
Elixir Scheduler User Manual

Release 2.5.0

Elixir Technology Pte Ltd



Elixir Scheduler User Manual: Release 2.5.0
Elixir Technology Pte Ltd

Published 2013
Copyright © 2013 Elixir Technology Pte Ltd

All rights reserved.

Solaris, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. Microsoft and Windows
are trademarks of Microsoft Corporation.



Table of Contents
1. About Elixir Scheduler ................................................................................................. 1

Overview .............................................................................................................. 1
2. Jobs and Tasks ........................................................................................................... 2

Overview .............................................................................................................. 2
Job ...................................................................................................................... 2

Parameters .................................................................................................... 3
Log ............................................................................................................. 3

Tasks ................................................................................................................... 4
Action .......................................................................................................... 4
AdminCommand ........................................................................................... 5
Ant .............................................................................................................. 5
CallJob ........................................................................................................ 5
DataLoop ..................................................................................................... 5
Echo ............................................................................................................ 6
FileLoop ...................................................................................................... 6
GenerateData ................................................................................................ 6
Loop ............................................................................................................ 6
OnError ....................................................................................................... 7
Parallel ........................................................................................................ 7
RenderReport ................................................................................................ 7
Script ........................................................................................................... 7
SendMail ...................................................................................................... 7

3. Triggers .................................................................................................................... 9
Overview .............................................................................................................. 9
Trigger ................................................................................................................. 9

Basic Information Page ................................................................................... 9
Job Schedule Page .......................................................................................... 9
Trigger Active Period .................................................................................... 10
Time Zone .................................................................................................. 10
Trigger Calendar .......................................................................................... 10
Misfire Configuration .................................................................................... 10

Hourly, Daily and Monthly Triggers ......................................................................... 10
4. Calendars ................................................................................................................ 12

Overview ............................................................................................................ 12
Mark periods for daily events .......................................................................... 12
Mark periods for weekly events ....................................................................... 12
Mark periods for monthly events ..................................................................... 12
Mark days with specific dates ......................................................................... 13
Mark days with CRON expressions .................................................................. 13
Time zone selection ...................................................................................... 13

5. Cookbook ................................................................................................................ 14
Overview ............................................................................................................ 14
Job Recipes ......................................................................................................... 14

Render All Reports In A Folder ....................................................................... 14
Trigger Recipes .................................................................................................... 15

Trigger On The First Monday Of The Month ..................................................... 15
Trigger On The Last Friday Of The Month ........................................................ 17
Trigger On The Last Working Day Of The Month ............................................... 18
Trigger On The Last Working Day Of The Quarter .............................................. 19

iii



List of Figures
1.1. Elixir Scheduler ....................................................................................................... 1
2.1. Job Designer ........................................................................................................... 2
2.2. Grouping of Parameters ............................................................................................. 3
2.3. Log File ................................................................................................................. 4
2.4. DataLoop ............................................................................................................... 6
2.5. Encoding in Attachment of SendMail task ..................................................................... 8
4.1. Calendar Wizard ..................................................................................................... 12
5.1. FileLoop Tree ........................................................................................................ 14
5.2. File Criteria ........................................................................................................... 15
5.3. Target Parameter .................................................................................................... 15
5.4. Trigger Wizard ....................................................................................................... 16
5.5. Job Schedule ......................................................................................................... 17
5.6. Every Last Friday Of The Month ............................................................................... 18
5.7. Every Last Working Day Of The Month ...................................................................... 19
5.8. Every Last Working Day Of The Quarter ..................................................................... 20

iv



Chapter 1
About Elixir Scheduler

Overview
Elixir Scheduler provides control over triggers and calendars on the Elixir Administration Tools panel.
Through the Scheduler interface, triggers and calendars may be created, tested and modified. These
will help you schedule jobs and fire triggers more easily.

The Scheduler resides in the Designer and uses the same repository tree on the left pane, as shown in
Figure 1.1, “Elixir Scheduler”.

Figure 1.1. Elixir Scheduler

1



Chapter 2
Jobs and Tasks

Overview
A Job is a set of tasks that are intended to be executed together. The Job creation interface is shown
in Figure 2.1, “Job Designer”

Figure 2.1. Job Designer

When a job is open, there is a task tree on the left of the workspace along with a panel, which shows
the details of the currently selected task. When a new job is created, only the job is visible as the root
of the tree. Use the popup menu on the Job item in the tree to add new tasks to the job. If you have
several tasks in the job you can reorganize them by dragging them around.

