.conf file deals with

the route to be taken if proxy server chaining is desired. The route

specifies the name of the next upstream socks server.

• The internal and external option settings mentioned earlier

in this section are for the “normal” mode of operation of a proxy

server — the mode in which the clients access the services in the

rest of the internet through a proxy server. However, there is

another mode in which such proxy servers can be used — the

reverse proxy mode. In the reverse mode, you may offer, say,

an HTTP server in a private network but with the traffic to your

HTTP server directed through a Dante proxy server. You could,

for example, use a SOCKS server front-end to control access to

the private server. [You might ask: Why not use HTTPD’s access control

settings directly? While that may be true for an HTTP server, what if I wanted to

control access to the server described in Section 19.3.4? Instead of having to write all

27

Computer and Network Security by Avi Kak Lecture 19

the additional authentication and access-control code myself for that server, I could

use a Dante server as a reverse proxy and achieve the same results with very little

additional effort.] When a Dante server is used as a reverse proxy, the

meanings of internal and external options become reversed,

as you’d expect. [That the Dante server can be used as a reverse proxy was

brought to my attention by Michael Shuldman of Inferno Nettverk.]

An Example of the /etc/danted.conf Server Config File

A sample danted.conf that I use for demonstrating SOCKS

#

See the actual file /etc/danted.conf in your own installation of

Dante for further details.

####################### ServerSettings ##########################

server will log both via syslog, to stdout and to /var/log/lotsoflogs

logoutput: syslog stdout /var/log/lotsoflogs

internal: 127.0.0.1 port = 1080

All outgoing connections from the server will use the IP address

195.168.1.1

external: eth0 # See page 23 for what it means to run

a SOCKS server behind a home router

List acceptable methods for authentication in the order of

preference. A method not set here will never be selected.

If the method field is not set in a rule, the global method is

filled in for that rule. Client authentication method:

method: username none

The following is unnecessary if not doing authentication. When

doing something requiring privilege, it will use the userid "proxy".

user.privileged: proxy

When running as usual, it will use the unprivileged userid of:

28

Computer and Network Security by Avi Kak Lecture 19

user.notprivileged: nobody

Do you want to accept connections from addresses without dns info?

What about addresses having a mismatch in dnsinfo?

srchost: nounknown nomismatch

############################ RULES ############################

There are two kinds and they work at different levels.

#

#===================== rules checked first ====================

Allow our clients, also shows an example of the port range.

client pass {

from: 192.168.1.0/24 port 1-65535 to: 0.0.0.0/0

}

client pass {

from: 127.0.0.0/8 port 1-65535 to: 0.0.0.0/0

}

client block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

#================== the rules checked next ===================

pass {

from: 192.168.1.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 127.0.0.0/8 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 0.0.0.0/0 to: 127.0.0.0/8

protocol: tcp udp

}

block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

See /etc/danted.conf of your installation for additional

examples of such rules.

29

Computer and Network Security by Avi Kak Lecture 19

19.3.2: Configuring SOCKS Clients

• The client configuration file /etc/dante.conf regulates the be-

havior of a socksified client.

• At the beginning of the client configuration file, /etc/dante.conf,

you are asked if you want to run the socksified client with the

debug option turned on.

• All the other significant rules in the client config file are route

rules, that is rules that carry the route prefix.

• The first of these route rules lets you specify that you want to

allow for “bind” connections coming in from outside. The “bind”

command allows incoming connections for protocols like FTP

in which the local client first makes a control connection with

a remote server and the remote server then makes a separate

connection with the client for data transfer:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

command: bind

}

30

Computer and Network Security by Avi Kak Lecture 19

• See the official /etc/dante.conf file in your own installation of

Dante for other examples of the route rules that allow a client to

directly carry out the DNS lookup on the localhost or by directly

reaching out to a remote DNS server.

• Whereas the previous route rule for the “bind” command, the

next route rule tells the client where the SOCKS proxy server

is located and what port the server will be monitoring. This

rule also tells the client that the server supports TCP and UDP

services, both SOCKS4 and SOCKS5 protocols, and that the

server does not need any authentication:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

protocol: tcp udp # server supports tcp and udp.

proxyprotocol: socks_v4 socks_v5 # server supports socks v4 and v5.

method: none #username # we are willing to authenticate via

method ‘‘none’’, not ‘‘username’’.

}

• The “from:” and “to:” in the previous rule are the IP address

ranges for the client source addresses and the client final desti-

nation addresses for the remote services requested through the

proxy server. In order to allow for the final destination addresses

to be expressed as symbolic hostnames, we now include the next

route rule:

route {

from: 0.0.0.0/0 to: . via: 127.0.0.1 port = 1080

31

Computer and Network Security by Avi Kak Lecture 19

protocol: tcp udp

proxyprotocol: socks_v4 socks_v5

method: none #username

}

• Shown below is an example of the /etc/dante.conf SOCKS

Client Config File:

A sample dante.conf that I use for demonstrating SOCKS clients

#

See the actual file /etc/dante.conf in your own installation of

Dante for further details.

#debug: 1

Allow for "bind" for a connection initiated by a remote server

in response to a connection by a local client:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

command: bind

}

Send client requests to the proxy server at the address shown:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

protocol: tcp udp # server supports tcp and udp.

proxyprotocol: socks_v4 socks_v5 # server supports socks v4 and v5.

method: none #username # we are willing to authenticate via

method "none", not "username".

}

Same as above except that the remote services may now be named

by symbolic hostnames:

route {

from: 0.0.0.0/0 to: . via: 127.0.0.1 port = 1080

protocol: tcp udp

proxyprotocol: socks_v4 socks_v5

32

Computer and Network Security by Avi Kak Lecture 19

method: none #username

}

33

Computer and Network Security by Avi Kak Lecture 19

19.3.3: Anonymity Check

• How can you be certain that when you go through a proxy server,

your IP address will not be visible to the remote host?

• A common way to check for your anonymity is to visit a web

site (of course, through the proxy server) that displays your IP

address in the browser window. (An example of such a web site

would be http://hostip.info.)

• This is usually sufficient check of anonymity for SOCKS proxy

servers, but not for HTTP proxy servers. (HTTP Proxy Servers

are presented starting with Section 19.13.)

• Even when an HTTP proxy server does not send the

HTTP_X_FORWARDED_FOR field to the remote server, it may still

send the HTTP_VIA and HTTP_PROXY_CONNECTION fields that

may compromise your privacy.

• When an HTTP proxy server does not send any of these fields

to the remote server, it is usually called an elite or a high-

anonymity proxy server.

34

Computer and Network Security by Avi Kak Lecture 19

19.3.4: An Example of Accessing an Internet Server

Through the danted Proxy

• To understand this example, please keep straight the meaning to

be associated with each of the following:

– an internet server, means a server running somewhere in

the internet;

– a client that wants to interact with the internet server;

– the socks proxy server (dantd, naturally); and

– a socksified client, which comes into existence when the

client accesses the internet server through the socks proxy.

• Ordinarily, when socks in not involved, you will run the client pro-

gram on your machine and this program will talk to the internet

server on some remote machine.

• With the Dante socks server running on the client machine, we

want to route all of the client’s communication with the remote

application server through the socks server on the client machine.

35

Computer and Network Security by Avi Kak Lecture 19

• The internet server, named DemoExptServer.pl is shown below:

#!/usr/bin/perl -w

use strict;

DemoExptServer.pl

This script is from Chapter 15 of the book ‘‘Scripting with Objects’’

by Avinash Kak, John-Wiley, 2008

use IO::Socket;

use Net::hostent;

my $server_soc = IO::Socket::INET->new(LocalPort => 9000,

Listen => SOMAXCONN,

Proto => ’tcp’,

Reuse => 1);

die "No Server Socket" unless $server_soc;

print "[Server $0 accepting clients]\n";

while (my $client_soc = $server_soc->accept()) {

print $client_soc "Welcome to $0; type help for command list.\n";

my $hostinfo = gethostbyaddr($client_soc->peeraddr);

printf "\n[Connect from %s]\n",

$hostinfo ? $hostinfo->name : $client_soc->peerhost;

print $client_soc "Command? ";

while (<$client_soc>) {

next unless /\S/;

printf " client entered command: %s\n", $_;

if (/quit|exit/i) { last; }

elsif (/date|time/i) { printf $client_soc "%s\n",

scalar localtime;}

elsif (/ls/i) { print $client_soc ‘ls -al 2>&1‘; }

elsif (/pwd/i) { print $client_soc ‘pwd 2>&1‘;}

elsif (/user/i) { print $client_soc ‘whoami 2>&1‘; }

elsif (/rmtilde/i) { system "rm *~"; }

else {

print $client_soc

"Commands: quit exit date ls pwd user rmtilde\n";

}

} continue {

36

Computer and Network Security by Avi Kak Lecture 19

print $client_soc "Command? ";

}

close $client_soc;

}

• As you can see, the internet server monitors port 9000. When a

client checks in, the server first welcomes the client and then, in

an infinite loop, asks the client to enter one of the following com-

mands: quit, exit, date, time, ls, pwd, user, and rmtilde.

