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Abstract 

Two-Level Grammar (TLG) is proposed QS an 
object-oriented requirements specification language with 
Q natural language (NL) style but suficiently for- 
mal to allow automatic transformation of the TLG 
specification into formal specifications in VDM++, 
an object-oriented version of the Vienna Development 
Method. The VDM++ specification may be further 
transformed into JavaTM code or integrated with the 
Unified Modeling Language (UML) using the IFAD 
VDM ToolboxTM. The translation into an executable 
programming language facilitates rapid prototyping of 
TLG specifications and the integration with UML al- 
lows TLG specification to be used in conjunction with 
software systems being constructed using UML. This 
software specification approach is supported by Q speci- 
fication development environment (SDE) for construct- 
ing TLG specifications and Q natural language process- 
ing system to assist in translating an NL requirements 
specification into TLG. The system described is Q use- 
ful and constructive tool for automating the production 
of software systems from NL specifications. 

1. Introduction 

Despite a wide variety of formal specification lan- 
guages [l] and modeling languages such as the Uni- 
fied Modeling Language (UML) [ll], natural language 
(NL) remains the method of choice for describing soft- 

*This material is based upon work supported by, or in part 
by, the U. S. Army Research Laboratory and the U. S. Army Re- 
search Office under contract/grant number DAAD19-00-1-0350 
and by the U. S. Office of Naval Research under award number 
N00014-01-1-0746. 
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ware system requirements. Informal specifications in 
NL must be turned into more formal designs on the way 
to a complete implementation. These formal require- 
ments are necessary not only for the rapid prototyping 
of the evolving software systems but also to provide 
a standard reference model upon which all successive 
implementations should be constructed. Since object- 
oriented modeling using UML and associated tools is 
now a standard for software system design, there is a 
need for a requirements specification language which 
may be both conveniently used to express the origi- 
nal NL specification but also mapped into an object- 
oriented design. Since objects are already concepts in 
the domain of an NL vocabulary, an object-oriented 
design has the potential for most closely matching a 
requirements specification in the user’s vocabulary. In 
fact, one technique of object-oriented analysis is to de- 
termine the objects of the problem domain using nouns 
in the requirements specification and determine the in- 
teractions between objects and their associated oper- 
ations using verbs and their direct objects [2]. While 
objects may be more natural to describe in a require- 
ments specification, some additional tools are needed 
to facilitate the mapping between the user’s descrip- 
tion of requirements and the actual design. Toward 
this end, we have developed a requirements specifica- 
tion language based upon Two-Level Grammar (TLG) 
[13] with the following advantages: 

1. The NL nature of a TLG specification makes it 
very understandable and useful as a communica- 
tion medium between users, designers, and imple- 
mentors of the software system. 

2. Despite an apparent NL quality, the TLG notation 
is sufficiently formal to allow formal specifications 
to be constructed using the notation. 
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3. TLG specifications are wide-spectrum, meaning 
that the specification may be very detailed for im- 
plementation as well as very general for design. 

4. We have developed implementation techniques to 
rapidly prototype the TLG specifications, when a 
sufficient level of detail is specified, by means of 
translation into efficient executable code in object- 
oriented programming languages. 

This paper describes the details of the TLG specifica- 
tion language and its implementation, including type 
system, object-orientation, and natural language base, 
and shows how TLG is mapped into VDM++. 

2. Two-Level Grammar 

Two-level Grammar (TLG, also called W-grammar) 
was originally developed as a specification language for 
programming language syntax and semantics, and later 
used as an executable specification language [4], and as 
the basis for conversion from requirements expressed in 
natural language into a formal specification [3]. 

2.1. Language Description 

The name “two-level” in Two-Level Grammar 
comes from the fact that TLG consists of two context- 
free grammars defining the set of type domains and 
the set of function definitions operating on those 
domains, respectively. Note that while we use the 
term “domain” in a type-theoretic context, the notion 
can be scaled up to a much larger context as in 
domain of “objects.” These grammars may be defined 
in the context of a class in which case the type 
domains define the instance variables of the class and 
the function definitions define the methods of the class. 

2.1.1. Types. The type declarations of a TLG pro- 
gram define the domains of the functions and allow 
strong typing of identifiers used in the function defini- 
tions. In traditional TLG literature, these declarations 
are referred to as meta-rules. The function domains of 
TLG may be formally structured as linear data struc- 
tures such as lists, sets, bags, or singleton data objects, 
or be configured as tree-structured data objects. The 
standard structured data types of product domain and 
sum domain may be treated as special cases of these. 

