objective
SYSTEMS, INC.

ASNI1C

ASN.1 Compiler
Version 6.5

C# Users Guide
Reference Manual

Objective Systems, Inc. version 6.5 — May 2014

The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice
Copyright ©1997-2012 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information

Comments, suggestions, and inquiries regarding ASN1C may be submitted via electronic mail to info@obj-sys.com.

Table of Contents

1. OVEVIEW OF ASNLC FOr CH ..ottt ettt ettt e e e e e 1
2. USING the COMPITES ... ettt e et e et e e e e e e ab s 2
ASNIC CH# ComMMEN LiNE OPLIONSeieeiiietiiiie ettt ettt et et et e et eeeni e e eneans 2
Using the GUI Wizard t0 RUN ASNICoouiiiiiiiii ettt eeeaens 6
USING PrOJECES ...eeiiiee ettt ettt et e e et et e e et et e e et et e e e e e e e e e eaa s 7
Common Code Generation OPLIONSveiiiuuieeiiie ettt e e e 9

XD OPIONS .ttt ettt et ettt et ettt e e e e e eaans 12

CH Code GENEration OPLIONSuuueiiriieteti ettt ettt e ettt e et e et et eeeeeaas 13
1600] 07111 =11 oo H PP SPPPTR 15
Using the Visua Studio Wizard to Generate ASNLIC PrOJECESccvvuuiiiiiiiieiiiiieeeeii e 15
Compiler ConfigUIation FilEi i et e s 27
ComPIler Error REPOMINGc.uuieeitieeeeit ettt ettt ettt et ettt e et ettt e et e eaa e e e eaa e e ennen s 30
3. Generated C# SOUICE COUE OVEIVIEWciiiii ettt ettt ettt ettt e ettt e et e et eeesba e e enanns 31
NaMESPACE SPECITICALION ...eevueeeiie ettt e ettt e e et e e e e e e e rea s 32
O Sl BT o T (o E PP PRSP PT 32
I O] = | PP PRPPPI 33
PUBIiC MemBer Variallescoouiiii e e e 33
107010 1 (1 (o PP 33
DECOOE MELNOttt et e et e ettt e et e et e e e e aba s 34
ENCOOE MEINOMeeeeiei e e ettt ettt e e et e e e et e e e e et e e e enba e eenes 34
OLhEr IMEINOOS ...ttt e et et e ettt e e et et e et erb e e e e eraaeaeees 35
IINEE ClBSSES ..ttt ettt ettt ettt e ettt e e et h e et h et a et e e et et b e et e nb e e e enb e aaee 35
o gl o =T | oo PP SOP PP T O UPPPTT 36
4. ASN.1 Type tO CH Class MBDPINGScceuruueeietieetttti et e et e et et e e e et e e e eate e et eabe e e eeete e eeesraaeeenes 37
BOOLEAN .ttt e e oottt e e e e e e et bt e e e e e e et e bbb e e e e aeeeanaaas 37
INTEGER ...ttt oottt e ettt oo 4o e ettt ettt oo e e e et e e e et b b e e e e e e eeeeebbaa e e e aeaaaeennnes 37
BIT STRING .ottt ittt ettt o e oo et et e et bbb e e e e e e et e eebbb et e e e aeeeesbbban e e e aeaaaeennnes 38
OCTET STRING ...ttt oo e ettt e e e e e et ettt b e e e e e e e e et aebbba e e e e e e aeeeenbanaans 39
O g o= o S 1o [Y o= PP SP PP PRSPPI 40
ENUMERATED ...ttt ettt e ettt e e e e ettt e bbb e e e e e e e e e ettt e e e e e e eeeennbnanes 41
L TP TPSUPPPPPURTN 42
OBUJIECT IDENTIFIER ...ttt e e e e e e ettt e e e e e e e e e ebaban e e e e eeaas 42
RELATIVE-OID ... ittt ettt e e e e e e e e ettt bbb e e e e e e e et bbbt e e e e e aeeeaennnnnas 43
RE A L ettt et e e e et e bt e e e et e e et e b e e e e e e etnbaan e aaaas 43
REAL (B8SE 10) ..eieettutuieeeeet ettt e e ettt e e oo e e ettt bbb e e e e e e e et e bbb e e e e e et e e e bbb e e e e e et e e e bbb e e e aaas 43
SEQUENGCE ...ttt e e et ettt bbb e e e e e e e et et s bbb e e e e e et e ee bbb e e e e aaaaeene a4
Creation Of TEMPOIAIY TYPESceeii ettt et e e e et e e e et eeeana s 45
OPTIONAL KEYWOFT ...ttt sttt e e e e e e e e ettt e e e e e e e e eeabbaanaeaeeaeeaessnnns 46
DEFAULT KEYWOIT ...ttt eee ettt ettt e e e et ettt s e e e e e e et abbb e e e e e e e e eesabbne e e e aeaaaennnne 46
EXIENSION ETEIMENES ..ottt 47

XD <xSd:all> TYPE MAPPING ©.u.eevvrenetieii ettt e e e eet e e e eat e e e eaa e e aat s e aeas s e aaase e e eeaaaaeeennen 47

S TSP TRSRP 47
SEQUENGCE OF ...ttt oottt e e et ettt bbb e e e e e et e et bbb e e e e e e eeeebtbba e e e e eaaaennnne 48
Generation of Temporary Types for SEQUENCE OF ElementsS..........ccoeuvieiiiiiiieeiiiiiieeeiiiieeeens 48
SEQUENCE OF Type Elements in Other Constructed TYPESuuuvieriiieieiiieeeeeie e 49

SE T O e e oot e e ettt e b a e e et e aa bbb e e aaaaanne 50
10! [0 1 PSSP USSUPPUPPPTN 50
Creation Of TEMPOIAIY TYPESceeii ittt e et et e et e e et eeeaaa s 51
Populating Generated Choice Structures for ENCOAINGccvvvuiiiiiiieiiiiieeee e 51
Accessing the Choice Element Value after DeCOOINGcccvvuueiiriiieiiiiieeeiiie e 52

XD <xsd:UnioN> TYPE MaPPING .evvuuieiiiiieeiiiie et e e et e e e et e e et e e e et e e e e et e e eaaa e eeaanns 52

ASNIC

(O] 7 T Y/ oL PP 52
0 o W 11Vl o 0 o oo N 53
(T = Y/ o= P 53
[l o=o [0 [=o | D A I o= 54
e = 0= (= (4= o I I - 54
V= 8T o=} o= 1 o ' 56
INTEGER Value SPECIHTICALIONcvviiiiiiicii et e e e e e et e e e e eees 56
(21010 M A NI TTTTCRS o= ol o= 11 o o AR 57
Binary Sring Value SPECITICAtioNiiiiiiiiiii e e 57
Hexadecimal String Value SPeCIfiCationcoovuiiiiiiiii e 57
Character Sring Value SPECITICAtioNccuuiiiiiiiii e e 57
Object Identifier Value SPECITICAIONc.uiiiiiiii e 58
ENUMERATED Value SPECIfiCaLIONuuuieiiiiiiieiiiii et e e 58
REAL Value SPECIHICALIONciviiiiii e e e e e e e e e e et e e et e e eanaeee 58
SEQUENCE Value SPECIHTICALIONcvvviiiii i e e e e e e et e e e e e e e eeens 58
SET Value SPECITICALION ...vuiiiiiiiii e e e e e e e e e e e et e e e e eeens 59
SEQUENCE OF Value SPECIICALIONiiiiiiiieeiiiii e et e et e e et e e e eai e e e eain e eeens 59
SET OF Value SPECIHTICALION .. cvvuiiiiiiiii e e e e e e e e e e e e e e et e e et e e aanaes 60
CHOICE Value SPECITICALIONuuiiiieiiiee e e e e e e e e e e e e e e e et e e e e e aanaas 60
5. Generated BER/DER/CER ENCOUE MENOAScoiviviiiiiiii i e 61
Memory-buffer Based Definite Length ENCOOENScoovniiiiiiiii e 61
Generated C# Method Format and Calling Parametersoevvviiiiiiiciiieecin e e 61
Populating Generated Variables for ENCOOINGoevuiiiiiiiiiiiie e eee e e e e e e 62
Procedure for Calling Memory-Buffer Based BER Encode Methods.............ccooeeviviiiiiiiineeinns 62
Reuse of C# ENCOAING OBJECESuiiiiiciii e e e e e e e e eaaas 64
Stream-Oriented Indefinite Length Encode Methodscooviiii i 65
Generated C# Method Format and Calling Parametersoevviiiiiiiciiieecieece e e 66
Procedure for Calling C# BER Sream-Oriented Encode Methodscooccoiviiiiiiiiinecciee, 66
6. Generated BER/DER/CER Decode MEthOUSiiiiiiiiiiiiiii e 68
Generated C# Method Format and Calling Parametersc..uveiuieiiii i 68
Procedure for Calling C# BER Decode MethOOSc.uuiiiiiiiiiicie e 68
Reuse of CH# DeCOdING OBJECESuuiiiicii e e e e e e e e e e e et e e et eeaa e e aanaees 69
7. Generated PER ENCOAE MENOUSuiiiiiiieiii e e e 71
Generated C# Method Format and Calling Parametersc..uveiuieiiii i 71
Procedure for Calling C# PER Encode Methodsccueiiiiiiiii e 72
Reuse of CH ENCOAING ODJECESiviiiiii e e e e e e et e e e et e e e e e eenaas 73
8. Generated PER DeCOUE MEINOUSccuuiiiiiiiiieeiii et e et e e e e e e et e e eeenns 75
Generated C# Method Format and Calling Parametersc..veiuieiiiiciie e e 75
Procedure for Calling C# PER Decode MethOOSiiiiniiiii e 75
Reuse of CH# DeCOdING ODJECESuuiiii it e e e e e e e e e e e et e et eeaaeeaaneees 76
9. GeNErated XML MEINOUS ... ceeeiiieiiii e e e e e e et e e e et e e e et eeeeran s 78
L@ Y = PP 78
Differences between OSys-XER and XER (BASIC-XER)ccuoiiiiiiiiiiiiiiiiieeciiieee e 78
EXTENDED-XER ..ottt et e e et e e e et r e e e e et e e e e et e e e eata e eaenes 79
Generated ENCOOE MELNOUScivviiiii e e e e e e e e e e e s 80
Generated C# Method Format and Calling Parametersooevvviieiiieiiiieiie e e e 81
Procedure for Calling C# XER Encode MethodSooviiiiiiiiiciiiece e 81
Generated DECOUE MEINOSuiiiiiiiiiee e e et e et e e et e e e e et e e e eatnneaeee 85
10. Generated MDER ENCOUE MEINOOSccvvviiiiiiiiiiiee et e e e e e e e aa s 88
Generated Method Format and Calling Parameterscouuiiiiiiiiiieeii e e e e 88
Populating Generated Variables for ENCOOINGoivvuiiiiiiiiiii e e e 88
Procedure for Calling MDER ENncode MethOSoiiiiiiiiiiiciiece e e s 89
Reuse Of ENCOAING ODJECESivuiiiiii i e e e e e e e e et e e e e e et e e et e e et e eanaeeees 90
11. Generated MDER DeCode MELNOUSciiiiiieiiii it e et eeaa e e eaanns 92

ASNIC

Generated Method Format and Calling Parameterscouuiiiiiiiiiiicii e 92
Procedure for Calling MDER Decode MEthOOSoviiiniiiiiiciie e 92
Reuse of DECOAING OBJECES ... iiiiiiii e e e e e e e e e e e e e et e e et s e e e aaaeenen 93

A = o Lol O gt - |l 0o oo 94
(O I NS SRS o= o o= (o o 94

Data MemDer GENEFALIONcievti ettt e e e e e et e e e et e e e eatnaeeeeatnaeeeeatnaaaee 94

Method and ConStruCtOr GENEIALIONuieiieiieeeeiii e et e et e et e e e eai e e e eaa e eereneeeenens 95
ABSTRACT-SYNTAX ClaSS ... eetetiiieiiiii ettt e et e e et e e e aa e 96
TYPE-IDENTIFIER ClASS ..ovtuieiiiiiee ettt e et e e et e e e et e e e et e e e e aaa s 97

Fg {0 g g a0 I o] =" P 97
INfOrMation OBJECE SELovuiiii e e e e e e e e e et e et e et e e eaaaas 98
Generated Information Object Table SITUCLUIEvuiiii i e 99
Smple FOrm Code GENEMatiONccuuieiiiiiie e ee e e e e e e e e e e et e e et e et e e eaneaeenaes 100

Table FOrm Code GENEIatiONuuiiiiiii ettt e e et e e ettt e e e eat e e e eete s e eeeatn s eeeeatnaaeeenes 101

Additional Code Generated for the -tables Optioncoeiviiiiiiieii e 101

Populating OpenType Variables for ENCOAINGccuuiiiiiiiiicii e e s 103
Decoding Types with Table CONSIaiNtSuuiiiiiiiii e e e e e e e e e 105

13. Generated Print IMEINOOScuveiiiiii e et et e et e e e aa e e e anen s 106
Generated C# Method Format and Calling ParamMetersviviieiiiieiii e e 106

14, GENErated MEKEFIIEvn e e 108
15, Event Handler INEEITACEuuiiiiii ettt e et e e ettt e e e et e e e e eatneeeeatnaeaees 109
HOW T8 WWOTKS ettt et e et e e e e et e e e et e e e e et e e e e et e e e eatn s 109

HOW 10 USB [l ettt et e e et et e et e e e et e e e en e enre e e aneennnns 110
Example 1: A Formatted Print Handlerccooiiiiiiiii e e 110

Example 2: An XML CONVEITEr ClasSuiiiuuiiiiiieiiiieiie e e e e e e e e e e e e e 112

16. IMPORT/EXPORT Of TYPES 1. uietiitiiee ittt e ettt ettt e ettt e e ettt e e e et e e e et n e e e et e e e e et e e e e st e e eeatn s 116
17. Compact COOE GENEIALIONu.iiiueiiiei i e e et e e e e e e e e et e e et e e et e e et s e e et e ean e e et aeeaneeaneeaen 117
S N 1 0 PSPPSRI 118
ROSE OPERATION and ERRORiiiiiiiiiiiiii et e e et e e e et e e e eai s e e e eaanneeeees 118
SN Y @ N = O [I = PSPPI 121

Chapter 1. Overview of ASN1C for C#

The ASN1C code generation tool transates an Abstract Syntax Notation 1 (ASN.1) or XML Schema Definitions
(XSD) source file into computer language source files that allow typed data to be encoded/decoded. This release of
ASNI1C includes options to generate code in the following languages: C, C++, C# or Java. This manual discusses the
C# code generation capabilities. The following other manuals discuss the other language code generation capabilities:

e ASNI1C C/C++ Compiler User’'s Manual : C/C++ code generation
» ASNI1C Java Compiler User’s Manual : Java code generation

Each module or namespace that is encountered in an ASN.1 or XSD source file results in the generation of a series
of C# source files. A separate C# file is generated for each production (type or global element) in the source file.
Additional files are generated for compiler-generated productions and to hold value specification constants.

Thereisalso aset of classesthat form the run-time component of the C# package. These classes provide the primitive
component building blocksthat are assembled by the compiler to encode/decode complex structures. They also provide
support for managing message buffers that hold the encoded message components.

ASN1C workswiththeversion of ASN.1 specified in ITU-T international standards X.680 through X.683. It generates
code for encoding/decoding data in accordance with the following encoding rules:

» Basic Encoding Rules (BER), Distinguished Encoding Rules (DER), and Canonical Encoding Rules (CER) as
published in the ITU-T X.690 standard.

 Packed Encoding Rules (PER) as published in the ITU-T X.691 standard.
* XML Encoding Rules (XER) as published in the ITU-T X.693 standard.
* XML Schemato ASN.1 trandation as published in the ITU-T X.694 standard.

The compiler is capable of parsing all ASN.1 syntax as defined in the standards. It is capable of parsing advanced
syntax including Information Object Specifications as defined in the ITU-T X.681 standard as well as Parameterized
Typesasdefinedin ITU-T X.683.

Notethat X ER support does not include support for the EXTENDED-XER syntax. Thisisaccomplished through direct
compilation of XSD files. Aninternal translation of XSD to ASN.1 based on the rules in the X.694 standard is done
within the compiler and the resulting ASN.1 syntax is compiled into C# classes.

This release of the compiler contains a special compiler option (-1990) that is backward compatible with deprecated
features from the older X.208 and X.209 standards. These include the ANY data type and unnamed fields in
SEQUENCE, SET, and CHOICE types. This version can a so parse type syntax from common macro definitions such
as ROSE and SNMP.

Chapter 2. Using the Compiler

The ASN1C compiler distribution contains command-line compiler executables as well as a graphical user interface
(GUI) wizard that can aid in the specification of compiler options. Please refer to the ASN1C C/C++ Compiler User's
Manual for instructions on how to run the compiler. The remaining sections describe options and configuration items

specific to the C# version.

ASN1C C# Command Line Options

The following table shows a summary of the command line options that have meaning when C# code generation is

selected:

Option

Argument

Description

-alow-ambig-tags

This option suppresses the check
that is done for ambiguous tags
within a SEQUENCE or SET type
within a specification. Specia codeis
generated for the decoder that assigns
values to ambiguous elements within
aSET in much the same way aswould
be done if the elements were declared
to bein a SEQUENCE.

-asnstd

X680 x208 mixed

This option instructs the compiler
to parse ASN.1 syntax conforming
to the specified standard. x680 (the
default) refers to modern ASN.1 as
specified in the ITU-T X.680-X.690
series of standards. x208 refers to
the now deprecated X.208 and X.209
standards. This syntax alowed the
ANY construct as well as unnamed
fields in SEQUENCE, SET, and
CHOICE constructs. This option also
alows for parsing and generation of
code for ROSE OPERATION and
ERROR macrosand SNMP OBJECT-
TYPE macros. The mixed option is
used to specify a source file that
contains moduleswith both X.208 and
X.680 based syntax.

-ber

None

This option instructs the compiler
to generate functions that implement
the Basic Encoding Rules (BER) as
specified in the ASN.1 standards.

None

Generate C# source code.

-cer

None

This option instructs the compiler to
generate functions that implement the
Canonical Encoding Rules (CER) as
specified in the ASN.1 standards.

Using the Compiler

Option

Argument

Description

-compact

None

This option instructs the compiler
to generate more compact code at
the expense of some constraint and
error checking. Thisisan optimization
option that should be used after an
application is thoroughly tested.

-compat

<versionNumber>

Generate code compatible with an
older version of the compiler. The
compiler will attempt to generate code
more closely aligned with the given
previous release of the compiler.

<versionNumber> is specified as x.x
(for example, -compat 5.2)

-config

<filename>

Thisoptionisusedto specify thename
of a file containing configuration
information for the source file
being parsed. A full discussion
of the contents of a configuration
file is provided in the Compiler
Configuration File section.

-csfile

*.csor aspecific .csfile name

If valued with *.cs, indicates that
ASNIC is to generate one .cs file
for each ASN.1 module processed. If
valued with a specific .cs file name,
indicates that ASNI1C is to generate
one .cs file to hold al code. Do
not specify any folder information in
the -csfile value; use the -0 qualifier
instead.

-depends

None

This option instructs the compiler to
generate a full set of C# source files
that contain only the productions in
themainfilebeing compiled anditems
those productions depend on from
IMPORT files.

None

This option instructs the compiler to
generate functions that implement the
Distinguished Encoding Rules (DER)
as specified in the ASN.1 standards.

-dirs

None

This is a C# option that causes a
subdirectory to be created to hold each
of the generated C# source files for
each modulein an ASN.1 source file.

-events

None

Generate extra code to invoke user
defined event and error handler
callback methods (see the Event
Handlers section).

Using the Compiler

Option

Argument

Description

-genmake

None

This option is used to generate
a makefile for compiling generated
classes using nmake command from
within a Visual Studio .NET
command prompt window.

<directory>

This option is used to specify a
directory that the compiler will search
for ASN.1 source files for IMPORT
items. Multiple I qualifiers can be
used to specify multiple directoriesto
search.

None

This option instructs the compiler to
not generate codeto check constraints.
When used in conjunction with the
—compact option (described next), it
produces the smallest code base for a
given ASN.1 specification.

-list

None

Generate listing. This will dump the
source code to the standard output
device as it is parsed. This can be
useful for finding parse errors.

-namespace

<namespaceName>

This is a C# option that allows the
entire C# namespace to be changed.
Instead of the module name, the full
name specified using this option will
be used. This option cannot be used in
conjunction with —nspfx option.

-noencode

None

This option suppresses the generation
of encode functions.

-nodecode

None

This option suppresses the generation
of decode functions.

-nolndefLen

None

This option instructs the compiler
to omit indefinite length tests in
generated decode functions. These
tests result in the generation of alarge
amount of code. If you know that your
application only uses definite length
encoding, this option can result in a
much smaller code base size.

-noOpenExt

None

This option instructs the compiler to
not add an open extension element
in constructs that contain extensibility
markers. The purpose of the element
is to collect any unknown itemsin a
message. If an application does not
care about these unknown items, it can
usethisoption to reducethe size of the
generated code.

Using the Compiler

Option

Argument

Description

-nspfx

<prefixName>

ThisisaC# option for adding a prefix
in front of the assigned C# namespace
name. By default, the C# namespace
name is set to the module name. If
the namespace is embedded within a
hierarchy, this option can be used to
set the prefix that must be added to
allow C# to find the class definition.

<directory>

Thisoptionisusedto specify thename
of a directory to which al of the
generated files will be written.

-pdu

<typeName>

Designate given type name to be a
Protocol Definition Unit (PDU) type.
By default, PDU types are determined
to be types that are not referenced
by any other types within a module.
This option alows that behavior to be
overridden.

The * wildcard character may be
specified for <typeName> to indicate
that all productions within an ASN.1
module should be trested as PDU

types.

_pe"

None

This option instructs the compiler
to generate functions that implement
the Packed Encoding Rules (PER) as
specified in the ASN.1 standards.

-genPrint -print

None

This option specifies that print
methods should be generated. Print

-shortnames

None

Thisoption isused to change the name
generated by compiler for embedded
typesin constructed types. Thisoption
is required to handle the limit on the
size of filenamesin certain situations.
With this option, the generated code
filenames would be shorter than
without this option.

-Stream

None

This option instructs the compiler
to generate stream-based encoders/
decoders instead of memory buffer
based. This makes it possible to
encode directly to or decode directly
from a source or sink such as a file
or socket. In the case of BER, it will
also cause forward encoders to be
generated, which will use indefinite
lengthsfor all constructed elementsin

amessage.

Using the Compiler

Option Argument Description

-tables None This option is used to generate
additional code for the handling of
table constraints as defined in the
X.682 standard.

-uniquenames None This option instructs the compiler to
automatically generate unigque names
to resolve name collisions in the
generated code. Name collisions can
occur, for example, if two modules
are being compiled that contain a
production with the same name. A un
ique name is generated by prepending
the module name to one of the
productions to form a name of the
form <module>_<name>.

Note that name collisions can aso
be manually resolved by using
the typePrefix, enumPrefix, and
valuePrefix configuration items (see
the Compiler Configuration File
section for more details).

-VCproj <version> This option instructs the compiler to
generate a Visual Studio C# project
file. <version> istheversion of Visual
Studio (2010, 2008 (default), 2005).

-warnings None Output information on compiler
generated warnings.

-xer None This option instructs the compiler
to generate functions that implement
the XML Encoding Rules (XER) as
specified in the ASN.1 standards.
Related XML Schema can be
produced by using the -xsd command
line option.

-xml None This option instructs the compiler
to generate functions that implement
the XML Encoding Rules (XML)
as specified in the World-Wide
Consortium (W3C). Related XML
Schema can be produced by using the
-xsd command line option.

Using the GUI Wizard to Run ASN1C

ASNI1C includesagraphical user interface (GUI) wizard that can be used asan aternative to the command-lineversion.
Itisacross-platform GUI and has been ported to Windows and several UNIXes. The GUI makesit possible to specify
ASN.1 files and configuration files viafile navigation windows, to set command line options by checking boxes, and
to get online help on specific options.

Using the Compiler

The Windowsinstallation program should have installed an * ASN1C Compiler’ option on your computer desktop and
an ‘ASN1C’ option on the start menu. The wizard can be launched using either of these items. The UNIX version
should beinstalledin ASNL1C | NSTALL_DI R/ bi n; nodesktop shortcutsare created, soit will be necessary to create
one or to run the wizard from the command-line.

The C# GUI differs little from the C/C++ GUI; screenshots may include references to C or C++ directories, but the
common code options are identical.

Using Projects

Thewizard is navigated by means of Next and Back buttons. Following is the initial window:

ASN1C Project Wizard

f MNew Project ASNIC 6.3.0
Evaluation License:

: Open Project

License expire date is Thu Apr 15 11:08:09 2010

The status window will display the version of the software you have installed aswell as report any errors upon startup
that occur, such asamissing licensefile.

The Project Wizard will allow you to save your compilation options and file settings into a project file and retrieve
them later. If you wish to make a new project, click the icon next to Create a New Project:

Using the Compiler

D Get Project File Name

n\:/u\:/: | .« cpp » sample_ber » employee

Organize « Mew folder 1= - .@.

B Desktop it Mame Date modified Type

4. Downloads . . .]
. || employee.acp 3/16/201011:19 AM ACP File
= Recent Places

4 Libraries
3 Documents
J’- Music
= Pictures

EE videos

m

1M Computer
2l COMPAQ (C)
= FACTORY_IMAGI
- 4| i 3

File name: | SuldBiEELs: -

Save as type: ’*.acproj, *.acp v]

= Hide Folders [Save l ’ Cancel]

Previously saved projects may be recalled by clicking the icon next to Open an Existing Project:

D Load ASNIC Project

'\:/“\:/' | .« cpp » sample_ber » employee v|¢,|| Search employee o

Organize v Mew folder =~ M .@.

" Favorites * Name Date modified Type
)

Bl Desktop || employee.acp 3/16/201011:19 AM ACP File
4. Downloads

=] Recent Places

4 Libraries
3 Documents
J’- Music
= Pictures

EE videos

m

1M Computer
2l COMPAQ (C)
s FACTORY_IMAGI

e -~ 4| i 3

File name: employee.acp - ’*.acproj, *.acp v]

[open |v] | concel |

The project format has changed in ASN1C 6.3 to help accommodate the transition to Qt 4.5. Changes to the interface
necessitated changes to the underlying project file format. Projects made with previous versions may be loaded with
version 6.3, but new projects are incompatible with previous versions. Additional metadata are stored in the project
file to help with version tracking.

Files may be added to a project in the following window:

Using the Compiler

ASML 620/ cpp/sample ber/employee/employ

Select Files and Directories
ASN. 1 { X5D Files
C:\zcvE30\cppi\sample ber\employee'employee.asn

Indude f Import Directories

Configuration File(s): Browse

Qutput Directory: C:facva30/cpp/sample_ber femployee Browse

Cie) [one]

Inthiswindow, the ASN.1 file or filesto be compiled are selected. Thisis done by clicking the Add button on theright
hand side of the top windows pane. A file selection box will appear allowing you to select the ASN.1 or XSD filesto
be compiled. Files can be removed from the pane by highlighting the entry and clicking the Remove button.

ASN.1 specifications and XML Schema Documents must not be compiled in the same project. Once an ".asn" file has
been added, no " .xsd" files may be added.

Includedirectoriesare selected in asimilar manner in the middle pane. These are directoriesthe compiler will search for
import files. By default, the compiler looksfor filesin the current working directory with the name of the module being
imported and extension ".asn" or ".xsd". Additional directories can be searched for these files by adding them here.

User-defined configuration files are specified in the third pane. These allow further control of the compilation process.