Except for the last, these are system functions that are ordinary

invoked on the command line in Unix and Linux system. The

last, rmtilde calls the system function rm to remove all files in

the directory in which the server is running whose names end in

a tilde.

• We will run this server on moonshine.ecn.purdue.edu by in-

voking

DemoExptServer.pl

• Shown below is a client script, DemoExptClient.pl, which we

will run in a home LAN machine with the intranet using the

Class C network address range 192.168.1.0/24. This client in-

teracts with the above server in an interactive session. The server

37

Computer and Network Security by Avi Kak Lecture 19

prompts the client to enter one of the permissible commands and

the server then executes that command.

#!/usr/bin/perl -w

use strict;

DemoExptClient.pl

This script is from Chapter 15 of the book ‘‘Scripting with Objects’’

by Avinash Kak, John-Wiley, 2008

use IO::Socket;

die "usage: $0 host port" unless @ARGV == 2;

my ($host, $port) = @ARGV;

my $socket = IO::Socket::INET->new(PeerAddr => $host,

PeerPort => $port,

Proto => "tcp",

)

or die "can’t connect to port $port on $host: $!";

$SIG{INT} = sub { $socket->close; exit 0; };

print STDERR "[Connected to $host:$port]\n";

spawn a child process

my $pid = fork();

die "can’t fork: $!" unless defined $pid;

Parent process: receive information from the remote site:

if ($pid) {

STDOUT->autoflush(1);

my $byte;

while (sysread($socket, $byte, 1) == 1) {

print STDOUT $byte;

}

kill("TERM", $pid);

} else {

Child process: send information to the remote site:

my $line;

while (defined ($line = <STDIN>)) {

print $socket $line;

38

Computer and Network Security by Avi Kak Lecture 19

}

}

• We now socksify the client by using the command line

socksify DemoExptClient.pl moonshine.ecn.purdue.edu 9000

• The above call will work the same as before. As a user on the

client side, you should notice no difference between the socksified

call and the unsocksified call.

• Of course, before you make the above invocation to socksify you

must fire up the danted server on the client machine. To easily

see the client requests going through the proxy server, start up

the server with (while you are logged in as root on your Linux

machine):

/usr/sbin/danted -d

When you bring up the server in this manner, you can actually see

it making DNS queries and eventually talking to the services in

the internet on behalf of the socks clients. Of course, as previously

mentioned, for “production” purposes you’d fire up the proxy

server by

39

Computer and Network Security by Avi Kak Lecture 19

/etc/init.d/danted start

and stop it by

/etc/init.d/danted stop

40

Computer and Network Security by Avi Kak Lecture 19

19.4: SQUID

• If all you want to do is to control access to the HTTP and FTP

resources on the web, the very popular Squid is an attractive

alternative to SOCKS. As with SOCKS, Squid can also

be used as an anonymizing proxy server.

• Although very easy to use for access control, Squid is also widely

deployed by ISP’s for web caching.

• You can install Squid on your own Linux laptop for personal web

caching for an even faster response than an ISP can provide.

• Web caching means that if you make repeated requests to the

same web page and there exists a web proxy server between you

and the source of the web page, the proxy server will send a quick

request to the source to find out if the web page was changed

since it was last cached. If not, the proxy server will send out

the cached page. [This can result in considerable speedup in web services especially when

41

Computer and Network Security by Avi Kak Lecture 19

it comes to downloads of popular web pages. A popular web site is likely to be accessed by a large

number of customers frequently or more or less constantly.]

• Squid supports ICP (Internet Cache Protocol, RFC2186, 2187).

You can link up the Squid proxy serves running at different places

a network through parent-child and sibling relationships. If

a child cache cannot find an object, it passes on the request to

the parent cache. If the parent cache itself does not have the

object, it fetches and caches the object and then passes it to on

to the child cache that made the original request. Sibling caches

are useful for load distribution. Before a query goes to the parent

cache, the query is sent to adjacent sibling caches.

• Squid also speeds up DNS lookup since it caches the DNS infor-

mation also.

• Since Squid is a caching proxy server, it must avoid returning to

the clients objects that are out of date. So it automatically expires

such objects. You can set the refresh time in the configuration

file to control how quickly objects are expired.

• Squid was originally derived from the Harvest project.

More on that in Section 19.17.

42

Computer and Network Security by Avi Kak Lecture 19

• The home page for Squid:

http://www.squid-cache.org/

• Windows has its own version of web proxy for caching internet

objects and for performance acceleration of web services. It is

called the Microsoft Internet Security and Acceleration Server

(ISA Server).

43

Computer and Network Security by Avi Kak Lecture 19

19.4.1: Starting and Stopping the Squid Proxy Server

• If you installed version 3 of Squid (squid3) on your Ubuntu ma-

chine through the Synaptic Packet Manager, you will find the

Squid configuration file at the following pathname:

/etc/squid3/squid.conf

and you will find the rest of the goodies in the /usr/lib/squid3/

directory. As you would expect, the start/stop/restart script is

invoked by (as root)

/etc/init.d/squid3 start

stop

restart

and the executable in

/usr/sbin/squid3

Note that version 3 is a major rewrite of Squid in C++ and it

includes several new features.

• If Squid is already running in your computer (you can check that

by executing ‘ps ax | grep squid’), this would be a good time to

stop it as indicated above and to then re-start it as root using

the following command line:

/usr/sbin/squid3 -N -d 1

44

Computer and Network Security by Avi Kak Lecture 19

which bring up the proxy server in the debug mode to actually see

what it is doing as you first become familiar with it. In the com-

mand line above, the option ‘-N’ means to run the server in the

foreground and the option ‘-d 1’ means to run the server at de-

bug level 1. An additional option to consider is ‘-D’ is to suppress

DNS lookups by the server. If the server has a need to do DNS

lookups and it can’t, the server may die without warning. The

directory where the objects are cached in a default installation of

Squid is

/var/spool/squid3/

You must uncomment the line

cache_dir ufs /var/spool/squid3 100 16 256

in the squid3.conf file in order for caching to take place. If you do

not uncomment this or a similar such line, your Squid proxy will

only act as a firewall through its access control lists.

• Apart from the above mentioned changes, the default installation

of Squid should prove good enough for practically all your needs

if you are running it as personal caching proxy server on your

own machine.

• The default port monitored by the proxy server is 3128.

45

Computer and Network Security by Avi Kak Lecture 19

• After you have brought up the proxy server, it is useful to look

at the following log, especially after you have made at least one

client request through the proxy server:

/var/log/squid3/cache.log

This log shows you as to what host/port squid is monitoring for

incoming requests for service, what port for ICP messages, how

much cache memory it is using, how many buckets to organize

the fast-memory entries for the cache objects, etc.

• The other very useful log at the same pathname as above is

access.log

What makes this log file particularly useful is that it shows whether

an object was doled out from the cache or obtained from the ori-

gin server. The access.log file uses the following format for its

entries

timestamp elapsed client action/code size method URI ident ...

• Here is a line entry from access.log if you make an SSH con-

nection through Squid:

1170571769.664 96591 127.0.0.1 TCP_MISS/200 4403 \

CONNECT rvl4.ecn.purdue.edu:22 - DIRECT/128.46.144.10 -

46

Computer and Network Security by Avi Kak Lecture 19

where the timestamp is a unix time— it is the number of seconds

from Jan 1, 1970. The action TCP MISS means that the internet

object requested was NOT in the cache, which makes sense in

this case because we are not trying to retrieve an object; we

are trying to make a connection with the remote machine (rvl4).

By the way, when you see TCP HIT for action, that means that

a valid copy of the object was found in the cache and retrieved

from it. Similarly TCP REFRESH HIT means that an expired copy of

the object was found in the cache. When that happens, Squid

makes an If-Modified-Since request to the origin server. If the

response from the origin server is Not-Modified, the cached object

is returned to the client.

