
LabVIEW TM

Real-Time Module User Manual

Real-Time Module User Manual

April 2004 Edition
Part Number 322154E-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 1999–2004 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
DataSocket™, FieldPoint™, LabVIEW™, National Instruments™, NI™, ni.com™, NI Developer Zone™, NI-CAN™, NI-DAQ™, NI-VISA™, and
TestStand™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Real-Time Module User Manual

Contents

About This Manual
Conventions ... ix
Related Documentation..x

Chapter 1
Introduction to the LabVIEW Real-Time Module

LabVIEW Real-Time Module Platforms...1-1
Real-Time System Components ..1-2

Host Computer...1-2
LabVIEW ..1-2
RT Engine..1-2
RT Target...1-3

RT Series Plug-In Devices (ETS Only) ..1-3
Networked RT Series Devices (ETS Only)1-3
RT Target on the Real-Time Subsystem (RTX Only)1-4

Real-Time Module and Express VI Considerations ..1-4
Unsupported LabVIEW Features...1-5

Modifying Front Panel Objects of RT Target VIs...1-5
Using OS-Specific Technologies in RT Target VIs ..1-6

Chapter 2
Connecting to RT Targets

Downloading VIs to an RT Target ..2-3
Closing a Front Panel Connection without Closing VIs..2-3
Connecting to VIs Running on an RT Target ..2-4
Configuring RT Target Options...2-5

Chapter 3
Building Deterministic Applications

Creating Multithreaded Applications in LabVIEW...3-1
Dividing Tasks to Create Deterministic Multithreaded Applications3-2
Assigning Priorities to VIs ..3-3
Assigning VIs to Execution Systems ..3-4
Cooperatively Yielding Time-Critical VI Execution3-5

Passing Data between VIs..3-6
Global Variables..3-6
Functional Global Variables..3-6

Contents

Real-Time Module User Manual vi ni.com

Real-Time FIFO VIs ... 3-8
Communicating with Applications on an RT Target .. 3-8

Front Panel Communication ... 3-9
Network Communication.. 3-10

Creating Communication VIs with the RT Communication Wizard 3-11
Exploring Communication Methods ... 3-12

Shared Memory... 3-13
Network Communication.. 3-14

TCP... 3-14
UDP .. 3-14
DataSocket (ETS Only) .. 3-15
VI Server... 3-16
SMTP (ETS Only) .. 3-16

Bus Communication.. 3-17
Serial (ETS Only) ... 3-17
CAN (ETS Only) .. 3-17

IrDA Wireless Communication (ETS Only)... 3-17

Chapter 4
Timing Applications and Acquiring Data

Timing Control Loops ... 4-1
Timing Control Loops Using Software... 4-1

Wait (ms) .. 4-1
Wait Until Next ms Multiple Function... 4-2
Real-Time Timing VIs.. 4-4
LabVIEW Timed Loop (ETS Only) ... 4-4

Timing Control Loops Using Hardware ... 4-4
Acquiring Data with VIs Running on an RT Target ... 4-5

RT Series Data Acquisition Devices (ETS Only) ... 4-5
RT Series FieldPoint Modules (ETS Only) .. 4-5
NI PCI-7831 Plug-in Device (ETS and RTX) .. 4-5

Chapter 5
Optimizing Applications

Avoiding Shared Resources .. 5-1
Memory Allocations and Preallocating Arrays... 5-1
Casting Data to Proper Data Types... 5-3
Reducing the Use of Global Variables.. 5-3

Avoiding Contiguous Memory Conflicts .. 5-3
Avoiding SubVI Overhead .. 5-5
Setting VI Properties ... 5-5

Contents

© National Instruments Corporation vii Real-Time Module User Manual

Mass Compiling VIs ..5-5
Minimizing Memory Usage by the RT Target Web Server ..5-6
Setting BIOS Options (ETS Only)...5-6

Chapter 6
Debugging Deterministic Applications

Verifying Correct Application Behavior ...6-1
Using the LabVIEW Debugging Tools ...6-1
Using the Profile Window...6-2
Using the Real-Time System Manager (ETS Only)..6-2

Verifying Correct Timing Behavior ..6-3
Using the Tick Count (ms) Function ...6-3
Using the NI Time Stamp VIs ...6-3
Using an Oscilloscope ...6-3
Using Software Drivers ...6-3
Using the LabVIEW Execution Trace Toolkit (ETS Only)6-4

Using and Defining Error Codes ...6-4

Chapter 7
Deploying Applications

Building Stand-Alone Applications...7-1
Configuring Target Settings ..7-1

Saving Stand-Alone Applications ...7-2
Selecting a Target after Launch ..7-2
Quitting LabVIEW after Launch ..7-2

Creating an Application Installer...7-3
Launching Stand-Alone Applications..7-4

Launching Embedded Applications Automatically...7-4
Launching Applications Automatically Using Command Line Arguments ...7-5

Connecting to Stand-Alone Applications on an RT Target ...7-6

Appendix A
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation ix Real-Time Module User Manual

About This Manual

This manual contains information about the LabVIEW Real-Time Module
and real-time programming techniques to help you build a deterministic
application.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

(Platform) Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform. The (RTX) platform tag denotes
content specific to the LabVIEW Real-Time Module for RTX Targets.
The (ETS) platform tag denotes content specific to the LabVIEW Real-Time
Module for ETS Targets.

About This Manual

Real-Time Module User Manual x ni.com

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• RT Series hardware documentation

• Getting Started with the LabVIEW Real-Time Module

• (Mac OS) LabVIEW Real-Time Module for Mac OS X User Manual
Addendum, which describes the differences between the Windows and
Mac OS X versions of the LabVIEW Real-Time Module

• LabVIEW Real-Time Module Release Notes

• LabVIEW Help, available by selecting Help»VI, Function,
& How-To Help

• Getting Started with LabVIEW

• LabVIEW User Manual

• LabVIEW Application Builder User Guide

© National Instruments Corporation 1-1 Real-Time Module User Manual

1
Introduction to the LabVIEW
Real-Time Module

Most LabVIEW applications run on a general-purpose operating system
(OS) like Windows, Linux, Solaris, or Mac OS. Some applications require
deterministic real-time performance that general-purpose operating
systems cannot guarantee. The LabVIEW Real-Time Module extends the
capabilities of LabVIEW to address the need for deterministic real-time
performance.

The Real-Time Module combines LabVIEW graphical programming
with the power of a real-time operating system, enabling you to build
deterministic real-time applications. You develop VIs in LabVIEW and
execute the VIs on an RT target. The RT target runs VIs without a user
interface and offers a stable platform for real-time VIs.

LabVIEW Real-Time Module Platforms
National Instruments designed the LabVIEW Real-Time Module to
execute VIs on two different real-time platforms. The LabVIEW
Real-Time Module can execute VIs on hardware targets running the
real-time operating system of the Venturcom Phar Lap Embedded Tool
Suite (ETS) and on computers running the Venturcom Real-Time
Extension (RTX).

Venturcom Phar Lap ETS provides a real-time operating system that runs
on NI RT Series hardware to meet the requirements of embedded
applications that need to behave deterministically or have extended
reliability requirements.

Venturcom RTX adds a real-time subsystem (RTSS) to Windows.
Venturcom RTX enables you to run Windows and the RTSS at the same
time on the same computer. The RTSS has a priority based real-time
execution system independent of the Windows scheduler. RTSS
scheduling supersedes Windows scheduling to ensure deterministic
real-time performance of applications running in the RTSS. For more
information about Phar Lap ETS or RTX refer to the Venturcom Web site

Chapter 1 Introduction to the LabVIEW Real-Time Module

Real-Time Module User Manual 1-2 ni.com

at www.vci.com. Refer to the LabVIEW Real-Time Module Release Notes
for installation instructions.

Real-Time System Components
A real-time system consists of software and hardware components.
The software components include LabVIEW, the RT Engine, and VIs you
build using LabVIEW. The hardware components of a real-time system
include a host computer and an RT target. The following sections describe
the different components of a real-time system.

Host Computer
The host computer is a computer with LabVIEW and the LabVIEW
Real-Time Module installed on which you develop the VIs for the real-time
system. After developing the real-time system VIs, you can download and
run the VIs on the RT target. The host computer can run VIs that
communicate with the VIs running on the RT target.

LabVIEW
You develop VIs with LabVIEW on the host computer. The Real-Time
Module extends the capabilities of LabVIEW to allow you to select an RT
target on which to run VIs.

RT Engine
The RT Engine is a version of LabVIEW that runs on the RT target.
The RT Engine runs the VIs you download to RT targets. The RT Engine
provides deterministic real-time performance for the following reasons:

• The RT Engine runs on a real-time operating system (RTOS) or RTX
subsystem, which ensures that the LabVIEW execution system and
other services adhere to real-time operation. Refer to Chapter 3,
Building Deterministic Applications, for information about the
LabVIEW execution system.

• The RT Engine runs on RT Series hardware or the RT target on the
RTX subsystem. Other applications or device drivers commonly found
on the host computer do not run on RT targets. The absence of
additional applications or devices means that a third-party application
or driver does not impede the execution of VIs.

• RT targets on which the RT Engine runs do not use virtual memory,
which eliminates a major source of unpredictability in deterministic
systems.

Chapter 1 Introduction to the LabVIEW Real-Time Module

© National Instruments Corporation 1-3 Real-Time Module User Manual

RT Target
An RT target refers to RT Series hardware or the RTSS that runs the RT
Engine and VIs you create using LabVIEW. There are three types of RT
targets: RT Series plug-in devices, networked RT Series devices, and the
RTSS.

RT Series Plug-In Devices (ETS Only)
An NI PCI-7041 plug-in device is a plug-in board with an embedded
processor. The NI PCI-7041 plug-in device contains a processor board
and data acquisition daughterboard. The processor board contains a
microprocessor with a real-time operating system that runs the RT Engine
and LabVIEW VIs. You can use the host computer to communicate with
and control VIs running on the NI PCI-7041 plug-in device through an
Ethernet connection or shared memory.

This manual does not contain information about the data acquisition
daughterboard of plug-in devices. Refer to the appropriate plug-in device
documentation for information about the data acquisition daughterboard
for plug-in devices.

Networked RT Series Devices (ETS Only)
A networked RT Series device is a networked hardware platform with an
embedded processor with a real-time operating system that runs the RT
Engine and LabVIEW VIs. You can use a separate host computer to
communicate with and control VIs on a networked RT Series device
through an Ethernet connection, but the device is an independent computer.
Some examples of networked RT Series devices include the following:

• NI RT Series PXI Controller—A networked device installed in an
NI PXI chassis that communicates with NI PXI modules installed in
the chassis. You can write VIs that use all the input/output (I/O)
capabilities of the PXI modules, SCXI modules, and other signal
conditioning devices installed in a PXI chassis. The RT Engine also
supports features of the RT Series PXI controller. Refer to the National
Instruments Web site at ni.com/info and enter the info code
RT0001 for information about the features supported by the RT
Engine on specific networked devices.

• NI RT Series FieldPoint Module—A networked device ideal for
distributed real-time I/O applications.

Chapter 1 Introduction to the LabVIEW Real-Time Module

Real-Time Module User Manual 1-4 ni.com

• NI 1450 Series Compact Vision System—An easy-to-use, distributed,
real-time imaging system that acquires, processes, and displays images
from IEEE 1394 cameras. Refer to the NI 1450 Series Compact Vision
User Manual for information about using the 1450 Series Compact
Vision System with LabVIEW.

This manual does not contain hardware-related information about specific
networked devices. Refer to the appropriate device documentation for
information about the device.

RT Target on the Real-Time Subsystem (RTX Only)
When you use the LabVIEW Real-Time Module for RTX Targets, the
RT Engine runs on the RTSS of the host computer. The RTSS creates the
x:\RTXROOT directory, where x is the Windows root drive, to store all of
the RT target files. Like RT Series hardware targets, the RTSS provides a
real-time platform where you can execute LabVIEW VIs deterministically.
You can communicate with and control VIs running on the RTSS from
LabVIEW in Windows.

VIs running on the RTSS can use an NI PCI-7831 plug-in device for data
acquisition. Refer to Chapter 4, Timing Applications and Acquiring Data,
for information about deterministic data acquisition using LabVIEW.

Real-Time Module and Express VI Considerations
LabVIEW Express VIs increase LabVIEW ease of use and improve
productivity with interactive dialog boxes that minimize programming for
measurement applications. Express VIs require additional performance
overhead during execution, therefore do not use Express VIs in
time-critical or processor-intensive applications. Instead, develop real-time
applications with standard LabVIEW VIs. Refer to the Getting Started with
LabVIEW manual for information about LabVIEW Express VIs.

LabVIEW shows an Express VI-oriented palette view by default. Complete
the following steps to switch to the Advanced LabVIEW palette view.