They are optional and are only needed if the default compilation processisto be altered (for example, if atypeprefix is
to be added to a generated type name). See the Compiler Configuration File section for details on defining thesefiles.

Common Code Generation Options

Code generation options common to all language types are specified in the following tabbed window:

Using the Compiler

Common Code Generation Options

Language Options | Function Options | Utility Options |

Input File Type

@ Modern ASN.1 {1997+ based on X.680 standard)
() Legacy ASM. 1 (based on obsolete X. 208 standard with ROSE or SNMP macros)

Schema (%SO

¥ML)
[Lax Syntax Check
Additional Translations

Generate equivalent XML schema (XSD) file
; P

Generate ASN. 1 file based on X.694 (

Application Language Type

® c @ C++ [() Mone (syntax check only)

Encoding Rules

EER DER CER PER* AE XML

* gelect aligned or unaligned PER at run-time

Code Options

Generate code for all dependent imported type definitions
[Generate code compatible with compiler version 6.2

Language options, pictured above, encompass not only the output language choice, but aso input specification type,
encoding rules, and code compatibility options.

Certain optionswill beinactive (greyed out) depending on thefiletype selected. For example, if an XSD fileisselected,
the option Generate ASN.1 file based on X.694 will be active and the option Generate equivalent XML schema (XSD)
filewill beinactive.

Checking Generate code for all dependent imported type definitions will cause the compiler to search and generate
code for modules specified in the | MPORTS statement of an ASN.1 specification.

Basic encoding rules are selected by default. Only one of BER, DER, and CER can be checked at any time. XML and
XER are also mutually exclusive options.

Generated function options are shown in the following tab:

10

Using the Compiler

. ASNLL ‘acv630/cpp/sample_ber/employee/employee.ac

Common Code Generation Options
Function Options Utility Options

Generated Function Types

Encode] copy [Print Functions
Decode 7] compare
|:| Stream

Brace text

Constraints

[7] Do not generate constraint checks (Hax)

[Enable strict constraint checks (-strict)

[Generate code to handle table constraints (-tables; legacy setting in C/C++)
[7] Do not generate inline containing types (-noContaining)

Space Optimization

[Generate compact code (-compact)

[7] Do not generate indefinite length processing code (-noIndeflen)

[7] Do not generate code to save/restore unknown extensions (-noOpenExt)
[Do not generate types for items embedded in information ohjects

[7] Do not generate ¥ML namespaces for ASM. 1 modules (-noxmins)

[Generate short form of type names (-shortnames)

The optionsin this tab control which functions are generated and what modifications are made to those functions.

By default, encoding and decoding functions are generated by the compiler. If the target application does not require
encoding or decoding capabilities (for example, if it is only intended to read messages and does not need to write
them), unchecking the corresponding checkbox will reduce the amount of code generated.

Check Sreamto modify generated encode and decode functionsto use streamsinstead of memory buffers. Thisallows
encoding and decoding to a source or sink such as afile or socket. Stream-based encoding and decoding cannot be
combined with buffer-based.

As an aid to debugging, Print functions may also be generated. Three different different types exist: print to stdout,
print to string, and print to stream. These allow the contents of generated types to be printed to the standard output,
astring, or astream (such as afile or socket).

Constraint checking may berelaxed or tightened depending on sel ected options. Constraints may beignored completely
by checking Do not generate constraint checks. To tighten constraints, check Enable strict constraint checks. ASN1C
supports decoding and encoding values described by table constraints; checking Generate code to handle table
constraints will enable this behavior. This option is alegacy option for C and C++ code generation: generating table
constraintsin unionsis the preferred method (see the following section).

To reducethe codefootprint, several other options may be selected: Generate compact code, Do not generateindefinite
length processing code, Do not gener ate code to save/restore unknown extensions, and Do hot generate types for items
embedded in information objects may all be used to reduce the amount of generated code. Generate compact code
cannot be used in conjunction with Generate compatible code. If XML validation is not needed, check Do not generate
XML namespacesfor ASN.1 modules. Thiswill result in asmaller codebase aswell as smaller output XML data. Check
Generate short form of type names if generated type names are too long for the target language.

The following tab provides options for generating utility functions and applications:

11

Using the Compiler

ASML ‘acvb30/cpp/sample ber/employee/employ:

Common Code Generation Options

| Language Options | Function Options | Utility Options |

Sample Program Generation

[] Generate writer sample program (-writer)

[Generate reader sample program (-reader)

[Generate code for populating data structures (-test)
Protocol Data Units (PDUs)

[] Treat all types as Protocol Data Units (PDU's) (-pdu *)

[specify a PDU for the sample programs (-usepdu)

Debugging and Event Handlers

[Generate code to invoke event handler callback functions (-events)
[Generate pure parser (event handler callbacks with no types) (-notypes)
[Add tracing diagnostic messages to code (-trace)

Other Options

Automatically create unigue names for duplicate items
[7] Do not add date stamp to generated files (-nodatestamp)
Enter command-ine options not available in GUI:

The Sample Program Generation frame allows you to generate boilerplate reader and writer applications as well as
randomized test data for populating a sample encoded message. The itemsin the Protocol Data Units frame may be
used in conjunction to select the appropriate PDU data type to be used in the sample programs.

The Debugging and Event Handlers frame contains options that generate code for adding trace diagnostics and event
handling hooks into generated code. It is possible to generate a type parser by generating only an event handler and
no data types for the decoded messages. This grants a great deal of flexibility in handling input data at the expense
of generating pre-defined functions for most common encoding and decoding tasks. Users of embedded systems may
find this useful asit will shrink the output considerably while allowing them fine control over decoding procedures.

The Other Options frame contains miscellaneous modifications to code output, including type name resolution

(avoiding duplicate names), date stamp removal (useful when generated code will be stored in source control), and a
line item for including any new command-line features not yet represented in the GUI.

XSD Options

If the Generate equivalent XML schema (XSD) file option was checked in the Common Code Generation Options
screen, the following window will be presented for modifying the contents of the generated X SD:

12

Using the Compiler

XSD Generation Options

[Generate Application Information Annatations

Xier

[Generate Non-native Attribute Annotations

Specify the Target XML Namespace

Reference Types in the asnl.xsd schema

These options are described in Running ASN1C from the command-line.

C# Code Generation Options

For information about code generation options for languages other than C#, please refer to the appropriate language
manual or the online documentation.

The following window contains the C#-specific code-generation options:

13

Using the Compiler

@' ASMNIC

C# Code Generation Options

Code Organization

[output code to directories based on module names {-dirs)

Code generation option: [Dne . file per type -] File name:

[specify namespace (-namespace)

[7] specify namespace prefix (-nspf)

Build Options
[] Generate a list of .cs files (in <modulename:=.mk)

[7] Generate a makefile (-genmake)

Mext] [Cancel

The optionsin thiswindow allow usersto change the way the generated code is organized and what files are generated
to assist compiling the generated code.

Changing the code organization can be particularly helpful for using generated codewith IDEslike Netbeans or Eclipse.
IDEs typically impose a directory structure for projects, so ASN1C can try to organize code to conform to such a
hierarchy.

A makefilemay also be generated for usewith nrmak e. Separate filesmay also be created that contain alist of generated
sources.

These options are detailed further in the Running ASN1C from the Command Line section.

14

Using the Compiler

Compilation
When all options have been specified, the final screen may be used to execute the compilation command:

ASML ‘acvb30/cpp/sample ber/employee/employ:

Compile
Compilation Options
Generate listing (ist)
Show compilation warnings (-warnings)
Compilation command

C:Yacva30'bin\asn 1c "C:\acvs 30 cppisample_ber\employeeemployee.asn” -0
"C:facve30/cpp/sample_ber femployee” -useAsn 1¥sd -ber -per -xml -xsd -cpp -depends ist -warnings

Compilation Results

IE Save Project‘ Il__' Cnmpile‘

[Ensh || cancel |

Included in the window are the compiler command, an option to save the project, and the output from compilation.
Selected options are reflected in the command line.

It is also possible to generate a printed listing of the input specifications. Warnings encountered during compilation
will aso be printed if the appropriate check box is marked.

Click Finish to terminate the program. The wizard will ask whether or not to save any changes made, whether a new
project has been created or not.

Using the Visual Studio Wizard to Generate
ASN1C Projects

On Windows systems ASN1C includes a Visual Studio wizard to help you with creating projects that use ASN1C in
Visual Studio 2005 or later. The wizard simply invokesthe ASN1C GUI program. Y ou use the GUI to define whatever
options you want to have set for generating your code and your project file. Then when you click on the Compile
button on the last screen of the GUI, the project file will be created for you. The wizard then loads the project file
into your Visual Studio workspace.

To use the wizard, follow these steps:

15

Using the Compiler

1. Edit the file ASN1CWizard.vsz in the vswizard folder of your ASN1C distribution with a text editor. Make the
customizations to the file that are noted in the comments at the top. Take specia note of the instruction to remove
the comment lines, as the wizard mechanism will not function if those linesremain in thefile.

2. Copy the ASN1CWizard.vsz file, the ASN1CWizard.vsdir file, and the ASN1CWizard.ico file to the VC#
\CSharpProjects folder of your Visual Studio installation (e.g., C:\Program Files (x86)\Microsoft Visual Studio
8\ C#\CSharpProjects). Thewizard can then beinvoked by clicking Visual C# from the Visual Studio New Project
dialog and then choosing ASN1C as the project template.

For example, let'sassume you want to use the Visual Studio Wizard to work with code generated from the employee.asn
file, whichisincluded in numerous samples provided with ASN1C. Thefirst step isto edit the ASN1CWizard.vsz file.
Below isatypical ASN1CWizard.vsz file as furnished with an ASN1C kit (version 6.5.0 in this example):

These coment -type |ines nmust be renoved in order for this .vsz file to work.

The ABSOLUTE_PATH par aneter bel ow nmust be set to the full path specification
of the vswi zard folder within your ASNLC installation.

The OSROOTDI R paraneter bel ow can be set to the root of the ASNLC
installation. |If OSROOIDIR is already defined as a Wndows environnent
variable, then as long as that definition is what's desired, the definition
of OSROOTDIR in this file can be renoved. |f OSROOIDIR is defined both in
this file and as a Wndows environnent variable, then the definition in this
file will take precedence. Since this file needs to be copied into the

Vi sual Studio folder hierarchy (see README.txt), this feature can be

useful if nmultiple ASNIC and Visual Studio versions are installed, and a

di fferent version of ASNIC is to be used dependi ng on what version of Visual
Studio is being used.

VSW ZARD 7.0

W zar d=VsW zar d. VSW zar dEngi ne. 8. 0

HHHFHHFHHHHHF R

Par am=" W ZARD NAME = ASN1CW zard"

Par am=" ABSCLUTE_PATH = C:.\ acv650\vsw zard
Par am=" OSROOTDI R = C:\ acv650"

Par am=" FALLBACK_LCI D = 1033"

Par am="W ZARD U = FALSE"

Par am=" SOURCE_FI LTER = t xt

For this example let's assume that ASN1C 6.5.0 was installed into E:\acv650 instead of C:\acv650. Let's also assume
that you want to retain the OSROOTDIR setting in thisfile. Y ou would need to modify thisfile so it looks like this:

Par am=" W ZARD NAME = ASNL1CW zard"

Par am=" ABSCLUTE_PATH = E:\ acv650\vsw zard
Par am=" OSROOTDI R = E:\ acv650"

Par am=" FALLBACK_LCI D = 1033"

Par am="W ZARD U = FALSE"

Par am=" SOURCE_FI LTER = t xt

Making a copy of the furnished ASN1CWizard.vsz file and editing the copy is recommended.

16

Using the Compiler

Y ou then would copy your modified ASN1CWizard.vsz fileinto the appropriate Visua Studio folder. Y ou would also
copy the ASN1CWizard.ico fileand the ASN1CWizard.vsdir filefrom the vswizard folder of your ASN1C distribution

into the same location.

Now when you invoke the New Project dialog in Visual Studio and click on Visua C#, you'll see atemplate named
ASNIC. Notethat for C# projects Visual Studio segregates user-written templates into a different collection from the
templates that come with Visual Studio.

Project types: Templates: [MET Framework 3.5

i Visual C# Visual Studio installed templates
I‘u’isual C#l GASNIC
[» Other Languages
My T lat
[» Other Project Types ¥ IEmpTaes
1 Search Online Templates...
ASMLC Project Wizard
Mame: ASM1CL
Location: Chmydecsitemp - E
Solution Mame: ASMLICL Create directory for solution
[] Add to Scurce Control

| C

b

In this example Visual Studio 2008 is used and the dialog is invoked without a solution currently loaded. So Visual
Studio suggests ASN1C1 as both the project name and the solution. If, however, the new project dialog is invoked
from within the context of a currently loaded solution, Visual Studio will default to adding the project to the current
solution. Also note that for this example we assume that you have chosen the folder ¢:\mydocsitemp as the location.

Next a small window appears that simply tells you that the wizard will now invoke the ASN1C GUI:

17

Using the Compiler

- — — 5
ASNIC GUI - e S|

This wizard will now invoke the ASNLC GUL Use the GUIto choose your ASN1C
options, and then click the Compile button on the last screen,

Ok l ’ Cancel

- P = — =

When you click OK in thiswindow, the ASN1C GUI launches:

18

Using the Compiler

ASN1C Project Wizard

|:| Mew Project

|;| Open Project

License key:

ASNI1C 6.5.A
Registered To:
Mame:

Company:

Email:

When the ASN1C GUI isinvoked from the Visual Studio wizard, the available options are more limited because the
wizardinstructsthe GUI only to enable optionsthat are relevant to the project. In thiswindow, for example, the options
to create anew project or open an existing project are disabled.

When you click Next, you are presented with the window that allows you to select the specification files that will be
part of the code generation:

19

Using the Compiler

\{__—z m‘ ASMI1CL.acpraj

Select Files and Directories

ASN. 1 %D Files

Indude § Import Directories

Configuration File(s): Browse

Output Directory: | C:/mydocs/temp/ASN1C1/ASN1C 1 | Browse |

| e ot | [] |

Notice here that the option to specify an output directory is disabled; thisvalueis pre-established by the Visual Studio
wizard. For purposes of this example, let's assume that you specify employee.asn as the file from which to generate
code:

20

Using the Compiler

- :L E; B

@ ASMIC - ASN1CI.acproj

Select Files and Directories

ASM. 1 /XS0 Files
Cohvmydocshtemphemployee . asn

Browse

Remove

Indude § Import Directories

Remove

Configuration File(s): Browse

Qutput Directory: C:/mydocsftempfASN1C1/ASM1C T
o] o

When you click Next, you are presented with the Common Code Generation Options screen:

21

Using the Compiler

£§ ASMIC - ASNlCl,acEroi -

T
Common Code Generation Options

Language Options | Function Options I Litility Cptions |

Input File Type

71 Modern ASM, 1 {1997+ based on ¥.5680 standard)
1 Legacy ASM. 1 (based on obsolete X, 208 standard with ROSE or SMMP macros)
XML Schema (X500
[] Lax Syntax Chedk

Additional Translations

[7] Generate equivalent XML schema (XSD) file
[7] Generate HTML files for input ASN. 1
Generate ASM. 1 file based on X.694 (X5D input only)

Application Language Type

) C 0 C++ # i@ Mone (syntax check only)

|-
1]
o
[y}
&

Encoding Rules

[(leer [[loer [[lcer []per= [[]xer []¥m. []oER [] MDER

* gelect aligned or unaligned PER at run-time

Code Options

[] Generate code for all dependent imported type definitions
[7] Generate code compatible with compiler version 6.4 -

| [Next][Cancel

Notice that the option to generate Java code is disabled because the ASN1C GUI knows that it's generating a Visua
Studio project. The options to generate C and C++ are enabled because Visual Studio can work with both of those
languages. The C and C++ wizard capability is discussed in the ASN1C C/C++ User's Manual.

For the purposes of this example let's assume you choose to generate C# code for BER:

22

Using the Compiler

Common Code Generation Options

Language Options | Function Options I Utility Options |

Input File Type

(7 Modern ASM. 1 {1997+ based on ¥.680 standard)
(71 Legacy ASM, 1 {(based on obsolete ¥, 208 standard with ROSE ar SMMP macros)
AML Schema (X5D)

Lax Syntax Check

Additional Translations

Generate equivalent XML schema (X50) file
Generate HTML files for input ASM, 1
[] Generate A3N. 1 file based on X.694 (XS0 input only)

Application Language Type

©C IE'i:I C++ Java I:il C# li:l Mone {SYI"IE}(check in'!r'}

Encoding Rules
[#leer [Joer [|cer [Clper* [C]xer [C]¥me [] oER [C] MDER

* gelect aligned or unaligned PER at run-time

Code Options

Generate code for all dependent imported type definitions
Generate code compatible with compiler version 6.4 - |

[text]{ conce |

Let's assume that you make no other selections and click Next until you come to the Compile screen. If you look as
you're clicking, you'll see that the option to generate a Visua Studio project file is checked and can't be unchecked,
and the version of Visual Studio is 2008, which isthe version you're using.

23

Using the Compiler

@ ASMIC - ASN1CI . acproj

Compile
Compilation Cptions

[Generate listing (dist)

[] show compilation warnings {-warnings)
Compilation command

"C:hasn1c_doug'asn 1cidevibintasn 1™ "Crimydocsitemplemployee .asn™ -0
"Cifmydocs ftemp/ASMIC 1fASMN1C 1™ -ber -c# -vcproj 2008

Compilation Results

=) Save Project| ([Compile

[Finish][Cancel]

At this point you would click the Compile button to do the code generation. Once the generation is done, you would
click the Finish button.

Visua Studio then resumes control. Since in this case the generated project is not part of a solution, it asks you if
you want to create a new .9ln file. The suggested folder for the new .gin file in this case is the same folder where the
new .veproj file was created.

24

Using the Compiler

- _
%Saueﬁle.&.s G . ey R e —

v W <<-m;r::|-o:3 b temp » ASNICS.
_

Organize « Mew folder

» ASNICI]

[y 3 -
1= Recent Places -~ Mame

Date modified Type
1 Dropbox

Mo iterns match your search,
il Libraries
@ Documents
Jl Music
[Pictures
B videos

m

1M Computer
£, Windows 7 (C)
o Extra Space (E:)

L

FIEE AR mydocs tempt ASNI CIVASNI C1VASNICL sln

Save as type: ’UTF-E Solution File (*.5ln)

4 Hide Folders I

For this example we'll assume you choose to save the .dn filein the suggested location. Y ou now have a solution with
one project, and the project contains the source code generated from the employee.asn file:

25

Using the Compiler

&) ASN1C1 - Microsoft Visual Studio (Administrator) |

File Edit Mew Project Buwld Debug Data Tcols)

HETRREE R N AW TR - R = RN

(2| & E]] R

E Seolution "ASN1CL' {1 project)
References
----- #] EmployeeValues.cs
. #] _SeqOfChildInformation.cs
@] ChildInformation.cs
..... #] Date.cs

----- @ employee.asn
----- @ EmployeeMumber.cs

----- @ Mame.cs
o @ PersonnelRecord.cs

Using the Compiler

Compiler Configuration File

In addition to command line options, a configuration file can be used to specify compiler options. These options can
be applied not only globally but also to specific modules and productions.

A simpleform of the Extended Markup Language (XML) isused to format itemsin thefile. Thislanguage was chosen
because it isfairly well known and provides a natural interface for representing hierarchical data such as the structure
of ASN.1 modules and productions. The use of an external configuration file was chosen over embedding directives
within the ASN.1 source itself due to the fact that ASN.1 source versions tend to change frequently. An external
configuration file can be reused with a new version of an ASN.1 module, but internal directives would have to be
reapplied to the new version of the ASN.1 code.

At the outer level of the markup is the <asnlconfig> </asnlconfig> tag pair. Within this tag pair, the specification of
global items and modules can be made. Global items are applied to all itemsin all modules. An example would be the
<storage> qualifier. A storage class such as dynamic can be specified and applied to all productions in all modules.
Thiswill cause dynamic storage (pointers) to be used to any embedded structures within all of the generated code to
reduce memory consumption demands.

The specification of amodule is done using the <module></module> tag pair. Thistag pair can only be nested within
the top-level <asnlconfig> section. The module is identified by using the required <name></name> tag pair or by
specifying the name as an attribute (for example, <module name="MyModul e’ >). Other attributes specified within the
<module> section apply only to that module and not to other modules specified within the specification. A complete
list of all module attributes is provided in the table at the end of this section.

The specification of an individual production is done using the <production></production> tag pair. Thistag pair can
only be nested within a<module> section. The production isidentified by using the required <name></name> tag pair
or by specifying the name as an attribute (for example, <production name="MyProd”>). Other attributes within the
production section apply only to the referenced production and nothing else. A complete list of attributes that can be
applied to individual productionsis provided in the table at the end of this section.

When an attribute is specified in more than one section, the most specific application is always used. For example,
assume a <typePrefix> qualifier is used within a module specification to specify a prefix for al generated typesin
the module and another one is used to specify a prefix for a single production. The production with the type prefix
will be generated with the type prefix assigned to it and all other generated typeswill contain the type prefix assigned
at the module level.

Valuesin the different sections can be specified in one of the following ways:

1. Using the <name>value</name> form. This assigns the given value to the given name. For example, the following
would be used to specify the name of the “H323-MESSAGES’ module in a modul e section:

<name>H323- VESSAGES</ nane>

2. Flag variables that turn some attribute on or off would be specified using a single <name/> entry. For example, to
specify agiven production is a PDU, the following would be specified in a production section:

<i sPDU/ >

3. An attribute list can be associated with some items. Thisis normally used as a shorthand form for specifying lists
of names. For example, to specify alist of type namesto be included in the generated code for a particular module,
the following would be used:

<i ncl ude types="TypeNanel, TypeNane2, TypeNanme3”/ >
The following are some examples of configuration specifications

<asnlconfi g><st orage>dynani c</ st orage></ asnlconfi g>

27

Using the Compiler

This specification indicates dynamic storage should be used in all places where its use would result in significant
memory usage savings within all modules in the specified sourcefile.

<asnlconfi g>
<nmodul e>

<name>H323- VESSAGES</ nanme>
<sour ceFi | e>h225. asn</ sour ceFi | e>
<typePrefix>H225</typePrefi x>

</ nodul e>

</ asnlconfi g>

This specification appliesto module * H323-MESSAGES ' in the source file being processed. For IMPORT statements
involving thismodule, it indicates that the source file*h225.asn’ should be searched for specifications. It also indicates
that when C or C++ types are generated, they should be prefixed with the ‘H225’. This can help prevent name clashes
if one or more modules are involved and they contain productions with common names.

The following tables specify the list of attributes that can be applied at all of the different levels: global, module, and

individual production:

Global Level

There are no attributes that are specific to C# that can be specified at the global level.

Module Level

These attributes can be applied at the module level by including them within a <module> section:

Name

Values

Description

<name> </name>

module name

This attribute identifies the module
to which this section applies. It is
required.

<include
values="names’ />

types="names’

ASN.1 type or vaues names are
specified as an attribute list

This item alows a list of ASN.1
types and/or values to be included in
the generated code. By default, the
compiler generates code for al types
and values within aspecification. This
allows the user to reduce the size of
the generated code base by selecting
only a subset of the types/valuesin a
specification for compilation.

Notethat if atype or valueisincluded
that has dependent types or values
(for example, the element types in
a SEQUENCE, SET, or CHOICE),
al of the dependent types will be
automatically included as well.

<include importsFrom="name" />

ASN.1 module name(s) specified as
an attribute list.

Thisform of theinclude directivetells
the compiler to only includetypesand/
or valuesin the generated codethat are
imported by the given modul(s).

<exclude
values="names’ />

types="names’

ASN.1 type or values names are
specified as an attribute list

This item dlows a list of ASN.1
types and/or values to be excluded in

28

Using the Compiler

Name

Values

Description

the generated code. By default, the
compiler generates code for al types
and values within aspecification. This
isgenerally not as useful asin include
directive because most types in a
specification are referenced by other
types. If an attempt is made to exclude
atype or value referenced by another
item, the directive will be ignored.

<sourceFile> </sourceFile>

source file name

Indicates the given module is
contained within the given ASN.1
sourcefile. Thisisused on IMPORTSs
to instruct the compiler where to look
for imported definitions. Thisreplaces
the moduletxt file used in previous
versions of the compiler to accomplish
this function.

<pkgName>

C# namespace name

Name of the C# namespace associated
with thismodule. Thiswill cause a C#
using statement to be generated for the
module if this nameis not the same as
that of the namespace being compiled.

<namespace> </namespace>

namespace name

This is used to specify the namespace
name for the given module. By
default, Asnlc compiler will use
the “http:// www.obj-sys.com” as
the module namespace. This option
should be used with XML encoding
rule (XML) only. Asnlc compiler will
ignore this option usage with other
encoding rules.

Production Level

These attributes can be applied at the production level by including them within a <production> section:

Name Values Description

<name> </name> module name This attribute identifies the module
to which this section applies. It is
required.

<isBiglnteger/> n/a This is a flag variable (an ‘empty

element’ in XML terminology) that
specifies that this production will be
used to store an integer larger than
the C# long type (64 bits). A C#
Biglnteger class will be used to hold
thevalue.

This qualifier can be applied to
either an integer or constructed type.
If constructed, all integer elements

29

Using the Compiler

Name Values Description

within the constructed type are
flagged as big integers.

Compiler Error Reporting

Errors that can occur when generating source code from an ASN.1 source specification take two forms: syntax errors
and semantics errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules specified in the ASN.1
grammar are not followed. ASN1C will flag these types of errors with the error message ‘ Syntax Error’ and abort
compilation on the source file. The offending line number will be provided. The user can re-run the compilation with
the-I’ flag specified to seethelineslisted asthey are parsed. Thiscan be quite helpful in tracking down asyntax error.

The most common types of syntax errors are as follows:

* Invalid caseonidentifiers: modul e name must begin with an uppercase |l etter, productions (types) must begin with an
uppercase |etter, and element names within constructors (SEQUENCE, SET, CHOICE) must begin with lowercase
|etters.

» Elements within constructors not properly delimited with commas: either a comma is omitted at the end of an
element declaration, or an extracommais added at the end of an element declaration before the closing brace.

* Invalid specia characters: only letters, numbers, and the hyphen (-) character are allowed. Programmers tend to
like to use the underscore character () in identifiers. Thisis not allowed in ASN.1. Conversely, C or C# does not
alow hyphensin identifiers. To get around this problem, ASN1C converts al hyphensin an ASN.1 specification
to underscore charactersin the generated code.

Semantics errors occur on the compiler back-end as the code is being generated. In this case, parsing was successful,
but the compiler does not know how to generate the code. These errors are flagged by embedding error messages
directly in the generated code. The error messages always begin with an identifier with the prefix ‘% ASN-‘,. A search
can be done for this string in order to find the locations of the errors. A single error message is output to stderr after
compilation on the unit is complete to indicate error conditions exist.

30

Chapter 3. Generated C# Source Code
Overview

A separate C# source file with extension ‘.cs' is generated for each production encountered within an ASN.1 source
file. Every ASN.1 type is mapped to a C# class. This is true even at the lowest levels — types such as BOOLEAN,
INTEGER, and NULL all have wrapper classes.

The following items may be present in a generated C# file:
e Using statements

» Namespace specification

» Classdeclaration

A tag constant object declaration

* Public member variables

» Constructors

 Public Decode() method

 Public Encode() method

* Other methods

 Inner SAX Handler class (XER only)

Additional specialized items may be present as well depending on the base type of the target production. These
specialized items are discussed in the sections on ASN.1 to C# mappings for the various ASN.1 types.

