EMIT (Energy Model Input Translator) User's Guide

1820 Folsom Street | Boulder, CO 80302 303.245.1003 | www.rmi.org

May 2011

1 ACKNOWLEDGEMENTS

The Energy Model Input Translator was developed with funding from Rocky Mountain Institute's Commercial Building Retrofit Initiative. The following staff at Rocky Mountain Institute were involved in its development:

Aaron Buys, Lead Developer Kendra Tupper, Project Manager Ellen Franconi, Content Support

Additional thanks to:

International Building Performance Simulation Association (IBPSA)
Gail Hampsmire, GBCI
Fred Porter, Architectural Energy Corporation
All other beta testers in the energy modeling community

Copyright 2010-2011, Rocky Mountain Institute

2 TABLE OF CONTENTS

1	ACK	NOWLEDGEMENTS	2
2	TAB	LE OF CONTENTS	3
3	OVE	RVIEW	4
	3.1	COMPATIBILITY AND SAVING THE FILE	4
	3.2	OTHER TOOLS AND MATERIALS	4
4	TOC	L COMPONENTS	5
	4.1	LIGHTING, POWER & OCCUPANT DENSITY CALCULATOR	5
	4.2	DOMESTIC HOT WATER CALCULATOR	7
	4.2.1	Tank UA-Value Calculator	7
	4.2.2	Hot Water Use Estimator	9
	4.2.3	, , ,	
	4.3	COOLING TOWER FAN EFFICIENCY CALCULATOR	
	4.3.1	Proposed Case	11
	4.3.2	Baseline Case	11
	4.4	PROPOSED SYSTEM FAN POWER & EFFICIENCY CALCULATOR	11
	4.4.1		
	4.4.2	p iii p iii ii ii ii ii ii ii ii ii ii i	
	4.5	BASELINE SYSTEM FAN POWER & EFFICIENCY CALCULATOR	16
	4.5.1	Fan Power Calculations	17
	4.5.2	p iii p iii ii ii ii ii ii ii ii ii ii i	
	4.6	SCHEDULE CREATOR AND EXPORTER	
	4.6.1		
	4.6.2		
5	REF	RENCES	. 22

3 OVERVIEW

This software tool is a compilation of spreadsheet based calculators that were developed in response to the building energy modeling community's need for tools that translate design data and code requirements into typical energy model inputs. The goal in developing this tool is to reduce the time it takes to produce a quality energy model, and therefore increase the use and accuracy of energy modeling in building analysis and design.

3.1 COMPATIBILITY AND SAVING THE FILE

The tool was developed in Microsoft Windows XP SP3 using Office 2007. The file has been saved down to Excel 97-2003 compatibility to provide greater usability. All efforts have been made to avoid compatibility errors, but because the program uses VBA subroutines, problems may occur due to library locations. These problems occur when Excel is updated and the path of a VBA library is changed. This can be fixed by correcting the path by going to the VBA editor (Alt+F11), choosing Tools/ References, selecting the library which has been modified and browsing to find the correct path.

Additionally, when using Excel 2007, the workbook must continue to be saved as 97-2003 compatible (.xls) as opposed to a 2007 version (.xlsx).

3.2 OTHER TOOLS AND MATERIALS

This tool was developed by Rocky Mountain Institute (RMI) in conjunction with several other software tools and educational materials with the same goal in mind. This includes:

- Model Manager: A DOE-2.2 based Excel tool, which streamlines parametric runs in DOE-2.2 based modeling software
- LCCAid: A tool for life cycle cost analysis made specifically for architects and building systems engineers.
- **Elements**: A freely available, comprehensive, integrated weather tool suitable for solving all of the common weather tasks associated with building energy modeling. Features include read/write/convert between all major weather file formats and custom data, visualization and analysis, data editing and error checking.
- Energy Audit Sample Forms: Sample forms to assist building energy auditors in collecting the data required to complete comprehensive energy and financial analyses of proposed modifications to a building

EMIT and other tools and content can be found at: http://www.rmi.org/rmi/ModelingTools.

4 TOOL COMPONENTS

EMIT is made up of six separate components:

- 1. Lighting, Power & Occupant Density Calculator
- 2. Domestic Hot Water Calculator
- 3. Cooling Tower Fan Efficiency Calculator
- 4. Proposed System Fan Power & Efficiency Calculator
- 5. Baseline System Fan Power & Efficiency Calculator
- 6. Schedule Creator and Exporter

Each component is described in detail below.

