
Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
Two-Level Grammar as an Object-Oriented Requirements
Specification Language *

Barrett R. Bryant Beum-Seuk Lee
Department of Computer and Information Sciences

The University of Alabama at Birmingham
1300 University Boulevard

Birmingham, AL 35294-1170, U. S. A.
{bryant, leebs}@cis.uab.edu
Abstract

Two-Level Grammar (TLG) is proposed QS an
object-oriented requirements specification language with
Q natural language (NL) style but suficiently for-
mal to allow automatic transformation of the TLG
specification into formal specifications in VDM++,
an object-oriented version of the Vienna Development
Method. The VDM++ specification may be further
transformed into JavaTM code or integrated with the
Unified Modeling Language (UML) using the IFAD
VDM ToolboxTM. The translation into an executable
programming language facilitates rapid prototyping of
TLG specifications and the integration with UML al-
lows TLG specification to be used in conjunction with
software systems being constructed using UML. This
software specification approach is supported by Q speci-
fication development environment (SDE) for construct-
ing TLG specifications and Q natural language process-
ing system to assist in translating an NL requirements
specification into TLG. The system described is Q use-
ful and constructive tool for automating the production
of software systems from NL specifications.

1. Introduction

Despite a wide variety of formal specification lan-
guages [l] and modeling languages such as the Uni-
fied Modeling Language (UML) [ll], natural language
(NL) remains the method of choice for describing soft-

*This material is based upon work supported by, or in part
by, the U. S. Army Research Laboratory and the U. S. Army Re-
search Office under contract/grant number DAAD19-00-1-0350
and by the U. S. Office of Naval Research under award number
N00014-01-1-0746.
0-7695-1435-9/02
ware system requirements. Informal specifications in
NL must be turned into more formal designs on the way
to a complete implementation. These formal require-
ments are necessary not only for the rapid prototyping
of the evolving software systems but also to provide
a standard reference model upon which all successive
implementations should be constructed. Since object-
oriented modeling using UML and associated tools is
now a standard for software system design, there is a
need for a requirements specification language which
may be both conveniently used to express the origi-
nal NL specification but also mapped into an object-
oriented design. Since objects are already concepts in
the domain of an NL vocabulary, an object-oriented
design has the potential for most closely matching a
requirements specification in the user’s vocabulary. In
fact, one technique of object-oriented analysis is to de-
termine the objects of the problem domain using nouns
in the requirements specification and determine the in-
teractions between objects and their associated oper-
ations using verbs and their direct objects [2]. While
objects may be more natural to describe in a require-
ments specification, some additional tools are needed
to facilitate the mapping between the user’s descrip-
tion of requirements and the actual design. Toward
this end, we have developed a requirements specifica-
tion language based upon Two-Level Grammar (TLG)
[13] with the following advantages:

1. The NL nature of a TLG specification makes it
very understandable and useful as a communica-
tion medium between users, designers, and imple-
mentors of the software system.

2. Despite an apparent NL quality, the TLG notation
is sufficiently formal to allow formal specifications
to be constructed using the notation.
$17.00 (c) 2002 IEEE 1

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
3. TLG specifications are wide-spectrum, meaning
that the specification may be very detailed for im-
plementation as well as very general for design.

4. We have developed implementation techniques to
rapidly prototype the TLG specifications, when a
sufficient level of detail is specified, by means of
translation into efficient executable code in object-
oriented programming languages.

This paper describes the details of the TLG specifica-
tion language and its implementation, including type
system, object-orientation, and natural language base,
and shows how TLG is mapped into VDM++.

2. Two-Level Grammar

Two-level Grammar (TLG, also called W-grammar)
was originally developed as a specification language for
programming language syntax and semantics, and later
used as an executable specification language [4], and as
the basis for conversion from requirements expressed in
natural language into a formal specification [3].

2.1. Language Description

The name “two-level” in Two-Level Grammar
comes from the fact that TLG consists of two context-
free grammars defining the set of type domains and
the set of function definitions operating on those
domains, respectively. Note that while we use the
term “domain” in a type-theoretic context, the notion
can be scaled up to a much larger context as in
domain of “objects.” These grammars may be defined
in the context of a class in which case the type
domains define the instance variables of the class and
the function definitions define the methods of the class.

2.1.1. Types. The type declarations of a TLG pro-
gram define the domains of the functions and allow
strong typing of identifiers used in the function defini-
tions. In traditional TLG literature, these declarations
are referred to as meta-rules. The function domains of
TLG may be formally structured as linear data struc-
tures such as lists, sets, bags, or singleton data objects,
or be configured as tree-structured data objects. The
standard structured data types of product domain and
sum domain may be treated as special cases of these.

