

Analysis

Getting Started

Planning your analysis

Research questions

Preparing your data

How to Use a Codebook

Introduction to Regression

Introduction

Assumptions of regression

Transforming variables

Simple linear regression

Standard multiple regression

Interpreting Regression Results

Regression review

P, t and standard error

Coefficients

R squared and overall significance

Working With Dummy Variables

Using Time Series Data in Stata

Time series data and tsset

Date formats in Stata

Time series variable lists

Lag Selection

Analysis of Panel Data

Introduction

Using panel data in Stata

Fixed, between, and random effects estimators

Choosing between fixed and random effects

Event Studies With Stata

1. Getting Started
1.1 Planning Your Analysis
Choice of analysis should be based on the question you want answered. So

when planning your analysis, start at the end and work backwards.

• What conclusion are you trying to reach?

• What type of analysis do you need to perform in order to demonstrate

that conclusion?

• What type of data do you need to perform that analysis?

You need to start by formulating your research question.

1.2 Research Questions
A research question can take many forms. Some research questions are

descriptive whereas others focus on explanation. For example, one

researcher might want to know,

How has federal funding for the arts in America changed between 1970 and

1990?

Another researcher might want to know,

What predicts individual support for federal funding for the arts in

America? Is support for the arts associated with income, education, type

of employment or other social, economic, or demographic indicators?

At DSS we can help you answer these types of questions. However, you have

to clearly formulate a question or set of questions so we can help you

get started.

When looking for data, you need to consider what variables you need, what

time periods you need the data to cover, and how the data was collected.

Particularly with analysis of economic and financial data, time is an

important factor. There are two basic types of time-dependent analyses:

cross-section time-series and panel study.

• Cross-sectional data means that different people, companies or

other entities were sampled over the different time periods.

For example, the Current Population Survey surveys a different

random sample of the population each year.

• Panel data means that the same people, companies or entities were

sampled repeatedly.

Stock exchange data is a good example of this.

Some common types of analyses:

• Multiple regression

• Multiple regression with lagged variables

• Time series analysis

• Cross-sectional / panel analysis

• Event study

Identify a Study/Data File (locate data, locate

codebook)

Once you have identified your research question(s) and have some idea of

what kind of analysis might help answer them, you need to find the data

that will help you answer your question(s). You might find that you will

http://dss.princeton.edu/online_help/analysis/regression_intro.htm
http://dss.princeton.edu/online_help/analysis/time_series_data.htm
http://dss.princeton.edu/online_help/analysis/panel.htm
http://dss.princeton.edu/online_help/analysis/event_studies.htm

have to reformulate your question(s) depending on the data that is

available.

Different research questions require different types of data. Some

research questions require data that you collect yourself through

interviews, small surveys, or historical research (qualitative data).

Other research questions require secondary analysis of large data sets.

1.3 Preparing Your Data
You will probably spend more time getting the data into a usable format

than you will actually conducting the analysis. Trying to match data from

different sources can be particularly time-consuming, for a variety of

reasons:

• Different record identifiers. For example, CUSIPS are not

neccessarily consistent

• Different time periods. If you have daily data from one source and

monthly from another, your analyses may need to be done at the

monthly level

• Different codings. If you have two studies which code education

differently, you will need to come up with a consistent scheme

Data management can include merging different data files, selecting

sub-sets of observations, recoding variables, constructing new variables,

or adjusting data for inflation across years.

1.4 Resources at Other Sites

2. How to Use a Codebook
These instructions explain what information you should look for when using

a codebook, as well as how to translate the information in the codebook

to the statements you will need to write SAS, SPSS, or Stata programs to

read and analyze the data.

Before looking for a codebook, you first need to determine if you actually

need the data, or if you just need the results of the study, i.e., how

many people live in New York. Sometimes you won't need the data at all,

you can just use one of the many statistical reports or abstracts available

in the library. If, in fact, you do need the data to do analyses, then

you need to find a study or studies that investigated what you are looking

at and carefully read the codebook to make sure that the study has the

kind of data you need.

2.1 Data Files
Since a codebook describes data files, it would be useful at this point

to discuss what data files are and the many formats in which they come.

A data file is simply a computer file that has data in it. Most data files

are arranged like spreadsheets where you have lines of information from

each observation (a person, a state, or a company) and columns of

information representing different variables. The main difference

between a spreadsheet and a data file is that each column in a spreadsheet

is equal to one variable in a data file. Each variable of a data file is

made up of one or more columns. Sometimes the data file will have spaces

between the groups of columns that make up a variable, but most times it

will simply run everything together. Here is a sample spreadsheet:

Here is what the same information might look like in a data file:

 12345678901234

 123123.4 190
 243 32.5 12
 355 11.9383843
 412 99 239
 567123 4345
 698 45.7 23
 733 22.5 2
 856 12 0

The first line of numbers isn't actually part of the data, we've put it

there so you can see how the columns in a data file relate to the columns

in a spreadsheet. In this example, column A in the spreadsheet is column

1 in the data file, column B is columns 2-3, column C is columns 4-8, and

column D is columns 9-14. If you look closely, you can see that the actual

numbers and letters are the same in both files. Since the information in

the data file are all run together you need some way of determining where

one variable ends and the next one starts. This, among many other important

things, is found in the codebook. This is the simplest format of a data

file and most will come like this. The two examples above have one "line,"

"record," or "card" of data for each observation. Often, though, a data

file will have more than one line of data for each observation. This is

a hold-over from the early days of computing when all the data were entered

on punch cards which had only 80 columns. If a survey had more questions

than could fit on one card, then researchers had to continue the data on

another card. This is particularly true for files that have information

from the same observation for several years. Here is an example:

 1 1991 12123

 1 1992 45 34

 1 1993 63 88

 2 1991 34678

 2 1992 55456

 2 1993 76 44

 3 1991 44234

 3 1992 32 56

 3 1993 67 55

This file is very much like the one above, except that each observation

has three lines in the file rather than just one. The information in a

specific column or columns may or may not represent the same variable.

If questions were dropped or added in subsequent years, then the

information will be different. Also, if it is an old data file, then it

is likely that each card is just a continuation of data from the same time

period.

A corollary to multiple cards is hierarchical files. Hierarchical files

typically have just one line of data for each observation, however, each

line may represent varying levels of information. Perhaps the best example

of a hierarchical file is the Current Population Survey. In the CPS file

there are three types of records or lines: Household records have

information that is common to everyone who lives in that household; Family

records have information that is common to everyone in a particular family

in that household (more than one family can live in a household); and

Person records have, of course, information pertaining to one specific

person in that family. All of this information is contained in one file.

The household record is always first, followed by the family record, and

finally the person record. Each line in the file has a variable or column

denoting what type of record it is. Here is an example of what a

hierarchical file might look like:

 H 12 321

 F 32 5 3

 P 45 1 5

 P 66 7 3

 P 76 9 7

 H 45 9 9

 F678 3 5

 F567 4 6

 P8992187

 P689 3 0

 P66567 9

 P554 5 9

 P 89 8 9

Hierarchical files can be very tricky to program. If you need to analyze

a hierarchical file, you should come to the DSS lab and speak with a

consultant about how to do so. Of course, all of these examples have just

a few variables, whereas a real data file will have many, many more.

2.2 Codebooks
Now that we know what a data file is, we can make more sense out of what

a codebook is. A codebook is a technical description of the data that was

collected for a particular purpose. It describes how the data are arranged

in the computer file or files, what the various numbers and letters mean,

and any special instructions on how to use the data properly. Like any

other kind of "book," some codebooks are better than others. The best

codebooks have:

1. Description of the study: who did it, why they did it, how they did
it.

2. Sampling information: what was the population studied, how was the
sample drawn, what was the response rate.

3. Technical information about the files themselves: number of
observations, record length, number of records per observation,

etc.

4. Structure of the data within the file: hierarchical, multiple cards,
etc.

5. Details about the data: columns in which specific variables can be
found, whether they are character or numeric, and if numeric, what

format.

6. Text of the questions and responses: some even have how many people
responded a particular way.

Even though a codebook has (or at least, should have) all of this

information, not all codebooks will arrange it in the same manner. Later

in this document we will show you what information you will need to write

the program to read the data.

