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Introduction 
We have previously described a “language” consisting of more than seventy patterns, which will be 
referred to here as the “PTTES Collection” (see Pont, 2001).  This language is intended to support 
the development of reliable embedded systems: the particular focus of the collection is on systems 
with a time triggered, co-operatively scheduled (TTCS) system architecture.  Work began on these 
patterns in 1996, and they have since been used it in a range of industrial systems, numerous 
university research projects, as well as in undergraduate and postgraduate teaching on many 
university courses (e.g. see Pont, 2003; Pont and Banner, 2004).  
 
As our experience with the collection has grown, we have begun to add a number of new patterns 
and revised some of the existing ones (e.g. see Pont and Ong, 2003; Pont et al., 2004; Key et al., 
2004).  Inevitably, by definition, a pattern language consists of an inter-related set of components: as 
a result, it is unlikely that it will ever be possible to refine or extend such a system without causing 
some side effects.  However, as we have worked with this collection, we have felt that there were 
ways in which the overall architecture could be improved in order to make the collection easier to 
use, and to reduce the impact of future changes.   
 
This report briefly describes the approach that we have taken in order to re-factor and refine our 
original pattern collection.  It then goes on to describe some of the new and revised patterns that have 
resulted from this process. 

New structure 
Originally, we labeled all parts of the collection as “patterns”.  We now believe it is more appropriate 
to divide the collection as follows: 

• Abstract patterns 

• Patterns, and, 

• Pattern implementation examples. 

 
In this new structure, the “abstract patterns” are intended to address common design decisions faced 
by developers of embedded systems.  Such patterns do not – directly – tell the user how to construct 
a piece of software or hardware: instead they are intended to help a developer decide whether use of 
a particular design solution (perhaps a hardware component, a software algorithm, or some 
combination of the two) would be an appropriate way of solving a particular design challenge.  Note 
that the problem statements for these patterns typically begin with the phrase “Should you use a …” 
(or something similar). 
 
For example, in this report, we present the abstract pattern TTC PLATFORM.  This pattern describes 
what a time-triggered co-operative (TTC) scheduler is, and discusses situations when it would be 
appropriate to use such an architecture in a reliable embedded system.  If you decide to use a TTC 
architecture, then you have a number of different implementation options available: these different 
options have varying resource requirements and performance figures.  The patterns TTC-SL 

SCHEDULER, TTC-ISR SCHEDULER and TTC SCHEDULER describe some of the ways in which a TTC 

PLATFORM can be implemented.  In each of these “full” patterns, we refer back to the abstract pattern 
for background information.   
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We take this layered approach one stage further with what we call “pattern implementation 
examples” (PIEs).  As the name might suggest, PIEs are intended to illustrate how a particular 
pattern can be implemented.  This is important (in our field) because there are great differences in 
system environments, caused by variations in the hardware platform (e.g. 8-bit, 16-bit, 32-bit, 64-
bit), and programming language (e.g. assembly language, C, C++).  The possible implementations 
are not sufficiently different to be classified as distinct patterns: however, they do contain useful 
information.   
 
Note that, as an alternative to the use of PIEs, we could simply extend each pattern with a large 
numbers of examples.   However, this would make the pattern bulky, and difficult to use.  In 
addition, new devices appear with great frequency in the embedded sector.  By having distinct PIEs, 
we can add new implementation descriptions when these are useful, without revising the entire 
pattern each time we do so.   

The remainder of this report 
We illustrate the changes been taken as we revise our pattern language by means of three examples.  
As already noted, the report includes the abstract pattern TTC PLATFORM.  This is followed by the 
pattern TTC-ISR SCHEDULER, and the pattern implementation example TTC-ISR SCHEDULER [C, 
LPC2000]. 
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TTC PLATFORM 
{abstract pattern} 

Context 
• You are developing an embedded system. 

• Reliability is a key design requirement. 

Problem 
Should you use a time-triggered co-operative (TTC) scheduler as the basis of your embedded 
system? 

Background 
This pattern is concerned with systems which have at their heart a time-triggered co-operative (TTC) 
scheduler.  We will be concerned both with “pure” TTC designs - sometimes referred to as “cyclic 
executives” (e.g. Baker and Shaw, 1989; Locke, 1992; Shaw, 2001) – as well as “hybrid” TTC 
designs (e.g. Pont, 2001; Pont, 2004), which include a single pre-emptive task. 
 
We provide some essential background material and definitions in this section. 

Tasks 

Tasks are the building blocks of embedded systems.  A task is simply a labelled segment of program 
code: in the systems we will be concerned with in this pattern a task will generally be implemented 
using a C function*.   
 
Most embedded systems will be assembled from collections of tasks.  When developing systems, it is 
often helpful to divide these tasks into two broad categories: 

• Periodic tasks will be implemented as functions which are called – for example – every 
millisecond or every 100 milliseconds during some or all of the time that the system is active. 

• Aperiodic tasks will be implemented as functions which may be activated if a particular event 
takes place.  For example, an aperiodic task might be activated when a switch is pressed, or a 
character is received over a serial connection. 

 
Please note that the distinction between calling a periodic task and activating an aperiodic task is 
significant, because of the different ways in which events may be handled.  For example, we might 
design the system in such a way that the arrival of a character via a serial (e.g. RS-232) interface will 
generate an interrupt, and thereby call an interrupt service routine (an “ISR task”).  Alternatively, we 
might choose to design the system in such a way that a hardware flag is set when the character 
arrives, and use a periodic task “wrapper” to check (or poll) this flag: if the flag is found to be set, we 
can then call an appropriate task 

                                                 
*  A task implemented in this way does not need to be a “leaf” function: that is, a task may call (other) functions. 
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Basic timing constraints 

For both types of tasks, timing constraints are often a key concern.  We will use the following loose 
definitions in this pattern: 

• A task will be considered to have soft timing (ST) constraints if its execution  
>= 1 second late (or early) may cause a significant change in system behaviour. 