1. Select Tools»Options from LabVIEW.

2. Select Controls/Functions Palettes from the Options dialog box
pull-down menu.

3. Select Advanced from the Palette View pull-down menu.

4. Click the OK button.

Chapter 1 Introduction to the LabVIEW Real-Time Module

© National Instruments Corporation 1-5 Real-Time Module User Manual

Unsupported LabVIEW Features
RT targets do not support some LabVIEW features for VIs that run on the
target. If you attempt to download and run on an RT target a VI that has
unsupported functionality, the VI might still execute. However, the
unsupported functions do not work and return standard LabVIEW error
codes.

Modifying Front Panel Objects of RT Target VIs
When a VI or stand-alone application runs on an RT target, you cannot
execute VIs that modify a front panel. For example, you cannot change or
read the properties of front panel objects with property nodes because there
is no front panel for VIs that run on the RT target. The VI still runs on the
RT target but the front panel object is not affected and returns an error. In
some cases, you can establish a front panel connection with the RT target
or open a remote panel connection to read any front panel properties or
reflect front panel property changes. Refer to Chapter 2, Connecting to RT
Targets, for information about establishing a front panel connection with
an RT target. Refer to the LabVIEW Help, available by selecting Help»VI,
Function, & How-To Help, for information about establishing a remote
panel connection to an RT target.

The following features only work on an RT target with a front panel
connection:

• Front panel property nodes and control references

• Dialog VIs and functions

• VI Server front panel functions

The following features do not work on an RT target and return an error:

• Menu functions

• Cursor VIs

• The Clear indicators when called component of the Execution
Properties page. Refer to the LabVIEW Help, available by selecting
Help»VI, Function, & How-To Help, for information about the
Execution Properties page.

Note Some LabVIEW example VIs use unsupported VIs and functions and do not execute
on an RT target.

Chapter 1 Introduction to the LabVIEW Real-Time Module

Real-Time Module User Manual 1-6 ni.com

Using OS-Specific Technologies in RT Target VIs
VIs on the RT target cannot use VIs that leverage Windows-only
technology. The following features do not work on an RT target:

• ActiveX VIs

• .NET VIs

• Windows Registry Access VIs

• TestStand VIs (ActiveX-based)

• Report Generation Toolkit VIs

• Report Express VI (Uses Report Generation Toolkit VIs)

• Graphics and Sound VIs

• Database Connectivity Toolset

• XML DOM Parser and G Web Server for CGI Support

• (ETS) Call Library Nodes that access an operating system API other
than Venturcom Phar Lap ETS

• (RTX) Call Library Nodes that access an operating system API other
than Venturcom RTX

• (RTX) LabVIEW Timed Loop

© National Instruments Corporation 2-1 Real-Time Module User Manual

2
Connecting to RT Targets

When you first launch LabVIEW after installing the Real-Time Module,
the default execution target is the host computer operating system, as
shown in Figure 2-1. Refer to the LabVIEW Real-Time Module Release
Notes for installation instructions.

Figure 2-1. LabVIEW Dialog Box

You can select an RT target or the host computer as the LabVIEW
execution target. When you select an execution target other than the host
computer, LabVIEW establishes a front panel connection with the RT
target and downloads any LabVIEW VIs you subsequently run to the
selected execution target.

Complete the following steps to select an RT target as the execution target.

1. Start LabVIEW.

Chapter 2 Connecting to RT Targets

Real-Time Module User Manual 2-2 ni.com

2. Select the execution target from the Execution Target pull-down
menu.

(RTX) Select RT Target: RTX (RTRTX::0) from the Execution
Target pull-down menu.

Complete the following steps to select a networked RT Series device as the
execution target if you have not selected the device previously.

1. Select Select Target with Options from the Execution Target
pull-down menu to open the Select Execution Target dialog box
shown in Figure 2-2.

2. Select RT Target on Network from the pull-down menu.

Figure 2-2. Select Execution Target Dialog Box

3. Enter the IP address of the RT target in the Machine Name/IP
text box.

4. Enter the password of the RT target in the Password text box. Leave
the Password text box blank if the RT target does not have a password
set. You can set the password of an RT target using Measurement &
Automation Explorer (MAX).

Note If you have not configured the hardware in MAX, click the Configure button to
open MAX. Refer to the Remote Systems Help, by selecting Help»Help Topics»Remote
Systems from MAX, for information about using MAX to configure RT Series hardware.

Press the <F5> key to refresh the pull-down menu of the Select Execution Target
dialog box.

5. Click the OK button.

Chapter 2 Connecting to RT Targets

© National Instruments Corporation 2-3 Real-Time Module User Manual

Downloading VIs to an RT Target
When you select an RT target in the Select Execution Target dialog box,
LabVIEW establishes a front panel connection with the RT target. You can
download a VI and its associated subVIs to an RT target by clicking the
Run button. The RT Engine on the RT target then runs the downloaded VI.

Note When you edit a VI or convert a VI from a different version of LabVIEW, you must
save the VI on the host computer before you can download and run it on the RT target.

You also can download LabVIEW VIs without running them by selecting
Operate»Download Application after selecting an RT target as the
execution target. You can determine which VIs are downloaded to the RT
target by selecting Browse»Show VI Hierarchy to open the Hierarchy
window. The VI hierarchy appears with a pin in the upper left corner of
each VI.

When the pin is in the vertical position, as shown to the left, the VI
downloaded to the RT target.

When the pin is in the horizontal position, as shown to the left, the VI has
not downloaded to the RT target.

Closing a Front Panel Connection without Closing VIs
You also can exit LabVIEW on the host computer without closing the VIs
on the RT target. Select File»Exit without closing RT Engine VIs to close
LabVIEW on the host computer. The VIs running on the RT target continue
running. VIs downloaded but not running remain loaded in memory on the
RT target.

If you select File»Exit, LabVIEW opens a dialog box that asks if you want
to exit LabVIEW without closing RT Engine VIs. If you click the Yes
button, LabVIEW exits without closing the VIs on the RT target. If you
click the Close all RT Engine VIs button, LabVIEW closes all the VIs
running on the RT target, unloads the VIs from memory, and closes
LabVIEW.

You also can select Operate»Switch Execution Target and then select
another execution target. LabVIEW opens a new front panel connection to
the RT target you select. The VIs running on the original RT target continue
to run.

Chapter 2 Connecting to RT Targets

Real-Time Module User Manual 2-4 ni.com

Connecting to VIs Running on an RT Target
When you connect LabVIEW to an RT target to open a front panel
connection, LabVIEW detects VIs currently running on the RT target.
LabVIEW attempts to open the local copy of the VIs to show the front
panel.

Note When connecting to an RT Series plug-in device, if you place a checkmark in the
Reset checkbox on the Select Execution Target dialog box, LabVIEW clears all VIs in
memory on the target.

If you moved or modified the local copies of the VIs since you downloaded
them to the RT target, LabVIEW displays the Changed or Missing VIs
dialog box, shown in Figure 2-3.

Figure 2-3. Changed or Missing VIs Dialog Box

The Changed or Missing VIs dialog box shows the name of the local VIs
that are missing or that have been modified and no longer match the VIs
running on the RT target. Use the Changed or Missing VIs dialog box to
browse for a VI you moved on the host computer file system, to close all
VIs running on the RT target and update them with the latest version of
each VI, and to close the front panel connection between LabVIEW and the
RT target while leaving the VIs running.

Chapter 2 Connecting to RT Targets

© National Instruments Corporation 2-5 Real-Time Module User Manual

Configuring RT Target Options
You can set access permissions and start-up options for RT targets. With
the RT target selected as the execution target, select Tools»RT Target:
X Options to access the RT Target Options dialog box, where X is the IP
address of a networked RT target or the device name of a plug-in device.

(RTX) Select Tools»RT Target: RTX (RTRTX::0) Options to access the
RT Target Options dialog box.

Refer to the LabVIEW Help, available by selecting Help»VI, Function, &
How-To Help, for information about the RT Target Options dialog box.

© National Instruments Corporation 3-1 Real-Time Module User Manual

3
Building Deterministic
Applications

Determinism is the characteristic of a system that describes how
consistently it responds to external events or performs operations within a
given time limit. If you intend to build deterministic applications, use the
programming techniques in this chapter to achieve high levels of
determinism in VIs.

Most computers have only one processor, so tasks execute one at a time.
Computers achieve multitasking by running one application for a short
amount of time and then running other applications for short amounts
of time. As long as the amount of processor time allocated for each
application is small enough, computers appear to have multiple
applications running simultaneously.

Multithreading is when you apply the concept of multitasking to a single
application by breaking it into smaller tasks that execute for short amounts
of time in different execution system threads. A thread is a completely
independent flow of execution for an application within the execution
system. Multithreaded applications maximize the efficiency of the
processor because the processor does not sit idle if there are other threads
ready to run. Any application that reads and writes from a file, performs
I/O, or polls the user interface for activity can benefit from multithreading
because you can use the processor to run other tasks during breaks in these
activities.

Creating Multithreaded Applications in LabVIEW
To create a multithreaded application in LabVIEW, you must separate
time-critical tasks from non-time-critical tasks. You then can build VIs to
complete each task. You prioritize the VIs and then categorize them into
one of the available execution systems to control the amount of processor
resources each VI receives. LabVIEW assigns each VI to an execution

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-2 ni.com

system thread according to the VI priority and execution system you assign.
The threads execute on the processor accordingly. You can use
deterministic communication methods to pass data between the
different VIs.

The real-time operating system (RTOS) on RT targets and the RTSS use a
combination of round robin and preemptive scheduling to execute threads
in the execution system. Round robin scheduling applies to threads of equal
priority. Equal shares of processor time are allocated among equal priority
threads. For example, each normal priority thread is allotted 10 ms to run.
The processor executes all the tasks it can in 10 ms and whatever is
incomplete at the end of that period must wait to complete during the next
allocation of time. Conversely, preemptive scheduling means that any
higher priority thread that needs to execute immediately pauses execution
of all lower priority threads and begins to execute. A time-critical priority
thread is the highest priority and preempts all priorities.

Dividing Tasks to Create Deterministic Multithreaded Applications
Deterministic control applications depend on time-critical tasks to
complete on time, every time. Therefore, time-critical tasks need enough
processor resources to ensure their completion. Separate time-critical tasks
from all other tasks in the application and place them in a separate VI so
you can ensure they receive enough processor resources. For example, if a
control application processes measurement data at regular intervals and
stores the data on disk, you must handle the timing and control of the data
acquisition in a time-critical VI. However, storing the data on disk is
inherently a non-deterministic task because file I/O operations have
unpredictable response times that depend on the hardware and the
availability of the hardware resource. Place file I/O operations in a normal
priority VI.

The time-critical priority VI receives the processor resources necessary to
complete the task and does not relinquish control of the processor until it
cooperatively yields to the normal priority VI or until it completes the task.
The normal priority VI then runs until preempted by the time-critical VI.
You can use deterministic methods to pass data between the VIs running on
the RT target. Refer to the Passing Data between VIs section of this chapter
for information about deterministic communication methods you can use to
pass data between the time-critical VI and lower priority VIs on the RT
target.

If the application contains two normal priority VIs in addition to the
time-critical VI, the timing of the application changes. For example, if the
above application also requires updates to a VI running on a host computer,

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-3 Real-Time Module User Manual

you must create a separate normal priority VI for network communication.
The network communication VI can receive data from other VIs on the RT
target using deterministic communication methods. The communication VI
then can execute the non-deterministic network communication code to
pass data to the VI running on the host computer. When the application
runs, the time-critical VI uses the processor resources until the task
completes or until it cooperatively relinquishes control. The normal priority
VI that logs data and the normal priority VI that performs the network
communication with the host computer round robin the control of the
processor resources in equal amounts of time until the tasks complete or
until preempted by the time-critical VI again for control of the processor
resources.

After separating all deterministic tasks from non-deterministic tasks in the
application into different VIs, assign priorities and an execution system to
the VIs. You then can time the VIs to cooperatively yield execution to allow
other lower priority VIs to run.

Note (RTX) VIs that monopolize processor resources prevent Windows processes from
executing. Windows returns an RTX Starvation Timeout error. You must allow Windows
processes enough processor resources to run by including sleep in RT target VIs. Refer to
the NI Web site at ni.com/info and enter the info code RTX001 for information about
RTX Starvation Timeout errors that might occur when using the LabVIEW Real-Time
Module for RTX Targets.

Assigning Priorities to VIs
You can select from the following VI priorities, listed in order from lowest
to highest, to assign VIs to an execution system thread:

• background priority (lowest)

• normal priority

• above normal priority

• high priority

• time-critical priority (highest)

Threads of higher priority preempt threads of lower priority.
Normal priority is the default thread priority for all VIs you create in
LabVIEW. The time-critical priority preempts all thread priorities.
A time-critical priority thread does not relinquish processor resources until
it completes all tasks. However, a time-critical thread can explicitly
relinquish control of processor resources to ensure that the thread does not
monopolize the processor resources. SubVIs inherit the priority of the

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-4 ni.com

caller VI. For example, a subVI called in a time-critical VI runs in
time-critical priority.

