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DUTYS (Democritus University of Thrace Architecture file generator-synthesizer) 
creates the architecture file of the FPGA that is required by T-VPack and VPR. The 
architecture file contains a description of various parameters of the FPGA architecture, 
including size (array of CLBs), number of pins and their positions, number of BLEs per 
CLB, plus interconnection layout details such as relative channel widths, switch box 
type, etc. It has a GUI that helps the designer select the FPGA architecture features and 
then automatically creates the architecture file in the required format. 
 

1. Function of DUTYS 
 

DUTYS creates the FPGA architecture file in the required format. Each line in 
an architecture file consists of a keyword followed by one or more parameters. In 
the description below, strings between curly braces, {}, denote all the possible 
choices for an option. All of the following keywords must be specified in the 
architecture file. 

1.1. Description of I/O pads 
io_rat <int>: Sets the number of pads (inputs or outputs) that fit into the space 
occupied by one CLB. This is the number of pads in each row or column of the 
FPGA. 

1.1.1. Description of Relative Channel Widths in the FPGA 
The next three keywords are used to describe the relative widths of the various 

channels in the FPGA (Fig. 1). If global routing is to be performed, channels in 
different directions and in different parts of the FPGA can be set to different 
relative widths. If detailed routing is to be performed, however, all the channels in 
the FPGA must have the same width. 
chan_width_io <float>: Width of the channels between the pads and core relative 
to the widest core channel. 
 
chan_width_x {gaussian | uniform | pulse | delta} <peak> <width> <xpeak> 
<dc>: The italicized quantities are needed only for pulse, gaussian, and delta 
(which does not need width). Most values are from 0 to 1. Sets the distribution of 
tracks for the x-directed channels -- the channels that run horizontally. 

• uniform: if specified, you simply specify one argument, peak. This value 
(by convention between 0 and 1) sets the width of the x-directed core 
channels relative to the y-directed channels and the channels between 
the pads and core. Fig. 1 should make the specification of uniform 
(dashed line) and pulse (solid line) channel widths more clear. 

• gaussian: This keyword takes the same four parameters as the pulse 
keyword, and they are all interpreted in exactly the same manner except 
that in the gaussian case width is the standard deviation of the function. 

• delta: A function used to specify a channel width distribution in which all 
the channels have the same width except one. The syntax is 
chan_width_x delta peak xpeak dc.  

• peak: The extra width of the single wide channel. 
• xpeak: A parameter between 0 and 1 and specifies the location within 

the FPGA of the extra-wide channel -- it is the fractional distance across 
the FPGA at which this extra-wide channel lies.  



• dc: specifies the width of all the other channels. For example, the 
statement chan_width_x delta 3 0.5 1 specifies that the horizontal 
channel in the middle of the FPGA is four times as wide as the other 
channels. 

 
chan_width_y {gaussian | uniform | pulse | delta} peak <width> <xpeak> 
<dc>: Sets the distribution of tracks for the y-directed channels. 
 

 
 

Fig. 1: Specification of relative channel widths. 
 

1.2. Logic Block Description 
inpin class: <int> [global] {top | bottom | left | right} {top | bottom | left | right} 
: Declares an input pin, determines the class to which this pin belongs, and sets 
the side(s) of CLBs on which the physical output pin connection(s) is (are). All pins 
with the same class number are logically equivalent -- such as all the inputs of a 
LUT. Class numbers must start at zero and be consecutive. The global keyword is 
optional; if specified, it comes after the class number. Global input pins can 
connect only to signals marked as global in the netlist (typically clocks). Global 
input pins are not connected into the normal routing; it is assumed they connect to 
a special, dedicate resource used for special nets like clocks. 
 
outpin class: <int> {top | bottom | left | right} {top | bottom | left | right} : All 
parameters have the same meanings as their counterparts in the inpin statement. 
NOTE: The order in which your inpin and outpin statements appear must be the 
same as the order in which your netlist (.net) file lists the connections to the CLBs. 
For example, if the first pin on each CLB in the netlist file is the clock pin, your first 
pin statement in the architecture file must be an inpin statement defining the clock 
pin. Pads are always assumed to have only one pin (either an input or an output), 
and this pin is accessible from the one channel bordering that pad. Hence no inpin 
or outpin statements are given for pads. 
 