Domain declarations have the following form:

Identifier-i, Identifier-2, . . . , Identifier-m ::
data-object-i; data-object-2; . . . ; data-object-n.
0-7695-1435-9/02
where each data-object-i is a combination of domain
identifiers, singleton data objects, and lists of data ob-
jects, which taken together as a union form the type
of Identifier-i, Identifier-2, Identifier-m.
If n=l, then the domain is a true singleton data ob-
ject, whereas if n>l, then the domain is a set of the
n objects. Syntactically, domain identifiers are capi-
talized, with underscores or additional capitalizations
of successive words for readability (e.g., IntegerList,
Symbol-Table, etc.), and singleton data objects are
lists of NL words written entirely in lower case letters
(e.g., sorted list). A list, set or bag structure is de-
noted by a regular expression or by following a domain
identifier with the suffix List, Set, or Bag, respectively.
Following conventional regular set notation, * implies
a list of zero or more elements while + denotes a list
of one or more elements. Furthermore, there exists
a predefined environment of primitive types, such as
Integer, Boolean, Character, String, etc. To clarify
these, consider the following examples.

Person : : first name String middle initial Character
last name String.

Persons :: PersonList.
People :: {first name String middle initial Character

last name String)*.
Symbol-Table : : {id Identifier type Type value Integer)+.

Person denotes a product of String, Character, and
String types, each tagged with an appropriate iden-
tifier to establish context. The types Persons and
People are equivalent, as is the type {Person}*.
Symbol-Table denotes a compiler symbol table config-
ured as a list of records, each with three fields: id, type
and value, with corresponding types Ident if ier,
Type, and Integer (the first two of these are not stan-
dard TLG types and so should be explicitly declared).
Each type name which appears on the right side of
a declaration rule represents a value of that type, i.
e., type names may be used as variables, making type
declarations unnecessary although they enhance read-
ability.

These examples have illustrated list structured types
which essentially correspond to regular sets in formal
language theory. Type checking then corresponds to
simple pattern matching between regular sets. Deter-
mining the equivalence between two types is always de-
cidable and checking the type of a value is equivalent
to executing a deterministic finite automaton (O(n)).

The main difference between list structures and tree
structured domains in terms of their declaration is
whether the defining domain identifier declaration is
recursive or not. Recursive domains are more pow-
erful in that they allow “context-free” data types to
be defined, such as expression strings with balanced
parentheses as in the following example:
$17.00 (c) 2002 IEEE 2

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
Expression :: (Expression).

The context-free grammars defining such data types
may not be left recursive and must be unambiguous,
so as to allow proper parsing. Left recursion is not
needed since regular expression notation may be used
in it’s place. For example, instead of expressing:
Expression :: Expression + Term I Term.

we may express:
Expression :: Term {+ Term}*.

Type checking on tree structures corresponds to
pattern matching over context-free grammars, i.e.,
parsing. Since we have imposed the restrictions of
no left recursion and no ambiguity, we can guarantee
that type checking a value may be done in O(n) time
using conventional context-free parsing techniques
(e.g. LL (k) parsing). However, we can not deter-
mine the equivalence of two tree structured types
as equivalence of context-free grammars is undecidable.

2.1.2. Functions. Function definitions comprise the
operational part of a TLG specification. Their syn-
tax allows for the semantics of the function to be ex-
pressed using a structured form of natural language.
In traditional TLG literature, these are referred to as
hyper-rules. Function definitions take the forms:

function signature.
function signature :

FunctionCall-I, FunctionCall-2, FunctionCall-n.

where n>l. Function signatures are a combination
of NL words and domain identifiers, corresponding to
variables in a logic program. Some of these variables
will typically be input variables and some will be out-
put variables, whose values are instantiated at the con-
clusion of the function call. Therefore, functions usu-
ally return values through the output variables rather
than directly, in which case the direct return value is
considered as a Boolean true or false. true means
that control may pass to the next function call, while
false means the rule has failed and an alternative rule
should be tried if possible. Alternative rules have the
same format as that given above. If multiple function
rules have the same signature, then the multiple left
hand sides may be combined with a ; separator, as in:

function signature :
FunctionCall-ii, FunctionCall-12, FunctionCall-ij;
FunctionCall-21, FunctionCall-22, FunctionCall-2k;
. . .
FunctionCall-ni, FunctionCall-n2, FunctionCall-nm.

where there are n alternatives, each having a varying
number of function calls. Besides Boolean values, func-
tions may return regular values, usually the result of
0-7695-1435-9/02
arithmetic calculations. In this case, only the last func-
tion call in a series should return such a value.