• A task will be considered to have firm timing (FT) constraints if its execution  
>= 1 millisecond late (or early) may cause a significant change in system behaviour. 

• A task will be considered to have hard timing (ST) constraints if its execution  
>= 1 microsecond late (or early) may cause a significant change in system behaviour. 

 
Thus, for example, we might have a FT periodic task that is due to execute at times t = {0 ms, 
1000 ms, 2000 ms, 3000 ms, …}.  If the task executes at times t = {0 ms, 1003 ms, 2000 ms, 
2998 ms, …} then the system behaviour will be considered unacceptable. 

Jitter 

For some periodic tasks, the absolute deadline is less important than variations in the timing of 
activities.  For example, suppose that we intend that some activity should occurs at times: 

t = {1.0 ms, 2.0 ms, 3.0 ms, 4.0 ms, 5.0 ms, 6.0 ms, 7.0 ms, …}. 
 
Suppose, instead, that the activity occurs at times: 

t = {11.0 ms, 12.0 ms, 13.0 ms, 14.0 ms, 15.0 ms, 16.0 ms, 17.0 ms, …}. 
 
In this case, the activity has been delayed (by 10 ms).  For some applications – such as data, 
speech or music playback, for example – this delay may make no measurable difference to the 
user of the system. 
 
However, suppose that – for a data playback system - same activities were to occur as follows: 

t = {1.0 ms, 2.1 ms, 3.0 ms, 3.9 ms, 5.0 ms, 6.1 ms, 7.0 ms, …}. 
 
In this case, there is a variation (or jitter) in the task timings.  Jitter can have a very detrimental 
impact on the performance of many applications, particularly those involving period sampling and / 
or data generation (such as data acquisition, data playback and control systems: see Torngren, 1998). 
 
For example, Cottet and David (1999) show that – during data acquisition tasks – jitter rates of 10% 
or more can introduce errors which are so significant that any subsequent interpretation of the 
sampled signal may be rendered meaningless.  Similarly Jerri (1977) discuss the serious impact of 
jitter on applications such as spectrum analysis and filtering.  Also, in control systems, jitter can 
greatly degrade the performance by varying the sampling period (Torgren, 1998; Mart et al., 2001).   

Transactions 

Most systems will consist of several tasks (a large system may have hundreds of tasks, possibly 
distributed across a number of CPUs).  Whatever the system, tasks are rarely independent: for 
example, we often need to exchange data between tasks.  In addition, more than one task (on the 
same processor) may need to access shared components such as ports, serial interfaces, digital-to-
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analogue converters, and so forth.  The implication of this type of link between tasks varies 
depending on the method of scheduling that is employed: we discuss this further shortly. 
 
Another important consideration is that tasks are often linked in what are sometimes called 
transactions.  Transactions are sequences of tasks which must be invoked in a specific order.  For 
example, we might have a task that records data from a sensor (TASK_Get_Data()), and a second 
task that compresses the data (TASK_Compress_Data()), and a third task that stores the data on a 
Flash disk (TASK_Store_Data()).  Clearly we cannot compress the data before we have acquired it, 
and we cannot store the data before we have compressed it: we must therefore always call the tasks 
in the same order: 

 
TASK_Get_Data() 
TASK_Compress_Data() 
TASK_Store_Data() 

 
When a task is included in a transaction it will often inherit timing requirements.  For example, in the 
case of our data storage system, we might have a requirement that the data are acquired every 10 ms.  
This requirement will be inherited by the other tasks in the transaction, so that all three tasks must 
complete within 10 ms. 

Scheduling tasks 

As we have noted, most systems involve more than one task.  For many projects, a key challenge is 
to work out how to schedule these tasks so as to meet all of the timing constraints. 
 
The scheduler we use can take two forms: co-operative and pre-emptive.  The difference between 
these two forms is - superficially – rather small but has very large implications for our discussions in 
this pattern.  We will therefore look closely at the differences between co-operative and pre-emptive 
scheduling. 
 
To illustrate this distinction, suppose that – over a particular period of time – we wish to execute four 
tasks (Task A, Task B, Task C, Task D) as illustrated in Figure 1. 
 

A

B

C

Time

D
 

Figure 1: A schematic representation of four tasks (Task A, Task B, Task C, Task D) which we wish to 
schedule for execution in an embedded system with a single CPU. 

We assume that we have a single processor.  As a result, what we are attempting to achieve is shown 
in Figure 2. 
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A B C
Time

D
 

Figure 2: Attempting the impossible: Task A and Task B are scheduled to run simultaneously. 

In this case, we can run Task C and Task D as required.  However, Task B is due to execute before 
Task A is complete.  Since we cannot run more than one task on our single CPU, one of the tasks has 
to relinquish control of the CPU at this time. 
 
In the simplest solution, we schedule Task A and Task B co-operatively.  In these circumstances we 
(implicitly) assign a high priority to any task which is currently using the CPU: any other task must 
therefore wait until this task relinquishes control before it can execute.  In this case, Task A will 
complete and then Task B will be executed (Figure 3). 
 

A B C
Time

D
 

Figure 3: Scheduling Task A and Task B co-operatively. 

Alternatively, we may choose a pre-emptive solution.  For example, we may wish to assign a higher 
priority to Task B with the consequence that – when Task B is due to run – Task A will be 
interrupted, Task B will run, and Task A will then resume and complete (Figure 4). 
 

B C
Time

DA- -A
 

Figure 4: Assigning a high priority to Task B and scheduling the two tasks pre-emptively. 

