Installation and integration of the PSL

Oliver Puncken

Outline

- Construction of the PSLs
- Preparation of the sites
- Sending lasers around the world
- Integration and user interfaces

Outline

- Construction of the PSLs
- Preparation of the sites
- Sending lasers around the world
- Integration and user interfaces

ICTS Winter School 2013 4

Nd:YAG, 14 W, M²<1.05

2003 04 05 06 07 08 09 10 11 12 13

Engineering prototype

2003 04 05 06 07 08 09 10 11 12 13

Fully boxed system

A lot of diagnostics

Output (injection-locked): 220 W upstream the PMC

Rendered picture

March 2010

Mechanics

Optics

Electronics

Water supply

Modules

Assembly and alignment

User manual

Purpose: Operation and handling of the 200 W PSL

Construction manual

 Purpose: construction, assembly and alignment of the aLIGO oscillator, initialization of the 200 W laser

Outline

- Construction of the PSLs
- Preparation of the sites
- Sending lasers around the world
- Integration and user interfaces

Infrastructure to prepare

- Cooling water
- Cleanliness

Water purity

- Distilled water
 - Has virtually all impurities removed through distillation
 - No biological contaminents or minerals
- Deionized water
 - Has minerals removed, such as cations from sodium, calcium, iron, copper and anions as chloride and bromide
 - Because the majority of impurities are dissolved salts, deionization produces similar water quality as distillation
 - However, deionization does not remove uncharged organic molecules (viruses, bacteria)

Water purity

Water Quality/Materials Compatibility, units with in-line partial flow deionization filter

Water purity

- Contamination on crystals occured with aluminum pump chambers and brass parts in the same water loop (galvanic corrosion)
- No contaminations with stainless steel / plastic components

ICTS Winter School 2013 25

Water distribution at the sites

Chiller room (Livingston)

- Chiller racks
 (in use + spare)
- Each one with two chiller ("diode chiller" and "crystal chiller")
- For one of the Hanford "sets": damped setup by chiller suspension

Water distribution at the sites

Laser table

Infrastructure to prepare

- Cooling water
- Cleanliness

Cleanliness

- Work as clean as possible
 - Flow benches
 - Cleanroom / enclosure / "boxed systems"
 - Proper gauning

Cleanroom at LZH

PSL laser area enclosure (LAE)

- Class 1000 clean room for PSL table
- Preparation and storage room
- 20 dB acoustic shielding
- Installation mode / science mode

ICTS Winter School 2013 33

Construction of the PSL enclosure

ICTS Winter School 2013 34

Cleanroom at Hanford

Outline

- Construction of the PSLs
- Preparation of the sites
- Sending lasers around the world
- Integration and user interfaces

Step 1: packing

Step 2: hire a carrier

Step 3: getting a ship

ICTS Winter School 2013

• Step 4: let recipient unpack the container

Step 5: unpack the boxes

Step 6: Arrange the stuff at the sides (here: LHO)

Step 6: Arrange the stuff at the sides

Preparations for OBS 3

- OBS1 = LLO1 = "Livingston laser"
 - delivered and installed in March 2011
- OBS2 = LHO2 = "Hanford laser" at 2 km setup
 - delivered and installed in October 2011
- OBS3 = LHO1 was supposed to be Hanford laser at 4 km setup
 - delivered in March 2012 to LHO

"LIGO south" - Australia

- Increased event rates
- Improved duty cycle
- Improved detection confidence
- Improved sky coverage
- Improved determination of the two GW polarizations

Source detection error wo LIGO south

with LIGO Australia

"LIGO south" - India

- Increased event rates
- Improved duty cycle
- Improved detection confidence
- Improved sky coverage
- Improved determination of the two GW polarizations

Source detection error wo LIGO south

with LIGO India

The big move

- OBS1 = LLO1 = "Livingston laser"
 - delivered and installed in March 2011
- OBS2 = LHO1 = "Hanford laser" at 4 km setup
 - Needs to be disassembled and reassembled in H1 enclosure
- OBS3 = LHO1 was supposed to be Hanford laser at 4 km setup
 - Needs to be stored in Hanford
 - Needs to be shipped to India