4.1 LIGHTING, POWER & OCCUPANT DENSITY CALCULATOR

The lighting, power and occupant density calculator takes information about energy model thermal zone space types and determines baseline values lighting power density, receptacle power density, occupant density and occupant heat gain. The baseline values are taken from ASHRAE 90.1-2007 and the 2005 California ACM Manual (Title 24).

Intent

The intent of the manager is to automatically determine and organize baseline values based on a mix of space types for the following categories:

- Lighting Power Density
- Receptacle Power Density
- Occupant Density
- Occupant Heat Gain

This tool can help energy modelers organize and compare large amounts of information on internal gains. Early in the design, conceptual energy models often include large zones which are a mix of a few space types – this tool allows a weighted average of internal gains to be determined, and documented for future review and revision. While some energy modeling wizards allow for similar weighted averages to be created, they do not account for occupancy sensor credits or document the percentage breakdown of space types for future revision.

Directions

To begin, click the "Add Zone" button and the following form appears:

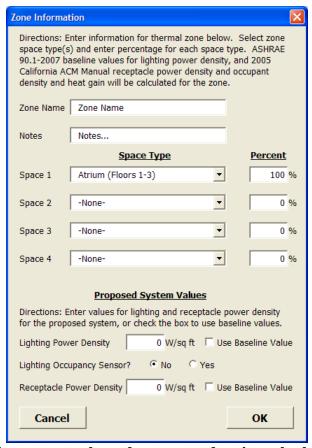


Figure 1. Lighting, receptacle and occupant density calculator input form.

Enter the zone name and any notes. Select the zone space type(s) and enter the percentage of the zone taken up by that space type. Multiple space types are allowed to account for thermal zones that combine different spaces; for example, an open office next to a lobby and corridor area all within the core of a building.

Next, enter the proposed values for lighting and receptacle power density, or select the "Use Baseline Value" checkbox. The proposed value entries are given for convenience so that the user can compare the proposed and baseline values. They are not used in any calculations.

To finish, click "OK" and the tool creates a new line in the spreadsheet for the new zone.

To edit the zone values, the user can directly change the cell data or use the "Edit Zone" button to bring up the same form and edit values from there.

To delete a zone, click "Delete Zone" and the select the zone to be deleted.

Additional Notes

- The first zone in the spreadsheet is locked so that subsequent zones can be copied from it.
- Schedules: When using default baseline values from sources such as ASHRAE 90.1 and Title 24, be sure to use the corresponding fraction use schedules from these sources as well. ASHRAE 90.1 schedules can be found in the Schedule Lookup tab, and Title 24 schedules can be found in the 2005 California ACM Manual.

4.2 DOMESTIC HOT WATER CALCULATOR

<u>Intent</u>

Energy modelers often struggle to translate code specifications and manufacturer's data into energy model inputs for domestic hot water. The purpose of this spreadsheet calculator is to bridge that gap and determine ASHRAE 90.1-2007 baseline hot water heater full flow rate, efficiency and tank heat loss, and calculate these same values using manufacturer's data for proposed water heaters. The calculators in this spreadsheet can also be used to estimate water heater performance when design data is unavailable.

Directions

When all design data is available, the calculations are simple. Enter the required design data for the proposed system as indicated by dark blue cells (including the schedule to the right), then enter the auto-sized values for the baseline system, and the spreadsheet calculates the efficiencies, tank UA-value and full flow rate GPMs.

The tank UA-value can be difficult to find on manufacturer's cutsheets, so a calculator is provided to help the user determine an appropriate value.

4.2.1 Tank UA-Value Calculator

Tank UA-Value is the rate at which heat is lost from the stored hot water as a function of the temperature differential between the water and the air surrounding the tank. The units of Tank UA are Btu/h-°F.

To use the UA-value calculator, the user will need to have one of three sets of design values for the proposed system: Energy Factor & Recovery Efficiency; Standby Loss; or Tank Diameter & R-value. The calculator contains links to the AHRI database of residential and commercial water heater test results, so if the proposed model number is available, this data can be looked up. If this data is unavailable, the user may estimate values based on the typical values listed at the bottom of the calculator. A good sanity check is that the UA-value of the proposed tank is less than that of the baseline.