Before you decide on a particular dataset, there are some things you need

to verify before you can make good use of the data:

1. The wording and presence of the questions and answers. In a study
that is done repeatedly, the questions asked and the answers allowed

can change considerably from one "wave" to the next, not to mention

that some are dropped and new ones added. Also, subtle differences

in wording can mean very big changes in how you interpret your

results.

2. The sampling information. A survey that was conducted to measure
national attitudes toward a subject may not be good for assessing

those same attitudes in specific states.

3. Weights. Sometimes, in order to properly analyze the data, you will
need to apply weights to certain variables. These weights are

determined by the sampling procedure used to collect the data.

4. Flags. Flags perform a function similar to weights in the they tell
you if and when a special procedure was used to create the variable.

This is common when a person refuses or cannot answer a question,

but an interviewer can answer for them.

5. The column and line location of the variables in the file. This can
change from wave to wave also.

Once you have determined that a data file has what you want, you can begin

the task of writing the program that will extract or subset those variables

in which you are interested. The choice of which software package to use

is up to you. You should be aware, however, that most of Princeton's data

collection is accessible only on PUCC which has only SAS and SPSS. In any

case, it is always a good idea to talk to a Consultant before you try

extracting the data.

2.3 Writing the Program
Before you can write the program, you will need to be able to locate this

information about each variable you will want to use:

1. The column in which the variable you want starts.
2. The column in which it ends, or how many columns the variable

occupies.

3. Whether the variable is in numeric or character (also called
alphanumeric).

4. If the variable is numeric, how many decimal places it might have,
and if it is stored in a special format such as "zoned decimal."

5. If you are using data from several years, then you will need to make
sure that the above information is the same for each year. If it

is not, then you need to gather this information for each year.

Coding when there is just one line of data for each observation:

In many instances, the data file will have one record per observation.

In these instances, you will only need to know the column locations of

the variables you want. Here are two examples from the General Social

Survey Codebook:

This variable is coded as numeric and can be found in column 240 of the

data file. As you can see from the column labeled "PUNCH" above, there

are ten categories of responses to this question. Categories 8 ("Don't

know") and 9 ("No answer") are often re-coded by analysts to "missing"

so that they don't influence any of the statistics computed on this

variable. Depending on your specific questions, category 7 ("Other party,

refused to say") may also need to be coded as missing. Sometimes, variables

are entered as letters instead of numbers, such as if a person's name were

entered into the data file. In these instances, you must tell the computer

that there are letters instead of numbers. The example below shows how

to code this variable as if it were A) numeric and, B) character:

 SAS: SPSS: Stata:

A) partyid 238 partyid 238 _column(238) partyid

B) partyid $ 238 partyid (a) 238
_column(238) string

partyid

Although this codebook gives a name to the variable (partyid), not all

codebooks do. Sometimes the variables are simply numbered. You do not

always have to use the names or numbers provided as your own variable names,

however, using the ones provided will make referring to the codebook later

on much easier. This is important if you thought a variable should have

only two categories of responses, but five show up in the data; you may

have programmed the wrong columns or lines. It also allows comparison of

results of analyses conducted on the same data by different researchers.

Sometimes, the names provided are not allowable in whatever statistical

package you are using because they are too long or have special characters

in them. In these cases, you should refer to the user manual of whatever

package you are using to determine what names are permissible. If you do

change the variable names, be sure to make a list of these changes.

Often, a variable must have more than one column, such as a person's age.

Here is an example of a variable that takes more than one column:

In this example, the variable can occupy two columns, 275-276 in the data

file. The coding for this is much the same as for the one above:

 SAS: SPSS: Stata:

A)
polviewx

275-276

polviewx

275-276

_column(275-276)

polviewx

B)
polviewx $

275-276

polviewx (a)

275-276

_column(275-276) string

polviewx

If the variable were to have more than two columns, you would simply

specify the beginning and ending columns indicated. Sometimes, the

codebook will tell you in which column the variable begins and how many

columns it occupies (also referred to as its "length"). Look at this

example from the Current Population Survey :

D A-WKSLK 2 97 (00:99) Item 22C - 1) How many weeks has ... been looking

for work 2) How many weeks ago did ...start looking 3) How many weeks ago

was ...laid off

It says that A-WKSLK is numeric, begins in column 97 and has a length of

2 (the instructions in the codebook explains this). In terms of the first

example, that means this variable can be found in columns 97-98. Character

variables would be indicated the same way. You can write the statements

to read these variables like the ones above (a_wkslk 97-98), but if you

have many variables, it would be time-consuming to calculate all the

specific columns. Instead, you could do it like this:

 SAS: SPSS: Stata:

A) @97 a_wkslk 2.
a_wkslk 97

(f2.0)

_column(97) a_wkslk

%2f

B) @97 a_wkslk $2. a_wkslk 97 (a2)
_column(97) a_wkslk

%2s

You can readily see the similarities and differences among these. In all,

the "2" refers to the number of columns the variable occupies in the data

file, not necessarily how many digits there are in the variable (some

columns may be blank). This is especially important if your data has

decimals. For example, if a variable called "varname" were to have a length

of 5 and 2 decimal places in it, then the coding would be as follows:

SAS: SPSS: Stata:

@124 varname 5.

2

varname 124

(f5.2)

_column(124) varname

%5.2f

This means that "varname" occupies a total of five columns in the data

file. Two of those columns are the numbers on the right of the decimal,

one is the decimal itself, and the last two columns are the numbers on

the left of the decimal. Therefore, the largest number that could be coded

into this space is 99.99. Once in a while, a codebook will tell you that

there are "implied" decimal places. This means that the decimal was not

actually entered into the data and you must assume (and correctly program)

that the last however many digits are on the right of the decimal.

Coding for more than one line of data for each observation:

You need to pay special attention to how many lines there are for each

observation, and on what line the variable you are interested in can be

found. Every codebook will indicate what line the variable can be found

differently, so you must look in the introductory pages to see how this

is done. Failure to keep track of what line the variable is on will result

in reading from the wrong line and thus, reading the wrong information

for that variable.

Let's assume that in Example 2 above, there are five lines of data for

each observation. Let's further assume that varname is found on the first

line for an observation and that charname is found on the third line. Here

are the statements you would need to read these variables:

SAS: SPSS: Stata:

data one;

infile

example n=5;

input

#1 @124

varname 5.

#3 @155

charname

$12.

data list

file='mydata.dat'

records=5.

/1 varname 124-128

/3 charname 155-166 (a).

infile dictionary {

_lines(5)

_line(1)

_column(124)

varname %5f

_line(3)

_column(155) string

charname %12s

}

As you can see, in each program you need to tell the program how many lines

there are for each observation ("n=5", "lines=5", and "_lines(5)). Each

program also has a different way of identifying which line you want to

read ("#1", /1 , "_line(1)"). If you wanted to read other variables from

lines 1 or 3, you could simply list them together without repeating the

line pointer for each variable. The program will continue reading from

the same line of data until you tell it to go to the next line.

2.4 Conclusion
This has been a brief and very general introduction to data files and

codebooks. We could not possibly cover everything you might encounter in

using a codebook. So, if you do find something you don't understand, ask

a consultant!

3. Interpreting Regression Output
3.1 Introduction
This guide assumes that you have at least a little familiarity with the

concepts of linear multiple regression, and are capable of performing a

regression in some software package such as Stata, SPSS or Excel. You may

wish to read our companion page Introduction to Regression first. For

assistance in performing regression in particular software packages,

there are some resources at UCLA Statistical Computing Portal.

Brief review of regression

Remember that regression analysis is used to produce an equation that will

predict a dependent variable using one or more independent variables. This

equation has the form

• Y = b1X1 + b2X2 + ... + A
where Y is the dependent variable you are trying to predict, X1, X2 and
so on are the independent variables you are using to predict it, b1, b2
and so on are the coefficients or multipliers that describe the size of

the effect the independent variables are having on your dependent variable

http://dss.princeton.edu/online_help/analysis/regression_intro.htm
http://statcomp.ats.ucla.edu/

Y, and A is the value Y is predicted to have when all the independent
variables are equal to zero.

In the Stata regression shown below, the prediction equation is price =

-294.1955 (mpg) + 1767.292 (foreign) + 11905.42 - telling you that price

is predicted to increase 1767.292 when the foreign variable goes up by

one, decrease by 294.1955 when mpg goes up by one, and is predicted to

be 11905.42 when both mpg and foreign are zero.

