
UU AG System User Manual

Arthur Baars, Doaitse Swierstra and Andres Löh
Department of Computer Science

Utrecht University
arthurb@cs.uu.nl, doaitse@cs.uu.nl, andres@cs.uu.nl

July 25, 2003

Abstract

The AG in the title is an abbreviation for “attribute grammar”.

Contents

1 About this document 1

2 Reporting bugs 1

3 The ”Artistic License” 2

3.1 Preamble . 2

3.2 Definitions: . 2

4 Getting Started 4

4.1 Running the AG system . 4

4.2 Simple Attribute Grammar . 4

4.3 Adding attributes . 4

4.4 Compiling an attribute grammar . 5

4.5 Generated code . 6

4.6 RepMin continued . 7

4.6.1 Distribute global minimum 7

1

mailto:arthurb@cs.uu.nl
mailto:doaitse@cs.uu.nl
mailto:andres@cs.uu.nl

4.6.2 Construct the result . 7

4.6.3 Haskell code blocks . 8

4.6.4 Compile and Run . 8

5 Language Constructs 9

5.1 DATA declaration . 9

5.2 ATTR declaration . 10

5.3 SEM . 12

5.4 TYPE . 13

5.5 INCLUDE . 14

5.6 Code Block . 14

5.7 Comments . 16

5.8 Names . 16

5.9 Strings . 16

6 Copy Rule 17

6.1 Examples . 17

6.2 Generalised copy rule . 18

6.3 USE rules . 18

6.4 SELF rules . 19

7 Grammar 20

7.1 Lexical Syntax . 20

7.2 Context-free Grammar . 21

8 Compiler flags 22

2

Introduction

1 About this document

After the introduction, this document contains a user guide. This guide is divided
in two parts, the first consists of an example introducing most language features,
the second part covers the language constructs and the AG compiler in more detail.

2 Reporting bugs

Any bugs (or fixes!) can be reported to the author, Arthur Baars (arthurb@cs.uu.nl).
Any feedback on:

• what modifications you are interested in

• what modifications you have made yourself

is greatly appreciated too. Besides that, I am also quite interested in any applica-
tions, that are created using this system.

3 The ”Artistic License”

3.1 Preamble

The intent of this document is to state the conditions under which a Package may
be copied, such that the Copyright Holder maintains some semblance of artistic
control over the development of the package, while giving the users of the package
the right to use and distribute the Package in a more-or-less customary fashion,
plus the right to make reasonable modifications.

3.2 Definitions:

• ”Package” refers to the collection of files distributed by the Copyright Holder,
and derivatives of that collection of files created through textual modification.

• ”Standard Version” refers to such a Package if it has not been modified, or
has been modified in accordance with the wishes of the Copyright Holder as
specified below.

• ”Copyright Holder” is whoever is named in the copyright or copyrights for
the package.

• ”You” is you, if you’re thinking about copying or distributing this Package.

3

mailto:arthurb@cs.uu.nl

• ”Reasonable copying fee” is whatever you can justify on the basis of media
cost, duplication charges, time of people involved, and so on. (You will not
be required to justify it to the Copyright Holder, but only to the computing
community at large as a market that must bear the fee.)

• ”Freely Available” means that no fee is charged for the

• itself, though there may be fees involved in handling the

• . It also means that recipients of the

• may redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Stan-
dard Version of this Package without restriction, provided that you duplicate
all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived
from the Public Domain or from the Copyright Holder. A Package modified
in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and when
you changed that file, and provided that you do at least ONE of the following:

(a) place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet or an
equivalent medium, or placing the modifications on a major archive site
such as uunet.uu.net, or by allowing the Copyright Holder to include
your modifications in the Standard Version of the Package.

(b) use the modified Package only within your corporation or organization.

(c) rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a sep-
arate manual page for each non-standard executable that clearly docu-
ments how it differs from the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable
form, provided that you do at least ONE of the following:

(a) distribute a Standard Version of the executables and library files together
with instructions (in the manual page or equivalent) on where to get the
Standard Version.

(b) accompany the distribution with the machine-readable source or the
Package with your modifications.

(c) give non-standard executables non-standard names, and clearly docu-
ment the differences in manual pages (or equivalent), together with in-
structions on where to get the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

4

5. You may charge a reasonable copying fee for any distribution of this Package.
You may charge any fee you choose for support of this Package. You may not
charge a fee for this Package itself. However, you may distribute this Package
in aggregate with other (possibly commercial) programs as part of a larger
(possibly commercial) software distribution provided that you do not adver-
tise this Package as a product of your own. You may embed this Package’s
code within an executable of yours (by linking); this shall be construed as a
mere form of aggregation, provided that the complete Standard Version is so
embedded.

