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1. Getting Started 
1.1 Planning Your Analysis 
Choice of analysis should be based on the question you want answered. So 

when planning your analysis, start at the end and work backwards.  

• What conclusion are you trying to reach?  



• What type of analysis do you need to perform in order to demonstrate 

that conclusion?  

• What type of data do you need to perform that analysis?  

You need to start by formulating your research question.  

1.2 Research Questions 
A research question can take many forms. Some research questions are 

descriptive whereas others focus on explanation. For example, one 

researcher might want to know, 

How has federal funding for the arts in America changed between 1970 and 

1990? 

Another researcher might want to know, 

What predicts individual support for federal funding for the arts in 

America? Is support for the arts associated with income, education, type 

of employment or other social, economic, or demographic indicators?  

At DSS we can help you answer these types of questions. However, you have 

to clearly formulate a question or set of questions so we can help you 

get started. 

When looking for data, you need to consider what variables you need, what 

time periods you need the data to cover, and how the data was collected. 

Particularly with analysis of economic and financial data, time is an 

important factor. There are two basic types of time-dependent analyses: 

cross-section time-series and panel study. 

• Cross-sectional data means that different people, companies or 

other entities were sampled over the different time periods. 

For example, the Current Population Survey surveys a different 

random sample of the population each year.  

• Panel data means that the same people, companies or entities were 

sampled repeatedly. 

Stock exchange data is a good example of this.  

Some common types of analyses: 

• Multiple regression  

• Multiple regression with lagged variables  

• Time series analysis  

• Cross-sectional / panel analysis  

• Event study  

Identify a Study/Data File (locate data, locate 

codebook) 

Once you have identified your research question(s) and have some idea of 

what kind of analysis might help answer them, you need to find the data 

that will help you answer your question(s). You might find that you will 

http://dss.princeton.edu/online_help/analysis/regression_intro.htm
http://dss.princeton.edu/online_help/analysis/time_series_data.htm
http://dss.princeton.edu/online_help/analysis/panel.htm
http://dss.princeton.edu/online_help/analysis/event_studies.htm


have to reformulate your question(s) depending on the data that is 

available.  

Different research questions require different types of data. Some 

research questions require data that you collect yourself through 

interviews, small surveys, or historical research (qualitative data). 

Other research questions require secondary analysis of large data sets.  

1.3 Preparing Your Data 
You will probably spend more time getting the data into a usable format 

than you will actually conducting the analysis. Trying to match data from 

different sources can be particularly time-consuming, for a variety of 

reasons:  

• Different record identifiers. For example, CUSIPS are not 

neccessarily consistent  

• Different time periods. If you have daily data from one source and 

monthly from another, your analyses may need to be done at the 

monthly level  

• Different codings. If you have two studies which code education 

differently, you will need to come up with a consistent scheme  

Data management can include merging different data files, selecting 

sub-sets of observations, recoding variables, constructing new variables, 

or adjusting data for inflation across years.  

1.4 Resources at Other Sites 

2. How to Use a Codebook 
These instructions explain what information you should look for when using 

a codebook, as well as how to translate the information in the codebook 

to the statements you will need to write SAS, SPSS, or Stata programs to 

read and analyze the data.  

Before looking for a codebook, you first need to determine if you actually 

need the data, or if you just need the results of the study, i.e., how 

many people live in New York. Sometimes you won't need the data at all, 

you can just use one of the many statistical reports or abstracts available 

in the library. If, in fact, you do need the data to do analyses, then 

you need to find a study or studies that investigated what you are looking 

at and carefully read the codebook to make sure that the study has the 

kind of data you need.  

2.1 Data Files 
Since a codebook describes data files, it would be useful at this point 

to discuss what data files are and the many formats in which they come. 

A data file is simply a computer file that has data in it. Most data files 

are arranged like spreadsheets where you have lines of information from 



each observation (a person, a state, or a company) and columns of 

information representing different variables. The main difference 

between a spreadsheet and a data file is that each column in a spreadsheet 

is equal to one variable in a data file. Each variable of a data file is 

made up of one or more columns. Sometimes the data file will have spaces 

between the groups of columns that make up a variable, but most times it 

will simply run everything together. Here is a sample spreadsheet: 

 

 

Here is what the same information might look like in a data file:  

 12345678901234 
 
 123123.4   190 
 243 32.5    12 
 355 11.9383843 
 412 99     239 
 567123    4345 
 698 45.7    23 
 733 22.5     2 
 856 12       0 

The first line of numbers isn't actually part of the data, we've put it 

there so you can see how the columns in a data file relate to the columns 

in a spreadsheet. In this example, column A in the spreadsheet is column 

1 in the data file, column B is columns 2-3, column C is columns 4-8, and 

column D is columns 9-14. If you look closely, you can see that the actual 

numbers and letters are the same in both files. Since the information in 

the data file are all run together you need some way of determining where 

one variable ends and the next one starts. This, among many other important 

things, is found in the codebook. This is the simplest format of a data 

file and most will come like this. The two examples above have one "line," 

"record," or "card" of data for each observation. Often, though, a data 

file will have more than one line of data for each observation. This is 

a hold-over from the early days of computing when all the data were entered 

on punch cards which had only 80 columns. If a survey had more questions 

than could fit on one card, then researchers had to continue the data on 



another card. This is particularly true for files that have information 

from the same observation for several years. Here is an example:  

 1 1991 12123 

 1 1992 45 34 

 1 1993 63 88 

 2 1991 34678 

 2 1992 55456 

 2 1993 76 44 

 3 1991 44234 

 3 1992 32 56 

 3 1993 67 55 

This file is very much like the one above, except that each observation 

has three lines in the file rather than just one. The information in a 

specific column or columns may or may not represent the same variable. 

If questions were dropped or added in subsequent years, then the 

information will be different. Also, if it is an old data file, then it 

is likely that each card is just a continuation of data from the same time 

period.  

A corollary to multiple cards is hierarchical files. Hierarchical files 

typically have just one line of data for each observation, however, each 

line may represent varying levels of information. Perhaps the best example 

of a hierarchical file is the Current Population Survey. In the CPS file 

there are three types of records or lines: Household records have 

information that is common to everyone who lives in that household; Family 

records have information that is common to everyone in a particular family 

in that household (more than one family can live in a household); and 

Person records have, of course, information pertaining to one specific 

person in that family. All of this information is contained in one file. 

The household record is always first, followed by the family record, and 

finally the person record. Each line in the file has a variable or column 

denoting what type of record it is. Here is an example of what a 

hierarchical file might look like:  

 H 12 321 

 F 32 5 3 

 P 45 1 5 

 P 66 7 3 

 P 76 9 7 

 H 45 9 9 

 F678 3 5 

 F567 4 6 

 P8992187 

 P689 3 0 

 P66567 9 

 P554 5 9 



 P 89 8 9 

Hierarchical files can be very tricky to program. If you need to analyze 

a hierarchical file, you should come to the DSS lab and speak with a 

consultant about how to do so. Of course, all of these examples have just 

a few variables, whereas a real data file will have many, many more.  

2.2 Codebooks 
Now that we know what a data file is, we can make more sense out of what 

a codebook is. A codebook is a technical description of the data that was 

collected for a particular purpose. It describes how the data are arranged 

in the computer file or files, what the various numbers and letters mean, 

and any special instructions on how to use the data properly. Like any 

other kind of "book," some codebooks are better than others. The best 

codebooks have:  

1. Description of the study: who did it, why they did it, how they did 
it.  

2. Sampling information: what was the population studied, how was the 
sample drawn, what was the response rate.  

3. Technical information about the files themselves: number of 
observations, record length, number of records per observation, 

etc.  

4. Structure of the data within the file: hierarchical, multiple cards, 
etc.  

5. Details about the data: columns in which specific variables can be 
found, whether they are character or numeric, and if numeric, what 

format.  

6. Text of the questions and responses: some even have how many people 
responded a particular way.  

Even though a codebook has (or at least, should have) all of this 

information, not all codebooks will arrange it in the same manner. Later 

in this document we will show you what information you will need to write 

the program to read the data.  

Before you decide on a particular dataset, there are some things you need 

to verify before you can make good use of the data:  

1. The wording and presence of the questions and answers. In a study 
that is done repeatedly, the questions asked and the answers allowed 

can change considerably from one "wave" to the next, not to mention 

that some are dropped and new ones added. Also, subtle differences 

in wording can mean very big changes in how you interpret your 

results.  

2. The sampling information. A survey that was conducted to measure 
national attitudes toward a subject may not be good for assessing 

those same attitudes in specific states.  



3. Weights. Sometimes, in order to properly analyze the data, you will 
need to apply weights to certain variables. These weights are 

determined by the sampling procedure used to collect the data.  