Energy Factor-Recovery Efficiency

The energy factor-recovery efficiency calculation uses the following equation to determine tank UA:

$$UA_{tank} = \frac{\frac{1}{EF} - \frac{1}{RE}}{67.5 \times \left(\frac{24}{41094} - \frac{1}{RE \times P_{in}}\right)}$$
(1)

where

 UA_{tank} The hot water storage tank UA-value (Btu/h-°F)

EF The energy factor of the water heater, determined by testing

RE The recovery efficiency of the water heater, determined by testing

 P_{in} The input power of the water heater (Btu/h)

This equation is taken from an EERE document (Equation D-2.14) found at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/D-2.pdf

Standby Loss

The standby loss conversion is calculated as follows:

$$UA_{tank} = SL \times 70^{\circ} F$$
 (2)

where

SL The standby loss of the storage tank, determined by testing

70°F The standard differential temperature between the tank water and ambient air used in testing

R-Value/Diameter/Volume

When the R-value of the tank insulation is known, the tank UA can be calculated by using the storage volume and tank diameter to calculate surface area:

$$A_{base} = \pi \left(\frac{D}{2}\right)^2 \tag{3}$$

$$A_{surface} = \frac{\frac{V_{storage}}{7.48 \left[\frac{gal}{ft^3}\right]}}{A_{base}} \times \pi \times D + 2 \times A_{base}$$
(4)

$$UA_{tank} = \frac{A_{surface}}{R} \tag{5}$$

where

 A_{base} The area of the base of a cylindrical tank (ft²)

D The diameter of a cylindrical tank (ft)

 $A_{surface}$ The total surface area of a cylindrical tank (ft²)

 $V_{storage}$ The tank storage volume (gal)

R The R-value of the tank insulation (h^- F-ft²/Btu)

When design data is not available, proposed values may be estimated using the Hot Water Use Estimator and Input Power & Storage Capacity Estimator.

4.2.2 Hot Water Use Estimator

The hot water use estimator takes the building type and conditioned area and estimates the number of occupants and hot water use per occupant per day to get a total baseline usage per day. The user can then de-rate that baseline by a percentage to estimate the proposed usage.

The occupant density for each building type is taken from the 2005 California ACM, and hot water use is taken from COMNET Appendix B, Table 5.

This calculation is a rough estimate, and should only be used when no design data is available.

4.2.3 Input Power & Storage Capacity Estimator

The input power and storage capacity estimator uses building type and area to calculate peak hot water use and storage capacity. All calculated loads assume a 90°F differential between inlet and outlet water temperatures, which is based on typical design values of 50°F inlet and 140°F outlet. Additionally, a 20% safety factor is applied to all calculations (as evidenced by the first number in the equation being 1.2).

The calculation of input power varies depending on whether the proposed system is an instantaneous system or storage system.

Instantaneous Water Heater

The instantaneous water heater calculation assumes no storage is used and the peak instantaneous load is required to be met by the water heater. Peak load is determined by calculating the total number of hot water fixture units in the building and converting that to a hot water flow rate using the modified Hunter curve. Fixture unit numbers are

taken from the 2007 ASHRAE Handbook of Applications, Chapter 49, Table 16, and the modified Hunter curve can be found, among other places, in the 2003 International Plumbing Code, Table E103.3.

Once the flow rate is determined, the instantaneous load is calculated using the following equation:

$$P_{in} = 1.2 \times 8.33 \left[\frac{Btu}{h-gal} \right] \times 60 \left[\frac{min}{h} \right] \times GPM \times 90^{\circ} F$$
 (6)

Storage Type Water Heater

Storage type water heaters utilize stored hot water to shave peak loads and reduce required input power significantly relative to instantaneous water heaters. Calculations for this type of system are taken from the 2007 ASHRAE Handbook of Applications, Chapter 49, pages 49.15 through 49.19. Figures 16 through 23 of the Handbook give average values for required recovery rates in GPH/ person and corresponding storage capacity in gal/ person.