• The critical hardware disk parameter for a cache is random seek

time. If the random seek time is, say, 1 ms, that means you could

at most do 1000 separate disk accesses per second.

• From Squid On-Line Users Manual: “Squid is not generally CPU

intensive. It may use a lot of CPU at startup when it tries to

figure out what is in the cache and a slow CPU can slow down

access to the cache for the first few minutes after startup.”

• Also from the on-line manual: Squid keeps in the RAM a table

of all the objects in the cache. Each objects needs about 75 bytes

47

Computer and Network Security by Avi Kak Lecture 19

in the table. Since the average size of an internet object is 10

KBytes, if your cache is of size 1 Gbyte, you would be able to

store 100, 000 objects. That means that you’d need about 7.5

MBytes of RAM to hold the object index.

• Now let’s get the browser on your machine to reach

out to the internet though the Squid proxy.

• You will have to tell your web browser that it should NOT connect

directly with the internet and, instead, it should route its calls

through the Squid proxy. For example, for the firefox browser,

the following sequence of button-clicks (either on menu items or

in the dialog windows that pop up) will take you to the point

where you’d need to enter the web proxy related information:

Firefox:

-- Edit

-- Preferences

-- Advanced

-- Network

-- Settings

-- Manual Proxy Configuration

-- HTTP_Proxy 127.0.0.1 Port 3128

and then check the box for ”Use this proxy for all protocols”.

48

Computer and Network Security by Avi Kak Lecture 19

19.4.2: The Squid Cache Manager

• The cache manager is a neat utility. It consists of a CGI script lo-

cated at ‘/usr/lib/cgi-bin/cachemgr.cgi’. The script will be au-

tomatically placed at this location when you install the squid-cgi

package with the Synaptic package manager. This package con-

tains the Squid cache manager CGI script. This script can pro-

vide statistics about the various objects in the cache. It is also a

convenient tool for managing the cache.

• When you install the cache manager package as indicated above,

it will also place a config file called cachemgr.conf in the /etc/squid/

directory. However, for the experiments described here you would

not need to change anything in this directory.

• To have the most fun with Squid’s Cache Manager utility, you

have to have the Apache web server installed on your Linux ma-

chine. With the web server running on your own machine, you

can interact with the cache manager through a web browser on

any host, including the same host that contains the cache.

– I’d recommend that you install the Apache web server with the Synaptic
Package Manager. If you install the apache2 package, the package manager

49

Computer and Network Security by Avi Kak Lecture 19

will automatically install four other related packages. In addition to needing
it here for demonstrating what the Squid cache manager can do, we will also
need the Apache server when we discuss the Harvest system for information
gathering and indexing later in this lecture.

– Listed below are some things to watch out for if you do install
the Apache web server on your Ubuntu machine.

– First note that even when I casually refer to the web server as httpd, its
official name is apache2. Even when you launch the web server daemon,
apache2, as root, the child-server httpd processes that are created for
handling individual connections with the clients will most likely be setuid
to the user ‘www-data’. You can check this for yourself by executing ‘ps aux

| grep apache’ on your machine. As you should know by this time, this is
for ensuring security since the user ‘www-data’ has virtually no permissions
with regard to the files on your system.

– With a standard install, your Apache HTTPD directory will be installed
at the location /etc/apache2/. For convenience, in the .bashrc file of the
root account, sets the environment variable APACHEHOME to point to this
directory.

– The behavior of the Apache httpd server is orchestrated by the configu-
ration files and subdirectories in the /etc/apache2/ directory. The main
config file is apache2.conf that in turn pulls in the contents of the site-
specific config files in the sites-enabled and mods-enabled directories.
See the HTTP server installation notes in Section 27.1 of Lecture 27 for
additional comments related to the contents of the mods-enabled and
sites-enabled directories. Suffice it to say that for me to enable Apache
to serve out my web page in my public-web directory, the file kak.conf

in the sites-enabled directory contains the following entries:

<VirtualHost *:80>

ServerAdmin webmaster@localhost

The following directive names the file the server

will serve out when the ’kak’ directory is requested

through ’~kak’:

DirectoryIndex Index.html index.html

50

Computer and Network Security by Avi Kak Lecture 19

In the following. AllowOverride controls what directive

may be placed in .htaccess file. For example, it can be

All, None, etc. The Indexes option allows a client to

see a listing of the directory if the client’s request

is for a directory and if the DirectoryIndex has not

been set for that directory.

<Directory "/home/kak/public-web/">

Options Indexes FollowSymLinks MultiViews

AllowOverride None

Require all granted

</Directory>

If I want cgi scripts to be served out of my own web

directory:

ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

<Directory "/usr/lib/cgi-bin">

AllowOverride None

Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch

Require all granted

</Directory>

ErrorLog /var/log/apache2/error.log

Possible values include: debug, info, notice, warn, error, crit,

alert, emerg.

LogLevel warn

CustomLog /var/log/apache2/access.log combined

</VirtualHost>

– And I had to insert the following block of directives in

the /etc/apache2/apache2.conf configuration file:

UserDir enabled kak

UserDir public-web public_html

For seeing the Squid cachemgr web page:

ScriptAlias /Squid/cachemgr /usr/lib/cgi-bin/cachemgr.cgi

<Location "/usr/lib/cgi-bin/cachemgr.cgi">

allow from localhost

deny from all

51

Computer and Network Security by Avi Kak Lecture 19

<Limit GET>

</Limit>

require user kak

</Location>

The first two lines tell Apache that it will be asked to dole out

the public-web pages for the kak account on the machine. And
the rest of the above directive allows the Squid cache manager

to display its handiwork in the browser on my laptop. Note
that the ScriptAlias directive tells Apache that the URL exten-

sion /Squid/cachemgr points to the location /usr/lib/cgi-bin/cachemgr.cgi

and that the resource at this location is a cgi script that Apache

must be executed before doling it out. The same directive for
mapping a URL to a directory or a filename is just Alias if you
do not want Apache to execute the contents before delivery.

– I did not change any other config files for the demos in this

lecture.

– After your httpd server is up and running, you can read all

the help files by pointing your browser to http://localhost/

manual.

– To start and stop the Apache HTTPD server, login as root and
enter in the command line

/etc/init.d/apache2 start

stop

restart

Ordinarily, as you are experimenting with the config files, you
can reload them into Apache by executing /etc/init.d/apache2

reload each time you make a change and you want to see its
effects.

52

Computer and Network Security by Avi Kak Lecture 19

– If you run into any problems with the server, it can be ex-
tremely useful to look at /var/log/apache2/error.log for any er-

ror messages.

– For the httpd server daemon to serve out the web pages in
the public-web subdirectory of my home directory, this sub-

directory must carry the permission 755. Note that on Pur-
due’s computers, the permission of a public-web directory in a

user’s account is 750. But that will not work for your personal
Linux machine because, as mentioned already, the httpd server

runs as the user ‘www-data’. Since the ownership/group of the
public-web directory does not include ‘www-data’, it is the per-
mission bits that are meant for “other” that would determine

whether or not ‘www-data’ can access your public-web directory.
This problem can be particularly vexing if you use rsync to

download the updates for the public-web directory from your
Purdue account. rsync will reset the permission bits to what

they are in your Purdue account.

– If in addition to using the web server locally, you want to be
able to access it from other machines, make sure that you have

modified your packet filtering firewall accordingly (See Lecture
18).

• Next you need to make sure that the Squid configuration file

/etc/squid3/squid.conf has the following definitions in it:

acl localhost src 127.0.0.1/32

acl our_networks src 192.168.1.0/24 127.0.0.1

acl all src 0.0.0.0/0

53

Computer and Network Security by Avi Kak Lecture 19

where manager stands for the cache manager.

• Using the above access control lists (acl), now make sure that the

Squid configuration file /etc/squid3/squid.conf has the following

permissions declared:

http_access allow manager localhost

http_access deny manager

http_access allow our_networks

http_access deny all

This says that the cache manager is allowed access only from the

localhost. Any calls to the cache manager cgi script from any

other host will be denied. We also allow access from any one in

our networks. Finally, we deny all other requests. In my case, the

above settings were already in the squid.conf file as installed by

the package manager.

• After you have set up the Apache web server and the Squid cache

manager on your laptop, point your browser to

http://localhost/Squid/cachemgr

You will first see a authorization page asking for the Cache Man-

ager’s login name and password. These must be as specified in

the config file that is shown in the next section.