Note Because time-critical priority threads cannot preempt each other, create only one
time-critical thread in an application to guarantee deterministic behavior.

In addition to the five priority levels listed above, you can set VIs to
subroutine priority. VIs set for subroutine priority do not share execution
time with other VIs. When a VI runs at the subroutine priority level, it
effectively takes control of the thread in which it is running, and it runs in
the same thread as its caller. No other VI can run in that thread until the
subroutine VI finishes running, even if the other VI is at the subroutine
priority level.

Complete the following steps to set the priority of a VI.

1. Select File»VI Properties to open the VI Properties dialog box.

2. Select Execution from the Category pull-down menu.

3. Select the priority from the Priority pull-down menu.

Assigning VIs to Execution Systems
LabVIEW has the following six execution systems to help you
categorize VIs:

• user interface

• standard

• instrument I/O

• data acquisition

• other 1

• other 2

The names of the execution systems are suggestions for the type of VIs to
place within the execution system. By default, all VIs run in the standard
execution system at normal priority. The user interface execution system
handles all user interface tasks. You can assign instrument I/O and data
acquisition task VIs to other execution systems, but the labels help to
organize the VIs. In addition to the six execution systems, you also can
assign VIs to the same as caller execution system. The same as caller
category runs subVIs in the same execution system as the VI that called the
subVI.

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-5 Real-Time Module User Manual

Every execution system except user interface has a thread queue.
For example, if you have three threads assigned to an execution system,
at any time, one thread might run as the other two wait in the queue.
Assuming all threads have the same priority, one thread runs for a certain
amount of time. The thread then moves to the end of the queue, and the next
thread runs. When a thread completes, the execution system removes the
thread from the queue.

The execution systems are not responsible for managing the user interface.
If a thread in one queue needs to update the user interface, the execution
system passes responsibility to the user interface execution system, which
updates the user interface.

Complete the following steps to set the execution system of a VI.

1. Select File»VI Properties to open the VI Properties dialog box.

2. Select Execution from the Category pull-down menu.

3. Select the execution system from the Preferred Execution System
pull-down menu.

Cooperatively Yielding Time-Critical VI Execution
Because of the preemptive nature of time-critical VIs, they can monopolize
processor resources. A time-critical VI might use all of the processor
resources, not allowing lower priority VIs in the application to execute.

You must build time-critical VIs that periodically yield, or sleep, to allow
lower priority tasks to execute without affecting the determinism of the
time-critical code. By timing control loops, you can yield time-critical VIs
and cooperatively relinquish processor resources. Refer to Chapter 4,
Timing Applications and Acquiring Data, for information about the
methods available for timing time-critical VIs to relinquish processor
resources.

(RTX) The execution system of the RTSS supersedes Windows scheduling.
For this reason, VIs that monopolize processor resources prevent Windows
processes from executing. Windows returns an RTX Starvation Timeout
error. You must allow Windows processes enough processor resources to
run by including sleep in RT target VIs. Refer to the NI Web site at
ni.com/info and enter the info code RTX001 for information about RTX
Starvation Timeout errors that might occur when using the LabVIEW
Real-Time Module for RTX Targets.

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-6 ni.com

Passing Data between VIs
After dividing tasks in an application into separate VIs of varying priorities,
you might need to communicate between the different VIs on the RT target.
Use global variables, functional global variables, and the Real-Time FIFO
VIs to send and receive data between VIs in an application.

Global Variables
Use global variables to access and pass small amounts of data between VIs,
such as from a time-critical VI to a lower priority VI.

Global variables are a lossy form of communication, meaning the global
variable can overwrite the data before you read the data. Tasks in a lower
priority VI might not have enough processor time to read the data before
other tasks in a different VI overwrite the data.

A global variable is a shared resource that you must use carefully in a
time-critical VI. If you use a global variable to pass data out of a
time-critical VI, you must ensure that a lower priority VI reads the data and
unlocks the global before the time-critical VI attempts to write to the global
again. Refer to Chapter 5, Optimizing Applications, for information about
shared resources.

Using a global variable is a good way to pass data smaller than 32-bits, such
as scalar data, between VIs. For larger amounts of data, use functional
global variables or the Real-Time FIFO VIs. Refer to the LabVIEW User
Manual for information about creating and using global variables.

Functional Global Variables
Use functional global variables to pass data between VIs. A functional
global variable is a subVI set to subroutine priority. The subVI contains
a While Loop with a nested Case structure for read and write access.
Figure 3-1 shows the read and write cases of the Case structure for a
functional global variable. The While Loop contains uninitialized shift
registers that store data. A functional global variable receives an action
input that specifies which task the VI performs, as shown in Figure 3-1 by
the Mode input parameter. Any subsequent calls to the functional global
variable can access the most recent data. Functional global variables
resemble queues because you can add more shift registers to store a longer
history of values. You also can add more than one set of shift registers to
pass more than one set of data.

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-7 Real-Time Module User Manual

Figure 3-1. Read and Write Case of a Functional Global Variable

Unlike global variables, you can implement functional global variables
such that they are not a shared resource. If you right-click on a subVI set to
subroutine priority and select Skip Subroutine Call If Busy from the
shortcut menu, the execution system skips the subVI if the subVI is
currently running in another thread. Skipping a subVI helps in time-critical
VIs because the VI does not wait for the subVI. If you skip the execution
of a subVI, the subVI returns the default value for that data type and not the
default indicator value. For example, the default data type value for
numerics is zero, strings and arrays default to an empty string, and
Booleans default to FALSE. If you want to detect the execution of a
functional global variable, wire a TRUE constant to a Boolean output on the
functional global variable block diagram, as shown in Figure 3-1. If the
Boolean output returns a TRUE value, the functional global variable
executed. If the Boolean output returns the default value of FALSE, the
functional global variable did not execute. Skip functional global variables
in time-critical VIs but not in lower priority VIs. In lower priority VIs, you
can wait to receive non-default values.

Functional global variables can be a lossy form of communication if a VI
overwrites the shift register data before another VI reads the data.

Refer to the examples\Real-Time\RT Communication.llb for
examples of using functional global variables to communicate between VIs
that run on an RT target.

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-8 ni.com

Real-Time FIFO VIs
Use the Real-Time FIFO VIs to transfer data between VIs in an application.
An RT FIFO acts like a fixed queue, where the first value you write to the
FIFO is the first value that you can read from the FIFO. RT FIFOs and
LabVIEW queues both transfer data from one VI to another. However,
unlike a LabVIEW queue, an RT FIFO ensures deterministic behavior by
imposing a size restriction on the data. You must define the number and
size of the RT FIFO elements. Both a reader and writer can access the data
in an RT FIFO at the same time, allowing RT FIFOs to work safely from
within a time-critical VI.

Use the RTFIFOCreate VI to create a new FIFO or open a reference to a
FIFO that you created in another VI. Use the RTFIFORead and
RTFIFOWrite VIs to read and write data to the FIFO. Refer to the
LabVIEW Help, available by selecting Help»VI, Function, & How-To
Help, for VI reference information about the Real-Time FIFO VIs and for
information about the data types supported by the Real-Time FIFO VIs.

Because of the fixed-size restriction, an RT FIFO can be a lossy
communication method. Writing data to an RT FIFO when the FIFO is full
overwrites the oldest element. You must read data stored in an RT FIFO
before the FIFO is full to ensure the transfer of every element without
losing data. Check the overwrite output of the RTFIFOWrite VI to ensure
that you did not overwrite data. If the RT FIFO overwrites data, the
overwrite output returns a TRUE value. Refer to the examples\
Real-Time\RT Communication.llb for examples of using the
Real-Time FIFO VIs to communicate between VIs that run on an RT target.

Communicating with Applications on an RT Target
The RT Engine on the RT target does not provide a user interface for
applications. You can use one of two communication protocols, front panel
communication or network communication, to provide a user interface on
the host computer for RT target VIs.

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-9 Real-Time Module User Manual

Front Panel Communication
With front panel communication, LabVIEW and the RT Engine execute
different parts of the same VI, as shown in Figure 3-2. LabVIEW on the
host computer displays the front panel of the VI while the RT Engine
executes the block diagram. A user interface thread handles the
communication between LabVIEW and the RT Engine.

Figure 3-2. Front Panel Communication Protocol

Use front panel communication between LabVIEW on the host computer
and the RT Engine to control and test VIs running on an RT target. After
downloading and running the VIs, keep LabVIEW on the host computer
open to display and interact with the front panel of the VI.

You also can use front panel communication to debug VIs while they run
on the RT target. You can use LabVIEW debugging tools—such as probes,
execution highlighting, breakpoints, and single stepping—to locate errors
on the block diagram code. Refer to Chapter 6, Debugging Deterministic
Applications, for information about debugging applications.

Front panel communication is a good communication method to use during
development because front panel communication is a quick method for
monitoring and interfacing with VIs running on an RT target. However,
front panel communication is not deterministic and can affect the
determinism of a time-critical VI. Use network communication methods to
increase the efficiency of the communication between a host computer and
VIs running on the RT target.

LabVIEW

RT Engine

Host Computer

RT Target

User Interface Communication

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-10 ni.com

Network Communication
With network communication, a host VI runs on the host computer and
communicates with the VI running on the RT target using specific network
communication methods such as TCP, VI Server, and in the case of
non-networked RT Series plug-in devices, shared memory reads and
writes. You might use network communication for the following reasons:

• You want to run another VI on the host computer.

• You want to control the data exchanged between the host computer and
the RT target. You can customize communication code to specify
which front panel objects get updated and when. You also can control
which components are visible on the front panel because some controls
and indicators might be more important than others.

• You want to control timing and sequencing of the data transfer.

• You want to perform additional data processing or logging.

In Figure 3-3, the RT target VI is similar to the VI in Figure 3-2 that runs
on the RT target using front panel communication to update the front panel
controls and indicators. However, the RT target VI in Figure 3-3 uses
Real-Time FIFO VIs to pass data to a communication VI. The
communication VI then communicates with the host computer VI using
network communication methods to update controls and indicators. Refer
to the Passing Data between VIs section of this chapter for information
about the methods available to send data between VIs running on an RT
target. Refer to the Exploring Communication Methods section of this
chapter for information about methods available to send data between VIs
running on an RT target and VIs running on the host computer.

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-11 Real-Time Module User Manual

Figure 3-3. Network Communication Protocol

Creating Communication VIs with the RT
Communication Wizard

Use the RT Communication Wizard to create VIs that deterministically
transfer front panel control and indicator data from time-critical VIs
running on an RT target to a VI running on the host computer.

Select Tools»RT Communication Wizard to open the RT
Communication Wizard and specify a time-critical VI. The RT
Communication Wizard returns a list of controls and indicators present in
the time-critical VI you specify. The RT Communication Wizard replaces
the front panel controls and indicators you select from the time-critical VI
with Real-Time FIFO VIs. The RT Communication Wizard creates a
normal priority VI that contains Real-Time FIFO VIs to send and receive

LabVIEW

RT Engine

Host Computer

RT Target

Network Communication

VI Communication

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-12 ni.com

front panel data from the time-critical VI. The Real-Time FIFO VIs transfer
data deterministically and do not affect the timing of the time-critical VI.

The RT Communication Wizard creates the following three VIs:

• Time-Critical VI—Runs on the RT target and contains the
time-critical tasks and Real-Time FIFO VIs to transfer front panel data
deterministically to the normal priority VI.

• Normal Priority VI—Runs on the RT target and contains all
non-deterministic network communication tasks to update the host
VI with front panel data received from the time-critical VI.

• Host VI—Runs on the host computer and displays the front panel
controls and indicators of the time-critical VI.

The VIs generated by the RT Communication Wizard transfer data between
the RT target and the host computer using a single communication method.
If you want more than one communication method to handle the front panel
communication code or you want to vary the order in which the network
communication VI sends and receives data, use network communication
methods to manually create a network communication VI. Refer to the
LabVIEW Help, available by selecting Help»VI, Function, & How-To
Help, for information about using the RT Communication Wizard to create
communication VIs to display the front panel of a time-critical VI on the
host computer. Refer to the Exploring Communication Methods section of
this chapter for information about the network communication methods
you can use in LabVIEW.

Exploring Communication Methods
You can use high-level software protocols to communicate between VIs
running on the RT target and VIs running on a host computer. Each
protocol has its advantages and disadvantages. The following list classifies
the different communication methods:

• Shared Memory Communication—Used for communication between
LabVIEW and RT Series plug-in devices or the RT target on the RTX
subsystem.

• Network Communication—Used for communication over Ethernet
networks.

– TCP

– UDP

– DataSocket

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-13 Real-Time Module User Manual

– VI Server

– SMTP (send only)

• Bus Communication—Used for communication over different bus
communication ports.

– Serial

– CAN

• IrDA Wireless Communication—Used for communication with RT
targets using IrDA hardware.