4. Flags. Flags perform a function similar to weights in the they tell 
you if and when a special procedure was used to create the variable. 

This is common when a person refuses or cannot answer a question, 

but an interviewer can answer for them.  

5. The column and line location of the variables in the file. This can 
change from wave to wave also.  

Once you have determined that a data file has what you want, you can begin 

the task of writing the program that will extract or subset those variables 

in which you are interested. The choice of which software package to use 

is up to you. You should be aware, however, that most of Princeton's data 

collection is accessible only on PUCC which has only SAS and SPSS. In any 

case, it is always a good idea to talk to a Consultant before you try 

extracting the data.  

2.3 Writing the Program 
Before you can write the program, you will need to be able to locate this 

information about each variable you will want to use:  

1. The column in which the variable you want starts.  
2. The column in which it ends, or how many columns the variable 

occupies.  

3. Whether the variable is in numeric or character (also called 
alphanumeric).  

4. If the variable is numeric, how many decimal places it might have, 
and if it is stored in a special format such as "zoned decimal."  

5. If you are using data from several years, then you will need to make 
sure that the above information is the same for each year. If it 

is not, then you need to gather this information for each year.  

Coding when there is just one line of data for each observation: 

In many instances, the data file will have one record per observation. 

In these instances, you will only need to know the column locations of 

the variables you want. Here are two examples from the General Social 

Survey Codebook: 



 

This variable is coded as numeric and can be found in column 240 of the 

data file. As you can see from the column labeled "PUNCH" above, there 

are ten categories of responses to this question. Categories 8 ("Don't 

know") and 9 ("No answer") are often re-coded by analysts to "missing" 

so that they don't influence any of the statistics computed on this 

variable. Depending on your specific questions, category 7 ("Other party, 

refused to say") may also need to be coded as missing. Sometimes, variables 

are entered as letters instead of numbers, such as if a person's name were 

entered into the data file. In these instances, you must tell the computer 

that there are letters instead of numbers. The example below shows how 

to code this variable as if it were A) numeric and, B) character:  

 SAS: SPSS: Stata: 

A) partyid 238 partyid 238 _column(238) partyid 

B) partyid $ 238 partyid (a) 238
_column(238) string 

partyid 

Although this codebook gives a name to the variable (partyid), not all 

codebooks do. Sometimes the variables are simply numbered. You do not 

always have to use the names or numbers provided as your own variable names, 

however, using the ones provided will make referring to the codebook later 

on much easier. This is important if you thought a variable should have 

only two categories of responses, but five show up in the data; you may 

have programmed the wrong columns or lines. It also allows comparison of 

results of analyses conducted on the same data by different researchers. 

Sometimes, the names provided are not allowable in whatever statistical 

package you are using because they are too long or have special characters 



in them. In these cases, you should refer to the user manual of whatever 

package you are using to determine what names are permissible. If you do 

change the variable names, be sure to make a list of these changes.  

Often, a variable must have more than one column, such as a person's age. 

Here is an example of a variable that takes more than one column:  

In this example, the variable can occupy two columns, 275-276 in the data 

file. The coding for this is much the same as for the one above:  

 SAS: SPSS: Stata: 

A) 
polviewx 

275-276 

polviewx 

275-276 

_column(275-276) 

polviewx 

B) 
polviewx $ 

275-276 

polviewx (a) 

275-276 

_column(275-276) string 

polviewx 

If the variable were to have more than two columns, you would simply 

specify the beginning and ending columns indicated. Sometimes, the 

codebook will tell you in which column the variable begins and how many 

columns it occupies (also referred to as its "length"). Look at this 

example from the Current Population Survey :  

D A-WKSLK 2 97 (00:99) Item 22C - 1) How many weeks has ... been looking 

for work 2) How many weeks ago did ...start looking 3) How many weeks ago 

was ...laid off  



It says that A-WKSLK is numeric, begins in column 97 and has a length of 

2 (the instructions in the codebook explains this). In terms of the first 

example, that means this variable can be found in columns 97-98. Character 

variables would be indicated the same way. You can write the statements 

to read these variables like the ones above (a_wkslk 97-98), but if you 

have many variables, it would be time-consuming to calculate all the 

specific columns. Instead, you could do it like this:  

 SAS: SPSS: Stata: 

A) @97 a_wkslk 2. 
a_wkslk 97 

(f2.0) 

_column(97) a_wkslk 

%2f 

B) @97 a_wkslk $2. a_wkslk 97 (a2)
_column(97) a_wkslk 

%2s 

You can readily see the similarities and differences among these. In all, 

the "2" refers to the number of columns the variable occupies in the data 

file, not necessarily how many digits there are in the variable (some 

columns may be blank). This is especially important if your data has 

decimals. For example, if a variable called "varname" were to have a length 

of 5 and 2 decimal places in it, then the coding would be as follows:  

SAS: SPSS: Stata:  

@124 varname 5. 

2 

varname 124 

(f5.2) 

_column(124) varname 

%5.2f 

This means that "varname" occupies a total of five columns in the data 

file. Two of those columns are the numbers on the right of the decimal, 

one is the decimal itself, and the last two columns are the numbers on 

the left of the decimal. Therefore, the largest number that could be coded 

into this space is 99.99. Once in a while, a codebook will tell you that 

there are "implied" decimal places. This means that the decimal was not 

actually entered into the data and you must assume (and correctly program) 

that the last however many digits are on the right of the decimal.  

Coding for more than one line of data for each observation: 

You need to pay special attention to how many lines there are for each 

observation, and on what line the variable you are interested in can be 

found. Every codebook will indicate what line the variable can be found 

differently, so you must look in the introductory pages to see how this 

is done. Failure to keep track of what line the variable is on will result 

in reading from the wrong line and thus, reading the wrong information 

for that variable.  

Let's assume that in Example 2 above, there are five lines of data for 

each observation. Let's further assume that varname is found on the first 

line for an observation and that charname is found on the third line. Here 

are the statements you would need to read these variables:  

SAS: SPSS: Stata: 



data one; 

infile 

example n=5; 

input  

#1 @124 

varname 5. 

#3 @155 

charname 

$12.  

data list 

file='mydata.dat' 

records=5. 

/1 varname 124-128 

/3 charname 155-166 (a).

infile dictionary { 

_lines(5) 

_line(1) 

_column(124) 

varname %5f 

_line(3) 

_column(155) string 

charname %12s 

}  

As you can see, in each program you need to tell the program how many lines 

there are for each observation ("n=5", "lines=5", and "_lines(5) ). Each 

program also has a different way of identifying which line you want to 

read ("#1", /1 , "_line(1)" ). If you wanted to read other variables from 

lines 1 or 3, you could simply list them together without repeating the 

line pointer for each variable. The program will continue reading from 

the same line of data until you tell it to go to the next line.  

2.4 Conclusion 
This has been a brief and very general introduction to data files and 

codebooks. We could not possibly cover everything you might encounter in 

using a codebook. So, if you do find something you don't understand, ask 

a consultant! 

 

3. Interpreting Regression Output 
3.1 Introduction 
This guide assumes that you have at least a little familiarity with the 

concepts of linear multiple regression, and are capable of performing a 

regression in some software package such as Stata, SPSS or Excel. You may 

wish to read our companion page Introduction to Regression first. For 

assistance in performing regression in particular software packages, 

there are some resources at UCLA Statistical Computing Portal.  

Brief review of regression 

Remember that regression analysis is used to produce an equation that will 

predict a dependent variable using one or more independent variables. This 

equation has the form  

• Y = b1X1 + b2X2 + ... + A  
where Y is the dependent variable you are trying to predict, X1, X2 and 
so on are the independent variables you are using to predict it, b1, b2 
and so on are the coefficients or multipliers that describe the size of 

the effect the independent variables are having on your dependent variable 

http://dss.princeton.edu/online_help/analysis/regression_intro.htm
http://statcomp.ats.ucla.edu/


Y, and A is the value Y is predicted to have when all the independent 
variables are equal to zero.  

In the Stata regression shown below, the prediction equation is price = 

-294.1955 (mpg) + 1767.292 (foreign) + 11905.42 - telling you that price 

is predicted to increase 1767.292 when the foreign variable goes up by 

one, decrease by 294.1955 when mpg goes up by one, and is predicted to 

be 11905.42 when both mpg and foreign are zero.  

 

Coming up with a prediction equation like this is only a useful exercise 

if the independent variables in your dataset have some correlation with 

your dependent variable. So in addition to the prediction components of 

your equation--the coefficients on your independent variables (betas) and 

the constant (alpha)--you need some measure to tell you how strongly each 

independent variable is associated with your dependent variable.  