54

Computer and Network Security by Avi Kak Lecture 19

• To see the 25 biggest objects in the cache, execute the following

in the /var/log/squid3/ directory:

sort -r -n +4 -5 access.log | awk ’{print $5, $7}’ | head -25

• Finally, note that there is a config file for the cache manager also

that you can normally forget about if you are using the standard

port for the Squid proxy. If not, you may need to make an entry

in the cache manager config file at

/etc/squid/cachemgr.conf

55

Computer and Network Security by Avi Kak Lecture 19

19.4.3: Configuring the Squid Proxy Server

• The configuration file /etc/squid3/squid.conf defines an incred-

ibly large number of parameters for orchestrating and finetuning

the performance of the web proxy.

• Fortunately, the default values for most of the parameters are

good enough for simple applications of Squid – as, for example,

for using it as web proxy on your own Linux machine. For my

demonstrations of the Squid proxy, I only make the following

three changes to the configuration file:

cache_dir ufs /var/spool/squid3 100 16 256

cache_mgr kak@localhost

cachemgr_passwd none all

If you search for the strings cache dir, cache mgr and cachemgr passwd,

you would know where to make these changes. The first entry

above turns on web caching on the local disk. The second en-

try above designates where to send messages in case of problems,

such as the proxy shutting down inadvertently, and the third de-

clares that no password is needed for any of the actions made

through the cache manager viewer in your browser. [The passwords

can be set selectively for a large number of different actions vis-a-vis the cache man-

ager. For example, if you wanted to subject the “shutdown” action to password based

56

Computer and Network Security by Avi Kak Lecture 19

authentication, you would replace the second declaration above by “cachemgr passwd

xxxx shutdown” where “xxxx” is the password that must be entered for the shutdown

action. When you set some of the actions to password based authentication in this man-

ner, when you display the cache manager in your browser window, you will be shown

as to which actions require authentication.]

• For more general changes to the config file, note that each pa-

rameter in the configuration file is referred to as a “tag” in a

commented-out line. The default for each tag is shown below

the commented-out section for a tag. If you are happy with the

default, you can move onto to the next parameter.

• The very few parameters (tags) that you’d need to set for a simple

one-machine application of Squid deal with:

– The IP address of the interface though which the clients will

be accessing the web proxy.

– The IP addresses of the DNS nameservers (the ‘dns nameservers’

tag). (I recommend that for the application at hand, you leave

it commented out. That will force the Squid daemon to look

into the file ‘/etc/resolve.conf/’ for the IP addresses of the

nameservers. A manually specified entry for dns nameservers

in quid.conf overrides /etc/resolv.conf lookup.)

57

Computer and Network Security by Avi Kak Lecture 19

– Location of the local hostname/IP database file. For a Linux

machine, this is typically /etc/hosts. This file is checked at

startup and upon configuration.

– Definitions forAccess Classes, abbreviated ‘acl’. See the sam-

ple ‘acl’ definitions in the portion of the config shown later in

this section.

– http access declarations for the different ‘acl’ access classes.

These declare as to who is allowed to access the web proxy for

what services.

– Defining the effective user ID and group ID for the Squid

processes that will be spawned for the incoming connections.

(This is an important security issue.)

– Telling Squid whether or not you want the forwarded for tag

to be turned off to make the proxy anonymous. The default

for this tag is ‘on’. So, by default, the web proxy will forward

a client’s IP address to the remote web server.

– Specifying a password for the Cache Manager.

• Shown below is a very small section of the official configuration

58

Computer and Network Security by Avi Kak Lecture 19

file /etc/squid3/squid.conf:

This is the default Squid configuration file. You may wish

to look at the Squid home page (http://www.squid-cache.org/)

for the FAQ and other documentation.

.......

NETWORK OPTIONS

TAG: http_port

Usage: port

hostname:port

1.2.3.4:port

The socket addresses where Squid will listen for HTTP client

requests.

The default port number is 3128.

http_port 127.0.0.1:3128

TAG: https_port

.....

TAG: ssl_unclean_shutdown

.....

TAG: icp_port

.....

OPTIONS WHICH AFFECT THE NEIGHBOR SELECTION ALGORITHM

TAG: cache_peer

.....

TAG: cache_peer_domain

.....

TAG: icp_query_timeout (msec)

......

TAG: no_cache

A list of ACL elements which, if matched, cause the request to

not be satisfied from the cache and the reply to not be cached.

In other words, use this to force certain objects to never be cached.

#

You must use the word ’DENY’ to indicate the ACL names which should

NOT be cached.

#

#We recommend you to use the following two lines.

acl QUERY urlpath_regex cgi-bin \?

no_cache deny QUERY

OPTIONS WHICH AFFECT THE CACHE SIZE

TAG: cache_mem (bytes)

.....

LOGFILE PATHNAMES AND CACHE DIRECTORIES

TAG: cache_dir

......

OPTIONS FOR EXTERNAL SUPPORT PROGRAMS

TAG: ftp_user

.....

TAG: cache_dns_program

.....

59

Computer and Network Security by Avi Kak Lecture 19

#Default:

cache_dns_program /usr/local/squid/libexec/dnsserver

TAG: dns_children

Note: This option is only available if Squid is rebuilt with the

--disable-internal-dns option

#

The number of processes spawn to service DNS name lookups.

.....

TAG: dns_retransmit_interval

Initial retransmit interval for DNS queries. The interval is

doubled each time all configured DNS servers have been tried.

#

#Default:

dns_retransmit_interval 5 seconds

TAG: dns_timeout

DNS Query timeout. If no response is received to a DNS query

within this time then all DNS servers for the queried domain

is assumed to be unavailable.

#Default:

dns_timeout 2 minutes

TAG: dns_defnames on|off

Note: This option is only available if Squid is rebuilt with the

--disable-internal-dns option

......

#Default:

dns_defnames off

TAG: dns_nameservers

Use this if you want to specify a list of DNS name servers

(IP addresses) to use instead of those given in your

/etc/resolv.conf file.

.......

#Default:

none

TAG: hosts_file

Location of the host-local IP name-address associations

database. Most Operating Systems have such a file: under

Un*X it’s by default in /etc/hosts MS-Windows NT/2000 places

that in %SystemRoot%(by default

c:\winnt)\system32\drivers\etc\hosts, while Windows 9x/ME

places that in %windir%(usually c:\windows)\hosts

......

#Default:

hosts_file /etc/hosts

TAG: diskd_program

Specify the location of the diskd executable.

.....

TAG: external_acl_type

This option defines external acl classes using a helper program to

look up the status

.....

OPTIONS FOR TUNING THE CACHE

TAG: wais_relay_host

....

TAG: positive_dns_ttl time-units

Upper limit on how long Squid will cache positive DNS responses.

60

Computer and Network Security by Avi Kak Lecture 19

Default is 6 hours (360 minutes). This directive must be set

larger than negative_dns_ttl.

#

#Default:

positive_dns_ttl 6 hours

TIMEOUTS

TAG: forward_timeout time-units

This parameter specifies how long Squid should at most attempt in

finding a forwarding path for the request before giving up.

#

#Default:

forward_timeout 4 minutes

TAG: connect_timeout time-units

This parameter specifies how long to wait for the TCP connect to

the requested server or peer to complete before Squid should

attempt to find another path where to forward the request.

#

#Default:

connect_timeout 1 minute

TAG: peer_connect_timeout time-units

This parameter specifies how long to wait for a pending TCP

connection to a peer cache. The default is 30 seconds. You

may also set different timeout values for individual neighbors

with the ’connect-timeout’ option on a ’cache_peer’ line.

#

#Default:

peer_connect_timeout 30 seconds

TAG: read_timeout time-units

The read_timeout is applied on server-side connections. After

each successful read(), the timeout will be extended by this

.....

#Default:

read_timeout 15 minutes

TAG: request_timeout

How long to wait for an HTTP request after initial

connection establishment.

#Default:

request_timeout 5 minutes

TAG: persistent_request_timeout

How long to wait for the next HTTP request on a persistent

connection after the previous request completes.

#

#Default:

persistent_request_timeout 1 minute

TAG: client_lifetime time-units

The maximum amount of time that a client (browser) is allowed to

.....