subblocks_per_clb <int>: Specifies the maximum number of subblocks, or BLEs, 
in each logic block. This information is used only for timing analysis. 
 
subblock_lut_size <int>: The number of LUT inputs to each of the subblock 
BLEs (i.e. K). Again, this information is only needed for timing analysis. Even if 
your logic block is not constructed from BLEs, it is possible to describe the timing 
relations between inputs and outputs in terms of BLEs, as one of the examples 
below illustrates. 
The listing below is for an FPGA with all channels of the same width, and a CLB 
compatible with that produced by T-VPack with the -no_clustering option. This 
CLB contains a 4-input LUT and a flip flop; the input pins are listed first, followed 
by the CLB output pin, followed by the clock pin. Notice that the four inputs all have 
the same pin class, indicating that they are logically equivalent and the router may 
connect nets to any one of them. Notice also that pins can be physically accessible 
from several sides. 
 
# Uniform channel architecture, 4-input LUT and a FF (one BLE) per 
lb. 
io_rat 2 #2 Pads per row or column. 
chan_width_io 1 #Same as core channels. 
chan_width_x uniform 1 #All same width 
chan_width_y uniform 1 
# 4-input LUT. LUT inputs first, then output, then clock. 
inpin class: 0 bottom top #Physical pins at both top and bottom of 
#clb. 
inpin class: 0 left right 
inpin class: 0 bottom top 
inpin class: 0 left right 
outpin class: 1 top bottom 
inpin class: 2 top # Clock pin 
# Class 0 is LUT inputs, class 1 is the output, class 2 is the 
clock 
# in this case. 
subblocks_per_clb 1 # One BLE in each logic block 
subblock_lut_size 4 # The LUT in a BLE has 4 inputs 

 
As a second example of an architecture file, consider a logic block consisting of 

a cluster-based logic lock, where each logic block has 5 inputs for use by its BLEs, 
2 outputs and one clock input. Each logic lock contains two separate BLEs, and 
each BLE consists of a 4-input LUT and a flip flop. If the .net file as created with T-
VPack, the pin ordering we need to match the .net file is: inputs for use by BLEs 
outputs, clock. 

 
# Uniform channel architecture, cluster-based logic block 
containing 
# 2 BLEs. 
io_rat 2 #2 Pads per row or column. 
chan_width_io 1 #Same as core channels. 
chan_width_x uniform 1 #All same width 
chan_width_y uniform 1 
# Logic block with 2 BLEs. 5 Inputs for use by BLEs first, then two 
# outputs, then the clock. 
inpin class: 0 bottom 
inpin class: 0 left 



inpin class: 0 right 
inpin class: 0 top 
inpin class: 0 bottom 
outpin class: 1 top bottom #Output 1 
outpin class: 1 left right #Output 2 
inpin class: 2 global top #Clock -> accessible only by global nets 
in # this case 
# Class 0 is LUT inputs, class 1 is the output, class 2 is the 
clock 
# in this case. 
subblocks_per_clb 2 # Two BLEs in each logic block 
subblock_lut_size 4 # The LUT in a BLE has 4 inputs 
 

Notice that all the inputs are of the same class, indicating they are all logically 
equivalent, and all the outputs are of the same class, indicating they are also 
logically equivalent. This is true of all cluster-based logic blocks, as the local 
routing within the block provides full connectivity. However, for most logic blocks all 
the inputs and all the outputs are not logically equivalent. For example, consider 
the logic block in Fig. 2, which consists of a 3-input and gate and a 2-input or gate. 
In this case, the set {in1, in2, in3} is logically equivalent, and could all be made 
class 0. Similarly, the set {in4, in5} is logically equivalent, and could be made class 
1. Out1 and out2 are obviously not logically equivalent, so each must be different 
class, say class 2 and class 3. 

 
inpin class: 0 top #in1 
inpin class: 0 left #in2 
inpin class: 0 right #in3 
inpin class: 1 bottom #in4 
inpin class: 1 right #in5 
outpin class: 2 left #out1 
outpin class: 3 top #out2 
 
If we want to perform timing analysis on the logic block of Fig. 7, we must 

describe the timing relationship between the inputs and outputs. Clearly out1 
depends only on in1, in2 and in3, while out2 depends only on in4 and in5. 
Therefore we could model this logic block as consisting of two BLEs, with each 
BLE having 3 inputs. 

 
subblocks_per_clb 2 
subblock_lut_size 3 
 
One line of a .net file of a circuit made out of such logic blocks might therefore 

be: 
 
.clb block_1 
pinlist: in1 in2 in3 in4 in5 out1 out2 
subblock: and_gate 0 1 2 5 open # out1 depends on in1, in2 and 

in3, 
# and is not registered. 
subblock: or_gate 3 4 open 6 open # out2 depends on in4 and in5 
# and is not registered. 
 