Shared Memory
In operating systems like Windows, two processes or applications can
communicate with each other using the shared memory mechanism of the
operating system. Similarly, VIs running on an RT target and VIs running
on the host computer can communicate using the Real-Time Shared
Memory VIs. Use the Real-Time Shared Memory VIs to read and write to
shared memory locations of RT Series plug-in devices or the shared
memory locations of the real-time subsystem.

The Real-Time Shared Memory VIs communicate data deterministically
because they have low overhead. However, the NI RT Series PCI-7041
plug-in devices have a shared memory size limit of 512 KB. If you need to
transfer several megabytes of data, you must divide the data into smaller
portions and then transfer them. In doing so, you must make sure you do
not overwrite the data in the shared memory before it is read. Refer to the
LabVIEW Help, available by selecting Help»VI, Function, & How-To
Help, for information about the Real-Time Shared Memory VIs.

(RTX) Use RTRTX::0 as the device name of the RT target when
communicating with the target using the Real-Time Shared Memory VIs.

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-14 ni.com

Network Communication
Table 3-1 lists the characteristics of the different network communication
methods.

TCP
TCP is an industry-standard protocol for communicating over networks.
VIs running on the host computer can communicate with RT target VIs
using the LabVIEW TCP functions. However, TCP is non-deterministic,
and using TCP communication inside a time-critical VI might cause the
loop cycle time to vary from the desired time. Refer to the LabVIEW Help,
available by selecting Help»VI, Function, & How-To Help, for
information about the LabVIEW TCP functions.

The Real-Time Module extends the capabilities of the existing TCP
functions to enable communication with networked RT Series devices and
to allow communication across shared memory with RT Series plug-in
devices.

(RTX) Use RTRTX::0 as the address of an RT target when attempting to
open a TCP connection with the target using the LabVIEW TCP functions.

UDP
UDP is a network transmission protocol for transferring data between two
locations on a network. UDP is not a connection-based protocol, so the
transmitting and receiving computers do not establish a network
connection. Because there is no network connection, there is little overhead
when transmitting data. However, UDP is non-deterministic, and using

Table 3-1. Characteristics of Network Communication Protocols

Protocol Speed Reliability

TCP Fast Lossless

UDP Very Fast Lossy

DataSocket Fast Lossy

VI Server Slow Lossless*

SMTP Fast Lossless**

* Not for large data transfers. Used for monitoring or controlling one shot runs of remote
VIs. Primarily suited for remote control of VIs.

** You can only send data out from the RT target.

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-15 Real-Time Module User Manual

UDP communication inside a time-critical VI might cause the loop cycle
time to vary from the desired time.

When using UDP to send data, the receiving computer must have a read
port open before the transmitting computer sends the data. Use the UDP
Open function to open a write port and specify the IP address and port of
the receiving computer. The data transfer occurs in byte streams of varying
lengths called datagrams. Datagrams arrive at the listening port and the
receiving computer buffers and then reads the data.

You can transfer data bidirectionally with UDP. With bidirectional data
transfers, both computers specify a read and write port and transmit data
back and forth using the specified ports. You can use bidirectional UDP
data transfers to send and receive data from the network communication VI
on the RT target.

UDP has the ability to perform fast data transmissions deterministically.
However, UDP cannot guarantee that all datagrams arrive at the receiving
computer. Because UDP is not connection based, you cannot verify the
arrival of datagrams. You must ensure that network congestion does not
affect the transmission of datagrams. Also, you must read data stored in the
data buffer of the receiving computer fast enough to prevent overflow and
loss of data. Refer to the LabVIEW Help, available by selecting Help»VI,
Function, & How-To Help, for information about using the UDP
functions to exchange data with devices on a remote UDP port.

(RTX) You must use RTRTX::0 as the address of the RT target when
attempting to write data to the target using the LabVIEW UDP functions.

DataSocket (ETS Only)
DataSocket is an Internet programming technology to share live data
between VIs and other computers. A DataSocket Server running on a host
computer acts as a data repository. Data placed on the DataSocket Server
becomes available for clients to access.

Note You can bind a DataSocket connection to a front panel object and control the object
from a client connection. However, this feature is not supported by VIs on an RT target
because there is no front panel.

One advantage of using DataSocket is that multiple clients can access data
on the DataSocket Server. A LabVIEW VI can use the DataSocket Write
VI to post data to the DataSocket Server. Any number of VIs running on
different RT targets or host computers can use the DataSocket Read VI to

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-16 ni.com

retrieve the data. RT target VIs can post data, such as status information, to
the DataSocket Server for a VI running on a host computer to read.

DataSocket is non-deterministic and using DataSocket functions inside a
time-critical VI adds jitter to the application. Refer to the LabVIEW User
Manual for information about DataSocket technology. Refer to the
LabVIEW Help, available by selecting Help»VI, Function, & How-To
Help, for information about the LabVIEW DataSocket VIs and functions.

VI Server
Use the VI Server to monitor and control VIs on an RT target. Using VI
Server technology, a LabVIEW VI can invoke RT target VIs remotely.
The LabVIEW VI can pass parameter values to and from the RT target VIs,
creating a distributed application.

A host VI can invoke only VIs in memory on the RT target. The host VI
cannot dynamically download LabVIEW VIs to the RT target for use with
the VI Server. Refer to the Downloading VIs to an RT Target section of
Chapter 2, Connecting to RT Targets, for information about downloading
VIs without running them.

One advantage to communicating using the VI Server is that the VI Server
allows you to access the functionality of TCP while working within the
framework of LabVIEW. However, the VI Server is non-deterministic and
using VI Server communication inside a time-critical VI adds jitter to the
application. Refer to the LabVIEW User Manual for information about
using the VI Server.

(RTX) You must use RTRTX::0 as the computer name of the RT target when
attempting to open an application reference using the VI Server.

SMTP (ETS Only)
Use the SMTP VIs to send data from a VI running on the RT target to VIs
running on another computer. The SMTP VIs can send electronic mail,
including attached data and files, using the Simple Mail Transfer
Protocol (SMTP). You cannot use the SMTP VIs to receive information.

SMTP is non-deterministic, and using SMTP communication inside a
time-critical VI adds jitter to the application. Refer to the LabVIEW User
Manual for information about emailing data from a VI.

Chapter 3 Building Deterministic Applications

© National Instruments Corporation 3-17 Real-Time Module User Manual

Bus Communication

Serial (ETS Only)
Serial communication is the transmission of data between two locations
through the serial ports. The VISA functions provide serial communication
support in LabVIEW for communication between RT targets with serial
devices and serial instruments or computers that have a serial connection.
Serial communication is ideal when transfer data rates are low or for
transmitting data over long distances. You must install NI-Serial RT on the
RT target from MAX. (Mac OS) Install NI-Serial RT using the Remote
System Explorer.

Serial communication is non-deterministic, and using serial
communication inside a time-critical VI adds jitter to the application.
Refer to the LabVIEW Help, available by selecting Help»VI, Function, &
How-To Help, for information about using the LabVIEW VISA functions
for serial communication.

CAN (ETS Only)
Controller Area Network (CAN) is a deterministic, multi-drop
communication bus standardized as ISO 11898. Using CAN, you can
transfer up to 8 data bytes per frame at a rate of up to 1 Mbit per second.
You can network multiple RT systems using NI-CAN interface cards and
NI-CAN driver software. You cannot use CAN communication with RT
Series plug-in devices. You must install NI-CAN RT on the RT target from
MAX. (Mac OS) Install NI-CAN RT using the Remote System Explorer.

Refer to the NI-CAN Hardware and Software Manual for information about
using NI-CAN hardware and software with LabVIEW.

IrDA Wireless Communication (ETS Only)
Infrared Data Association (IrDA) is a communication standard that
specifies a way to transfer data using a wireless infrared connection. IrDA
devices communicate using infrared LEDs. You can use IrDA devices to
send data in and out of VIs running on an RT target using the LabVIEW
IrDA functions. RT Series controllers support Extended Systems
XTNDAccess IrDA PC Adapters and ACTiSYS IR-220L+ IrDA Com-Port
Serial Adapters connected to a built-in controller serial port. You must
install NI-IrDA RT on the RT target from MAX.

Chapter 3 Building Deterministic Applications

Real-Time Module User Manual 3-18 ni.com

IrDA is non-deterministic, and using IrDA communication inside a
time-critical VI adds jitter to the application. Refer to the LabVIEW Help,
available by selecting Help»VI, Function, & How-To Help, for
information about using the LabVIEW IrDA functions for IrDA
communication and for information about configuring IrDA on an
RT target.

© National Instruments Corporation 4-1 Real-Time Module User Manual

4
Timing Applications and
Acquiring Data

This chapter explains how to time applications to periodically yield
execution of the time-critical VI and allow lower priority VIs to execute.

Timing Control Loops
Because of the preemptive nature of the RTOS on RT Series devices,
a time-critical application thread can monopolize the processor on the
device. A thread might use all processor resources and not allow lower
priority threads in the application to execute. The time-critical task must
periodically yield processor resources to the lower-priority tasks so they
can execute. By properly separating the time-critical task from lower
priority tasks, you can reduce application jitter. Refer to Chapter 3,
Building Deterministic Applications, for information about building
deterministic VIs that reduce application jitter.

You can use software methods or a hardware method to time control loops.
The software method is available for RT Series FieldPoint modules,
RT Series PXI controllers, and RT Series plug-in devices. The hardware
method is available only for RT Series plug-in devices and RT Series PXI
controllers.

Timing Control Loops Using Software
LabVIEW provides two functions, Wait (ms) and Wait Until Next ms
Multiple, to time loops with sleep modes of 1 kHz. If you need to achieve
faster loop rates, use hardware timing. Refer to the Timing Control Loops
Using Hardware section of this chapter for information about using
NI hardware to achieve smaller loop rates.

Wait (ms)
The Wait (ms) function causes a VI to sleep for the specified amount of
time. For example, if the operating system millisecond timer value is
112 ms when the Wait (ms) function executes, and the milliseconds to

Chapter 4 Timing Applications and Acquiring Data

Real-Time Module User Manual 4-2 ni.com

wait input equals 10, then the function returns when the millisecond timer
value equals 122 ms.

Avoid using this VI in parallel with anything in a time-critical priority. If
the Wait (ms) function executes first, the whole thread sleeps until the Wait
(ms) finishes, and the code in parallel does not execute until the Wait (ms)
finishes. The resulting loop period is the code execution time plus the
milliseconds to wait time.

Wait Until Next ms Multiple Function
The Wait Until Next ms Multiple function causes a thread to sleep until the
operating system millisecond timer value equals a multiple of the
millisecond multiple input. For example, if the Wait Until Next ms
Multiple function executes with a millisecond multiple input of 10 ms and
the operating system millisecond timer value is 112 ms, the VI sleeps until
the millisecond timer value equals 120 ms because 120 ms is the first
multiple of 10 ms after the Wait Until Next ms Multiple function executes.

Use the Wait Until Next ms Multiple function to synchronize a loop with
the operating system millisecond timer value multiple. A loop has a period
of millisecond multiple if the Wait Until Next ms Multiple function
executes in parallel with other code in the same loop. However, the loop
does not have the period of millisecond multiple if the code takes longer
to execute than the millisecond multiple.

Avoid placing the Wait Until Next ms Multiple function in parallel with
other code because doing so can result in incorrect timing of a control
system. Instead, use a sequence structure to control when the Wait Until
Next ms Multiple function executes. Figure 4-1 shows the ideal timing of a
control system. The example control system reads an analog input, writes
an analog output, and waits in a synchronized cycle that repeats.

Figure 4-1. Ideal Timing of a Control System

Wait AI AO Wait AI AO Wait

Chapter 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-3 Real-Time Module User Manual

The block diagram in Figure 4-2 uses a While Loop with the Wait Until
Next ms Multiple function to create a control system.

Figure 4-2. Parallel Implementation of a Control System

Because of the dataflow properties of LabVIEW programming, the Wait
Until Next ms Multiple function can execute before, after, or between the
execution of the analog input and output. The behavior of the loop differs
depending on when the Wait Until Next ms Multiple function executes.
If the Wait Until Next ms Multiple function executes first, the analog input
precedes the analog output. The control system timing matches the ideal
timing shown in Figure 4-1. However, when the Wait Until Next ms
Multiple function does not execute first, the loop sleeps until the function
executes. Because a portion of the loop sleeps, the entire loop sleeps, and
the analog output waits until the loop returns from sleep to execute, which
produces results that do not match the ideal timing. Figure 4-3 shows the
incorrect results.

Figure 4-3. Incorrect Timing of a Control System

You can use a Flat Sequence structure to force a specific execution
sequence, as shown in Figure 4-4. In the block diagram in Figure 4-4, the
Wait Until Next ms Multiple function precedes the analog input and the
system implementation produces results that match the ideal timing.

Wait AO AI Wait AO AI WaitAI

Chapter 4 Timing Applications and Acquiring Data

Real-Time Module User Manual 4-4 ni.com

Figure 4-4. Flat Sequence Structure Implementation of a Control System

Real-Time Timing VIs
You can use the Real-Time Timing VIs to time control loops. Refer to the
LabVIEW Help, available by selecting Help»VI, Function, & How-To
Help, for VI reference information about the Real-Time Timing VIs.