Domain declarations have the following form: 

Identifier-i, Identifier-2, . . . , Identifier-m :: 
data-object-i; data-object-2; . . . ; data-object-n. 
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where each data-object-i is a combination of domain 
identifiers, singleton data objects, and lists of data ob- 
jects, which taken together as a union form the type 
of Identifier-i, Identifier-2, . . . . Identifier-m. 
If n=l, then the domain is a true singleton data ob- 
ject, whereas if n>l, then the domain is a set of the 
n objects. Syntactically, domain identifiers are capi- 
talized, with underscores or additional capitalizations 
of successive words for readability (e.g., IntegerList, 
Symbol-Table, etc.), and singleton data objects are 
lists of NL words written entirely in lower case letters 
(e.g., sorted list). A list, set or bag structure is de- 
noted by a regular expression or by following a domain 
identifier with the suffix List, Set, or Bag, respectively. 
Following conventional regular set notation, * implies 
a list of zero or more elements while + denotes a list 
of one or more elements. Furthermore, there exists 
a predefined environment of primitive types, such as 
Integer, Boolean, Character, String, etc. To clarify 
these, consider the following examples. 

Person : : first name String middle initial Character 
last name String. 

Persons :: PersonList. 
People :: {first name String middle initial Character 

last name String)*. 
Symbol-Table : : {id Identifier type Type value Integer)+. 

Person denotes a product of String, Character, and 
String types, each tagged with an appropriate iden- 
tifier to establish context. The types Persons and 
People are equivalent, as is the type {Person}*. 
Symbol-Table denotes a compiler symbol table config- 
ured as a list of records, each with three fields: id, type 
and value, with corresponding types Ident if ier, 
Type, and Integer (the first two of these are not stan- 
dard TLG types and so should be explicitly declared). 
Each type name which appears on the right side of 
a declaration rule represents a value of that type, i. 
e., type names may be used as variables, making type 
declarations unnecessary although they enhance read- 
ability. 

These examples have illustrated list structured types 
which essentially correspond to regular sets in formal 
language theory. Type checking then corresponds to 
simple pattern matching between regular sets. Deter- 
mining the equivalence between two types is always de- 
cidable and checking the type of a value is equivalent 
to executing a deterministic finite automaton (O(n)). 

The main difference between list structures and tree 
structured domains in terms of their declaration is 
whether the defining domain identifier declaration is 
recursive or not. Recursive domains are more pow- 
erful in that they allow “context-free” data types to 
be defined, such as expression strings with balanced 
parentheses as in the following example: 
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Expression :: ( Expression ). 

The context-free grammars defining such data types 
may not be left recursive and must be unambiguous, 
so as to allow proper parsing. Left recursion is not 
needed since regular expression notation may be used 
in it’s place. For example, instead of expressing: 
Expression :: Expression + Term I Term. 

we may express: 
Expression :: Term {+ Term}*. 

Type checking on tree structures corresponds to 
pattern matching over context-free grammars, i.e., 
parsing. Since we have imposed the restrictions of 
no left recursion and no ambiguity, we can guarantee 
that type checking a value may be done in O(n) time 
using conventional context-free parsing techniques 
(e.g. LL (k) parsing). However, we can not deter- 
mine the equivalence of two tree structured types 
as equivalence of context-free grammars is undecidable. 

2.1.2. Functions. Function definitions comprise the 
operational part of a TLG specification. Their syn- 
tax allows for the semantics of the function to be ex- 
pressed using a structured form of natural language. 
In traditional TLG literature, these are referred to as 
hyper-rules. Function definitions take the forms: 

function signature. 
function signature : 

FunctionCall-I, FunctionCall-2, . . . . FunctionCall-n. 

where n>l. Function signatures are a combination 
of NL words and domain identifiers, corresponding to 
variables in a logic program. Some of these variables 
will typically be input variables and some will be out- 
put variables, whose values are instantiated at the con- 
clusion of the function call. Therefore, functions usu- 
ally return values through the output variables rather 
than directly, in which case the direct return value is 
considered as a Boolean true or false. true means 
that control may pass to the next function call, while 
false means the rule has failed and an alternative rule 
should be tried if possible. Alternative rules have the 
same format as that given above. If multiple function 
rules have the same signature, then the multiple left 
hand sides may be combined with a ; separator, as in: 

function signature : 
FunctionCall-ii, FunctionCall-12, . . . . FunctionCall-ij; 
FunctionCall-21, FunctionCall-22, . . . . FunctionCall-2k; 
. . . 
FunctionCall-ni, FunctionCall-n2, . . . . FunctionCall-nm. 

where there are n alternatives, each having a varying 
number of function calls. Besides Boolean values, func- 
tions may return regular values, usually the result of 
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arithmetic calculations. In this case, only the last func- 
tion call in a series should return such a value. 