1.3. Detailed Routing Architecture Description 
The following information is only required to be in the architecture description 

file if combined global/detailed routing is to be performed. Note that currently 
combined global/detailed routing is possible only when all channels have been 
specified to have the same width. 
switch_block_type {subset | wilton | universal}: All the switch blocks have sF  = 
3. That is, whenever horizontal and vertical channels intersect, each wire segment 
can connect to three other wire segments. The exact topology of which wire 
segment connects to which can be one of three choices.  

• subset: The switch box used in the AMDREL fine-grain architecture -- a 
wire segment in track 0 can only connect to other wire segments in track 0 
and so on (Fig. 8a). 

• wilton: The switch box illustrated in Fig. 8b. 
• universal: The switch box illustrated in Fig. 8c. To see the topology of a 

switch box, simply hit the “Toggle RR” button when a completed routing is 
on screen in VPR. In general the wilton switch box is the best of these 
three topologies and leads to the most routable FPGAs. 

 

 
 

Fig. 2: Example logic block where many pins are not logically equivalent. 
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Fig. 3: Switch box types 
 
 

Fc_type {absolute | fractional}: Indicates whether the three cF  values (see 
below) should be interpreted as the number of tracks to which each pin connects 
(absolute), or the fraction of tracks in a channel to which each pin connects 
(fractional). 
 
Fc_input <float>: Sets the number of tracks to which each logic block input pin 
connects in each channel bordering the pin. The cF  value used is always the 
minimum of the specified cF  and the channel width, W, so you can set cF  to be 
huge if you want cF  to always be W. 
 
Fc_output <float>: Sets the number of tracks to which each logic block output pin 
connects in each channel bordering the pin. 
 
Fc_pad <float>: Sets the number of tracks to which each I/O pad connects in the 
channel bordering the pad. 
 
segment frequency: <float> length: <int | longline> wire_switch: <int> 
opin_switch: <int> 
 
Frac_cb: <float> Frac_sb: <float> Rmetal: <float> Cmetal: <float> 
Describes a type of segment. You can specify as many types of segments as you 
like -- just use one segment line for each. The meaning of each value is: 

• frequency: The fraction (from 0 to 1) of routing tracks composed of this type 
of segment. The sum of the frequency values for all the segment lines must 
be 1 -- i. e. 100% of the tracks have been described. 



• length: Either the number of logic blocks spanned by each segment, or the 
keyword longline. Longline means segments of this type span the entire 
FPGA array. 

• wire_switch: The index of the switch type used by other wiring segments to 
drive this type of segment. That is, switches going to this segment from other 
pieces of wiring will use this type of switch. 

• opin_switch: The index of the switch type used by CLB and pad output pins 
to drive this type of segment. 

• Frac_cb: Describes the internal population of the segment for connection 
boxes (connections to logic blocks). This number gives the fraction (from 0 to 
1) of logic blocks passed by this segment to which it will have a connection 
box. A switch exists from a segment to a logic block pin only if (1) the 
segment wants a connection box to that logic block and (2) the logic block 
connection box pattern for that pin wants a connection to that segment. 

• Frac_sb: Describes the internal population of the segment for switch boxes 
(connections to other routing tracks). This number gives the fraction (from 0 
to 1) of the length + 1 switch blocks which could exist along the segment that 
do in fact exist. So, a segment of length 9 that had a Frac_sb value of 0.5 
would have 5 switch boxes along its length. Exactly which tracks a segment 
connects to at each switch box is determined by the switch_box_type 
parameter. 