When running your regression, you are trying to discover whether the 

coefficients on your independent variables are really different from 0 

(so the independent variables are having a genuine effect on your 

dependent variable) or if alternatively any apparent differences from 0 

are just due to random chance. The null (default) hypothesis is always 

that each independent variable is having absolutely no effect (has a 

coefficient of 0) and you are looking for a reason to reject this theory.  

3.2 P, t and standard error 
The t statistic is the coefficient divided by its standard error. The 
standard error is an estimate of the standard deviation of the coefficient, 
the amount it varies across cases. It can be thought of as a measure of 

the precision with which the regression coefficient is measured. If a 

coefficient is large compared to its standard error, then it is probably 

different from 0.  



How large is large? Your regression software compares the t statistic on 

your variable with values in the Student's t distribution to determine 
the P value, which is the number that you really need to be looking at. 

The Student's t distribution describes how the mean of a sample with a 

certain number of observations (your n) is expected to behave. For more 

information on the t distribution, look at this web page.  

 

If 95% of the t distribution is closer to the mean than the t-value on 

the coefficient you are looking at, then you have a P value of 5%. This 

is also reffered to a significance level of 5%. The P value is the 

probability of seeing a result as extreme as the one you are getting (a 

t value as large as yours) in a collection of random data in which the 

variable had no effect. A P of 5% or less is the generally accepted point 

at which to reject the null hypothesis. With a P value of 5% (or .05) there 

is only a 5% chance that results you are seeing would have come up in a 

random distribution, so you can say with a 95% probability of being correct 

that the variable is having some effect, assuming your model is specified 

correctly.  

The 95% confidence interval for your coefficients shown by many regression 
packages gives you the same information. You can be 95% confident that 

the real, underlying value of the coefficient that you are estimating 

falls somewhere in that 95% confidence interval, so if the interval does 

not contain 0, your P value will be .05 or less.  

Note that the size of the P value for a coefficient says nothing about 

the size of the effect that variable is having on your dependent variable 

- it is possible to have a highly significant result (very small P-value) 

for a miniscule effect.  

3.3 Coefficients 

http://www.tufts.edu/~gdallal/student2.htm


In simple or multiple linear regression, the size of the coefficient for 

each independent variable gives you the size of the effect that variable 

is having on your dependent variable, and the sign on the coefficient 

(positive or negative) gives you the direction of the effect. In 

regression with a single independent variable, the coefficient tells you 

how much the dependent variable is expected to increase (if the 

coefficient is positive) or decrease (if the coefficient is negative) when 

that independent variable increases by one. In regression with multiple 

independent variables, the coefficient tells you how much the dependent 

variable is expected to increase when that independent variable increases 

by one, holding all the other independent variables constant. Remember 
to keep in mind the units which your variables are measured in.  

Note: in forms of regression other than linear regression, such as 

logistic or probit, the coefficients do not have this straightforward 

interpretation. Explaining how to deal with these is beyond the scope of 

an introductory guide.  

3.4 R-Squared and overall significance of the 

regression 
The R-squared of the regression is the fraction of the variation in your 

dependent variable that is accounted for (or predicted by) your 

independent variables. (In regression with a single independent variable, 

it is the same as the square of the correlation between your dependent 

and independent variable.) The R-squared is generally of secondary 

importance, unless your main concern is using the regression equation to 

make accurate predictions. The P value tells you how confident you can 

be that each individual variable has some correlation with the dependent 

variable, which is the important thing.  

Another number to be aware of is the P value for the regression as a whole. 

Because your independent variables may be correlated, a condition known 

as multicollinearity, the coefficients on individual variables may be 

insignificant when the regression as a whole is significant. Intuitively, 

this is because highly correlated independent variables are explaining 

the same part of the variation in the dependent variable, so their 

explanatory power and the significance of their coefficients is "divided 

up" between them. 

 

4.Introduction to Regression  
4.1 Introduction 
Regression analysis is used when you want to predict a continuous 

dependent variable from a number of independent variables. If the 



dependent variable is dichotomous, then logistic regression should be 

used. (If the split between the two levels of the dependent variable is 

close to 50-50, then both logistic and linear regression will end up giving 

you similar results.) The independent variables used in regression can 

be either continuous or dichotomous. Independent variables with more than 

two levels can also be used in regression analyses, but they first must 

be converted into variables that have only two levels. This is called dummy 

coding and will be discussed later. Usually, regression analysis is used 

with naturally-occurring variables, as opposed to experimentally 

manipulated variables, although you can use regression with 

experimentally manipulated variables. One point to keep in mind with 

regression analysis is that causal relationships among the variables 

cannot be determined. While the terminology is such that we say that X 

"predicts" Y, we cannot say that X "causes" Y.  

4.2 Assumptions of regression 

Number of cases 

When doing regression, the cases-to-Independent Variables (IVs) ratio 

should ideally be 20:1; that is 20 cases for every IV in the model. The 

lowest your ratio should be is 5:1 (i.e., 5 cases for every IV in the 

model).  

Accuracy of data 

If you have entered the data (rather than using an established dataset), 

it is a good idea to check the accuracy of the data entry. If you don't 

want to re-check each data point, you should at least check the minimum 

and maximum value for each variable to ensure that all values for each 

variable are "valid." For example, a variable that is measured using a 

1 to 5 scale should not have a value of 8.  

Missing data 

You also want to look for missing data. If specific variables have a lot 

of missing values, you may decide not to include those variables in your 

analyses. If only a few cases have any missing values, then you might want 

to delete those cases. If there are missing values for several cases on 

different variables, then you probably don't want to delete those cases 

(because a lot of your data will be lost). If there are not too much missing 

data, and there does not seem to be any pattern in terms of what is missing, 

then you don't really need to worry. Just run your regression, and any 

cases that do not have values for the variables used in that regression 

will not be included. Although tempting, do not assume that there is no 

pattern; check for this. To do this, separate the dataset into two groups: 

those cases missing values for a certain variable, and those not missing 



a value for that variable. Using t-tests, you can determine if the two 

groups differ on other variables included in the sample. For example, you 

might find that the cases that are missing values for the "salary" variable 

are younger than those cases that have values for salary. You would want 

to do t-tests for each variable with a lot of missing values. If there 

is a systematic difference between the two groups (i.e., the group missing 

values vs. the group not missing values), then you would need to keep this 

in mind when interpreting your findings and not overgeneralize.  

After examining your data, you may decide that you want to replace the 

missing values with some other value. The easiest thing to use as the 

replacement value is the mean of this variable. Some statistics programs 

have an option within regression where you can replace the missing value 

with the mean. Alternatively, you may want to substitute a group mean (e.g., 

the mean for females) rather than the overall mean.  

The default option of statistics packages is to exclude cases that are 

missing values for any variable that is included in regression. (But that 

case could be included in another regression, as long as it was not missing 

values on any of the variables included in that analysis.) You can change 

this option so that your regression analysis does not exclude cases that 

are missing data for any variable included in the regression, but then 

you might have a different number of cases for each variable.  

Outliers 

You also need to check your data for outliers (i.e., an extreme value on 

a particular item) An outlier is often operationally defined as a value 

that is at least 3 standard deviations above or below the mean. If you 

feel that the cases that produced the outliers are not part of the same 

"population" as the other cases, then you might just want to delete those 

cases. Alternatively, you might want to count those extreme values as 

"missing," but retain the case for other variables. Alternatively, you 

could retain the outlier, but reduce how extreme it is. Specifically, you 

might want to recode the value so that it is the highest (or lowest) 

non-outlier value.  

Normality 

You also want to check that your data is normally distributed. To do this, 

you can construct histograms and "look" at the data to see its distribution. 

Often the histogram will include a line that depicts what the shape would 

look like if the distribution were truly normal (and you can "eyeball" 

how much the actual distribution deviates from this line). This histogram 

shows that age is normally distributed:  



 
You can also construct a normal probability plot. In this plot, the actual 

scores are ranked and sorted, and an expected normal value is computed 

and compared with an actual normal value for each case. The expected normal 

value is the position a case with that rank holds in a normal distribution. 

The normal value is the position it holds in the actual distribution. 

Basically, you would like to see your actual values lining up along the 

diagonal that goes from lower left to upper right. This plot also shows 

that age is normally distributed:  



 
You can also test for normality within the regression analysis by looking 

at a plot of the "residuals." Residuals are the difference between 

obtained and predicted DV scores. (Residuals will be explained in more 

detail in a later section.) If the data are normally distributed, then 

residuals should be normally distributed around each predicted DV score. 

If the data (and the residuals) are normally distributed, the residuals 

scatterplot will show the majority of residuals at the center of the plot 

for each value of the predicted score, with some residuals trailing off 

symmetrically from the center. You might want to do the residual plot 

before graphing each variable separately because if this residuals plot 

looks good, then you don't need to do the separate plots. Below is a 

residual plot of a regression where age of patient and time (in months 

since diagnosis) are used to predict breast tumor size. These data are 

not perfectly normally distributed in that the residuals about the zero 

line appear slightly more spread out than those below the zero line. 