A closer look at co-operative vs. pre-emptive architectures 

When compared to pre-emptive schedulers, co-operative schedulers have a number of desirable 
features, particularly for use in safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; 
Bate, 2000).  For example, Nissanke (1997, p.237) notes: “[Pre-emptive] schedules carry greater 
runtime overheads because of the need for context switching - storage and retrieval of partially 
computed results.  [Co-operative] algorithms do not incur such overheads.  Other advantages of 
[co-operative] algorithms include their better understandability, greater predictability, ease of 
testing and their inherent capability for guaranteeing exclusive access to any shared resource or 
data.”.  Allworth (1981, p.53-54) notes: “Significant advantages are obtained when using this [co-
operative] technique.  Since the processes are not interruptable, poor synchronisation does not give 
rise to the problem of shared data.  Shared subroutines can be implemented without producing re-
entrant code or implementing lock and unlock mechanisms”.  Also, Bate (2000) identifies the 
following four advantages of co-operative scheduling, compared to pre-emptive alternatives: [1] The 
scheduler is simpler; [2] The overheads are reduced; [3] Testing is easier; [4] Certification 
authorities tend to support this form of scheduling. 
 
This matter has also been discussed in the field of distributed systems, where a range of different 
network protocols have been developed to meet the needs of high-reliability systems (e.g. see 
Kopetz, 2001; Hartwich et al., 2002).  More generally, Fohler has observed that: “Time triggered 
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real-time systems have been shown to be appropriate for a variety of critical applications. They 
provide verifiable timing behavior and allow distribution, complex application structures, and 
general requirements.” (Fohler, 1999). 

Solution 
This pattern is intended to help answer the question: “Should you use a time-triggered co-operative 
(TTC) scheduler as the basis for your reliable embedded system?” 
 
In this section, we will argue that the short answer to this question is “yes”.  More specifically, we 
will explain how you can determine whether a TTC architecture is appropriate for your application, 
and – for situations where such an architecture is inappropriate – we will describe ways in which you 
can extend the simple TTC architecture to introduce limited degrees of pre-emption into the design.   
 
Overall, our argument will be that – to maximise the reliability of your design – you should use the 
simplest “appropriate architecture”, and only employ the level of pre-emption that is essential to the 
needs of your application. 

When is it appropriate (and not appropriate) to use a pure TTC architecture? 

Pure TTC architectures are a good match for a wide range of applications.  For example, we have 
previously described in detail how these techniques can be in – for example - data acquisition 
systems, washing-machine control and monitoring of liquid flow rates (Pont, 2002), in various 
automotive applications (e.g. Ayavoo et al., 2004), a wireless (ECG) monitoring system 
(Phatrapornnant and Pont, 2004),  and various control applications (e.g. Edwards et al., 2004; Key et 
al., 2004). 
 
Of course, this architecture not always appropriate.  The main problem is that long tasks will have an 
impact on the responsiveness of the system.  This concern is succinctly summarised by Allworth: 
“[The] main drawback with this [co-operative] approach is that while the current process is 
running, the system is not responsive to changes in the environment.  Therefore, system processes 
must be extremely brief if the real-time response [of the] system is not to be impaired.” (Allworth, 
1981). 
 
We can express this concern slightly more formally by noting that if the system must execute one of 
more tasks of duration X and also respond within an interval T to external events (where T < X), a 
pure co-operative scheduler will not generally be suitable.   
 
In practice, it is sometimes assumed that a TTC architecture is inappropriate because some simple 
design options have been overlooked.  We will use two examples to try and illustrate how – with 
appropriate design choices – we can meet some of the challenges of TTC development. 

Example: Multi-stage tasks 

Suppose we wish to transfer data to a PC at a standard 9600 baud; that is, 9600 bits per second.  
Transmitting each byte of data, plus stop and start bits, involves the transmission of 10 bits of 
information (assuming a single stop bit is used).  As a result, each byte takes approximately 1 ms to 
transmit. 
 
Now, suppose we wish to send this information to the PC: 
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Current core temperature is 36.678 degrees 

 
If we use a standard function (such as some form of printf()) - the task sending these 42 characters 
will take more than 40 milliseconds to complete.  If this time is greater than the system tick interval 
(often 1 ms, rarely greater than 10 ms) then this is likely to present a problem (Figure 5). 
 

Time

Rs-232 Task

System ‘ticks’  
Figure 5: A schematic representation of the problems caused by sending a long character string on an 
embedded system with a simple operating system.  In this case, sending the massage takes 42 ms while 

the OS tick interval is 10 ms.   

Perhaps the most obvious way of addressing this issue is to increase the baud rate; however, this is 
not always possible, and - even with very high baud rates - long messages or irregular bursts of data 
can still cause difficulties. 
 
A complete solution involves a change in the system architecture.  Rather than sending all of the data 
at once, we store the data we want to send to the PC in a buffer (Figure 6).  Every ten milliseconds 
(say) we check the buffer and send the next character (if there is one ready to send).  In this way, all 
of the required 43 characters of data will be sent to the PC within 0.5 seconds.  This is often (more 
than) adequate.  However, if necessary, we can reduce this time by checking the buffer more 
frequently.  Note that because we do not have to wait for each character to be sent, the process of 
sending data from the buffer will be very fast (typically a fraction of a millisecond). 
 

Current core temperature 
is 36.678 degrees

Buffer

All characters
written immediately
to buffer
(very fast operation)

Scheduler sends one 
character to PC 
every 10 ms 
(for example)

 
Figure 6: A schematic representation of the software architecture used in the RS-232 library. 