ACCESS CONTROLS

TAG: acl

Defining an Access List

#Recommended minimum configuration:

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

61

Computer and Network Security by Avi Kak Lecture 19

acl localhost src 127.0.0.1/255.255.255.255

acl to_localhost dst 127.0.0.0/8

acl SSL_ports port 443 563

acl SSH_port port 22 # ssh

acl Safe_ports port 80 # http

acl Safe_ports port 21 # ftp

acl Safe_ports port 443 563 # https, snews

acl Safe_ports port 70 # gopher

acl Safe_ports port 210 # wais

acl Safe_ports port 1025-65535 # unregistered ports

acl Safe_ports port 280 # http-mgmt

acl Safe_ports port 488 # gss-http

acl Safe_ports port 591 # filemaker

acl Safe_ports port 777 # multiling http

acl CONNECT method CONNECT

TAG: http_access

Allowing or Denying access based on defined access lists

.....

#Default:

http_access deny all

#Recommended minimum configuration:

#

Only allow cachemgr access from localhost

http_access allow manager localhost

The following line will deny cache manager access from any other host:

http_access deny manager

Deny requests to unknown ports

http_access deny !Safe_ports

Deny CONNECT to other than SSL ports

http_access deny CONNECT !SSL_ports

The following needed by the corkscrew tunnel (SSH_port was previously

defined to be access class consisting of port 22 that is assigned to

the SSH Remote Login Protocol:

http_access allow CONNECT SSH_port

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

We strongly recommend to uncomment the following to protect innocent

web applications running on the proxy server who think that the only

one who can access services on "localhost" is a local user

#http_access deny to_localhost

INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS:

Example rule allowing access from your local networks. Adapt

to list your (internal) IP networks from where browsing should

be allowed

acl our_networks src 192.168.1.0/24 127.0.0.1

http_access allow our_networks

Note that ’src’ above means ’source of request’ as opposed to

’dest’ for ’destination of request’.

And finally deny all other access to this proxy

http_access deny all

TAG: http_reply_access

Allow replies to client requests. This is complementary

to http_access.

#

http_reply_access allow|deny [!] aclname ...

62

Computer and Network Security by Avi Kak Lecture 19

#

NOTE: if there are no access lines present, the default is to allow

all replies

#

If none of the access lines cause a match, then the opposite of the

last line will apply. Thus it is good practice to end the rules

with an "allow all" or "deny all" entry.

#

#Default:

http_reply_access allow all

#

#Recommended minimum configuration:

#

Insert your own rules here.

and finally allow by default

http_reply_access allow all

TAG: icp_access

Allowing or Denying access to the ICP port based on defined

access lists

.....

#Default:

none

TAG: ident_lookup_access

A list of ACL elements which, if matched, cause an ident

(RFC 931) lookup to be performed for this request. For

example, you might choose to always perform ident lookups

.....

#Default:

ident_lookup_access deny all

TAG: tcp_outgoing_tos

Allows you to select a TOS/Diffserv value to mark outgoing

......

ADMINISTRATIVE PARAMETERS

TAG: cache_mgr

Email-address of local cache manager who will receive

mail if the cache dies. The default is "webmaster."

#

#Default:

cache_mgr webmaster

cache_mgr kak@localhost

TAG: cache_effective_user

TAG: cache_effective_group

If you start Squid as root, it will change its effective/real

UID/GID to the UID/GID specified below. The default is to

.....

If Squid is not started as root, the cache_effective_user

value is ignored and the GID value is unchanged by default.

However, you can make Squid change its GID to another group

......

#Default:

cache_effective_user nobody

cache_effective_user squid

cache_effective_group squid

The above change is necessary if you want to start

squid to monitor port 3128 for incoming connections

Otherwise, squid will start as user ’root’ and

then changeover to user ’nobody’. According to the

63

Computer and Network Security by Avi Kak Lecture 19

user’s guide, as ’nobody’, squid will not be able

to monitor a high numbered port such as 3128.

TAG: visible_hostname

If you want to present a special hostname in error messages, etc,

.....

OPTIONS FOR THE CACHE REGISTRATION SERVICE

This section contains parameters for the (optional) cache

......

HTTPD-ACCELERATOR OPTIONS

TAG: httpd_accel_host

TAG: httpd_accel_port

If you want to run Squid as an httpd accelerator, define the

host name and port number where the real HTTP server is.

......

MISCELLANEOUS

TAG: dns_testnames

The DNS tests exit as soon as the first site is successfully looked up

....

TAG: logfile_rotate

Specifies the number of logfile rotations to make when you

type ’squid -k rotate’. The default is 10, which will rotate

.....

TAG: forwarded_for on|off

If set, Squid will include your system’s IP address or name

#Default:

forwarded_for on

The following option for the above tag makes the proxy anonymous

to the web servers receiving the requests from this proxy’s clients:

#forwarded_for off

TAG: header_replace

Usage: header_replace header_name message

Example: header_replace User-Agent Nutscrape/1.0 (CP/M; 8-bit)

#

This option allows you to change the contents of headers

denied with header_access above, by replacing them with

some fixed string. This replaces the old fake_user_agent

option.

#

By default, headers are removed if denied.

#

#Default:

none

TAG: cachemgr_passwd

Specify passwords for cachemgr operations.

#

Usage: cachemgr_passwd password action action ...

#

Some valid actions are (see cache manager menu for a full list):

5min

60min

asndb

authenticator

cbdata

client_list

comm_incoming

64

Computer and Network Security by Avi Kak Lecture 19

.....

.....

.....

* Indicates actions which will not be performed without a

valid password, others can be performed if not listed here.

#

To disable an action, set the password to "disable".

To allow performing an action without a password, set the

password to "none".

#

Use the keyword "all" to set the same password for all actions.

#

#Example:

cachemgr_passwd secret shutdown

cachemgr_passwd xxxxxx all

cachemgr_passwd lesssssssecret info stats/objects

cachemgr_passwd disable all

and much much more

65

Computer and Network Security by Avi Kak Lecture 19

19.5: HARVEST: A SYSTEM FOR
INFORMATION GATHERING AND

INDEXING

• Since Squid was borne out of the Harvest project and since the

Harvest project has played an influential role in the design of web-

based search engines, I believe you need to know about Harvest.

• You can download Harvest from http://sourceforge.net.

Download the source tarball in any directory (on my Linux lap-

top, this directory is named harvest). Unzip and untar the

archive. Installation is very easy and, as in most cases, involves

only the following three steps as root:

./configure

make

make install

By default, this will install the configuration files and the ex-

ecutables in a directory called /usr/local/harvest. Set the

environment variable HARVEST_HOME to point to this directory.

So if you say ’echo $HARVEST_HOME’, you should get

/usr/local/harvest

66

Computer and Network Security by Avi Kak Lecture 19

19.5.1: What Does Harvest Really Do?

• Harvest gathers information from designated sources that may

be reside on your own hard disk (it could be all of your local disk

or just certain designated directories and/or files) or specified

sources on the web in terms of their root URL’s.

• Harvest then creates an efficiently searchable index for the gath-

ered information. (Ordinarily, an index is something you see

at the end of a textbook. It is the keywords and key-phrases

arranged alphabetically with pointers to where one would find

them in the text book. An electronic index does the same

thing — it is an efficiently searchable database of keywords and

key-phrases along with pointers to the documents that contains

them. More formally, an index is an associative table of key-

value pairs where the keys are the words and the values the

pointers to documents that contain those words.)

• Eventually, Harvest serves out the index through an index server.

A user interacts with the index server through a web interface.

• The index server in Harvest is called a broker. (Strictly speak-

ing, a Harvest broker first constructs the index and then serves

67

Computer and Network Security by Avi Kak Lecture 19

it out through a web interface.)

• Just as you can download the Google tool for setting up a search

facility for all of the information you have stored on the hard disk

of a Windows machine, you can do the same on a Linux machine

with Harvest.

68

Computer and Network Security by Avi Kak Lecture 19

19.5.2: Harvest: Gatherer

• Briefly speaking, a Gatherer’s job is to scan and summarize the

documents.

• Each document summary produced by a Gatherer is a SOIF

object. SOIF stands for Summary Object Interchange

Format. Here is a very partial list of the SOIF document

attributes: Abstract, Author, Description, File-Size,

Full-Text, Gatherer-Host, Gatherer-Name, Gatherer-

Port, Gatherer-Version, Update-Time, Keywords, Last-

Modification-Time, MD5, Refresh Rate, Time-to-Live,

Title, Type,

• Before a Gatherer scans a document, it determines its type and

makes sure that the type is not in a stoplist. Files named sto-

plist.cf and allowlist.cf play important roles in the function-

ing of a Gatherer. You would obviously not want audio, video,

bitmap, object code, etc., files to be summarized, at least not in

the same manner as you’d want files containing ASCII characters

to be summarized.