Nevertheless, they do appear to be fairly normally distributed.  



 
In addition to a graphic examination of the data, you can also 

statistically examine the data's normality. Specifically, statistical 

programs such as SPSS will calculate the skewness and kurtosis for each 

variable; an extreme value for either one would tell you that the data 

are not normally distributed. "Skewness" is a measure of how symmetrical 

the data are; a skewed variable is one whose mean is not in the middle 

of the distribution (i.e., the mean and median are quite different). 

"Kurtosis" has to do with how peaked the distribution is, either too peaked 

or too flat. "Extreme values" for skewness and kurtosis are values greater 

than +3 or less than -3. If any variable is not normally distributed, then 

you will probably want to transform it (which will be discussed in a later 

section). Checking for outliers will also help with the normality problem.  

Linearity 

Regression analysis also has an assumption of linearity. Linearity means 

that there is a straight line relationship between the IVs and the DV. 

This assumption is important because regression analysis only tests for 

a linear relationship between the IVs and the DV. Any nonlinear 

relationship between the IV and DV is ignored. You can test for linearity 

between an IV and the DV by looking at a bivariate scatterplot (i.e., a 

graph with the IV on one axis and the DV on the other). If the two variables 

are linearly related, the scatterplot will be oval.  



 
Looking at the above bivariate scatterplot, you can see that friends is 

linearly related to happiness. Specifically, the more friends you have, 

the greater your level of happiness. However, you could also imagine that 

there could be a curvilinear relationship between friends and happiness, 

such that happiness increases with the number of friends to a point. Beyond 

that point, however, happiness declines with a larger number of friends. 

This is demonstrated by the graph below:  



 
You can also test for linearity by using the residual plots described 

previously. This is because if the IVs and DV are linearly related, then 

the relationship between the residuals and the predicted DV scores will 

be linear. Nonlinearity is demonstrated when most of the residuals are 

above the zero line on the plot at some predicted values, and below the 

zero line at other predicted values. In other words, the overall shape 

of the plot will be curved, instead of rectangular. The following is a 

residuals plot produced when happiness was predicted from number of 

friends and age. As you can see, the data are not linear:  



 

The following is an example of a residuals plot, again predicting 

happiness from friends and age. But, in this case, the data are linear:  

 

If your data are not linear, then you can usually make it linear by 

transforming IVs or the DV so that there is a linear relationship between 

them. Sometimes transforming one variable won't work; the IV and DV are 

just not linearly related. If there is a curvilinear relationship between 

the DV and IV, you might want to dichotomize the IV because a dichotomous 

variable can only have a linear relationship with another variable (if 

it has any relationship at all). Alternatively, if there is a curvilinear 

relationship between the IV and the DV, then you might need to include 



the square of the IV in the regression (this is also known as a quadratic 

regression).  

The failure of linearity in regression will not invalidate your analysis 

so much as weaken it; the linear regression coefficient cannot fully 

capture the extent of a curvilinear relationship. If there is both a 

curvilinear and a linear relationship between the IV and DV, then the 

regression will at least capture the linear relationship.  

Homoscedasticity 

The assumption of homoscedasticity is that the residuals are 

approximately equal for all predicted DV scores. Another way of thinking 

of this is that the variability in scores for your IVs is the same at all 

values of the DV. You can check homoscedasticity by looking at the same 

residuals plot talked about in the linearity and normality sections. Data 

are homoscedastic if the residuals plot is the same width for all values 

of the predicted DV. Heteroscedasticity is usually shown by a cluster of 

points that is wider as the values for the predicted DV get larger. 

Alternatively, you can check for homoscedasticity by looking at a 

scatterplot between each IV and the DV. As with the residuals plot, you 

want the cluster of points to be approximately the same width all over. 

The following residuals plot shows data that are fairly homoscedastic. 

In fact, this residuals plot shows data that meet the assumptions of 

homoscedasticity, linearity, and normality (because the residual plot is 

rectangular, with a concentration of points along the center):  



 
Heteroscedasiticy may occur when some variables are skewed and others are 

not. Thus, checking that your data are normally distributed should cut 

down on the problem of heteroscedasticity. Like the assumption of 

linearity, violation of the assumption of homoscedasticity does not 

invalidate your regression so much as weaken it.  

Multicollinearity and Singularity 

Multicollinearity is a condition in which the IVs are very highly 

correlated (.90 or greater) and singularity is when the IVs are perfectly 

correlated and one IV is a combination of one or more of the other IVs. 

Multicollinearity and singularity can be caused by high bivariate 

correlations (usually of .90 or greater) or by high multivariate 

correlations. High bivariate correlations are easy to spot by simply 

running correlations among your IVs. If you do have high bivariate 

correlations, your problem is easily solved by deleting one of the two 

variables, but you should check your programming first, often this is a 

mistake when you created the variables. It's harder to spot high 

multivariate correlations. To do this, you need to calculate the SMC for 

each IV. SMC is the squared multiple correlation ( R2 ) of the IV when 

it serves as the DV which is predicted by the rest of the IVs. Tolerance, 

a related concept, is calculated by 1-SMC. Tolerance is the proportion 

of a variable's variance that is not accounted for by the other IVs in 

the equation. You don't need to worry too much about tolerance in that 



most programs will not allow a variable to enter the regression model if 

tolerance is too low.  

Statistically, you do not want singularity or multicollinearity because 

calculation of the regression coefficients is done through matrix 

inversion. Consequently, if singularity exists, the inversion is 

impossible, and if multicollinearity exists the inversion is unstable. 

Logically, you don't want multicollinearity or singularity because if 

they exist, then your IVs are redundant with one another. In such a case, 

one IV doesn't add any predictive value over another IV, but you do lose 

a degree of freedom. As such, having multicollinearity/ singularity can 

weaken your analysis. In general, you probably wouldn't want to include 

two IVs that correlate with one another at .70 or greater.  

4.3 Transformations 
As mentioned in the section above, when one or more variables are not 

normally distributed, you might want to transform them. You could also 

use transformations to correct for heteroscedasiticy, nonlinearity, and 

outliers. Some people do not like to do transformations because it becomes 

harder to interpret the analysis. Thus, if your variables are measured 

in "meaningful" units, such as days, you might not want to use 

transformations. If, however, your data are just arbitrary values on a 

scale, then transformations don't really make it more difficult to 

interpret the results.  

Since the goal of transformations is to normalize your data, you want to 

re- check for normality after you have performed your transformations. 

Deciding which transformation is best is often an exercise in 

trial-and-error where you use several transformations and see which one 

has the best results. "Best results" means the transformation whose 

distribution is most normal. The specific transformation used depends on 

the extent of the deviation from normality. If the distribution differs 

moderately from normality, a square root transformation is often the best. 

A log transformation is usually best if the data are more substantially 

non-normal. An inverse transformation should be tried for severely 

non-normal data. If nothing can be done to "normalize" the variable, then 

you might want to dichotomize the variable (as was explained in the 

linearity section). Direction of the deviation is also important. If the 

data is negatively skewed, you should "reflect" the data and then apply 

the transformation. To reflect a variable, create a new variable where 

the original value of the variable is subtracted from a constant. The 

constant is calculated by adding 1 to the largest value of the original 

variable.  

If you have transformed your data, you need to keep that in mind when 

interpreting your findings. For example, imagine that your original 

variable was measured in days, but to make the data more normally 



distributed, you needed to do an inverse transformation. Now you need to 

keep in mind that the higher the value for this transformed variable, the 

lower the value the original variable, days. A similar thing will come 

up when you "reflect" a variable. A greater value for the original variable 

will translate into a smaller value for the reflected variable.  

4.4 Simple Linear Regression 
Simple linear regression is when you want to predict values of one variable, 

given values of another variable. For example, you might want to predict 

a person's height (in inches) from his weight (in pounds). Imagine a sample 

of ten people for whom you know their height and weight. You could plot 

the values on a graph, with weight on the x axis and height on the y axis. 

If there were a perfect linear relationship between height and weight, 

then all 10 points on the graph would fit on a straight line. But, this 

is never the case (unless your data are rigged). If there is a (nonperfect) 

linear relationship between height and weight (presumably a positive one), 

then you would get a cluster of points on the graph which slopes upward. 

In other words, people who weigh a lot should be taller than those people 

who are of less weight. (See graph below.)  

 
The purpose of regression analysis is to come up with an equation of a 

line that fits through that cluster of points with the minimal amount of 

deviations from the line. The deviation of the points from the line is 

called "error." Once you have this regression equation, if you knew a 

person's weight, you could then predict their height. Simple linear 

regression is actually the same as a bivariate correlation between the 

independent and dependent variable.  