This is an example of an effective solution to a widespread problem.  The problem is discussed in 
more detail in the pattern MULTI-STAGE TASK [Pont, 2001]. 
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Example: Rapid data acquisition 
The previous example involved sending data to the outside world.  To solve the design problem, we 
opted to send data at a rate of one character every millisecond.  In many cases, this type of solution 
can be effective. 
 
Consider another problem (again taken from a real design).  This time suppose we need to receive 
data from an external source over a serial (RS-232) link.  Further suppose that these data are to be 
transmitted as a packet, 100 ms long, at a baud rate of 115 kbaud.  One packet will be sent every 
second for processing by our embedded system. 
 
At this baud rate, data will arrive approximately every 87 µs.  To avoid losing data, we would – if we 
used the architecture outlined in the previous example – need to have a system tick interval of around 
40 µs.  This is a short tick interval, and would only produce a practical TTC architecture if a 
powerful processor was used. 
 
However, a pure TTC architecture may still be possible, as follows.  First, we set up an ISR, set to 
trigger on receipt of UART interrupts: 

 
void UART_ISR(void) 
   { 
   // Get first char 
 
   // Collect data for 100 ms (with timeout) 
   } 

 
These interrupts will be received roughly once per second, and the ISR will run for 100 ms.  When 
the ISR ends, processing continues in the main loop: 

 
void main(void) 
   { 
 
   ... 
 
   while(1) 
      { 
      Process_UART_Data(); 
      Go_To_Sleep(); 
      } 
   } 

 
Here we have up to 0.9 seconds to process the UART data, before the next tick. 

What should you do if a pure TTC architecture cannot meet your application needs? 

In the previous two examples, we could produce a clean TTC system with appropriate design.  This 
is – of course – not always possible.  For example, consider a wireless electrocardiogram (ECG) 
system (Figure 7). 
 



- 11 - 

 
Figure 7: A schematic representation of a system for ECG monitoring.   

See Phatrapornnant and Pont (2004) for details. 

An ECG is an electrical recording of the heart that is used for investigating heart disease.  In a 
hospital environment, ECGs normally have 12 leads (standard leads, augmented limb leads and 
precordial leads) and can plot 250 sample-points per second (at minimum).  In the portable ECG 
system considered here, three standard leads (Lead I, Lead II, and Lead III) were recorded at 500 Hz.  
The electrical signal were sampled using a (12-bit) ADC and – after compression – the data were 
passed to a “Bluetooth” module for transmission to a notebook PC, for analysis by a clinician (see 
Phatrapornnant and Pont, 2004) 
 
In one version of this system, we are required to perform the following tasks: 

• Sample the data continuously at a rate of 500 Hz.  Sampling takes less than 0.1 ms. 

• When we have 10 samples (that is, every 20 ms), compress and transmit the data, a process 
which takes a total of 6.7 ms. 

 
In this case, we will assume that the compression task cannot be neatly decomposed into a sequence 
of shorter tasks, and we therefore cannot employ a pure TTC architecture.   
 
In such circumstances, it is tempting to opt immediately for a full pre-emptive design.  Indeed, many 
studies seem to suggest that this is the only alternative.  For example, Locke (1992) - in a widely 
cited publication - suggests that “traditionally, there have been two basic approaches to the overall 
design of application systems exhibiting hard real-time deadlines: the cyclic executive … and the 
fixed priority [pre-emptive] architecture.” (p.37).  Similarly, Bennett (1994, p.205) states: “If we 
consider the scheduling of time allocation on a single CPU there are two basic alternatives: [1] 
cyclic, [2] pre-emptive.”  More recently Bate (1998) compared cyclic executives and fixed-priority 
pre-emptive schedulers (exploring, in greater depth, Locke’s study from a few years earlier). 
 
However, even if you cannot – cleanly - solve the long task / short response time problem, then you 
can maintain the core co-operative scheduler, and add only the limited degree of pre-emption that is 
required to meet the needs of your application. 
 
For example, in the case of our ECG system, we can use a time-triggered hybrid architecture. 
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Time

“Long” co-operative task

Tick
Sub-ticks

Pre-emptive task

 
Figure 8: A “hybrid” software architecture.  See text for details. 

In this case, we allow a single pre-emptive task to operate: in our ECG system, this task will be used 
for data acquisition.  This is a time-triggered task, and such tasks will generally be implemented as a 
function call from the timer ISR which is used to drive the core TTC scheduler.  As we have 
discussed in detail elsewhere (Pont, 2001: Chapter 17) this architecture is extremely easy to 
implement, and can operate with very high reliability.  As such it is one of a number of architectures, 
based on a TTC scheduler, which are co-operatively based, but also provide a controlled degree of 
pre-emption. 
 
As we have noted, most discussions of scheduling tend to overlook these “hybrid” architectures in 
favour of fully pre-emptive alternatives.  When considering this issue, it cannot be ignored that the 
use of (fully) pre-emptive environments can be seen to have clear commercial advantages for some 
companies.  For example, a co-operative scheduler may be easily constructed, entirely in a high-level 
programming language, in around 300 lines of ‘C’ code.  The code is highly portable, easy to 
understand and to use and is, in effect, freely available.  By contrast, the increased complexity of a 
pre-emptive operating environment results in a much larger code framework (some ten times the 
size, even in a simple implementation: Labrosse 1992).  The size and complexity of this code makes 
it unsuitable for ‘in house’ construction in most situations, and therefore provides the basis for a 
commercial ‘RTOS’ products to be sold, generally at high prices and often with expensive run-time 
royalties to be paid.  The continued promotion and sale of such environments has, in turn, prompted 
further academic interest in this area.  For example, according to Liu and Ha, (1995): “[An] 
objective of reengineering is the adoption of commercial off-the-shelf and standard operating 
systems.  Because they do not support cyclic scheduling, the adoption of these operating systems 
makes it necessary for us to abandon this traditional approach to scheduling.” 