Coming up with a prediction equation like this is only a useful exercise

if the independent variables in your dataset have some correlation with

your dependent variable. So in addition to the prediction components of

your equation--the coefficients on your independent variables (betas) and

the constant (alpha)--you need some measure to tell you how strongly each

independent variable is associated with your dependent variable.

When running your regression, you are trying to discover whether the

coefficients on your independent variables are really different from 0

(so the independent variables are having a genuine effect on your

dependent variable) or if alternatively any apparent differences from 0

are just due to random chance. The null (default) hypothesis is always

that each independent variable is having absolutely no effect (has a

coefficient of 0) and you are looking for a reason to reject this theory.

3.2 P, t and standard error
The t statistic is the coefficient divided by its standard error. The
standard error is an estimate of the standard deviation of the coefficient,
the amount it varies across cases. It can be thought of as a measure of

the precision with which the regression coefficient is measured. If a

coefficient is large compared to its standard error, then it is probably

different from 0.

How large is large? Your regression software compares the t statistic on

your variable with values in the Student's t distribution to determine
the P value, which is the number that you really need to be looking at.

The Student's t distribution describes how the mean of a sample with a

certain number of observations (your n) is expected to behave. For more

information on the t distribution, look at this web page.

If 95% of the t distribution is closer to the mean than the t-value on

the coefficient you are looking at, then you have a P value of 5%. This

is also reffered to a significance level of 5%. The P value is the

probability of seeing a result as extreme as the one you are getting (a

t value as large as yours) in a collection of random data in which the

variable had no effect. A P of 5% or less is the generally accepted point

at which to reject the null hypothesis. With a P value of 5% (or .05) there

is only a 5% chance that results you are seeing would have come up in a

random distribution, so you can say with a 95% probability of being correct

that the variable is having some effect, assuming your model is specified

correctly.

The 95% confidence interval for your coefficients shown by many regression
packages gives you the same information. You can be 95% confident that

the real, underlying value of the coefficient that you are estimating

falls somewhere in that 95% confidence interval, so if the interval does

not contain 0, your P value will be .05 or less.

Note that the size of the P value for a coefficient says nothing about

the size of the effect that variable is having on your dependent variable

- it is possible to have a highly significant result (very small P-value)

for a miniscule effect.

3.3 Coefficients

http://www.tufts.edu/~gdallal/student2.htm

In simple or multiple linear regression, the size of the coefficient for

each independent variable gives you the size of the effect that variable

is having on your dependent variable, and the sign on the coefficient

(positive or negative) gives you the direction of the effect. In

regression with a single independent variable, the coefficient tells you

how much the dependent variable is expected to increase (if the

coefficient is positive) or decrease (if the coefficient is negative) when

that independent variable increases by one. In regression with multiple

independent variables, the coefficient tells you how much the dependent

variable is expected to increase when that independent variable increases

by one, holding all the other independent variables constant. Remember
to keep in mind the units which your variables are measured in.

Note: in forms of regression other than linear regression, such as

logistic or probit, the coefficients do not have this straightforward

interpretation. Explaining how to deal with these is beyond the scope of

an introductory guide.

3.4 R-Squared and overall significance of the

regression
The R-squared of the regression is the fraction of the variation in your

dependent variable that is accounted for (or predicted by) your

independent variables. (In regression with a single independent variable,

it is the same as the square of the correlation between your dependent

and independent variable.) The R-squared is generally of secondary

importance, unless your main concern is using the regression equation to

make accurate predictions. The P value tells you how confident you can

be that each individual variable has some correlation with the dependent

variable, which is the important thing.

Another number to be aware of is the P value for the regression as a whole.

Because your independent variables may be correlated, a condition known

as multicollinearity, the coefficients on individual variables may be

insignificant when the regression as a whole is significant. Intuitively,

this is because highly correlated independent variables are explaining

the same part of the variation in the dependent variable, so their

explanatory power and the significance of their coefficients is "divided

up" between them.

4.Introduction to Regression
4.1 Introduction
Regression analysis is used when you want to predict a continuous

dependent variable from a number of independent variables. If the

dependent variable is dichotomous, then logistic regression should be

used. (If the split between the two levels of the dependent variable is

close to 50-50, then both logistic and linear regression will end up giving

you similar results.) The independent variables used in regression can

be either continuous or dichotomous. Independent variables with more than

two levels can also be used in regression analyses, but they first must

be converted into variables that have only two levels. This is called dummy

coding and will be discussed later. Usually, regression analysis is used

with naturally-occurring variables, as opposed to experimentally

manipulated variables, although you can use regression with

experimentally manipulated variables. One point to keep in mind with

regression analysis is that causal relationships among the variables

cannot be determined. While the terminology is such that we say that X

"predicts" Y, we cannot say that X "causes" Y.

4.2 Assumptions of regression

Number of cases

When doing regression, the cases-to-Independent Variables (IVs) ratio

should ideally be 20:1; that is 20 cases for every IV in the model. The

lowest your ratio should be is 5:1 (i.e., 5 cases for every IV in the

model).

Accuracy of data

If you have entered the data (rather than using an established dataset),

it is a good idea to check the accuracy of the data entry. If you don't

want to re-check each data point, you should at least check the minimum

and maximum value for each variable to ensure that all values for each

variable are "valid." For example, a variable that is measured using a

1 to 5 scale should not have a value of 8.

Missing data

You also want to look for missing data. If specific variables have a lot

of missing values, you may decide not to include those variables in your

analyses. If only a few cases have any missing values, then you might want

to delete those cases. If there are missing values for several cases on

different variables, then you probably don't want to delete those cases

(because a lot of your data will be lost). If there are not too much missing

data, and there does not seem to be any pattern in terms of what is missing,

then you don't really need to worry. Just run your regression, and any

cases that do not have values for the variables used in that regression

will not be included. Although tempting, do not assume that there is no

pattern; check for this. To do this, separate the dataset into two groups:

those cases missing values for a certain variable, and those not missing

a value for that variable. Using t-tests, you can determine if the two

groups differ on other variables included in the sample. For example, you

might find that the cases that are missing values for the "salary" variable

are younger than those cases that have values for salary. You would want

to do t-tests for each variable with a lot of missing values. If there

is a systematic difference between the two groups (i.e., the group missing

values vs. the group not missing values), then you would need to keep this

in mind when interpreting your findings and not overgeneralize.

After examining your data, you may decide that you want to replace the

missing values with some other value. The easiest thing to use as the

replacement value is the mean of this variable. Some statistics programs

have an option within regression where you can replace the missing value

with the mean. Alternatively, you may want to substitute a group mean (e.g.,

the mean for females) rather than the overall mean.

The default option of statistics packages is to exclude cases that are

missing values for any variable that is included in regression. (But that

case could be included in another regression, as long as it was not missing

values on any of the variables included in that analysis.) You can change

this option so that your regression analysis does not exclude cases that

are missing data for any variable included in the regression, but then

you might have a different number of cases for each variable.

Outliers

You also need to check your data for outliers (i.e., an extreme value on

a particular item) An outlier is often operationally defined as a value

that is at least 3 standard deviations above or below the mean. If you

feel that the cases that produced the outliers are not part of the same

"population" as the other cases, then you might just want to delete those

cases. Alternatively, you might want to count those extreme values as

"missing," but retain the case for other variables. Alternatively, you

could retain the outlier, but reduce how extreme it is. Specifically, you

might want to recode the value so that it is the highest (or lowest)

non-outlier value.

Normality

You also want to check that your data is normally distributed. To do this,

you can construct histograms and "look" at the data to see its distribution.

Often the histogram will include a line that depicts what the shape would

look like if the distribution were truly normal (and you can "eyeball"

how much the actual distribution deviates from this line). This histogram

shows that age is normally distributed:

You can also construct a normal probability plot. In this plot, the actual

scores are ranked and sorted, and an expected normal value is computed

and compared with an actual normal value for each case. The expected normal

value is the position a case with that rank holds in a normal distribution.

The normal value is the position it holds in the actual distribution.

Basically, you would like to see your actual values lining up along the

diagonal that goes from lower left to upper right. This plot also shows

that age is normally distributed:

You can also test for normality within the regression analysis by looking

at a plot of the "residuals." Residuals are the difference between

obtained and predicted DV scores. (Residuals will be explained in more

detail in a later section.) If the data are normally distributed, then

residuals should be normally distributed around each predicted DV score.