Numbers of occupants is calculated based on building area, and the required recovery flow rate and storage capacity are determined by multiplying the number of occupants by the factors taken from the Handbook. Input power is then calculated from recovery flow rate (GPH):

$$P_{in} = 1.2 \times 8.33 \left[\frac{Btu}{h - gal} \right] \times GPH \times 90^{\circ} F$$
 (7)

Thermal Efficiency

Once storage capacity and input power are determined, the input power is adjusted for thermal efficiency based on the type of fuel and whether the user chooses a standard or high efficiency water heater. The following values are used for thermal efficiency:

Fuel Type	Standard	High		
	Efficiency	Efficiency		
Electric	0.98	0.98		
Natural Gas	0.80	0.95		
Oil	0.78	0.93		

Table 1. Thermal Efficiency by Fuel Type

4.3 COOLING TOWER FAN EFFICIENCY CALCULATOR

Intent

The purpose of this spreadsheet calculator is to determine the proposed and ASHRAE 90.1-2007 baseline cooling tower fan efficiency and express that efficiency in various ways that may be required by energy modeling programs.

4.3.1 Proposed Case

The proposed case requires the user to input the type of fan (axial or centrifugal), nameplate horsepower, condenser water flow and condenser water temperature difference. The calculations assume ideal condenser water properties of 8.33 Btu/gal-°F and that the full nameplate horsepower is equal to the brake horsepower. This assumption is not ideal, but ASHRAE 90.1-2007 does not differentiate nameplate from brake horsepower for cooling towers.

4.3.2 Baseline Case

The baseline case is based on ASHRAE 90.1-2007 Table 6.8.1G. The only required input for the baseline case is condenser water flow rate as ASHRAE 90.1-2007 specifies that the baseline cooling tower will have an axial fan. The same assumptions are made as in the proposed case, and the COP of the baseline is calculated.

The COP is not actually dependent on the condenser flow rate, but the calculations are shown for informational purposes.

4.4 PROPOSED SYSTEM FAN POWER & EFFICIENCY CALCULATOR

Intent

The proposed system calculator determines fan power for supply, return and exhaust fans, and it calculates compressor coefficient of performance (COP) and energy input ratio (EIR). Many of the user inputs for the proposed system inform the calculations for the baseline fan power on the subsequent tab (Though, this information transfer is not automatic. The user must manually input these values in the baseline system tab). Additionally, this calculator helps a user break out fan power and compressor efficiency for their proposed packaged units. The spreadsheet uses forms for data input.

Directions

To begin, click "Add System" and the following form appears:

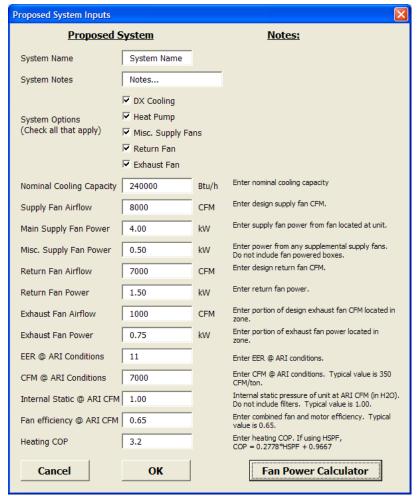


Figure 2. Proposed system input form.

The user must enter a name and then must check off all options that apply. As the options are checked off, further inputs will appear as necessary. The only inputs required regardless of options are supply fan power and airflow.

4.4.1 Fan Power Calculations

The fan power calculations are fairly straightforward. The user enters the fan power (kW) and airflow (CFM) for each fan category (supply, return and exhaust), and the spreadsheet calculates the kW/ CFM. This calculation is not difficult, but sometimes determining the fan power can be a challenge, so a fan power calculator has been included. This calculator takes the CFM, total static pressure, fan and motor efficiencies and calculates fan power in kilowatts. This calculator is accessed by clicking the button located in the lower right hand corner of the form.

It is critical to assign the fan power and CFM for the proposed system appropriately. The following definitions serve as a guide for this purpose.

Supply Fan Power: Includes supply fan power for main air handlers or rooftop units, as well as any dedicated outside air systems (DOAS). Do NOT include fan powered boxes, no matter what their configuration is.

Return Fan Power: Includes both return fans, which have the same schedule as supply fans, and relief fans, which run only during economizer mode to relieve the building of excess pressure due to increased outside air quantities.

Exhaust Fan Power: Includes all fans that exhaust building air to the outdoors.