Job
Selecting the job itself at the root of the task tree allows parameters to be set. These parameters can
be used by all the tasks within the job and it is useful to have a single point of maintenance. Job
parameters can either be hard-coded, for example User = Bill, or can be dynamic, for example, User
= ${User Name##Bill}. This indicates that the triggering code should supply a value for User, which
may be by prompting for "User Name", and that the default value is Bill. See the Elixir Repertoire
manual for details of how dynamic parameters can be used throughout the Elixir Repertoire suite. In
the case of Elixir Scheduler, if the job is triggered manually, then a popup form will prompt for dynamic

2



parameter values to be entered. However, if the job is triggered by a scheduled Trigger, then it is the
Trigger that needs to supply any dynamic parameters.

Each job may define a log file in the repository to which it will write the progress of execution. This
is configured on the Logs tab in the job workspace. If no log name is specified, the job will still execute,
but you won't be able to review the progress of execution. You can choose the level of logging using
the combo box on the right of the Log File entry. If you choose Debug you will get details of the start
and stop time of every task as it is executed. Info, Warn and Error provide increasing smaller amounts
of logging output, which can make it easier to spot problems that might otherwise get lost in the most
verbose log output.

Parameters
Some jobs may require the use of parameter(s) and the necessary parameter(s) should be enabled. If
the name of a parameter is highlighted in blue or red, a tooltip will be seen to let the user know what
can be done when the cursor rolls over the name of the parameter.

Users can change the value of a parameter by clicking on the Value column of a particular parameter,
then edit the value directly or click on the "..." button to bring up a dialog box where the user can
choose a value from the choices available. Parameter of different type will have a different dialog box.

• If the parameter is of "choice" type, the dialog box will show a list of available choices.

• If the parameter is of "date" type, the dialog box will show a date chooser.

• If the parameter is of "lookup" type, the dialog box will show a list of available choices loaded
from the datasource at runtime.

• If the parameter is of "password" or "string" type, the "..." button will not be present.

In the case whereby the Scheduler is unable to identify the type of parameter, the parameter will be
treated as a string type.

Users can group certain parameters such that the parameters can be enabled or disabled as a whole.
To be able to do so, add a new parameter with name "<group>" as seen in Figure 2.2, “Grouping of
Parameters”

Figure 2.2. Grouping of Parameters

A "<group>" defines a starting of a new group and the ending of the previous group. When the checkbox
for a particular "<group>" is checked or unchecked, all the parameters that belong to the group will
be enabled or disabled respectively.

Log
A log file is a JSON file that records the events that happen in the background when a job is running.
Log files are stored in the /User/{User_Name}/logs/ directory in Repository. If the job runs successfully,
a similar screen like the following figure, Figure 2.3, “Log File”, will be shown.

3

Jobs and Tasks



Figure 2.3. Log File

If the job encounters an error, the log viewer will show one or more actions on the right hand side for
follow-up purpose, including Open, View and Follow, allowing you to look at job results, view more
details of exceptions or follow handover to other jobs. For example, the Follow action helps you
navigate through a potential tree of logs produced by multiple engines working together to solve a
problem. The parent log will show the status and elapsed time of each child processing log, saving
you from the trouble of following irrelevant logs.

The log viewer also allows you to send support mail with this log, or save locally to attach to support
mail. The support mail address is configurable in Administration Tools > System > Targets >
support. Enable the log viewer to send emails by entering the recipient's address into the support
target, or disable it by deleting the support target.

Tasks
Each task added to a job has a name and a space for notes to be entered. Both of these are optional,
and are to allow documentation of the job so that subsequent administrators and maintainers can
interpret it in future. The following sections describe each individual task in detail. Some are composite
tasks, which means they can also contain child tasks. Composite tasks are useful for loops, optional
routines and parallelism. Where text can be entered in a task - that is, in any text field, variable
substitutions such as ${Name} can be used. The appropriate parameter values will be substituted when
the task is executed.

Note
A task can be disabled by right-clicking on it and selecting Disable Run. Apply similar
steps to enable the task.