A complete generated C# source file for the * EmployeeNumber’ production within the production within the ASN.1
sample file ‘employee.asn’ can be found on the following page. The ASN.1 production from which this file was
generated is as follows:

Enpl oyeeNunber ::= [APPLI CATION 2] | MPLICIT | NTEGER
The generated code is as follows:

usi ng System
usi ng Com Qbj sys. Asnl. Runti e;

nanespace Test {
public class Enpl oyeeNunber : Asnllnteger ({

public new readonly static AsnlTag _TAG =
new AsnlTag (AsnlTag. APPL, AsnlTag.PRIM 2);

public Enpl oyeeNurmber () : base()

{
}

public Enpl oyeeNumber (long value_) : base(val ue_)

31

Generated C# Source Code Overview

{
}

public override void Decode

(AsnlBer DecodeBuffer buffer, bool explicitTagging, int inplicitLength)

{
int Ilen = (explicitTaggi ng) ?
Mat chTag (buffer, _TAG : inplicitLength;
base. Decode (buffer, false, |llen);
}

public override int Encode
(AsnlBer EncodeBuffer buffer, bool explicitTagging)

{
int _aal = base.Encode (buffer, false);
if (explicitTagging) {
_aal += buffer.EncodeTagAndLength (_TAG _aal);
}
return (_aal);
}

}

The following sections discuss the various sections of the generated C# sourcefile.

Namespace Specification

The namespace specification isthe second item in the file and is declared using the ‘ namespace’ keyword. By defaullt,
thisis set to the name of the ASN.1 module that is being compiled. However, this can be modified by using the -nspfx
and —namespace command line options. The —nspfx option adds the specified prefix before the module name. For
example, if an ASN.1 module named ' Employee’ isbeing compiled and ‘ -nspfx test.’ is specified on the command line,
the namespace name in the generated source fileswould be ‘test. Employee’ . The —-namespace switch takes this a step
further. It allows specification of the full namespace name. In the sample specification above, ‘-nspfx sample ber.’
was specified on the compiler command line.

Standard using statements are added for the ASN1C C# run-time classes and C# utility classes. Using statements may
also be added for items imported from other ASN.1 modulesif they don’t exist within the namespace being generated.

Class Declaration

Next comes the class declaration. It is of the following form:
public class <ProdNane> : <BaseC ass>

<ProdName> is the name of the production in the ASN.1 source file. <BaseClass> is a class from which the type is
derived. This can either be a standard run-time or compiler-generated class. In our example, the EmployeeNumber
isan INTEGER, so we can directly inherit the Asnlinteger run-time base class. If we had a declaration such as the
following:

Enpl oyeeSSNumber :: = [APPLI CATI ON 22] Enpl oyeeNumnber

32

Generated C# Source Code Overview

Our EmployeeSSNumber class would be inherited from the compiler-generated EmployeeNumber class as follows:
public class Enpl oyeeSSNurmber : Enpl oyeeNunber

Note: the preceding exampleisnot trueif —.compact isspecified. Inthat case, al intermediate classeswould be removed
so EmployeeSSNumber would inherit Asnlinteger asin the first case.

Tag Constant

The next item in the generated source file is atag constant. This is only generated if the production is tagged. The
runtime class AsnlTag is used for this constant. This class contains methods for operating on ASN.1 tag values. In
the sample above, the [APPLICATION 2] tag that is present in the ASN.1 production definition is represented by the
generated tag constant.

Public Member Variables

The next section of the file would be public member variables. In our example above, no member variables are present.
Thisisbecause INTEGER isaprimitive type, so the member variablein which theinteger valueis stored can be found
in the Asnlinteger base class from which this class is derived. Thisistrue for al primitive types — the value will be
contained within the run-time base class.

Constructed typeswill contain public member variables to represent the elements that make up the type. For example,
the following SEQUENCE production:

Name ::= [APPLI CATION 1] I MPLICI T SEQUENCE {
gi venNanel A5Stri ng,
initial 1A5String,
fam | yNamel A5String

}

will result in the following public member variables being added to the generated class:

public Asnll A5String gi venNane;
public Asnll A5String initial;
public Asnll A5String fam | yNamne;

Note that the member variables are public. They were declared this way to make access easier. A trade-off existed
between ease-of-use and secure encapsulation. The ease-of-use approach was chosen because it was felt that the
repeated use of get/set methods within deeply nested structures would be too clumsy and bulky in most applications.
Therefore, the variables were made public to make the encapsulated values easier to set and retrieve. Consistency
checks have been added in some methods to make sure values of the correct types are specified for these elements.
These checks are discussed in the sections on the specific constructed types.

Constructors

Constructors are generated to allow an object to be initialized in a number of different ways. All productions have a
default constructor with no parameters. This creates an empty object that can be filled in at alater time. Constructors
are also created that take a parameter of the base type value to alow direct population upon creation of an object. In
our example code, two constructors were generated:

public Enpl oyeeNurmber () : base() { }

public Enpl oyeeNunmber (int value_) : base (value_) {
}

33

Generated C# Source Code Overview

More complex constructed ASN. 1 types such as a SEQUENCE would have a constructor that would have an argument
for each defined element. A CHOI CE on the other hand would have aunique constructor for each of the possible choice
items. See the sections on specific ASN.1 typesto find out exactly what constructors are generated for a given type.

Decode Method

The generated decode method for BER/DER has the following general form:

public override void Decode (AsnlBerDecodeBuffer buffer,
bool explicitTagging, int inplicitLength);

Usersof the C and C++ version of the product might recognize thisform. It isvery similar to the C function prototype.
A reference to an AsnlBer DecodeBuffer object is passed that specifies the message being decoded. Thisis similar to
the context variable in the C version of the product.

The explicitTagging and implicitLength arguments should be of no concern to the average user. The explicitTagging
argument should besettot r ue and theimplicitLength argument set to zero. These argumentsare only used ininternal
calls generated by the compiler when implicit tagging is used. In this case, the decoder will at times only be concerned
with decoding the contents of afield and not the tag information. At the outer levels, it will always be necessary to
decode a tag and length.

The C# decode method reports errors by throwing exceptions. Thisisachange from the C/C++ version that returned a
status value. The Asn1Exception classisthe base classfor all exceptions defined for ASN1C. A complete list of these
exceptions can be found in the ASN1C Exceptions section.

For PER, the signatureis similar:
public override void Decode (AsnlPerDecodeBuffer buffer);

In this case, the explicitTagging and implicitLength arguments are not required since PER has no tagging. The only
required argument is areference to a decode buffer object.

For XER, two overloaded decode methods are generated:

public override void Decode (System Object reader, string xm URl);

public override void Decode (System Object reader, Stream byteStream;

These take as arguments an XML reader object reference and a reference to an input source object. The XML reader
object is astandard class within an XML parser that reads and parses an XML document. The input source can either
be a URI (this can be alocal filename) or an in-memory byte stream.

Encode Method

The generated encode method for BER/DER has the following general form:
public override int Encode (AsnlBer EncodeBuffer buffer, bool explicitTagging);

The Asn1Ber EncodeBuffer argument specifies the buffer into which the message will be encoded. The explicitTagging
argument is primarily for use by the compiler for generating internal calls to handle implicitly tagged elements in
constructed types. Users should always set thisargument tot r ue.

The encode method returns the length of the encoded component. Unlike the C /C++ version, this return value does
not double as a status value as well. Any errors that occur in the encode process are reported by throwing an ASN1C
exception. A complete list of these exceptions can be found in the ASN1C Exceptions section.

34

Generated C# Source Code Overview

The general form of a PER encode method is as follows:
public override void Encode (AsnlPerEncodeBuffer buffer);

In this case, the explicitTagging argument is not required since PER has no tagging. The only required argument is
areference to an encode buffer object. Also note that the return value is void instead of int. No intermediate lengths
are returned during the encoding of a PER message. Any errors that occur are reported as an exception; hence there
isno need for areturn value.

The general form of an XER encode method is as follows:
public override void Encode (AsnlXer EncodeBuffer buffer, string el enNane);

In this case, the buffer reference is to an XER encode buffer and an element name argument is added. The element
name is the name of the element that is to bracket the XML encoded value (i.e. <elemName>vaue</elemName>).
Thereturn typeisaso void as in the PER case because errors are reported through the exception mechanism.

Other Methods

Other generated methods include the following:

A private Init() method. This is generated in constructed types to set all element object references to null prior to
decoding.

A public Print() method. Thisisonly generated if the —print option is specified. This provides aformatted printout of
the contents of the object. The output can be directed to a StreamWriter object.

A public ElemName property (CHOICE only). This property retrieves the name of an element within a CHOICE
construct give its assigned identifier value.

The public Set_<element> methods (CHOICE only). These are generated for each element in a CHOICE construct
to allow the CHOICE value to be set.

Inner Classes

The generation of code for XER causes the following inner class definition to be generated:

public class SaxHandl er : AsnlXer SaxHandl er {
AsnlXer SaxHandl er nEl enSaxHandl er;
StringBuf fer nCurrEl enval ue;

i nternal SaxHandler() {
<code ..>

}

public void StartEl ement (string namespaceURl, string |ocal Nane,
string gName, Attributes atts)

{
<code ..>
}
public void Characters (char[] ch, int start, int |ength)
{
<code ..>

35

Generated C# Source Code Overview

}

public void EndEl enent (string namespaceURl,
string | ocal Nane, string gName)

{
}

<code ..>

}

This is an implementation of a standard SAX content handler class. As the XML parser software parses messages,
the methods within this class are invoked with the parsed content. The StartElement method is invoked after a start
element tag (<tag>) is parsed. The Characters method is invoked one or more times to pass the content between tags
into the application. The EndElement method isinvoked when an end element tag (</tag>) is encountered.

The ASN1C compiler generates custom code for each ASN.1 type within a given specification to parse the XML
contents and fill in the generated C# objects.

Error Handling

As noted elsawhere in this manual, the asnlc runtime and generated code will throw exceptions that are, or derive
from, Asnl1Exception. The exception tells you what was wrong and provides a stack trace. If you need additional
information you may try the following:

* |dentify the byte location in the input data using AsnlDecodeBuffer.ByteCount.
* |dentify the problem element using element name tracking. The procedure to do thisissimple:
1. Add "-events' to your asnlc command line. Thisis necessary for element name tracking to work.
2. Obtain an AsnlContext object from your encode/decode buffer using Asn1MessageBuffer.Context.
3. Enable element name tracking before encoding/decoding by invoking AsnlContext.EnableElementTracking().

4. Get the name of the problem element by invoking AsnlContext.GetCurrentElement() inside your exception
handling code.
Element name tracking is demonstrated in the sample Writer in sample_ber/EventHandler.

36

Chapter 4. ASN.1 Type to C# Class

Mappings

The following sections discuss the specific mappings of ASN.1 and XSD typesto C# classes.

BOOLEAN

The ASN.1 BOOLEAN type is converted to a C# class that inherits the Asn1Boolean run-time class. This base class

encapsulates the following public member variable:

public bool nVal ue;

This is where the Boolean value to be encoded is stored. It al'so contains the result of a decode operation. Sinceit is
public, it can be accessed directly to get or set the value. The generated constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<nane> ::= BOOLEAN

XSD Type:

<xsd: bool ean>

Generated C# class:

public <nane> ()
}

public <nanme> (bool

}
}

public class <name> :

AsnlBool ean {
base() {

val ue_)

base (

This definition assumes a simple assignment of the form “<name> ::= BOOLEAN?" (i.e., no tagging or subtypes have
been added to the BOOLEAN declaration). In this case, no specific encode or decode methods are generated — calls
to these methods pass through to the generic calls defined in the base class. Thisis true of all other primitive type

declarations as well unless otherwise noted.

INTEGER

The ASN.1 INTEGER type is converted to a C# class that inherits the Asnlinteger run-time class. This base class

encapsulates the following public member variable:

public | ong nVal ue;

This is where the integer value to be encoded is stored. It aso contains the result of a decode operation. Since it is

public, it can be accessed directly to get or set the value. The generated constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<nane> ::= | NTEGER

XSD Types:

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

i nt eger >,
| ong>,
unsi gnedl nt >,
nonPosi ti vel nt >,
nonNegati vel nt >

<xsd: byt e>,
<xsd: unsi gnedByt e>,

<xsd: short >,
<xsd: un
<xsd: unsi gnedLong>,
<xsd: negati vel nt 3

>

37

value_) {

<xsd:i nt >,
si gnedShort >
<xsd: posi tiv

ASN.1 Type to C# Class Mappings

Generated C# class: public class <name> : Asnllnteger {
public <nane> () : base() {
}
public <nane> (long value_) : base(value_) {
}
}

This showsthe class generated for asimple INTEGER assignment. If atagged or constrained typeis specified, specific
encode and decode methods will be generated as well.

Large Integer Support

The maximum size for a C# long integer type is 64 bits. ASN.1 has no such limitation on integer sizes and
some applications (security key values for example) demand larger sizes. In order to accommodate these types of
applications, the ASN1C compiler allows an integer to be declared a “big integer” via a configuration file variable
(the <isBiglnteger/ > setting is used to do this— see the section describing the configuration file for full details). When
the compiler detects this setting, it will declare the integer class to be derived from the Asn1Biglnteger class instead
of the Asnlinteger class. The Asnl1Biglnteger class encapsulates an object of the C# BigInteger class. This provides
full support for working with integers of arbitrary lengths.

For example, the following INTEGER type might be declared in the ASN.1 sourcefile:
SecurityKeyType ::= [APPLI CATI ON 2] | NTEGER
Then, in aconfiguration file used with the ASN.1 definition above, the following declaration can be made:
<pr oducti on>
<nane>Securi t yKeyType</ nane>
<i sBi gl nteger/ >
</ producti on>
Thiswill cause the compiler to generate the following class header:

cl ass SecurityKeyType : AsnlBi gl nt eger

Thevaluefield is populated by creating a C# Biglnteger object and either passing it in through the constructor or using
it to directly populate the public member variable named mValue declared in the base class.

BIT STRING

The ASN.1BIT STRING typeis converted to a C# class that inherits the Asn1BitString run-time class. This base class
encapsul ates the following two public member variables:

public int nunbits;
public byte[] nWVal ue;

These describe the hit string to be encoded or decoded.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nane> ::= BIT STRI NG
Generated C# class: public class <nanme> : AsnlBitString|{
public <name> ()
base() {

38

ASN.1 Type to C# Class Mappings

}

public <nanme> (int numbits_, byte[] |data)
base (numbits_, data) {

}

public <name> (bool[] bitVal ues)
base (bitValues) {

}

public <nane> (string value_)
base (value_) {

}

}

This shows the class generated for a simple BIT STRING assignment. If atagged or constrained type is specified,
specific encode and decode methods will be generated as well.

The constructors generated for this type provide additional options for populating the member variables in the base
class. In addition to passing the string using the numbits and data arguments to specify a bit string in native format,
the string can be specified as an array of boolean values or as a string. The string form expects the string to be passed
in the ASN.1 value notation format for either abinary string (i.e., ‘xxxx’ B) or a hexadecimal string (i.e., ‘xxxx'H).

Named Bits

In the ASN.1 standard, it is possible to define an enumerated bit string that specifies named constants for different
bit positions. ASN1C provides support for this type of construct by generating symbolic constants that can be used
to set, clear, or test these named bits. These symbolic constants are simply the bit names and values in the following
genera form:

public readonly static int <name> = <val ue>;
The base class contains the following methods for using these generated constants:

Set : This method can be used to set a bit in the bit string to be set. There is also an overloaded version that takes a
boolean value argument that can be used to set the bit to the given boolean value.

Clear : This method can be used to clear the named bit in the bit string.
Get : This method can be used to test if the named bit is set or clear.

See the Asnl1BitSiring class description in the run-time section for more details on these methods.

OCTET STRING

The ASN.1 OCTET STRING type is converted to a C# class that inherits the Asn1OctetString run-time class. This
base class encapsul ates the following public member variable:

public byte[] mval ue;

The number of octets to be encoded or that were decoded is specified in the built-in length component of the array
object (i.e., mVaue.length).

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nanme> ::= OCTET STRI NG
XSD Types: <xsd: hexBi nary>, <xsd: base64Bi nary>

39

ASN.1 Type to C# Class Mappings

Generated C# class: public class <nanme> : AsnlCctetStrin
public <nane> () : base() {
}
public <nane> (byte[] data) : base (
}
public <nane> (byte[] data,
int offset,
i nt nbytes)

base (data, offset, nbytes) {
}

public <nanme> (string value_) : base

}

}

This shows the class generated for asimple OCTET STRING assignment. If atagged or constrained typeis specified,
specific encode and decode methods will be generated as well.

The constructors generated for this type provide additional options for populating the member variables in the base
class. In addition to passing the string directly using the data argument, the string form can be used. The string is
passed in ASN.1 value notation format for either abinary string (i.e., ‘ xxxx’ B), hexadecimal string (i.e., ‘xxxx’H), or
acharacter string (i.e., ‘xxxx’). A constructor also exists that allows a portion of a byte array starting at a given offset
and consisting of a given number of bytesto be used to populate the variable.

Character String Types

The C# version of the compiler contains support for the various ASN.1 character string types including the BMP,
Universal and UTF-8 string types. All character strings in C# are based on 16-bit Unicode characters except for
Universal String which is based on a 32-bit character set.

All character string types are derived from the Asn1CharString base class (except the UniversalString). This class
contains the following public member variable that holds the character string contents:

public string nval ue;

Each of the specific ASN.1 character string types except Universal String has an associated C# class that is derived
from the Asn1CharSring base class. The general form of the C# class name for each of the ASN.1 string types is
Asnl followed by the ASN.1 string type name. For example, |A5String is represented by the Asn1llA5String class,
NumericSring by the AsnINumericString, etc.

The Universal String associated C# class is derived from Asnl1Type and it contains the following public member that
holds the character string contents:

public int nVal uel];

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> ::= <Char StrType>

XSD Types: <xsd:string> and all related types including date/time
types and duration.

Generated C# class: public class <nane> : Asnl<Char Str Ty

40

g {

data) {

(value_) {

pe> {

ASN.1 Type to C# Class Mappings

public <nane> ()
base() {
}
public <nane> (string value_)
base (value_) {

}

ENUMERATED

The ASN.1 ENUMERATED type is converted into a C# class that inherits the Asn1Enumerated run-time class. In
version 6.1, the generated code was changed to conform to Joshua Bloch’s static enumeration pattern (as explained in
Effective Java). Enumerated values are created as singletons to allow for lazy initialization. A specially named object,
dec, is created to hold decoded values. In combination, these changes improve application performance, since only a
fixed number of objects are allocated for any execution of the application.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<name> ::= ENUMERATED { <el>, <e2>,

ey

<en> }

XSD Types.

Any type with an <xsd:enumeration> restriction.

Generated C# class:

public class <nanme> : AsnlEnuner at eq
private static <name> _<el> = null;
private static <name> _<e2> = null;
private static <name> _dec = new <nar

protected <name> (int value)
base (value_) { }

public static <nane> <el>() {

if (_<el> == null) _<el> = new <name>(<vl>);

return _<el>;

public static <name> dec() { return

re>(-1);

|dec; }

public static <name> Val uedd { <codex }

public override void Decode () { <cod
public override int Encode () { <code
public override void Print () { <code

e> }
>
>

(S)

Notes:

1. The"“..."” notation used in the ASN.1 definition above does not represent the ASN.1 extensibility notation. It isused
to show a continuation of the enumerated sequence of values.

2. The<el>, <e2>, etc. items denote enumerated constants. These can bein identifier only format or identifier(value)
format. The <v1>, <v2>, etc. items denote the enumerated values. These are sequential numbers starting at zero if
no values are provided. Otherwise, the actual enumerated values are used.

ASN.1 Type to C# Class Mappings

3. The public methods that are generated are shown without arguments or function bodies for brevity.

In the case of the enumerated type, encode/decode methods are always generated. These verify that the given value
is within the defined set. An AsnlinvalidEnumException is thrown if the value is not in the defined set unless the

enumeration is extensible. In this case, no exception is thrown.

If an extensibility marker (...) ispresent in the ASN.1 definition, it will not affect the generated constants. A constant
will be generated for all options — both root and extended. However, in the ValueOf method, an “undefined” constant
will be returned to indicate that the value is not in the original specification.

NULL

The ASN.1 NULL typeis converted into to a C# class that inherits the Asn1Null run-time class. This base class does

not contain a public member variable for a value because the NULL type has no associated value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<name> ::= NULL

Generated C# class:

public class <name> :
public <nane> ()
base() {

AsniNul | {

}

}

Thisshowsthe class generated for asimple NUL L assignment. If atagged typeis specified, specific encode and decode

methods will be generated as well.

OBJECT IDENTIFIER

The ASN.1 OBJECT IDENTIFIER type is converted to a C# class that inherits the Asn1Objectldentifier run-time

class. This base class encapsul ates the following public member variable:

public int[] nWVal ue;

The number of subidentifiers to be encoded or that were decoded is specified in the built-in length component of the

array object (i.e,, mValue.length).

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<name> ::= OBJECT | DENTI FI ER

Generated C# class:

public class <name> :
public <nane> ()
base() {

Asnlnj ect | den

public <nanme> (int[] value))
base (value_) {
}
}

This shows the class generated for a smple OBJECT IDENTIFIER assignment. If a tagged or constrained type is

specified, specific encode and decode methods will be generated as well.

42

tifier {

ASN.1 Type to C# Class Mappings

RELATIVE-OID

The ASN.1 RELATIVE-OID type is converted to a C# class that inherits the AsnlRelativeOID run-time class. This
class inherits the Asn1Objectldentifier class defined above. The storage of the relative OID value is the same as
described for OBJECT IDENTIFIER. The only difference is the extended class defines different implementations of
the encode/ decode methods that apply the rules associated with the RELATIVE-OID type.

REAL

The ASN.1 REAL typeisconverted to aC# classthat inheritsthe Asn1Real run-time class. Thisbase class encapsul ates
the following public member variable:

publ i c doubl e nVal ue;

Thisiswherethe real value to be encoded is stored. It aso contains the result of a decode operation. Sinceit is public,
it can be accessed directly to get or set the value. The generated constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> ::= REAL
XSD Types: <xsd: fl oat >, <xsd: doubl e>
Generated C# class: public class <name> : AsnlReal ({
public <name> ()
base() {

public <nane> (doubl e value)
base (value_) {
}

}

This shows the class generated for a ssmple REAL assignment. If atagged or constrained type is specified, specific
encode and decode methods will be generated as well.

REAL (Base 10)

The ASN.1 Base 10 REAL type is converted to a Java class that extends the Asn1Real 10 run-time class. A base 10
real is specified in ASN.1 using aWITH COMPONENTS clause such as the following:

REAL(W TH COMPONENTS {
base (10)
1)
Itisalso used for XSD decimal type specifications.
In this case, the real number is stored as a C# character string in the character string base class:

public String nVal ue;

ASN.1 Production: <name> ::= REAL (W TH COWPONENTS ({ bas#(lO) b

43

ASN.1 Type to C# Class Mappings

XSD Types: <xsd: deci mal >
Generated C# class: public class <name> : AsnlReal 10 {
public <nanme> () {
base();
}

public <nanme> (String value_) {
base (value_);

}

}

SEQUENCE

The ASN.1 SEQUENCE typeis converted to a C# class that inherits the Asn1Type run-time base class. Public member
variablesare generated for each of the elements defined in the SEQUENCE. Each of these member variablesrepresents
an object reference since al of the ASN.1 types are mapped to C# objects.

ASN.1 Production: <name> ::= SEQUENCE ({
<el enent 1- nane> <el enent 1-t ype>,
<el enent 2- nane> <el enent 2-type>,

}

XSD Types: <xsd: sequence>, <xsd:all>

Generated C# class: public class <name> : AsnlType {
public <typel> <el enent 1- nane>
public <type2> <el enent 2- nane>

public <nanme> () : base()

{

}

public <name> (<typel> <argl>, <type2> <arg2>,
base()

{
<el enent 1- name> = <argl>;
<el ement 2- nane> = <arg2>;

}

public <name> (<basetypel> <argl>,
<baset ype2> <arg2>, .))

base()
{
<el ement 1- name> = new <typel> (<argl>);
<el ement 2- name> = new <t ype2> (<arg2>);
}

private void Init () { ...}

public override void Decode () { ...}
public override int Encode () { ...}
public override void Print () { ...}

ASN.1 Type to C# Class Mappings

Notes:

1. The... notation used in the ASN.1 definition above does not represent the ASN.1 extensibility notation. It is used
to show a continuation of the sequence elements.

2. The <typel>, <type2>, etc. items denote the equivalent C# types generated from the ASN.1 <element-typel>,
<element-type2>, etc. definitions.

3. The public and private methods that are generated are shown without arguments or function bodies for brevity.

The compiler first generates a public member variable for each of the elements defined in the SEQUENCE. The
decision was made to make these variables public to make them easier to popul ate for encoding. The aternative wasto
use protected or private variables with get/set methods for setting or examining the values. It wasfelt that this approach
would be too cumbersome for setting values in deeply nested constructed types.

A default constructor is then generated followed by overloaded constructors for setting the element values. The first
formissimply adirect mapping of each of the element typesto a constructor argument. The second form only contains
argumentsfor the required typesin the SEQUENCE (i.e. OPTIONAL and DEFAULT elementsare omitted). Thethird
form uses the base type of each of the elements as the type for each argument. This makes it possible to construct a
SEQUENCE or SET using literal variables instead of always having to create an object. Finally, another variant of
this constructor with primitive typesis generated for required elements only. It is possible that you will not see all of
these variations in a given generated class. It depends on a) whether or not the SEQUENCE or SET contains optional
items and b) whether or not it contains primitive dataitems.

For example, the following shows how a variable of a generated class containing two 1A5String elements could be
constructed:

vl = new Hellowerld (“hello”, “world");
Without this second form of constructor, the following would need to be done:

vl = new Hell oWorld (new Asnll A5String(“hello”),
new Asnll A5String(“world”));

Also note that since all member variables are public, it is not necessary to use any of the argument-based constructors
at all. A variable can be created using the default constructor and each of the elements populated directly.

Creation of Temporary Types

Temporary types are created when a SEQUENCE (or any other constructed type) definition contains other embedded
constructed types. An example of thisis asfollows:

A ::= SEQUENCE {
X SEQUENCE ({
al | NTEGER,
a2 BOOLEAN

} 1]
y OCTET STRING Sl ZE (10)

}

In this example, the production has two elements — x and y. The nested SEQUENCE x has two additional elements
—al and a2.

The ASN1C compiler first recursively pulls all of the embedded constructed elements out of the SEQUENCE and
forms new temporary types. The names of the temporary types are of the form <name>_<element-namel>_<element-

45

ASN.1 Type to C# Class Mappings

name2>_ ... <element-nameN>. Using thisalgorithm, the ASN.1 type defined above would be reduced to thefollowing
equivalent ASN.1 types:

A-x ::= SEQUENCE ({
al | NTEGER,
a2 BOOLEAN

}

A ::= SEQUENCE {

X A-X,

y OCTET STRI NG SI ZE (10)
}

The mapping of the ASN.1 types to C# classes would then be done.

In the case of nesting levels greater than two, al of the intermediate element names are used to form the final name.
For example, consider the following type definition that contains three nesting levels:

X 1= SEQUENCE ({
a SEQUENCE ({
aa SEQUENCE { x | NTEGER, y BOCOLEAN 1},
bb | NTEGER
}
}
In this case, the generation of temporary types resultsin the following equivalent type definitions:
X-a-aa ::= SEQUENCE { x | NTEGER, y BOOLEAN }
X-a ::= SEQUENCE { aa X-a-aa, bb I NTEGER }
X ::= SEQUENCE { X-a a }

Note that the name for the aa element type is X-a-aa. It contains both the name for a (at level 1) and aa (at level 2).
Thisisachange from v5.1x and lower where only the production name and last el ement name would be used (i.e., X-
aa). The change was made to ensure uniqueness of the generated names when multiple nesting levels are used.