4.5 Standard Multiple Regression 
Standard multiple regression is the same idea as simple linear regression, 

except now you have several independent variables predicting the 

dependent variable. To continue with the previous example, imagine that 

you now wanted to predict a person's height from the gender of the person 



and from the weight. You would use standard multiple regression in which 

gender and weight were the independent variables and height was the 

dependent variable. The resulting output would tell you a number of things. 

First, it would tell you how much of the variance of height was accounted 

for by the joint predictive power of knowing a person's weight and gender. 

This value is denoted by "R2". The output would also tell you if the model 

allows you to predict a person's height at a rate better than chance. This 

is denoted by the significance level of the overall F of the model. If 

the significance is .05 (or less), then the model is considered 

significant. In other words, there is only a 5 in a 100 chance (or less) 

that there really is not a relationship between height and weight and 

gender. For whatever reason, within the social sciences, a significance 

level of .05 is often considered the standard for what is acceptable. If 

the significance level is between .05 and .10, then the model is considered 

marginal. In other words, the model is fairly good at predicting a person's 

height, but there is between a 5-10% probability that there really is not 

a relationship between height and weight and gender.  

In addition to telling you the predictive value of the overall model, 

standard multiple regression tells you how well each independent variable 

predicts the dependent variable, controlling for each of the other 

independent variables. In our example, then, the regression would tell 

you how well weight predicted a person's height, controlling for gender, 

as well as how well gender predicted a person's height, controlling for 

weight.  

To see if weight was a "significant" predictor of height you would look 

at the significance level associated with weight on the printout. Again, 

significance levels of .05 or lower would be considered significant, and 

significance levels .05 and .10 would be considered marginal. Once you 

have determined that weight was a significant predictor of height, then 

you would want to more closely examine the relationship between the two 

variables. In other words, is the relationship positive or negative? In 

this example, we would expect that there would be a positive relationship. 

In other words, we would expect that the greater a person's weight, the 

greater his height. (A negative relationship would be denoted by the case 

in which the greater a person's weight, the shorter his height.) We can 

determine the direction of the relationship between weight and height by 

looking at the regression coefficient associated with weight. There are 

two kinds of regression coefficients: B (unstandardized) and beta 

(standardized). The B weight associated with each variable is given in 

terms of the units of this variable. For weight, the unit would be pounds, 

and for height, the unit is inches. The beta uses a standard unit that 

is the same for all variables in the equation. In our example, this would 

be a unit of measurement that would be common to weight and height. Beta 



weights are useful because then you can compare two variables that are 

measured in different units, as are height and weight.  

If the regression coefficient is positive, then there is a positive 

relationship between height and weight. If this value is negative, then 

there is a negative relationship between height and weight. We can more 

specifically determine the relationship between height and weight by 

looking at the beta coefficient for weight. If the beta = .35, for example, 

then that would mean that for one unit increase in weight, height would 

increase by .35 units. If the beta=-.25, then for one unit increase in 

weight, height would decrease by .25 units. Of course, this relationship 

is valid only when holding gender constant.  

A similar procedure would be done to see how well gender predicted height. 

However, because gender is a dichotomous variable, the interpretation of 

the printouts is slightly different. As with weight, you would check to 

see if gender was a significant predictor of height, controlling for 

weight. The difference comes when determining the exact nature of the 

relationship between gender and height. That is, it does not make sense 

to talk about the effect on height as gender increases or decreases, since 

gender is not a continuous variable (we would hope). Imagine that gender 

had been coded as either 0 or 1, with 0 = female and 1=male. If the beta 

coefficient of gender were positive, this would mean that males are taller 

than females. If the beta coefficient of gender were negative, this would 

mean that males are shorter than females. Looking at the magnitude of the 

beta, you can more closely determine the relationship between height and 

gender. Imagine that the beta of gender were .25. That means that males 

would be .25 units taller than females. Conversely, if the beta 

coefficient were -.25, this would mean that males were .25 units shorter 

than females. Of course, this relationship would be true only when 

controlling for weight.  

As mentioned, the significance levels given for each independent variable 

indicates whether that particular independent variable is a significant 

predictor of the dependent variable, over and above the other independent 

variables. Because of this, an independent variable that is a significant 

predictor of a dependent variable in simple linear regression may not be 

significant in multiple regression (i.e., when other independent 

variables are added into the equation). This could happen because the 

variance that the first independent variable shares with the dependent 

variable could overlap with the variance that is shared between the second 

independent variable and the dependent variable. Consequently, the first 

independent variable is no longer uniquely predictive and thus would not 

show up as being significant in the multiple regression. Because of this, 

it is possible to get a highly significant R2, but have none of the 

independent variables be significant. 

 



5. Working With Dummy Variables 
5.1 Why use dummies? 
Regression analysis is used with numerical variables. Results only have 

a valid interpretation if it makes sense to assume that having a value 

of 2 on some variable is does indeed mean having twice as much of something 

as a 1, and having a 50 means 50 times as much as 1.  

However, social scientists often need to work with categorical variables 

in which the different values have no real numerical relationship with 

each other. Examples include variables for race, political affiliation, 

or marital status. If you have a variable for political affiliation with 

possible responses including Democrat, Independent, and Republican, it 

obviously doesn't make sense to assign values of 1 - 3 and interpret that 

as meaning that a Republican is somehow three times as politically 

affiliated as a Democrat.  

The solution is to use dummy variables - variables with only two values, 

zero and one. It does make sense to create a variable called "Republican" 

and interpret it as meaning that someone assigned a 1 on this varible is 

Republican and someone with an 0 is not.  

5.2 Nominal variables with multiple levels 
If you have a nominal variable that has more than two levels, you need 

to create multiple dummy variables to "take the place of" the original 

nominal variable. For example, imagine that you wanted to predict 

depression from year in school: freshman, sophomore, junior, or senior. 

Obviously, "year in school" has more than two levels.  

What you need to do is to recode "year in school" into a set of dummy 

variables, each of which has two levels. The first step in this process 

is to decide the number of dummy variables. This is easy; it's simply k-1, 

where k is the number of levels of the original variable.  

You could also create dummy variables for all levels in the original 

variable, and simply drop one from each analysis.  

In this instance, we would need to create 4-1=3 dummy variables. In order 

to create these variables, we are going to take 3 of the levels of "year 

of school", and create a variable corresponding to each level, which will 

have the value of yes or no (i.e., 1 or 0). In this instance, we can create 

a variable called "sophomore," "junior," and "senior." Each instance of 

"year of school" would then be recoded into a value for "sophomore," 

"junior," and "senior." If a person were a junior, then "sophomore" would 

be equal to 0, "junior" would be equal to 1, and "senior" would be equal 

to 0.  

5.3 Interpreting results 



The decision as to which level is not coded is often arbitrary. The level 

which is not coded is the category to which all other categories will be 

compared. As such, often the biggest group will be the not- coded category. 

For example, often "Caucasian" will be the not-coded group if that is the 

race of the majority of participants in the sample. In that case, if you 

have a variable called "Asian", the coefficient on the "Asian" variable 

in your regression will show the effect being Asian rather than Caucasian 

has on your dependant variable.  

In our example, "freshman" was not coded so that we could determine if 

being a sophomore, junior, or senior predicts a different depressive level 

than being a freshman. Consequently, if the variable, "junior" was 

significant in our regression, with a positive beta coefficient, this 

would mean that juniors are significantly more depressed than freshman. 

Alternatively, we could have decided to not code "senior," if we thought 

that being a senior is qualitatively different from being of another year.  

For further information, see Regression with Stata chapter 3, Regression 
with Categorical Variables  

6.Time Series Data in Stata 
6.1 Time series data and tsset 
To use Stata's time-series functions and analyses, you must first make 

sure that your data are, indeed, time-series. First, you must have a date 

variable that is in Stata date format. Secondly, you must make sure that 

your data are sorted by this date variable. If you have panel data, then 

your data must be sorted by the date variable within the variable that 

identifies the panel. Finally, you must use the tsset command to tell Stata 
that your data are time-series:  

 sort datevar 

 tsset datevar 

or 

 sort panelvar datevar 

 tsset panelvar datevar 

The first example tells Stata that you have simple time-series data, and 

the second tells Stata that you have panel data.  

6.2 Stata Date Format 
Stata stores dates as the number of elapsed days since January 1, 1960. 

There are different ways to create elapsed Stata dates that depend on how 

dates are represented in your data. If your original dataset already 

contains a single date variable, then use the date() function or one of 

the other string-date commands. If you have separate variables storing 

different parts of the date (month, day and year; year and quarter, etc.) 

then you will need to use the partial date variable functions.  

http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm
http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm


Date functions for a single string date variable 

Sometimes, your data will have the dates in string format. (A string 

variable is simply a variable containing anything other than just numbers.) 