Related patterns and alternative solutions 
We highlight some related patterns and alternative solutions in this section. 

Implementing a TTC Scheduler 

The following patterns describe different implementations of TTC schedulers: 

• TTC-SL SCHEDULER* 
• TTC-ISR SCHEDULER† 
• TTC-DISPATCH SCHEDULER‡ 

                                                 
*  This is a revised version of the pattern SUPER LOOP (Pont, 2001). 
†  This pattern is described later in this report. 
‡  We have not – to date - published a description of this pattern. 
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• TTC SCHEDULER* 

Alternatives to TTC scheduling 

If you are determined to implement a fully pre-emptive design, then Jean Labrosse (1999) and 
Anthony Massa (2003) discuss – in detail – the construction of such systems. 

Reliability and safety implications 
For reasons discussed in detail in the previous sections of this pattern, co-operative schedulers are 
generally considered to be a highly appropriate platform on which to construct a reliable (and safe) 
embedded system. 

Overall strengths and weaknesses 
☺ Tends to result in a system with highly predictable patterns of behaviour. 

/ Inappropriate system design using this approach can result in applications which have a 
comparatively slow response to external events. 
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TTC-ISR SCHEDULER 
{pattern} 

Context 
• You have decided that a TTC PLATFORM will provide an appropriate basis for your embedded 

system. 

and 
• Your application will have a single periodic task (or a single transaction). 

• Your task / transaction has firm or hard timing constraints. 

• There is no risk of task overruns (or occasional overruns can be tolerated). 

• You need to use a minimum of CPU and memory resources. 

Problem 
How can you implement a TTC PLATFORM which meets the above requirements? 

Background 
See TTC PLATFORM for relevant background information. 

Solution 
TTC-ISR SCHEDULER is a simple but highly effective (and therefore very popular) implementation of 
a TTC PLATFORM. 
 
The basis of a TTC-ISR SCHEDULER is an interrupt service routine (ISR) linked to the overflow of a 
hardware timer.  For example, see Figure 9.  Here we assume that one of the microcontroller’s timers 
has been set to generate an interrupt once every 10 ms, and thereby call the function Update().  
When not executing this interrupt service routine (ISR), the system is “asleep”.  The overall result is 
a system which has a 10 ms “tick interval” (sometimes called a “major cycle”) which – in this case – 
involves execution of a transaction consisting of a sequence of three tasks.   
 

while(1) 
   {
   Go_To_Sleep();  
   }

BACKGROUND 
PROCESSING

FOREGROUND 
PROCESSING

void Update(void)
   {
   TaskA();
   TaskB();
   TaskC();
   }

10ms timer

 

Figure 9: A schematic representation of a simple TTC scheduler (“cyclic executive”).  

The end result of this activity is the sequence of function calls illustrated in Figure 10.   
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Time

...

System ‘ticks’

TaskA() TaskB() TaskC() TaskA() TaskB() TaskC() TaskA()

10 ms

 
Figure 10: The sequence of task executions resulting from the architecture shown in Figure 9. 

Please note that “putting the processor to sleep” means moving it into a low-power (“idle”) mode.  
Most processors have such modes, and their use can – for example – greatly increase battery life in 
embedded designs.  Use of idle modes is common but not essential.  For example, Figure 11 shows a 
simple implementation, with a single periodic task implemented directly using the Update function.  
In this case idle mode is not used. 
 

while(1) 
   {
   ; // Do “nothing”  
   }

BACKGROUND 
PROCESSING

FOREGROUND 
PROCESSING

One-second timer

Update();

 
Figure 11: A schematic representation of the processes involved in using interrupts.  See text for details. 

Please note that – in both implementations - the timing observed is largely independent of the 
software used but instead depends on the underlying timer hardware (which will usually mean the 
accuracy of the crystal oscillator driving the microcontroller).  One consequence of this is that (for 
the system shown in Figure 11, for example), the successive function calls will take place at 
precisely-defined intervals (Figure 12), even if there are large variations in the duration of Update().  
This is very useful behaviour, and is not obtained with architectures such as TTC-SL SCHEDULER. 
 

Time

Update() ...

System ‘ticks’

Update() Update()

 
Figure 12: One advantage of the interrupt-driven approach is that the tasks will not normally suffer 

from “jitter” in their start times. 

Hardware resource implications 
We consider the hardware resource implications under three main headings: timers, memory and 
CPU load. 

Timer 

This pattern requires one hardware timer.  If possible, this should be a timer, with “auto-reload” 
capabilities: such a timer can generate an infinite sequence of precisely-timed interrupts with 
minimal input from the user program. 
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Memory and CPU Load 

The scheduler will consume no significant CPU resources: short of implementing the application 
using a SUPER LOOP SCHEDULER (with all the disadvantages of this rudimentary architecture), there 
is generally no more efficient way of implementing your application in a high-level language. 

Reliability and safety implications 
In this section we consider some of the key reliability and safety implications resulting from the use 
of this pattern. 

Running multiple tasks 

TTC-ISR Schedulers provide an excellent platform for executing a small number of tasks.  If you 
need to run multiple (indirectly related) tasks, particularly tasks with different periods, then you can 
achieve this with a TTC-ISR SCHEDULER: however, the system will quickly become cumbersome, 
and may prove difficult to debug and / or maintain.  
 
For systems with multiple tasks, please consider using a more flexible TTC approach, such as that 
described in CO-OPERATIVE SCHEDULER [Pont, 2001]. 

Safe use of idle mode 

As we discussed in Solution, putting the processor to sleep means moving it into a low-power “idle” 
mode.  Most processors have several power-saving modes: when selecting a suitable mode, make 
sure you choose one that (a) does not disable the timer you are using to generate the system ticks, 
and (b) allows the processor to enter the normal operating mode in the event of a timer interrupt.   
 