OPTIONAL keyword

Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This indicates that the
element is not required in the encoded message.

Optional elements are accounted for in the C# version of the compiler by simply using null object references to denote
the absence of an element. Remember that even the simplest primitive ASN.1 type definitions are wrapped in a C#
class definition. Therefore an object must be created for any type defined as an element within a SEQUENCE.

To populate a SEQUENCE object for encoding that contains optional elements, the special constructor(s) for required
elements only can be used. The default constructor also can be used followed by the manual creation and setting of
the individual element values. The default constructor will initialize all element object references to null, so only the
items to be encoded need be popul ated.

DEFAULT keyword

The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE. ASN1C will
parse this specification and treat it as it does an optional element. Note that the value specification is only parsed in

46

ASN.1 Type to C# Class Mappings

simple casesfor primitive values. It isup to the programmer to provide the value in complex cases. For BER encoding,
avalue must be specified be it the default or other value.

For DER or PER, it is a requirement that no value be present in the encoding for the default value. For integer and
boolean default values, the compiler automatically generates code to handle this requirement based on the value in the
structure. For other values, the default value is handled the same as an optional element (i.e., a null object reference
indicates that nothing should be transmitted). The programmer must set the element object reference to null on the
encode side to specify default value selected. If thisis done, avalue is not encoded into the message. On the decode
side, the developer must test for a null object reference. If thisis the case, the default value specified in the ASN.1
specification is used.

Extension Elements

If the SEQUENCE type contains an open extension field (i.e,, a ... at the end of the specificationor a ..., ... in the
middle), a special element will be inserted to capture encoded extension elements for inclusion in the final encoded
message. Thiselement will be of type ASN1OpenExt and have the name extElem1. Thisfield will contain the complete
encoding of any extension elementsthat may have been present in amessage when it is decoded. On subsequent encode
of the type, the extension fields will be copied into the new message.

If the SEQUENCE type contains an extension marker and extension elements, then the open extension type field will
not be added. Instead, the actual extension elementswill be present. These elementswill betreated asoptional elements
whether they were declared that way or not. The reason is because a version 1 message could be received that does
not contain the elements.

XSD <xsd:all> Type Mapping

As per the X.694 standard, the XSD all type is mapped to an ASN.1 SEQUENCE type with a special element add
named order. Thisisadded asaspecia element to the generated C# classwith the name _order. This containsan index
entry for each element that identifies the order elements are to be serilaized in when encoded in XML. By default,
the array isinitialized to encode the elements in the same order as specified in the type. When an XML document of
this type is decoded, the order in which the elements are received in recorded in this array. If the data is serialized
out in binary form (BER or PER) the array isincluded in the encoding. If is only transparent in XML encode/decode
operations to mimic the behavior of its handling in XSD.

An example of how this is used might be a gateway application that read XML data and then trandated to binary
form for transmission over alow bandwidth network. When received on the other end, the receiving application would
transcode back from binary to XML. Suppose the item being transmitted was described using an xsd:all type that
had three elements: a, b, and ¢. When the original XML document was received by the sending application, suppose
the elements were received in the order ¢, b, a The order array would record this fact and it would be included in
the binary serialization. When the receiver decoded the message on the other end, the order information would be
available along with the element data. The receiver could then reconstruct the XML document with the items in the
same order as received.

SET

The ASN.1 SET typeisconverted into a C# class that isidentical to that for SEQUENCE as described in the previous
section. The only difference between SEQUENCE and SET isthat elements may be transmitted in any order ina SET
whereas they must be in the defined order in a SEQUENCE. The only impact this has on ASN1C isin the generated
decoder for a SET type.

The decoder must take into account the possibility of out-of-order elements. Thisis handled by using aloop to parse
each element in the message. Each time an item is parsed, an internal mask bit within the decoder is set to indicate
the element was received. The complete set of received elements is then checked after the loop is completed to verify
all required elements were received.

47

ASN.1 Type to C# Class Mappings

SEQUENCE OF

The ASN.1 SEQUENCE OF typeis converted to a C# class that inherits the Asn1Type run-time base class. An array
public member variable named elements is generated to hold the elements of the defined type.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> ::= SEQUENCE OF <type>

XSD Types: Eleements or content group definitions containing the
minOccurs and/or maxOccurs facets. Also, <xsd:list>
types use this model.

Generated C# class: public class <name> : AsnlType {

public <type>[] elenents

public <type> () {
el enents = nul | ;
}

public <type> (int nunmRecords) {
el ements = new <type> [nunRecor ds]
}

public override void Decode () { ...}
public override int Encode () { ...}
public override void Print () { ...}

}

The compiler first generates a public member variable to hold the SEQUENCE OF elements. The decision was
made to make the variable public to make it easier to populate for encoding. The alternative was to use protected or
private variables with get/set methods for setting or examining the values. It was felt that this approach would be too
cumbersome for setting values in deeply nested constructed types.

Two constructors are generated: a default constructor and a constructor that takes a number of elements argument.
The default constructor will set the elements variable to null. The second constructor will allocate space for the given
number of elements. The recommended way to populate a variable of thistype for encoding isto use the second form
of the constructor to allocate the required number of elements and then directly set the element object values. For
exampl e, to populate the following construct:

I nt Seq ::= SEQUENCE OF | NTEGER
with 3 integers, the following code could be used:

IntSeq intSeq = new IntSeq (3);

i nt Seq. el ement s[0] new Asnllnteger (1);
i nt Seq. el ement s[1] new Asnllnteger (2);
i nt Seq. el ement s[2] new Asnllnteger (3);

Note that each of the integer element valuesis wrapped in an Asnlinteger wrapper class.

Generation of Temporary Types for SEQUENCE OF
Elements

Aswith other constructed types, the <type> variable can reference any ASN.1 type, including other ASN.1 constructed
types. Therefore, it is possible to have a SEQUENCE OF SEQUENCE, SEQUENCE OF CHOICE, etc.

48

ASN.1 Type to C# Class Mappings

When a constructed type is referenced, a temporary type is generated for use in the final production. The format of
this temporary type nameis as follows:

<pr odNane>_el enent

In this definition, <prodName> refers to the name of the production containing the SEQUENCE OF type.

For example, asimple (and very common) single level nested SEQUENCE OF construct might be as follows:
A ::= SEQUENCE OF SEQUENCE { | NTEGER a, BOOLEAN b }

Inthiscase, atemporary typeisgenerated for the el ement of the SEQUENCE OF construct. Thisresultsinthefollowing
two equivalent ASN.1 types:

A-el enent ::= SEQUENCE { | NTEGER a, BOOLEAN b }
A ::= SEQUENCE OF A-el enent

Thesetypesarethen converted into the equival ent C# classes using the standard mapping that was previously described.

SEQUENCE OF Type Elements in Other Constructed
Types

Frequently, a SEQUENCE OF construct is used to define an array of some common type in an element in some other
constructed type (for example, a SEQUENCE). An example of thisisasfollows:

SomePDU :: = SEQUENCE {
addr esses SEQUENCE OF Al i asAddress,

}

Normally, thiswould result in the addresses element being pulled out and used to create atemporary type with aname
equal to “ SomePDU-addresses’ as follows:

SonePDU- addr esses ::= SEQUENCE OF Al i asAddress

SonmePDU : : = SEQUENCE {
addr esses SomePDU- addr esses,

}

However, when the SEQUENCE OF element references a simple defined type as above with no additional tagging
or constraint information, an optimization is done to cut down on the size of the generated code. This optimization
is to generate a common name for the new temporary type that can be used for other similar references. The form of
this common nameis as follows:

_SeqOf <el enent Pr odNane>
So instead of this:

SonmePDU- addr esses ::= SEQUENCE OF Al i asAddress
The following equivalent type would be generated:

_SeqOF Al i asAddress ::= SEQUENCE OF AliasAddress

49

ASN.1 Type to C# Class Mappings

The advantage is that the new type can now be easily reused if “SEQUENCE OF AliasAddress’ isused in any other
element declarations. Note the (illegal) use of an underscore in the first position. This is to ensure that no name
collisions occur with other ASN.1 productions defined within the specification.

An example of the savings of this optimization can be found in H.225. The above element reference is repeated 25
different times in different places. The result is the generation of one new temporary type that is referenced in 25
different places. Without this optimization, 25 unique types with the same definition would have been generated.

SET OF

The ASN.1 SET OF typeis converted into a C# class that is identical to that for SEQUENCE OF as described in the
previous section.

CHOICE

The ASN.1 CHOICE typeis converted to a C# class that inherits the Asn1Choice run-time base class. This base class
contains protected member variables to hold the choice element object and a selector value to specify which itemin
the CHOICE was chosen. Methods are generated to get and set the base class members.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> .= CHO CE {
<el enent 1- nane> <el enent 1-type>,
<el enent 2- nane> <el enent 2-type>,
}
XSD Types: <xsd: choi ce>, <xsd: uni on>
Generated C# class: public class <nanme> : AsnlChoice {
public const byte _<ELEMENT1- NAME> 1
public const byte _<ELEMENT2- NAMVE> 2
public <name> () : base() { }
public override string El emName { ...}
public void Set_<el enent1-nane> () {
public void Set_<el enent 2-nane> () {
public override void Decode () { ...}
public override int Encode () { ...}
public override void Print () { ...}
}

Notes:

1. The... notation used in the ASN.1 definition above does not represent the ASN.1 extensibility notation. It is used
to show a continuation of the sequence elements.

2. The public and private methods that are generated are shown without arguments or function bodies for brevity.

The compiler generates sequential identification constants for each of the defined elements in the CHOICE construct.
The format used is the element names converted to all uppercase characters and preceded by an underscore. The

50

ASN.1 Type to C# Class Mappings

constants represent the values returned by the base class Choicel D property can therefore be used to determine what
type of choice element was received in a decode operation.

The ElemName property is generated by the compiler and returns the name of the selected element.

A series of Set_<element> methods are generated for setting the element value. In these declarations, <element>
would be replaced with the actual element names. Thisisthe only way an element value can be set for encoding; these
methods ensure a consistent setting of both the element identifier and object reference values.

To access the value of a generated CHOICE object, the Choicel D property and GetElement methods within the base
class are used. Thisis generally done with an if or switch statement as follows:

AsnlBWMPString el enent;
if (aliasAddress. ChoicelD == AliasAddress. H323 ID) {
el enment = (AsnlBMPString) aliasAddress. GetEl enment();

}

In this case, Choicel D isinvoked and the result tested to see if the expected value was received. If it was, the element
is assigned using GetElement with a cast operation.

Creation of Temporary Types

The rules for the generation of CHOICE temporary type variables are the same as they were for SEQUENCE and
SET variables. Complex nested types are pulled out of the definitions and used to create additional types to reduce
the nesting levels. An example of thisis asfollows:

Test Choice ::= CHO CE {

a | NTEGER,

b BOOLEAN,

c SEQUENCE { aa | A5String, bb NULL }
}

Thiswould be reduced to the following equivalent ASN.1 productions:
Test Choi ce-c ::= SEQUENCE { aa | A5String, bb NULL }
Test Choi ce ::= CHO CE {

a | NTEGER,

b BOOLEAN,

c Test Choi ce-c
}

this case, the embedded constructed element for option ¢ was pulled out to form the TestChoice-c production and then
this new production is referenced in the original definition.

Populating Generated Choice Structures for Encoding

The only way a CHOICE construct can be populated for encoding is by using one the generated Set_ <element>
methods. It is necessary to do it this way because the base class contains two protected member variables (choicel D
and element) that must be set consistently. This is the only instance of a mapped type where the mapped element
values do not have public access.

The following demonstrates setting a variable of the TestChoice structure defined above to use the first option:

Test Choi ce test Choice = new Test Choice ();

51

ASN.1 Type to C# Class Mappings

t est Choi ce. Set _a (new Asnll nteger (222));

Accessing the Choice Element Value after Decoding

To access the element in a choice construct after decoding, the following two methods can be used (both are defined
in the Asn1Choice base class):

1. ChoicelD —thisreturns an identifier equal to one the generated choice identifier constants, and

2. GetElement — this returns a reference to the decoded element object. It is of type AsnlType but it can be upcast to
the correct element type using information from the Choicel D call.

In addition, the compiler generates a ElemName property that can be used to get the textual name of the decoded
element.

XSD <xsd:union> Type Mapping

The <xsd:union> typeis handled in asimilar fashion to a choice type. The main difference isthat the itemsin aunion
are not tagged. As per X.694, specia element names are generated for these itemsfor usein an ASN.1 CHOICE type.
These names are based on the base name alt and progress with sequential digits added for each addional union item
(alt-1, alt- 2, etc.). XML decoding is accomplished by attempting to decode the content of each alternativein the union
and setting the value to the first alternative that can be decoded successfully.

Open Type

Note: The X.680 Open Typereplacesthe X.208 ANY or ANY DEFINED BY constructs. An ANY or ANY DEFINED
BY encountered within an ASN.1 module will result in the generation of code corresponding to the Open Type
described below.

The ASN.1 Open Typeis converted into a C# class that inherits the Asn1OpenType class. Thisclassin turn inheritsthe
Asn1OctetString class and providesthe following public member variable for storing the encoded message component:

public byte[] nVal ue;

The number of octets to be encoded or that were decoded is specified in the built-in length component of the array
object (i.e., mValue.length).

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nane> :: = <openType>

Generated C# class: public class <nane> : AsnlQpenType {
public <name> () : base() { }

public <name> (byte[] data) : base (d
}
public <nanme> (byte[] data,
int offset,
i nt nbytes)
base (data, offset, nbytes)
{
}

52

ata) {

ASN.1 Type to C# Class Mappings

publ i c <nane> (AsnlEncodeBuffer buff
base ()

{

}

}

The <openType> placeholder is to be replaced with any type of open type specification. It could be the ANY
or ANY DEFINED BY keywords from the X.208 specification or an open type from X.681 (for example,
TYPEIDENTIFIER.& Type).

The last form of the constructor shown above is for an optimized form of Open Type encoding. When encoding is
done using BER, an open type header can be directly added to the beginning of an encoded message component. By
using this form of the constructor, you are indicating to the run-time encoder that the encoded message component
onto which a header is to be added is already present in the message buffer. The advantage is that binary copies of
the encoded message components are avoided both from the encode buffer to the open type object and from the open
type object back to the encode buffer.

For XER, anew class derived from the Asn1OpenType class was created. Thisisthe Asn1XerOpenType class and this
must be used whenever an open type is required for XER. The reason for creating a specia derived class is because
of dependencies on XML parser classes defined within this class. If these were added directly to the Asn1OpenType
class, a user would need to always have XML parser files included in their classpath — even if working with BER,
DER, or PER only.

If the —tables command line option is selected and the ASN.1 type definition references a table constraint, the code
generated is different. In this case, Asn1OpenType above is replaced with Asn1Type. Thisthe base classfor all ASN.1
types. Thisallows avalue of any ASN.1 type to be specified. On the encoding side, a user can assign an object of any
ASN.1 type to this variable and the encoding routine will call the appropriate encoder according to the table index
value. If the variable type is not present in the table and the Object Set is extensible, than it can be encoded as an
open type. Otherwise an exception will be thrown. On the decoding side, the appropriate variable type is popul ated
from the table based on the decoded index parameters. The user can determine the variable type from the table index
value. If the variable typeisnot present in table, then it will be decoded as an open type if the Object Set is extensible;
otherwise and exception will be thrown.

<xsd:any> Handling

The XSD any wildcard item is similar to an ASN.1 open type in semantics in that it allows any valid content to be
present in that position in an XML document. However, an ASN.1 open type is not used to model an <xsd:any>.
Instead, a character string variable is used. This stores the full XML text of the field in native XML form (i.e. angle
brackets and the like are not escaped). Note that the XML text is not converted to different form when using binary
encoding rules - it ismaintained as XML text.

External Type

The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an ASN.1 encoded
message. The type is described using the following ASN.1 SEQUENCE:

EXTERNAL ::= [UNI VERSAL 8] | MPLICI T SEQUENCE {
direct-reference OBJECT | DENTI FI ER OPTI ONAL,
i ndirect-reference | NTEGER OPTI ONAL,
dat a- val ue-descri ptor Obj ectDescri ptor OPTI ONAL,
encodi ng CHO CE {
singl e- ASN1-type [0] ANY,
octet-aligned [1] IMPLICI T OCTET STRI NG
arbitrary [2] IMPLICIT BIT STRING

53

r)

ASN.1 Type to C# Class Mappings

}

The ASN.1 compiler is used to create a meta-definition for this structure. The definition will be generated in the file
AsnlExternal.cs (or AsnlXerExternal.cs for XER), if needed by compiling ASN.1 file. An object created from the
resulting C# classis populated just like any other compiler-generated structure for working with ASN.1 data.

EmbeddedPDV Type

The ASN.1 EMBEDDED PDV typeisauseful type used to include non-ASN.1 or other datawithin an ASN.1 encoded
message. It wasintroduced in 1994 to replace EXTERNAL by removing unneeded fields and adding afew new ones
to hold information that was missing. Thistypeis described using the following ASN.1 SEQUENCE:

EnbeddedPDV ::= [UNI VERSAL 11] | MPLICI T SEQUENCE {
identification CHO CE {
synt axes SEQUENCE {
abstract OBJECT | DENTI FI ER,
transfer OBJECT | DENTIFIER },
synt ax OBJECT | DENTI Fl ER,
presentation-context-id | NTEGER,
cont ext - negoti ati on SEQUENCE {
presentation-context-id | NTEGER,
transfer-syntax OBJECT | DENTI FIER },
transfer-syntax OBJECT | DENTI FI ER,
fixed NULL
|
dat a- val ue OCTET STRI NG }
(WTH COVPONENTS {

dat a- val ue-descri ptor ABSENT })

The ASN.1 compiler is used to create a meta-definition for this structure. The definition will be generated in the file
Asn1EmbeddedPDV.cs(or Asn1Xer EmbeddedPDV.csfor XER), if needed by compiling ASN.1 files. An object created
from the resulting C# classis popul ated just like any other compiler-generated structure for working with ASN.1 data.

Parameterized Types

The ASN1C compiler can parse parameterized type definitions and references as specified in the X.683 standard.
These types allow dummy parameters to be declared that will be replaced with actual parameters when the type is
referenced. Thisis similar to templatesin C++.

A simple and common example of the use of parameterized typesis for the declaration of an upper bound on a sized
type asfollows:

Si zedCct et St ri ng{ | NTEGER ub} ::= OCTET STRING (SI ZE (1..ub))

In this definition, ‘ub’ would be replaced with an actual value when the typeis referenced. For example, a sized octet
string with an upper bound of 32 would be declared as follows:

CctetString32 ::= SizedCctet String{32}

The compiler would handle this in the same way as if the original type was declared to be an octet string of size 1
to 32. In the case of C#, this would result in size constraint checks being added to the generated encode and decode
methods for the type.

ASN.1 Type to C# Class Mappings

Another common example of parameterization is the substitution of a given typeinside acommon container type. For
example, security specifications frequently contain a‘signed’ parameterized type that allows a digital signature to be
applied to other types. An example of this would be as follows:

SIGNED { ToBeSi gned } ::= SEQUENCE {
t oBeSi gned ToBeSi gned,
algorithmO D OBJECT | DENTI FI ER,
par ant Par ans,
si ghature BI T STRI NG

}

An example of areference to this definition would be as follows:
Si gnedNane ::= SIGNED { Name }
where ‘Name' would be another type defined elsewhere within the module.
ASN1C performs the substitution to create the proper C# class definition for SignedName:

public class SignedNane : AsnlType {
public Nanme toBeSi gned;
public AsnlQnjectlidentifier algorithnOD,
publ i c Params parans;
public AsnlBitString signature;

}

When processing parameterized type definitions, ASN1C will first look to see if the parameters are actually used
in the final generated code. If not, they will smply be discarded and the parameterized type converted to a normal
type reference. For example, when used with information objects, parameterized types are frequently used to pass
information object set definitions to impose table constraints on the final type. Since table constraints do not affect
the code that is generated by the compiler, the parameterized type definition is reduced to a normal type definition
and references to it are handled in the same way as defined type references. This can lead to a significant reductionin
generated code in cases where a parameterized type is referenced over and over again.

For example, consider the following often-repeated pattern from the UMTS 3GPP specs:

Prot ocol I E-Fi el d { RANAP- PROTOCCOL- | ES : | EsSet Paran} ::= SEQUENCE {
id RANAP- PROTOCOL- | ES. & d ({!EsSet Parant),
criticality RANAP- PROTOCOL- | ES. &criticality ({lEsSetParant{@d}),
val ue RANAP- PROTOCCOL- | ES. &Val ue ({I EsSet Param} { @ d})
}

In this case, |EsSetParam refers to an information object set specification that constrains the values that are passed
for any given instance of atype referencing a Protocol | E-Field. The compiler does not add any extra code to check
for these values, so the parameter can be discarded. After processing the Information Object Class references within
the construct (refer to the Information Objects section for information on how thisis done), the reduced definition for
Protocol | E-Field becomes the following:

Protocol IE-Field ::= SEQUENCE {
id Protocol | E-1D,
criticality Criticality,
val ue ASN. 1 OPEN TYPE

}

Referencesto the field are simply replaced with areference to the generated Protocol | D-Field class.

55

ASN.1 Type to C# Class Mappings

Value Specifications

The ASN1C compiler can parse any type of ASN.1 value specification, however, the basic version will only generate
code for the following types of value specifications:

* BOOLEAN

INTEGER

« ENUMERATED

* Binary String

» Hexadecimal String

e Character String

» OBJECT IDENTIFER
The Pro version of the compiler will generate code for the following remaining types of value specifications:
* Enumerated

* Red

» Sequence

o Set

* Sequence Of

o Set Of

+ Choice

If any of the above types of value specifications are detected in an ASN.1 module, the compiler will generate a C#
source file with a specia class to hold the values. The name of the source file and classis of the following format:

_<Mbdul eNane>Val ues

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which the values are
defined.

The following sections provide details on the C# constants generated for the various types of ASN.1 value
specifications.

INTEGER Value Specification

An INTEGER value specification causes a C# integer constant to be generated. stant to be generated.
ASN.1 production:

<nane> | NTEGER :: = <val ue>
Generated C# constant:

public static readonly int <name> = <val ue>;

56

ASN.1 Type to C# Class Mappings

BOOLEAN Value Specification

A BOOLEAN value specification causes a C# boolean constant to be generated.
ASN.1 production:

<nane> BOCLEAN ::= <val ue>
Generated C# constant:\

public static readonly bool <nane> = <val ue>;

Binary String Value Specification

This value specification causes two C# constants to be generated: a‘ numbits' constant specifying the number of bits
in the string and a‘data’ constant that hold the actual bit values.

ASN. 1 producti on:
<nane> BIT STRING ::= ‘bbbbbbb’B
Generated C# constants:

<nunbi t s>;
{ Oxhh, Oxhh, ... };

public static readonly int <name> nunbits
public static readonly byte[] <name> data

In the ASN.1 production definition, the lowercase ‘b’s above represent binary digits (1's or 0's). The generated code
contains anumbits constant set to the number of bits (binary digits) in the string. The data constant specifiesthe binary
data using hexadecimal byte values.

Hexadecimal String Value Specification

This value specification causes a C# constant to be generated containing a byte array of the hexadecimal byte values.
ASN.1 production:

<name> OCTET STRING ::= *hhhhhh' H
Generated C# constants:

public static readonly byte[] <nane> = { Oxhh, Oxhh, ... };

In the ASN.1 production definition, the lowercase ‘h’'s above represent hexadecimal digits (0-9, af, or A-F). The
generated constant specifies the binary data using hexadecimal byte values.

Character String Value Specification

A character string declaration causes a C# String constant to be generated.
ASN.1 production:

<nanme> <StringType> ::= ‘ccccccc’
Generated C# constants:

public static readonly string <name> = “ccccccc”;

57

ASN.1 Type to C# Class Mappings

In the ASN.1 production definition, <StringType> would be replaced with one of the ASN.1 character string types
(for example, IA5String). The lowercase ‘ ¢'s represent string characters. The generated constant is simply the string
in C# form.

Object Identifier Value Specification

An object identifier value specification causes a C# integer array to be generated containing the subidentifier values.
ASN.1 production:
<name> OBJECT | DENTI FI ER :: = <oi dval ue>
Generated C# constants:
public static readonly int[] <nanme> = { idl, id2, ., idn };
For example, consider the following declaration:
oid OBJECT IDENTIFIER ::= { ccitt b(5) 10 }
Thiswould result in the following C# constant being generated:

public static readonly int[] oid ={ 0, 5, 10 };

ENUMERATED Value Specification

An ENUMERATED value specification causes a reference to an enumerated singleton to be generated.
ASN.1 production:
<pame> <enumtype> ::= <enunitenr
Generated C# constants:
public static readonly <enuntype> <nanme> = <enunti ne>. Val ueOf (<enunval ue);

enumvalue will be the sequential integer value corresponding to the enumitem in enumtype.

REAL Value Specification

A REAL value specification causes a C# double constant to be generated.
ASN.1 production:

<name> REAL ::= <val ue>
Generated C# constants:

public static readonl yreadonly doubl e <name> = <val ue>;

SEQUENCE Value Specification

A SEQUENCE value specification causes a readonly static instance of the C# class generated for the SEQUENCE
to be generated.

ASN.1 production:

58

ASN.1 Type to C# Class Mappings

<nanme> <SequenceType> ::= <val ue>
Generated C# constants:

public static readonly <SequenceType> <nanme> =
new <SequenceType> (new <El emlType> (<el emlval ue>),
new <El en2Type> (<el enRval ue>),

)

For example, consider the following declaration:

SeqType ::= SEQUENCE {
oid OBJECT | DENTI FI ER,
id | NTEGER
}
val ue SeqType ::={ oid { 0111}, id 12}

Thiswould result in the following C# constant being generated for value:

public static readonly SeqType val ue = new SeqType (
new AsnlQbj ectldentifier(newint[]{0, 1, 1}),
new Asnll nt eger(12)

);
SET Value Specification

The value code generation for the ASN.1 SET type is that same as that for SEQUENCE described above.

SEQUENCE OF Value Specification

A SEQUENCE OF value specification causes a C# array constant to be generated.
ASN.1 production:

<nane> <SequenceOf Type> ::= <val ue>
Generated C# constants:

public static readonly <SequenceO Type> <name> =
new <SequenceO Type>[] {
new <El eniType> (<el enlval ue>),
new <El eniType> (<el enRval ue>),

i
For example, consider the following declaration:
SeqOf Type ::= SEQUENCE OF | NTEGER
val ue SeqOf Type ::={ 1, 2}
Thiswould result in the following C# constant being generated for value:

public static readonly SeqOf Type val ue = new SeqOf Type[] {
new Asnll nteger (1),
new Asnll nt eger (2)

59

ASN.1 Type to C# Class Mappings

b
SET OF Value Specification

The value code generation for the ASN.1 SET OF type isthat same as that for SEQUENCE OF described above.

CHOICE Value Specification

A CHOICE value specification causes a readonly static instance of the C# class generated for the CHOICE to be
generated.

ASN.1 production:
<nanme> <Choi ceType> ::= el emane : <el enval ue>
Generated C# constants:

public static readonly <Choi ceType> <nane> =
new <Choi ceType> (<El emCode>,
new <El enlType> (<el enval ue>));

For example, consider the following declaration:
Choi ceType ::= CHO CE { oid OBJECT IDENTIFIER, id | NTEGER }
val ue ChoiceType ::=id: 1

Thiswould result in the following C# constant being generated:

public static readonly ChoiceType val ue =
new Choi ceType (Choi ceType. I D, new Asnllnteger(1));

60

Chapter 5. Generated BER/DER/CER
Encode Methods

Two different types of BER (Basic Encoding Rules) encode methods may be generated using the ASN1C compiler:
» Memory-buffer based definite length backward encoders

* Stream-based indefinite length forward encoders

For DER (Distinguished Encoding Rules), only the first option is available because a requirement of DER is that all
lengths must be in definite form. For CER (Canonical Encoding Rules), only the second option is available because all

constructed element lengths must be in indefinite length form. Each of these methods are described in the following
sections.