The big move

H2 (old setup)

H1 (new setup)

Day 1

H2 (old setup)

H1 (new setup)

Day 4

Day 5

H1 (new setup)

Day 5

H2 (old setup)

H1 (new setup)

Day 6

H2 (old setup)

H1 (new setup)

Day 7

Other equipment had been moved as well:

Outline

- Construction of the PSLs
- Preparation of the sites
- Sending lasers around the world
- Integration and user interfaces

PSL interfaces

More Infrastructure

CDS Electronics room (CER)

PSL racks

Beckhoff

- automation system, based on PC Control technology
- Modular fieldbus
 Components
 ("Terminals"),
 automation software
 ("TwinCAT")
- Lightbus system (up to Functional prototype)
- EtherCAT (real-time Ethernet solution) since Engineering PT

Beckhoff control

- 1) Output power monitor
- 2) Power vs time plot
- 3) Set value of the pump current
- 4) Relative value of measured pump power
- 5) View or change the pump light characteristics
- 6) Turn oscillator on
- 7) Turn oscillator off
- 8) Reset
- 9) Activate watchdog. The oscillator (not the amplifier!) will be switched off, if triggered
- 10) Injection locking menu
- 11) Diagnosics menu
- 12) Chiller menu
- 13) Status screen
- 14) Powermeter readings
- 15) Turns amplifier on
- 16) Turns amplifier off
- 17) Reset amplifier
- 18) Amplifier diagnostics
- 19) NPRO menu
- 20) Amplifier watchdog
- 21) NPRO menu
- 22) MOPA shutter switch
- 23) Amplifier menu
- 24) Internal shutter switch
- 25) External shutter switch

- EPICS screens of the PSL consist of 6
 MEDM screens belonging to the different
 controll objects:
 - the PSL Status
 - the High Power Laser
 - the Diagnostic Bread Board
 - the Pre-Modecleaner
 - the Power Stabilization
 - the Frequency Stabilization

PSL Status

- High power laser (read only)
- related displays to present more information about the different components:
 - pumpdiodes of the 35W front end laser
 - Values of the pump diodes
 - status of the two chillers (diode chiller and XTAL chiller)
 - information about the NPRO
 - status button opens a screen with top-level status indicators.

- Diagnostic breadboard
- Six operation modes:
 - Interlock mode: outputs of the DBB set to default, shutter closed
 - Standby mode: as interlock mode, no measurements
 - Manual mode: adjust PMC length manually; pre-alignment
 - Scan mode:
 PMC scanned with a ramp, mode scans
 - Lock mode:
 PMC length ctrl. loop closed, pointing- and frequency noise measurements
 - Local mode: electronic modules are set by a switch, no computer control

- Pre-modecleaner
 - Automatic / manual lock aquisition
 - high voltage signal monitor
 - power monitors
 - Temperature control
 - PZT control (ramp settings)

Power stabilization

Sensors: two identical photodiodes

- set loop parameters
- Automatic / manual lock aquesition
- diffracted power monitor
- 2nd loop stabilization implemented

- Frequency stabilization
 - NPRO crystal temperature control and monitor (manual or ramp)
 - NPRO PZT control and monitor

(manual or ramp)

- Lock aquesition
- additional test inputs

ICTS Winter School 2013

Acknowledgement

Data and pictures taken from:

(former) LZH researchers: Oliver Puncken, Marcin Damjanic, Maik Frede, Raphael Kluzik, Dietmar Kracht, Bastian Schulz, Christian Veltkamp, Peter Weßels, Ralf Wilhelm, Lutz Winkelmann et al.

(former) AEI researchers: Christina Bogan, Patrick Kwee, Jan Pöld, Frank Seifert, Benno Willke et al.

LIGO Document Control Center (DCC)

Thanks!