An important aspect about TLG is that the
functions may be written at a very high level of
abstraction (e.g. compute the total mass and
total cost) or embedded into a domain definition as
in traditional object-oriented programs (e.g. compute
the TotalMass and TotalCost of This Part by
computing the TotalMass and TotalCost of its
Subparts, which might be embedded as a method
in a Part class). The use of NL in the function
may be regarded as a form of infix notation for
functions, in contrast with the customary prefix forms
of most other programming languages. It is similar
to multi-argument message selectors in Smalltalk but
provides even greater flexibility, including the presence
of logical variables, denoted by the use of domain
names (capitalized). This notation provides a highly
readable way of writing what is to be done and is
wide-spectrum in the sense that “what is to be done”
may be expressed at multiple levels. The functions
typically return a Boolean value as the main operation
is to instantiate the logical variables, but simple
function values such as arithmetic expressions may
also be computed. These function definitions form
the basis for the initial design. In an implementation,
they may be represented by functions in traditional
object-oriented programming languages, such as Java.

A function may be defined as a rule. For example,
we could define an expensive part using the syntax
Expensive part : part with an imported base
part and cost more than $100. or alternatively we
could write in more natural form Expensive parts
are parts with an imported base part and cost
more than $100. An implementation would trans-
form the second form into the first, and even that form
into the more formal rule for Part objects: expensive
: BasePart imported, Cost > 100.

To explain the operational semantics of TLG func-
tion rules, note that each function call on the right
hand side of a function definition should correspond
to a function signature defined within the scope of
the TLG program or be a special operation such as a
Boolean comparison, assignment statement, or if-then-
else statement. Every domain identifier with the same
name is instantiated to the same value within a func-
tion invocation. This is called consistent substitution.
If variables have the same root name but are numbered,
then the numbers are used to distinguish between vari-
ables. A numbered variable Vi will then be different
from a variable ~2 and the two can have different val-
ues. However, they will be of the same type, namely
type V. Once a variable has been assigned a value, it
$17.00 (c) 2002 IEEE 3

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
may not be reassigned, unless it is an instance variable
of a class, and even in this case, it would not be usual
to do so in the same function. Each function definition
may therefore be thought of as a set of logical rules.
The function calls are executed in the order given in
the function definition. Functions may be recursive
with the expected operational behavior.

Besides defined functions, TLG supports the
usual arithmetic and Boolean operations, as well
as list comprehensions and iterators over lists.
The syntax of a list comprehension is list all
Element from ElementList such that Element
condition giving ElementList2. This returns
a list, ElementList2, of all Element values in
ElementList satisfying the given condition. The
syntax of an iterator is select Element from
ElementList with Element condition. This re-
turns the first Element from ElementList which
satisfies the condition.

To explain the language further, consider the follow-
ing examples.

Example 1. Palindrome.

Character is a palindrome.
Character String Character is a palindrome :

String is a palindrome.

This TLG specification has no explicit type declara-
tions since the function rules use the type names di-
rectly as variables. The two function rules are mutu-
ally exclusive, the first handling single characters and
the second handling strings of two or more characters.
The second rule matches if and only if the first and last
characters of the string argument are the same.

Example 2. Quick Sort.

Pivot :: Integer.
IntegersLess, IntegersGreater, SortedIntegersLess,

SortedIntegersGreater :: IntegerList.

quick sort Empty into Empty.

quick sort Pivot IntegerList into SortedIntegersLess
Pivot SortedIntegersGreater :

split IntegerList into lists IntegersLess and
IntegersGreater using Pivot,

quick sort IntegersLess into SortedIntegersLess,
quick sort IntegersGreater into SortedIntegersGreater.

split Empty into lists Empty and Empty using Pivot.

split Integer IntegerList into lists Integer IntegersLess
and IntegersGreater using Pivot :

Integer <= Pivot,
split IntegerList into lists IntegersLess and

IntegersGreater using Pivot.

split Integer IntegerList into lists IntegersLess and
0-7695-1435-9/02 $
Integer IntegersGreater using Pivot:
Integer > Pivot,
split IntegerList into lists IntegersLess and

IntegersGreater using Pivot.