Memory-buffer Based Definite Length
Encoders

For each ASN.1 production defined in the ASN.1 source file, a C# memory-buffer based encode method may be
generated. These are the default type of encode methods that are generated when the -ber command-line option is
selected. To generate stream-based forward encoders, the -stream option must be specified as well.

Anencode method isonly generated if it isrequired to alter the encoding of the base class method. The C#model isbuilt
on inheritance from a set of common run-time base classes. These run-time classes contain default implementations of
encode/decode methods that handle the encoding/decoding of the basic types. These default implementations include
support for adding the universal tags associated with the types as defined in the X.680 standard.

So for simple assignments, the generation of an encode method is not necessary. For example, thefollowing production
will not result in the generation of an encode method:

X 1= I NTEGER

In this case, the generated C# class inherits the Asnllnteger base class and the default encode method within this class
is sufficient to encode a value of the generated type.

However, if the typeis atered to contain atag or constraint, then a custom encode method would be generated:
X ::= [APPLI CATI ON 1] | NTEGER
In this case, specia logic is necessary to apply the tag value.
Some types will aways cause encode methods to be generated. At the primitive level, this is true for the
ENUMERATED type. This type will always contain a custom set of enumerated values. All constructed types

(SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will cause encode methods to be added to the generated
classes.

Generated C# Method Format and Calling Parameters

The signature for a C# BER memory buffer encode method is as follows:

public override int Encode (AsnlBer EncodeBuffer buffer, bool explicitTaggi ng)

61

Generated BER/DER/CER Encode Methods

The buffer argument is a reference to an Asn1Ber EncodeBuffer object that describes the buffer into which a message
is being encoded. This must be created and initialized before calling any encode method. See the description of this
classin the C# Run-Time Classes section for details on how this classis used.

The explicitTagging argument specifies whether or not an explicit tag should be applied to the encoded contents. The
average user will amost always want to set this argument to true. The only time it would not be set to true isif auser
wanted to just encode a contents field with no tag. This argument is used primarily by the compiler when generating
internal callsto properly handle implicit and explicit tagging.

The return value is the length in octets of the encoded message component. Unlike the C/C++ version, a negative
value is never returned to indicate an encoding failure. That is handled by the exception mechanism. All ASN1C

C# exceptions are derived from the AsnlException base class. See the section on exceptions for a complete list and
description of the various exceptions that can be thrown.

Populating Generated Variables for Encoding

Populating generated variablesfor encoding can be donein most cases either through the object constructorsor directly
by assigning an object reference to a public member variable.

Constructors are provided for most generated types to allow direct population of the encapsulated member variable(s)
on initialization. The exception is the classes generated for SEQUENCE OF or SET OF. These only allow the size of
an array to be specified — population of the array elements must be done manually.
All of the base run-time classes except Asn1Null contain public member variables. In practically all casesthereisa
single variable called mValue that is of the base type that needs to be populated. For example, the Asnlinteger base
class contains the following item:

public | ong nVal ue;

Therefore, population of any class variable derived from INTEGER can be done by adding.mValue to the end of the
lefthand side of the assignment and an integer value on the right. So for the following assignment:

X 1= I NTEGER

A variable of the type can either be populated using the constructor with the following statement:
X x = new X (25);

or viadirect access of the member variable asfollows:

X x = new X ();
X. nvVal ue = 25;

The only primitive type that does not have a single member called mValue to represent itsvalue is BIT STRING. In
this case, the Asn1BitString class contains a second variable called numbits to specify the number of bitsin the string.

Procedure for Calling Memory-Buffer Based BER
Encode Methods

Once an object’s member variables have been populated, the object’s encode method can be invoked to encode the
value. The general procedure to do this involves the following three steps:

1. Create an encode message buffer object into which the value will be encoded.

62

Generated BER/DER/CER Encode Methods

2. Invoke the encode method.
3. Invoke encode message buffer methods to access the encoded message component.

Thefirst step isthe creation of an encode message buffer object. Unlike the C/C++ version of the product, thereis no
choice to be made between a static or dynamic encode buffer. In C#, everything is dynamic. There are two forms of
the constructor: a default constructor and one that allows specification of a message buffer size increment. The size
increment will determine how often the buffer will need to be resized to hold large messages. If you know that you
will be encoding large messages, then this object should be constructed with a large value for the increment. If you
know that you will be encoding small messages in a constrained environment, then this value can be set very low. The
default constructor sets the value to areasonable mid-range value (see SIZE_INCREMENT in Asn1EncodeBuffer.cs,
as of thiswriting the value was set to 1024).

The second step is the invocation of the encode method. The calling arguments were described earlier. As per the C#
standard, this method must be invoked from within atry/catch block to catch the possible Asn1Exception that may be
thrown. Alternatively, the method from which the encode method is called can declare that it throws an Asn1Exception
leaving it to be dealt with at a higher level.

Finally, encode buffer methods can be called to access the encoded message component. The encode method itself
returns the length of the component, so thisitem is already known (however, there is a MsgLength property available
if you want to access this length from a different location). Unlike C or C++, a pointer to where the message startsin
the encode buffer cannot be returned (recall that BER encoding is done from back to front, so a message rarely starts
at the beginning of a buffer). However, the C# APl provides an object called a ByteArrayl nputStream that provides
away to look at the encoded component as a stream. The encode buffer object therefore provides a property called
ByteArrayl nputStream which is the preferred way to access the encoded component.

In addition to ByteArrayl nputStream there is a MsgCopy property that will retrieve a copy of the generated message
into a byte array object. This is somewhat slower because a copy needs to be done. The encode buffer class also
contains other methods for operating directly on the encoded component (for example, the write method can be used
to writeit to afile or other medium). And of course, one could derive their own special encode buffer class from this
class to add more functionality. See the description of the Asn1BerEncodeBuffer class in the run-time section for a
full description of the available methods.

A complete example showing how to invoke an encode method is as follows:

/'l Note: personnel Record object was previously populated with data

/Il Step 1. Create a message buffer object. This object uses the
/1 default size increment for buffer expansion..

AsnlBer EncodeBuf f er encodeBuffer = new AsnlBer EncodeBuffer();

/1l Step 2: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock. .

try {
per sonnel Recor d. Encode (encodeBuffer, true);

if (trace) {
System Consol e. Qut. WiteLine ("Encodi ng was successful ");
System Consol e. Qut. WiteLine ("Hex dunp of encoded record:");
encodeBuf f er. HexDump () ;
System Consol e. Qut. WiteLine ("Binary dunp:");
encodeBuf fer. Bi nDunmp ();

63

Generated BER/DER/CER Encode Methods

}

/1 Step 3: Access the encoded nmessage conponent. In this

/1l case, we use nethods in the class to wite the conponent
/1l to afile and output a formatted dunp to the nessage. dnp
Il file..

I/ Wite the encoded record to a file

encodeBuffer. Wite(new System | O Fil eSt rean(
filenane, System 1O FileMde.Create));

/]l Generate a dunp file for conparisons

System 1 O StreanWWiter nmessagednmp =
new System | O StreamWiter(new System | O Fil eStream
"message. dmp", System | O Fil eMbde. Create));
messagednp. Aut oFl ush = true;
encodeBuf f er . HexDunp(messagednp) ;
}
catch (Exception e) {
System Consol e. Qut . Wi telLi ne (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return;

}

Reuse of C# Encoding Objects

The simple example above showed the procedure to encode a single record. But what if you had to decode a series of
the same record over and over again? Thisis a common occurrence in a BER encoding application.

Y ou would not want to recreate the data holder and message buffer objects on each pass of the loop. This would have
an adverse effect on the performance of the application. What you would want to do is only create the objectsasingle
time and then reuse them to encode each message instance.

It turns out that thisis an easy thing to do. The public member variable access to the data holder object makesit easy
to change the variables on each given pass. And the encode buffer object contains a Reset method for resetting the
encode buffer for subsequent encodings. The use of this method has the advantage of not releasing any of the memory
that had been accumulated to this point for previous encodings.

To show an example of object reuse, suppose we were going to encode a series of names. The ASN.1 type for the
names would be as follows:

Name ::= [APPLI CATION 1] I MPLICI T SEQUENCE {
gi venNanel A5Stri ng,
initial 1A5String,
fam | yNamel A5String

}
The generated C# class would contain public member variables for each of the string objects:

public Asnll A5String gi venNane;
public Asnll A5String initial;
public Asnll A5String fam | yNamne;

Generated BER/DER/CER Encode Methods

The most efficient way to repopulate these variables within aloop would be simply to assign each of the new strings
to be encoded directly to the public mValue member variables contained within the AsnllA5Sring objects (i.e., the
Name or AsnllA53ring objects should not be reconstructed each time).

A code snippet showing how this could be done is as follows:

/1l Step 1: Create Nanme and AsnlBer EncodeBuffer objects for use in
/1 the | oop..

Nane nane = new Nane (“", “", “”); [/ creates enpty string objects
AsnlBer EncodeBuf f er encodeBuffer = new AsnlBer EncodeBuffer ();

for (;;) {

/1 logic here to read nane conponents froma DB or other nedium

/1 popul ate string variables (assune stringl, 2, and 3 are string
/1 variables read from DB above)..

nane. gi venNane. nval ue = stringl;
nane.initial.nValue = string2;
nane. f am | yNane. nvVal ue = string3;

/] encode

try {
| en = name. Encode (encodeBuffer, true);

/1 do sonething with the encoded nmessage conponent

/1 reset encode buffer for next pass

encodeBuffer. Reset ();

}
catch (AsnlException e) {

/1 handl e error
}
}

Stream-Oriented Indefinite Length Encode
Methods

BER messages can be encoded directly to an output stream such as afile, network or memory stream. The ASN1C
compiler has the —stream option to generate encode functions of this type. For each ASN.1 production defined in the
ASN.1 sourcefile, a C# encode method may be generated. Thisfunction will convert apopul ated variable of the given
type into an encoded ASN.1 message.

The basic principles of the generation of the encode methods are the same as for the memory-buffer based BER/
DER encode methods described in the preceding section. Stream-oriented BER encoding starts from the beginning

65

Generated BER/DER/CER Encode Methods

of the message until the message is complete. This is sometimes referred to as “forward encoding”. This differs
from memorybuffer based BER where encoding that is done from back-to-front. Indefinite lengths are used for all
constructed elements in the message. Also, there is no permanent buffer for stream-oriented encoding, all octets are
written directly to the output stream.

Generated C# Method Format and Calling Parameters

The signature for a C# BER stream-oriented encode method is as follows:
public override void Encode (AsnlBer QutputStream outs, bool explicitTagging)

The outs argument is a reference of an Asnl1BerOutputSream object that describes the output stream into which a
message is being encoded. This must be created and initialized before calling any encode method. See the description
of this classin the C# Run-Time Classes section for details on how this classis used.

The explicitTagging argument specifies whether or not an explicit tag should be applied to the encoded contents. The
average user will almost always want to set this argument to true. The only time it would not be set to trueisif a user
wanted to just encode a contents field with no tag. This argument is used primarily by the compiler when generating
internal callsto properly handle implicit and explicit tagging.

Unlike the C/C++ version, a negative value is never returned form encode methods to indicate an encoding failure.
That is handled by the exception mechanism. All ASN1C C# exceptions are derived from the AsnlException base
class. See the section on exceptions for a complete list and description of the various exceptions that can be thrown.
If an 1/O error occurs then the System.Exception is thrown.

Procedure for Calling C# BER Stream-Oriented Encode
Methods

Once an object’s member variables have been populated, the object’s encode method can be invoked to encode the
value. The general procedure to do this involves the following three steps:

1. Create an output stream object into which the value will be encoded
2. Invoke the encode method
3. Close the output stream.

The first step is the creation of an output stream object. There are two forms of the constructor: a constructor with
one parameter (System.lO.Sream reference) and one that allows specification of an interna buffer size. A larger
internal buffer size generally provides better performance at the expense of increased memory consumption. Thefirst
constructor sets the value to areasonable mid-range value.

The second step is the invocation of the Encode() method. The calling arguments were described earlier. As per the
C# standard, this method must be invoked from within a try/catch block to catch the possible AsnlException and
System.Exception, which may bethrown. Alternatively, the method from which the encode method is called can declare
that it throws Asn1Exception and System.Exception leaving it to be dealt with at a higher level.

Finally, close the output stream.

A complete example showing how to invoke a stream-based encode method is as follows:

/'l Note: personnel Record object was previously populated with data

AsnlBer Qut put Stream outs = nul | ;

66

Generated BER/DER/CER Encode Methods

try {
/]l Step 1. Create an output stream object. This object uses the

/'l default size increment for buffer expansion..

outs = new AsnlBer Qut put Stream (new System | O Fi |l eStrean(
filenanme, System 1O FileMde.Create));

/1l Step 2: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock. .

per sonnel Recor d. Encode (outs, true);

if (trace) {
System Consol e. Qut . WitelLine ("Encodi ng was successful ");
System Consol e. Qut. WiteLine ("Hex dunp of encoded record:");
encodeBuf f er . HexDump () ;
System Consol e. Qut. WiteLine ("Binary dunp:");
encodeBuf fer. Bi nDump ();
}
}
catch (Exception e) {

System Consol e. Qut. WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);

return;
}
finally {
/1l Step 3: Close the output stream if opened
try {
if (outs !'= null)
outs. d ose ();
}
catch (Exception e) {}
}

If you compare this example with the BER encoding example in Figure 1, you will see the encoding procedure is
almost identical. This makes it very easy to switch encoding methods should the need arise. All you need to do is
change Asn1Ber EncodeBuffer to Asn1Ber OutputSream and remove the explicit code that writes the messagesinto the
stream. Also closing of the stream should be added.

67

Chapter 6. Generated BER/DER/CER
Decode Methods

For each ASN.1 production defined inthe ASN.1 sourcefile, a C# decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to ater the default method
in the base class. The C# model is built on inheritance from a set of common run-time base classes. These run-time
classes contain default implementations of encode/decode methods that handle the encoding/decoding of the basic
types. These default implementations include support for handling the universal tags associated with the types as
defined in the X.680 standard.

Generated C# Method Format and Calling
Parameters

The signature for a C# BER decode method is as follows:

public override void Decode (AsnlBerDecodeBuffer buffer, bool explicitTagging,
int inplicitLength)

Thebuffer argument isareference of an Asn1Ber DecodeBuffer object that describesthe messagethat isbeing decoded.
This must be created and initialized before calling any decode method. See the description of this classin the C# Run-
Time Classes section for details on how this classis used.

The explicitTagging and implicitLength arguments specify whether or not an explicit tag should be parsed from the
encoded contents. The average user will almost always want to set explicitTagging to true and implicitLength to zero.
The only time these arguments would not be set thisway isif a user wanted to directly decode contents with no tag/
length information. These arguments are used primarily by the compiler when generating internal calls to properly
handle implicit and explicit tagging.

The decode method returns no result. Unlike the C/C++ version, a negative status value is not returned to indicate a
failure. That is handled by the exception mechanism. All ASN1C C# exceptions are derived from the Asn1Exception
base class. See the section on exceptions for a complete list and description of the various ASN.1 exceptions that can
be thrown. The System.Exception that can be thrown is in the Read method within the decode buffer base class, for
any 10 errors. This method attempts to read data from an input stream using the methods in the System.|O.Sream.

Procedure for Calling C# BER Decode Methods

The general procedure to decode an ASN.1 BER message involves the following three steps:
1. Create a decode message buffer object to describe the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

Thefirst step isthe creation of adecode message buffer object. The Asn1Ber DecodeBuffer object contains constructors
that can either accept a message as a byte array or as an 1/O input stream. The input stream option makes it possible
to decode messages directly from other mediums other than amemory buffer (for example, amessage can be decoded
directly from afile).

68

Generated BER/DER/CER Decode Methods

The Asn1Ber DecodeBuffer object contains a method called PeekTag that can be used to determine the outer-level tag
on amessage. This can be used to determine the type of message received in applications that must deal with multiple

message types.

Thefinal step isto processthe data. All datais contained within public member variables so accessis quite easy. And
of course C# has the distinct advantage of not requiring any clean-up once you are done with the data. The garbage
collector will collect the unused memory when it is no longer referenced.

A complete example showing how to invoke a decode method is as follows:

try {

/]l Step 1. create a decode nessage buffer object to describe the
/'l nmessage to be decoded. This exanple will use a file input
/] streamto decode a nessage directly froma binary file..

/1l Create an input file stream object

System IO FileStreamins = new System | O Fil eSt rean
filenane, System 1O Fil eMbde. Open, System | O Fil eAccess. Read);

/'l Create a decode buffer object
AsnlBer DecodeBuf f er decodeBuffer = new AsnlBer DecodeBuffer (ins);

/]l Step 2: create an object of the generated type and i nvoke the
/| decode nethod. .

Per sonnel Record personnel Record = new Personnel Record ();
per sonnel Recor d. Decode (decodeBuffer);

/]l Step 3: process the data

if (trace) {
System Consol e. Qut. WiteLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");

}

}
catch (Exception e) {

System Consol e. Qut. WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return;

}

Reuse of C# Decoding Objects

The sample above showed the BER decoding of a single message. In atypical application, aloop would be involved
to decode a series of messages. While it would be possible to use the code shown above in a loop, it would not be
the most efficient way to decode the messages. Objects should be reused where possible to avoid the overhead of
excessive memory allocations and garbage collection.

A single decode buffer object can be used to process a stream of messages. If the decode message buffer is created
using an input stream object that contains a series of messages (for example, a file containing multiple records or a

69

Generated BER/DER/CER Decode Methods

communications device), al that needs to be done is the continuous invocation of the BER decode method for the
given message type.

Nothing special needs to be done to reuse the generated type object for decoding. The decoder will automatically all
the internal Init() method before decoding to make sure al items are reset to their starting state.

In the example above, all that would need to be done to decode a series of personnel recordsis the inclusion of aloop
after the Personnel Record object was created in step 2:

for (;;) {

per sonnel Recor d. Decode (decodeBuffer);

if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");

70

Chapter 7. Generated PER Encode Methods

The generation of methods to encode data in accordance with the Packed Encoding Rules (PER) is similar to how
methods were generated in the BER/DER case discussed previously. For each ASN.1 production defined inthe ASN.1
source file, a C# encode method may be generated. This function will convert a populated variable of the given type
into an encoded ASN.1 message.

Anencode method isonly generated if it isrequired to alter the encoding of the base class method. The C# model isbuilt
on inheritance from a set of common run-time base classes. These run-time classes contain default implementations
of encode/decode methods that handle the encoding/decoding of the basic types.

For simple assignments, the generation of an encode method is not necessary. For example, the following production
will not result in the generation of an encode method:

X 1= I NTEGER

In this case, the generated C# class inherits the Asnllnteger base class and the default encode method within this class
is sufficient to encode a value of the generated type.

In the case of BER/DER, a custom encode method is generated if a) the type is tagged, or b) it contains a testable
constraint. In the case of PER, only the latter condition will cause a custom method to be generated. The reason is
because PER basically ignores the tags on tagged types and they therefore have no effect on the final encoded message
component.

For example, the following declaration will cause a custom encode method to be generated because the value range
congtraint is a PER-visible constraint that will alter the encoding:

X ::= I NTEGER (1..255)
In this case, specia logic is necessary to apply the value range constraint. Some types will always cause encode
methodsto be generated. At the primitivelevel, thisistruefor the ENUMERATED type. Thistypewill always contain

acustom set of enumerated values.

All constructed types (SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will cause encode methods to be
added to the generated classes.

Generated C# Method Format and Calling
Parameters

The signature for a C# PER encode method is as follows:
public override void Encode (AsnlPerEncodeBuffer buffer)

The buffer argument is areference of an Asn1PerEncodeBuffer object that describes the buffer into which a message
is to be encoded. This must be created and initialized before calling any encode method. See the description of this
classin the C# Run-Time Classes section for details on how this classis used.

The PER encode methods do not return a value. This is different than the C/C++ version that returns a negative
status value to indicate an encoding failure. For C#, errors are reported via the exception mechanism. All ASN1C
C# exceptions are derived from the AsnlException base class. See the section on exceptions for a complete list and
description of the various exceptions that can be thrown.

71

Generated PER Encode M ethods

Procedure for Calling C# PER Encode Methods

The C# class variables corresponding to each of the ASN.1 types and method of population are the same as they were
in the BER encoding case. See the section on BER encoding for instructions on how to populate the variables prior
to encoding.

Once an object’s member variables have been populated, the object’s encode method can be invoked to encode the
value. The general procedure to do thisinvolves the following three steps:

1. Create an encode message buffer object into which the value will be encoded
2. Invoke the encode method
3. Invoke encode message buffer methods to access the encoded message component

The first step is the creation of an encode message buffer object. For PER encoding, this is an object of the
Asn1PerEncodeBuffer class. The following constructors are available for creating a PER encode buffer object:

publ i c AsnlPer EncodeBuffer (bool aligned);

public AsnlPer EncodeBuffer (bool aligned, int sizelncrenment);

The first argument indicates whether PER aligned or unaligned encoding should be done. The second form of the
constructor contains a size increment argument. This argument will determine how often the buffer will need to be
resized to hold large messages. If you know that you will be encoding large messages, then this object should be
constructed with alarge valuefor theincrement. If you know that you will be encoding small messagesin aconstrained
environment, then this value can be set very low. The default constructor sets the value to a reasonable mid-range
value (see SIZE_INCREMENT in Asn1EncodeBuffer.cs, as of thiswriting the value was set to 1024).

The second step is the invocation of the encode method. The calling arguments were described earlier. As per the
C# standard, this method must be invoked from within atry/catch block to catch the possible exceptions that may be
thrown. Alternatively, the method from which the encode method is called can declare that it throws an Asn1Exception
leaving it to be dealt with at a higher level.

Finally, encode buffer methods can be called to access the encoded message component. The C# APl provides an
object called a ByteArrayl nputStream that provides a way to look at the encoded component as a stream. The encode
buffer object provides amethod called GetlnputStreamthat returns a byte array input stream representing the message
component. Thisisthe preferred way to access the encoded component.

In addition to GetlnputSream there is a MsgCopy property that will retrieve a copy of the generated message into a
byte array object. This is somewhat slower because a copy needs to be done. Another option that is only available
when doing PER encoding is the Buffer property. This returns a reference to the actual message buffer into which
the message was encoded. Since a PER message is encoded front-to-back (unlike the back-to-front used in BER/DER
encoding), the buffer reference returned will point to the start of the encoded message. The MsgByteCnt property can
then be used to get the message length in bytes or the MsgBitCnt property can be called to get the length in bits.

The encode buffer class also contains other methods for operating directly on the encoded component (for example,
the write method can be used to write it to afile or other medium). And of course, one could derive their own special
encode buffer class from this class to add more functionality. See the description of the Asn1PerEncodeBuffer class
in the runtime section for a full description of the available methods.

A complete example showing how to invoke a PER encode method is as follows:

/'l Note: personnel Record object was previously populated with data

I/l Step 1. Create a message buffer object. This object uses the

72

Generated PER Encode M ethods

/1l default size increment for buffer expansion..

AsnlPer EncodeBuf f er encodeBuffer = new AsnlPer EncodeBuffer();

/1l Step 2: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock. .

try {
per sonnel Recor d. Encode (encodeBuffer);

}

i f

}

11
11
11
11

11

(trace) {

System Consol e. Qut. WitelLine ("Encodi ng was successful ");
System Consol e. Qut. WiteLine ("Hex dunp of encoded record:");
encodeBuf f er . HexDump () ;

System Consol e. Qut. WiteLine ("Binary dunp:");

encodeBuf f er. Bi nDunp (" personnel Record”);

Step 3: Access the encoded nessage conponent. In this
case, we use nmethods in the class to wite the conponent
to a file and output a formatted dunp to the nessage. dnp
file..

Wite the encoded record to a file

encodeBuffer. Wite(new System | O Fil eSt rean(

11

filenanme, System 1O FileMde.Create));

Cenerate a dunp file for conparisons

System 1 O StreanWWiter nmessagednmp =

new System 1O StreamWiter(new System 1O Fil eStrean(
"message. dmp", System | O Fil eMbde. Create));

messagednp. Aut oFl ush = true;
encodeBuf f er . HexDunp(messagednp) ;

11

We can al so directly access the buffer as foll ows:

byte[] buffer = encodeBuffer.Buffer;
int nmeglen = encodeBuffer.MsgByteCnt;

catch (Exception e) {

System Consol e. Qut. WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return;

}

If you comparethis examplewith the BER encoding examplein Figure 1, you will seethe encoding procedureisalmost
identical. This makes it very easy to switch encoding methods should the need arise. All you need to do is change
Asn1Ber EncodeBuffer to AsnlPerEncodeBuffer and remove the explicit argument from the encode method call.

Reuse of C# Encoding Objects

The concept of reusing C# objects for PER encoding is the same as was described previously for BER encoding.
Basically, all that needs to be done is the creation of a single PER encode buffer object and an object corresponding

73

Generated PER Encode M ethods

to the ASN.1 data type to be encoded outside of the processing loop. These objects can then be reused to encode each

instance of the messages to be sent. After each message is encoded, the PER buffer must be reset for the next message
by using the Reset method. See the section on reuse of objects in the BER encoding section for a more thorough
discussion and sample code on using this capability.

74

Chapter 8. Generated PER Decode Methods

For each ASN.1 production defined in the ASN.1 sourcefile, a C# decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to alter the default method in
thebase class. The C# model isbuilt oninheritance from a set of common run-time base classes. These run-time classes
contain default implementations of encode/decode methods that handle the encoding/decoding of the basic types.

For primitive types, a custom PER decode method is only generated if one or more of the following istrue:
1. Thetype contains a PER-visible constraint
2. The generation of event handlers was specified

The exception to thisrule is the ENUMERATED primitive type (or likewise, INTEGER type with a named number
list) that will always cause a decode method to be generated.

Constructed types will always cause custom PER decode methods to be generated.

Generated C# Method Format and Calling
Parameters

The signature for a C# PER decode method is as follows:\
public override void Decode (AsnlPerDecodeBuffer buffer)

Thebuffer argument isareference of an Asn1Per DecodeBuffer object that describesthe message that isbeing decoded.
Thismust be created and initialized before calling any decode method. See the description of this classin the C# Run-
Time Classes section for details on how this classis used.

The decode method returns no result. Unlike the C/C++ version, a negative status value is not returned to indicate a
failure. That is handled by the exception mechanism. All ASN1C C# exceptions are derived from the Asn1Exception
base class. See the section on exceptions for a complete list and description of the various ASN.1 exceptions that can
be thrown. The System.Exception that can be thrown is in the read method within the decode buffer base class. This
method attempts to read data from an input stream using the methods in the System.1O.Stream class.

Procedure for Calling C# PER Decode Methods

The general procedure to decode an ASN.1 PER message involves the following three steps:
1. Create a decode message buffer object to describe the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

Thefirst step isthe creation of adecode message buffer object. The Asn1Per DecodeBuffer object contains constructors
that can either accept a message as a byte array or as an 1/0 input stream. The input stream option makes it possible
to decode messages directly from other mediums other than amemory buffer (for example, amessage can be decoded
directly from afile or a socket).