If the data (and the residuals) are normally distributed, the residuals

scatterplot will show the majority of residuals at the center of the plot

for each value of the predicted score, with some residuals trailing off

symmetrically from the center. You might want to do the residual plot

before graphing each variable separately because if this residuals plot

looks good, then you don't need to do the separate plots. Below is a

residual plot of a regression where age of patient and time (in months

since diagnosis) are used to predict breast tumor size. These data are

not perfectly normally distributed in that the residuals about the zero

line appear slightly more spread out than those below the zero line.

Nevertheless, they do appear to be fairly normally distributed.

In addition to a graphic examination of the data, you can also

statistically examine the data's normality. Specifically, statistical

programs such as SPSS will calculate the skewness and kurtosis for each

variable; an extreme value for either one would tell you that the data

are not normally distributed. "Skewness" is a measure of how symmetrical

the data are; a skewed variable is one whose mean is not in the middle

of the distribution (i.e., the mean and median are quite different).

"Kurtosis" has to do with how peaked the distribution is, either too peaked

or too flat. "Extreme values" for skewness and kurtosis are values greater

than +3 or less than -3. If any variable is not normally distributed, then

you will probably want to transform it (which will be discussed in a later

section). Checking for outliers will also help with the normality problem.

Linearity

Regression analysis also has an assumption of linearity. Linearity means

that there is a straight line relationship between the IVs and the DV.

This assumption is important because regression analysis only tests for

a linear relationship between the IVs and the DV. Any nonlinear

relationship between the IV and DV is ignored. You can test for linearity

between an IV and the DV by looking at a bivariate scatterplot (i.e., a

graph with the IV on one axis and the DV on the other). If the two variables

are linearly related, the scatterplot will be oval.

Looking at the above bivariate scatterplot, you can see that friends is

linearly related to happiness. Specifically, the more friends you have,

the greater your level of happiness. However, you could also imagine that

there could be a curvilinear relationship between friends and happiness,

such that happiness increases with the number of friends to a point. Beyond

that point, however, happiness declines with a larger number of friends.

This is demonstrated by the graph below:

You can also test for linearity by using the residual plots described

previously. This is because if the IVs and DV are linearly related, then

the relationship between the residuals and the predicted DV scores will

be linear. Nonlinearity is demonstrated when most of the residuals are

above the zero line on the plot at some predicted values, and below the

zero line at other predicted values. In other words, the overall shape

of the plot will be curved, instead of rectangular. The following is a

residuals plot produced when happiness was predicted from number of

friends and age. As you can see, the data are not linear:

The following is an example of a residuals plot, again predicting

happiness from friends and age. But, in this case, the data are linear:

If your data are not linear, then you can usually make it linear by

transforming IVs or the DV so that there is a linear relationship between

them. Sometimes transforming one variable won't work; the IV and DV are

just not linearly related. If there is a curvilinear relationship between

the DV and IV, you might want to dichotomize the IV because a dichotomous

variable can only have a linear relationship with another variable (if

it has any relationship at all). Alternatively, if there is a curvilinear

relationship between the IV and the DV, then you might need to include

the square of the IV in the regression (this is also known as a quadratic

regression).

The failure of linearity in regression will not invalidate your analysis

so much as weaken it; the linear regression coefficient cannot fully

capture the extent of a curvilinear relationship. If there is both a

curvilinear and a linear relationship between the IV and DV, then the

regression will at least capture the linear relationship.

Homoscedasticity

The assumption of homoscedasticity is that the residuals are

approximately equal for all predicted DV scores. Another way of thinking

of this is that the variability in scores for your IVs is the same at all

values of the DV. You can check homoscedasticity by looking at the same

residuals plot talked about in the linearity and normality sections. Data

are homoscedastic if the residuals plot is the same width for all values

of the predicted DV. Heteroscedasticity is usually shown by a cluster of

points that is wider as the values for the predicted DV get larger.

Alternatively, you can check for homoscedasticity by looking at a

scatterplot between each IV and the DV. As with the residuals plot, you

want the cluster of points to be approximately the same width all over.

The following residuals plot shows data that are fairly homoscedastic.

In fact, this residuals plot shows data that meet the assumptions of

homoscedasticity, linearity, and normality (because the residual plot is

rectangular, with a concentration of points along the center):

Heteroscedasiticy may occur when some variables are skewed and others are

not. Thus, checking that your data are normally distributed should cut

down on the problem of heteroscedasticity. Like the assumption of

linearity, violation of the assumption of homoscedasticity does not

invalidate your regression so much as weaken it.

Multicollinearity and Singularity

Multicollinearity is a condition in which the IVs are very highly

correlated (.90 or greater) and singularity is when the IVs are perfectly

correlated and one IV is a combination of one or more of the other IVs.

Multicollinearity and singularity can be caused by high bivariate

correlations (usually of .90 or greater) or by high multivariate

correlations. High bivariate correlations are easy to spot by simply

running correlations among your IVs. If you do have high bivariate

correlations, your problem is easily solved by deleting one of the two

variables, but you should check your programming first, often this is a

mistake when you created the variables. It's harder to spot high

multivariate correlations. To do this, you need to calculate the SMC for

each IV. SMC is the squared multiple correlation (R2) of the IV when

it serves as the DV which is predicted by the rest of the IVs. Tolerance,

a related concept, is calculated by 1-SMC. Tolerance is the proportion

of a variable's variance that is not accounted for by the other IVs in

the equation. You don't need to worry too much about tolerance in that

most programs will not allow a variable to enter the regression model if

tolerance is too low.

Statistically, you do not want singularity or multicollinearity because

calculation of the regression coefficients is done through matrix

inversion. Consequently, if singularity exists, the inversion is

impossible, and if multicollinearity exists the inversion is unstable.

Logically, you don't want multicollinearity or singularity because if

they exist, then your IVs are redundant with one another. In such a case,

one IV doesn't add any predictive value over another IV, but you do lose

a degree of freedom. As such, having multicollinearity/ singularity can

weaken your analysis. In general, you probably wouldn't want to include

two IVs that correlate with one another at .70 or greater.

4.3 Transformations
As mentioned in the section above, when one or more variables are not

normally distributed, you might want to transform them. You could also

use transformations to correct for heteroscedasiticy, nonlinearity, and

outliers. Some people do not like to do transformations because it becomes

harder to interpret the analysis. Thus, if your variables are measured

in "meaningful" units, such as days, you might not want to use

transformations. If, however, your data are just arbitrary values on a

scale, then transformations don't really make it more difficult to

interpret the results.

Since the goal of transformations is to normalize your data, you want to

re- check for normality after you have performed your transformations.

Deciding which transformation is best is often an exercise in

trial-and-error where you use several transformations and see which one

has the best results. "Best results" means the transformation whose

distribution is most normal. The specific transformation used depends on

the extent of the deviation from normality. If the distribution differs

moderately from normality, a square root transformation is often the best.

A log transformation is usually best if the data are more substantially

non-normal. An inverse transformation should be tried for severely

non-normal data. If nothing can be done to "normalize" the variable, then

you might want to dichotomize the variable (as was explained in the

linearity section). Direction of the deviation is also important. If the

data is negatively skewed, you should "reflect" the data and then apply

the transformation. To reflect a variable, create a new variable where

the original value of the variable is subtracted from a constant. The

constant is calculated by adding 1 to the largest value of the original

variable.

If you have transformed your data, you need to keep that in mind when

interpreting your findings. For example, imagine that your original

variable was measured in days, but to make the data more normally

distributed, you needed to do an inverse transformation. Now you need to

keep in mind that the higher the value for this transformed variable, the

lower the value the original variable, days. A similar thing will come

up when you "reflect" a variable. A greater value for the original variable

will translate into a smaller value for the reflected variable.

4.4 Simple Linear Regression
Simple linear regression is when you want to predict values of one variable,

given values of another variable. For example, you might want to predict

a person's height (in inches) from his weight (in pounds). Imagine a sample

of ten people for whom you know their height and weight. You could plot

the values on a graph, with weight on the x axis and height on the y axis.

If there were a perfect linear relationship between height and weight,

then all 10 points on the graph would fit on a straight line. But, this

is never the case (unless your data are rigged). If there is a (nonperfect)

linear relationship between height and weight (presumably a positive one),

then you would get a cluster of points on the graph which slopes upward.