Note also that changing the processor mode may change the behaviour of other on-chip components 
(such as watchdog timers).  You must ensure that any facilities required by your application remain 
operational in the idle mode which you choose. 

Use of idle mode to reduce task jitter 

In addition to saving power, use of idle mode can help to reduce task jitter. 
 
This is the case because – on most processors – instructions take varying numbers of clock cycles to 
execute, and your processor can only respond to an interrupt when the currently-executing 
instruction has completed.  For example, if your timer interrupt sometimes occurs when your 
processor is at the start of a 100-cycle instruction, and sometimes occurs at the start of a 2-cycle 
instruction, then the time taken to respond to the interrupt will vary considerably.  By contrast, if you 
use an idle mode, the time taken to return to the normal operating mode will be longer than the time 
taken to respond to interrupts if the processor is fully active – but the time will not generally vary. 
Overall, using idle mode can usually reduce jitter, and reduce power consumption.  The only 
drawback will be a very slight increase in the time taken to perform the task scheduling. 

What happens if a task overruns? 

With a TTC-ISR Scheduler, there will only be one active interrupt (the timer interrupt), and all tasks 
are called from the timer ISR.  Because ISRs cannot interrupt themselves, there is no possibility that 
tasks in your system can be pre-empted.  This results in highly predictable behaviour. 
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Although such behaviour is often highly desirable, it is important that you understand what happens 
if a task overruns.  For example, suppose that you have a task that normally takes 1 ms to execute, 
and has to run every 10 ms.  If –infrequently – this task takes 100 ms to execute, then the timer 
“ticks” that occur in this period will be ignored. 
 
Inevitably, there are some applications for which this is not appropriate behaviour.  For example, if 
you have a periodic task that keeps track of elapsed time (with a millisecond resolution), this task 
must run 60,000 times every minute, without fail, or your system will lose track of the current time.   
 
To avoid losing ticks, you may need to separate the timer ISR and the process of task execution: 
patterns ISR LOOP SCHEDULER and ISR DISPATCHER SCHEDULER describe how to achieve this.  
Alternatively, you may need to consider using TTH SCHEDULER, or a TASK GUARDIAN. 

Strengths and weaknesses 
☺ An efficient environment for running a single periodic task or periodic transaction. 

/ Only appropriate for applications which can be implemented cleanly using a single task. 

Related patterns and alternative solutions 
Please also consider the following implementations of TTC Platform: 

• TTC-SL SCHEDULER 
• TTC-ISR SCHEDULER 
• TTC-DISPATCH SCHEDULER 
• TTC SCHEDULER 
 
TTC-ISR SCHEDULER can be particularly effective if used in combination with MULTI-STATE TASK. 

Further reading 
- 
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TTC-ISR SCHEDULER [C, LPC2000] 
{pattern implementation example} 

Context 
• You wish to implement a TTC-ISR SCHEDULER [this report] 

• Your chosen implementation language is C*. 

• Your chosen implementation platform is the Philips LPC2000 family of (ARM7-based) 
microcontrollers. 

Problem 
How can you implement a TTC-ISR SCHEDULER for the Philips LPC2000 family of 
microcontrollers? 

Solution 
We describe how to implement a TTC-ISR SCHEDULER for the LPC2000 family of microcontrollers 
in this section. 

Timers and interrupts on the LPC2000 family 

The ARM core at the heart of the LPC2000 family has seven interrupt sources (see Table 1). 
 

Interrupt Description 
Reset Caused by a chip reset. 

Undefined instruction An attempt has been made to execute an instruction with is not recognised. 

Software interrupt The software interrupt instruction can be used for calls to an operating 
system (sometimes known as a “supervisor call”).   

Prefetch abort Caused by an instruction fetch memory fault. 

Data abort Caused by a data fetch memory fault. 

IRQ Used for programmer-defined interrupts which are not handled in FIQ 
mode. 

FIQ This provides the fastest way of responding to programmer-defined 
interrupts.  This is generally used for handling a single critical interrupt: in 
this book, it will almost always be used for handling timer interrupts.   

Table 1: Interrupt sources from the ARM7 core. 

Behaviour is as follows (see Furber, 2000): 

1. Change to the operating mode corresponding to the exception 

2. Save the address of the next instruction in r14 of the new mode 

3. Save the old value of the CPSR in the SPSR of the new mode 

4. Disable IRQs by setting bit 7 of the CPSR and, if the exception is a fast interrupt, disable further 
fast interrupts by setting bit 6 of the CPSR 

5. Set the PC to the relevant vector address (above table). 

                                                 
*  The examples in the pattern were created using the GNU C compiler, hosted in a Keil uVision 3 IDE. 
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Normally the vector address will contain a branch to the relevant routine. 
 
Return behaviour from exceptions is as follows (again from Furber, 2000): 

1. Any modified user registers must be restored from the handler’s stack. 

2. The CPSR must be restored from the appropriate SPSR. 

3. The PC must be changed back to the relevant instruction address in the user instruction stream. 

 
Note that the FIQ mode has additional private registers to give better performance by avoiding the 
need to save user registers.  It is therefore the logical way of handling our timer interrupt in this 
scheduler. 
 
The process of handling an FIQ interrupt from the timer hardware in this way is summarised in 
Figure 13. 
 

Interrupt wrapper
(assembly language)

(Link between timer interrupt and the 
assembly-language wrapper is set up 
in the “startip” file.)