The two quick sort rules are mutually exclusive, but
the second and third split rules may both match non-
empty lists. Each of these two split rules serves to dis-
tribute the Integer at the beginning of the list to the
IntegersLess list or IntegersGreater list, depend-
ing on its relationship to pivot. The first function call
in each case serves as a guard to distinguish the two
rules. This could have been written using an if-then-
else construction, avoiding the need for the guard.

split Integer IntegerList into lists IntegerList and
IntegerList using Pivot :

split IntegerList into lists IntegersLess and
IntegersGreater using Pivot,

if Integer <= Pivot then begin
IntegerList := Integer IntegersLess,
IntegerList := IntegersGreater,

end
else begin

IntegerList := IntegersLess,
IntegerList := Integer IntegersGreater,

end.

This imperative style of writing TLG’s includes the
begin-end grouping block and assignment statements.

The split rule may be eliminated completely
by using list comprehensions to determine the
IntegersLess and IntegersGreater, as shown below.

quick sort Pivot IntegerList into SortedIntegersLess
Pivot SortedIntegersGreater :

list all Integer from IntegerList such that
Integer <= Pivot giving IntegersLess,

quick sort IntegersLess into SortedIntegersLess,
list all Integer from IntegerList such that

Integer > Pivot giving IntegersGreater,
quick sort IntegersGreater into SortedIntegersGreater.

Note that the variable Integer appearing in the list
all function is not actually instantiated and so may
be used in both list all functions without confusion.

2.1.3. Classes. TLG domain declarations and associ-
ated functions may be structured into a class hierarchy
supporting multiple inheritance. The syntax of TLG
class definitions is:

class Identifier-i
[extends Ident if ier-2, . . . , Ident if ier-n] .
<instance variable and method declarations)

end class [Identifier-i] .

Ident if ier-I is declared to be a class which inherits
from classes Identifier-2, Identifier-n. In the
above syntax, square brackets are used to indicate the
17.00 (c) 2002 IEEE 4

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
extends clause is optional so a class need not inherit
from any other class. The instance variables compris-
ing the class definition are declared using the domain
declarations described earlier. In general, the scope
of these domain declarations is limited to the class in
which they are defined, while the methods, correspond-
ing to TLG function definitions, have scope anywhere
an object of the given class is referred to. These no-
tions of scoping correspond to private and public access
respectively in object-oriented languages such as Java,
and either scope may be declared explicitly or the scope
may be made protected. Methods are called by writing
a sentence or phrase containing the object. The result
of the method call is to instantiate the logical variables
occurring in the method definition.

For every class, there are predefined methods begin-
ning with This which serve only to select the instance
variables of a class (e.g., This InstanceVariable re-
turns the value of InstanceVariable). This serves
as a special variable used within the method body to
denote the object to which the method is being ap-
plied. Likewise, for every instance variable of simple
type there are get and set methods to access or mod-
ify that variable. For every instance variable of list
type, there are add and remove methods. These are
assumed and do not need to be explicitly defined.

TLG class declarations serve to encapsulate the
TLG domain declarations and function definitions.
The class hierarchy which is resident in TLG is a small
forest of built-in classes, such as integers, lists, etc. The
“main” program is nothing more than a set of object
declarations using the existing class identifiers as do-
main names and a “query” of the appropriate methods.

3. Implement at ion

To effectively use TLG in the requirements specifica-
tion process, we have developed a Specification Devel-
opment Environment (SDE) which facilitates the con-
struction of TLG specifications from requirements doc-
uments expressed in natural language, and then trans-
lates TLG specifications into executable code. NL re-
quirements are translated into TLG through Contex-
tual Natural Language Processing (CNLP) [lo] which
constructs a knowledge representation of the require-
ments which may be expressed using TLG. The TLG is
then translated into VDM++ [5], the object-oriented
extension of the Vienna Development Method (VDM)
Specification Language (VDM-SL) [9]. The IFAD
VDM Toolbox [8] is then used to generate code in an
object-oriented programming language such as Java.
The complete system structure is shown in Figure 1.
0-7695-1435-9/02 $
Natural Language Requirements

4
Contextual Natural Language

Processing

4
Two-Level Grammar

4
Class, Object, and Function

Translation

h
VDM++

4

IFAD VDM Toolkit

/
UhfL Model

\
Java Code

Figure 1. Structure of Specification Develop-
ment Environment

These components are explained in the following sec-
tions in terms of an example, the Automatic Teller Ma-
chine (ATM) requirements specification below.

The bank keeps the list of accounts.
Each account has three integer data fields; ID, PIN, and
balance. The ATM machine has 3 service types; withdraw,
deposit, and balance check. For each service first it
verifies ID and PIN from the bank.