• Rmetal: Resistance per unit length (in terms of logic blocks) of this wiring 
track, in Ohms. For example, a segment of length 5 with Rmetal = 10 Ohms / 
logic block would have an end-to-end resistance of 50 Ohms. 

• Cmetal: Capacitance per unit length (in terms of logic blocks) of this wiring 
track, in Farads. For example, a segment of length 5 with Cmetal = 2e-14 F / 
logic block would have a total metal capacitance of 10e-13F. For example, 
let’s say an architecture file describes two types of segments. 

 
segment frequency: 0.5 length: 2 wire_switch: 0 opin_switch: 0 Frac_cb: 1. \ 
Frac_sb: 0.666 Rmetal: 5 Cmetal: 5e-15 
segment frequency: 0.5 length: 4 wire_switch: 0 opin_switch: 0 Frac_cb: 0.5 \ 
Frac_sb: 1. Rmetal: 3 Cmetal: 2e-15 

 
If the FPGA you wish to route has a channel width of 4, one channel will look as 

shown in Fig. 4. Notice that 2 tracks (50% of the tracks) are segments of length 2, 
and 2 tracks are segments of length four. 

Also notice that the number of switch boxes and connection boxes along each 
segment has been set in accordance with the Frac_sb and Frac_cb values for 
each segment type. 

 
switch <int> buffered: { yes | no } R: <float> Cin: <float> Cout: <float> 

Tdel: <float> 
Describes a a type of switch. This statement defines what a certain type of 

switch is -- segment statements refer to a switch types by their number (the 
number right after the switch keyword). The various values are: 

• buffered: yes, if this switch is a tri-state buffer, no if this switch is a pass 
transistor. 

• R: resistance of the switch. 
• Cin: Input capacitance of the switch. 
• Cout: Output capacitance of the switch. 



• Tdel: Intrinsic delay through the switch. If this switch was driven by a zero 
resistance source, and 

drove a zero capacitance load, its delay would be outdel CRT ∗+ . 
 
R_minW_nmos <float>: The resistance of minimum-width nmos transistor. 

This data is used only 
by the area model built into VPR. 
 
R_minW_pmos <float>: The resistance of minimum-width pmos transistor. 

This data is used only 
by the area model built into VPR. 
The lines below give an example of a detailed routing description from a .arch 

file. 
 

 
 

Fig. 4: Example of a segmented routing channel with four tracks per channel. 
 

switch_block_type planar #Uses the fewest switches on a segmented architecture. 
Fc_type fractional #Fc values below are in terms of fraction of W. 
Fc_output 1. #clb output pins connect to all W tracks in adjacent channels 
# (if each of those tracks wants a connection box there). 
Fc_input 0.5 #clb input pins connect to half (0.5 * W) of adjacent tracks 
# (if each of those tracks wants a connection box there). 
Fc_pad 0.7 # I/O pads connect to 70% (0.7 * W) of adjacent tracks 
# (if each of those tracks wants a connection box there). 
# 50% of segments are length 2, 50% are length 4. Length two segments are 
driven by 
# type 1 switches when the connection is coming from another wire, and are driven 
# by type 0 switches when the connection comes from a clb output pin. 
# The length four segments are always driven by type 0 switches. 
segment frequency: 0.5 length: 2 wire_switch: 1 opin_switch: 0 Frac_cb: 1. \ 
Frac_sb: 0.666 Rmetal: 5 Cmetal: 5e-15 
segment frequency: 0.5 length: 4 Frac_cb: 0.5 Frac_sb: 1. Rmetal: 3 \ 
Cmetal: 2e-15 
# In this case, type 1 switches are pass transistors, while type 0 switches are 
# tri-state buffers. 
switch 1 buffered: no R: 100 Cin: 2e-15 Cout: 2e-15 Tdel: 0 # Pass transistor 
switch 0 buffered: yes R: 50 Cin: .5e-15 Cout: 4e-15 Tdel: 1e-11 # Tri-state buffer 



R_minW_nmos 100 #Used by area model. Min-width transistor resistances. 
R_minW_pmos 200 
 

1.4. Timing Analysis Parameters 
The following parameters are required if timing analysis is to be performed on 

the placed and routed circuit, or the timing-driven router is to be used. 
C_ipin_cblock <float>: Input capacitance of the buffer isolating a routing track 
from the connection boxes (multiplexers) that select the signal to be connected to 
a logic block input pin (Fig. 5). One of these buffers is inserted in the FPGA for 
each track at each location at which it connects to a connection box. For example, 
a routing segment that spans three logic blocks, and connects to logic blocks at 
two of these three possible locations would have two isolation buffers attached to 
it. If a routing track connects to the logic blocks both above and below it at some 
point, only one isolation buffer is inserted at that point. If your connection from 
routing track to connection block does not include a buffer, set this parameter to 
the capacitive loading a track would see at each point where it connects to a logic 
block or blocks. 
 