Interrupt function
(C language)

FIQ_ISR:
   STMFD   R13!, {R0-R7,R14} 
   BL      Interrupt_Function 
   LDMFD   R13!, {R0-R7,R14} 
   SUBS    PC, R14, #4    }

}
void Interrupt_Function(void)
   {
   ...
   }

Example code:

Crystal 
oscillator PLL VPB divider

“cclk” “pclk”“Fosc” Timer

 
Figure 13: Interrupt handling (timers) in the LPC2000 family. 

The operation of the phase-locked loop (PLL) and VLSI Peripheral Bus (VPB) divider may be clear 
from the code example that follows: if not, Philips (2004) provides further details. 

Example 

A complete code example illustrating the implementation of a TTC-ISR Scheduler is given in Listing 
1. 
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/*------------------------------------------------------------------*- 
 
   main.c (v1.00) 
 
  ------------------------------------------------------------------ 
 
   A simple "Hello Embedded World" test program for LPC2129 family. 
 
   (P1.16 used for LED output) 
 
-*------------------------------------------------------------------*/ 
 
// Device header (from Keil) 
#include <lpc21xx.h> 
 
// Oscillator / resonator frequency (in Hz)  
// e.g. (10000000UL) when using 10 MHz oscillator 
#define FOSC (12000000UL) 
 
// Between 1 and 32  
#define PLL_MULTIPLIER (5U) 
 
// 1, 2, 4 or 8  
#define PLL_DIVIDER (2U) 
 
// 1, 2 or 4 
#define VPB_DIVIDER (1U) 
 
// CPU clock  
#define CCLK (FOSC * PLL_MULTIPLIER) 
 
// Peripheral clock 
#define PCLK (CCLK / VPB_DIVIDER) 
 
#define PLL_FCCO_MIN (156000000UL) 
#define PLL_FCCO_MAX (320000000UL) 
 
#define CCLK_MIN (10000000UL) 
#define CCLK_MAX (60000000UL) 
 
 
// Function prototypes  
void LED_FLASH_ISR_Init(void); 
void LED_FLASH_ISR_Change_State(void); 
 
void System_Init(void); 
 
int PLL_Init(void); 
int VPB_Init(void); 
 
void MAM_Init(void); 
void Set_Interrupt_Mapping(void); 
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/*..................................................................*/ 
 
int main() 
   { 
   // Set up PLL, VPB divider and MAM (disabled) 
   System_Init(); 
 
   // Prepare to flash LED 
   LED_FLASH_ISR_Init(); 
    
   while(1) // Super Loop 
      { 
      // Enter idle mode 
      PCON = 1;   
      } 
 
   // Should never reach here ... 
   return 1; 
   } 
 
// ------ Private constants ---------------------------------------- 
 
// Interrupt mapping set through the "target" settings in the IDE 
#ifndef RAM 
#define MAP 0x01 
#else  
#define MAP 0x02 
#endif 

 
/*------------------------------------------------------------------*- 
 
  System_Init() 
 
   Configures: 
   - PLL 
   - VPB divider 
   - Memory accelerator module 
   - Interrupt mapping 
 
-*------------------------------------------------------------------*/ 
void System_Init(void) 
   { 
   // Set up the PLL 
   if (PLL_Init() != 0) 
      { 
      while(1);  // PLL error - stop 
      } 
 
   // Set up the VP bus 
   if (VPB_Init() != 0) 
      { 
      while(1);  // VPB divider error - stop 
      } 
 
   // Set up the memory accelerator module 
   MAM_Init(); 
 
   // Control interrupt mapping 
   Set_Interrupt_Mapping(); 
   } 
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/*------------------------------------------------------------------*- 
 
  PLL_Init() 
 
  Set up PLL. 
 
-*------------------------------------------------------------------*/ 
 
int PLL_Init(void) 
   { 
   unsigned int Fcco; 
   unsigned int PLL_tmp; 
 
   // Cclk will be PLL_MULTIPLIER * FOSC  
   // Fcco will be PLL_MULTIPLIER * FOSC * 2 * PLL_DIVIDER  
 
   // To allow us to check the frequencies 
   Fcco = CCLK * PLL_DIVIDER * 2; 
 
   // Check that the cclk frequency is OK   
   if ((CCLK > CCLK_MAX) || (CCLK < CCLK_MIN)) 
      { 
      return 1;  // Error  
      } 
 
   // Check that the CCO frequency is OK   
   if ((Fcco > PLL_FCCO_MAX) || (Fcco < PLL_FCCO_MIN)) 
      { 
      return 1;  // Error  
      } 
 
   // Set up PLLCFG register - the divider 
   switch (PLL_DIVIDER) 
      { 
      case 1:  
         PLL_tmp = 0; 
         break; 
 
      case 2:  
         PLL_tmp = 0x20; 
         break; 
 
      case 4:  
         PLL_tmp = 0x40; 
         break; 
 
      case 8:  
         PLL_tmp = 0x40; 
         break; 
 
      default: 
         return 1;  // Error 
      }    
 
   // Set up the PLLCFG register - now the multiplier 
   PLL_tmp |= PLL_MULTIPLIER - 1; 
 
   // Apply the calculated values 
   PLLCFG |= PLL_tmp; 
 
   PLLCON = 0x00000001;  // Enable the PLL 
 
   PLLFEED = 0x000000AA; // Update PLL registers with feed sequence 
   PLLFEED = 0x00000055; 
 
   while (!(PLLSTAT & 0x00000400))  // Test Lock bit 
      { 
      PLLFEED = 0x000000AA; // Update PLL with feed sequence 
      PLLFEED = 0x00000055; 
      } 
 
   PLLCON = 0x00000003;  // Connect the PLL 
 
   PLLFEED = 0x000000AA; // Update PLL registers 
   PLLFEED = 0x00000055; 
 
   return 0; 
   } 
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/*------------------------------------------------------------------*- 
 