6. Aggregation of this Package with a commercial distribution is always permit-
ted provided that the use of this Package is embedded; that is, when no overt
attempt is made to make this Package’s interfaces visible to the end user of
the commercial distribution. Such use shall not be construed as a distribution
of this Package

7. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

8. THIS PACKAGE IS PROVIDED ”AS IS” AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE.

The End

4 Getting Started

4.1 Running the AG system

We assume that uuagc, AG compiler is installed on your system. If you run the
compiler without arguments it will show you a short help message, and a list of
options.

> uuagc
Usage info:
uuagc options file ...

List of options:
-m generate default module header

--module[=name] generate module header, specify module name
-d --data generate data type definitions
...

In this user manual all the compiler switches and language features are introduced
and explained in the examples.

5

4.2 Simple Attribute Grammar

As a first example we take the well known RepMin problem. The input of the
program is a binary tree, and it produces a binary tree of the same shape. In the
new tree however all values in the leaves are equal to the minimum of the values in
the leafs in the original tree.

A grammar is defined as a collection of DATA declarations. The types correspond
to the nonterminals and the constructors to the productions of the grammar. The
grammar of binary trees is defined as follows:

DATA Tree
| Node left:Tree right:Tree
| Leaf int:Int

As in Haskell the names of the types and constructors start with an uppercase letter.
The difference with a Haskell data type definition is that the fields of a constructor
are associated with a name, and not only by position.

4.3 Adding attributes

In this section we define attributes to solve the Repmin problem. We split the
computation to be performed into three different aspects:

• computing the minimal value

• making the minimal value available at the leaves

• constructing the final result

For each of the aspects we introduce an attribute and attribute computation rules.

Firstly we introduce a synthesized attribute minval representing the minimum value
of a Tree by an ATTR declaration.

ATTR Tree [| | minval:Int]

That minval is a synthesized attribute follows from the fact that its declaration is
located after the second vertical bar. In an ATTR declaration there are three places
to put attributes declarations.

[inherited | inherited/synthesized | synthesised] (1)

Attributes in the first position are inherited attributes, attributes in the last position
are synthesized attributes, and attributes in the middle are inherited as well as
synthesized.

Next we specify the computation of the minimum value by providing semantic rules.

SEM Tree

6

| Leaf lhs.minval = { @int }
| Node lhs.minval = { min @left.minval @right.minval }

To compute the minimum value of a Leaf we simply return the value of the Leaf .
For a Node the minimum value is the minimum of left ’s minval and right ’s minval .
The right-hand side of a semantic rule is a Haskell expression between braces. The
references to attribute and field values are all marked with an ’@’ symbol. The
left-hand side of a semantic rule is a reference to an attribute. In this case the
minval attribute of Tree , which is the left hand side of the productions Leaf and
Node, hence the name lhs.

4.4 Compiling an attribute grammar

The example code developed thusfar is can be found in examples/Repmin1.ag.
This simple attribute grammar is compiled into a Haskell source file as follows:

> uuagc --module --data --semfuns --catas --signatures Repmin1.ag

Repmin1.hs generated

Using the functions in the generated Haskell program we can compute the mini-
mum of a Tree as is shown in the following example:

Repmin1> sem_Tree (Node (Node (Leaf 2)(Leaf 3))(Node (Leaf 1)(Leaf 2)))
1

4.5 Generated code

In this section we explain the following compiler options a and take a brief look at
the code generated by the UUAG compiler.

short option long option description
-m --module[=name] generate module header, specify module name
-d --data generate data type definitions
-f --semfuns generate semantic functions
-c --catas generate catamorphisms
-s --signatures generate type signatures for semantic functions

The option --module tells the UUAG compiler to generate a Haskell module header.
If a name is specified this name is used as the module name. If no name is specified
or when the short option (-m) is used the module name is the name of the UUAG
source file, without its extension. Hence the generated code for RepMin1.ag code
contains the following module header:

module Repmin1 where

The option --data tells the UUAG compiler to generate Haskell data type definitions
corresponding to the DATA statements in the attribute grammar. The data type
definition generated for RepMin1.ag is:

7

data Tree = Leaf Int
| Node Tree Tree

The SEM rules are compiled into semantic functions that compute the output at-
tributes from the input attributes. For each nonterminal a type synonym, named
T Type,is introduced for the type of its semantics. In our example there are no
inherited attributes and only a single synthesized attribute, namely minval with
type Int . Hence the type synonym for the nonterminal Tree is:

type T_Tree = Int

The option semfuns tells the compiler to generate a semantic function for each con-
structor. They are named as follows: sem Nonterminal Constuctor . A semantic
function takes the semantics of the constructor’s children as argument to compute
the semantics of the nonterminal. By providing the --catas the UUAG compiler gen-
erates catamorphisms for each data type in the attribute grammar. A catamorphism
takes a value and computes its semantics. This is achieved by and applying the ap-
propriate semantic functions. The generated catamorphisms are named as follows:
sem Type. The option --signatures tells the compiler to emit type signatures for
all semantic functions and catamorphisms. For our example these signatures are:

sem_Tree_Node :: T_Tree -> T_Tree -> T_Tree

sem_Tree_Leaf :: Int -> T_Tree

sem_Tree :: Tree -> T_Tree

The semantics of a child with a type that is not defined using a DATA statement is
simply its value. Hence the type Int for the semantics of the value in a Leaf .

The actual code generated for semantics functions and catamorphisms is discussed
in section ??.

4.6 RepMin continued

The attribute grammar developed thusfar computes the minimum of a tree. This
computation is done bottom-up using a single attribute minval . The global mini-
mum of a tree is the value of minval at the root node. To solve the ”repmin” problem
we need to distribute the global minimum to all the leaves and, than reconstruct
the tree with each value replaced by the global minimum.

4.6.1 Distribute global minimum

The global minimum is the minimum value of the root node of the tree. In order to
make the global minimum available at all the leaves we need to push the minimum
value of the root node down to all the leaves.

Firstly we declare an inherited attribute gmin that holds the global minimum.

8

ATTR Tree [gmin:{Int} | |]

At each Node the global minimum is distributed to both children.

SEM Tree
| Node left.gmin = { @lhs.gmin }

right.gmin = { @lhs.gmin }

The global minimum is passed down from parent nodes to their children. The root
node of a Tree, however, does not have a parent, so we cannot set its inherited
attribute gmin. We introduce a data type Root that serves as the parent of a Tree.
It uses the synthesized attribute minval of the Tree to define the inherited attribute
gmin.

DATA Root | Root tree:Tree

SEM Root
| Root tree.gmin = { @tree.minval }

4.6.2 Construct the result

Now the global minimum is available everywhere in the tree we can construct the
final result, that is a tree with the same structure as the original, but with each leaf
value replaced by the minimum of the tree.

Firstly we declare a synthesized attrbute result for both Tree and Root .

ATTR Tree [| | result:Tree]
ATTR Root [| | result:Tree]

In a Node the resulting trees of both children are combined into a new Node. For
a Leaf a new Leaf is returned containing the minimum value.

SEM Tree
| Node lhs.result = { Node @left.result @right.result }
| Leaf lhs.result = { Leaf @lhs.gmin }

At a Root the resulting tree is returned.

SEM Root
| Root lhs.result = { @tree.result }

4.6.3 Haskell code blocks

To finish the rep-min example we define a number of Haskell functions. These
definitions are written between braces and are copied literally into the output of

9

the AG System. The following code block defines an instance of Show for Tree, a
sample Tree and a main function.

{
instance Show Tree where
show tree = case tree of

Leaf val -> "Leaf " ++ show val
Node l r -> "Node (" ++ show l ++ ") (" ++ show r ++ ")"

example :: Tree
example = Node (Leaf 3)(Node (Leaf 6)(Leaf 2))

main :: IO ()
main = do putStrLn "input tree:"

print example
putStrLn "result tree:"
print (sem_Root (Root example))

}

4.6.4 Compile and Run

The example code developed thusfar is can be found in examples/Repmin2.ag.
This attribute grammar is compiled into a Haskell source file as follows:

> uuagc --module=Main --signatures --data --semfuns --catas Repmin2.ag

Repmin2.hs generated

The generated code is a module named Main containing the Tree datatype, semantic
functions, catamorphisms, and some additional Haskell definitions. The program
can be run using runhugs as follows:

> runhugs Repmin2.hs
input tree:
Node (Leaf 3) (Node (Leaf 6) (Leaf 2))
result tree:
Node (Leaf 2) (Node (Leaf 2) (Leaf 2))

5 Language Constructs

This section gives an overview of the UUAG language. Lines printed in bold are gram-
mar rules and show what the language construct looks like in general. Subscripts
and ”. . . ”-notation are used in the syntax rules. For example:

constructorname1:type1. . .namen:typen (n ≥ 0)

This means that a constructor has zero or more fields. Valid instantiations are:

10

Leaf val:Int
Bin left:Tree right:Tree
Empty

The grammar rules in the following sections show the syntax of each construct as a
grammar rule, followed by an explanation of its semantics and a number of examples.
The UUAG language provides many shorthand notations. These abbreviations are
explained by example, as including them in the grammar rules would clutter the
presentation. A complete reference in EBNF of the UUAG language can be found in
Appendix??.