An important aspect about TLG is that the 
functions may be written at a very high level of 
abstraction (e.g. compute the total mass and 
total cost) or embedded into a domain definition as 
in traditional object-oriented programs (e.g. compute 
the TotalMass and TotalCost of This Part by 
computing the TotalMass and TotalCost of its 
Subparts, which might be embedded as a method 
in a Part class). The use of NL in the function 
may be regarded as a form of infix notation for 
functions, in contrast with the customary prefix forms 
of most other programming languages. It is similar 
to multi-argument message selectors in Smalltalk but 
provides even greater flexibility, including the presence 
of logical variables, denoted by the use of domain 
names (capitalized). This notation provides a highly 
readable way of writing what is to be done and is 
wide-spectrum in the sense that “what is to be done” 
may be expressed at multiple levels. The functions 
typically return a Boolean value as the main operation 
is to instantiate the logical variables, but simple 
function values such as arithmetic expressions may 
also be computed. These function definitions form 
the basis for the initial design. In an implementation, 
they may be represented by functions in traditional 
object-oriented programming languages, such as Java. 

A function may be defined as a rule. For example, 
we could define an expensive part using the syntax 
Expensive part : part with an imported base 
part and cost more than $100. or alternatively we 
could write in more natural form Expensive parts 
are parts with an imported base part and cost 
more than $100. An implementation would trans- 
form the second form into the first, and even that form 
into the more formal rule for Part objects: expensive 
: BasePart imported, Cost > 100. 

To explain the operational semantics of TLG func- 
tion rules, note that each function call on the right 
hand side of a function definition should correspond 
to a function signature defined within the scope of 
the TLG program or be a special operation such as a 
Boolean comparison, assignment statement, or if-then- 
else statement. Every domain identifier with the same 
name is instantiated to the same value within a func- 
tion invocation. This is called consistent substitution. 
If variables have the same root name but are numbered, 
then the numbers are used to distinguish between vari- 
ables. A numbered variable Vi will then be different 
from a variable ~2 and the two can have different val- 
ues. However, they will be of the same type, namely 
type V. Once a variable has been assigned a value, it 
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may not be reassigned, unless it is an instance variable 
of a class, and even in this case, it would not be usual 
to do so in the same function. Each function definition 
may therefore be thought of as a set of logical rules. 
The function calls are executed in the order given in 
the function definition. Functions may be recursive 
with the expected operational behavior. 

Besides defined functions, TLG supports the 
usual arithmetic and Boolean operations, as well 
as list comprehensions and iterators over lists. 
The syntax of a list comprehension is list all 
Element from ElementList such that Element 
condition giving ElementList2. This returns 
a list, ElementList2, of all Element values in 
ElementList satisfying the given condition. The 
syntax of an iterator is select Element from 
ElementList with Element condition. This re- 
turns the first Element from ElementList which 
satisfies the condition. 

To explain the language further, consider the follow- 
ing examples. 

Example 1. Palindrome. 

Character is a palindrome. 
Character String Character is a palindrome : 

String is a palindrome. 

This TLG specification has no explicit type declara- 
tions since the function rules use the type names di- 
rectly as variables. The two function rules are mutu- 
ally exclusive, the first handling single characters and 
the second handling strings of two or more characters. 
The second rule matches if and only if the first and last 
characters of the string argument are the same. 

Example 2. Quick Sort. 