In other words, people who weigh a lot should be taller than those people

who are of less weight. (See graph below.)

The purpose of regression analysis is to come up with an equation of a

line that fits through that cluster of points with the minimal amount of

deviations from the line. The deviation of the points from the line is

called "error." Once you have this regression equation, if you knew a

person's weight, you could then predict their height. Simple linear

regression is actually the same as a bivariate correlation between the

independent and dependent variable.

4.5 Standard Multiple Regression
Standard multiple regression is the same idea as simple linear regression,

except now you have several independent variables predicting the

dependent variable. To continue with the previous example, imagine that

you now wanted to predict a person's height from the gender of the person

and from the weight. You would use standard multiple regression in which

gender and weight were the independent variables and height was the

dependent variable. The resulting output would tell you a number of things.

First, it would tell you how much of the variance of height was accounted

for by the joint predictive power of knowing a person's weight and gender.

This value is denoted by "R2". The output would also tell you if the model

allows you to predict a person's height at a rate better than chance. This

is denoted by the significance level of the overall F of the model. If

the significance is .05 (or less), then the model is considered

significant. In other words, there is only a 5 in a 100 chance (or less)

that there really is not a relationship between height and weight and

gender. For whatever reason, within the social sciences, a significance

level of .05 is often considered the standard for what is acceptable. If

the significance level is between .05 and .10, then the model is considered

marginal. In other words, the model is fairly good at predicting a person's

height, but there is between a 5-10% probability that there really is not

a relationship between height and weight and gender.

In addition to telling you the predictive value of the overall model,

standard multiple regression tells you how well each independent variable

predicts the dependent variable, controlling for each of the other

independent variables. In our example, then, the regression would tell

you how well weight predicted a person's height, controlling for gender,

as well as how well gender predicted a person's height, controlling for

weight.

To see if weight was a "significant" predictor of height you would look

at the significance level associated with weight on the printout. Again,

significance levels of .05 or lower would be considered significant, and

significance levels .05 and .10 would be considered marginal. Once you

have determined that weight was a significant predictor of height, then

you would want to more closely examine the relationship between the two

variables. In other words, is the relationship positive or negative? In

this example, we would expect that there would be a positive relationship.

In other words, we would expect that the greater a person's weight, the

greater his height. (A negative relationship would be denoted by the case

in which the greater a person's weight, the shorter his height.) We can

determine the direction of the relationship between weight and height by

looking at the regression coefficient associated with weight. There are

two kinds of regression coefficients: B (unstandardized) and beta

(standardized). The B weight associated with each variable is given in

terms of the units of this variable. For weight, the unit would be pounds,

and for height, the unit is inches. The beta uses a standard unit that

is the same for all variables in the equation. In our example, this would

be a unit of measurement that would be common to weight and height. Beta

weights are useful because then you can compare two variables that are

measured in different units, as are height and weight.

If the regression coefficient is positive, then there is a positive

relationship between height and weight. If this value is negative, then

there is a negative relationship between height and weight. We can more

specifically determine the relationship between height and weight by

looking at the beta coefficient for weight. If the beta = .35, for example,

then that would mean that for one unit increase in weight, height would

increase by .35 units. If the beta=-.25, then for one unit increase in

weight, height would decrease by .25 units. Of course, this relationship

is valid only when holding gender constant.

A similar procedure would be done to see how well gender predicted height.

However, because gender is a dichotomous variable, the interpretation of

the printouts is slightly different. As with weight, you would check to

see if gender was a significant predictor of height, controlling for

weight. The difference comes when determining the exact nature of the

relationship between gender and height. That is, it does not make sense

to talk about the effect on height as gender increases or decreases, since

gender is not a continuous variable (we would hope). Imagine that gender

had been coded as either 0 or 1, with 0 = female and 1=male. If the beta

coefficient of gender were positive, this would mean that males are taller

than females. If the beta coefficient of gender were negative, this would

mean that males are shorter than females. Looking at the magnitude of the

beta, you can more closely determine the relationship between height and

gender. Imagine that the beta of gender were .25. That means that males

would be .25 units taller than females. Conversely, if the beta

coefficient were -.25, this would mean that males were .25 units shorter

than females. Of course, this relationship would be true only when

controlling for weight.

As mentioned, the significance levels given for each independent variable

indicates whether that particular independent variable is a significant

predictor of the dependent variable, over and above the other independent

variables. Because of this, an independent variable that is a significant

predictor of a dependent variable in simple linear regression may not be

significant in multiple regression (i.e., when other independent

variables are added into the equation). This could happen because the

variance that the first independent variable shares with the dependent

variable could overlap with the variance that is shared between the second

independent variable and the dependent variable. Consequently, the first

independent variable is no longer uniquely predictive and thus would not

show up as being significant in the multiple regression. Because of this,

it is possible to get a highly significant R2, but have none of the

independent variables be significant.

5. Working With Dummy Variables
5.1 Why use dummies?
Regression analysis is used with numerical variables. Results only have

a valid interpretation if it makes sense to assume that having a value

of 2 on some variable is does indeed mean having twice as much of something

as a 1, and having a 50 means 50 times as much as 1.

However, social scientists often need to work with categorical variables

in which the different values have no real numerical relationship with

each other. Examples include variables for race, political affiliation,

or marital status. If you have a variable for political affiliation with

possible responses including Democrat, Independent, and Republican, it

obviously doesn't make sense to assign values of 1 - 3 and interpret that

as meaning that a Republican is somehow three times as politically

affiliated as a Democrat.

The solution is to use dummy variables - variables with only two values,

zero and one. It does make sense to create a variable called "Republican"

and interpret it as meaning that someone assigned a 1 on this varible is

Republican and someone with an 0 is not.

5.2 Nominal variables with multiple levels
If you have a nominal variable that has more than two levels, you need

to create multiple dummy variables to "take the place of" the original

nominal variable. For example, imagine that you wanted to predict

depression from year in school: freshman, sophomore, junior, or senior.

Obviously, "year in school" has more than two levels.

What you need to do is to recode "year in school" into a set of dummy

variables, each of which has two levels. The first step in this process

is to decide the number of dummy variables. This is easy; it's simply k-1,

where k is the number of levels of the original variable.

You could also create dummy variables for all levels in the original

variable, and simply drop one from each analysis.

In this instance, we would need to create 4-1=3 dummy variables. In order

to create these variables, we are going to take 3 of the levels of "year

of school", and create a variable corresponding to each level, which will

have the value of yes or no (i.e., 1 or 0). In this instance, we can create

a variable called "sophomore," "junior," and "senior." Each instance of

"year of school" would then be recoded into a value for "sophomore,"

"junior," and "senior." If a person were a junior, then "sophomore" would

be equal to 0, "junior" would be equal to 1, and "senior" would be equal

to 0.

5.3 Interpreting results

The decision as to which level is not coded is often arbitrary. The level

which is not coded is the category to which all other categories will be

compared. As such, often the biggest group will be the not- coded category.

For example, often "Caucasian" will be the not-coded group if that is the

race of the majority of participants in the sample. In that case, if you

have a variable called "Asian", the coefficient on the "Asian" variable

in your regression will show the effect being Asian rather than Caucasian

has on your dependant variable.

In our example, "freshman" was not coded so that we could determine if

being a sophomore, junior, or senior predicts a different depressive level

than being a freshman. Consequently, if the variable, "junior" was

significant in our regression, with a positive beta coefficient, this

would mean that juniors are significantly more depressed than freshman.

Alternatively, we could have decided to not code "senior," if we thought

that being a senior is qualitatively different from being of another year.

For further information, see Regression with Stata chapter 3, Regression
with Categorical Variables

6.Time Series Data in Stata
6.1 Time series data and tsset
To use Stata's time-series functions and analyses, you must first make

sure that your data are, indeed, time-series. First, you must have a date

variable that is in Stata date format. Secondly, you must make sure that

your data are sorted by this date variable. If you have panel data, then

your data must be sorted by the date variable within the variable that

identifies the panel. Finally, you must use the tsset command to tell Stata
that your data are time-series:

 sort datevar

 tsset datevar

or

 sort panelvar datevar

 tsset panelvar datevar

The first example tells Stata that you have simple time-series data, and

the second tells Stata that you have panel data.