Withdraw service withdraws an amount from the account of
ID with PIN in the bank in the following sequence:
First it gets the balance of the account of ID from
the bank, if the amount is less than or equal to the
balance then it decreases the balance by Amount,
updates the balance of the account of ID in the bank,
and then outputs the new balance.

Deposit service deposits an amount to the account of ID
with PIN in the bank in the following sequence:
First it gets the balance of the account of ID from the
bank, it increases the balance by Amount, updates the
balance of the account of ID in the bank, and then
outputs the new balance.

Balance check service checks the balance of the account
of ID with PIN in Bank in the following order:
It gets the balance of the account of ID from the bank,
and then outputs the balance.

Transfer service withdraws an amount from the account of
IDI with PIN in the bank and deposits the amount to the
account of ID2.

3.1. Processing NL Requirements Specifications

The SDE has NL parsing capabilities as well as a
lexicon to aid in classification of words into nouns (ob-
jects) and verbs (operations on objects) and their re-
lationship. Since all domain knowledge is specified by
the domain definitions of the specification, the require-
ments written by the user can be parsed to determine
17.00 (c) 2002 IEEE 5

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
the object being acted upon and the operation needed
to be performed. This initial analysis of the require-
ments document provides the basis for further refine-
ment according to the syntax of Two-Level Grammar
function and domain definitions. The SDE analyzes
each function definition and attempts to classify from
the NL text which domains were involved, including
the primary domain, perhaps a class, the function be-
longs to. A sufficient degree of interaction with the
user ensures a correct interpretation. Any aspect of
the specification which cannot be understood by the
system can be resolved through further querying of the
user. This may include the specification of additional
domains and/or functions which make the specification
more detailed. Once the system has “understood” the
requirements that the user has specified, it can pro-
ceed with the transformation into the design and the
underlying design tool can further refine this into a
prototype implementation for the user to review. This
process may be repeated iteratively until the require-
ments have been sufficiently developed to satisfy both
the user and designer. By “user” we refer to either the
end-user who has commissioned the system or require-
ments specification engineer working with the end-user.
The designer can then finalize the mapping of the re-
quirements specification into the final design. Applying
this NL processing front end to the ATM requirements
specification gives the following TLG.

class Account.
Id, Pin, Balance, Amount :: Integer;

withdraw Amount giving Balance1 :
Amount <= Balance,
Balance1 := Balance - Amount,
set balance to Balancei.

deposit Amount giving Balance1 :
Balance1 := Balance + Amount,
set balance to Balancei.

end class.

class Bank.
Accounts :: AccountList.
Id, Pin :: Integer.

get account using Id giving Account :
select Account from Accounts

with id of Account = Id.

get account using Id and Pin giving Account :
select Account from Accounts with
id of Account = Id and pin of Account = Pin.

end class.

class ATM.
Id, Pin, Balance, Amount :: Integer.

withdraw Amount from account of Id with Pin in Bank
giving Balance :
0-7695-1435-9/02
get account from Bank using Id and Pin
giving Account,

withdraw Amount from Account giving Balance.

deposit Amount account of Id with Pin in Bank
giving Balance :

get account of Bank using Id and Pin
giving Account,

deposit Amount to Account giving Balance.

check balance of Id with Pin in Bank giving Balance :
get account of Bank using Id and Pin giving Account,
get balance of Account giving Balance.

transfer Amount from account of Idi with Pini to
account of Id2 in Bank :

withdraw Amount from account of Idi
with Pini in Bank giving Balancei,

get account of Bank using Id2 giving Account2,
deposit Amount to Account2 giving Balance.

end class.

It can be seen that the TLG is a structured form of the
original NL specification. The exact same vocabulary
is used as it is extracted by the NL processing front end.
Additional information is added as needed to provide
object data member access, e.g., get functions to access
component objects.

Previous work in the area of NL specification of
requirements includes a software reuse system which
uses NL descriptions of library components to facil-
itate their selection for incorporation into an imple-
mentation [7], and “controlled natural language” [6],
which is NL of a specific syntax with all vocabulary
coming from a fixed domain. The latter system is able
to translate the controlled NL specifications into Pro-
log so that they may be executed. We believe that
our object-oriented approach to this problem offers a
number of advantages with respect to both formal spec-
ification and object-oriented modeling.