Stata provides a way to convert these to time-series dates. The first thing 

you need to know is that the string must be easily separated into its 

components. In other words, strings like "01feb1990" "February 1, 1990" 

"02/01/90" are acceptable, but "020190" is not.  

For example, let's say that you have a string variable "sdate" with values 

like "01feb1990" and you need to convert it to a daily time-series date:  

 gen daily=date(sdate,"dmy")  

Note that in this function, as with the other functions to convert strings 

to time-series dates, the "dmy" portion indicates the order of the day, 

month and year in the variable. Had the values been coded as "February 

1, 1990" we would have used "mdy" instead. What if the original date only 

has two digits for the year? Then we would use:  

 gen daily=date(sdate,"dm19y")  

Whenever you have two digit years, simply place the century before the 

"y." Here are the other functions:  

weekly(stringvar,"wy") 

monthly(stringvar,"my") 

quarterly(stringvar,"qy") 

halfyearly(stringvar,"hy") 

yearly(stringvar,"y")  

Date functions for partial date variables 

Often you will have separate variables for the various components of the 

date; you need to put them together before you can designate them as proper 

time-series dates. Stata provides an easy way to do this with numeric 

variables. If you have separate variables for month, day and year then 

use the mdy() function to create an elapsed date variable. Once you have 

created an elapsed date variable, you will probably want to format it, 

as described below.  

Use the mdy() function to create an elapsed Stata date variable when your 

original data contains separate variables for month, day and year. The 

month, day and year variables must be numeric. For example, suppose you 

are working with these data:  

month day year 

7  11  1948 

1  21  1952 

11  2  1994 

8  12 1993 

Use the following Stata command to generate a new variable named mydate:  



 gen mydate = mdy(month,day,year) 

where mydate is an elapsed date varible, mdy() is the Stata function, and 

month, day, and year are the names of the variables that contain data for 

month, day and year, respectively.  

If you have two variables, "year" and "quarter" use the "yq()" function: 

 gen qtr=yq(year,quarter) 

 gen qtr=yq(1990,3) 

The other functions are:  

mdy(month,day,year) for daily data 

yw(year, week) for weekly data 

ym(year,month) for monthly data 

yq(year,quarter) for quarterly data 

yh(year,half-year) for half-yearly data

Converting a date variable stored as a single number 

If you have a date variable where the date is stored as a single number 

of the form yyyymmdd (for example, 20041231 for December 31, 2004) the 

following set of functions will convert it into a Stata elapsed date. 

gen year = int(date/10000) 

gen month = int((date-year*10000)/100) 

gen day = int((date-year*10000-month*100)) 

gen mydate = mdy(month,day,year) 

format mydate %d 

Time series date formats 

Use the format command to display elapsed Stata dates as calendar dates. 

In the example given above, the elapsed date variable, mydate, has the 

following values, which represent the number of days before or after 

January 1, 1960.  

month day year mydate 

7 11 1948 -4191 

1 21 1952 -2902 

8 12 1993 12277 

11 2 1994 12724 

You can use the format command to display elapsed dates in a more customary 

way. For example:  

 format mydate %d 

where mydate is an elapsed date variable and %d is the format which will 

be used to display values for that variable.  

month day year mydate 



7 11 1948 11jul48 

1 21 1952 21jan52 

8 12 1993 12aug93 

11 2 1994 02nov94 

Other formats are available to control the display of elapsed dates.  

Time-series dates in Stata have their own formats similar to regular date 

formats. The main difference is that for a regular date format a "unit" 

or single "time period" is one day. For time series formats, a unit or 

single time period can be a day, week, month, quarter, half-year or year. 

There is a format for each of these time periods:  

Format Description Beginning +1 Unit +2 Units +3 Units 

%td daily 01jan1960 02jan1960 03Jan1960 04Jan1960 

%tw weekly week 1, 1960 week 2, 1960 week 3, 1960 week 4, 1960

%tm monthly Jan, 1960 Feb, 1960 Mar, 1960 Apr, 1960 

%tq quarterly 1st qtr, 1960 2nd qtr, 1960 3rd qtr, 1960 4th qtr, 1961

%th half-yearly 
1st half, 

1960 

2nd half, 

1960 

1st half, 

1961 

2nd half, 

1961 

%ty yearly 1960 1961 1962 1963 

You should note that in the weekly format, the year is divided into 52 

weeks. The first week is defined as the first seven days, regardless of 

what day of the week it may be. Also, the last week, week 52, may have 

8 or 9 days. For the quarterly format, the first quarter is January through 

March. For the half-yearly format, the first half of the year is January 

through June.  

It's even more important to note that you cannot jump from one format to 

another by simply re-issuing the format command because the units are 

different in each format. Here are the corresponding results for January 

1, 1999, which is an elapsed date of 14245:  

%td %tw %tq %th %ty

01jan1999 2233w50 5521q2 9082h2  

These dates are so different because the elapsed date is actually the 

number of weeks, quarters, etc., from the first week, quarter, etc of 1960. 

The value for %ty is missing because it would be equal to the year 14,245 

which is beyond what Stata can accept.  

Any of these time units can be translated to any of the others. Stata 

provides functions to translate any time unit to and from %td daily units, 

so all that is needed is to combine these functions.  

These functions translate to %td dates:  

dofw() weekly to daily 



dofm() monthly to daily 

dofq() quarterly to daily 

dofy() yearly to daily 

These functions translate from %td dates:  

wofd() daily to weekly 

mofd() daily to monthly 

qofd() daily to quarterly 

yofd() daily to yearly 

For more information see the Stata User's Guide, chapter 27.  

Specifying dates 

Often we need to consuct a particular analysis only on observations that 

fall on a certain date. To do this, we have to use something called a date 

literal. A date literal is simply a way of entering a date in words and 

have Stata automatically convert it to an elapsed date. As with the d() 

literal to specify a regular date, there are the w(), m(), q(), h(), and 

y() literals for entering weekly, monthly, quarterly, half-yearly, and 

yearly dates, respectively. Here are some examples:  

 reg x y if w(1995w9) 

 sum income if q(1988-3) 

 tab gender if y(1999) 

If you want to specify a range of dates, you can use the tin() and twithin() 

functions:  

 reg y x if tin(01feb1990,01jun1990) 

 sum income if twithin(1988-3,1998-3) 

The difference between tin() and twithin() is that tin() includes the 

beginning and end dates, whereas twithin() excludes them. Always enter 

the beginning date first, and write them out as you would for any of the 

d(), w(), etc. functions.  

6.3 Time Series Variable Lists 
Often in time-series analyses we need to "lag" or "lead" the values of 

a variable from one observation to the next. If we have many variables, 

this can be cumbersome, especially if we need to lag a variable more than 

once. In Stata, we can specify which variables are to be lagged and how 

many times without having to create new variables, thus saving alot of 

disk space and memory. You should note that the tsset command must have 

been issued before any of the "tricks" in this section will work. Also, 

if you have defined your data as panel data, Stata will automatically 

re-start the calculations as it comes to the beginning of a panel so you 

need not worry about values from one panel being carried over to the next.  



L.varname and F.varname 

If you need to lag or lead a variable for an analysis, you can do so by 

using the L.varname (to lag) and F.varname (to lead). Both work the same 

way, so we'll just show some examples with L.varname. Let's say you want 

to regress this year's income on last year's income:  

 reg income L.income 

would accomplish this. The "L." tells Stata to lag income by one time 

period. If you wanted to lag income by more than one time period, you would 

simply change the L. to something like "L2." or "L3." to lag it by 2 and 

3 time periods, respectively. The following two commands will produce the 

same results:  

 reg income L.income L2.income L3.income 

 reg income L(1/3).income 

D.varname 

Another useful shortcut is D.varname, which takes the difference of income 

in time 1 and income in time 2. For example, let's say a person earned 

$20 yesterday and $30 today.  

Date income D.income D2.income

02feb1999 20 . . 

02mar1999 30 10 . 

02apr1999 45 15 5 

So, you can see that D.=(income-incomet-1) and 

D2=(income-incomet-1)-(incomet-1-incomet-2)  

S.varname 

S.varname refers to seasonal differences and works like D.varname, except 

that the difference is always taken from the current observation to the 

n
th
 observation: 

Date income S.income S2.income

02feb1999 20 . . 

02mar1999 30 10 . 

02apr1999 45 15 25 

In other words: S.income=income-incomet-1 and S2.income=income-incomet-2

7. Lag Selection in Time Series Data 
When running regressions on time-series data, it is often important to 

include lagged values of the dependent variable as independant variables. 