6.2 Stata Date Format
Stata stores dates as the number of elapsed days since January 1, 1960.

There are different ways to create elapsed Stata dates that depend on how

dates are represented in your data. If your original dataset already

contains a single date variable, then use the date() function or one of

the other string-date commands. If you have separate variables storing

different parts of the date (month, day and year; year and quarter, etc.)

then you will need to use the partial date variable functions.

http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm
http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm

Date functions for a single string date variable

Sometimes, your data will have the dates in string format. (A string

variable is simply a variable containing anything other than just numbers.)

Stata provides a way to convert these to time-series dates. The first thing

you need to know is that the string must be easily separated into its

components. In other words, strings like "01feb1990" "February 1, 1990"

"02/01/90" are acceptable, but "020190" is not.

For example, let's say that you have a string variable "sdate" with values

like "01feb1990" and you need to convert it to a daily time-series date:

 gen daily=date(sdate,"dmy")

Note that in this function, as with the other functions to convert strings

to time-series dates, the "dmy" portion indicates the order of the day,

month and year in the variable. Had the values been coded as "February

1, 1990" we would have used "mdy" instead. What if the original date only

has two digits for the year? Then we would use:

 gen daily=date(sdate,"dm19y")

Whenever you have two digit years, simply place the century before the

"y." Here are the other functions:

weekly(stringvar,"wy")

monthly(stringvar,"my")

quarterly(stringvar,"qy")

halfyearly(stringvar,"hy")

yearly(stringvar,"y")

Date functions for partial date variables

Often you will have separate variables for the various components of the

date; you need to put them together before you can designate them as proper

time-series dates. Stata provides an easy way to do this with numeric

variables. If you have separate variables for month, day and year then

use the mdy() function to create an elapsed date variable. Once you have

created an elapsed date variable, you will probably want to format it,

as described below.

Use the mdy() function to create an elapsed Stata date variable when your

original data contains separate variables for month, day and year. The

month, day and year variables must be numeric. For example, suppose you

are working with these data:

month day year

7 11 1948

1 21 1952

11 2 1994

8 12 1993

Use the following Stata command to generate a new variable named mydate:

 gen mydate = mdy(month,day,year)

where mydate is an elapsed date varible, mdy() is the Stata function, and

month, day, and year are the names of the variables that contain data for

month, day and year, respectively.

If you have two variables, "year" and "quarter" use the "yq()" function:

 gen qtr=yq(year,quarter)

 gen qtr=yq(1990,3)

The other functions are:

mdy(month,day,year) for daily data

yw(year, week) for weekly data

ym(year,month) for monthly data

yq(year,quarter) for quarterly data

yh(year,half-year) for half-yearly data

Converting a date variable stored as a single number

If you have a date variable where the date is stored as a single number

of the form yyyymmdd (for example, 20041231 for December 31, 2004) the

following set of functions will convert it into a Stata elapsed date.

gen year = int(date/10000)

gen month = int((date-year*10000)/100)

gen day = int((date-year*10000-month*100))

gen mydate = mdy(month,day,year)

format mydate %d

Time series date formats

Use the format command to display elapsed Stata dates as calendar dates.

In the example given above, the elapsed date variable, mydate, has the

following values, which represent the number of days before or after

January 1, 1960.

month day year mydate

7 11 1948 -4191

1 21 1952 -2902

8 12 1993 12277

11 2 1994 12724

You can use the format command to display elapsed dates in a more customary

way. For example:

 format mydate %d

where mydate is an elapsed date variable and %d is the format which will

be used to display values for that variable.

month day year mydate

7 11 1948 11jul48

1 21 1952 21jan52

8 12 1993 12aug93

11 2 1994 02nov94

Other formats are available to control the display of elapsed dates.

Time-series dates in Stata have their own formats similar to regular date

formats. The main difference is that for a regular date format a "unit"

or single "time period" is one day. For time series formats, a unit or

single time period can be a day, week, month, quarter, half-year or year.

There is a format for each of these time periods:

Format Description Beginning +1 Unit +2 Units +3 Units

%td daily 01jan1960 02jan1960 03Jan1960 04Jan1960

%tw weekly week 1, 1960 week 2, 1960 week 3, 1960 week 4, 1960

%tm monthly Jan, 1960 Feb, 1960 Mar, 1960 Apr, 1960

%tq quarterly 1st qtr, 1960 2nd qtr, 1960 3rd qtr, 1960 4th qtr, 1961

%th half-yearly
1st half,

1960

2nd half,

1960

1st half,

1961

2nd half,

1961

%ty yearly 1960 1961 1962 1963

You should note that in the weekly format, the year is divided into 52

weeks. The first week is defined as the first seven days, regardless of

what day of the week it may be. Also, the last week, week 52, may have

8 or 9 days. For the quarterly format, the first quarter is January through

March. For the half-yearly format, the first half of the year is January

through June.

It's even more important to note that you cannot jump from one format to

another by simply re-issuing the format command because the units are

different in each format. Here are the corresponding results for January

1, 1999, which is an elapsed date of 14245:

%td %tw %tq %th %ty

01jan1999 2233w50 5521q2 9082h2

These dates are so different because the elapsed date is actually the

number of weeks, quarters, etc., from the first week, quarter, etc of 1960.

The value for %ty is missing because it would be equal to the year 14,245

which is beyond what Stata can accept.

Any of these time units can be translated to any of the others. Stata

provides functions to translate any time unit to and from %td daily units,

so all that is needed is to combine these functions.

These functions translate to %td dates:

dofw() weekly to daily

dofm() monthly to daily

dofq() quarterly to daily

dofy() yearly to daily

These functions translate from %td dates:

wofd() daily to weekly

mofd() daily to monthly

qofd() daily to quarterly

yofd() daily to yearly

For more information see the Stata User's Guide, chapter 27.

Specifying dates

Often we need to consuct a particular analysis only on observations that

fall on a certain date. To do this, we have to use something called a date

literal. A date literal is simply a way of entering a date in words and

have Stata automatically convert it to an elapsed date. As with the d()

literal to specify a regular date, there are the w(), m(), q(), h(), and

y() literals for entering weekly, monthly, quarterly, half-yearly, and

yearly dates, respectively. Here are some examples:

 reg x y if w(1995w9)

 sum income if q(1988-3)

 tab gender if y(1999)

If you want to specify a range of dates, you can use the tin() and twithin()

functions:

 reg y x if tin(01feb1990,01jun1990)

 sum income if twithin(1988-3,1998-3)

The difference between tin() and twithin() is that tin() includes the

beginning and end dates, whereas twithin() excludes them. Always enter

the beginning date first, and write them out as you would for any of the

d(), w(), etc. functions.

6.3 Time Series Variable Lists
Often in time-series analyses we need to "lag" or "lead" the values of

a variable from one observation to the next. If we have many variables,

this can be cumbersome, especially if we need to lag a variable more than

once. In Stata, we can specify which variables are to be lagged and how

many times without having to create new variables, thus saving alot of

disk space and memory. You should note that the tsset command must have

been issued before any of the "tricks" in this section will work. Also,

if you have defined your data as panel data, Stata will automatically

re-start the calculations as it comes to the beginning of a panel so you

need not worry about values from one panel being carried over to the next.

L.varname and F.varname

If you need to lag or lead a variable for an analysis, you can do so by

using the L.varname (to lag) and F.varname (to lead). Both work the same

way, so we'll just show some examples with L.varname. Let's say you want

to regress this year's income on last year's income:

 reg income L.income

would accomplish this. The "L." tells Stata to lag income by one time

period. If you wanted to lag income by more than one time period, you would

simply change the L. to something like "L2." or "L3." to lag it by 2 and

3 time periods, respectively. The following two commands will produce the

same results:

 reg income L.income L2.income L3.income

 reg income L(1/3).income

D.varname

Another useful shortcut is D.varname, which takes the difference of income

in time 1 and income in time 2. For example, let's say a person earned

$20 yesterday and $30 today.

Date income D.income D2.income

02feb1999 20 . .

02mar1999 30 10 .

02apr1999 45 15 5

So, you can see that D.=(income-incomet-1) and

D2=(income-incomet-1)-(incomet-1-incomet-2)

S.varname

S.varname refers to seasonal differences and works like D.varname, except

that the difference is always taken from the current observation to the

n
th
 observation:

Date income S.income S2.income

02feb1999 20 . .