LabVIEW Timed Loop (ETS Only)
The LabVIEW Timed Loop executes each iteration of a loop at the period
you specify. The Timed Loop can specify the period for each iteration of
the loop by setting a periodic alarm. In addition to specifying the period,
you can specify the offset, the timing source, and the priority of the loop.
Refer to the Using the Timed Loop to Write Multi-Rate Applications in
LabVIEW Application Note for information about the Timed Loop.

Timing Control Loops Using Hardware
You can use NI data acquisition hardware and NI-DAQmx to achieve a
sleep resolution much finer than 1 kHz. Refer to the NI-DAQmx Help for
more information about timing control loops.

Chapter 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-5 Real-Time Module User Manual

Acquiring Data with VIs Running on an RT Target
You can create VIs that run on an RT target and acquire data
deterministically using National Instruments hardware.

RT Series Data Acquisition Devices (ETS Only)
To perform data acquisition using NI-DAQmx supported hardware, refer to
the NI-DAQmx Help for information about configuring and programming
the hardware for acquiring data using NI-DAQmx 7.2.

RT Series FieldPoint Modules (ETS Only)
To perform data acquisition using FieldPoint I/O modules, refer to the
Measurement & Automation Explorer Help for FieldPoint, available by
selecting Help»Help Topics»FieldPoint, for information about
configuring the hardware and for information about programming the
hardware for acquiring data using the FieldPoint VIs and LabVIEW.

NI PCI-7831 Plug-in Device (ETS and RTX)
The LabVIEW Real-Time Module supports the NI PCI-7831 plug-in
device for data acquisition. To perform data acquisition using the
NI PCI-7831 plug-in device and the LabVIEW Real-Time Module, refer to
the Getting Started with the NI 7831R for information about configuring
and programming the hardware for acquiring data.

© National Instruments Corporation 5-1 Real-Time Module User Manual

5
Optimizing Applications

This chapter explains techniques that can improve the determinism of
applications.

Avoiding Shared Resources
In LabVIEW, there are resources that two or more VIs might need to share.
These shared resources include global variables, non-reentrant subVIs, the
LabVIEW Memory Manager, queues, semaphores, single-threaded DLLs,
and so on. If a VI uses a shared resource, the VI acquires an operating
system mutex around the resource to protect the resource from access by
other VIs. A mutex locks the resource so that other VIs may not access the
resource. If a time-critical priority VI preempts a lower priority VI and
attempts to use a locked resource, the time-critical VI must wait because the
shared resource is not available. The lower priority VI becomes more
important than the time-critical VI because it must finish its work and
release the shared resource before the time-critical VI can proceed.
This scenario is a priority inversion.

Priority inversions induce jitter. Avoid or minimize jitter in a time-critical
VI to ensure determinism. Do not use shared resources in time-critical VIs.
The amount of jitter induced by a shared resource depends on the type of
shared resource involved. For instance, when accessing a global variable of
fixed size, a VI can finish a read or write operation on the global variable
within a consistent length of time or with very little variance in time.
Because reading and writing to a fixed size global variable is bound in time,
you can account for the jitter induced by sharing the global variable.

Memory Allocations and Preallocating Arrays
When a VI allocates memory, the VI accesses the LabVIEW Memory
Manager. The LabVIEW Memory Manager allocates memory for data
storage. The LabVIEW Memory Manager is a shared resource and might
be locked by a mutex up to several milliseconds. Avoid allocating memory
within a time-critical VI control loop.

If you are using arrays in time-critical VI control loops, you can reduce
jitter by preallocating arrays before entering the loop.

Chapter 5 Optimizing Applications

Real-Time Module User Manual 5-2 ni.com

The block diagram in Figure 5-1 builds an array within the control loop.
Jitter affects the loop because the Build Array function inside the loop uses
the LabVIEW Memory Manager at every iteration to allocate memory for
the array.

Figure 5-1. Memory Allocation in Control Loop

The block diagram in Figure 5-2 uses the Initialize Array function outside
the loop and the Replace Array Subset function inside the loop to create the
array. Because the array is preallocated outside the control loop, the control
loop no longer needs to access the LabVIEW Memory Manager at every
iteration.

Figure 5-2. Preallocated Array

Chapter 5 Optimizing Applications

© National Instruments Corporation 5-3 Real-Time Module User Manual

Casting Data to Proper Data Types
Cast data to the proper data type in VIs running on the RT target. Every
time LabVIEW performs a type conversion, LabVIEW makes a copy of the
data buffer in memory to retain the new data type after the conversion. The
LabVIEW Memory Manager must allocate memory for the copy, which
might affect the determinism of time-critical VIs. Also, creating copies of
the data buffer takes up memory resources on an RT target. Refer to the
LabVIEW User Manual for more information about casting data types.

Use the smallest data type possible when casting the data type. If you must
convert the data type of an array, do the conversion before you build the
array. Also, keep in mind that a function output reuses an input buffer only
if the output and the input have the same data type. Arrays must have the
same structure and number of elements for function outputs to reuse the
input buffer.

Reducing the Use of Global Variables
LabVIEW creates an extra copy in memory of every global variable you
use in a VI. Reduce the number of global variables to improve the
efficiency and performance of VIs. Creating copies of the global variable
takes up memory resources on an RT target.

Avoiding Contiguous Memory Conflicts
LabVIEW handles many of the memory details that you normally deal with
in a conventional, text-based language. For example, functions that
generate data must allocate storage for the data. When that data is no longer
needed, LabVIEW deallocates the associated memory. When you add new
information to an array or a string, LabVIEW allocates new memory to
accommodate the new array or string. However, running out of memory is
a concern with VIs running on an RT target.

You must design memory-conscious VIs for RT targets. Always preallocate
space for arrays equal to the largest array size that you might encounter.

When you reboot or reset an RT target, the RTOS and the RT Engine load
into memory as shown in diagram 1 of Figure 5-3.

Chapter 5 Optimizing Applications

Real-Time Module User Manual 5-4 ni.com

Figure 5-3. Memory Diagrams of an RT Target

The RT Engine uses available memory for running RT target VIs and
storing data. In diagram 2 of Figure 5-3, ArrayMaker.vi creates Array 1.
All elements in Array 1 must be contiguous in memory.

The RTOS reuses the same memory addresses if you stop a VI and then run
it again with arrays of the same size or smaller. In diagram 3 of Figure 5-3,
ArrayMaker.vi creates Array 2. The RTOS creates Array 2 in the
reserved memory space previously occupied by Array 1. Array 2 is small
enough to fit in the reserved memory space that was allocated to Array 1.
The extra contiguous memory used for Array 1 remains in the reserved
memory space, as shown in diagram 3 of Figure 5-3.

When ArrayMaker.vi runs for a third time with a larger array or if
another VI generates a larger array, the RT Engine must find a large enough
contiguous space. In diagram 4 of Figure 5-3, ArrayMaker.vi must
create Array 3, larger than the previous arrays, in the available memory.

Even when ArrayMaker.vi stops running, the RT Engine continues to
run. Previously reserved memory is not available. If ArrayMaker.vi runs
a fourth time and attempts to create an array larger than Array 3, the
operation fails. There is no contiguous memory area large enough to create

Real-Time
Operating
System
(RTOS)

RT Engine

Real-Time
Operating
System
(RTOS)

RT Engine

ArrayMaker.vi

Array 1

Real-Time
Operating
System
(RTOS)

RT Engine

ArrayMaker.vi

Array 2

Real-Time
Operating
System
(RTOS)

RT Engine

ArrayMaker.vi

Array 3

1 2 3 4

Chapter 5 Optimizing Applications

© National Instruments Corporation 5-5 Real-Time Module User Manual

the array because of the memory fragmentation. You can preserve memory
space by preallocating array space equal to the largest use case.

Avoiding SubVI Overhead
Calling a subVI from a VI running on an RT target adds a small amount of
overhead to the overall application. Although the overhead is small, calling
a subVI multiple times in a loop can add a significant amount of overhead.
You can embed the loop in the subVI to reduce the overhead.

You also can convert subVIs into subroutines by changing the VI priority.
The LabVIEW execution system minimizes the overhead to call
subroutines. Subroutines are short, frequently executed tasks that generally
do not require user interaction. Subroutines cannot display front panel data
and do not multitask with other VIs. Also, avoid using timing or dialog box
functions in subroutines. Refer to Chapter 3, Building Deterministic
Applications, for information about setting VI priorities.

Setting VI Properties
To reduce memory requirements and increase performance of VIs, disable
nonessential options in the VI Properties dialog box available by selecting
File»VI Properties. Select Execution from the Category pull-down menu
and remove checkmarks from the Allow debugging and Auto handle
menus at launch checkboxes. By disabling these options, VIs use less
memory, compile quicker, and perform better overall.

Mass Compiling VIs
Mass compiling a VI is another way to improve performance. Mass
compiling a VI compiles the top-level VI and also recompiles and re-links
all the subVIs and functions on the block diagram with the top-level VI.

Chapter 5 Optimizing Applications

Real-Time Module User Manual 5-6 ni.com

Minimizing Memory Usage by the RT Target Web Server
To minimize memory usage when you enable the Web Server on an RT
target, include only the VIs you want to access remotely on the Web
Server: Visible VIs Options page of the RT Target Options dialog box.
Also, disable the Web Server or remove all VIs on the Web Server:
Visible VIs Options page to avoid losing memory when the Web Server is
not in use.

Setting BIOS Options (ETS Only)
You can improve performance of VIs running on RT Series PXI controllers
if you disable USB hardware in the BIOS of the controller. Make sure the
PXI controller has the following BIOS setting:

Integrated Peripherals

USB Keyboard = DISABLED

Additionally, for NI PXI-8170 controllers, make sure the controller has the
following BIOS setting:

PnP/PCI Configuration

Assign IRQ for USB = DISABLED

© National Instruments Corporation 6-1 Real-Time Module User Manual

6
Debugging Deterministic
Applications

Building deterministic LabVIEW applications requires programming
techniques different from typical LabVIEW programming. With
deterministic applications, there are two levels of debugging to
verify—application behavior and timing behavior.

Verifying Correct Application Behavior
You first must ensure that the application behaves as expected. Use the
LabVIEW debugging tools to detect errors and step through the flow of
execution to locate the error source. Finally, use the Profile window or the
LabVIEW Execution Trace Toolkit to test the execution timing and
memory usage of an application.

Using the LabVIEW Debugging Tools
Use the LabVIEW debugging tools, such as execution highlighting and
single-stepping, while the host computer is connected to an RT target to
step through LabVIEW code.

Note You must place a checkmark in the Allow debugging checkbox of the Execution
page of the VI Properties dialog box to use the LabVIEW debugging tools to debug a VI.

The only feature not supported by the Real-Time Module is the Call Chain
ring, which appears in the toolbar of a subVI block diagram window while
single-stepping. Refer to the LabVIEW User Manual for information about
the LabVIEW debugging tools.

Note Do not use the LabVIEW debugging tools to debug execution timing because all
debugging tools affect the timing of an application.

Chapter 6 Debugging Deterministic Applications

Real-Time Module User Manual 6-2 ni.com

Using the Profile Window
The Profile window is a powerful tool for statistically analyzing how an
application uses execution time and memory. The Profile window displays
information that can identify the specific VIs or parts of VIs you need to
optimize. For example, if you notice that a particular subVI takes a long
time to execute, you can improve the performance of that VI. The Profile
window displays the performance information for all VIs in memory in an
interactive tabular format. From the Profile window, you can select the
type of information to gather and sort the information by category.
You also can monitor subVI performance within different VIs. Select
Tools»Advanced»Profile VIs to display the Profile window.

Note You must connect LabVIEW to an RT target while running the Profile window.

You must place a checkmark in the Profile Memory Usage checkbox
before starting a profiling session. Collecting information about VI
memory use adds a significant amount of overhead to VI execution, which
affects the accuracy of any timing statistics gathered during the profiling
session. Therefore, perform memory profiling separate from time profiling
to return an accurate profile.

Many of the options in the Profile window become available only after you
begin a profiling session. During a profiling session, you can take a
snapshot of the available data and save it to an ASCII spreadsheet file.
The timing measurements accumulate each time you run a VI. Refer to the
LabVIEW Performance and Memory Management Application Note for
information about using the Profile window.

Using the Real-Time System Manager (ETS Only)
The Real-Time System Manager displays details about VIs running on an
RT target and provides a dynamic display of the performance of the target.
You also can stop VIs and start idle VIs using the Real-Time System
Manager. Select Tools»Real-Time System Manager to open the
Real-Time System Manager. Refer to the LabVIEW Help, available by
selecting Help»VI, Function, & How-To Help, for information about
using the Real-Time System Manager.