  VPB_Init() 
 
  Demonstrates setup of VPB divider 
 
-*------------------------------------------------------------------*/ 
 
int VPB_Init(void) 
   { 
   // Input to VPB divider is output of PLL (cclk) 
 
   // VPB divider consists of two bits 
   // 0 0 - VPB bus clock is 25% of processor clock [DEFAULT] 
   // 0 1 - VPB bus clock is same as processor clock 
   // 1 0 - VPB bus clock is 50% of processor clock 
   // 1 1 - Reserved (no effect - previous setting retained) 
 
   switch (VPB_DIVIDER) 
      { 
      case 1:  
         VPBDIV &= 0xFFFFFFFC; 
         VPBDIV |= 0x00000001;  
         break; 
 
      case 2:  
         VPBDIV &= 0xFFFFFFFC; 
         VPBDIV |= 0x00000002;  
         break; 
 
      case 4:  
         VPBDIV &= 0xFFFFFFFC; 
         break; 
 
      default: 
         return 1;  // Error 
      }    
 
   // OK 
   return 0; 
   } 

 
/*------------------------------------------------------------------*- 
 
  MAM_Init() 
 
  Set up the memory accelerator module. 
 
  NOTE: Here we DISABLE the MAM, for maximum predictability. 
   
  Adapt as needed for your application. 
 
-*------------------------------------------------------------------*/ 
void MAM_Init(void) 
   { 
   // Turn off MAM 
   MAMCR = 0; 
   } 

 
/*------------------------------------------------------------------*- 
 
  Set_Interrupt_Mapping() 
 
  Remaps interrupts to RAM or Flash memory, as required. 
 
  For Flash, MAP = 0x01 
  For RAM, MAP = 0x02 
 
  Here, value is set through Keil uVision  
  (depending on target built). 
   
-*------------------------------------------------------------------*/ 
void Set_Interrupt_Mapping(void) 
   { 
   MEMMAP = MAP; 
   } 
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/*------------------------------------------------------------------*- 
 
  LED_FLASH_ISR_Init() 
 
  Prepare for LED_FLASH_ISR_Change_State() function - see below. 
 
-*------------------------------------------------------------------*/ 
void LED_FLASH_ISR_Init(void) 
   { 
   // First, set up the timer 
   // We require a "tick" every 1000 ms 
   // (Timer is incremented PCLK times every second) 
   T0MR0 = PCLK - 1;  
 
   T0MCR = 0x03;  // Interrupt on match, and restart counter 
   T0TCR = 0x01;  // Counter enable  
 
   VICIntSelect = 0x10;   // Assign "Interrupt 4" to the FIQ category 
   VICIntEnable = 0x10;   // Enable this interrupt 
 
   // Now set the mode of the I/O pin 
   // using the appropriate pin function select register 
 
   // Here we assume that Pin 1.16 is being used.  
 
   // First, set up P1.16 as GPIO  
   // Clearing Bit 3 in PINSEL2 configures P1.16:25 as GPIO  
   PINSEL2 &= ~0x0008;    
 
   // Now set P1.16 to output mode  
   // through the appropriate IODIR register  
   IODIR1 = 0x00010000;  
   } 
 

 
/*------------------------------------------------------------------*- 
 
  LED_FLASH_ISR_Update() 
 
  Changes the state of an LED (or pulses a buzzer, etc) on a  
  specified port pin. 
 
  Must call at twice the required flash rate: thus, for 1 Hz 
  flash (on for 0.5 seconds, off for 0.5 seconds), 
  this function must be called twice a second. 
 
-*------------------------------------------------------------------*/ 
void LED_FLASH_ISR_Update(void) 
   { 
   static int LED_state = 0; 
 
   // Change the LED from OFF to ON (or vice versa) 
   if (LED_state == 1) 
      { 
      LED_state = 0; 
      IOCLR1 = 0x10000;   
      } 
   else 
      { 
      LED_state = 1; 
      IOSET1 = 0x10000;   
      } 
 
   // After interrupt, reset interrupt flag (by writing "1") 
   T0IR = 0x01; 
   } 
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/*------------------------------------------------------------------*- 
 
  LOOP_DELAY_Wait() 
 
  Delay duration varies with parameter.   
 
  Parameter is, *ROUGHLY*, the delay, in milliseconds, 
  on 12.0 MHz LPC2129 (no PLL used). 
 
  You *WILL* need to adjust the timing for your application! 
 
-*------------------------------------------------------------------*/ 
void LOOP_DELAY_Wait(const unsigned int DELAY) 
   { 
   unsigned int x,y,z; 
 
   for (x = 0; x <= DELAY; x++) 
      { 
      for (y = 0; y <= 1000; y++) 
         { 
         z = z + 1; 
         } 
      } 
   } 

 
/*------------------------------------------------------------------*- 
 
  Trap_Interrupts() 
 
  Interrupt trap - see Chapter 3. 
 
-*------------------------------------------------------------------*/ 
void Trap_Interrupts(void) 
   { 
   // *** Basic behaviour *** 
   // DISABLE ALL INTERRUPTS  
   VICIntEnClr = 0xFFFFFFFF; 
   while(1); 
   } 
 
 
/*------------------------------------------------------------------*- 
  ---- END OF FILE ------------------------------------------------- 
-*------------------------------------------------------------------*/ 

Listing 1: Implementing a TTC-ISR Scheduler for the LPC2000 family (example). 

Further reading 

Philips (2004) “LPC2119 / 2129 / 2194 / 2292 / 2294 User Manual”, Philips Semiconductors, 3 February, 
2004. 

Furber, S. (2000) “ARM System-on-Chip Architecture”, Addison-Wesley. 
 