T_ipin_cblock <float>: Delay to go from a routing track, through the isolation 
buffer (if your architecture contains these) and a connection block (typically a 
multiplexer) to a logic block input pin. 
 
T_ipad <float>: Delay through an input pad. 
 
T_opad <float>: Delay through an output pad. 
 
T_clb_ipin_to_sblk_ipin <float>: Delay from an input pin of a CLB (logic block) to 
an input pin of a subblock within that CLB. For architectures without local routing 
(i.e. CLB input pins connect directly to some logic element, like a LUT or 
multiplexer) this delay is essentially zero. 
 
T_sblk_opin_to_sblk_ipin <float>: Delay from the output of a subblock to the 
input of another subblock within the same CLB. For architectures without local 
routing (e.g. the output of one subblock is hardwired to the input of another) this 
delay is essentially zero. 
 
T_sblk_opin_to_clb_opin <float>: Delay from the output of a subblock to a 
CLB(logic block) output pin. For architectures without local routing (e.g. the output 
of a LUT is hardwired to each logic block output), this delay is essentially zero. 
 
T_subblock T_comb: <float> T_seq_in: <float> T_seq_out: <float> 
Describes the delays within a subblock. There must be one T_subblock line for 
each subblock a logic block can contain -- i.e. there must be subblocks_per_clb of 
these T_subblock lines. The first line specifies the delays of subblock zero, which 
is the first subblock listed in each CLB in the circuit netlist file. The second 
T_subblock line specifies the delay of subblock one, (the second subblock in each 
CLB in the circuit netlist file), and so on. If the subblocks within a CLB have 
different delays then, you must list them in the same order in the architecture and 
netlist files. 
 The above delays are illustrated in Fig. 6. 



 

 
 

Fig. 5: Routing track to logic block connection structure. 

 

 
 

Fig. 6: Local routing delays within a logic block (CLB). 

 
• T_comb: The delay from any subblock input to the subblock output when this 

subblock is used in combinational mode. A subblock is used in combinational 
mode when the netlist leaves its clock pin OPEN. 

• T_seq_in: The delay from any subblock input pin to the FF storage element 
when this subblock is used in sequential mode. A subblock is used in sequential 
mode when the netlist hooks its clock pin to some signal. If this subblock was a 
simple flip flop, for example, then T_seq_in is the setup time. If this subblock 
corresponds to, say, a LUT feeding into a flip flop, then T_seq_in should be set to 
the LUT delay plus the setup time. 

• T_seq_out: The delay from the subblock storage element (FF) to the subblock 
output pin when this block is used in sequential mode. A subblock is used in 
sequential mode when the netlist hooks its clock pin to some signal. If this 



subblock had a flip flop hooked to its output pin, for example, then T_seq_out 
would be the clock-to-Q delay of the flip flop. 

 

2. Running DUTYS 
As with all tools in the AMDREL tool flow, DUTYS can be executed both from 

the command line and using the GUI. 
 

2.1. Running DUTYS from the command line 
DUTYS can be run from the command line by typing dutys at the command 

line. The tool then proceeds by asking the user to supply the name of the desired 
architecture file. After the name of the new architecture file is typed, the tool 
proceeds by asking the user to input the parameters mentioned in the previous 
section one by one. 

2.2. DUTYS GUI 
The DUTYS GUI (part from the MEANDER design framework) can be seen in 

the Fig. 7. The GUI has a number of fields that need to be filled and each one 
corresponds to the questions asked in the command line execution. Next to each 
field a short description of the corresponding architecture file parameter is 
included. The GUI is available from the URL http://vlsi.ee.duth.gr/amdrel. 

 
 

 
Fig. 7: DUTYS GUI 