Pivot :: Integer. 
IntegersLess, IntegersGreater, SortedIntegersLess, 

SortedIntegersGreater :: IntegerList. 

quick sort Empty into Empty. 

quick sort Pivot IntegerList into SortedIntegersLess 
Pivot SortedIntegersGreater : 

split IntegerList into lists IntegersLess and 
IntegersGreater using Pivot, 

quick sort IntegersLess into SortedIntegersLess, 
quick sort IntegersGreater into SortedIntegersGreater. 

split Empty into lists Empty and Empty using Pivot. 

split Integer IntegerList into lists Integer IntegersLess 
and IntegersGreater using Pivot : 

Integer <= Pivot, 
split IntegerList into lists IntegersLess and 

IntegersGreater using Pivot. 

split Integer IntegerList into lists IntegersLess and 
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Integer IntegersGreater using Pivot: 
Integer > Pivot, 
split IntegerList into lists IntegersLess and 

IntegersGreater using Pivot. 

The two quick sort rules are mutually exclusive, but 
the second and third split rules may both match non- 
empty lists. Each of these two split rules serves to dis- 
tribute the Integer at the beginning of the list to the 
IntegersLess list or IntegersGreater list, depend- 
ing on its relationship to pivot. The first function call 
in each case serves as a guard to distinguish the two 
rules. This could have been written using an if-then- 
else construction, avoiding the need for the guard. 

split Integer IntegerList into lists IntegerList and 
IntegerList using Pivot : 

split IntegerList into lists IntegersLess and 
IntegersGreater using Pivot, 

if Integer <= Pivot then begin 
IntegerList := Integer IntegersLess, 
IntegerList := IntegersGreater, 

end 
else begin 

IntegerList := IntegersLess, 
IntegerList := Integer IntegersGreater, 

end. 

This imperative style of writing TLG’s includes the 
begin-end grouping block and assignment statements. 

The split rule may be eliminated completely 
by using list comprehensions to determine the 
IntegersLess and IntegersGreater, as shown below. 

quick sort Pivot IntegerList into SortedIntegersLess 
Pivot SortedIntegersGreater : 

list all Integer from IntegerList such that 
Integer <= Pivot giving IntegersLess, 

quick sort IntegersLess into SortedIntegersLess, 
list all Integer from IntegerList such that 

Integer > Pivot giving IntegersGreater, 
quick sort IntegersGreater into SortedIntegersGreater. 

Note that the variable Integer appearing in the list 
all function is not actually instantiated and so may 
be used in both list all functions without confusion. 

2.1.3. Classes. TLG domain declarations and associ- 
ated functions may be structured into a class hierarchy 
supporting multiple inheritance. The syntax of TLG 
class definitions is: 

class Identifier-i 
[extends Ident if ier-2, . . . , Ident if ier-n] . 
<instance variable and method declarations) 

end class [Identifier-i] . 

Ident if ier-I is declared to be a class which inherits 
from classes Identifier-2, . . . . Identifier-n. In the 
above syntax, square brackets are used to indicate the 
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extends clause is optional so a class need not inherit 
from any other class. The instance variables compris- 
ing the class definition are declared using the domain 
declarations described earlier. In general, the scope 
of these domain declarations is limited to the class in 
which they are defined, while the methods, correspond- 
ing to TLG function definitions, have scope anywhere 
an object of the given class is referred to. These no- 
tions of scoping correspond to private and public access 
respectively in object-oriented languages such as Java, 
and either scope may be declared explicitly or the scope 
may be made protected. Methods are called by writing 
a sentence or phrase containing the object. The result 
of the method call is to instantiate the logical variables 
occurring in the method definition. 

For every class, there are predefined methods begin- 
ning with This which serve only to select the instance 
variables of a class (e.g., This InstanceVariable re- 
turns the value of InstanceVariable). This serves 
as a special variable used within the method body to 
denote the object to which the method is being ap- 
plied. Likewise, for every instance variable of simple 
type there are get and set methods to access or mod- 
ify that variable. For every instance variable of list 
type, there are add and remove methods. These are 
assumed and do not need to be explicitly defined. 

TLG class declarations serve to encapsulate the 
TLG domain declarations and function definitions. 
The class hierarchy which is resident in TLG is a small 
forest of built-in classes, such as integers, lists, etc. The 
“main” program is nothing more than a set of object 
declarations using the existing class identifiers as do- 
main names and a “query” of the appropriate methods. 