Action
The Action task allows one job to perform an action when it is running. The following actions are for
your selection:

• Enable/Disable Form: This action enables you to control when a form will accept input while
jobs are scheduled to run at certain days or times. To enable a form to accept data, select the form
from the repository or enter the repository path, and select the Enabled checkboxes.

4

Jobs and Tasks



AdminCommand
The AdminCommand task will execute only when the job is run by an administrator. The following
actions for your selection:

• Clean unused temporary files: This command clears all those temporary files in /Temp/<user>
folder in the Repository, which have not been accessed within the period of time specified on the
Administration Tools panel.

• Clean unused log files: This command clears all those job log files in /User/<user>/logs folder in
the Repository, which have not been accessed within the period of time specified on the Adminis-
tration Tools panel.

• Clean inactive sessions: This command clears all those sessions that have had no activity within
the period of time specified on the Administration Tools panel.

• Clean inactive sessions: This command cleans away old ZooKeeper logs to ensure the disk space
is not wasted. The most recent three snapshots and logs will be retained.

• Aggregate RequestTracker data: This command will aggregate RequestTracker data from
Zookeeper into a database, freeing Zookeeper resources and allowing dashboards and report access
to the request tracking data.

• Full backup: This command performs a complete backup of the chosen filesystem. It writes the
results into an archive file in the chosen folder from which they can be manually restored. Choose
the filesystem from the FileSystem dropdown list. Specify the folder in the To folder (url) field.

• Incremental backup: This command performs an incremental backup of a filesystem. It writes
only those files modified within the chosen duration into an archive file in the chosen folder, from
which they can be manually restored. Choose the filesystem from the FileSystem dropdown list.
Specify the folder in the To folder (url) field. Specify the duration that changes occurred from the
Changes in the last dropdown list.

Ant
The Ant task allows Ant build files, as described by the Apache Foundation, to be launched from
within a job. Ant is extremely flexible, allowing file operations, ftp, mail etc. to be coordinated. In
order to use the Ant task, you need only define the location of the Ant file (typically called build.xml)
that you wish to launch. Optionally, you can specify the name of the target within the build file that
should be executed. If no target is named, then the default target will be chosen. Please see the Ant
manual at http://ant.apache.org/manual/ for more details on the Ant file format and options.

CallJob
The CallJob task allows one job (master) to invoke another (child). The child job is identified by name,
and may have parameters passed to it to control its execution. When the CallJob task is executed within
the master job, it locates the child job by name and executes it within the scope of the master job. This
means all parameters, scripts etc. of the master job are available to the child. In addition, the child job
will write it's log to the master job log. This task will only complete when the child job has completed.

DataLoop
The DataLoop task is a composite task that executes each of the child tasks sequentially. The DataLoop
has a datasource that supplies records. For each record, the DataLoop will set the execution scope to
include the record fields, so they can be accessed by name from the children. The children will then
be executed sequentially. The process will repeat until all records in the datasource have been used.
In order for users to know that the datasource is valid, the fields of the datasource will be displayed

5

Jobs and Tasks

http://ant.apache.org/manual/


under Schema, as shown in Figure 2.4, “DataLoop”. If not, the text in the Name field will be red in
colour.

Figure 2.4. DataLoop

Echo
The Echo task allows information to be written to the log. As with all tasks, text values may include
variable substitution strings of the form ${Name} which will be replaced by the appropriate parameter
value during execution. This is useful for logging progress of a job and also for debugging. For example,
you can echo a message such as

Job run by ${User} to render ${Report}

FileLoop
The FileLoop task is a composite task that executes each of the child tasks sequentially. The FileLoop
requires the name of a folder in the repository. You can also define file criteria that allow the files
within the folder to be filtered, for example by extension or modification date. The FileLoop will iterate
through all files and execute the child tasks sequentially, once for each file that matches the criteria.
While executing the children, the loop makes available the current filename so that it can be used in
variable substitutions. The name of the variable is taken from the Parameter Name value defined in
the task panel, the default name is FileName. If no criteria are entered, all files in the folder will be
used. Selecting the Recursive option repeats the process for all subdirectories under the chosen folder.

GenerateData
The GenerateData task invokes an Elixir Data Designer's Composite DataSource to output to one of
its DataStores. The name of the datasource is required, along with the name of the datastore within it
that is to receive the records. It is also possible to pass parameters with the invocation which are then
accessible within the datasource. Note that only parameters explicitly identified in the GenerateData
task will be passed to the datasource - those defined within the scope of the job are not implicitly
available to the Ensemble engine.