3.2. Translation of TLG into VDM++

VDM++ has been selected as the target spec-
ification language for TLG because VDM++ has
many similarities in structure to TLG and also
has tool support for analysis and code generation.
Although TLG and VDM++ are both formal spec-
ification languages, the translation from TLG into
VDM++ is not simply a direct mapping between
them. We will first give an overview of VDM++
and then explain how TLG is translated into VDM++.

3.2.1. VDM++. The structure of a VDM++ spec-
ification is organized as a collection of classes which
take the following general form:

class identifier
$17.00 (c) 2002 IEEE 6

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
[is subclass of identifier-i, identifier-n]
value definitions
type definitions
instance variable definitions
operation definitions

end ident if ier

Value and type definitions define constants and types
that may be used in the class, respectively. VDM++
types include the basic data types as well as compound
types in the form of sets, sequences, and maps. In-
stance variable definitions are the state variables of the
class. Operation definitions correspond to methods.
Operations have a signature and a body which may be
an expression in the style of functional programming
languages or a collection of imperative statements
with return statements to return the function values.
VDM++ also includes the option of defining state
invariants, and pre-conditions and post-conditions for
operations. Synchronization of concurrent operations
and multi-threading are also provided for. At present
we do not use these features in our translation schemes.

3.2.2. Translation Schemes. The translation of
class definitions, including with inheritance, and com-
pound type declarations, may be described through the
tables shown in Figures 2 and 3. The translation of ba-
sic types is straightforward and so is not shown here.
Type declarations in TLG specifications occur in class
definitions for two purposes: 1) to define an instance
variable of the class, and 2) to define variables which
may be used in function definitions, either as function
arguments or to calculate intermediate values. These
are not difficult to distinguish as instance variables are
related only to the state of the object and so must be
used in function definitions other than as function ar-
guments, typically a get or set operation. It is also
straightforward to determine a variable used only for
intermediate value calculation as such a variable will
always be written before it is read - instance variables
must have some function which reads them only.

A TLG function is translated into a VDM++ op-
eration. TLG variables local to that function will be
translated into VDM++ function local variables. Fig-
ure 4 indicates the general scheme for function defini-
tions, which essentially consist of a function signature
and a series of function calls. In these translations
schemes, Arg-I, Arg-2, etc., are the arguments to the
function, Return-l, Return-2, etc., are the results of
the function, and Arg-Type-i and Return-Type-i are
their respective types. The declaration of a result vari-
able occurs only if the variable is not an instance vari-
able of the class. This would not normally be the case
unless the function was a get method associated with
that instance variable. Since TLG functions may re-
0-7695-1435-9/02 $
turn many result values whereas VDM++ operations
only return a single value, these multiple result values
should be constructed into a product for the purpose
of returning them as a single value. The ml- opera-
tion accomplishes this. mk- is not needed if only one
return value is required. Figure 4 also shows the trans-
lation schemes for function calls. The declaration of a
return variable occurs only if the variable has not been
declared previously either as a return variable of the
function definition in which the function call appears,
or as an instance variable of the class. Since function
g may return multiple values, the VDM++ operation
returns a product of those values which may then be
extracted into the individual values.

In addition to returning the values of result vari-
ables, TLG functions will either succeed or fail, as in
logic programming predicates. Failure implies that no
result variables are instantiated. This situation must
be detected by VDM++ operations corresponding to
those functions. In our generated VDM++ code, a
special Boolean variable is introduced into the state
of every object to indicate whether an operation
performed on that object succeeded or failed. If the
operation 0 fails, then so does the operation 0’ that
invoked 0, the operation that invoked 0’, etc. That
is, this failure may be propagated to each previous
operation until it causes the entire operation to fail
or an alternative operation is possible. An alternative
operation is one in which multiple rules are given for
the same function signature. For function definitions
defined by several rules, TLG uses pattern matching
to determine which rule is appropriate. This pattern
matching is implemented in VDM++ by either com-
parisons in cases where the pattern is a simple data
type or by VDM++ pattern matching for compound
data types. The examples in Figures 5 and 6 illustrate
each case. Note that the factorial function is not
defined over all integers as the TLG rules will succeed
only for natural numbers. Therefore, the VDM++
operation may fail on a negative number argument,
rendering the return value invalid. Functions calling
factorial must also check for this failure. This does
not include the recursive call since it can be detected
that factorial (n - 1) will never fail since n > I.

3.2.3. Example. The VDM++ translation of our
running example, according to the rules given in the
previous section, is shown below. As with the gener-
ated TLG, this code has been distilled for readability.

class Account
instance variables

id, pin, balance : int;

operations
17.00 (c) 2002 IEEE 7

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
Simnle Class

TLG
class C.

domain declarations

function definitions
end class.