Unlike BER or DER, no mechanism exists in PER to peek at an outer level tag or identifier to identify the message
type. This type must be known beforehand. Most protocols that employ PER have a specific outer level type know

75

Generated PER Decode Methods

as a “Protocol Data Unit” (PDU) that encompasses all of the different message types that might be received. Thisis
typically a CHOICE construct with each option representing a different type of message.

The generated decode method for the PDU is invoked to decode the message. The calling arguments were described
earlier. As per the C# standard, this method must be invoked from within a try/catch block to catch the possible
exceptions that may be thrown. Alternatively, the method from which the decode method is called can declare that it
throws the exceptions leaving them to be dealt with at a higher level.

Thefinal step isto process the data. All datais contained within public member variables so accessis quite easy. All
of the primitive datatype classes contain a public member variable called mValue that contains decoded data. This can
be accessed in nested structures by prefixing mValue with each of the element names from the top down. For example,
the givenName element in the Name type shown earlier would be accessed as follows: name.givenName.mValue (this
assumes an instance of the Name class was created using the variable name “name”).

A complete example showing how to invoke a decode method is as follows:

try {

/1l Step 1. create a decode nessage buffer object to describe the
/'l nmessage to be decoded. This exanple will use a file input
/1l streamto decode a nessage directly froma binary file..

/1l Create an input file stream object

System IO FileStreamins = new System | O Fil eSt rean(
filenane, System 1O Fil eMbde. Open, System | O Fil eAccess. Read);

/'l Create a decode buffer object
AsnlPer DecodeBuf f er decodeBuffer = new AsnlPer DecodeBuffer (ins);

/1l Step 2: create an object of the generated type and invoke the
/| decode nethod. .

Per sonnel Record personnel Record = new Personnel Record ();
per sonnel Recor d. Decode (decodeBuffer);

/1l Step 3. process the data

if (trace) {
System Consol e. Qut . WiteLine ("Decode was successful");
personnel Record. Print ("personnel Record");
}
}
catch (Exception e) {
System Consol e. Qut. WiteLine (e. Message);

AsnlUtil.WiteStackTrace(e, Console.Error);
return,;

}

Reuse of C# Decoding Objects

C# objects can be reused for decoding PER messages in the same way they were for BER messages. The decode
buffer and message type objects are created outside of the main decoding loop. Then inthe main loop these objects are

76

Generated PER Decode Methods

reused to process each input message. Data must be saved from the message type object after each iteration because
the contents of the object will be overwritten on each consecutive loop iteration. Nothing special needs to be done at
the bottom of the loop to ready the decoder for the next message. All necessary initialization will be handled internally.

77

Chapter 9. Generated XML Methods

Overview

X.693 specifies XER ("XML Encoding Rules’). There are three variants of XER given: BASIC-XER (often just XER
for short), canonical XER, and EXTENDED-XER. Into this mix, Objective Systems has added its own encoding rules
which we'll call OSys-XER. OSys-XER is very similar to XER, but has a few variations that are meant to produce
XML documents more closely aligned with what you might get if you were using XML Schema to specify your
abstract syntax. Generaly, OSys-XER produces fewer tags. The differences between these two sets of encoding rules
are discussed in more detail below.

ASN1C supports BASIC-XER, canonical XER, and OSys-XER. It has for some time supported EXTENDED-XER
viadirect compilation of XSD. In version 6.5.0, we have begun to add direct support for EXTENDED-XER by adding
support for some of the XER encoding instructions. Nonetheless, EXTENDED-XER is most fully support today via
direct compilation of XSD. By compiling X SD, you can obtain behavior much the same aswith OSys-XER, and more.

ASN1C has two runtimes for XML:
* The"XER" runtime. Thisis used for basic and canonical XER.

e The"XML" runtime. Thisisused for OSys-XER and for EXTENDED-XER (whether compiling XSD or compiling
ASN.1 with XER encoding instructions).

Because these two runtimes are so similar, they are discussed in this chapter together. As you read this chapter, it is
important to keep in mind when each of these runtimes is used so that you know which cases apply to you. When it
comes to decoding, there is no difference - the generated decoders use SAX (Simple API for XML) for parsing.

Note that you may usethe -xsd switch when generating XML encoders and decoders. The XML schema produced from
the ASN.1 specification using the -xsd switch can be used to validate the XML messages generated using the XML
encode functions. Similarly, an XML instance can be validated using the generated XML schema prior to decoding.

Compiler Invocation What is Generated

-xer flag isused to compile ASN.1 without XER encoding | Generated code supports BASIC-XER and canonical XER
instructions

-xsd produces schema that validates BASIC-XER
encodings.

-xer or -xml flag is used to comple ASN.1 with supported| Generated code supports EXTENDED-XER only.
XER encoding instructions (if any instructions are not .
supported, all instructionsareignored, and the above entry | -Xsd produces schema that validates EXTENDED-XER

in this table applies) encodings. As of thiswriting, thisis not fully supported.
-xml used to compile ASN.1 Generated code suppports OSys-X ER encodings.
-xsd produces schema that validates OSys-XER
encodings.
-xml used to compile XSD Generated code supports EXTENDED-XER only.

Differences between OSys-XER and XER (BASIC-XER)

OSys-XER differsfrom (BASIC-)XER in the following ways:

 Lists of numbers, enumerated tokens, and named bits are expressed in space-separated list form instead of as
individually wrapped elements or value lists.

78

Generated XML Methods

For example, the ASN.1 specification “A ::= SEQUENCE OF INTEGER” with value“{ 12 3}" would produce
the following encoding in XER:

<A><INTEGER>1</INTEGER><INTEGER>2</INTEGER><INTEGER>3</INTEGER>
in XML, it would be the following:
<A>12 3

» Thevalues of the BOOLEAN datatype are expressed as the lower case words “true” or “false” with no delimiters.
In XER, the values are <true/> and <false/>.

» Enumerated token values are expressed as the identifiers themselves instead of as empty XML elements (i.e.
elements wrapped in ‘< />'). For example, a value of the ASN.1 type “Colors ::= ENUMERATED { red, blue,
green }” equal to “red” would simply be “<color>red</color>" instead of “<color><red/></color>".

» Thespecial REAL vaues<NOT-A-NUMBER/>, <PLUS-INFINITY/>and <MINUS-INFINITY /> are represented
as NaN, INF and -INF, respectively.

e GeneradizedTime and UTCTime vaues are transformed into the XSD representation for dateTime (YYYY-
MMDDTHH: MM:SS[.SSSY|[(Z|(+]-)HH:MM)]) when encoded to XML. When an XML document is decoded, the
time format is transformed into the ASN.1 format.

EXTENDED-XER

EXTENDED-XER (specified in X.693) alows you to vary the XML encoding of ASN.1 by using XER encoding
instructions. ASN1C supports EXTENDED-XER in two different ways: by compiling XSD and by compiling ASN.1
with XER encoding instructions. Support for XER encoding instructionsin ASN.1 is limited.

This section relates to our support for XER encoding instructions. If some features you need are not supported, you
might consider using direct compilation of XSD.

How to Generate Code for EXTENDED-XER

If your ASN.1 contains XER encoding instructions, ASN1C will automatically generate code for EXTENDED-
XER instead of BASIC-XER. This is true whether you use - xer or - xmi on the command line. If, however, any
unsupported encoding instructions are found, ASN1C will ignore all XER encoding instructions, since it would not
be capable of supporting EXTENDED-XER for that specification.

Supported Instructions and Brief Summary

ASN1C supports these instructions: ATTRI BUTE and BASE64. Very brief summaries of the effects of these
instructions follow.

« ATTRI BUTE: Thisinstruction causes a component of a sequence to be encoded as an XML attribute.

* BASEG64: Thisinstruction causes octet strings to be encoded in a base64 representation, rather than a hexadecimal
one.

Limitations
The following are limitations related to EXTENDED-XER:

» For BASE64: ASN1C only supports BASE64 on octet strings. Using BASE64 with octet stings having contents
constraints, open types, or restricted character stringsis not supported.

79

Generated XML Methods

* For encoder's options: ASN1C decoders do not support the following encoder's options allowed by EXTENDED-
XER:

 encoding named bits as empty elements
« encoding named numbers as empty elements

» Enforcement of Encoding Instruction Restrictions: ASN1C does not check that you are using encoding instructions
properly. Misapplication of encoding instructions has undefined results. For example, X.693 does not generally
alow ATTRI BUTE to be applied to a sequence type (there are a few cases where it can be); such an application
produces malformed XML.

In particular, when applying ATTRI BUTE to a restricted character string type, the type should be restricted to
excludethe control characterslisted in X.680 15.15.5, since these control characters are encoded as empty elements.
(Another solution would be to use ATTRI BUTE and BASE6G4 together, except that ASN1C does not currently
support BASE64 for restricted character strings.) ASN1C will not enforce this rule, but you will get malformed
XML if you try to encode a string having control characters as an attribute.

» XSD Generation: The - xsd switch does not currently generate XSD that can be used to validate EXTENDED-
XER encodings. (Actually, in the worst cases, it is not possible to produce X SD that validates precisely the set of
valid EXTENDED-XER encodings; the closest approximations would either fail to reject some invalid encodings
or fail to accept some valid encodings. Thisis aresult of the encoder's options, which can produce mixed content
models and XML Schema's limited abilities to constrain mixed content models.)

Working with generated EXTENDED-XER code

As noted above, when generating code for EXTENDED-XER, you will be working with the "XML" runtime, as
oppposed to the "XER" runtime. This makes coding for EXTENDED-XER dlightly different from coding for XER:

e You will use Asn1XmlEncoder instead of Asn1XerEncoder

» You will supply the name of the element when encoding a value. Typically, this will be the name of the ASN.1
PDU type.

Finally, thereis asample reader and writer programincshar p/ sanpl e_xer / Enpl oyeeEXER, should you need
to see an example.

Generated Encode Methods

The generation of methods to encode datain XML is similar to how methods were generated in the BER/DER and
PER cases discussed previously. For each ASN.1 production defined in the ASN.1 source file, a C# encode method
may be generated. This function will convert a populated variable of the given type into an encoded ASN.1 message.

Anencode method isonly generated if it isrequired to alter the encoding of the base class method. The C#model isbuilt
on inheritance from a set of common run-time base classes. These run-time classes contain default implementations
of encode/decode methods that handle the encoding/decoding of the basic types.

For simple assignments, the generation of an encode method is not necessary. For example, the following production
will not result in the generation of an encode method:

X 1= I NTEGER

In this case, the generated C# class extends the Asnlinteger base class and the default encode method within this class
is sufficient to encode a value of the generated type.

80

Generated XML Methods

A custom encode method is only generated if:
1. The ASN.1 typeis constructed (SEQUENCE, SET, SEQUENCE OF, SET OF, or CHOICE).
2. The ASN.1 type contains a testable constraint (for example, INTEGER (1..100))

3. The ASN.1 typeisenumerated. Thisincludes an INTEGER type with named numbers, aBIT STRING with named
bit constants, or the ENUMERATED built-in type.

Note

Two variations are discussed here: "XER" and "XML". The "XML" variant applies to EXTENDED-XER.
See the Overview section above for more information.

Generated C# Method Format and Calling Parameters

The signature for a C# XER encode method is as follows:

public override void Encode (AsnlXerEncoder buffer, string el emNane)
The signature for a C# XML encode method is similar:

public override void Encode (AsnlXnml Encoder buffer, string el enNane)

The buffer argument is a reference to an AsnlXerEncoder or Asn1XmlEncoder derived object that describes the
buffer or output stream into which a message is to be encoded. AsnlXerEncoder is a base interface for the
Asn1XerEncodeBuffer and Asn1XerOutputStream classes. Similarly, Asn1XmlEncoder is an interface to a pure XML
version of these base classes. There is no difference which encode method is used: output stream or message buffer.
The generated logic isthe same, the differenceisonly in thefirst parameter of the encode method. This must be created
and initialized before calling any encode method. See the description of this class in the C# Run-Time Reference
Manual for details on how thisclassis used.

The elemName argument is a reference to a string containing the element name text. This text is used to form the
standard XML angle-bracketed wrapper that is applied to each element in a message. Note the name passed must not
contain the angle-brackets (i.e. the < > characters). These will be added by the encode method.

The elemName can be passed in different ways to control how the nameis applied. The normal way isto pass aname
that is applied as the element name of the element. If null is passed, then the default element name for the referenced
ASN.1 built-in type is used. For example, <BOOLEAN> isthe default element name for the ASN.1 BOOLEAN type.
The complete list of default element names can be found in the X.693 standard. If an empty string is passed (i.e. "),
this tells the encode method to omit the element name string all together and just encode the value (thisis similar to
implicit tagging in the BER case).

The XER or XML encode methods do not return avalue. Thisisdifferent than the C/C++ version that returns anegative
status value to indicate an encoding failure. For C#, errors are reported via the exception mechanism. All ASN1C
C# exceptions are derived from the AsnlException base class. See the section on exceptions for a complete list and
description of the various exceptions that can be thrown. If I/O error occurs then the System.Exception is thrown.

Procedure for Calling C# XER Encode Methods

The C# class variables corresponding to each of the ASN.1 types and method of population are the same as they were
in the BER encoding case. See the section Populating Generated Variables for Encoding for instructions on how to
populate the variables prior to encoding.

81

Generated XML Methods

Once an object's member variables have been populated, the object's encode method can be invoked to encode the
value. The general procedure to do this involves the following three steps:

1. Create an encode message buffer or output stream object into which the value will be encoded

2. Invoke encode methods. These include the EncodeSartDocument and EncodeEndDocument methods from the
Asn1XerEncodeBuffer class and the encode method from the ASN1C generated class.

3. If the encode message buffer is used: invoke encode message buffer methods to access the encoded message
component. If the output stream is used: close the stream.

The first step is the creation of an encode message buffer object. For XER encoding, this is an object of the
Asn1XerEncodeBuffer class. The following constructors are available for creating an XER encode buffer object:

public AsnlXer EncodeBuffer ();
public AsnlXer EncodeBuffer (bool canonical, int sizelncrenent);

The default constructor sets al internal buffer control variables to default values. Canonical XER is set to false and
size increment is set to 1024. The other forms of the constructor allow these variables to be changed. Canonical XER
specifies that the canonical form of XER encoding (CXER as specified in X.693) should be used. Size increment
specifies the amount by which the dynamic encode buffer should be expanded when it fills up. This should be set
lower for small, memory-constrained environments and higher if large messages are being encoded.

If the output stream method is used then the first step is the creation of an output stream. For XER encoding, thisis
an object of the Asn1XerOutputStream class. The following constructors are available for creating an XER encode
buffer object:

public AsnlXer Qut put Stream (Qut put Stream os);
public AsnlXer Qut put Stream (Qut put Stream os, bool canonical, int bufSize);

The first constructor creates a buffered XER output stream with default size of an internal buffer. Canonical XER is
set to false. The other form of the constructor allows these variables to be changed. Canonical XER specifies that the
canonical form of XER encoding (CXER as specified in X.693) should be used. The buffer size argument specifies
the size of the interna buffer of the stream. Larger buffer sizes typically provide better performance at the expense
of increased memory consumption.

Similar classes exist for XML encode buffer and streams:

public AsnlXm EncodeBuffer ()

public AsnlXm EncodeBuffer (int sizelncrenent)

public AsnlXm Qut put Stream (Qut put Stream os)

public AsnlXm Qut put Stream (Qut put Stream os, int bufSize)

The main differenceisthe XML classes to not have acanonical XML option; therefore, thereis not cxer or canonical
boolean argument.

The second step is the invocation of the encode methods. The calling arguments were described earlier. As per the
C# standard, this method must be invoked from within a try/catch block to catch the possible Asnl1Exception or
System.Exception that may be thrown. Alternatively, the method from which the encode method is called can declare
that it throws Asn1Exception and System.Exception leaving it to be dealt with at a higher level.

Finally, if a message buffer is used, encode buffer methods can be called to access the encoded message component.
The C# API provides an object called a ByteArraylnputStream that provides away to look at the encoded component

82

Generated XML Methods

as a stream. The encode buffer object provides a method called GetlnputStream that returns a byte array input stream
representing the message component. Thisis the preferred way to access the encoded component.

In addition to GetlnputStream, there is a MsgCopy property that will retrieve a copy of the generated message into a
byte array object. This is somewhat slower because a copy needs to be done. Another option that is available when
doing XER encoding isthe Buffer property. Thisreturnsareferenceto the actual message buffer into which the message
was encoded. Since an XER message is encoded front-to-back (unlike the back-to-front used in BER/DER encoding),
the buffer reference returned will point to the start of the encoded message. The MsgLength property can then be used
to get the message length (in bytes). Note that the byte count may not correspond to the actual character count as
UTF-8 encoding is used and some characters may be multiple bytesin length.

If an output stream is used, the stream should be closed when encoding is complete to ensure all buffered data is
flushed to the output device.

The AsnlXerEncodeBuffer encode buffer class also contains other methods for operating directly on the encoded
component (for example, the write method can be used to write it to a file or other medium). A user could also
derive their own special encode buffer class from this class to add more functionality. See the description of the
Asn1XerEncodeBuffer classin the run-time section for afull description of the available methods.

A complete example showing how to invoke an XER encode method is as follows:

/1 Note: personnel Record object was previously popul ated with data

/1l Step 1: Create a nessage buffer object. This object uses
/1l standard XER (non-canonical) and the default size increnent
/1 for buffer expansion..

AsnlXer EncodeBuf f er encodeBuffer = new AsnlXer EncodeBuffer();

/1l Step 2: Invoke the encode nethods. These incl ude

/1 encodeStart Docunent to encode the XM. docunent header,

/1 the generated C# encode nethod to encode the docunment body,
/1 and the encodeEndDocunent nethod to conplete the nessage.
/1 Note that these methods nust be invoked fromw thin a

/1 trylcatch bl ock. .

try {
encodeBuf f er. EncodeSt art Docunent () ;

per sonnel Recor d. Encode (encodeBuffer, null);
encodeBuf f er . EncodeEndDocurnent () ;

if (trace) {
System Consol e. Qut . Wi teLine ("Encodi ng was successful ");
encodeBuffer. Wite (System Consol e. OpenSt andar dQut put ()) ;

}

/1 Step 3: Access the encoded message conponent. In this
/] case, we use nethods in the class to wite the encoded
/1l XML docunent to a file..

encodeBuffer. Wite(new System | O Fil eStream(fil enamne,
System |1 O Fi | eMbde. Create));

83

Generated XML Methods

/1 W can also directly access the buffer as foll ows:

byte[] buffer = encodeBuffer.Buffer;
int meglen = encodeBuffer. MsgByteCnt;

}

catch (Exception e) {
System Consol e. Qut . WiteLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);
return;

}

An example showing stream-based encoding is as follows:
/1 Note: personnel Record object was previously popul ated with data

AsnlXer CQut put Steram outs = nul | ;

try {
/1l Step 1: Create an output stream object. This object

/1 uses standard XER (non-canonical) and the default
/1 internal buffer’s size.

outs = new AsnlXer Qut put St ream(new System | O Fil eStrean
filenane, System 1O FileMde.Create));

/1l Step 2: Invoke the encode nethods. These incl ude

/1 encodeStart Docunent to encode the XM. docunent header,

/1 the generated C# encode nethod to encode the docunment body,
/1 and the encodeEndDocunent nethod to conplete the nessage.
/1 Note that these methods nust be invoked fromw thin a

/1 trylcatch bl ock. .

out s. EncodeSt art Docunent () ;
per sonnel Recor d. Encode (outs, null);
out s. EncodeEndDocunent () ;

if (trace) {
System Consol e. Qut . Wi teLine ("Encodi ng was successful ");
encodeBuffer. Wite (System Consol e. OpenSt andar dQut put ()) ;
}
}
catch (Exception e) {

System Consol e. Qut . WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);

return;
}
finally {
/1l Step 3: Close the stream
try {
if (outs !'= null)

outs. d ose ();

Generated XML Methods

}
catch (Exception e) {}

}

If you compare these examples with the other encoding examples, you will seethe procedures are similar. This makes
it very easy to switch encoding methods should the need arise.

In the case of XML encode, the procedure is very similar. The only difference is that it is not necessary to call the
EncodeStartDocument and EncodeEndDocument methods. The are built into the generated encode method for PDU
data types.

Theresulting XML document from running the program above is as follows:

<?xm version="1.0" encodi ng="UTF-8""?>
<Per sonnel Recor d>
<nane>
<gi venNanme>John</ gi venName>
<initial>P</initial>
<fam | yName>Sni t h</ f ami | yNane>
</ name>
<nunber >51</ nunber >
<title>Director</title>
<dat eOf H re>19710917</ dat e Hi r e>
<namef Spouse>
<gi venName>Mar y</ gi venName>
<initial>T</initial>
<fam | yName>Smi t h</ f ami | yNane>
</ naneCf Spouse>
<chi | dren>
<Chi I dI nf or mati on>
<nane>
<gi venNanme>Ral ph</ gi venNane>
<initial>T</initial>
<fam | yName>Smi t h</ f ami | yNane>
</ name>
<dateOr Bi rt h>19571111</dateOf Birt h>
</ Chi | dl nf or mati on>
<Chi I dI nf or mati on>
<nane>
<gi venNanme>Susan</ gi venNane>
<initial>B</initial>
<fam | yNane>Jones</f ani | yNane>
</ name>
<dat e Bi rt h>19590717</ dateC Bi rt h>
</ Chi | dl nf or mati on>
</ chil dren>
</ Per sonnel Recor d>

Generated Decode Methods

The code generated to decode XML messages is different than that of the other encoding rules. This is because off-
theshelf XML parser software is used to parse the XML documents to be decoded. This software contains a common
interface known as the Smple API for XML (or SAX) that is a de-facto standard that is supported by most parsers.

85

Generated XML Methods

ASNI1C generates an implementation of the content handler interface defined by this standard. This implementation
receives the parsed XML data and uses it to popul ate the structures generated by the compiler.

Thedefault XML parser used for C#istheMSXML parser that ispart of the Microsoft .NET framework. Asmentioned,
since SAX is ade-facto standard, it should be arelatively straightforward process to use the generated handlers with
any other parser.

A diagram showing the components used in the XML decode processis as follows:

Java file:

class MySeq {
AsnlInteger a;

ASN.1 Specification: AsnlBoolean b;

AsnlUTF+*String o;

MySeq ::= SEQUENCE {
a INTEGER,
b BOOLERN,

c UTFSString, —’ ASNIC _’ class SaxHandler |

] startElement () {

-

characters () {
}
endElement () {
}
}
}
MvSe
) -;a:EcéI:fa> XERCES myvVar.a = 22;
<bs<ctrue/> _h' XML Parser —’ myVar.b = true;
<czHello</co> myVar.c = “Hello™;

< /MySeq=

RASN1C generated
SAX handlers

ASNI1C generates code to implement the following methods defined in the SAX content handler interface:
St art El enment
Characters
EndEl ement

The interface defines other methods that can be implemented as well, but these are sufficient to decode XER encoded
data. These methods are added to an inner SAX handler class generated for each ASN.1 production.

The procedure to invoke the generated decode method is as follows:
1. Instantiate an XmlSaxParser object.

2. Instantiate a generated C# <ProdName> object to hold the decoded message data.

86

Generated XML Methods

3. Invoke the <ProdName> abject decode method passing the reader created in step 1 and the URI of the XML
document to be parsed. This method initiates and invokes the XML parser’s parse method to parse the document.

This, in turn, invokes the generated SAX handler methods.

4. Methods within the <ProdName> object can now be used to access the decoded data. The member variables that

were declared to be public can be accessed directly.
5. Error handling is accomplished using a try-catch block to catch SAX exceptions.

A program fragment that could be used to decode an employee record is as follows:

public class Reader {
public static void main (string args[]) {
string filename = "enpl oyee. xm ";

try {
/'l Create an XM. reader object

Xm SaxParser reader = Xm SaxParser. New nst ance();
/1l Read and decode the nmessage

Per sonnel Record personnel Record = new Personnel Record ();
per sonnel Recor d. Decode (reader, fil enane);
if (trace) {
System Consol e. Qut. WiteLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");
}
}
catch (Exception e) {
System Consol e. Qut . Wi telLine (e. Message);

AsnlUtil.WiteStackTrace(e, Console.Error);
return;

87

Chapter 10. Generated MDER Encode
Methods

Unlike what is done for other encoding rules, for MDER we provide stream-based encoding only. In order to encode
to amemory buffer, you ssimply use a System.lO.MemoryStream.

For each ASN.1 production defined in an ASN.1 source file, an encode method may be generated. This function will
convert a populated variable of the given type into an encoded ASN.1 message.

An encode method is only generated if it is required to alter the behavior of the base class. The C# model is built on
inheritance from a set of common run-time base classes. MDER supports only afew primitive types, and most of these
are subsets of ASN.1 built-in types. Therefore, in most cases, there is not an applicable MDER encode method in the
common run-time base class and so an encode method will be generated.

The generated classesfor all constructed types (SEQUENCE, SEQUENCE OF, and CHOICE) will include generated
encode methods.

Generated Method Format and Calling
Parameters

The signature for the MDER encode method comes in two forms, shown below:

public virtual void Encode(AsnlMler Qut put Stream buffer, bool useCachedLength)

public virtual void Encode(AsnliMler Cut put Stream buffer)

The buffer argument is an Asn1Mder OutputStream object which receives the encoded message. This must be created
and initialized before calling any encode method. See the description of this classin the C# Run-Time Classes section
for details on how this classis used.

The useCachedLength argument indicates whether the encode method can rely on cached length information. In some
cases, MDER requires pre-calculation of the length of nested structures and this piece of information is needed twice
during encoding (once when encoding the containing structure and once when encoding the nested structure). The
generated types cache this information during encoding. User code should normally pass f al se for this argument.
The generated encoding methods will passt r ue to other encoding methods when appropriate.

Asyou can see, the encode methods return void; an exception isthrown if an error occurs. All ASN1C exceptions are
derived from Asn1Exception. Seethe section on exceptionsfor acompletelist and description of the various exceptions
that can be thrown.

Populating Generated Variables for Encoding

Populating generated types for encoding can be done in most cases either through the constructors or by assigning
object references to public member variables.

Constructors are provided for most generated typesto allow direct population of the encapsul ated member variable(s)
oninitialization. The exception to thisisfor classes generated for SEQUENCE OF types. In that case, the constructors
only alow the size of an array to be specified — population of the array elements must be done manually.

All of the base run-time classes except Asn1Null contain public member variables. In practically all casesthereisa
singlevariable called value that is of the base type that needs to be populated. For example, the Asnlinteger base class
contains the following item:

88

Generated MDER Encode Methods

public | ong nVal ue;

So, for the following assignment:
X 1= | NTEGER(O. . 255)

you may populate a variable of this type either using the constructor:
X x = new X (25);

or viadirect access of the member variable:

X x = new X ();
X. nmval ue = 25;

The only primitive type that does not have a single member called mValue to represent itsvalueis BIT STRING. The
Asnl1BitString class also contains a second variable called numbits to specify the number of bitsin the string.

Procedure for Calling MDER Encode Methods

Once an object's member variables have been populated, the object's encode method can be invoked to encode the

value. The general procedure to do this involves the following three steps:
1. Create an encode output stream into which the value will be encoded.
2. Invoke the encode method.

3. Close the output stream.

The first step is the creation of an encode output stream, an Asn1MderOutputStream. There is a single constructor
which accepts a System.lO.Stream. As usual, you may use a buffered output stream, file output stream, byte array

output stream, etc., or some combination thereof.

The second step is the invocation of the encode method. The calling arguments were described earlier.

Finally, close the output stream.