4.4.2 Compressor COP Calculation

If the user clicks DX Cooling as a system option, several input boxes appear because the most complicated calculation for the proposed system is compressor COP. The method for calculating this value is taken from ASHRAE 90.1-2007 User's Manual, equations (G-A) through (G-C). These equations relate EER to COP and are as follows:

$$EER = \frac{Net \ Cooling \ \left[\frac{Btu}{h}\right]}{Total \ Input \ Power \ [W]} = \frac{(Gross \ Cooling - Supply \ Fan \ Power) \ \left[\frac{Btu}{h}\right]}{Total \ Input \ Power \ [W]}$$

$$COP = \frac{Gross \ Cooling \ Capacity \ \left[\frac{Btu}{h}\right]}{(Compressor \ Power - Condenser \ Fan \ Power) \ [W] \times 3.413 \left[\frac{Btu}{W-h}\right]}$$

$$COP = \frac{Gross \ Cooling \ Capacity \ \left[\frac{Btu}{h}\right]}{(Total \ Input \ Power - Supply \ Fan \ Power) \ [W] \times 3.413 \left[\frac{Btu}{W-h}\right]}$$

$$(10)$$

Note that all values are at AHRI rated conditions. Do not use actual design conditions, because COP inputs to energy models generally are at rated conditions and COP for specific conditions in the simulation are calculated from rated conditions based on part load curves.

There are two ways to calculate COP from EER in this tool. The simplest way is to use EER, net cooling capacity and gross cooling capacity. This way we can solve for supply fan power and total input power using equation (8) and plug those values into equation (10). Combining and simplifying these two equations results in the following equation for COP:

$$COP = \frac{Gross\ Cooling\ Capacity\ [\frac{Btu}{h}]}{\left(1 + \frac{3.413[\frac{Btu}{W - h}]}{EER}\right) \times Rated\ Cooling\ [\frac{Btu}{h}] - Gross\ Cooling\ [\frac{Btu}{h}]}$$

However, if one of these three values is unknown, this equation cannot be used directly. In many cases, the unknown value is gross cooling capacity at rated conditions. In this case, it is necessary to calculate supply fan power, which is directly related to supply fan heat. If supply fan heat is known, then the gross capacity can be calculated by adding supply fan heat to net cooling capacity to get gross cooling capacity, and equation (11) can be used.

If supply fan heat (or power) at rated conditions is not known, then the calculations become more complex. The supply fan power at rated conditions can be calculated in the following manner:

$$BHP_{supply,rated} = \frac{CFM_{rated} \times SP_{t,rated}}{6,356\left[\frac{CFM - in\ H2O}{b\ h\ n}\right] \times \eta_{fan}}$$
(12)

where

BHP_{supply ,rated} The supply fan power at **rated conditions** (bhp)

 CFM_{rated} The supply airflow at **rated conditions** (CFM)

 $SP_{t,rated}$ The total static pressure at **rated conditions** (in H₂O)

 η_{fan} The combined efficiency of the fan and motor at **rated conditions**

Where the above values are known, the fan power can be calculated easily. However, if the above values are not available, some assumptions are necessary.

When the rated supply airflow is not known, a typical value of 350 CFM/ ton can be used and the airflow is calculated to be:

$$CFM_{rated} = \frac{Q_{t,rated}}{12 \left[\frac{kBtu}{h-ton} \right]} \times 350 \left[\frac{CFM}{ton} \right]$$
 (13)

where $Q_{t,rated}$ is the AHRI rated capacity of the proposed unit in kBtu/h.

To determine the total static pressure of the system at rated conditions, it is necessary to know both the internal and external static pressures at rated conditions.

Internal static at rated conditions ($SP_{internal,rated}$) should include the packaged unit with wet coil and no filters. If not entered by the user from manufacturer's data, it is assumed to be 1.00 in. H_2O . This value has been estimated based on data from several manufacturers' packaged unit catalogs.

The external static at rated conditions is determined by referencing ANSI/AHRI Standard 340/360. According to the standard, the minimum external static pressure used to rate equipment efficiency ($SP_{external,rated}$) varies according to rated capacity in the following manner:

Rated Capacity	Minimum External
[Btu/hr]	Static Pressure [in H ₂ O]
65,000-70,000	0.20
71,000-105,000	0.25
106,000-134,000	0.30
135,000-210,000	0.35
212,000-280,000	0.40
282,000-350,000	0.45
352,000-400,000	0.55
405,000-500,000	0.65
505,000 and over	0.75

This external static pressure is added to the internal static pressure to get the total static pressure at rated conditions.