In technical terminology, the regression is now called a vector 

autoregression (VAR). For example, when trying to sort out the dterminants 

of GDP, it is likely that last year's GDP is correlated with this year's 



GDP. If this is the case, GDP lagged for at least one year should be 

included on the right-hand side of the regression.  

If the variable in question is persistent--that is, values in the far past 

are still affecting today's values--more lags will be necessary. In order 

to determine how many lags to use, several selection criteria can be used. 

The two most common are the Akaike Information Criterion (AIC) and the 

Schwarz' Bayesian Information Criterion (SIC/BIC/SBIC). These rules 

choose lag length j to minimize: log(SSR(j)/n) + (j + 1)C(n)/n, where SSR(j) 

is the sum or squared residuals for the VAR with j lags and n is the number 

of observations; C(n) = 2 for AIC and C(n) = log(n) for BIC.  

Fortunately, in Stata 8 there is a single command that will do the math 

for any number of specified lags: varsoc. To get the AIC and BIC, simply 

type 'varsoc depvar' in the command window. The default number of lags 

Stata checks is 4; in order to check a different number, add ', 

maxlags(#oflags)' after the 'varsoc depvar'. If, in addition, the 

regression has independent variables other than the lags, include those 

after the 'maxlag()' option by typing 'exog(varnames)'. The output will 

indicate the optimal lag number with an asterisk. Then proceed to run the 

regression using the specified number of lags on the dependent variable 

on the right-hand side with the other independent variables.  

Example:  

varsoc y, maxlag(5) exog(x z) 

Selection order criteria 

endogenous variables:    y 

exogenous variables:    x z 

constant included in models 

Sample:       6       20 

Obs = 15           

--------------------------------------------------------------------- 

lag   LL   LR      df   p     FPE       AIC      HQIC     SBIC 

--------------------------------------------------------------------- 

0 -45.854    .     .    .    39.70191   6.51381  6.5123   6.65542 

1 -35.849 20.009*  1  0.000  12.04354*  5.31319* 5.31118* 5.50201* 

2 -35.837  0.024   1  0.877  13.92282   5.44493  5.44241  5.68094 

3 -35.305  1.063   1  0.302  15.13169   5.50737  5.50435  5.79059 

4 -35.233  0.145   1  0.703  17.66201   5.63103  5.62751  5.96145 

5 -35.108  0.250   1  0.617  20.7534    5.74767  5.74365  6.1253 

--------------------------------------------------------------------- 

From this output, it is clear that the optimal number of lags is 1, so 

the regression should look like:  

reg y l.y x z 

(For further options with the varsoc command, see the Time-Series Stata 

manual.)  



8. Panel Data 
8.1 Introduction 
Panel data, also called longitudinal data or cross-sectional time series 

data, are data where multiple cases (people, firms, countries etc) were 

observed at two or more time periods. An example is the National 

Longitudinal Survey of Youth, where a nationally representative sample 

of young people were each surveyed repeatedly over multiple years.  

There are two kinds of information in cross-sectional time-series data: 

the cross-sectional information reflected in the differences between 

subjects, and the time-series or within-subject information reflected in 

the changes within subjects over time. Panel data regression techniques 

allow you to take advantage of these different types of information.  

While it is possible to use ordinary multiple regression techniques on 

panel data, they may not be optimal. The estimates of coefficients derived 

from regression may be subject to omitted variable bias - a problem that 

arises when there is some unknown variable or variables that cannot be 

controlled for that affect the dependent variable. With panel data, it 

is possible to control for some types of omitted variables even without 

observing them, by observing changes in the dependent variable over time. 

This controls for omitted variables that differ between cases but are 

constant over time. It is also possible to use panel data to control for 

omitted variables that vary over time but are constant between cases.  

8.2 Using Panel Data in Stata 
A panel dataset should have data on n cases, over t time periods, for a 
total of n × t observations. Data like this is said to be in long form. 
In some cases your data may come in what is called the wide form, with 

only one observation per case and variables for each different value at 

each different time period. To analyze data like this in Stata using 

commands for panel data analysis, you need to first convert it to long 

form. This can be done using Stata's reshape command. For assistance in 
using reshape, see Stata's online help or this web page.  

Stata provides a number of tools for analyzing panel data. The commands 

all begin with the prefix xt and include xtreg, xtprobit, xtsum and xttab 
- panel data versions of the familiar reg, probit, sum and tab commands.  

To use these commands, first tell Stata that your dataset is panel data. 

You need to have a variable that identifies the case element of your panel 

(for example, a country or person identifier) and also a time variable 

that is in Stata date format. For information about Stata's date variable 

formats, see our Time Series Data in Stata page.  

Sort your data by the panel variable and then by the date variable within 

the panel variable. Then you need to issue the tsset command to identify 

http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm
http://dss.princeton.edu/online_help/analysis/time_series_data.htm


the panel and date variables. If your panel variable is called panelvar 

and your date variable is called datevar, the commands needed are:  

 . sort panelvar datevar 

 . tsset panelvar datevar  

If you prefer to use menus, use the command under Statistics > Time Series 

> Setup and Utilities > Declare Data to be Time Series.  

8.3 Fixed, Between and Random Effects models 

Fixed Effects Regression 

Fixed effects regression is the model to use when you want to control for 

omitted variables that differ between cases but are constant over time. 

It lets you use the changes in the variables over time to estimate the 

effects of the independent variables on your dependent variable, and is 

the main technique used for analysis of panel data.  

The command for a linear regression on panel data with fixed effects in 

Stata is xtreg with the fe option, used like this:  
 xtreg dependentvar independentvar1 independentvar2 

independentvar3 ... , fe 

If you prefer to use the menus, the command is under Statistics > 

Cross-sectional time series > Linear models > Linear regression.  

This is equivalent to generating dummy variables for each of your cases 

and including them in a standard linear regression to control for these 

fixed "case effects". It works best when you have relatively fewer cases 

and more time periods, as each dummy variable removes one degree of freedom 

from your model.  

Between Effects 

Regression with between effects is the model to use when you want to 

control for omitted variables that change over time but are constant 

between cases. It allows you to use the variation between cases to estimate 

the effect of the omitted independent variables on your dependent 

variable.  

The command for a linear regression on panel data with between effects 

in Stata is xtreg with the be option.  
Running xtreg with between effects is equivalent to taking the mean of 

each variable for each case across time and running a regression on the 

collapsed dataset of means. As this results in loss of information, 

between effects are not used much in practice. Researchers who want to 

look at time effects without considering panel effects generally will use 

a set of time dummy variables, which is the same as running time fixed 

effects. 

The between effects estimator is mostly important because it is used to 

produce the random effects estimator. 

http://dss.princeton.edu/online_help/analysis/dummy_variables.htm


Random Effects 

If you have reason to believe that some omitted variables may be constant 

over time but vary between cases, and others may be fixed between cases 

but vary over time, then you can include both types by using random effects. 

Stata's random-effects estimator is a weighted average of fixed and 

between effects. 

The command for a linear regression on panel data with random effects in 

Stata is xtreg with the re option.  

8.4 Choosing Between Fixed and Random Effects 
The generally accepted way of choosing between fixed and random effects 

is running a Hausman test. 

Statistically, fixed effects are always a reasonable thing to do with 

panel data (they always give consistent results) but they may not be the 

most efficient model to run. Random effects will give you better P-values 

as they are a more efficient estimator, so you should run random effects 

if it is statistcally justifiable to do so. 

The Hausman test checks a more efficient model against a less efficient 

but consistent model to make sure that the more efficient model also gives 

consistent results. 

To run a Hausman test comparing fixed with random effects in Stata, you 

need to first estimate the fixed effects model, save the coefficients so 

that you can compare them with the results of the next model, estimate 

the random effects model, and then do the comparison. 

 . xtreg dependentvar independentvar1 independentvar2 

independentvar3 ... , fe 

 . estimates store fixed 

 . xtreg dependentvar independentvar1 independentvar2 

independentvar3 ... , re 

 . estimates store random 

 . hausman fixed random 

The hausman test tests the null hypothesis that the coefficients estimated 

by the efficient random effects estimator are the same as the ones 

estimated by the consistent fixed effects estimator. If they are 

(insignificant P-value, Prob>chi2 larger than .05) then it is safe to use 

random effects. If you get a significant P-value, however, you should use 

fixed effects 

9. Event Studies with Stata 
An event study is used to examine reactions over time to events of 

interest. A simple event study involves the following steps:  

• Identifying the event of interest and defining an event window  

• Selecting a set of cases to include in the analysis  



• Predicting a "normal" outcome during the event window in the absence 

of the event  

• Estimating the cumulative abnormal outcome within the event window, 

where the cumulative abnormal return is defined as the difference 

between the actual and predicted returns during the event window  

• Testing whether the cumulative abnormal return is statistically 

different from zero.  