A complete example showing how to invoke an encode method is as follows:

/1 Note: personnel Record object was previously popul ated with data

AsnlMler Qut put St r eam encodeStream = nul | ;

try {
/1l Step 1: Create an encode output stream

encodeSt ream = new AsnlMler Qut put Stream (Fil e. OpenWite(fil enanme));

/1l Step 2: Invoke the encode nethod.

per sonnel Recor d. Encode (encodeStream /*useCachedLengt h=*/fal se);

if (trace) {

System Consol e. Qut . WitelLine ("Encodi ng was successful ");

}
}
catch (Exception e) {

89

Generated MDER Encode Methods

System Consol e. Qut . WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);

return;
}
finally {
try {
if (encodeStream!= null) encodeStream Cl ose ();
}
catch (Exception e) {}
}

Reuse of Encoding Objects

The simple example above showed the procedure to encode a single record. But what if you had to encode a series
of the same type of record over and over again?

In such cases, you can avoid some object creation and garbage collection by reusing objects you have already created.
The generated classes and the ASN1C runtime classes can often be viewed as reusable containers into which you can
simply assign new data.

To show an example of object reuse, suppose we were going to encode a series of octet strings. The ASN.1 type for
our data might be:

Dat a ::= SEQUENCE {
first OCTET STRI NG
second OCTET STRI NG
third OCTET STRI NG

}

The generated C# class would contain public member variables for each of the octet strings:

public AsnlCctetString first;
public AsnlCctetString second;
public AsnlCctetString third;

The most efficient way to repopulate these variables within aloop would be simply to assign the data to be encoded
to the public mval ue field of the Asn1OctetString objects. Y ou do not need to create new AsnlOctetSring or Data
objects each time.

A code snippet showing how this could be done is as follows:

/1l Step 1: Create Data and AsnlMler Qut put St ream objects for use in
/1 the | oop..

Data data = new Data(null, null, null); // creates enpty octet string objects
AsnlMler Qut put St r eam encodeSt r eam = new AsnlMdler Qut put Stream (out put St ream ;

for (;;) {

/1 logic here to read nane conponents froma DB or other nedium

/1 popul ate octet strings (assune first, second, third are byte arrays
/1l popul ated by the above | ogic)

90

Generated MDER Encode Methods

data.first.nValue = first;
dat a. second. mval ue = second;
data.third. nvValue = third;

/'l encode

try {
nane. Encode (encodeStream /*useCachedLengt h=*/fal se);

/1 perhaps wite sone non-ASN. 1 data to the streanf

}
catch (AsnlException e) {

/1 handl e error

}

91

Chapter 11. Generated MDER Decode
Methods

For each ASN.1 production defined in the ASN.1 source file, a decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to alter the behavior of the
base class. The C# model is built on inheritance from a set of common run-time base classes. MDER supports only
afew primitive types, and most of these are subsets of ASN.1 built-in types. Therefore, in most cases, there is not an
applicable MDER decode method in the common run-time base class and so a decode method will be generated.

Generated Method Format and Calling
Parameters

The signature for an MDER decode method is as follows:
public virtual void Decode(AsnliMler DecodeBuffer buffer)

The buffer argument is an Asn1Mder DecodeBuffer object which provides the message to be decoded. This must be
created and initialized before calling any decode method. See the description of this classin the C# Run-Time Classes
section for details on how this classis used.

Asyou can see, the decode method returns void; the datais decoded into the instance on which decode isinvoked and
an exception isthrown if an error occurs. All ASN1C exceptions are derived from Asn1Exception. See the section on
exceptions for a complete list and description of the various ASN1C exceptions that can be thrown.

Procedure for Calling MDER Decode Methods

The general procedure to decode an ASN.1 MDER message involves the following three steps:
1. Create a decode buffer on the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

Thefirst step isthe creation of adecode buffer. Asn1Mder DecodeBuffer has a constructor that accepts messages stored
in a byte array. It also has a constructor that accepts a System.|O.Stream so that messages may be streamed from
various sources, such asfrom afile.

The second step is to invoke the generated decode method. The calling arguments were described earlier.

Thefinal step isto apply your application-specific processing to the data. All datais contained within public member
variables so accessis quite easy.

A complete example showing how to invoke a decode method is as follows:

try {
/1l Step 1: create a decode buffer for the nessage to be decoded.
/1 This exanple will use a file input streamto decode a nessage

/1 in a binary file.

92

Generated MDER Decode Methods

/1l Create an input file stream object
Streamins = File.OpenRead(filename);

/1l Create a decode buffer object
AsnlMler DecodeBuf f er decodeBuffer = new AsnlMler DecodeBuffer (ins);

/1l Step 2: create an object of the generated type and invoke the
/1 decode nethod. .

Per sonnel Record personnel Record = new Personnel Record ();

per sonnel Recor d. Decode (decodeBuffer);

/]l Step 3: process the data
if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");
}
}
catch (Exception e) {
System Consol e. Qut. Wi telLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);
return;

}
Reuse of Decoding Objects

The sampl e above showed the MDER decoding of asingle message. In atypical application, aloop would beinvolved
to decode a series of messages.

A single decode buffer can be used to process a stream of messages. If the decode buffer is created using an input
stream that contains a series of messages (for example, afile containing multiple records, or acommunications device),
you can repeatedly invoke the MDER decode method on the given message type.

Note that you can also use the same instance of your message type for repeated decoding, rather than creating a new
object and leaving the old one to be garbage collected. Nothing special needs to be done to do this. The generated
decode method will automatically call the internal Init() method before decoding to make sure all items are reset to
their starting state.

In the example above, all that would need to be done to decode a series of personnel recordsisthe inclusion of aloop
after the Personnel Record object was created in step 2:

for () {

per sonnel Recor d. Decode (decodeBuffer);

if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");

93

Chapter 12. Table Constraint Processing

The ASN1C C# code generation capability can generate code to process ASN.1 table constraints as specified in the
X.681 and X.682 ASN.1 standards. This code is generated through the use of the -tables option. This instructs the
compiler to generate additional methods and tablesto allow multi-level message types specified using table constraints
to be encoded or decoded with a single method call.

Specia code is generated for the CLASS, Information Object, and Information Object Set items to create the table

necessary to for table constraint processing. Then additional encode and decode methods are generated that use these
tables to branch to the multiple message levels.

CLASS Specification

NOTE: Class code generation is done only when -tablesis specified.

This additional code is generated to support the processing required to verify table constraints, which is intended for
use only in compiler-generated code. Therefore, it is not necessary for the average user to understand the mappings
in order to use the product. The information presented here is informative only to provide a better understanding of
how the compiler handles table constraints.

The C# class generated to model an ASN.1 class contains member variables for each of the fields within the class. To
create an instance of this class, an information object is required to populate these variables with the values defined
in the ASN.1 information object specification.

C# code will be generated for each ASN.1 CLASS definition in a separate C# source file containing a C# class
corresponding to the ASN.1 CLASS definition. The name of the source file and classis of the following format:

<Cl assNane>. cs

Inthisdefinition, < ClassName> would bereplaced with the name of the ASN.1 CLASSfor which thisfileisgenerated.

Data Member Generation

For each of the following ASN.1 CLASS fields, a corresponding member variable is generated in the C# class
definition:

For avaluefield:

public <TypeNane> <Fi el dNane>;
For atypefield:

public AsnlType <Fi el dNane>;
For an information object field:

publ i c <O assName> <Fi el dName>;
For an information object set field:

public <O assNane> <Fi el dNane>;

where:

94

Table Constraint Processing

<FieldName> is replaced with the name of the field.
<TypeName> is replaced with the generated runtime C# classname for the ASN.1 Type.
<ClassName> is replaced with the name of the information object class.

For atype field definition, an element with type Asn1Typeis generated which is the base class for al typesin the C#
runtime namespace. A type field can hold a value of any type.

Method and Constructor Generation

Each generated C# class will have two constructors. The first constructor will be the default constructor. This will
initialize each member variable value to null. The second constructor will accept values for all the data members.

Example
As an example, consider the following ASN.1 class definition :

ATTRI BUTE ::= CLASS {
&Type,
& d OBJECT | DENTI FI ER UNI QUE

}
W TH SYNTAX { W TH SYNTAX &Type ID & d }

A file named ATTRIBUTE.cs is generated with following definition:

public class ATTRI BUTE {
public AsnlType Type;
public AsnlQojectldentifier id;

public ATTRIBUTE() ({
Type = null;
id=null;

}

publ i c ATTRI BUTE(
AsnlType Type._,
AsnlChjectldentifier id_

) |
Type = Type_;
id=id_;
}
}

NOTE: If the ASN.1 type name is same as the ASN.1 class name (ignoring case) in a single module definition, then
the ASN.1 class name will be changed to the following;:

<Cl assName>_ CLASS

Inthisdefinition, <ClassName> would be replaced with thename of the ASN.1 CLASSandtheliteral token“_CLASS’
would be appended.

For example:

Test DEFINITION ::= BEG N

95

Table Constraint Processing

Attribute ::= | NTEGER
ATTRI BUTE : : = ABSTRACT- SYNTAX
END

ASNI1C will changethe ATTRIBUTE classnameto ATTRIBUTE_CLASS to avoid conflicts with the Attribute type.

This automated feature will help usersto successfully compile the generated code without having to manually change
the name via a configuration file setting.

Additional C# classes are generated to create types for fields within the class definitions as follows:
1. New type assignments are created for TypeField type definitions as follows:
<Cl assNanme> <Fi el dName> :: = <Type>

Here ClassNameis replaced with name of the Class Assignment and FieldName is replaced with name of the field.
Typeisthetype definition in the ASN.1 CLASS s TypeField.

Thistypeis used as adefined type in the information object definition for absent values of the TypeField. Itisalso
useful for the user to generate a value for arelated OpenType definition in atable constraint.

2. New type assignments are created for ValueField or ValueSetField type definitions if the type is with a constraint
definition and/or the typeis Sequence/ Set / Choice/ Sequenceof / SetOf definition.

<C assName><Fi el dNanme> ::= <Type>

Here ClassName is replaced with name of the Class Assignment and FieldName is replaced with name of the
VaueField or VaueSetField. Type is the type definition in The ASN.1 CLASS's VaueField or VaueSetField.
Thistype will appear as adefined typeinthe ASN.1 CLASS s VaueField or ValueSetField.

This new type assignment is used for compiler internal code generation purpose. It is not designed for use by the
end user.

3. New value assignments are created for ValueField default value definitions as follows:
<C assNanme><Fi el dNane>_default <Type> ::= <Val ue>

Here ClassName is replaced with name of the Class Assignment and FieldName is replaced with name of the
VaueField. Value is the default value in the ASN.1 CLASS' s VaueField and Type is the type in the ASN.1
CLASS' s ValueField.

Thisvalueis used as a defined value in the information object definition for an absent value of the field. This new
value assignment is used for compiler internal code generation purpose. It is not designed for use by the end user.

ABSTRACT-SYNTAX class

The ASN.1 ABSTRACT-SYNTAX classis auseful class definition used to declare the top-level protocol data units
(PDU’ s) defined within a specification. The class is described using the following ASN.1 definition:

ABSTRACT- SYNTAX ::= CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type,

&roperty BI T STRING { handl es-invalid-encodi ng(0)} DEFAULT {}
}
W TH SYNTAX {

&Type | DENTI FI ED BY & d [HAS PROPERTY &property]

96

Table Constraint Processing

}

ASNIC is used to create a meta-definition for this structure. The definition will be generated in the file
Asn1AbstractSyntax.cs (or AsnlXer AbstractSyntax.csfor XER), if needed by compiling ASN.1 definitions. An object
created from the resulting C# class is populated just like any other compiler-generated structure for working with
ASN.1 data

TYPE-IDENTIFIER class

The ASN.1 TYPE-IDENTIFIER classis a useful class definition for uniquely identifying typed data at runtime. The
classis described using the following ASN.1 definition:

TYPE- | DENTI FI ER :: = CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type

}

W TH SYNTAX { &Type | DENTI FI ED BY & d }

The ASN.1 compiler is used to create a meta-definition for this structure. The definition will be generated in the file
AsnlTypeldentifier.cs (or Asn1Xer Typeldentifier.cs for XER), if needed by compiling ASN.1 definitions. An object
created from the resulting C# class is populated just like any other compiler-generated structure for working with
ASN.1 data.

Information Object

NOTE: Information Object code generation is only done when the -tables option is selected.

This additional code is generated to support the processing required to verify table constraints, which is intended for
use only in compiler-generated code. Therefore, it is not necessary for the average user to understand the mappings
in order to use the product. The information presented here is informative only to provide a better understanding of
how the compiler handles table constraints.

Information Object code will be generated in a C# source file with a special class to hold the values. The name of the
source file and class is of the following format:

_<Modul eNane>Val ues. cs

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which the values are
defined.

For each Information Object defined within a specification, a C# constant is generated which is an instance of the
ASN.1 CLASS definition for the object. Each Information Object constant calls the Class constructor with the field
value specified in the ASN.1 information object definition.

If the ASN.1 CLASS field is optional and the field value is absent in the Information Object definition, then its
corresponding member variable will beinitialized to "null". If the ASN.1 CLASSfield has adefault value and itsfield
value is absent in the Information Object, then the generated code for the Information Object will set the Classfield's
valueto the default value.

ASN.1 definition:
<name> <O assNanme> ::= <Infobject>

Generated C# constants:

97

Table Constraint Processing

public static readonly <C assNane> <nanme> =
new <Cl assNane> (<InfoCbject val ues>>);

For example, consider the following Information Object declaration for the above ATTRIBUTE class:

name ATTRI BUTE :: = {
W TH SYNTAX Vi si bl eString
ID{ 011}

}

Thiswould result in the following C# constant being generated:

public static readonly ATTRIBUTE nane =
new ATTRI BUTE (
new AsnlVi si bl eString(),
new AsnlQbj ectldentifier(new int[]{0, 1, 1}));

NOTE: The following new Type Assignment is created for each TypeField' s type definition if the type is one of the
following ASN.1 built-in types: Sequence/ Set / SequenceOf / SetOf / Choice/ Constrained Type/ Enumerated Type/
Namedinteger Type/ NamedBitList Type/ ParameterizedType:

<Qoj ect Narre><Fi el dName> ::= <Type>

Here ObjectName s replaced with name of the Object Assignment. If Object isdefined in ObjectSet, then ObjectName
is replaced with the name of the ObjectSet Assignment. FieldName is replaced with name of this type field. Typeis
the type definition in Object’ s typefield.

This type is used as Defined Type in the information object definition for type field. It is also useful for the user to
generate value for related OpenType definition in table constraint.

Information Object Set

NOTE: Information Object Set code generation is only done when the -tables option is selected.

This additional code is generated to support the processing required to verify table constraints which is intended for
use only in compiler-generated code. Therefore, it is not necessary for the average user to understand the mappings
in order to use the product. The information presented here is informative only to provide a better understanding of
how the compiler handles table constraints.

Information Object code will be generated in a C# source file with a specia class to hold the values. The name of the
source file and class is of the following format:

_<Mbdul eNane>Val ues. cs

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which the Information
Object Sets are defined.

Each Information Object Set specification causes a C# constant to be generated containing an array of Information
Object values. Each object in the array is an instance of the equivalent C# class representing the corresponding ASN.1
information object

As of thiswriting, a static array is used to hold the objects, but this could be changed to something like a linked list
or hash.

ASN.1 definition:

98

Table Constraint Processing

<nanme> <C assNane> ::= { <Information Objectl> | <Information Object2> }
Generated C# constants:

public static readonly <C assNane> <name> =
new <Cl assName> {<Information Objectl> <Information bjectl> };

For example, consider the following Information Object Set declaration for above ATTRIBUTE definition:
SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }
Thiswould result in the following C# constant being generated:

public static readonly ATTRIBUTE[] SupportedAttributes =
new ATTRI BUTE[] {
_Test Val ues. nane,
_Test Val ues. cormonNane

};

Generated Information Object Table Structure

Information Objects and Classes are used to define multi-layer protocols in which “holes’ are defined within ASN.1
types for passing message components to different layers for processing. These items are also used to define the
contents of various messages that are allowed in a particular exchange of messages. The ASN1C compiler extractsthe
types involved in these message exchanges and generates encoders/decoders for them. The “holes” in the types are
accounted for by adding open type holders to the generated structures. These open type holders consist of a byte array
for storing information on an encoded message fragment for processing at the next level.

The ASN1C compiler is capable of generating code in one of two forms for information in an object specification:

1. Simpleform: inthisform, referencesto variable type fields within standard types are simply treated as open types
and an open type placeholder isinserted.

2. Tableform: inthisform, al of the classes, objects, and object sets within a specification result in the generation
of code for parsing and formatting the information field references within standard type structures.

The second form is selected by specifying the —tables command line option.

To better understand the support in this area, the individual components of Information Object specifications are
examined. We begin with the “CLASS’” specification that provides a schema for Information Object definitions. A
sample class specification is as follows:

OPERATI ON : : = CLASS {
&oper ati onCode CHO CE { | ocal | NTEGER,
gl obal OBJECT | DENTI FI ER }
&Ar gunent Type,
&Resul t Type,
&Errors ERROR OPTI ONAL

}

Users familiar with ASN.1 will recognize this as a simplified definition of the ROSE OPERATION MACRO using
the Information Object format. When aclass specification such asthisis parsed, information onitsfieldsis maintained
in memory for later reference. In the ssimple form of code generation, the class definition itself does not result in the
generation of any corresponding C# code. It is only an abstract template that will be used to define new items later

99

Table Constraint Processing

on in the specification. In the table form, a C# container class is generated to hold the Information Object instances
of the ASN.1 CLASS.

Fieldsfrom within the class can be referenced in standard ASN. 1 types. It isthese types of references that the compiler
ismainly concerned with. These aretypically “header” typesthat are used to add acommon header to avariety of other
message body types. An example would be the following ASN.1 type definition for a ROSE invoke message header:

I nvoke ::= SEQUENCE {
i nvokel D | NTEGER,
opcode OPERATI ON. &oper at i onCode,
ar gumrent OPERATI ON. &Ar gunrent Type

}

Thisisavery simple casethat purposely omitsalot of additional information such as |nformation Object Set constraints
that are typically part of definitions such as this. The reason this information is not present is because we are just
interested in showing the items that the compiler is concerned with. We will use this type to demonstrate the simple
form of code generation. We will then add table constraints and discuss what changes when the —tables command
line optionsis used.

The opcode field within this definition is an example of afixed type field reference. It is known as this because if you
go back to the original class specification, you will see that operationCode is defined to be of a specific type (namely
a choice between alocal and global value). The generated typedef for this field will contain a reference to the type
from the class definition.

Theargument field isan example of avariable typefield. Inthiscase, if you refer back to the class definition, you will
see that no typeis provided. This means that this field can contain an instance of any encoded type (note: in practice,
table constraints can be used with Information Object Sets to limit the message types that can be placed in this field).
The generated typedef for thisfield contains an “open type” (C# Asn1OpenType class) reference to hold a previously
encoded component to be specified in the final message.

Simple Form Code Generation

In the simple form of information object code generation, the Invoke type above would result in the following C#
typedefs being generated:

public class Invoke : AsnlType {
public Asnllnteger invokelD
publ i ¢ OPERATI ON_oper ati onCode opcode;
public AsnlQpenType argumnent;

}
The following would be the procedure to add the Invoke header type to an ASN.1 message body:

1. Encode the body type

2. Get the message bytes and length of the encoded body

3. Plug the bytesinto the “ data” argument of the open type constructor in the Invoke type variable.
4. Populate the remaining Invoke type fields.

5. Encode the Invoke type to produce the final message.

In this case, the amount of code generated to support the information object references is minimal. The amount of
coding required by a user to encode or decode the variable type field elements, however, can be rather large. This

100

Table Constraint Processing

is a trade-off that exists between using the compiler generated table constraints solution (as we will see below) and
using the simple form.

Table Form Code Generation

If we now add table constraints to our original type definition, it might look as follows:

I nvoke ::= SEQUENCE {
i nvokel D | NTECER,
opcode OPERATI ON. &oper ati onCode ({M-ops}),

ar gunent OPERATI ON. &Ar gunent Type ({My-ops}{ @pcode})
}

The“{My-ops}” constraint on the opcode element specifies an information object set (not shown) that constrains the
element value to one of the values in the object set. The {My-ops}{ @opcode} constraint on the argument element
goes a step further — it ties the type of the field to the type specified in the row that matches the given opcode value.
ASN1C generates an in-memory table for each of theitemsin the information object sets defined in a specification. In
the example above, atable would be generated for the My-ops information abject set. The code generated for the type
would then use this table to verify that the given items in a structure that reference this table match the constraints.
The C# type generated for the SEQUENCE above when —tables is specified would be as follows:

public class Invoke : AsnlType {
public Asnll nteger invokel D
publ i c OPERATI ON oper ati onCode opcode;
public AsnlType argunent;

}

Thisisamost identical to the type generated in the simple case. The differenceisthat ASN1Typeisused instead for the
argument element instead of ASN1OpenType. Thistypeis defined asthe base class for al the generated ASN.1 types.
It holds the value to be encoded or decoded. The way a user Would use thisto encode avalue of thistypeisasfollows:

1. Populate avariable of the type to be used as the argument to the invoke type.
2. Assign it to the argument member variable in the structure above.

3. Populate the remaining Invoke type fields.

4. Encode the Invoke type to produce the final message.

Note that in this case, the intermediate type does not need to be manually encoded by the user. The generated encoder
has logic built-in to encode the complete message using the information in the generated tables.

Additional Code Generated for the -tables Option

Thefollowing additional codeis generated for type definitions when the the -tables command-line option is used. The
code generated to support table constraints is intended for use only in compiler-generated code. Therefore, it is not
necessary for the average user to understand the mappingsin order to use the product. Theinformation presented here
isinformative only to provide a better understanding of how the compiler handles table constraints.

An equals() method will be generated for Sequence, Set, Sequence Of, Set Of or Choice types if required for table
constraint processing. Thismethod will be animplementation of the Asn1Type.equals() virtual method. These methods
are used by the generated code to verify that data in a generated structure to be encoded (or data that has just been
decoded) matches the table constraint values.

101

Table Constraint Processing

An additional table constraint check method is also generated for each type that contains table constraints. These
functions have the following prototypes:

BER/DER:
voi d CheckTC (bool decode);
PER:
voi d CheckTC (bool decode, bool aligned);

The decode argument is used to decide if this method is to used for encoding or decoding. The aligned argument is
for PER and specifies whether aligned or unaligned encoding/decoding isin effect.

The purpose of these methods isto verify that the fixed values within the table constraints are what they should be and
to encode or decode the open type fields using the encoder or decoder methods from the Asn1Type objects assigned to
the given table row. Calls to these functions are automatically built into the standard encode or decode functions for
the given type. They should be considered hidden functions not for use within an application that uses the API.

The CheckTC method will have different logic for relative and simpletable constraints. Thelogic to invoke thismethod
isasfollows:

On the encode side:
Relative Table Constraint:

1. Thetable constraint key is searched in the object set array to find the class object for the datain the populated type
variable to be encoded.

2. If the key element value is NOT found and the table constraint object set is extensible, the CheckTC method will
do no further processing (i.e. a value field match will not be performed). The user will have had to populate the
type field using an Asn1OpenType object in order for it to be encoded because the generated table contains no
information on how to encode the value.

3. If the key element valueisfound, the method will verify al fixed type values match what is defined in the key row
of the object set and will also verify that the type of any variable type fields matches the expected type.

4. If the key element value is not found in the table (or object set) and the object set is NOT extensible, then atable
constraint violation exception will be thrown.

Smple Table Constraint:

1. The CheckTC method will verify that al of the fixed type values match what is defined in the table constraint object
set. If the element value does not exist in the table (or object set) and the object set is NOT extensible, then atable
constraint violation exception will be thrown.

After the CheckTC method call, the normal encode logic is performed.
For decoding, the logic is reversed:

The normal decode logic is performed first to popul ate the standard and open type fieldsin the generated structure.
After that, the CheckTC method is invoked to perform the following table constraint checks:

Relative Table Constraint:

1. Thetable constraint key is searched in the object set array to find the class object for the datain the populated type
variable to be encoded.

102

Table Constraint Processing

2. If the key element value is NOT found and the table constraint object set is extensible, the CheckTC method will
do no further processing (i.e. avalue field match will not be performed) and the variable type fields will be stored
as open types (i.e. as instances of C# Asn1OpenType classes). The user will be responsible for further decoding
of the open type value.

3. If thekey element value isfound, the CheckTC method will verify al fixed type values match what isdefined in the
key row of the object set and will fully decode al type fields according to the key row type and store the resulting
decoded type in the ASN1Type fields.

4. If the key element value is NOT found in the table (or object set) and the object set isNOT extensible, then atable
constraint violation exception will be thrown.

Smple Table Constraint:
1. This function will verify all the fixed type values match what is defined in the table constraint object set. If an

element value does not exist in the table (or object set) and the object set isNOT extensible, then atable constraint
violation exception will be thrown.

Populating OpenType Variables for Encoding

When the -tables option is used, open type fields are generated as Asn1Type fields. The general procedure to populate
the values for these fields is as follows:

1. Check the possible type in the object set from the indexed element value.
2. Populate the value for this type and assign it to the open type member variable.
3. Follow the common encode procedure.

A complete example showing how to assign open type values when table constraint code is generated is as follows:

ATTRI BUTE ::= CLASS {
&Type,
& d OBJECT | DENTI FI ER UNI QUE }

W TH SYNTAX {
W TH SYNTAX &Type ID & d }

name ATTRI BUTE ::= {
W TH SYNTAX Vi si bl eString
ID {011} }
comonName ATTRI BUTE :: = {
W TH SYNTAX | NT GER
ID {0121} }
SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }
I nvoke ::= SEQUENCE {

opcode ATTRI BUTE. &i d ({SupportedAttributes}),
argunent ATTRI BUTE. &Type ({SupportedAttri butes}{@pcode})

}

Inthe above example, the Invoke type contains arel ative table constraint. Its element opcodereferstothe ATTRIBUTE
class'sid field and the argument element refersto ATTRIBUTE class's Type field. The opcode element is the index

103

Table Constraint Processing

element into the { SupportedAttributes} information object set. The argument el ement is an open type but its type must
match that specified at the location in the { SupportedAttributes} information object set indexed by opcode.

In this example, opcode can have only two possiblevalues{ 011} or{ 01 2}. If the opcode valueis{ 0 1 1} then
argument must be avalue of type VisibleString. If the opcode valueis{ 01 2} then argument will have an INTEGER

value. Any other value of the opcode element will be aviolation of the table constraint.

If the SupportedAttributes object set is extensible (in this example, it isnot), then the argument element can be avalue
of any type. In this case, if the user is using an index element value outside the object set, then the user will have to

encode the argument element as an Asn1OpenType.

The following sample code populates the open type value:

/1

Step 1: populate the “Invoke” type with data

I nvoke pdu = new | nvoke();
pdu. opcode = new AsnlObjectldentifier(newint[]{0, 1, 1});
pdu. ar gunment = new AsnlVisi bl eString(“objsys”);

/1
/1

/1
/1

/1

note: opcode value is {0 1 1}, so argunent nust be
AsnlVi sibleString type

note: the rest of the encode nmethod will be sane as general
PER/ DER/ BER encodi ng rul es

Step 2: Create a nessage buffer object.

AsnlPer EncodeBuf f er encodeBuffer = new AsnlPer EncodeBuffer();

/1l Step 3: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock..
try {

pdu. Encode (encodeBuffer);

if (trace) {
System Consol e. Qut . Wi teLine ("Encodi ng was successful ");
System Consol e. Qut . WiteLine ("Hex dunmp of encoded record:");
encodeBuf f er. HexDunmp () ;
System Consol e. Qut . WitelLine ("Binary dunp:");
encodeBuf fer. Bi nDunp (“Invoke”);

}

/1l Step 3: Access the encoded message component. In this

/1 case, we use nethods in the class to wite the conponent
// to a file and output a formatted dunp to the message. dnp
/Il file..