3. Implement at ion 

To effectively use TLG in the requirements specifica- 
tion process, we have developed a Specification Devel- 
opment Environment (SDE) which facilitates the con- 
struction of TLG specifications from requirements doc- 
uments expressed in natural language, and then trans- 
lates TLG specifications into executable code. NL re- 
quirements are translated into TLG through Contex- 
tual Natural Language Processing (CNLP) [lo] which 
constructs a knowledge representation of the require- 
ments which may be expressed using TLG. The TLG is 
then translated into VDM++ [5], the object-oriented 
extension of the Vienna Development Method (VDM) 
Specification Language (VDM-SL) [9]. The IFAD 
VDM Toolbox [8] is then used to generate code in an 
object-oriented programming language such as Java. 
The complete system structure is shown in Figure 1. 
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Figure 1. Structure of Specification Develop- 
ment Environment 

These components are explained in the following sec- 
tions in terms of an example, the Automatic Teller Ma- 
chine (ATM) requirements specification below. 

The bank keeps the list of accounts. 
Each account has three integer data fields; ID, PIN, and 
balance. The ATM machine has 3 service types; withdraw, 
deposit, and balance check. For each service first it 
verifies ID and PIN from the bank. 

Withdraw service withdraws an amount from the account of 
ID with PIN in the bank in the following sequence: 
First it gets the balance of the account of ID from 
the bank, if the amount is less than or equal to the 
balance then it decreases the balance by Amount, 
updates the balance of the account of ID in the bank, 
and then outputs the new balance. 

Deposit service deposits an amount to the account of ID 
with PIN in the bank in the following sequence: 
First it gets the balance of the account of ID from the 
bank, it increases the balance by Amount, updates the 
balance of the account of ID in the bank, and then 
outputs the new balance. 

Balance check service checks the balance of the account 
of ID with PIN in Bank in the following order: 
It gets the balance of the account of ID from the bank, 
and then outputs the balance. 

Transfer service withdraws an amount from the account of 
IDI with PIN in the bank and deposits the amount to the 
account of ID2. 

3.1. Processing NL Requirements Specifications 

The SDE has NL parsing capabilities as well as a 
lexicon to aid in classification of words into nouns (ob- 
jects) and verbs (operations on objects) and their re- 
lationship. Since all domain knowledge is specified by 
the domain definitions of the specification, the require- 
ments written by the user can be parsed to determine 
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the object being acted upon and the operation needed 
to be performed. This initial analysis of the require- 
ments document provides the basis for further refine- 
ment according to the syntax of Two-Level Grammar 
function and domain definitions. The SDE analyzes 
each function definition and attempts to classify from 
the NL text which domains were involved, including 
the primary domain, perhaps a class, the function be- 
longs to. A sufficient degree of interaction with the 
user ensures a correct interpretation. Any aspect of 
the specification which cannot be understood by the 
system can be resolved through further querying of the 
user. This may include the specification of additional 
domains and/or functions which make the specification 
more detailed. Once the system has “understood” the 
requirements that the user has specified, it can pro- 
ceed with the transformation into the design and the 
underlying design tool can further refine this into a 
prototype implementation for the user to review. This 
process may be repeated iteratively until the require- 
ments have been sufficiently developed to satisfy both 
the user and designer. By “user” we refer to either the 
end-user who has commissioned the system or require- 
ments specification engineer working with the end-user. 
The designer can then finalize the mapping of the re- 
quirements specification into the final design. Applying 
this NL processing front end to the ATM requirements 
specification gives the following TLG. 

class Account. 
Id, Pin, Balance, Amount :: Integer; 

withdraw Amount giving Balance1 : 
Amount <= Balance, 
Balance1 := Balance - Amount, 
set balance to Balancei. 

deposit Amount giving Balance1 : 
Balance1 := Balance + Amount, 
set balance to Balancei. 

end class. 

class Bank. 
Accounts :: AccountList. 
Id, Pin :: Integer. 

get account using Id giving Account : 
select Account from Accounts 

with id of Account = Id. 

get account using Id and Pin giving Account : 
select Account from Accounts with 
id of Account = Id and pin of Account = Pin. 

end class. 

class ATM. 
Id, Pin, Balance, Amount :: Integer. 

withdraw Amount from account of Id with Pin in Bank 
giving Balance : 
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get account from Bank using Id and Pin 
giving Account, 

withdraw Amount from Account giving Balance. 

deposit Amount account of Id with Pin in Bank 
giving Balance : 

get account of Bank using Id and Pin 
giving Account, 

deposit Amount to Account giving Balance. 

check balance of Id with Pin in Bank giving Balance : 
get account of Bank using Id and Pin giving Account, 
get balance of Account giving Balance. 

transfer Amount from account of Idi with Pini to 
account of Id2 in Bank : 

withdraw Amount from account of Idi 
with Pini in Bank giving Balancei, 

get account of Bank using Id2 giving Account2, 
deposit Amount to Account2 giving Balance. 

end class. 