1 VDM++
class C

Class With Inheritance
TLG VDM++
class SC class SC

instance variables
variable declarations

operations
operation definitions

end C

extends C. is subclass of C
.

end class. end C

Figure 2. Translation Schemes for Classes

TLG VDM++ Type
DataObj :: DataTypeSet. DataObj = set of DataType Set
DataObj :: DataTypeList. DataObj = seq of DataType Sequence
DataObj :: {DataType}*. DataObj = seq of DataType Sequence
DataObj :: {DataType}+. DataObj = seqi of DataType Sequence
DataObj :: DataTypei DataType2. DataObj = DataTypei * DataType Product
DataObj :: (DataName DataTypei DataObj = DataNamei : DataTypei Composite

DataName DataType2). DataName : DataType
DataObj :: DataTypei; DataType2. DataObj = DataTypei 1 DataType Union

Figure 3. Translation Schemes for Compound Data Types

f of Arg-I and . . . and Arg-n
giving Return-i and . . . and Return-m :

function calls
VDM++
f: ArgType-I * . . . * ArgType-n ==>

ReturnType- * . . . * ReturnType-m
f (arg-I, arg-n) ==

(dcl Return-i : ReturnType-I;
. . .
dcl Return-m : ReturnType-m;
function calls
return mk- (Return-i, Return-m)

1

Function Calls
1 TLG

g of Arg-I and . . . and Arg-n
giving Return-i and . . . and Return-m

VDM++
dcl Return-i : ReturnType-I;
. . .
dcl Return-m : ReturnType-m;
dcl Returns :

ReturnType- * . . . ReturnType-m;
Returns := g (Arg-I, Arg-n);
Return-i := Returns . #I;
. . .
Return-m := Returns . #m:

Figure 4. Translation Scheme for Functions

TLG VDM++
factorial of 0 : I. factorial : int ==> int
factorial of Integer : factorial (n) ==

Integer > I, if n = 0 then return I
Integer * factorial of (Integer - I). elseif n > I then return n * factorial (n - I>

else (fail := true: return 0)

Figure 5. Simple Data Type Pattern Matching
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 8

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
quick sort Empty into Empty.
quick sort Pivot IntegerList into SortedIntegersLess Pivot SortedIntegersGreater :

split IntegerList into lists IntegersLess and IntegersGreater using Pivot,
quick sort IntegersLess into SortedIntegersLess,
quick sort IntegersGreater into SortedIntegersGreater.

VDM++
quicksort : seq of int ==> seq of int
quicksort (PivotIntegerList) ==

cases pivotIntegerList :
[] -> return [I;
[pivot] ^ integerList ->

(dcl splitReturns, integersless, integersGreater : seq of int;
dcl sortedIntegersLess, SortedIntegersGreater : seq of int;
splitReturns := split (integerList, pivot);
integersLess := splitReturns . #I; integersGreater := splitReturns . #2;
SortedIntegersLess := quicksort (integersLess);
SortedIntegersGreater := quicksort (integersGreater);
return SortedIntegersLess ^ [pivot] ^ SortedIntegersGreater

>
end

Figure 6. Compound Data Type Pattern Matching

. . . getId, setId, getlin, setlin, etc. . . .

withdraw : int ==> int
withdraw (amount) ==

(dcl amount : int;
if amount <= balance then

(dcl balance1 : int;
balance1 := balance - amount;
setBalance (balancei)

);
return balance

);

deposit : int ==> int
deposit (amount) ==

(dcl amount, balance1 : int;
balance1 := balance + amount;
setBalance (balancei);
return balance

);

class ATM
instance variables

bank : Bank;

operations
. . . getBank and setBank . . .

withdraw : int * int * int ==> int
withdraw (amount, id, pin) ==

(dcl account : Account;
dcl balance : int;
account := bank . getAccountByIdPin (id, pin);
balance := account . withdraw (amount);
return balance

);

deposit : int * int * int ==> int
deposit (amount, id, pin) ==

(dcl account : Account;
end Account

class Bank
instance variables

accounts : seq of Account;

operations
. . addAccount and removeAccount . . .

getAccountById : int ==> Account
getAccountById (id) == . . .

getAccountByIdPin : int * int ==> Account
getAccountByIdPin (id, pin) == . . .

end Bank

dcl balance : int;
account := bank . getAccountByIdPin (id, pin);
balance := account . deposit (amount);
return balance