$$SP_{t,rated} = SP_{internal,rated} + SP_{external,rated}$$

When unavailable, combined fan and motor efficiency is assumed to be 0.650. This value is taken from ASHRAE 90.1-2007, Table 6.5.3.1.1A, where the adjustment to fan bhp (A) is defined as:

$$A[bhp] = CFM_D \times PD/4,131 \tag{15}$$

From Equation (12), we know that:

$$BHP = \frac{CFM \times PD}{6,356\left[\frac{CFM - in\ H2O}{b\ h\nu}\right] \times \eta_{fan}}$$
(16)

Setting the two previous equations equal to each other and simplifying, we can determine that for pressure drop adjustments in ASHRAE 90.1-2007, combined fan and motor efficiency is assumed to be:

$$\eta_{fan} = \frac{4,131}{6,356} = 0.650 \tag{17}$$

With all of the variables in determined, the adjusted EER can now be calculated: (18)

(14)

$$EER_{adj} = rac{Q_{t,rated} + Q_{fan,rated}}{rac{Q_{t,rated}}{EER} - P_{fan,rated}}$$

where

EER_{adj} The adjusted Energy Efficiency Ratio for calculation purposes (Btu/W-h)

EER The rated Energy Efficiency Ratio (Btu/W-h)

$$Q_{fan,rated} = BHP_{supply,rated} \times 2.545 \left[\frac{kBtu}{h-bhp}\right]$$
 The fan heat at rated conditions (kBtu/h)

$$P_{fan,rated} = BHP_{supply,rated} \times 0.7457 \left[\frac{kW}{bhp}\right]$$
 The fan power at rated conditions (kW)

Compressor COP is then calculated as follows:

$$COP_{comp} = \frac{EER_{adj}}{3.413\left[\frac{Btu}{W-h}\right]}$$
(19)

The energy input ratio (EIR) is the inverse of the calculated COP.

4.5 BASELINE SYSTEM FAN POWER & EFFICIENCY CALCULATOR

The baseline system calculator is very similar to the proposed system calculator in that it determines fan power (kW/ CFM) for supply, return and exhaust; and it calculates compressor COP and EIR. To begin, click "Add System" and the following form appears:

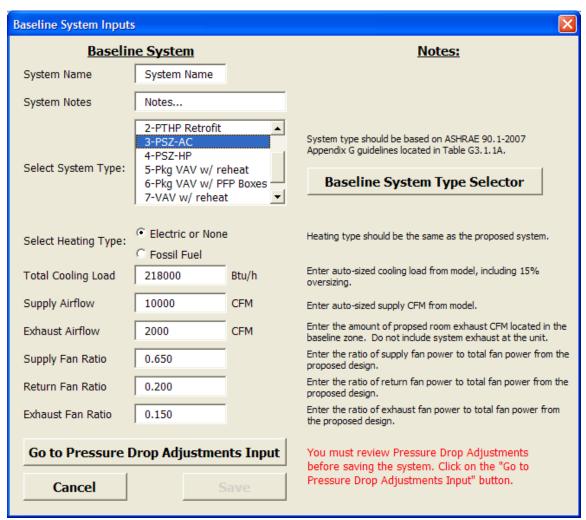


Figure 3. Baseline system input form.

All inputs on the form are required, except if systems 7 or 8 are selected, cooling load is not required. If the 90.1 baseline system type is unknown, the user can click on the Baseline System Type Selector and determine which baseline system is appropriate.

4.5.1 Fan Power Calculations

The fan power calculations require the user to enter supply and exhaust CFM, as well as supply, return and exhaust fan ratios. Return CFM is calculated by subtracting exhaust from supply.

Fan power ratios are used to determine how much of the allotted baseline fan power is used for each system. These ratios must be equal to the ratios of fan power in the proposed system. To calculate the ratios for the proposed system, sum up all fan power for each type (supply, return and exhaust) and divide the sum by the total fan power (equal to the sum of these three sums). In the event that a proposed system fan serves

thermal blocks covered by different baseline systems, the fan power must be divided between the baseline systems in proportion to proposed CFM.

After all inputs have been determined, the allotted baseline fan power can be calculated. This calculation is done per ASHRAE 90.1-2007 section G3.1.2.9.