This document is designed to help you conduct event studies in Stata. It 

uses CRSP stock exchange data as examples, although it can be easily 

extended to other types of data in other fields. We assume that you already 

have the data you need and that you have a basic familiarity with Stata. 

If you need assistance with Stata commands, you can find out more about 

it here. 

Your task will be much easier if you enter the commands in a do file, which 

is a text file containing a list of Stata commands.  

Adding the Event Date 

If your data does not already have the event date included, you will need 

to add it before you can continue. This is a very simple process: 

1. Enter the event dates along with the company ID in a spreadsheet 
such as Excel. Be sure to label the column with the dates something 

other than "date," such as "evdate." You need only one line for each 

company. Convert the file to Stata.  

2. Put the date in Stata date format. Instructions on converting date 
variables to Stata format can be found here.  

Note: This is an important step. If you don't do this, you will not 

be able to sort on date and your results will be wrong.  

3. In Stata, sort this file according to PERMNO and EVDATE:  
sort permno evdate 

4. Save this file and call it something like "evdates."  
5. "Use" your main data file and sort it by PERMNO and DATE.  
6. Merge the two datasets:  

merge permno using evdates 

7. Save the file.  

Cleaning the data and Calculating the Event and Estimation 

Windows 

It's likely that you have more observations for each company than you need. 

It's also possible that you do not have enough for some. Before you can 

continue, you must make sure that you will be conducting your analyses 

on the correct observations. To do this, you will need to create a variable 

that will count the number of days from the observation to the event date. 

This can be either calendar days or weekdays.  

http://dss.princeton.edu/online_help/stats_packages/stata/stata.htm
http://dss.princeton.edu/online_help/analysis/time_series_data.htm


For number of trading days: 

sort permno date 

by permno: gen id=_n 

by permno: gen targ=id if date==evdate 

egen td=min(targ), by(permno) 

by permno: gen dif=id-td 

For calendar days: 

sort permno date 

by permno: gen id=_n 

by permno: dif=date-evdate 

As you can see, calculating the number of trading days is a little trickier 

than calendar days. For trading days, we first need to create a variable 

that counts the number of observations within each PERMNO. Then we 

determine which observation occurs on the event date. We assign the event 

date's observation number to all of the observations within that PERMNO. 

Finally, we simply take the difference between the two. Next, we need to 

make sure that we have the minimum number of observations before and after 

the event date, as well as the minimum number of observations before the 

event window for the estimation window. Let's say we want 30 days before 

and after the event date (a total of 61 days in the event window) and 30 

days for the estimation window. (You can of course change these numbers 

to suit your analysis.)  

by permno: gen evwin=1 if dif>=-30 & dif<=30 

egen evobs=count(evwin), by(permno) 

by permno: gen estwin=1 if dif<-30 & dif>=-60 

egen estobs=count(estwin), by(permno) 

replace evwin=0 if evwin==. 

replace estwin=0 if estwin==. 

The procedure for determining the event and estimation windows is the same. 

First we create a variable that equals 1 if the observation is within the 

specified number of days. Second, we create another variable that counts 

how many observations, within each PERMNO, has a 1 assigned to it. Finally, 

we replace all the missing values with zeroes, creating a dummy variable. 

You can now determine which companies do not have a sufficient number of 

observations. 

tab permno if evobs<61 

tab permno if estobs<30 

The "tab" will produce a list of PERMNOs that do not have enough 

observations within the event and estimation windows, as well as the total 

number of observations for those PERMNOs. You can continue to examine 

these companies if you wish, or you can simply drop them from the data, 

or you can mark the ones you do want for inclusion in your analyses, by 

creating dummy variables: 

sort permno date 



gen evuse=(evobs>=61 & evwin==1 & estobs>=30) 

gen estuse=(estobs>=30 & estwin==1 & evobs>=61) 

Estimating Normal Performance 

Now we are at the point where we can actually start an analysis. First 

we need a way to estimate Normal Performance. To do this, we will run a 

seperate regression for each company using the data within the estimation 

window and save the alphas (the intercept) and betas (the coefficient of 

the independent variable). We will later use these saved regression 

equations to predict normal performance during the event window.  

Note that ret, the dependent variable in our regression, is simply the 

CRSP variable for a given stock's return, while the independent variable 

vretd that we use to predict ret is the value-weighted return of an index 

for whatever exchange the stock trades on. Use the equivalent variables 

for your dataset.  

gen beta = .  

gen alpha = .  

gen se = .  

egen compnum=group(permno)  

 

forvalues i=1(1)N { /*note: replace N with the number of companies 

in your analysis */  

 l permno if compnum==`i' & dif==0 

 reg ret vwretd if compnum==`i' & estuse==1  

 replace beta=_b[vwretd] if compnum==`i'  

 replace alpha=_b[_cons] if compnum==`i'  

 replace se=_se[vwretd] if compnum==`i' 

 

}   

Here, we create a variable "compnum" that numbers the companies from 1 

to however many there are. The N is the number of companies that have 

complete data. This process iterates over the companies to find the alpha 

and beta used in calculating Abnormal and Cumulative Abnormal Returns.  

Abnormal and Cumulative Abnormal Returns 

We can now calculate the abnormal and cumulative abnormal returns for our 

data. The daily abnormal return is computed by using the saved alpha and 

beta to predict a normal return, and subtracting this number from the 

actual return for each day in the estimation window. The sum of the 

abnormal returns over the estimation window is the cumulative abnormal 

return.  

sort permno date 

by permno: gen ar=ret-(alpha+(beta*vwretd)) if evuse==1 



by permno: gen car=ret-(alpha+(beta*vwretd)) if evuse==1 & 

dif==-30 

by permno: replace car=ar + car[_n-1] if evuse==1 & dif>-30 

Here we simply calculate the abnormal return, "ar," for each observation 

in the event window. Then we set the cumulative abnormal return, "car," 

equal to the abnormal return for the first observation of each company. 

Finally, we sum the cumulative abnormal return over the other observations 

in the event window.  

Testing for Significance 

We are going to compute a test statistic, test, to check whether the 

cumulative abnormal return is statistically different from zero.  

• test = 
(1/n ΣAR)

/(√AR_SE)  

where AR is the abnormal return and AR_SE is the abnormal return standard 

error. The abnormal return standard error is calculated by the following 

formula:  

• AR_SE = 1/n Σ(ARi - mean(AR))
2
  

If the absolute value of test is greater than 1.96, then the cumulative 

abnormal return is significantly different from zero at the 5% level. The 

value of 1.96 comes from the standard normal distribution with a mean of 

0 and a standard deviation of 1. 95% of the distribution is between ±1.96.  

You need to run this for each company.  

gen ar_se=. 

 

 forvalues i=1(1)N {  

/* replace N with the number of companies */ 

 

 capture drop yhat ydiff ydiff2 y1 y2    

 l permno if compnum==`i' & dif==0 

 reg ret vwretd if compnum==`i' & estuse == 1  

 /* the estimation window regression again */ 

  

 predict yhat         

 /* predicted returns */ 

  

 gen ydiff=ret-yhat  if compnum==`i' & evuse == 1;   

 /* actual return minus predicted return */ 

   

 gen ydiff2 = ydiff*ydiff       

 egen y1 = sum(ydiff) 

 egen y2 = sum(ydiff2) 

 scalar yd1 = (1/61)*y2[1] 

 scalar yd2 = ((1/61)*y1[1])*((1/61)*y1[1]) 



 scalar AR_SE = yd1 - yd2 

 

 replace ar_se = ((1/121)*y2) - (((1/121)*y1)*((1/121)*y1) ) if  

compnum==`i' & dif==30 

  

 sum car if compnum==`i' & dif == 30 

 scalar CAR=r(mean) 

 /* the cumulative abnormal return for the last day in the event 

window */ 

 /*  - 30 days after the event in our example */ 

  

 scalar CA = (1/61) * CAR 

 scalar test = CA/(sqrt(AR_SE)) 

   

 disp "" 

 disp "Cumulative abnormal return is: " CAR 

 disp "Abnormal return standard error is: " AR_SE 

 disp "test statistic is 1/61 * CAR/(sqrt(AR_SE)) " 

 disp "if |test| > 1.96, then sig. abnormal return " 

 disp "test is: " test 

 disp " " 

} 

This will output the results of your event study into an 

Excel-readable spreadsheet file: 

gen test =1/61 * (car/(sqrt(ar_se)))   

l permno car ar_se  test if dif==30 

outsheet permno car ar_se  test using teststats.csv if dif==30, 

comma names 

 


	7. Lag Selection in Time Series Data