Chapter 6 Debugging Deterministic Applications

© National Instruments Corporation 6-3 Real-Time Module User Manual

Verifying Correct Timing Behavior
Timing is crucial in a deterministic application. Use one of the following
methods to verify the timing of an application.

Using the Tick Count (ms) Function
Use the Tick Count (ms) function to measure the time it takes to perform
N iterations of a specified operation and calculate the average time in
seconds per operation or average operations per second. Refer to the
Benchmarking Shell VI located in the examples/Real-Time/RT
Tutorial.llb for an example using the Tick Count (ms) function to
benchmark code. Refer to the NI Developer Zone at ni.com/zone for
information about using the Tick Count (ms) function to verify timing
behavior.

Using the NI Time Stamp VIs
On Pentium processor-based RT targets, you can obtain a timestamp using
the NI Timestamp VIs. The NI Timestamp VIs, located in the vi.lib/
addons/rt/_RTUtility.llb, read the Time Stamp Counter register
from the Pentium processor of RT targets for every loop iteration. Refer to
the NI Timestamp Code Timer VI located in the examples/Real-Time/
RT Timing.llb for an example using the NI Timestamp VIs to
benchmark code. Refer to the National Instruments Web site at
ni.com/info and enter the info code NItstamp for information about
the using the NI Timestamp VIs to verify timing behavior.

Using an Oscilloscope
The Tick Count (ms) function and the NI Timestamp VIs allow you to
examine the relative timing of sections of LabVIEW VIs and to measure
the software jitter in the VIs. Sometimes you might need to measure the
jitter of the whole system at the hardware level, especially when you use
hardware timing and the software jitter is masked out at the system level.
Use external tools such as an oscilloscope to study the relationship between
input and output signals and to measure loop rates and jitter levels.

Using Software Drivers
Sometimes you can use software drivers to make sure that the application
is capable of keeping up with the desired loop rate. For example, you can
use the DAQmx Is Read or Write Late VI to determine whether a control
loop is keeping real time. Refer to Developer Zone at ni.com/zone for
information about using DAQmx VIs to time control loops.

Chapter 6 Debugging Deterministic Applications

Real-Time Module User Manual 6-4 ni.com

Using the LabVIEW Execution Trace Toolkit (ETS Only)
The LabVIEW Execution Trace Toolkit is a real-time event and execution
tracing tool that allows you to capture and display the timing and event data
of VI and thread events for LabVIEW Real-Time Module applications in
Windows. Refer to the National Instruments Web site at ni.com/info
and enter the info code lvtrace for information about the LabVIEW
Execution Trace Toolkit.

Using and Defining Error Codes
Use error handling to debug and manage errors in VIs. The LabVIEW error
handler VIs return error codes when an error occurs in a VI. Error codes
reveal the specific problem the VI encountered. When you configure an RT
target, LabVIEW automatically copies the error code files used by the error
handler VIs to the target.

You can use custom error codes with VIs that run on an RT target.
Create error files using the Error Code File Editor by selecting
Tools»Advanced»Edit Error Codes. If you use custom errors with
LabVIEW, you must rename the files to use a *.err extension and then
place the error files in the c:\ni-rt\system\user.lib\errors
directory or the c:\ni-rt\system\errors directory on the RT target.
Use the FTP client in MAX or any other FTP client to transfer the error file
to the networked device. Refer to the LabVIEW Help, available by selecting
Help»VI, Function, & How-To Help, for information about defining
custom error codes.

© National Instruments Corporation 7-1 Real-Time Module User Manual

7
Deploying Applications

Use the LabVIEW Application Builder, included with the Real-Time
Module Professional Development System, to create stand-alone
Real-Time Module applications. Stand-alone applications do not require
you to run them from within a LabVIEW environment. You can embed
a stand-alone application on an RT target and launch the application
automatically when you boot the target.

Building Stand-Alone Applications
In LabVIEW, select Tools»Build Application or Shared Library (DLL)
to launch the LabVIEW Application Builder. Refer to the LabVIEW
Application Builder User Guide for information about using the
Application Builder to build a stand-alone application and then refer to this
chapter for information about building stand-alone applications for RT
targets.

Note You must select an RT target as the execution target before launching the
Application Builder if you want to embed the stand-alone application on the target.

Configuring Target Settings
On the Target tab, the Application Builder determines the target file name,
destination directory, and support file directory from the Application Path
text box in the RT Target Options dialog box. Select Tools»RT Target:
x.x.x.x Options, where x.x.x.x is the IP address of the RT target, and then
select RT Target: Miscellaneous from the pull-down menu to open the
RT Target: Miscellaneous page.

(RTX) Select Tools»RT Target: RTX (RTRTX::0) Options and then
select RT Target: Miscellaneous from the pull-down menu to open the
RT Target: Miscellaneous page.

You cannot change the application name, destination directory, or support
file directory settings from the Target tab because the Application Builder
determines the path from the Application Path text box in the RT Target
Options dialog box.

Chapter 7 Deploying Applications

Real-Time Module User Manual 7-2 ni.com

If you place a checkmark in the Small target file with external file for
subVIs checkbox of the Build Options section, you cannot change the
LLB for other files path because Application Builder determines the path
from the Application Path text box in the RT Target Options dialog box.
Refer to the LabVIEW Help, available by selecting Help»VI, Function, &
How-To Help, for information about the RT Target Options dialog box.

Saving Stand-Alone Applications
The Application Builder saves stand-alone applications on the host
computer or embeds applications on an RT target.

You must select an RT target as the execution target before launching the
Application Builder if you want to embed the stand-alone application on
the target. Refer to the Launching Stand-Alone Applications section of this
chapter for information about launching embedded stand-alone
applications on the RT target when the target boots up.

You also can launch the application on the host computer and then select an
RT target as the execution target. Refer to the Launching Applications
Automatically Using Command Line Arguments section of this chapter for
information about automatically launching stand-alone applications using
command line arguments.

Selecting a Target after Launch
When you run a stand-alone application built with the Application Builder
on the host computer, the Select Execution Target dialog box appears.
You can select any execution target for the application. Remove the
checkmark from the Show LabVIEW Real-Time target selection dialog
when launched checkbox in the Application Settings tab of the
Application Builder to run the application on the host computer. You also
can use command line arguments to launch the applications and specify an
execution target. Refer to the Launching Applications Automatically Using
Command Line Arguments section of this chapter for information about
command line arguments.

Quitting LabVIEW after Launch
If you design a stand-alone application to run on an RT target, you might
want the host computer to disconnect from the RT target after you
download and run the application. Place a checkmark in the Quit
LabVIEW Real-Time host application after downloading checkbox
in the Application Settings tab of the Application Builder to have
LabVIEW disconnect after launching the application on the RT target.
Placing a checkmark in the Quit LabVIEW Real-Time host application

Chapter 7 Deploying Applications

© National Instruments Corporation 7-3 Real-Time Module User Manual

after downloading checkbox is equivalent to selecting File»Exit without
closing RT Engine VIs in LabVIEW after downloading and running a VI
on an RT target.

RT targets have media storage devices where you can save stand-alone
applications. For example, the RT Series PXI controller has a hard disk
drive, and the FieldPoint 20xx network module has flash. You can
automatically launch embedded stand-alone applications each time you
start the RT target. Refer to the Launching Stand-Alone Applications
section of this chapter for information about launching embedded
stand-alone applications automatically on an RT target.

Creating an Application Installer
In addition to building applications, the Application Builder can create
an installer for a stand-alone application. You then can distribute the
installer to other computers. The installer copies the stand-alone
application and the necessary support files to the computer. Select the
Installer Settings tab in the Build Application or Shared Library (DLL)
dialog box and place a checkmark in the Create installer checkbox to
access the installer options.

Note You must select the host computer as the execution target before launching the
Application Builder if you want to create an installer for a stand-alone application.

Click the Advanced button to open the Advanced Installer Settings
dialog box. Place checkmarks in the LabVIEW Run-Time Engine and the
LabVIEW RT Support checkboxes to add the LabVIEW Run-Time
Engine and support for RT Series hardware to the application installer.

You must include the LabVIEW Run-Time Engine if you plan to install the
application on a computer that does not have the Real-Time Module
installed.

Note (RTX) You must install Venturcom RTX and the LabVIEW Real-Time Module for
RTX on the computer on which you want to install the application. You also must install
the NI-VISA 3.1 driver from the National Instruments Device Driver CD and NI-RIO 1.1
for R Series devices from the NI-RIO for R Series Devices CD if you want to use the
NI PCI-7831 plug-in device for instrument I/O.

The LabVIEW Run-Time Engine allows you to select an execution target
to run the application.

Chapter 7 Deploying Applications

Real-Time Module User Manual 7-4 ni.com

When you install on a computer a stand-alone application that connects to
an RT Series PXI controller, RT Series FieldPoint module, or NI PCI-7041
plug-in device, you also must install the following components from the
National Instruments Device Driver CD on the computer:

• MAX 3.1

• PCI-7041 support

• FieldPoint 4.1 support (for FieldPoint)

• NI-DAQmx 7.2 or Traditional NI-DAQ 7.1

• Any other necessary I/O hardware drivers

Note RT targets must already have a version of the RT Engine installed that matches the
version of LabVIEW you use to build the stand-alone application.

Launching Stand-Alone Applications
You can embed the application directly on an RT target and then launch it
automatically on startup. You also can launch the application from the host
computer and select an execution target on startup using command line
arguments.

Launching Embedded Applications Automatically
The RT Engine on an RT target can launch embedded stand-alone
applications each time you boot the target. (RTX) The embedded stand-alone
application launches on the RTX subsystem when you log into Windows.

Complete the following steps to launch an embedded stand-alone
application when the RT target boots up.

1. Select the RT target as the execution target.

2. Select Tools»RT Target: x.x.x.x Options, where x.x.x.x is the
IP address of the device. (RTX) Select Tools»RT Target: RTX
(RTRTX::0) Options.

Refer to the LabVIEW Help, available by selecting Help»VI,
Function, & How-To Help, for information about the RT Target
Options dialog box.

3. Select RT Target: Miscellaneous from the pull-down menu.

4. Place a checkmark in the Launch Application at Boot-up checkbox.

Chapter 7 Deploying Applications

© National Instruments Corporation 7-5 Real-Time Module User Manual

Launching Applications Automatically Using Command Line Arguments
When you launch a stand-alone application on a host computer, the
application launches the Select Execution Target dialog box. From the
Select Execution Target dialog box, you can select the RT target on which
you want the application to execute. You also can use command line
arguments to disable the Select Execution Target dialog box and
explicitly specify an RT target for the application. Use command line
arguments in a batch file or shortcut from the host computer operating
system startup folder to automatically launch stand-alone applications
when the host computer starts.

To disable the Select Execution Target dialog box, specify the RT target
in a command line argument using –target. For example,

c:\mybuiltapp_rtengine.exe -target RTRTX::0

You also can target the host computer and automatically launch a host
computer application on startup. For example,

c:\mybuiltapp_host.exe -target host

To disconnect the host computer from the RT target after downloading the
application, leaving the embedded application running, use -quithost.
For example, the following command automatically downloads and runs
mybuiltapp_rtengine.exe on an RT target with the IP address of
10.0.40.76 and then closes LabVIEW on the host computer.

c:\mybuiltapp_rtengine.exe -target 10.0.40.76 -quithost

Note If the host computer requires a login before entering the operating system, the
application starts only after the login completes.

You also can reset a specified plug-in device using -reset. For example,

c:\mybuiltapp_rtengine.exe -target RT::0 -reset

This command automatically resets the plug-in device specified by
-target before downloading the application. Refer to the LabVIEW Help,
available by selecting Help»VI, Function, & How-To Help, for
information about LabVIEW command line arguments.

Chapter 7 Deploying Applications

Real-Time Module User Manual 7-6 ni.com

Connecting to Stand-Alone Applications on an RT Target
You cannot open a front panel connection to a stand-alone application
running on an RT target. Use a remote panel connection to connect to the
application or use the RT Communication Wizard to create communication
VIs to show the front panel of a time-critical VI on the host computer. Refer
to the LabVIEW Help for information about using remote panels to connect
to the front panel of a VI running on an RT target. Refer to Chapter 3,
Building Deterministic Applications, for information about using the RT
Communication Wizard.

© National Instruments Corporation A-1 Real-Time Module User Manual

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni.com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards,
conformity documentation, example code, tutorials and
application notes, instrument drivers, discussion forums,
a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/support. Our online system helps you define your
question and connects you to the experts by phone, discussion
forum, or email.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 Real-Time Module User Manual

Glossary

Symbol Prefix Value

m milli 10–3

k kilo 103

M mega 106

G giga 109

A

address Character code that identifies a specific location or series of locations in
memory.

application A collection of VIs that together accomplish the real-time system task.

D

DAQ See data acquisition (DAQ).

data acquisition
(DAQ)

(1) Acquiring and measuring analog or digital electrical signals from
sensors, transducers, and test probes or fixtures; (2) Generating analog or
digital electrical signals.