02mar1999 30 10 .

02apr1999 45 15 25

In other words: S.income=income-incomet-1 and S2.income=income-incomet-2

7. Lag Selection in Time Series Data
When running regressions on time-series data, it is often important to

include lagged values of the dependent variable as independant variables.

In technical terminology, the regression is now called a vector

autoregression (VAR). For example, when trying to sort out the dterminants

of GDP, it is likely that last year's GDP is correlated with this year's

GDP. If this is the case, GDP lagged for at least one year should be

included on the right-hand side of the regression.

If the variable in question is persistent--that is, values in the far past

are still affecting today's values--more lags will be necessary. In order

to determine how many lags to use, several selection criteria can be used.

The two most common are the Akaike Information Criterion (AIC) and the

Schwarz' Bayesian Information Criterion (SIC/BIC/SBIC). These rules

choose lag length j to minimize: log(SSR(j)/n) + (j + 1)C(n)/n, where SSR(j)

is the sum or squared residuals for the VAR with j lags and n is the number

of observations; C(n) = 2 for AIC and C(n) = log(n) for BIC.

Fortunately, in Stata 8 there is a single command that will do the math

for any number of specified lags: varsoc. To get the AIC and BIC, simply

type 'varsoc depvar' in the command window. The default number of lags

Stata checks is 4; in order to check a different number, add ',

maxlags(#oflags)' after the 'varsoc depvar'. If, in addition, the

regression has independent variables other than the lags, include those

after the 'maxlag()' option by typing 'exog(varnames)'. The output will

indicate the optimal lag number with an asterisk. Then proceed to run the

regression using the specified number of lags on the dependent variable

on the right-hand side with the other independent variables.

Example:

varsoc y, maxlag(5) exog(x z)

Selection order criteria

endogenous variables: y

exogenous variables: x z

constant included in models

Sample: 6 20

Obs = 15

lag LL LR df p FPE AIC HQIC SBIC

0 -45.854 . . . 39.70191 6.51381 6.5123 6.65542

1 -35.849 20.009* 1 0.000 12.04354* 5.31319* 5.31118* 5.50201*

2 -35.837 0.024 1 0.877 13.92282 5.44493 5.44241 5.68094

3 -35.305 1.063 1 0.302 15.13169 5.50737 5.50435 5.79059

4 -35.233 0.145 1 0.703 17.66201 5.63103 5.62751 5.96145

5 -35.108 0.250 1 0.617 20.7534 5.74767 5.74365 6.1253

From this output, it is clear that the optimal number of lags is 1, so

the regression should look like:

reg y l.y x z

(For further options with the varsoc command, see the Time-Series Stata

manual.)

8. Panel Data
8.1 Introduction
Panel data, also called longitudinal data or cross-sectional time series

data, are data where multiple cases (people, firms, countries etc) were

observed at two or more time periods. An example is the National

Longitudinal Survey of Youth, where a nationally representative sample

of young people were each surveyed repeatedly over multiple years.

There are two kinds of information in cross-sectional time-series data:

the cross-sectional information reflected in the differences between

subjects, and the time-series or within-subject information reflected in

the changes within subjects over time. Panel data regression techniques

allow you to take advantage of these different types of information.

While it is possible to use ordinary multiple regression techniques on

panel data, they may not be optimal. The estimates of coefficients derived

from regression may be subject to omitted variable bias - a problem that

arises when there is some unknown variable or variables that cannot be

controlled for that affect the dependent variable. With panel data, it

is possible to control for some types of omitted variables even without

observing them, by observing changes in the dependent variable over time.

This controls for omitted variables that differ between cases but are

constant over time. It is also possible to use panel data to control for

omitted variables that vary over time but are constant between cases.

8.2 Using Panel Data in Stata
A panel dataset should have data on n cases, over t time periods, for a
total of n × t observations. Data like this is said to be in long form.
In some cases your data may come in what is called the wide form, with

only one observation per case and variables for each different value at

each different time period. To analyze data like this in Stata using

commands for panel data analysis, you need to first convert it to long

form. This can be done using Stata's reshape command. For assistance in
using reshape, see Stata's online help or this web page.

Stata provides a number of tools for analyzing panel data. The commands

all begin with the prefix xt and include xtreg, xtprobit, xtsum and xttab
- panel data versions of the familiar reg, probit, sum and tab commands.

To use these commands, first tell Stata that your dataset is panel data.

You need to have a variable that identifies the case element of your panel

(for example, a country or person identifier) and also a time variable

that is in Stata date format. For information about Stata's date variable

formats, see our Time Series Data in Stata page.

Sort your data by the panel variable and then by the date variable within

the panel variable. Then you need to issue the tsset command to identify

http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm
http://dss.princeton.edu/online_help/analysis/time_series_data.htm

the panel and date variables. If your panel variable is called panelvar

and your date variable is called datevar, the commands needed are:

 . sort panelvar datevar

 . tsset panelvar datevar

If you prefer to use menus, use the command under Statistics > Time Series

> Setup and Utilities > Declare Data to be Time Series.

8.3 Fixed, Between and Random Effects models

Fixed Effects Regression

Fixed effects regression is the model to use when you want to control for

omitted variables that differ between cases but are constant over time.

It lets you use the changes in the variables over time to estimate the

effects of the independent variables on your dependent variable, and is

the main technique used for analysis of panel data.

The command for a linear regression on panel data with fixed effects in

Stata is xtreg with the fe option, used like this:
 xtreg dependentvar independentvar1 independentvar2

independentvar3 ... , fe

If you prefer to use the menus, the command is under Statistics >

Cross-sectional time series > Linear models > Linear regression.

This is equivalent to generating dummy variables for each of your cases

and including them in a standard linear regression to control for these

fixed "case effects". It works best when you have relatively fewer cases

and more time periods, as each dummy variable removes one degree of freedom

from your model.

Between Effects

Regression with between effects is the model to use when you want to

control for omitted variables that change over time but are constant

between cases. It allows you to use the variation between cases to estimate

the effect of the omitted independent variables on your dependent

variable.

The command for a linear regression on panel data with between effects

in Stata is xtreg with the be option.
Running xtreg with between effects is equivalent to taking the mean of

each variable for each case across time and running a regression on the

collapsed dataset of means. As this results in loss of information,

between effects are not used much in practice. Researchers who want to

look at time effects without considering panel effects generally will use

a set of time dummy variables, which is the same as running time fixed

effects.

The between effects estimator is mostly important because it is used to

produce the random effects estimator.

http://dss.princeton.edu/online_help/analysis/dummy_variables.htm

Random Effects

If you have reason to believe that some omitted variables may be constant

over time but vary between cases, and others may be fixed between cases

but vary over time, then you can include both types by using random effects.

Stata's random-effects estimator is a weighted average of fixed and

between effects.

The command for a linear regression on panel data with random effects in

Stata is xtreg with the re option.

8.4 Choosing Between Fixed and Random Effects
The generally accepted way of choosing between fixed and random effects

is running a Hausman test.

Statistically, fixed effects are always a reasonable thing to do with

panel data (they always give consistent results) but they may not be the

most efficient model to run. Random effects will give you better P-values

as they are a more efficient estimator, so you should run random effects

if it is statistcally justifiable to do so.

The Hausman test checks a more efficient model against a less efficient

but consistent model to make sure that the more efficient model also gives

consistent results.

To run a Hausman test comparing fixed with random effects in Stata, you

need to first estimate the fixed effects model, save the coefficients so

that you can compare them with the results of the next model, estimate

the random effects model, and then do the comparison.

 . xtreg dependentvar independentvar1 independentvar2

independentvar3 ... , fe

 . estimates store fixed

 . xtreg dependentvar independentvar1 independentvar2

independentvar3 ... , re

 . estimates store random

 . hausman fixed random

The hausman test tests the null hypothesis that the coefficients estimated

by the efficient random effects estimator are the same as the ones

estimated by the consistent fixed effects estimator. If they are

(insignificant P-value, Prob>chi2 larger than .05) then it is safe to use

random effects. If you get a significant P-value, however, you should use

fixed effects

9. Event Studies with Stata
An event study is used to examine reactions over time to events of

interest. A simple event study involves the following steps:

• Identifying the event of interest and defining an event window

• Selecting a set of cases to include in the analysis

• Predicting a "normal" outcome during the event window in the absence

of the event

• Estimating the cumulative abnormal outcome within the event window,

where the cumulative abnormal return is defined as the difference

between the actual and predicted returns during the event window

• Testing whether the cumulative abnormal return is statistically

different from zero.