Note
When the job is running, information regarding the progress of the job can be seen in the Log
tab. The starting, processing and the ending of the job will be recorded. The log file can be
sent to support mail, or saved locally to attach to support mail. This applies to all jobs.

Loop
The Loop task is a composite task that executes each of the child tasks sequentially. The loop requires
a simple repeat count that indicates the number of times the children should be executed. If there are

6

Jobs and Tasks



three children, A,B and C, and the repeat count is two, then the sequence of execution will be
A,B,C,A,B,C. Loop has two common uses, first, to skip a set of tasks, and second to perform the same
tasks repeatedly, for example for performance testing or benchmarking.

OnError
The OnError task can only be the child of a job and cannot be added under other composite tasks such
as Loop. It should always be the last top-level task listed under the job. There can only be one OnError
task for each job. When the user try to add another one, he will be prompted to overwrite the existing
one. Similarly, when the user copy an OnError task from one job to another that has an existing OnError
task, he will be prompted to overwrite the existing one.

OnError task is triggered to run when error occurs during the job execution. The user can configure
the number of times to re-try the job when it hits an error. The default value is zero, which means there
is no re-trying.

A user can also add tasks under the OnError task, which are executed when the OnError task runs.
Typically, it will be those tasks that clean up the leftover from previous job failure such that Repertoire
can re-try the job again in a consistent way.

If there are no errors during job execution, the OnError task is skipped.

Parallel
The Parallel task is a composite task that executes all of the child tasks at the same time. Each child
task runs as a separate thread and the parallel task will not complete until all of the child tasks have
completed. This task allows a thread count to be specified. If no count is given then each child task
runs in a separate thread. Otherwise a pool of threads is created and each child task uses a thread from
the pool when it is available. For example, by using a thread count of two, only two of the child tasks
would be running simultaneously.

RenderReport
The RenderReport task invokes the Elixir Report engine to render a report on the server. The required
information includes the report name, the chosen target on the server and the mime-type that is required.
Additional parameters may be passed to the report and to the target. Report parameters would include
information needed to control the datasource or rendering process. Target parameters would include
information needed by the chosen target. For example, if the target is userhome, you should specify
the parameters for filename and folder. Alternatively, if the target is mail, you need to identify the
parameter for the recipient (this depends on how the target is configured on the server - i.e. whether
the recipient name has been pre-defined). Note that only parameters explicitly identified in the
RenderReport task will be passed to the rendering engine - those defined within the scope of the job
are not implicitly available.

Script
The Script task allows Elixir Scheduler to invoke JavaScript and Java codes within the job. Variable
substitutions of ${Name} variables is performed before executing the code.

SendMail
After the SendMail task is created, the email panel is empty. You will need to fill up From and To
field in order to send out an email. The rest of the fields are optional.

The user can right-click in the Message field to find the list of parameters that can be embedded in
the email. The parameters are evaluated and substituted with real values on the server side before the

7

Jobs and Tasks



email is being sent out. If there are no parameters available, the popup menu will show No available
parameters. If the the user define some parameters in the task that encloses the SendMail task (such
as the job), he will also be able to find the parameters in the popup menu. However, disabled parameters
defined in the job will not be shown in the popup menu. Only enabled parameters are shown.

The user can click on the Add button in the email panel to add attachments. Add more than one
attachment by clicking on Add again. To remove the attachment, simple click on the Remove button.

Note
SendMail task allows encodings to be included in attachments so as to allow the receiver to
see the original text correctly. An example is shown in Figure 2.5, “Encoding in Attachment
of SendMail task”.

Figure 2.5. Encoding in Attachment of SendMail task

8

Jobs and Tasks



Chapter 3
Triggers

Overview
A Trigger is a mechanism for deciding when to invoke a job. Most commonly, triggers are time-based
- for example invoke the job every Tuesday at 6am. All triggers have a name, an enabled/disabled flag
and some specialized fields for identifying when to run.

All triggers have a Start and Stop time and can only fire between those times. It is possible to set the
Stop to be Never, so that the trigger is always operational.

Trigger
There are six pages in the Trigger Wizard.

• Basic Information Page: Defines the name of trigger, location of the job and parameters required.