• Gatherer sends the document to be summarized to the Essence

69

Computer and Network Security by Avi Kak Lecture 19

sub-system. It is Essence that has the competence to determine

the type of the document. If the type is acceptable for sum-

marization, it then applies a type-specific summary extraction

algorithm to the document. The executables that contain such

algorithms are called summarizers; these filenames end in the

suffix .sum.

• The Essence system recognizes a document type in three ways:

1) by URL naming heuristics; 2) by file naming heuristics; and,

finally, by locating identifying data within a file, as done by the

Unix file command. These three type recognition strategies are

applied to a document in the order listed here.

• A Gatherer makes its SOIF objects available through the

gatherd

daemon server on a port whose default value is 8500.

• When you construct a Gatherer, it is in the form of a directory

that contains two scripts

RunGatherer

RunGatherd

The first script, RunGatherer, starts the process of gathering

the information whose root nodes are declared in the Gatherer

configuration file. If you are trying to create an index for your

70

Computer and Network Security by Avi Kak Lecture 19

entire home directory (that runs into, say, several gigabytes), it

could take a couple of hours for the RunGatherer to do its job.

• When the first script, RunGatherer, is done, it automatically

starts the gatherd server daemon. For a database collected by

a previous run of RunGatherer, you’d need to start the server

daemon gatherd manually by running the script RunGatherd.

71

Computer and Network Security by Avi Kak Lecture 19

19.5.3: Harvest: Broker

• As mentioned previously, a Broker first constructs an index from

the SOIF objects made available by the gatherd server daemon

and serves out the index on a port whose default value is 8501.

• By default, Harvest uses Glimpse as its indexer. The programs

that are actually used for indexing are

/usr/local/harvest/lib/broker/glimpse

/usr/local/harvest/lib/broker/glimpseindex

Note that /usr/local/harvest/ is the default installation di-

rectory for the Harvest code.,

• When glimpse is the indexer, the broker script RunBroker calls

on the following server program

/usr/local/harvest/lib/broker/glimpseserver

to serve out the index on port 8501.

• See the User’s Manual for how to use other indexers with Harvest.

Examples of other indexers would be WAIS (both freeWAIS and

commercial WAIS) and SWISH. The User’s Manual is located at

DownLoadDirectory/doc/pdf/manual.pdf

DownLoadDirectory/doc/html/manual.html

72

Computer and Network Security by Avi Kak Lecture 19

19.5.4: How to Create a Gatherer?

• Let’s say I want to create a gatherer for my home directory on

my Linux laptop. This directory occupies about 3 gigabytes of

space. The steps for doing so are described below.

• We will call this gatherer KAK_HOME_GATHERER.

• To create this gatherer, I’ll log in as root and do the following:

cd $HARVEST_HOME (this is /usr/local/harvest)

cd gatherers

mkdir KAK_HOME_GATHERER (As already noted, this will also be the

name of the new gatherer)

cd KAK_HOME_GATHERER

mkdir lib (’lib’ will contain the configuration files

used by the gatherer. See explanation

below.)

mkdir bin (’bin’ will contain any new summarizers

you may care to define for new document

types.)

cd lib

cp $HARVEST_HOME/lib/gatherers/*.cf .

cp $HARVEST_HOME/lib/gatherers/magic .

73

Computer and Network Security by Avi Kak Lecture 19

• The last two steps listed above will deposit the following files in

the lib directory of the gatherer directory:

bycontent.cf

byname.cf

byurl.cf

magic

quick-sum.cf

stoplist.cf

allowlist.cf

• About the first three files listed above, these three files are to

help the Essence system to figure out the type of a document.

The bycontent.cf file contains the content parsing heuristics

for type recognition by Essence. Similarly, the file byname.cf

contains the file naming heuristics for type recognition; and the

file byurl.cf contains the URL naming heuristics for type recog-

nition. Essence uses the above three files for type recognition in

the following order: byurl.cf, byname.cf, and bycontent.cf.

Note that the second column in the bycontent.cf is the regex

that must match what would be returned by calling the Unix

command ’file’ on a document.

• About the file magic, the numbers shown at the left in this file

74

Computer and Network Security by Avi Kak Lecture 19

are used by the Unix ’file’ command to determine the type of

a file. The ’file’ command must presumable find a particular

string at the byte location given by the magic number in order

to recognize a file type. The bytes that are found starting at the

magic location must correspond to the entry in the third column

of this file.

• About the file quick-sum.cf, this file contains some regexes that

can be used for determining the values for some of the attributes

needed for the SOIF summarization produced by some of the

summarizers.

• About the file stoplist.cf, it contains a list of file object types

that are rejected by Essence. So there will be no SOIF represen-

tations produced for these object types.

• For my install of Harvest, I found it easier to use an allowlist.cf

file to direct Essence to accept only those document types that

are placed in allowlist.cf. However, now you must now sup-

ply Essence with the ’-allowlist’ flag. This flag is supplied by

including the line

Essence-Options: -allowlist

in the header section of the KAK_HOME_GATHERER.cf config file

to be described below.

75

Computer and Network Security by Avi Kak Lecture 19

• Now do the following:

cd .. (this puts you back in KAK_HOME_GATHERER directory)

For now, ignore the bin sub-directory in the gatherer directory.

The bin directory is for any new summarizers you may create.

• Now copy over the configuration file from one of the “example”

gatherers that come with the installation:

cp ../example-4/example-4.cf KAK_HOME_GATHERER.cf

In my case, I then edited the KAK_HOME_GATHERER.cf file so

that it had the functionality that I needed for scanning my home

directory on the laptop. My KAK_HOME_GATHERER.cf looks like
#

KAK_HOME_GATHERER.cf - configuration file for a Harvest Gatherer

#

It is possible list 23 options below before you designate RootNodes

and LeafNodes. See page 38 of the User’s Manual for a list of these

options.

Note that the default for TTL is one month and for Refresh-Rate

is one week. One week equals 604800 seconds. I have set TTL

to three years and the Refresh-Rate to one month.

Post-Summarising did not work for me. When I run RunGatherer

I get the error message in log.errors that essence cannot parse

the rules file listed against this option below.

Gatherer-Name: Avi Kak’s Gatherer for All Home Files

Gatherer-Port: 8500

Access-Delay: 0

Top-Directory: /usr/local/harvest/gatherers/KAK_HOME_GATHERER

Debug-Options: -D40,1 -D64,1

Lib-Directory: ./lib

Essence-Options: --allowlist ./lib/allowlist.cf

Time-To-Live: 100000000

76

Computer and Network Security by Avi Kak Lecture 19

Refresh-Rate: 2592000

#Post-Summarizing: ./lib/myrules

Note that Depth=0 means unlimited depth of search.

Also note that the content of the RootNodes element needs to be

in a single line:

<RootNodes>

file:///home/kak/ Search=Breadth Depth=0 Access=FILE \

URL=100000,mydomain-url-filter HOST=10,mydomain-host-filter

</RootNodes>

• Similarly, copy over the scripts RunGatherer and RunGatherd

from one of the example gatherers into the KAK_HOME_GATHERER

directory. You would need to edit at least two lines in Run-

Gatherer so that the current directory is pointed to. You’d

also need to edit the last line of RunGatherd for the same

reason. My RunGatherer script looks like

#!/bin/sh

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME

The following sets the local disk cache for the gatherer to 500 Mbytes.

HARVEST_MAX_LOCAL_CACHE=500; export HARVEST_MAX_LOCAL_CACHE

The path string added at the beginning is needed by essence to

to locate the new summarizer ScriptFile.sum

PATH=${HARVEST_HOME}/gatherers/KAK_HOME_GATHERER/bin:\

${HARVEST_HOME}/bin:${HARVEST_HOME}/lib/gatherer:${HARVEST_HOME}/lib:$PATH

export PATH

NNTPSERVER=localhost; export NNTPSERVER

cd /usr/local/harvest/gatherers/KAK_HOME_GATHERER

77

Computer and Network Security by Avi Kak Lecture 19

sleep 1

‘rm -rf data tmp log.*‘

sleep 1

exec Gatherer "KAK_HOME_GATHERER.cf"

and my RunGatherd script looks like

#!/bin/sh

#

RunGatherd - Exports the KAK_HOME_GATHERER Gatherer’s database

#

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME

PATH=${HARVEST_HOME}/lib/gatherer:${HARVEST_HOME}/bin:$PATH; export PATH

exec gatherd -d /usr/local/harvest/gatherers/KAK_HOME_GATHERER/data 8500

Note that I have included the command ’rm -rf tmp data log.*

in the RunGatherer script for cleanup before a new gathering ac-

tion.