/[l Wite the encoded record to a file
encodeBuffer. Wite(new System | O Fi | eSt rean(
filenane, System 1O FileMde.Create));

/1 Generate a dunp file for comparisons
System |1 O StreaniWiter messagednp =
new System 1O StreamWiter(new System | O Fil eStrean(
"message. dmp”, System | O Fil eMbde. Create));
messagednp. Aut oFl ush = true;
encodeBuf f er . HexDunp(messagednp) ;

/1 W can also directly access the buffer as foll ows:

104

Table Constraint Processing

byte[] buffer = encodeBuffer.Buffer;
int meglen = encodeBuffer. MsgByteCnt;

}

catch (Exception e) {
System Consol e. Qut . WiteLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);
return;

}

Theimportant thing to noteisthat not much changes from the normal procedure. The only significant differenceisthat
now the argument field can be directly populated with an instance of itstarget type. Without table constraint checking
logic, this value would have to have been first encoded and then placed in an Asn1OpenType container object.

Decoding Types with Table Constraints

The general procedure to decode an ASN.1 message with table constraint is the same as without table constraints. The
only differenceisthat after decoding, variable type fields will be replaced with instanced of the actual types they are
specified to contain in the associated object set instead of with generic Asn1OpenType fields.

105

Chapter 13. Generated Print Methods

The —print option causes print methods to be generated. These functions can be used to print the contents of variables
of generated types. A print method is generated in each of the generated C# source files.

Generated C# Method Format and Calling
Parameters

There are two signatures for generated print methods which are as follows:
Thefirst signature generated allows printing to any output stream:

public override void Print (System|Q StreamNiter outs,
string var Nane,
int level)

The outs argument specifies a System.|O.SreamWriter object to which the output will be written. The C# class
System.|0.Sream may be popul ated with System.Console.Out to write directly to standard output.

The varName argument is used to specify the top-level variable name of the item being printed. Normally, thiswould
be set to the same name as the variable declared in your program that holds the object being printed. For example,
if you declared a variable called personnelRecord to hold a PersonnelRecord object, the varName object would be
set to “ personnel Record”.

The level argument is used to specify the indentation level for printing nested types. The user would always want to
set thisto zero at the outer-level.

The second signature exists in the Asnl1Type base class. This provides a simplified interface for printing to standard
output. In this case, the outs and level arguments are omitted:

public override void Print (string varNane)

The varName argument is same as in the first case above.

For example, the call to print the personnel Record from the previous examples would be as follows:
per sonnel Record. Print ("personnel Record");

The output would be formatted as follows:

per sonnel Record ({
nane {
gi venNane = ' John'
initial ="'PF
fam | yName = 'Smth'
}
nunber = 51
title = "Director’
dateOfH re = '19710917
nanmeCf Spouse {
gi venNane = ' Mary'
initial ="'T
fam | yName = 'Smth'

106

Generated Print Methods

}
children[0] {
nane {
gi venNane = ' Ral ph’
initial ="'T

fam | yName = 'Smth'

}
dateCfBirth = '19571111'

}
children[1] {

nane {
gi venNane = ' Susan’
initial ="'B
fam | yName = ' Jones'

}
dateCfBirth = '19590717'

107

Chapter 14. Generated Makefile

The -genmake option causes a makefile to be generated. The makefile can be used to compile the generated source
files to create the asnlapi.dll library. User can use the nmake command in Visual Studio .NET command prompt to
use this makefile.

When a makefile is generated, it is assumed that the ASN1C project exists within the ASN1C installation directory
tree. The generation logic triesto determine the root directory of the installation by traversing upward from the project
directory in an attempt to locate the csharp subdirectory which is assumed to be the installation root directory. If the
project is located outside of the ASN1C hierarchy, the user can set the OSROOTDIR environment variable to point
at the root directory.

If theroot directory islocated successfully, the generated build script will use that directory; however, if the compiler
failsto find the installation root directory, it will use @ROOT_DIR@ instead and print an error message. Users will
have to manually replace @ROOT_DIR@ with the actual compiler installation root directory.

If the compiler fails to find the asnlrt.dll runtime library, it will use @ASN1RT_DIR@ instead and print an error
message. User will have to manually replace @ASN1RT_DIR@ with the actual C# runtime library directory.

108

Chapter 15. Event Handler Interface

The —events command line switch causes hooks for user-defined event handlers to be inserted into the generated C#
decode methods. What these event handlers do is up to the user. They fire when key message-processing events occur
during the course of parsing an ASN.1 message. They are similar in functionality to the Simple API for XML (SAX)
that was described earlier for parsing XML messages.

How It Works

Users of XML parsers are probably aready quite familiar with the concepts of SAX. Significant events are defined
that occur during the parsing of amessage. As a parser works through a message, these eventsare ‘fired’ asthey occur
by invoking user defined callback functions. These callback functions are also known as event handler functions. A
diagram illustrating this parsing processis as follows:

QOO

ASIN.1 MESSAGE

Parser { ASN.1
— decode function)

The events are significant actions that occur during the parsing process. The following events are defined that will be
passed to the user when an ASN.1 message is parsed:

1. StartElement — This event occurs when the parser moves into a new element. For example, if we have a
SEQUENCE({ a, b, ¢} construct (type names omitted), this event will fire when we begin parsing a, b, and c. The
name of the element is passed to the event handling callback function.

2. EndElement — This event occurs when the parser leaves a given element space. Using the example above, these
would occur after the parsing of a, b, and ¢ are complete. The name of the element is once again passed to the
event handling callback function.

3. Characters method — This method is defined to pass all of the different types of primitive values that are
encountered when parsing a message. The primitive values are passed out in a stringified form.

The methods corresponding to these events are defined in Asn1NamedEventHandler interface.

The start and end element methods are invoked when an element is parsed within a constructed type. The start method
isinvoked as soon as the tag/length is parsed in aBER or DER message. The end method isinvoked after the contents
of the field are processed. The signature of these methodsis as follows:

void StartEl enent (string name, int index);

109

Event Handler Interface

voi d EndEl enent (string nane, int index);

The name argument isused passthe element name. Theindex argument isused for SEQUENCE OF/SET OF constructs
only. It is used to pass the index of theitem in the array. This argument is set to —1 for all other constructs.

The Characters method is used to pass out ASN.1 primitive data. This is a departure from the C++ event handler
methodology in which separate methods are defined for all of the different data types. This implementation is more
closely aligned with the standard SAX implementation for XML. The reason it is done thisway in C# and not C++ is
because it is much easier to stringify values. Since memory management is built-in to C#, it is easy to create a string
and passit out. Thisis a problem in C++ because it becomes a performance issue if too many malloc’s are done and
it also places a burden on the user to free the memory for the allocated strings.

The signature for the Characters method is as follows:
voi d Characters (string svalue, short typeCode);

The svalue argument contains the stringified value. The format of this value is ASN.1 value notation for the value
as defined in the X.680 standard. The typeCode argument contains an identifier that specifies the ASN.1 type of the
value. The identifier corresponds to the universal identifier values (the ID number in the universal tags) for each of
the primitive data types. The only exception to thisrule is that the identifier 99 was added to represent an Open Type
construct. Constants for all of the identifier values are provided in the Asn1Type class. See the C# documentation for
thisclass for alist of the constants.

How to Use It

To define event handlers, two things must be done:
1. One or more new classes must implement the Asn1NamedEventHandler interface.

2. Objects of these classes must be created and registered prior to calling the generated decode method for a particular
type.

The best way to illustrate this procedure is through examples. We will first show asimple event handler application to
provide a customized formatted printout of the fieldsin a BER message. Then we will show asimple XML converter
classthat will convert the datain a BER message to XML.

Example 1: A Formatted Print Handler

The ASN1C evauation and distribution kits include a sample program for doing aformatted print of parsed data. This
code can be found in the csharp/sample_ber/EventHandler directory. Parts of the code will be reproduced here for
reference, but refer to this directory to see the full implementation.

The format for the printout will be simple. Each element name will be printed followed by an equal sign (=) and an
open brace ({) and newline. The value will then be printed followed by another newline. Finally, a closing brace (})
followed by another newline will terminate the printing of the element. An indentation count will be maintained to
allow for aproperly indented printout.

Wewill first createaclasscalled PrintHandler that implementsthe Asn1NamedEventHandler interface and handlesthe
formatted printing of the data. Therulefor theimplementation of interfacesisthat you must provide animplementation
for each of themethodslisted. That isit. Y ou can add as many additional methods, member variables, etc., that you like.

The PrintHandler implementation that we created is as follows:

class PrintHandler : AsnlNanmedEvent Handl er {
protected string mvar Nane;
protected int m ndent Spaces = O;

110

Event Handler Interface

public PrintHandler (string varNanme) ({
nVar Name = var Nane;
System Consol e. Qut . WiteLine (nVarName + " = {");
m ndent Spaces += 3;

}

public void StartEl ement (string name, int index) ({
I ndent () ;
System Consol e. Qut. Wite (nane);
if (index >= 0)
System Console. Qut . Wite ("[" + index + "]");
System Consol e. Qut . WiteLine (" = {");
m ndent Spaces += 3;

}

public void EndEl enent (string nane, int index) {
m ndent Spaces -= 3;
I ndent ();
System Consol e. Qut . WiteLine ("}");

}

public void Characters (string svalue, short typeCode) ({
I ndent ();
System Consol e. Qut . WiteLine (sval ue);

}
private void Indent () {
for (int i = 0; i < mndentSpaces; i++)
System Console. Qut . Wite (" ");
}

}

In this definition, we chose to add the mVarName and mindentSpaces member variables to keep track of theseitems.
The user isfreeto add any type of member variables he or she wants. The only firm requirement in defining this class
is the implementation of the methods defined in the interface.

We implement these methods as follows:
In SartElement, we print the name, equal sign, and opening brace:

public void StartEl enment (string nanme, int index) {
I ndent () ;
System Consol e. Qut. Wite (nane);
if (index >= 0)
System Console. Qut. Wite ("[" + index + "]");
System Consol e. Qut. WiteLine (" = {");
m ndent Spaces += 3;

}

In this simplified implementation, we simply indent (this is another private method within the class) and print out the
name, equal sign, and opening brace. We then increment the indent level. Logic is also present to check the index
valueto seeif it iszero or greater. If it is, an array subscript is added to the element name.

In EndElement, we simply terminate our brace block as follows:

111

Event Handler Interface

public void EndEl enent (string nane, int index) {
m ndent Spaces -= 3;
I ndent ();
System Consol e. Qut . WiteLine ("}");

}
The Characters method simply indents and prints the stringified value:

public void Characters (string svalue, short typeCode) ({
I ndent ();
System Consol e. Qut . WitelLine (sval ue);

}

That completes the PrintHandler class implementation.

Next, we need to create an object of the class and register it prior to invoking the decode method. In the Reader.cs
program, the following lines do this:

/'l Regi ster event handl er object

Print Handl er printHandl er = new PrintHandl er ("personnel Record");
decodeBuf f er . AddNanmedEvent Handl er (printHandl er);

The addEventHandler method defined in the Asn1DecodeBuffer base class is the mechanism used to do this. Note
that event handler objects can be stacked. Several can be registered before invoking the decode function. When thisis
done, the entire list of event handler objects is iterated through and the appropriate event handling callback function
invoked whenever a defined event is encountered.

The implementation is now complete. The program can now be compiled and run. When this is done, the resulting
output is as follows:

enpl oyee = {
nane = {
gi venNane = {
"John"
}
initial = {
" pr
}
fam | yName = {
“Sm th"
}

This can certainly be improved. For one thing it can be changed to print primitive values out in a “name = value”
format (i.e., without the braces). But this should provide the general idea of how it is done.

Example 2: An XML Converter Class

The ASN1C XML Encoding Rules (XER) encode and decode capabilities were presented in an earlier section of this
document. An alternate way to create an XML document from ASN.1 data is through the event handler interface.

It turns out that with event handlers, this conversion is fairly easy. As the handler events fire, all of the required
symbolic datais passed out to generate an XML document. The programmer is free to massage this data any way he
or she wants to comply with whatever DTD or XML Schemaisin use.

112

Event Handler Interface

The ToXML sample program demonstrates the conversion of ASN.1 datato XML using event handlers. The sample
is not intended to be arobust implementation — it is merely designed to provide guidance in how one would go about
doing this transformation.

The sample program can be found in the csharp/sample_ber/ToXML subdirectory within the ASN1C installation. The
complete class definition for the XMLHandler classis asfollows:

cl ass XM_Handl er : AsnlNanedEvent Handl er {
protected string mvar Nane;
protected int m ndent Spaces = O;

public XM.Handl er (string varNane) {
nVar Name = var Nane;
System Consol e. Qut. WitelLine ("<" + nmVarName + ">");
m ndent Spaces += 3;

}

public void StartEl ement (string name, int index) ({
I ndent () ;
System Consol e. Qut. WiteLine ("<" + nanme + ">");
m ndent Spaces += 3;

}

public void EndEl enent (string nane, int index) {
m ndent Spaces -= 3;
I ndent ();
System Consol e. Qut. WiteLine ("</" + name + ">");

}
public void Characters (string svalue, short typeCode) ({
I ndent ();
string typeName = new string (AsnlType. get TypeNane(typeCode));
typeNane. Replace (' ', '_");
System Console. Qut . Wite ("<" + typeNane + ">");
System Consol e. Qut. Wite (sval ue);
System Consol e. Qut . WiteLine ("</" + typeName + ">");
}

public void Finished () {
System Console. Qut. WiteLine ("</" + nVarNane + ">");

}

private void Indent () {
for (int i = 0; i < mndentSpaces; i++)
System Consol e. Qut . Wite (" ");

}

}

Thisisvery similar to the PrintHandler class defined earlier. The SartElement method simply opensan XML element
block:

public void StartEl ement (string name, int index) ({
I ndent () ;
System Consol e. Qut. WiteLine ("<" + nanme + ">");
m ndent Spaces += 3;

113

Event Handler Interface

}

The EndElement method closesit:

public void EndEl enent (string nane, int index) {
m ndent Spaces -= 3;
I ndent ();
System Consol e. Qut. WitelLine ("</" + nane + ">");

}

The Characters method outputs the data with a type wrapper:

public void Characters (string svalue, short typeCode) {

I ndent ();
string typeName = new string (AsnlType. get TypeNane(typeCode));
typeNane. Replace (' ', '_');

System Console. Qut. Wite ("<:" + typeNane + ">");
System Consol e. Qut. Wite (sval ue);
System Consol e. Qut. WiteLine ("</:" + typeName + ">");

}

This illustrates the use of the typeCode argument for obtaining information on the ASN.1 type of the data. Note that
thisis asimplified version of an XER formatting method. A true implementation would need to do some massaging
of the stringified data to fit the XER rules which, in general, do not follow the ASN.1 value formatting rules. The
implementation would also need some logic to check if the type wrapper should be output or not; it is not always
donein certain cases.

Finally note the constructor and finished method. The constructor prints out the outer-level wrapper tag. Since C# does
not have destructors, a finished method is defined to terminate this tag. This method must be called manually from
within the application program after the C# decode method. See the Reader .cs program to see how thisis done.

Object registration is done as before in the PrintHandler example. The only difference is that an object of the
XMLHandler classis created instead of the PrintHandler class.

When compiled and executed, the output from the Reader program looks like this:

<Per sonnel Recor d>
<name>
<gi venNanme>
<I A5String>" John' </ A5String>
</ gi venNane>
<initial>
<I A5String> P </1A5String>
</initial>
<f am | yNane>
<IA5String> Smth' </1A5String>
</ fam | yNanme>
</ nane>
<number >
<| NTEGER>51</ | NTEGER>
</ nunber >
<title>
<IA5String> Director'</1A5String>
</title>
<dateO'Hire>

114

Event Handler Interface

<I A5String>' 19710917' </ 1 A5Stri ng>
</dateOf Hire>
<name Spouse>
<gi venName>
<I A5String> Mary' </ A5String>
</ gi venNane>
<initial>
<IA5String> T </1A5String>
</initial>
<fam | yNane>
<IA5String> Smth' </1A5String>
</ fam | yNane>
</ naneF Spouse>
<chi | dren>
<el enent >
<name>
<gi venName>
<I A5String>' Ral ph' </1 A5String>
</ gi venNane>
<initial>
<IA5String> T </1A5String>
</initial>
<f am | yNane>
<IA5String> Smth' </1A5String>
</ fam | yNane>
</ nane>
<dateO'Birt h>
<I A5String> 19571111' </ 1 A5Stri ng>
</dateOBirth>
</ el ement >
<el enent >
<name>
<gi venName>
<I A5String>' Susan' </ 1 A5Stri ng>
</ gi venNane>
<initial>
<I A5String> B </1A5String>
</initial>
<fam | yNane>
<I A5String>' Jones' </ 1 A5Stri ng>
</ fam | yNanme>
</ nane>
<dateO'Birt h>
<I A5String>' 19590717' </ 1 A5Stri ng>
</dateOBirth>
</ el ement >
</ chil dren>
</ Per sonnel Recor d>

Add an XML document header and you should be able to display this datain XML -enabled browser.

115

Chapter 16. IMPORT/EXPORT of Types

ASNIC alows productions to be shared between different modules through the ASN.1 IMPORT/EXPORT
mechanism. The compiler parses but ignores the EXPORTS declaration within a module. As far as it is concerned,
any type defined within amoduleis available for import by another module.

When ASN1C sees an IMPORT statement, it first checks its list of loaded modules to see if the module has aready
been loaded into memory. If not, it will attempt to find and parse another source file containing the module. Thelogic
for locating the sourcefile is as follows:

1. The configuration file (if specified) is checked for a <sourceFile> element containing the name of the source file
for the module.

2. If thiselement is not present, the compiler looks for afile with the name <M oduleName>.asn where module name
is the name of the module specified in the IMPORT statement.

In both cases, the —| command line option can be used to tell the compiler where to ook for the files.

The other way of specifying multiple modulesisto include them all within asingle ASN.1 sourcefile. It ispossibleto
have an ASN.1 source file containing multiple module definitions in which modules IMPORT definitions from other
modules. An example of this would be the following:

Modul eA DEFI NI TIONS ::= BEG N
| MPORTS B From Mbdul eB;

A::=B

END

Modul eB DEFINI TIONS ::= BEG N
B ::= | NTEGER

END

This entire fragment of code would be present in asingle ASN.1 sourcefile.

116

Chapter 17. Compact Code Generation

The -compact command line switch can be used to reduce the amount of source code generated for a given ASN.1
specification. Thisisdone by generating the code for simple definitionsinlinewithin structured type definitionsinstead
of creating separate classes.

For example, consider the following definition:

X ::= [APPLI CATI ON 1] | NTEGER
Y ::= [APPLI CATION 2] OCTET STRING (SIZE (1..32))
Z ::= [APPLI CATI ON 3] SEQUENCE {
X [0] X
y [1] Y
}

In normal mode, the compiler would generate three classes for these productions: one corresponding to X, Y, and Z
respectively. But in compact mode, it isrecognized that auser would normally not beinterested in encoding or decoding
X and Y on their own. They would primarily be interested in encoding or decoding the more complex structured
types (i.e. the PDU’ s) that make up fully formed messages. Taking thisinto account, when —compact is specified, the
compiler will not generate separate classes for X and Y in the above definition. Instead, it will include only the base
types for X and Y in the generated code for the SEQUENCE Z. All logic to handle the tags and constraints will be
built directly into the Z encode and decode methods.

So the result will be only a single class generated (Z) that will contain an Asnlinteger object to represent X and an
Asnl1OctetString object to represent Y. The logic to process the application tags and the size constraint on the octet
string will be generated inline in the encode and decode methodsin Z.

Due to the way some ASN.1 specifications are written, this can have a significant effect in reducing the amount of
generated code. For example, in the TAP3 sample program, the total number of generated classes was reduced from
20to 3.

117

Chapter 18. ASN1C90

Asof ASN1C version 5.7, ASN1C90 isnow an option built-in to the standard ASN1C executable program. This option
is -1990. Therefore, specifying ‘asnlc <file> -1990' on the command-line is equivalent to using the old ‘asnl1c90’
executable program. The remaining text in this section refers to using ASN1C with the -1990 option.

ASN1C when used with the -1990 option contains extensions to handle the older 1990 version of ASN.1. Although
thisversion is no longer supported by the ITU-T, it is still in use today.

Thisversion of the compiler a so containslogic to parse some common MACRO definitionsthat are still in widespread
use despite thefact that MACRO syntax wasretired with thisversion of the standard. Thetypes of MACRO definitions
that are supported are ROSE OPERATION and ERROR and SNMP OBJECT-TY PE.

ROSE OPERATION and ERROR

ROSE stands for “Remote Operations Service Element” and defines a request/response transaction protocol in which
reguests to a conforming entity must be answered with the result or errors defined in operation definitions Variations
of thisare used in a number of protocolsin use today including CSTA and TCAP.

The definition of the ROSE OPERATION MACRO that is built into the ASN1C90 version of the compiler is as
follows:

OPERATI ON MACRO :: =
BEG N
TYPE NOTATI ON
VALUE NOTATI ON

Parameter Result Errors LinkedQOperations
val ue (VALUE | NTECER)

Par anet er = ArgKeyword NanedType | enpty

Ar gKeywor d = "ARGUMENT" | " PARAMETER"

Resul t = "RESULT" ResultType | enpty

Errors = "ERRORS" "{"ErrorNanmes"}" | enpty

Li nkedQper ati ons = "LINKED"' "{"LinkedQperationNanes"}" | enpty

Resul t Type = NamedType | enpty

Er r or Nanes = ErrorList | enpty

ErrorlList = Error | ErrorList "," Error

Error = val ue(ERROR) -- shall reference an error val ue
| type -- shall reference an error

-- if no error value is specified

Li nkedQper at i onNanes OperationList | enpty

Qper ati onLi st = Qperation | OperationList "," Operation
Qper ation = val ue(OPERATI ON) -- shall reference an operation val ue
| type -- shall reference an operation type
-- if no operation value is specified
NanmedType = identifier type | type
END

This MACRO does not need to be defined in the ASN.1 specification to be parsed. In fact, any attempt to redefine this
MACRO will beignored. Its definition is hard-coded into the compiler.

What the compiler does with this definition is uses it to parse types and values out of OPERATION definitions. An
example of an OPERATION definition is as follows:

| ogi n OPERATI ON
ARGUMENT SEQUENCE { usernane | A5String, password [A5String }

118

ASN1C90

RESULT SEQUENCE { ticket OCTET STRI NG wel coneMessage | A5String }
ERRORS { authenticationFailure, insufficientResources }
=1

In this case, there are two embedded types (an ARGUMENT type and a RESULT type) and an integer value (1) that
identifies the OPERATION. There are also error definitions.

The ASN1C90 compiler generates two types of items for the OPERATION:

1. It extracts the type definitions from within the OPERATION definitions and generates equivalent C# classes and
encoders/decoders, and

2. It generates value constants for the value associated with the OPERATION (i.e., the value to the right of the *::=’
in the definition).

The compiler does not generate any structures or code related to the OPERATION itself (for example, code to encode
the body and header in a single step). The reason is because of the multi-layered nature of the protocal. It is assumed
that the user of such a protocol would be most interested in doing the processing in multiple stages, hence no single
function or structure is generated.

Therefore, to encode the login example the user would do the following: Therefore, to encode the login example the
user would do the following:

1. At the application layer, the Login ARGUMENT structure would be populated with the username and password
to be encoded.

2. Theencode function for Login. ARGUMENT would be called and the resulting message pointer and length would
be passed down to the next layer (the ROSE layer).

3. At the ROSE layer, the Invoke structure would be populated with the OPERATION value, invoke identifier, and
other header parameters. The open type object used to hold the encoded parameter value from step 2 is populated
by creating an Asn1OpenType object using the length of the encoded component.

4. The encode function for Invoke would be called resulting in a fully encoded ROSE Invoke message ready for
transfer across the communications link.

The following is a picture showing this
Application Layer Populate specific message structure (Login. ARGUMENT) and encode.
* Encoded message pointer and length
NG Populate ROSE header message structure (Invoke) and encode.
0s aver S ; - ;
ROSE Layer Open type structure contains message pointer and length from previous step.

* Final encoded message
jprocess:

On the decode side, the process would be reversed with the message flowing up the stack:

1. At the ROSE layer, the header would be decoded producing information on the OPERATION type (based on the
MACRO definition) and message type (Invoke, Result, etc..). Theinvokeidentifier would also be available for use
in session management. In our example, we would know at this point that we got alogin invoke request.

119

ASN1C90

2. Based on the information from step 1, the ROSE layer would know that the Open Type field contains a pointer
and length to an encoded Login ARGUMENT component. It would then route this information to the appropriate
processor within the Application Layer for handling this type of message.

3. TheApplication Layer would call the specific decoder associated with the Login. ARGUMENT. It would then have
available to it the username/password the user is logging in with. It could then do whatever application-specific
processing is required with thisinformation (database lookup, etc.).

4. Finadly, the Application Layer would begin the encoding process again in order to send back a Result or Error
message to the Login Request.

A picture showing thisis as follows:

Application Layer Call specific function to decode Login. ARGUMENT and process data.

4 Encoded message pointer and length

Decode ROSE header message structure (Invoke).
Open type structure contains message pointer and length of encoded

Login. ARGUMENT.

+ Encoded ROSE message

Thelogin OPERATION also contains references to ERROR definitions. These are defined using a separate MACRO
that is built into the compiler. The definition of this MACRO is as follows:

ROSE Layer

ERROR MACRO :: =

BEG N
TYPE NOTATI ON :: = Paraneter
VALUE NOTATION ::= val ue (VALUE | NTEGER)
Par anet er = "PARAVETER' NanedType | enpty
NanedType ::= identifier type | type

END

In this definition, an error is assigned an identifying number as well as on optional parameter type to hold parameters
associated with the error. An example of areference to this MACRO for theaut hent i cati onFai | ur e errorin
the login operation defined earlier would be as follows:

applicationError ERROR

PARAMETER SEQUENCE {
errorText | A5String

}

=1

The ASN1C90 compiler will generate atype definition for the error parameter and avalue constant for the error value.
The format of the name of the type generated will be “<name> PARAMETER” where <name> is the ERROR name

120

ASN1C90

(applicationError in this case) with the first |etter set to uppercase. The name of the value will simply be the ERROR
name.

SNMP OBJECT-TYPE

The SNMP OBJECT-TYPE MACRO is one of severa MACROs used in Management Information Base (MIB)
definitions. It is the only MACRO of interest to ASN1C because it is the one that specifies the object identifiers and
data that are contained in the MIB.

The version of the MACRO currently supported by this version of ASN1C can be found in the SMI Version 2 RFC
(RFC 2578). The compiler generates code for two of the items specified in this MACRO definition:

1. The ASN.1 typethat is specified using the SYNTAX command, and
2. The assigned OBJECT IDENTIFIER vaue
For an example of the generated code, we can look at the following definition from the UDP MIB:

udpl nDat agr ams OBJECT- TYPE
SYNTAX Count er 32
MAX- ACCESS read-only
STATUS current
DESCRI PTI ON
"The total nunber of UDP datagrams delivered to UDP users."
o= { udp 1}

In this case, a type definition is generated for the SYNTAX element and an Object Identifier value is generated for
the entire item. The name used for the type definition is “<name> SYNTAX” where <name> would be replaced
with the OBJECT-TY PE name (i.e., udplnDatagrams). The name used for the Object Identifier value constant is the
OBJECTTY PE name. So for the above definitions, the following two C# items would be generated:

1. A “udplnDatagrams_SYNTAX.cs’ file. Thiswould contain the udpInDatagrams SYNTAX class definition, and

2. A udplnDatagrams value definition in the_UDP_MIBValues class.

121