• Job Schedule Page: Configures the schedule of the trigger.

• Trigger Active Period: The start and stop time of the trigger.

• Time Zone: The time zone where the user wants the job to be fired.

• Trigger Calendar: The Calendar to refer to. (Calendars are discussed in Chapter 4, Calendars)

• Misfire Configuration: set start/end timeout intervals, and choose what to do when the trigger
does not fire as it is supposed to.

Basic Information Page
On the first page of the Trigger Wizard you need to enter the name of the trigger and the location of
the job. If the job requires parameters, you will be prompted to enter them here. In the Parameters
table, the rows might appear in red or blue. Red parameters indicate a value has been supplied that is
no longer required by the job, and it can be safely deleted (it will be ignored anyway). Blue parameters
are required for the job and so appropriate values should be entered.

Job Schedule Page
On the Job Schedule page of the Trigger Wizard, you can schedule a job to run once only, daily,
weekly, monthly, at regular intervals or controlled by a CRON expression.

For weekly events, you need to choose the day(s) of the week when the job should run. For monthly
events, you need to choose the day(s) and month(s) to run the job. You can also choose specific day(s)
within each month. For jobs that run daily, weekly or monthly, the job will fire at the same time on
the scheduled days.

9



Trigger Active Period
This page of the wizard lets the user configure the absolute time range in which a trigger can fire. The
actual firing time itself is governed by the values entered on the previous page - this page only indicates
the earliest and latest times that it could possibly fire.

Note

By default, a trigger becomes active upon completion of the wizard and never stops. Also,
when the trigger has completed the job run, it will be set to disabled automatically. If user
would like to run the job again, the trigger will need to be enabled and make adjustment in
Trigger Active Period.

Time Zone
This page enables you to select the time zone, which can be your current location or a different
geographical location, according to where you want the job to be fired. The time zone selection is not
limited by your locale. With the correct time zone selected, job firing will be accurate, which follows
the rules below:

• The time should always follow the changes of daylight saving time. Therefore 01:00 is the same
whether Summer or Winter.

• When a time doesn't exist (a gap due to the clocks moving forwards), job firing will choose the
first valid time after the gap.

• When the time exists twice, job firing will choose the first time and ignore the second.

Trigger Calendar
If you need to exclude certain periods from the trigger schedule, such as public holidays, you can mark
them on a calendar and point the trigger to the calendar. The trigger will not fire during the period(s)
marked in the calendar. The calendar options are discussed in Chapter 4, Calendars.

Misfire Configuration
This page allows the user to override the default job timeouts by setting start/end timeout intervals,
and choose the action to be taken when a trigger fails to work the way it was supposed to.

• Timeout for Start: Set the start timeout value for the job. If the job does not get started within
the start timeout value, the trigger will be considered misfired.

• Timeout after Start: Set the end timeout value for the job. If the job does not complete within
the end timeout value, the trigger will be considered misfired.

• Fire the trigger immediately upon detection: This option enables the trigger to fire soon after
the misfire is discovered.

• Do not fire. Wait until the next scheduled time: This option enables the trigger to fire in the
next round.

Hourly, Daily and Monthly Triggers
The three triggers are used to invoke the Hourly, Daily and Weekly job files in /User/admin/cron folder
in the Repository. The Hourly trigger starts at every hour sharp, and invokes a command task to clean
inactive sessions. The Daily trigger starts at 00:15 every day, and invokes a command task to clean

10

Triggers



the unused temporary files and logs files. The Weekly trigger starts at 03:15 am on every Sunday.
These triggers start at different time to avoid conflict.

11

Triggers



Chapter 4
Calendars

Overview
Triggers may use calendars to determine special date or times that should be excluded from the firing
schedule. Upon adding a Calendar you will see Figure 4.1, “Calendar Wizard”.

Figure 4.1. Calendar Wizard

Mark periods for daily events
You can use this option to mark ranges of the day when the trigger should not fire. For example, if
you want to avoid performing an hourly data loading operation between midnight and 6 am, you would
set Start Time 12 am End Time 6 am to exclude that range.

Mark periods for weekly events
This option allows you to choose which days of the week to exclude. For example, you could select
Saturday and Sunday to prevent associated triggers from firing at the weekend.