It can be seen that the TLG is a structured form of the 
original NL specification. The exact same vocabulary 
is used as it is extracted by the NL processing front end. 
Additional information is added as needed to provide 
object data member access, e.g., get functions to access 
component objects. 

Previous work in the area of NL specification of 
requirements includes a software reuse system which 
uses NL descriptions of library components to facil- 
itate their selection for incorporation into an imple- 
mentation [7], and “controlled natural language” [6], 
which is NL of a specific syntax with all vocabulary 
coming from a fixed domain. The latter system is able 
to translate the controlled NL specifications into Pro- 
log so that they may be executed. We believe that 
our object-oriented approach to this problem offers a 
number of advantages with respect to both formal spec- 
ification and object-oriented modeling. 

3.2. Translation of TLG into VDM++ 

VDM++ has been selected as the target spec- 
ification language for TLG because VDM++ has 
many similarities in structure to TLG and also 
has tool support for analysis and code generation. 
Although TLG and VDM++ are both formal spec- 
ification languages, the translation from TLG into 
VDM++ is not simply a direct mapping between 
them. We will first give an overview of VDM++ 
and then explain how TLG is translated into VDM++. 

3.2.1. VDM++. The structure of a VDM++ spec- 
ification is organized as a collection of classes which 
take the following general form: 

class identifier 
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[is subclass of identifier-i, . . . . identifier-n] 
value definitions 
type definitions 
instance variable definitions 
operation definitions 

end ident if ier 

Value and type definitions define constants and types 
that may be used in the class, respectively. VDM++ 
types include the basic data types as well as compound 
types in the form of sets, sequences, and maps. In- 
stance variable definitions are the state variables of the 
class. Operation definitions correspond to methods. 
Operations have a signature and a body which may be 
an expression in the style of functional programming 
languages or a collection of imperative statements 
with return statements to return the function values. 
VDM++ also includes the option of defining state 
invariants, and pre-conditions and post-conditions for 
operations. Synchronization of concurrent operations 
and multi-threading are also provided for. At present 
we do not use these features in our translation schemes. 

3.2.2. Translation Schemes. The translation of 
class definitions, including with inheritance, and com- 
pound type declarations, may be described through the 
tables shown in Figures 2 and 3. The translation of ba- 
sic types is straightforward and so is not shown here. 
Type declarations in TLG specifications occur in class 
definitions for two purposes: 1) to define an instance 
variable of the class, and 2) to define variables which 
may be used in function definitions, either as function 
arguments or to calculate intermediate values. These 
are not difficult to distinguish as instance variables are 
related only to the state of the object and so must be 
used in function definitions other than as function ar- 
guments, typically a get or set operation. It is also 
straightforward to determine a variable used only for 
intermediate value calculation as such a variable will 
always be written before it is read - instance variables 
must have some function which reads them only. 

A TLG function is translated into a VDM++ op- 
eration. TLG variables local to that function will be 
translated into VDM++ function local variables. Fig- 
ure 4 indicates the general scheme for function defini- 
tions, which essentially consist of a function signature 
and a series of function calls. In these translations 
schemes, Arg-I, Arg-2, etc., are the arguments to the 
function, Return-l, Return-2, etc., are the results of 
the function, and Arg-Type-i and Return-Type-i are 
their respective types. The declaration of a result vari- 
able occurs only if the variable is not an instance vari- 
able of the class. This would not normally be the case 
unless the function was a get method associated with 
that instance variable. Since TLG functions may re- 
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turn many result values whereas VDM++ operations 
only return a single value, these multiple result values 
should be constructed into a product for the purpose 
of returning them as a single value. The ml- opera- 
tion accomplishes this. mk- is not needed if only one 
return value is required. Figure 4 also shows the trans- 
lation schemes for function calls. The declaration of a 
return variable occurs only if the variable has not been 
declared previously either as a return variable of the 
function definition in which the function call appears, 
or as an instance variable of the class. Since function 
g may return multiple values, the VDM++ operation 
returns a product of those values which may then be 
extracted into the individual values. 