• Similarly, copy over the filter files

mydomain-url-filter

mydomain-host-filter

from the example-5 gatherer into the KAK_HOME_GATHERER di-

rectory. Both of these files are mentioned against the RootNode

in the gatherer configuration file KAK_HOME_GATHERER.cf. My

mydomain-url-filter file looks like

URL Filter file for ’mydomain’

#

78

Computer and Network Security by Avi Kak Lecture 19

Here ’URL’ really means the pathname part of a URL. Hosts and ports

dont belong in this file.

#

Format is

#

Allow regex

Deny regex

#

Lines are evaulated in order; the first line to match is applied.

#

The files names that are denied below will not even be seen by the

essence system. It is more efficient to stop files BEFORE the

gatherer extracts information from them. Compared to this action by

mydomain-url-filter, when files are stopped by the entries in

byname.cf, bycontent.cf, and byurl.cf, that happens AFTER the

information is extracted from those files by the gatherer.

Deny \.gif$ # don’t retrieve GIF images

Deny \.GIF$ # #

Deny \.jpg$ # #

Deny \.JPG$ # #

Deny /\..+ # don’t index dot files

Deny \.pl\. # don’t index OLD perl code

Deny \.py\. # don’t index OLD python code

Deny /home/kak/tmp # don’t index files in my tmp

Deny ~$ # don’t index tilde files

Deny /, # don’t index comma files

Allow .* # allow everything else.

and my mydomain-host-filter file looks like

Host Filter file for ’mydomain’

#

Format is

#

Allow regex

Deny regex

#

79

Computer and Network Security by Avi Kak Lecture 19

Lines are evaulated in order; the first line to match is applied.

#

’regex’ can be a pattern for a domainname, or IP addresses.

#

Allow .*\.purdue\.edu # allow hosts in Purdue domain

#Allow ^10\.128\. # allow hosts in IP net 10.128.0.0

Allow ^144\.46\. # allow hosts in IP net 144.46.0.0

Allow ^192\.168\. # allow hosts in IP net 192.168.0.0

Deny .* # deny all others

• Apart from the fact that you may wish to create your own sum-

marizers (these would go into the bin directory of your gatherer,

you are now ready to run the RunGatherer.

• You can check the output of the gatherd daemon that is auto-

matically started by the RunGatherer script after it has done its

job by

$HARVEST_HOME/bin/gather localhost 8500 | more

assuming that the database collected is small enough. You can

also try
cd data

$HARVEST_HOME/lib/gatherer/gdbmutil stats PRODUCTION.gdbm

This will return the number of SOIF objects collected by the

gatherer.

• As already mentioned, if you create a new summarizers in the

bin directory of the gatherer, you also need a pathname to the

this bin directory in the RunGatherer script.

80

Computer and Network Security by Avi Kak Lecture 19

• Finally, in my case, the KAK_HOME_GATHERER had trouble gath-

ering up Perl and Python scripts for some reason. I got around

this problem by defining an object type ScriptFile in

the bycontent.cf configuration file in the lib directory of the

gatherer. I also defined an object type called Oldfile in the

byname.cf configuration file of the same directory. Since I did

not include the type OldFile in my allowlist.cf, essence did

not summarize any files that were of type OldFile. However, I

did include the type ScriptFile in allowlist.cf. So I had to

provide a summarizer for it in the bin directory of the gatherer.

The name of this summarizer had to be ScriptFile.sum.

81

Computer and Network Security by Avi Kak Lecture 19

19.5.5: How to Create a Broker?

• Log in a root and start up the httpd server by

/usr/local/apache2/bin/apachectl start

Actually, the httpd server starts up automatically in my case

when I boot up the laptop since the above command is in my

/etc/rc.local file.

• Now do the following:

cd $HARVEST_HOME/bin

CreateBroker

This program will prompt for various items of information related

to the new broker you want to create. The first it would ask for

is the name you want to use for the new broker. For brokering

out my home directory on the Linux laptop, I called the broker

KAK_HOME_BROKER. This then becomes the name of the direc-

tory under $HARVEST_HOME/brokers for the new broker. If you

previously created a broker with the same name, you’d need

to delete that broker directory in the $HARVEST_HOME/brokers di-

rectory. You would also need to delete a subdirectory of that

name in the $HARVEST_HOME/tmp directory.

82

Computer and Network Security by Avi Kak Lecture 19

• Another prompt you get from the CreateBroker program is

“Enter the name of the attribute that will be displayed to the

user as one-line object description in search results [descrip-

tion]:”. The ’description’ here refers to the SOIF attribute that

will be displayed in the first line when query retrieval is displayed

in the browser.

• Toward to the end of the broker creation procedure, say ’yes’ to

the prompt “Would you like to add a collection point to the

Broker now?”. This will connect the gatherd daemon process

running on port 8500 with the broker process.

• You will be prompted one more time with the same question as

listed above. Now say “no”.

• CreateBroker deposits the following executable shell file

RunBroker (Make sure you kill off any previously

running broker processes before you

do this.)

in the new broker directory.

• Now fire up the broker by

RunBroker -nocol

83

Computer and Network Security by Avi Kak Lecture 19

in the broker directory. The option ‘-nocol’ is to make certain

that the gatherer does not start collecting again when you invoke

the RunBroker command. We are obviously assuming that you

have established a gatherer separately and that it is already up

and running. If you have gathered up the information

but the server ’gatherd’ is not running to serve out

the SOIF objects, execute the RunGatherd script in

the gatherer directory. The RunBroker command starts

up the glimpseindex daemon server.

• When you ran CreateBroker, that should also have spit out a

URL to an HTML file that you can bring up in the browser to

see the new searchable database. Or, in the broker directory, you

can just say

cd $HARVEST_HOME/brokers/KAK_HOME_BROKER

firefox query.html

or

firefox index.html

or

firefox stats.html

• Whether or not you can see the query form page may depend on

whether you use the URL returned by the CreateBroker com-

mand or whether you make a direct call with ’firefox query.html’.

The former uses the HTTP protocol and therefore goes through

the Apache HTTPD server, whereas the latter would use the

84

Computer and Network Security by Avi Kak Lecture 19

FILE protocol and would be handled directly by the firefox web

browser.

• Assuming you use the http protocol for seeing the query form,

let’s say you get the error number 500 (in the error_log file

in the $APACHEHOME/logs directory). This means that

$APACHEHOME/conf/httpd.conf is misconfigured. In particu-

lar, you need the following directive in the httpd.conf file:

ScriptAlias /Harvest/cgi-bin/ "/usr/local/harvest/cgi-bin/"

Alias /Harvest/ "/usr/local/harvest/"

<Directory "/usr/local/harvest">

Options FollowSymLinks

</Directory>

for the HTTPD server to be able to find the search.cgi that is

in the $HARVEST_HOME/cgi-bin/ directory.

• Finally, for the case of constructing an index for your own home

directory (such as my /home/kak/), you may be able to see

the search results, but clicking on an item may not return that

item in the browser. That is because of the security setting

in firefox browsers; this setting keeps the browser from display-

ing anything in response to the FILE protocol (as opposed to

the HTTP protocol). You may to change the settings in the

file .mozilla/firefox/qwjvm1oo.default/user.js of your

home account for firefox to be able to show local files.

85

Computer and Network Security by Avi Kak Lecture 19

• After you have crated a new broker for a gatherer that previ-

ously collected its database, make sure you execute the following

scripts:

RunGatherd (in the gatherer directory)

RunBroker (in the broker directory)

The former runs the gatherd daemon server to serve out the

SOIF objects on port 8500 and the latter first constructs the

index for the database and then run the glimpserver daemon

to serve out the index on port 8501.

• After you have started RunBroker, watch the cpu meter. For

the entire home directory, it may take a long time (up to 20

minutes) for the broker to create the index from the SOIF records

made available by the gatherd daemon. It is only after the

RunBroker command has finished creating an index for the

database that you can carry out any search in the browser.