Adjustments to fan power are required to be reviewed. When the "Go To Pressure Drop Adjustments" button is clicked, the following form appears:

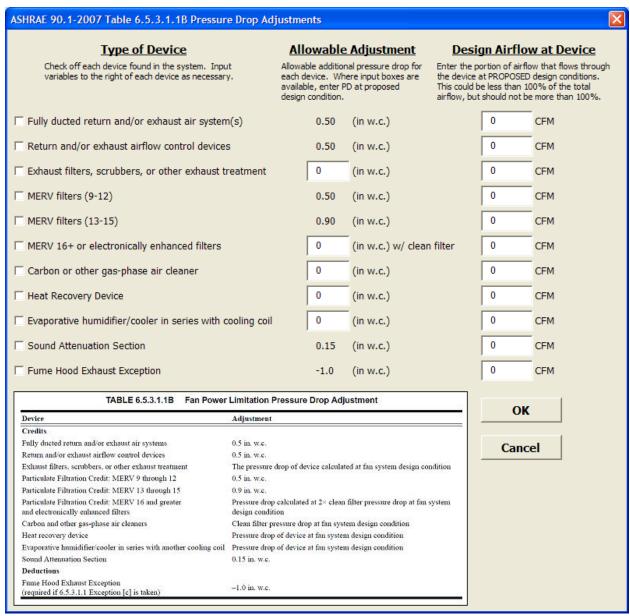


Figure 4. Pressure drop adjustments input form.

All applicable adjustment options should be checked and the appropriate airflow should be entered. Airflow is a required input because the adjustment calculation only

accounts for the airflow passing through the device, not the total supply airflow. The applicable section of ASHRAE 90.1-2007 is shown for reference.

4.5.2 Compressor COP Calculation

Compressor COP for baseline systems can be calculated in a similar manner to the proposed system calculations as outlined in equations (12) through (19), except that instead of manufacturer's data, the values listed as assumptions in the proposed system description are used, and the baseline EER is determined from the rated capacity and ASHRAE 90.1-2007 Tables 6.8.1A & B. The assumptions made are:

- 1. Combined fan/motor efficiency (η_{fan}) of 0.650
- 2. Rated airflow of 350 CFM/ton.

So, if we return to equations (18) and (19) and combine them, we get:

$$COP = \frac{Q_{t,rated} + Q_{fan,rated}}{3.413 \left(\frac{Q_{t,rated}}{EER} - P_{fan,rated}\right)}$$
(20)

We also know that

$$P_{fan,rated} = \frac{Q_{fan,rated}}{3.413\left[\frac{Btu}{W-h}\right]}$$
 (21)

So, if we substitute for $P_{fan,rated}$ and simplify, then we find that

$$COP = \frac{Q_{t,rated} + Q_{fan,rated}}{3.413 \frac{Q_{t,rated}}{EFR} - Q_{fan,rated}}$$
(22)

If we take equation (12) for fan power and convert from brake horsepower to kBtu/h, then we get

$$Q_{fan,rated} = \frac{CFM_{rated} \times SP_{t,rated}}{2,496\left[\frac{CFM - in \ H2O - h}{kBtu}\right] \times \eta_{fan}}$$
(23)

Now, if we substitute the two assumptions from above (350 CFM/ ton and 0.65 combined fan and motor efficiency), then we get

$$Q_{fan,rated} = \frac{\frac{Q_{t,rated}}{12 \left[\frac{kBtu}{h-ton}\right]} \times 350 \left[\frac{CFM}{ton}\right] \times SP_{t,rated}}{2,496 \left[\frac{CFM-in\ H2O-h}{kBtu}\right] \times 0.65} = \frac{Q_{t,rated} \times SP_{t,rated}}{55.615 \left[in\ H_2O\right]}$$

Now, if we substitute for $Q_{fan,rated}$ in equation (22) we get:

$$COP = \frac{Q_{t,rated} + \frac{Q_{t,rated} \times SP_{t,rated}}{55.615 [in H_2 O]}}{3.413 \frac{Q_{t,rated}}{EER} - \frac{Q_{t,rated} \times SP_{t,rated}}{55.615 [in H_2 O]}} = \frac{Q_{t,rated} \left(1 + \frac{SP_{t,rated}}{55.615 [in H_2 O]}\right)}{Q_{t,rated} \left(\frac{3.413}{EER} - \frac{SP_{t,rated}}{55.615 [in H_2 O]}\right)}$$
(25)

and $Q_{t,rated}$ drops out to give us:

 $COP = \frac{1 + \frac{SP_{t,rated}}{55.615 [in H_2 O]}}{\frac{3.413}{EFP} - \frac{SP_{t,rated}}{55.615 [in H_O]}}$

If we define an arbitrary term X, as follows, then the equation will be easier to read:
(27)

$$X = \frac{SP_{t,rated}}{55.615 \left[in \, H_2 O \right]}$$

Substituting X in equation (26), we get:

$$COP_{baseline} = \frac{1+X}{\frac{3.413}{EER_{min,90.1}} - X}$$
 (28)

Energy input ratio (EIR) is the inverse of COP.