DataSocket An Internet programming technology to share live data between VIs and
other computers.

determinism Characteristic of a system that describes how consistently it can respond to
external events or perform operations within a given time limit.

device An instrument or controller you can access as a single entity that controls
or monitors real-world I/O points. A device often is connected to a host
computer through some type of communication network.

driver Software unique to the device or type of device, and includes the set of
commands the device accepts.

Glossary

Real-Time Module User Manual G-2 ni.com

E

embedded application A stand-alone application built using the LabVIEW Application Builder
and embedded as the start-up application on an RT target.

execution target The target on which to run a LabVIEW VI. Can be either an RT target or
the host computer.

F

FIFO First-in-first-out memory buffer. The first data stored is the first data sent
to the acceptor.

front panel
communication

A protocol for communication between LabVIEW on the host computer
and the RT Engine on an RT target, typically used during development.

functional global
variable

A subVI set to subroutine priority used to pass data between several VIs on
a block diagram.

G

global variable A variable that accesses and passes data between several VIs on a block
diagram.

H

host computer The computer on which you develop VIs using LabVIEW and download
them to an RT target.

Hz Hertz—The number of scans read or updates written per second.

I

I/O Input/Output—The transfer of data to/from a computer system involving
communications channels, operator interface devices, and/or data
acquisition and control interfaces.

INI A file used to set application configuration options.

Glossary

© National Instruments Corporation G-3 Real-Time Module User Manual

J

jitter The amount of time that the loop cycle time varies from the desired time.

M

Measurement &
Automation Explorer
(MAX)

A graphical user interface for configuring National Instruments hardware
and software.

media storage device A device capable of storing data.

multitasking When a computer runs applications for a short amount of time to give the
impression of multiple applications running simultaneously.

multithreading Running tasks of an application for a short amount of time to give the
impression of multiple tasks running simultaneously.

mutex An operating system lock around a resource to protect the resource from
access by other VIs.

N

network
communication

A protocol for communication between a host VI and a VI running on the
RT target using specific network communication programmatic controls.

networked device A hardware platform with an embedded processor that you can control
using a separate host computer through an Ethernet connection.

NI-DAQmx Driver software included with all NI measurement devices. NI-DAQmx is
an extensive library of VIs and functions you can call from an application
development environment (ADE), such as LabVIEW, to program all the
features of an NI measurement device, such as configuring, acquiring and
generating data from, and sending data to the device.

Glossary

Real-Time Module User Manual G-4 ni.com

O

operating system Base-level software that controls a computer, runs programs, interacts with
users, and communicates with installed hardware or peripheral devices.

P

PCI Peripheral Component Interconnect—A high-performance expansion bus
architecture originally developed by Intel to replace ISA and EISA. It is
achieving widespread acceptance as a standard for PCs and workstations;
it offers a theoretical maximum transfer rate of 132 Mbytes/s.

plug-in device Plug-in NI PCI/PXI RT Series devices with embedded processors.
Each plug-in device contains a processor board and data acquisition
daughterboard.

preemptive scheduling Execution system scheduling of threads in which higher priority threads
execute before all other threads.

priorities Assigned to VIs to classify execution sequence in the execution system.
Higher priority threads execute first, while threads with a lower priority
wait.

Property Node Sets or finds the properties of a VI or application.

Proportional Integral
Derivative (PID)
Control

Combination of proportional, integral, and derivative control actions.
Refers to a control method in which the controller output is proportional to
the error, its time history, and the rate at which it is changing. The error is
the difference between the observed and desired values of a variable that is
under control action.

protocol The exact sequence of bits, characters, and control codes used to transfer
data between computers and peripherals through a communications
channel, such as the GPIB bus.

PXI PCI eXtensions for Instrumentation. A modular, computer-based
instrumentation platform.

Glossary

© National Instruments Corporation G-5 Real-Time Module User Manual

R

real-time A property of an event or system in which data is processed as it is acquired
instead of being accumulated and processed at a later time.

Real-Time Operating
System (RTOS)

Uses a combination of round robin and preemptive scheduling to execute
threads in the execution system.

Real-Time Subsystem
(RTSS)

A real-time subsystem in Windows that has a priority based real-time
execution system independent of the Windows scheduler.

remote panel Allows you to operate a front panel on a machine that is separate from
where the VI resides and executes using a LabVIEW client or Web browser.

round robin scheduling Scheduling that attempts to share the processor in equal amounts of time
among all ready tasks of the same priority.

RT Engine A version of LabVIEW that runs on the RT target.

RT target RT Series hardware that runs VIs downloaded from and built in LabVIEW.

run-time engine Runs LabVIEW executables built using the LabVIEW Application Builder
on computers without LabVIEW.

S

shared memory Memory that can be sequentially accessed by more than one controller or
processor but not simultaneously accessed. Also known as dual-mode
memory.

shift register Optional mechanism in loop structures to pass the value of a variable from
one iteration of a loop to a subsequent iteration. Shift registers are similar
to static variables in text-based programming languages.

soft reboot Restarting a computer without cycling the power, usually through the
operating system.

subVI VI used on the block diagram of another VI. Comparable to a subroutine.

synchronous (1) Hardware—A property of an event that is synchronized to a reference
clock; (2) Software—A property of a function that begins an operation and
returns only when the operation is complete.

Glossary

Real-Time Module User Manual G-6 ni.com

T

target See RT target.

TCP Transmission Control Protocol—A standard format for transmitting data in
packets from one computer to another.

thread A completely independent flow of control in an application.

Traditional NI-DAQ An upgrade to the earlier version of NI-DAQ. Traditional NI-DAQ has the
same VIs and functions and works the same way as NI-DAQ 6.9.x. You can
use both Traditional NI-DAQ and NI-DAQmx on the same computer,
which is not possible with NI-DAQ 6.9.x.

U

UDP User Datagram Protocol. A standard format for transmitting data in
datagrams from one computer to another.

V

VI Virtual Instrument—(1) A combination of hardware and/or software
elements, typically used with a PC, that has the functionality of a classic
stand-alone instrument; (2) A LabVIEW software module (VI), which
consists of a front panel user interface and a block diagram program.

VI Server Mechanism for controlling VIs and LabVIEW applications
programmatically, locally and remotely.

Virtual Instrument
Software Architecture
(VISA)

Single interface library for controlling GPIB, VXI, RS-232, and other types
of instruments.

© National Instruments Corporation I-1 Real-Time Module User Manual

Index

A
acquiring data with VIs on RT target, 4-5
Application Builder, 7-1 to 7-4
application installer, creating, 7-3 to 7-4
applications. See deterministic applications;

stand-alone applications
ArrayMaker.vi, 5-4
arrays, preallocating, 5-1 to 5-2

B
BIOS options, setting, 5-6
Build Array function, 5-2
building deterministic applications.

See deterministic applications
building stand-alone applications.

See stand-alone applications
bus communication

CAN, 3-17
serial, 3-17

C
CAN (Controller Area Network), 3-17
casting data to proper data types, 5-3
command line arguments for launching

stand-alone applications, 7-5
communicating with RT target VIs, 3-8 to 3-11

front panel communication, 3-9
network communication, 3-10 to 3-11

communication methods, 3-12 to 3-18
bus communication, 3-17
CAN, 3-17
DataSocket, 3-15 to 3-16
IrDA wireless communication, 3-17 to 3-18
network communication, 3-14 to 3-16
serial, 3-17

shared memory, 3-13
SMTP, 3-16
TCP, 3-14
UDP, 3-14 to 3-15
VI Server, 3-16

contiguous memory conflicts,
avoiding, 5-3 to 5-5

Controller Area Network (CAN), 3-17
conventions used in manual, ix
cooperatively yielding time-critical VI

execution, 3-5
custom error codes, using and defining, 6-4

D
data acquisition with VIs running on RT

target, 4-5
data types, casting data to, 5-3
DataSocket communication

method, 3-15 to 3-16
debugging deterministic applications, 6-1 to 6-4

application behavior verification, 6-1 to 6-2
Embedded System Manager, 6-2
LabVIEW debugging tools, 6-1
Profile window, 6-2

error codes, using and defining, 6-4
timing behavior verification, 6-3 to 6-4

LabVIEW Execution Trace
Toolkit, 6-4

NI Timestamp VIs, 6-3
oscilloscope, 6-3
software drivers, 6-3
Tick Count (ms) function, 6-3

deploying applications. See stand-alone
applications

deterministic applications, 3-1 to 3-18
acquiring data, 4-5

Index

Real-Time Module User Manual I-2 ni.com

communicating with RT target
VIs, 3-8 to 3-11

front panel communication, 3-9
network

communication, 3-10 to 3-11
communication methods, 3-12 to 3-18

bus communication, 3-17
CAN, 3-17
DataSocket, 3-15 to 3-16
IrDA wireless

communication, 3-17 to 3-18
network

communication, 3-14 to 3-16
serial, 3-17
shared memory, 3-13
SMTP, 3-16
TCP, 3-14
UDP, 3-14 to 3-15
VI Server, 3-16

debugging, 6-1 to 6-4
application behavior

verification, 6-1 to 6-2
Embedded System Manager, 6-2
error codes, using and defining, 6-4
LabVIEW debugging tools, 6-1
LabVIEW Execution Trace

Toolkit, 6-4
NI Timestamp VIs, 6-3
oscilloscope, 6-3
Profile window, 6-2
software drivers, 6-3
Tick Count (ms) function, 6-2
timing behavior

verification, 6-3 to 6-4
multithreaded applications, 3-1 to 3-5

cooperative yielding of time-critical
VIs, 3-5

definition, 3-1
dividing tasks, 3-2 to 3-3
execution systems for categorizing

VIs, 3-4 to 3-5

overview, 3-1 to 3-2
round robin scheduling, 3-2
VI priorities, 3-3 to 3-4
yielding time-critical VI

execution, 3-5
optimizing, 5-1 to 5-6

avoiding contiguous memory
conflicts, 5-3 to 5-5

avoiding shared resources, 5-1 to 5-3
avoiding subVI overhead, 5-5
casting data to proper data types, 5-3
mass compiling of VIs, 5-5
memory allocations and

preallocating arrays, 5-1 to 5-2
reducing global variable use, 5-3
setting BIOS options, 5-6
setting VI properties, 5-5

passing data between VIs, 3-6 to 3-8
functional global variables, 3-6 to 3-7
global variables, 3-6
Real-Time FIFO VIs, 3-8

timing control loops, 4-1 to 4-5
hardware method, 4-4
overview, 4-1
software methods, 4-1 to 4-4

using RT Communication
Wizard, 3-11 to 3-12

diagnostic tools (NI resources), A-1
documentation

conventions used in manual, ix
NI resources, A-1
related documentation, x

downloading VIs to RT target, 2-3
drivers (NI resources), A-1

E
Embedded System Manager, 6-2
error codes in debugging, using and

defining, 6-4
examples (NI resources), A-1

Index

© National Instruments Corporation I-3 Real-Time Module User Manual

execution systems, assigning VIs to, 3-4 to 3-5
execution target, selecting RT target

as, 2-1 to 2-2
Execution Trace Toolkit, LabVIEW, 6-4
Express VIs, 1-4

F
FieldPoint Modules, RT Series

acquiring data, 4-5
definition, 1-3

Flat Sequence structure, 4-3 to 4-4
front panel

closing connection without closing
VIs, 2-3

modification of RT target VI front panels
not supported, 1-5

front panel communication, 3-9
functional global variables, 3-6 to 3-7

G
global variables

functional, 3-6 to 3-7
overview, 3-6
reducing use of, 5-3

H
hardware timing control loops, 4-4
help, technical support, A-1
host computer, 1-2
Host VI, 3-12

I
imaging system, real-time (NI 1450 Series

Compact Vision System), 1-4
Infrared Data Association (IrDA) wireless

communication, 3-17 to 3-18
Initialize Array function, 5-2

instrument drivers (NI resources), A-1
IrDA wireless communication, 3-17 to 3-18

J
Jitter, reducing, 5-1

K
KnowledgeBase, A-1

L
LabVIEW debugging tools, 6-1
LabVIEW Execution Trace Toolkit, 6-4
LabVIEW Memory Manager, 5-1 to 5-2
LabVIEW Real-Time Module

See also RT Engine; RT target(s)
Express VI considerations, 1-4
overview, 1-1
platforms, 1-1 to 1-2

LabVIEW software
See also RT Engine
quitting after launching stand-alone

applications, 7-2 to 7-3
real-time system component, 1-2 to 1-4
Timed Loop, 4-4
unsupported features with RT target

VIs, 1-5 to 1-6
modifying front panel objects, 1-5
using OS-specific technologies, 1-6

launching stand-alone applications
automatically, 7-4 to 7-5

using command line arguments, 7-5
when booting target, 7-4

M
manual. See documentation
mass compiling of VIs, 5-5

Index

Real-Time Module User Manual I-4 ni.com

memory
allocation and preallocating

arrays, 5-1 to 5-2
avoiding contiguous memory

conflicts, 5-3 to 5-5
minimizing usage by RT target Web

server, 5-6
multithreaded applications, 3-1 to 3-5

cooperative yielding of time-critical VIs,
3-5

definition, 3-1
dividing tasks for creating, 3-2 to 3-3
execution systems for categorizing