Mark periods for monthly events
This option allows you to choose which days of the month to exclude. For example, you could select
all but 1 and 15 in order to have the trigger restricted to fire on only the first and fifteenth of each
month.

12



Mark days with specific dates
To prevent triggers being fired on public holidays, you can identify them using this calendar option.
You can also choose whether the dates apply only for one year (some holidays change date each year)
or whether the same date should be excluded every year. For example, to exclude triggers from firing
on Christmas Day you would set the Date to Dec 25th and tick "Repeat every year".

Mark days with CRON expressions
The CRON expression option is the most powerful, but requires the most configuration. Remember
that the expressions chosen are used to exclude not include times from the firing of a trigger. In most
cases a combination of the previous options will be easier to maintain. If a trigger is scheduled to fire
every hour, e.g. 00:00:00, 01:00:00, 02:00:00 etc. then you can use a CRON expression

0 0 /2 ? 0,6 *

to restrict the trigger to fire only once every two hours on weekends. The CRON sample does this by
excluding 00:00:00, 02:00:00, 04:00:00 etc. for days 0 and 6 (Sunday and Saturday).

Note

You can attach more than one trigger to a job, so an alternative strategy for regular restrictions
such as this would be to define a one hourly trigger for weekdays and a second two-hourly
trigger for weekends. This would avoid any exclusion ranges and would perhaps be more
flexible to maintain.

Time zone selection
After marking periods or days, you will be guided to the Time Zone page. Select the correct time zone
where you want the job to be fired, which will be used when interpreting this calendar.

13

Calendars



Chapter 5
Cookbook

Overview
This cookbook describes a number of typical uses for Elixir Scheduler.

Job Recipes

Render All Reports In A Folder
This section will show the user the steps to rendering all the reports in a specified folder into the desired
output format. PDF will be the chosen output format in this case.

1. In a repository or folder, right-click and select Add and Job. Enter a unique name for the job.
For instance, RenderAllReport, then click Finish. The job will be created successfully.

2. In Design tab, right-click on the job, select Add, then FileLoop.

3. Right-click on FileLoop and select Script. Then, add RenderReport. The structure will
be similar to Figure 5.1, “FileLoop Tree”.

Figure 5.1. FileLoop Tree

4. Click on FileLoop. In the FileLoop panel, enter the folder directory in the Folder: field.
User can also click on ... to select the folder. Check Recursive if the files are contained
within the folders of folders.

5. In the File Criteria panel, add a new criteria. In Test, choose Extension in the dropdown
list. For When condition, select Equals. As for Value, enter rml like in Figure 5.2, “File Criteria”.

14



Figure 5.2. File Criteria

6. In Script, enter the following. This is to retain the directory structure:

newFileName = FileName.replace(/.rml/g,".pdf");

7. In the Render Report job, enter ${FileName} for the Name: field in the Report panel. This
is so that the name of the PDF generated will take on the name of the rml file.

8. For the Target panel, select userhome and PDF for the output target name and output mime-
type from the dropdown list respectively. For the Filename: field, enter ${=newFileName}.
For the Folder: field, enter the desired folder name, for example output1, as seen in Figure 5.3,
“Target Parameter”.

Figure 5.3. Target Parameter

9. If user wants to see the progress of file processed, user can click the Log tab to view the log.

10. Now, run the job. After the job has finished running, the generated PDF files can be found in
/User/{User_Name}/output1/.../, and the sub-folders will keep the same structure from the original
folders which contain the reports.

Trigger Recipes

Trigger On The First Monday Of The Month
1. Before creating a trigger, user will need to have an existing job that is working perfectly.

15

Cookbook



2. When a working job is available, create a trigger in Administration Tools > Scheduler
by clicking Add. The Trigger Wizard window opens.

3. In the Trigger Wizard, enter the user name and a unique name for the trigger. Select the job to be
run as seen in Figure 5.4, “Trigger Wizard”. If the job requires parameters to be entered, it will
be done in this page of the wizard.

Figure 5.4. Trigger Wizard

4. The next page of the Trigger Wizard is used to configure the schedule of the trigger, setting the
time and frequency the trigger will run, like in Figure 5.5, “Job Schedule”. To run the trigger on
every Monday of the month, select monthly from the drop down list. For Job fire time:,
enter the time the trigger should run on every Monday of the month. For Months, enter * to
imply all months. Else, click on Select and select the months respectively. Then, select the
second radio button and select First for the first drop down list and Mon for the second drop
down list.