Going back to equation (27), $SP_{t,rated}$ is the total static pressure drop through the system at rated conditions, which we know from equation (14) is the sum of the internal and external static pressure drops, so when combined with equation (27), we get

(29)

$$X = \frac{SP_{internal , rated} + SP_{external , rated}}{55.615 [in H_2 O]}$$

where

SP_{external, rated}
The minimum external static pressure specified in ANSI/ AHRI Standard 340/ 360 for the rated capacity of the baseline system, as shown in Table 1.

SP_{internal, rated} The internal static pressure at rated conditions.

However, internal static is not governed by any standard, so it should be assumed that internal static of the baseline system is equal to the internal static of the proposed system if there is a proposed system that corresponds to the baseline system. If there is no corresponding proposed system or the internal static of the proposed system is unknown, use the default value of 1.00 in H2O. This value is estimated from manufacturers' data on many different packaged RTUs. The ASHRAE 90.1 committee may decide to stipulate a specific allowable internal static value for baseline systems in the future, which would obviously supersede this value.

One alternate solution to using the method outlined above would be for ASHRAE 90.1 to set a baseline allowable fan heat, for example at 3% of rated capacity. In this case, we could use equation (22) to directly calculate COP:

$$COP = \frac{Q_{t,rated} + Q_{fan,rated}}{\frac{3.413}{EER}Q_{t,rated} - Q_{fan,rated}} = \frac{1.03 \ Q_{t,rated}}{\frac{3.413}{EER}Q_{t,rated} - 0.03 \ Q_{t,rated}} = \frac{1.03}{\frac{3.413}{EER} - 0.03}$$

The above equation is fairly accurate relative to the complex calculations required otherwise. Assuming an internal static of 1.00 in H2O, the difference is between -0.6% to +3.8%.

4.6 SCHEDULE CREATOR AND EXPORTER

Intent

Energy modelers often need to manipulate or deal with fractional schedule data outside of energy model programs. Translating this data into energy model schedules can be extremely time consuming, especially when dealing with 8760 data points. This schedule creator and exporter produces eQuest input files (.inp) or EnergyPlus input data files (.idf) containing code language for modeling schedules.

Directions

To begin, click "Create Schedule" and select the appropriate modeling program. A form then appears where the user can define the type of schedule to be created. At the moment, only Annual 8760 schedules are available for EnergyPlus. Many more options are available for eQuest.

4.6.1 eQuest Schedule Output

eQuest schedules may be created for a single day, week or year. When the type of schedule is determined from the form, the appropriate input table will appear. The user can then enter the values. Depending on the schedule type, limits are placed on the acceptable values the user can enter in the table. Once data entry is complete, the user clicks "Export Schedule" and selects the directory to which they would like to save the

schedule. The schedule is saved as an .inp file, which the user can import using the "File/ Import File..." command in eQuest.

When a weekly schedule is made in the .inp file, the following assumptions are made for the heating and cooling design day schedules:

Table 3. Design Day Schedule Assumption

Weekly	Design Day
Schedule Type	Assumption
Weekly 5-2	Weekday
Weekly 5-1-1	Weekday
Weekly 7-day	Monday
Annual 8760	Monday

The design day schedules can only be changed manually inside the input file. See the eQuest documentation for instructions on how to do this.

4.6.2 EnergyPlus Schedule Output

EnergyPlus schedules are currently limited to Annual 8760 schedules only. The schedules are exported as "Schedule:File" type schedules where an IDF file is created with the name and type of the schedule, and a .csv file of the values is created and referenced by the IDF file.

To copy the created schedule to the simulation file, the user should open both the created IDF file and the simulation IDF file in the IDF Editor. In the schedule file, scroll down to the Schedule:File object in the Class List window. Select the created schedule and click the "Copy Obj" button. Move to the simulation file and go to the Schedule:File class. Click the "Paste Obj" button, and the created schedule will become part of the simulation file.

5 REFERENCES

ASHRAE 90.1-2007

ASHRAE 90.1-2007 User's Manual

ASHRAE Handbook-HVAC Applications

California 2005 ACM Manual