In addition to returning the values of result vari- 
ables, TLG functions will either succeed or fail, as in 
logic programming predicates. Failure implies that no 
result variables are instantiated. This situation must 
be detected by VDM++ operations corresponding to 
those functions. In our generated VDM++ code, a 
special Boolean variable is introduced into the state 
of every object to indicate whether an operation 
performed on that object succeeded or failed. If the 
operation 0 fails, then so does the operation 0’ that 
invoked 0, the operation that invoked 0’, etc. That 
is, this failure may be propagated to each previous 
operation until it causes the entire operation to fail 
or an alternative operation is possible. An alternative 
operation is one in which multiple rules are given for 
the same function signature. For function definitions 
defined by several rules, TLG uses pattern matching 
to determine which rule is appropriate. This pattern 
matching is implemented in VDM++ by either com- 
parisons in cases where the pattern is a simple data 
type or by VDM++ pattern matching for compound 
data types. The examples in Figures 5 and 6 illustrate 
each case. Note that the factorial function is not 
defined over all integers as the TLG rules will succeed 
only for natural numbers. Therefore, the VDM++ 
operation may fail on a negative number argument, 
rendering the return value invalid. Functions calling 
factorial must also check for this failure. This does 
not include the recursive call since it can be detected 
that factorial (n - 1) will never fail since n > I. 

3.2.3. Example. The VDM++ translation of our 
running example, according to the rules given in the 
previous section, is shown below. As with the gener- 
ated TLG, this code has been distilled for readability. 

class Account 
instance variables 

id, pin, balance : int; 

operations 
17.00 (c) 2002 IEEE 7
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Simnle Class 

TLG 
class C. 

domain declarations 

function definitions 
end class. 

1 VDM++ 
class C 

Class With Inheritance 
TLG VDM++ 
class SC class SC 

instance variables 
variable declarations 

operations 
operation definitions 

end C 

extends C. is subclass of C 
. . . . . . 

end class. end C 

Figure 2. Translation Schemes for Classes 

TLG VDM++ Type 
DataObj :: DataTypeSet. DataObj = set of DataType Set 
DataObj :: DataTypeList. DataObj = seq of DataType Sequence 
DataObj :: {DataType}*. DataObj = seq of DataType Sequence 
DataObj :: {DataType}+. DataObj = seqi of DataType Sequence 
DataObj :: DataTypei DataType2. DataObj = DataTypei * DataType Product 
DataObj :: (DataName DataTypei DataObj = DataNamei : DataTypei Composite 

DataName DataType2). DataName : DataType 
DataObj :: DataTypei; DataType2. DataObj = DataTypei 1 DataType Union 

Figure 3. Translation Schemes for Compound Data Types 

f of Arg-I and . . . and Arg-n 
giving Return-i and . . . and Return-m : 

function calls 
VDM++ 
f: ArgType-I * . . . * ArgType-n ==> 

ReturnType- * . . . * ReturnType-m 
f (arg-I, . . . . arg-n) == 

(dcl Return-i : ReturnType-I; 
. . . 
dcl Return-m : ReturnType-m; 
function calls 
return mk- (Return-i, . . . . Return-m) 

1 

Function Calls 
1 TLG 

g of Arg-I and . . . and Arg-n 
giving Return-i and . . . and Return-m 

VDM++ 
dcl Return-i : ReturnType-I; 
. . . 
dcl Return-m : ReturnType-m; 
dcl Returns : 

ReturnType- * . . . ReturnType-m; 
Returns := g (Arg-I, . . . . Arg-n); 
Return-i := Returns . #I; 
. . . 
Return-m := Returns . #m: 

Figure 4. Translation Scheme for Functions 

TLG VDM++ 
factorial of 0 : I. factorial : int ==> int 
factorial of Integer : factorial (n) == 

Integer > I, if n = 0 then return I 
Integer * factorial of (Integer - I). elseif n > I then return n * factorial (n - I> 

else (fail := true: return 0) 

Figure 5. Simple Data Type Pattern Matching 
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 8
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quick sort Empty into Empty. 
quick sort Pivot IntegerList into SortedIntegersLess Pivot SortedIntegersGreater : 

split IntegerList into lists IntegersLess and IntegersGreater using Pivot, 
quick sort IntegersLess into SortedIntegersLess, 
quick sort IntegersGreater into SortedIntegersGreater. 