16

Cookbook



Figure 5.5. Job Schedule

5. The following page of the wizard allows the user to configure the active period of the trigger. If
the trigger needs to run forever, select the checkboxes at Now and Never at . Else, select configure
the starting and ending time respectively.

6. The Time Zone page is for users to explicitly specify the time zone where they want the job to
be fired, which will be used when interpreting this trigger.

7. The Trigger Calendar page is for users to load the calendar file, explicitly excluding particular
dates. However, this is not compulsory. Users can continue without defining a calendar file.

8. Misfire Configuration page is on the next page. This enables the user to override the default job
timeouts and makes the trigger know what to do when a misfire occurs.

9. Last but not least, the Security page which is exactly the same for all elements in the Designer.

10. Clicking on Finish will complete the creation process.

11. This trigger will now run at 8a.m. on every first Monday of each month, never ending.

Trigger On The Last Friday Of The Month
This trigger is very similar to the one in the section called “Trigger On The First Monday Of The
Month”.

1. Follow the instructions from step 1 to step 3 in the section called “Trigger On The First Monday
Of The Month”.

2. In step 4 of the section called “Trigger On The First Monday Of The Month”, the configurations
are done for every first Monday of the day. For now, it needs to be changed to every last Friday
of the month. Simply, change First to Last and Mon to Fri in the dropdown list respectively, like
in Figure 5.6, “Every Last Friday Of The Month”.

17

Cookbook



Figure 5.6. Every Last Friday Of The Month

3. The rest of the steps will be similar to the ones mentioned in the section called “Trigger On The
First Monday Of The Month”, from step 5 onwards.

4. This trigger will now run at 8a.m. on every last Friday of the month, forever.

Trigger On The Last Working Day Of The Month
In this example, it is assumed that there are 5 working days in a week, which implies Monday to Friday.

1. Follow the instructions from step 1 to step 3 in the section called “Trigger On The First Monday
Of The Month”.

2. In order to configure the trigger to run on every last working day of the month, change the settings
to according to Figure 5.7, “Every Last Working Day Of The Month”.

18

Cookbook



Figure 5.7. Every Last Working Day Of The Month

3. Follow step 5 to 9 mentioned in the section called “Trigger On The First Monday Of The Month”.

4. When created successfully, the trigger will run on every last working day of the month forever.
If user decides not to run this trigger forever, it can be configured in the Trigger wizard.

Trigger On The Last Working Day Of The Quarter
1. Follow the instructions from step 1 to step 3 in the section called “Trigger On The First Monday

Of The Month”.

2. In order to configure the trigger to run on the last working day of each quarter, change the settings
as shown in Figure 5.8, “Every Last Working Day Of The Quarter”.

19

Cookbook



Figure 5.8. Every Last Working Day Of The Quarter

3. Follow step 5 to 9 mentioned in the section called “Trigger On The First Monday Of The Month”.

4. When the configurations are done correctly and saved, this trigger will run on every last working
day of each quarter.

20

Cookbook


	Elixir Scheduler User Manual
	Table of Contents
	Chapter 1. About Elixir Scheduler
	Overview

	Chapter 2. Jobs and Tasks
	Overview
	Job
	Parameters
	Log

	Tasks
	Action
	AdminCommand
	Ant
	CallJob
	DataLoop
	Echo
	FileLoop
	GenerateData
	Loop
	OnError
	Parallel
	RenderReport
	Script
	SendMail


	Chapter 3. Triggers
	Overview
	Trigger
	Basic Information Page
	Job Schedule Page
	Trigger Active Period
	Time Zone
	Trigger Calendar
	Misfire Configuration

	Hourly, Daily and Monthly Triggers

	Chapter 4. Calendars
	Overview
	Mark periods for daily events
	Mark periods for weekly events
	Mark periods for monthly events
	Mark days with specific dates
	Mark days with CRON expressions
	Time zone selection


	Chapter 5. Cookbook
	Overview
	Job Recipes
	Render All Reports In A Folder

	Trigger Recipes
	Trigger On The First Monday Of The Month
	Trigger On The Last Friday Of The Month
	Trigger On The Last Working Day Of The Month
	Trigger On The Last Working Day Of The Quarter