5.1 DATA declaration

DATA nonterminal
|constructor1field1,1:type1,1 . . .field1,i:type1,i

| . . .
|constructornfieldn,1:typen,1 . . .fieldn,j:typen,j

(i ≥ 0, j ≥ 0, n ≥ 0)

A DATA declares a number of productions for a nonterminal. Each production is
labelled with a constructor name. In contrast to Haskell it is allowed to use the
same constructor name for more than one nonterminal. However, the names of
all constructors of the same nonterminal must be different. Giving multiple DATA
declarations for the same nonterminal is allowed, provided that the constructor
names in the declarations do not clash. The fields of each production all have a
name and a type. The type can be a nonterminal or a Haskell type. All fields of
the same constructor must have different names.

Valid DATA declarations:

DATA Tree | Bin left:Tree right:Tree
| Leaf value:Int

DATA Decl | Fun name:String args:{[String]} body:Expr

Several abbreviations exist for DATA declarations. Fields with the same type can be
declared by listing their names separated by commas. Also the field name can be
left out, in which case the name is defaulted to the type name with the first letter
converted to lowercase. It is only allowed to leave out the field name if the type
is an uppercase type identifier. You also need to make sure that the default name
does not clash with the name of another field. The following example show correct
abbreviations:

DATA Tree | Bin left,right:Tree -- ’left’ & ’right’ have type ’Tree’
| Leaf Int -- field name is ’int’

The following DATA statement is wrong:

DATA Tree | Bin Tree Tree -- duplicate field name
| Leaf {(Int,Int)} -- type is not a single type identifier

11

5.2 ATTR declaration

ATTR nonterminal1 . . .nonterminaln
[attr1:type1 . . .attri:typei

| attr(i+1):type(i+1) . . .attrj:typej

| attr(j+1):type(j+1). . .attrk:typek

]
(n ≥ 1, 0 ≤ i ≤ j ≤ k)

An ATTR declaration declares attributes for one or more nonterminals. Each at-
tribute has a name and a type. The position of an attribute in the declaration
list (left of the bars, between the bars, or right of the bars) determines whether
it is inherited, chained, or synthesized, respectivly. A chained attribute is just an
abbreviation for an attribute that is both inherited and synthesized. The names of
all inherited attributes declared by ATTR statements must be different. The same
holds for synthesized attributes.

Valid ATTR declarations are:

ATTR Tree [depth:Int | minimum:Int | out:{[Bool]}]
ATTR Tree [count:Int | | count:Int]
ATTR Decl [environment : {[(String,Type)]}] | |]
ATTR Decl [| | code:Instructions]

For attribute declarations the same abbreviations are permitted as for field in a
DATA declaration. The name of an attribute can be left out, and attributes with the
same type can be grouped. For example:

ATTR Tree [| | min,max:Int] -- ’min’ and ’max’ both have type ’Int’
ATTR Decl [Environment | |] -- attribute name is ’environment’

The following abbreviations are wrong:

ATTR Tree [| | Int Int] -- duplicate attribute names
ATTR Decl [{[(String,Type)]} | |] -- complex type without name

A USE clause can be added to the declaration of a synthesized or chained attribute,
to trigger a special kind of copy rule(see Section 6.3). The first expression must be
an operator, and the second expression is a default value for the attribute.

attr USE expr1 expr2 : type

For example:

DATA Tree
| Bin left,right:Tree
| Leaf value:Int

ATTR Tree [| | value USE {+} {0} : Int] -- compute sum of values

An attribute can be declared to be of type SELF. The type SELF is a placeholder
for the type of the nonterminal for which the attribute is declared. For example:

12

ATTR Tree Expr [| | copy:SELF]

The ATTR statement above declares an attribute copy of type Tree for nonterminal
Tree, and an attribute copy of type Expr for nonterminal Expr . Declaring a syn-
thesized attribute of type SELF triggers a special copy-rule, that constructs a copy
of the tree. Section 6.4 explains this type of copy-rule.