• If your scripts RunGatherd and RunBroker scripts are running

in the background, if you want to search for something that is

being doled out by Harvest, you can point your browser to
http://localhost/Harvest/brokers/KAK_HOME_BROKER/admin/admin.html

http://pixie.ecn.purdue.edu/Harvest/brokers/KAK_HOME_BROKER/query.html

86

Computer and Network Security by Avi Kak Lecture 19

• I have placed the command strings
/usr/local/harvest/gatherers/KAK_HOME_GATHERER/RunGatherd

/usr/local/harvest/brokers/KAK_HOME_BROKER/RunBroker

in /etc/rc.local so that the SOIF object server gatherd and

the index server glimpseserver will always be on when the

machine boots up.

87

Computer and Network Security by Avi Kak Lecture 19

19.6: CONSTRUCTING AN SSH TUNNEL
THROUGH AN HTTP PROXY

• SSH tunneling through HTTP proxies is typically carried out by

sending an HTTP request with the method CONNECT to the proxy.

The HTTP/1.1 specification reserves the method CONNECT to en-

able a proxy to dynamically switch to being a tunnel, such as an

SSH tunnel (for SSH login) or an SSL tunnel (for the HTTPS pro-

tocol). [Here are all the HTTP/1.1 methods: GET, POST, OPTIONS,

HEAD, PUT, DELETE, TRACE, and CONNECT.]

• The two very commonly used programs that send a CONNECT

request to an HTTP proxy are corkscrew and connect.

• The first of these, corkscrew, comes as a tar ball with config,

make, and install files. You install it by calling, ‘./config’,

‘make’, and ‘make install’. My advice would be to not go for

‘make install’. Instead, place the corkscrew executable in

the .ssh directory of your home account.

88

Computer and Network Security by Avi Kak Lecture 19

• The second of these, connect, comes in the form of a C program,

connect.c, that is compiled easily by a direct call to gcc. Again

place the executable, connect, in your .ssh directory.

• The most convenient way to use either the corkscrew executable

or the connect executable is by creating a ‘config’ file in your .ssh

directory and making ‘ProxyCommand’ calls to these executables

in the ‘config’ file. Here is my ~kak/.ssh/config file
Host=*

The ’-d’ flag in the following ProxyCommand is for debugging:

ProxyCommand ~/.ssh/connect -d -H localhost:3128 %h %p

ProxyCommand ~/.ssh/connect -H localhost:3128 %h %p

ProxyCommand ~/.ssh/corkscrew localhost 3128 %h %p

where the Host=* line means that the shown “ProxyCommand”

can be used to make an SSH connection with all hosts. A regex

can be used in place of the wildcard ’*’ if you want to place re-

strictions on the remote hostnames to which the proxycommand

applies. What you see following the keyword “ProxyCommand”

is what will get invoked when you call something like

’ssh moonshine.ecn.purdue.edu’. For the uncommented line

that is shown, this means that the corkscrew program will be

called to tunnel through Squid by connecting with it on its port

3128. (See the manpage for ssh_config) If you want to use

connect instead of corkscrew, comment out and uncomment

the lines in the above file as needed.

• But note that when your .ssh directory contains a ‘config’ file,

89

Computer and Network Security by Avi Kak Lecture 19

all invocations of SSH, even by other programs like ‘rsync’ and

‘fetchmail’, will be mediated by the content of the config file in

the .ssh directory.

• To get around the difficulty that may be caused by the above,

you can use the shell script ‘ssh-proxy’ (made available by Eric

Engstrom) in your .ssh directory.

• You can construct an SSH tunnel through an HTTP proxy server

only if the proxy server wants you to. Let’s say that SQUID

running on your own machine is your HTTP proxy server. Most

sites running the SQUID proxy server restrict CONNECT to a

limited number of whitelisted hosts and ports. In a majority of

cases, the proxy server will allow CONNECT outgoing requests to

go only to port 443. (This port is monitored by HTTPS servers,

such as the Purdue web servers, for secure web communication

with a browser. When you make an HTTP request to Purdue, it

goes to port 80 at the Purdue server. However, when you make

an HTTPS request, it goes to port 443 of the server.)

• An HTTP proxy, such as SQUID, must allow the CONNECT

method to be sent out to the remote server since that is what is

needed to establish a secure communication link. I had to place

the following lines in the squid.conf file for my SQUID proxy

server to allow for an SSH tunnel:

90

Computer and Network Security by Avi Kak Lecture 19

acl SSH_port port 22 # ssh

http_access allow CONNECT SSH_port

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

• What makes getting the corkscrew/connect based tunnels through

the SQUID proxy server to work very frustrating was that even

when you completely kill the squid process by sending it the

’kill -9 pid’ command, and then when you try to make an

ssh login, you get the following sort of an error message
ssh_exchange_identification: Connection closed by remote host

This message holds no clue at all to the effect that the proxy

server, SQUID, has been shut down. I believe the message is

produced by the SSH client program. I suppose that from the

perspective of the client program, the proxy server is no different

from a remote server.

• To see you have made an SSH connection through the SQUID

proxy, check the latest entry in the log file

$SQUID_HOME/var/logs/access.log.

• So what is one supposed to do when the HTTP proxy server

won’t forward a CONNECT request to the remote SSH server

on, say, port 22 (the standard port that the SSH server on the

remote machine will be monitoring)?

91

Computer and Network Security by Avi Kak Lecture 19

• If the highly restrictive proxy server on your company’s premises

would not send out CONNECT requests to the SSHD standard

port 22 on the remote machine, you could try the following ploy:

You could ask the SSHD server (running on a machine like

moonshine.ecn.purdue.edu) to monitor a non-standard port

(in addition to monitoring the standard port) by:

/usr/local/sbin/sshd -p 563

where the port 563 is typically used by NNTPS. [The assumption

is that the highly restrictive HTTP proxy server that your com-

pany might be using would allow outbound proxy connections for

ports 563 (NNTPS) and 443 (HTTPS). If 563 does not work, try

443.]

• Now, on the client side, you can place the following line in the

~/.ssh/config file:

Host moonshine.ecn.purdue.edu

ProxyCommand corkscrew localhost 3128 moonshine.ecn.purdue.edu 563

• Another approach is to use Robert MaKay’s GET/POST based

”tunnel” that uses Perl scripts at both ends of a SSH connection.

There is only one disadvantage to this method: you have to run

a server script also in addition to the client script. But the main

advantage of this method is that it does NOT care about the

CONNECT restrictions in the web proxy that your outbound

http traffic is forced to go through.

92

Computer and Network Security by Avi Kak Lecture 19

19.7: HOMEWORK PROBLEMS

1. What do we mean by “shim layer” in the TCP/IP protocol stack?

2. What is an anonymizing proxy in a network? In which layer of

the TCP/IP protocol stack does an anonymizing proxy server

belong?

3. Let’s say you are installing a SOCKS proxy for a LAN that you

are the admin for. This proxy requires that you install a SOCKS

server on a designated machine that is directly connected to the

internet and that you install the SOCKS client software on all of

the machines in the LAN. Why do you think you need both a

server and a client for the proxy to work?

4. What is the standard port assigned to the SOCKS server?

5. What are the main differences between the SOCKS4 and the

SOCKS5 implementations of the SOCKS protocol?

6. What are the essential elements of the negotiation between a

SOCKS client and a SOCKS server before the latter agrees to

93

Computer and Network Security by Avi Kak Lecture 19

forward the client’s request? How does the server tell the client

that the latter’s request cannot be granted?

7. Why is a SOCKS proxy also referred to as a “circuit level proxy?”

8. What is meant by socksifying an application?

9. What is meant by jargon phrases such as “port forwarding” and

“tunneling”?

10. How can you make sure that when you go through an anonymiz-

ing proxy, your IP address is not visible to the remote server?

11. What is web caching? How is an HTTP proxy used for web

caching?

12. What is the average size of an internet object — according to

folks who compile such stats? If an ISP allocates, say, 4 Gbytes of

memory to a web caching server like Squid, what is the maximum

number of internet objects that could be stored in such a cache?

Additionally, how much RAM would you need to hold the object

index for all the objects stored in the cache?

13. If you run a web caching proxy such as Squid on your own laptop,

how would you tell your browser that it needs to route all its

94

Computer and Network Security by Avi Kak Lecture 19

requests through the proxy?

14. What is the role of a cache manager vis-a-vis a proxy server such

as Squid?

15. The option ‘-D’ given to a SOCKS server when you first bring it

up means something that is completely different from what the

same option means for a Squid server. What is the difference?

16. What historical role has the Harvest information gathering and

indexing system played in the evolution of the modern internet

search engines?

17. What does a broker do in Harvest? Also, what is the function of

a gatherer?

95