);

checkBalance : int * int ==> int
checkBalance (id, pin) ==

(dcl account : Account;
dcl balance : int;
account := bank . getAccountByIdPin (id, pin);
balance := account . getBalance 0;
return balance

);
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 9

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
transfer : int * int * int * int ==> 0
transfer (amount, idi, pini, id2) ==

(dcl account2 : Account;
dcl balance, balance1 : int;
balance1 := withdraw (amount, idi, pini) ;
account2 := bank . getAccountById (id2) ;
balance := account2 . deposit (amount)
return;

);
end ATM

4. Summary and Conclusions

Two-Level Grammar has been presented as an
object-oriented requirements specification language
which is natural language-like in style but sufficiently
formal to allow automatic transformation of the TLG
specification into a VDM++ object-oriented formal
specification. The IFAD VDM Toolbox provides for
an integration of VDM++ with the Unified Model-
ing Language (UML) [ll] through a link between the
Rational Rose 2000 TM [12] implementation of UML
and VDM++. This tool translates between UML and
VDM++ and so supports round-trip engineering which
may be iterative. Presently we use this in a single
direction, from TLG to VDM++ to UML. This ef-
fectively allows for UML modeling of the TLG spec-
ification and so is useful for integration with existing
UML models. Rational Rose does provide an “Add-In”
mechanism with which we hope to have a direct inte-
gration with TLG in the future. The translation into
an executable programming language using the IFAD
VDM++ to Java code generator facilitates rapid proto-
typing of TLG specifications. Our approach to software
specification is supported by a specification develop-
ment environment (SDE) for constructing TLG speci-
fications and a natural language processing system to
assist in translating an NL requirements specification
into the TLG. The system is a useful and constructive
tool for automating the production of software systems
from NL specifications.

At present the SDE exists only in prototype form
but is able to handle simple NL specifications, as our
example illustrated. We are extending this system so
that more complex NL specifications may be handled.
We would also like to automate the interaction between
our SDE and tools like Rational Rose directly, in ad-
dition to going through VDM++. This will give us
a complete visual modeling tool not only for object-
oriented design but also for specification as well.

Acknowledgements. The authors would like to
thank IFAD for providing an academic license to the
IFAD VDM Toolbox in order to conduct this research.
0-7695-1435-9/02 $
References

PI

PI

PI

PI

PI

PI

VI

PI

PI

PO1

WI

P21

P31

V. S. Alagar and K. Periyasamy. Specification of

Software Systems. Springer-Verlag, 1998.

G. Booth. Object-Oriented Analysis and Design
with Applications. Benjamin/Cummings, 1994.

B. R. Bryant. Object-Oriented Natural Language
Requirements Specification. Proc. ACSC 2000,
23rd Australasian Computer Science Conf., pages
24-30, 2000.

B. R. Bryant and A. Pan. Formal Specification
of Software Systems Using Two-Level Grammar.
Proc. COMPSAC ‘91, 15th Ann. Intl. Computer
Software and Applications Conf., pages 155-160,
1991.

E. H. Diirr and J. van Katwijk. VDM++ - A For-
mal Specification Language for Object-Oriented
Designs. Proc. TOOLS USA ‘92, 1992 Technology
of Object-Oriented Languages and Systems USA
Conf., pages 63-278, 1992.

N. E. Fuchs and R. Schwitter. Attempt0 Con-
trolled English (ACE). Proc. CLAW ‘96, First
Intl. Workshop Controlled Language Applications,
1996.

M. Girardi and B. Ibrahim. A Software Reuse Sys-
tem Based on Natural Language Specifications.
Proc. ICCI ‘93, 5th Intl. Conf. Computing and
Information, pages 507-511, 1993.

IFAD. The VDM++ Toolbox User Manual. Tech-
nical report, IFAD (http://www. ifad.dk), 2000.

P. G. Larsen, et al. Vienna Development Method
- Specification Language - Part I: Base Language.
Report, International Standard ISO/IEC 13817-1,
December 1996.

J. McCarthy. Notes on Formalizing Context. Tech-
nical report, Computer Science Department, Stan-
ford University, Stanford, CA, 1993.

Object Management Group. OMG Unified Model-
ing Language Specification, Version 1.3. Technical
report, Object Management Group, June 1999.

T. Quatrani. Visual Modeling with Rational Rose
2000 end UML. Addison-Wesley, 2000.

A. van Wijngaarden. Orthogonal Design and De-
scription of a Formal Language. Technical report,
Mathematisch Centrum, Amsterdam, 1965.
17.00 (c) 2002 IEEE 10

	HICSS35 2002
	Return to Main Menu