This document is designed to help you conduct event studies in Stata. It

uses CRSP stock exchange data as examples, although it can be easily

extended to other types of data in other fields. We assume that you already

have the data you need and that you have a basic familiarity with Stata.

If you need assistance with Stata commands, you can find out more about

it here.

Your task will be much easier if you enter the commands in a do file, which

is a text file containing a list of Stata commands.

Adding the Event Date

If your data does not already have the event date included, you will need

to add it before you can continue. This is a very simple process:

1. Enter the event dates along with the company ID in a spreadsheet
such as Excel. Be sure to label the column with the dates something

other than "date," such as "evdate." You need only one line for each

company. Convert the file to Stata.

2. Put the date in Stata date format. Instructions on converting date
variables to Stata format can be found here.

Note: This is an important step. If you don't do this, you will not

be able to sort on date and your results will be wrong.

3. In Stata, sort this file according to PERMNO and EVDATE:
sort permno evdate

4. Save this file and call it something like "evdates."
5. "Use" your main data file and sort it by PERMNO and DATE.
6. Merge the two datasets:

merge permno using evdates

7. Save the file.

Cleaning the data and Calculating the Event and Estimation

Windows

It's likely that you have more observations for each company than you need.

It's also possible that you do not have enough for some. Before you can

continue, you must make sure that you will be conducting your analyses

on the correct observations. To do this, you will need to create a variable

that will count the number of days from the observation to the event date.

This can be either calendar days or weekdays.

http://dss.princeton.edu/online_help/stats_packages/stata/stata.htm
http://dss.princeton.edu/online_help/analysis/time_series_data.htm

For number of trading days:

sort permno date

by permno: gen id=_n

by permno: gen targ=id if date==evdate

egen td=min(targ), by(permno)

by permno: gen dif=id-td

For calendar days:

sort permno date

by permno: gen id=_n

by permno: dif=date-evdate

As you can see, calculating the number of trading days is a little trickier

than calendar days. For trading days, we first need to create a variable

that counts the number of observations within each PERMNO. Then we

determine which observation occurs on the event date. We assign the event

date's observation number to all of the observations within that PERMNO.

Finally, we simply take the difference between the two. Next, we need to

make sure that we have the minimum number of observations before and after

the event date, as well as the minimum number of observations before the

event window for the estimation window. Let's say we want 30 days before

and after the event date (a total of 61 days in the event window) and 30

days for the estimation window. (You can of course change these numbers

to suit your analysis.)

by permno: gen evwin=1 if dif>=-30 & dif<=30

egen evobs=count(evwin), by(permno)

by permno: gen estwin=1 if dif<-30 & dif>=-60

egen estobs=count(estwin), by(permno)

replace evwin=0 if evwin==.

replace estwin=0 if estwin==.

The procedure for determining the event and estimation windows is the same.

First we create a variable that equals 1 if the observation is within the

specified number of days. Second, we create another variable that counts

how many observations, within each PERMNO, has a 1 assigned to it. Finally,

we replace all the missing values with zeroes, creating a dummy variable.

You can now determine which companies do not have a sufficient number of

observations.

tab permno if evobs<61

tab permno if estobs<30

The "tab" will produce a list of PERMNOs that do not have enough

observations within the event and estimation windows, as well as the total

number of observations for those PERMNOs. You can continue to examine

these companies if you wish, or you can simply drop them from the data,

or you can mark the ones you do want for inclusion in your analyses, by

creating dummy variables:

sort permno date

gen evuse=(evobs>=61 & evwin==1 & estobs>=30)

gen estuse=(estobs>=30 & estwin==1 & evobs>=61)

Estimating Normal Performance

Now we are at the point where we can actually start an analysis. First

we need a way to estimate Normal Performance. To do this, we will run a

seperate regression for each company using the data within the estimation

window and save the alphas (the intercept) and betas (the coefficient of

the independent variable). We will later use these saved regression

equations to predict normal performance during the event window.

Note that ret, the dependent variable in our regression, is simply the

CRSP variable for a given stock's return, while the independent variable

vretd that we use to predict ret is the value-weighted return of an index

for whatever exchange the stock trades on. Use the equivalent variables

for your dataset.

gen beta = .

gen alpha = .

gen se = .

egen compnum=group(permno)

forvalues i=1(1)N { /*note: replace N with the number of companies

in your analysis */

 l permno if compnum==`i' & dif==0

 reg ret vwretd if compnum==`i' & estuse==1

 replace beta=_b[vwretd] if compnum==`i'

 replace alpha=_b[_cons] if compnum==`i'

 replace se=_se[vwretd] if compnum==`i'

}

Here, we create a variable "compnum" that numbers the companies from 1

to however many there are. The N is the number of companies that have

complete data. This process iterates over the companies to find the alpha

and beta used in calculating Abnormal and Cumulative Abnormal Returns.

Abnormal and Cumulative Abnormal Returns

We can now calculate the abnormal and cumulative abnormal returns for our

data. The daily abnormal return is computed by using the saved alpha and

beta to predict a normal return, and subtracting this number from the

actual return for each day in the estimation window. The sum of the

abnormal returns over the estimation window is the cumulative abnormal

return.

sort permno date

by permno: gen ar=ret-(alpha+(beta*vwretd)) if evuse==1

by permno: gen car=ret-(alpha+(beta*vwretd)) if evuse==1 &

dif==-30

by permno: replace car=ar + car[_n-1] if evuse==1 & dif>-30

Here we simply calculate the abnormal return, "ar," for each observation

in the event window. Then we set the cumulative abnormal return, "car,"

equal to the abnormal return for the first observation of each company.

Finally, we sum the cumulative abnormal return over the other observations

in the event window.

Testing for Significance

We are going to compute a test statistic, test, to check whether the

cumulative abnormal return is statistically different from zero.

• test =
(1/n ΣAR)

/(√AR_SE)

where AR is the abnormal return and AR_SE is the abnormal return standard

error. The abnormal return standard error is calculated by the following

formula:

• AR_SE = 1/n Σ(ARi - mean(AR))
2

If the absolute value of test is greater than 1.96, then the cumulative

abnormal return is significantly different from zero at the 5% level. The

value of 1.96 comes from the standard normal distribution with a mean of

0 and a standard deviation of 1. 95% of the distribution is between ±1.96.

You need to run this for each company.

gen ar_se=.

 forvalues i=1(1)N {

/* replace N with the number of companies */

 capture drop yhat ydiff ydiff2 y1 y2

 l permno if compnum==`i' & dif==0

 reg ret vwretd if compnum==`i' & estuse == 1

 /* the estimation window regression again */

 predict yhat

 /* predicted returns */

 gen ydiff=ret-yhat if compnum==`i' & evuse == 1;

 /* actual return minus predicted return */

 gen ydiff2 = ydiff*ydiff

 egen y1 = sum(ydiff)

 egen y2 = sum(ydiff2)

 scalar yd1 = (1/61)*y2[1]

 scalar yd2 = ((1/61)*y1[1])*((1/61)*y1[1])

 scalar AR_SE = yd1 - yd2

 replace ar_se = ((1/121)*y2) - (((1/121)*y1)*((1/121)*y1)) if

compnum==`i' & dif==30

 sum car if compnum==`i' & dif == 30

 scalar CAR=r(mean)

 /* the cumulative abnormal return for the last day in the event

window */

 /* - 30 days after the event in our example */

 scalar CA = (1/61) * CAR

 scalar test = CA/(sqrt(AR_SE))

 disp ""

 disp "Cumulative abnormal return is: " CAR

 disp "Abnormal return standard error is: " AR_SE

 disp "test statistic is 1/61 * CAR/(sqrt(AR_SE)) "

 disp "if |test| > 1.96, then sig. abnormal return "

 disp "test is: " test

 disp " "

}

This will output the results of your event study into an

Excel-readable spreadsheet file:

gen test =1/61 * (car/(sqrt(ar_se)))

l permno car ar_se test if dif==30

outsheet permno car ar_se test using teststats.csv if dif==30,

comma names

	7. Lag Selection in Time Series Data