VDM++ 
quicksort : seq of int ==> seq of int 
quicksort (PivotIntegerList) == 

cases pivotIntegerList : 
[] -> return [I; 
[pivot] ^ integerList -> 

(dcl splitReturns, integersless, integersGreater : seq of int; 
dcl sortedIntegersLess, SortedIntegersGreater : seq of int; 
splitReturns := split (integerList, pivot); 
integersLess := splitReturns . #I; integersGreater := splitReturns . #2; 
SortedIntegersLess := quicksort (integersLess); 
SortedIntegersGreater := quicksort (integersGreater); 
return SortedIntegersLess ^ [pivot] ^ SortedIntegersGreater 

> 
end 

Figure 6. Compound Data Type Pattern Matching 

. . . getId, setId, getlin, setlin, etc. . . . 

withdraw : int ==> int 
withdraw (amount) == 

(dcl amount : int; 
if amount <= balance then 

(dcl balance1 : int; 
balance1 := balance - amount; 
setBalance (balancei) 

); 
return balance 

); 

deposit : int ==> int 
deposit (amount) == 

(dcl amount, balance1 : int; 
balance1 := balance + amount; 
setBalance (balancei); 
return balance 

); 

class ATM 
instance variables 

bank : Bank; 

operations 
. . . getBank and setBank . . . 

withdraw : int * int * int ==> int 
withdraw (amount, id, pin) == 

(dcl account : Account; 
dcl balance : int; 
account := bank . getAccountByIdPin (id, pin); 
balance := account . withdraw (amount); 
return balance 

); 

deposit : int * int * int ==> int 
deposit (amount, id, pin) == 

(dcl account : Account; 
end Account 

class Bank 
instance variables 

accounts : seq of Account; 

operations 
. . addAccount and removeAccount . . . 

getAccountById : int ==> Account 
getAccountById (id) == . . . 

getAccountByIdPin : int * int ==> Account 
getAccountByIdPin (id, pin) == . . . 

end Bank 

dcl balance : int; 
account := bank . getAccountByIdPin (id, pin); 
balance := account . deposit (amount); 
return balance 

); 

checkBalance : int * int ==> int 
checkBalance (id, pin) == 

(dcl account : Account; 
dcl balance : int; 
account := bank . getAccountByIdPin (id, pin); 
balance := account . getBalance 0; 
return balance 

); 
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 9
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transfer : int * int * int * int ==> 0 
transfer (amount, idi, pini, id2) == 

(dcl account2 : Account; 
dcl balance, balance1 : int; 
balance1 := withdraw (amount, idi, pini) ; 
account2 := bank . getAccountById (id2) ; 
balance := account2 . deposit (amount) 
return; 

); 
end ATM 

4. Summary and Conclusions 

Two-Level Grammar has been presented as an 
object-oriented requirements specification language 
which is natural language-like in style but sufficiently 
formal to allow automatic transformation of the TLG 
specification into a VDM++ object-oriented formal 
specification. The IFAD VDM Toolbox provides for 
an integration of VDM++ with the Unified Model- 
ing Language (UML) [ll] through a link between the 
Rational Rose 2000 TM [12] implementation of UML 
and VDM++. This tool translates between UML and 
VDM++ and so supports round-trip engineering which 
may be iterative. Presently we use this in a single 
direction, from TLG to VDM++ to UML. This ef- 
fectively allows for UML modeling of the TLG spec- 
ification and so is useful for integration with existing 
UML models. Rational Rose does provide an “Add-In” 
mechanism with which we hope to have a direct inte- 
gration with TLG in the future. The translation into 
an executable programming language using the IFAD 
VDM++ to Java code generator facilitates rapid proto- 
typing of TLG specifications. Our approach to software 
specification is supported by a specification develop- 
ment environment (SDE) for constructing TLG speci- 
fications and a natural language processing system to 
assist in translating an NL requirements specification 
into the TLG. The system is a useful and constructive 
tool for automating the production of software systems 
from NL specifications. 

At present the SDE exists only in prototype form 
but is able to handle simple NL specifications, as our 
example illustrated. We are extending this system so 
that more complex NL specifications may be handled. 
We would also like to automate the interaction between 
our SDE and tools like Rational Rose directly, in ad- 
dition to going through VDM++. This will give us 
a complete visual modeling tool not only for object- 
oriented design but also for specification as well. 

Acknowledgements. The authors would like to 
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