VIs, 3-4 to 3-5
overview, 3-1 to 3-2
round robin scheduling, 3-2
VI priorities, 3-3 to 3-4

mutex, definition of, 5-1

N
National Instruments support and

services, A-1
network communication, 3-10 to 3-11

characteristics (table), 3-14
DataSocket, 3-15 to 3-16
purpose and use, 3-10 to 3-11
SMTP, 3-16
TCP, 3-14
UDP, 3-14 to 3-15
VI Server, 3-16

networked RT Series devices, 1-3 to 1-4
NI 1450 Series Compact Vision system, 1-4
NI PCI-7041 plug-in device, 1-3
NI PCI-7831 plug-in device, 4-5
NI support and services, A-1
NI Timestamp VIs, 6-3
Normal Priority VI

creating, 3-12
multithreaded applications, 3-2 to 3-3

O
operating system mutex, 5-1
oscilloscope, for timing behavior

verification, 6-3

P
passing data between VIs, 3-6 to 3-8

functional global variables, 3-6 to 3-7
global variables, 3-6, 5-3
Real-Time FIFO VIs, 3-8

PCI-7041 plug-in device, 1-3
PCI-7831 plug-in device, 4-5
platforms for Real-Time Module, 1-1 to 1-2
plug-in devices, RT series

PCI-7041plug-in device, 1-3
PCI-7831 plug-in device, 4-5

preallocating arrays, 5-1 to 5-2
preemptive scheduling, 3-2
priorities, assigning to VIs, 3-3 to 3-4
priority inversion-induced jitter, 5-1
Profile window, 6-2
programming examples (NI resources), A-1
PXI controllers, RT Series, 1-3

R
real time system components, 1-2 to 1-4

host computer, 1-2
LabVIEW software, 1-2
RT engine, 1-2
RT targets, 1-3 to 1-4

Real-Time FIFO VIs, 3-8
Real-Time Module

See also RT Engine; RT target(s)
Express VI considerations, 1-4
overview, 1-1
platforms, 1-1 to 1-2

Real-Time Operating System
(RTOS), 5-3 to 5-5

Real-time Subsystem (RTSS), 1-4

Index

© National Instruments Corporation I-5 Real-Time Module User Manual

Real-Time Timing VIs, 4-4
Replace Array Subset function, 5-2
round robin scheduling, 3-2
RT Engine

See also Real-Time Module
description, 1-2
launching stand-alone applications

automatically, 7-4
memory usage, 5-4

RT Series FieldPoint Modules, 1-3, 4-5
RT Series networked devices, 1-3 to 1-4
RT series plug-in devices, 1-3, 4-5
RT Series PXI controllers, 1-3
RT target(s)

See also RT target VIs
configuring target options, 2-5
connecting to, 2-1 to 2-5

closing connections without closing
VIs, 2-3

downloading VIs to RT target, 2-3
selecting RT target as execution

target, 2-1 to 2-2
VIs running on RT target, 2-4

definition, 1-3
downloading VIs to RT target, 2-3
memory optimization

avoiding contiguous memory
conflicts, 5-3 to 5-4

memory diagrams (figure), 5-4
minimizing memory usage by Web

Server, 5-6
networked RT Series devices, 1-3 to 1-4
Real-time Subsystem (RTSS), 1-4
RT series plug-in devices, 1-3
stand-alone applications

configuring target settings, 7-1 to 7-2
connecting to applications running

on targets, 7-6
launching stand-alone applications,

7-4 to 7-5
selecting target after launching, 7-2

RT target VIs
communicating with, 3-8 to 3-11

front panel communication, 3-9
network

communication, 3-10 to 3-11
connecting to VIs running on RT

target, 2-4
creating user interface for, 3-8 to 3-10
unsupported LabVIEW

features, 1-5 to 1-6
modifying front panel objects, 1-5
using OS-specific technologies, 1-6

RT target Web server, minimizing memory
usage by, 5-6

RTFIFOCreate VI, 3-8
RTFIFORead VI, 3-8
RTFIFOWrite VI, 3-8
RTOS (Real-Time Operating

System), 5-3 to 5-5
RTSS (Real-time Subsystem), 1-4

S
saving stand-alone applications, 7-2
serial communication method, 3-17
shared memory communication method, 3-13
shared resources, avoiding, 5-1 to 5-3

casting data to proper data types, 5-3
memory allocations and preallocating

arrays, 5-1 to 5-2
reducing global variable use, 5-3

SMTP communication method, 3-16
software (NI resources), A-1
software drivers, for timing behavior

verification, 6-3
software timing control loops, 4-1 to 4-4

Flat Sequence structure (figure), 4-4
ideal timing (figure), 4-2
incorrect timing (figure), 4-3
LabVIEW Timed Loop, 4-4
parallel implementation (figure), 4-3

Index

Real-Time Module User Manual I-6 ni.com

Real-Time Timing VIs, 4-4
Wait (ms) function, 4-1 to 4-2
Wait Until Next ms Multiple

function, 4-2 to 4-4
stand-alone applications, 7-1 to 7-6

configuring target settings, 7-1 to 7-2
connecting to applications running on RT

targets, 7-6
creating application installer, 7-3 to 7-4
launching automatically, 7-4 to 7-5

using command line arguments, 7-5
when booting target, 7-4

quitting LabVIEW after launch, 7-2 to 7-3
saving, 7-2
selecting target after launch, 7-2

subVI overhead, avoiding, 5-5
support

technical, A-1

T
targets. See RT target(s)
TCP communication method, 3-14

technical support, A-1
thread

See also multithreaded applications
definition, 3-1

Tick Count (ms) function, 6-3
time-critical VIs

cooperative yielding, 3-5
creating with RT Communication

Wizard, 3-11 to 3-12
functional global variables, 3-6 to 3-7
memory allocation and preallocating

arrays, 5-1 to 5-2
multithreaded applications, 3-2 to 3-3

timing behavior verification, 6-3 to 6-4
LabVIEW Execution Trace Toolkit, 6-4
NI Timestamp VIs, 6-3
oscilloscope, 6-3

software drivers, 6-3
Tick Count (ms) function, 6-2

timing control loops, 4-1 to 4-5
hardware method, 4-4
overview, 4-1
software method, 4-1 to 4-4

Flat Sequence structure (figure), 4-4
ideal timing (figure), 4-2
incorrect timing (figure), 4-3
LabVIEW Timed Loop, 4-4
parallel implementation (figure), 4-3
Real-Time Timing VIs, 4-4
Wait (ms) function, 4-1 to 4-2
Wait Until Next ms Multiple

function, 4-2 to 4-4
training and certification (NI resources), A-1
troubleshooting (NI resources), A-1

U
UDP communication method, 3-14 to 3-15
user interface, creating for RT target

VIs, 3-8 to 3-10

V
Venturcom Phar Lap Embedded Tool Suit

(ETS), 1-1
Venturcom Real-Time Extension (RTX), 1-1
VI Server communication method, 3-16
VIs

See also RT target VIs; time-critical VIs
acquiring data with VIs on RT target, 4-5
Changed or Missing VIs dialog box, 2-4
connecting to VIs running on RT

target, 2-4
creating with RT Communication

Wizard, 3-11 to 3-12
downloading to RT target, 2-3
error codes, using and defining, 6-4

Index

© National Instruments Corporation I-7 Real-Time Module User Manual

execution systems for categorizing,
3-4 to 3-5

Express VIs, 1-4
Host VI, 3-12
improving performance

avoiding subVI overhead, 5-5
mass compiling, 5-5
setting VI properties, 5-5

NI Timestamp VIs, 6-3
normal priority VI

creating with RT Communization
Wizard, 3-12

multithreaded applications, 3-2 to 3-3
passing data between VIs, 3-6 to 3-8

functional global variables, 3-6 to 3-7
global variables, 3-6, 5-3
Real-Time FIFO VIs, 3-8

priorities
assigning, 3-3 to 3-4
types of, 3-3

Real-Time FIFO VIs, 3-8
Real-Time Timing VIs, 4-4

W
Wait (ms) function, 4-1 to 4-2
Wait Until Next ms Multiple

function, 4-2 to 4-4
Web resources, A-1
wireless (IrDA) communication, 3-17 to 3-18

	LabVIEW Real-Time Module User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction to the LabVIEW Real-Time Module
	LabVIEW Real-Time Module Platforms
	Real-Time System Components
	Host Computer
	LabVIEW
	RT Engine
	RT Target
	RT Series Plug-In Devices (ETS Only)
	Networked RT Series Devices (ETS Only)
	RT Target on the Real-Time Subsystem (RTX Only)

	Real-Time Module and Express VI Considerations
	Unsupported LabVIEW Features
	Modifying Front Panel Objects of RT Target VIs
	Using OS-Specific Technologies in RT Target VIs

	Chapter 2 Connecting to RT Targets
	Figure 2-1. LabVIEW Dialog Box
	Figure 2-2. Select Execution Target Dialog Box
	Downloading VIs to an RT Target
	Closing a Front Panel Connection without Closing VIs
	Connecting to VIs Running on an RT Target
	Figure 2-3. Changed or Missing VIs Dialog Box

	Configuring RT Target Options

	Chapter 3 Building Deterministic Applications
	Creating Multithreaded Applications in LabVIEW
	Dividing Tasks to Create Deterministic Multithreaded Applications
	Assigning Priorities to VIs
	Assigning VIs to Execution Systems
	Cooperatively Yielding Time-Critical VI Execution

	Passing Data between VIs
	Global Variables
	Functional Global Variables
	Figure 3-1. Read and Write Case of a Functional Global Variable

	Real-Time FIFO VIs

	Communicating with Applications on an RT Target
	Front Panel Communication
	Figure 3-2. Front Panel Communication Protocol

	Network Communication
	Figure 3-3. Network Communication Protocol

	Creating Communication VIs with the RT Communication Wizard
	Exploring Communication Methods
	Shared Memory
	Network Communication
	Table 3-1. Characteristics of Network Communication Protocols
	TCP
	UDP
	DataSocket (ETS Only)
	VI Server
	SMTP (ETS Only)

	Bus Communication
	Serial (ETS Only)
	CAN (ETS Only)

	IrDA Wireless Communication (ETS Only)

	Chapter 4 Timing Applications and Acquiring Data
	Timing Control Loops
	Timing Control Loops Using Software
	Wait (ms)
	Wait Until Next ms Multiple Function
	Figure 4-1. Ideal Timing of a Control System
	Figure 4-2. Parallel Implementation of a Control System
	Figure 4-3. Incorrect Timing of a Control System
	Figure 4-4. Flat Sequence Structure Implementation of a Control System
	Real-Time Timing VIs
	LabVIEW Timed Loop (ETS Only)

	Timing Control Loops Using Hardware

	Acquiring Data with VIs Running on an RT Target
	RT Series Data Acquisition Devices (ETS Only)
	RT Series FieldPoint Modules (ETS Only)
	NI PCI-7831 Plug-in Device (ETS and RTX)

	Chapter 5 Optimizing Applications
	Avoiding Shared Resources
	Memory Allocations and Preallocating Arrays
	Figure 5-1. Memory Allocation in Control Loop
	Figure 5-2. Preallocated Array

	Casting Data to Proper Data Types
	Reducing the Use of Global Variables

	Avoiding Contiguous Memory Conflicts
	Figure 5-3. Memory Diagrams of an RT Target

	Avoiding SubVI Overhead
	Setting VI Properties
	Mass Compiling VIs
	Minimizing Memory Usage by the RT Target Web Server
	Setting BIOS Options (ETS Only)

	Chapter 6 Debugging Deterministic Applications
	Verifying Correct Application Behavior
	Using the LabVIEW Debugging Tools
	Using the Profile Window
	Using the Real-Time System Manager (ETS Only)

	Verifying Correct Timing Behavior
	Using the Tick Count (ms) Function
	Using the NI Time Stamp VIs
	Using an Oscilloscope
	Using Software Drivers
	Using the LabVIEW Execution Trace Toolkit (ETS Only)

	Using and Defining Error Codes

	Chapter 7 Deploying Applications
	Building Stand-Alone Applications
	Configuring Target Settings
	Saving Stand-Alone Applications
	Selecting a Target after Launch
	Quitting LabVIEW after Launch

	Creating an Application Installer

	Launching Stand-Alone Applications
	Launching Embedded Applications Automatically
	Launching Applications Automatically Using Command Line Arguments

	Connecting to Stand-Alone Applications on an RT Target

	Appendix A Technical Support and Professional Services
	Glossary
	A-D
	E-I
	J-N
	O-P
	R-S
	T-V

	Index
	A-D
	E
	F-M
	N-R
	S
	T-V
	W