Attribute declarations can also be given in DATA or SEM statements after the name
of the nonterminal. For example:

DATA Tree | Bin left,right:Tree
| Leaf Int

ATTR Tree [| | min:Int]

can be combined into:

DATA Tree [| | min:Int]
| Bin left,right:Tree
| Leaf Int

5.3 SEM

In a SEM construct one can specify semantic rules for attributes. For each production
the synthesized attributes associated with its corresponding nonterminal and the
inherited attributes of its children must be defined. If there is a rule for a certain
attribute is missing, the system tries to derive a so called copy-rule. The SEM
construct has the following form:

SEM nonterminal
|constructor1 fieldref1.attribute1=expression1

. . .
|constructorn fieldrefn.attributen=expressionn

(n ≥ 0)

Semantic rules are organised per production. Semantic rules for the same production
can be spread between multiple SEM statements. This has the same meaning as they
were defined in a single SEM statement. A fieldref is lhs, or loc, or a field name.
To refer to a synthesized attribute of the nonterminal associated with a production
the special fieldref lhs is used together with the name of the attribute. To refer
to an inherited attribute of a child of a production the field name of the child is
used together with the attribute’s name. The special fieldref loc is used to define
a variable that is local to the production. It is in scope in all semantic rules for the
production.

The expressions in semantic rules are code blocks, i.e. Haskell expressions enclosed
by { and }, see Section 5.6. They may contains references to values of attributes
and fields. These references are all prefixed with an @-sign to distinguish them from
Haskell identifiers. To refer to the value of a field one uses the name of the field.
References to attributes are similar to the ones on the left-hand side of a semantic
rule (fieldref.attribute). The difference is that they now refer to the synthesized
attributes of the children and the inherited attributes of the nonterminal associated

13

with the production. Local variables can be referenced using their name, optionally
prefixed with the special fieldref loc.

Valid definitions:

ATTR Tree [gmin:Int | | min:Int result:Tree]
SEM Tree

| Bin left.gmin = { @lhs.gmin }
-- "left.gmin" refers to the inherited attribute "gmin"
-- of the child "left"

| Bin right.gmin = { @lhs.gmin }
-- "@lhs.gmin" refers to the inherited attribute "gmin"
-- of nonterminal "Tree"

| Bin loc.min = { min @left.min @right.min }
-- "min" is a new local variable of the constructor "Bin"

SEM Tree
| Bin lhs.result = { Bin @left.result @right.result }
-- "@left.result" refers to the synthesized attribute "result"
-- of child "left"

| Bin lhs.min = { @min }
-- "@min" refers to the local variable "min"

| Leaf lhs.result = { Leaf @lhs.gmin }
-- "@lhs.gmin" refers to the inherited attribute "gmin"
-- of nonterminal "Tree"

| Leaf lhs.min = { @int }
-- "@int" refers to the value of field "int" of "Leaf"

For the SEM construct there exist a number of abbreviations. As for DATA statements
one can write attribute declarations after the name of the nonterminal. Furthermore
semantic rules for the same production can be grouped, mentioning the name of the
production only once. For example:

SEM Tree
| Bin left.gmin = { @lhs.gmin }

right.gmin = { @lhs.gmin }
loc.min = { min @left.min @right.min }

In a similar way semantic rules for the same fieldref can be grouped. For example:

SEM Tree
| Bin lhs.result = { Bin @left.result @right.result }

.min = { @min }

When the same semantic rule is defined for two productions of the same nonterminal
they can be combined by writing the names of both productions in front of the rule.
For example:

SEM Tree
| Node1 lhs.value = { @left.value + @right.value }
| Node2 lhs.value = { @left.value + @right.value }

14

can be abbreviated as follows:

SEM Tree
| Node1 Node2 lhs.value = { @left.value + @right.value }

Finally the braces ({, }) around expressions may be left out. The layout of the code
is then used to determine the end of the expression as follows. The column of the
first non-whitespace symbol after the =-sign is the reference column. All subsequent
lines that are indented the same or further to the right are considered to be part of
the expression. The expression ends when a line is indented less than the reference
column. An advantage of using layout is that problems with unbalanced braces, as
described in Section 5.6 are avoided.

5.4 TYPE

The TYPE construct is convenient notation for defining list based types. It has the
following form:

TYPEnonterminal = [type]

A TYPE construct is equivalent to:

DATA nonterminal
| Cons hd:type tl:nonterminal
| Nil

Apart from a convenient notation the TYPE construct has effect on the code gen-
erated. Instead of generating data constructors Cons and Nil Haskell’s list con-
structors :, and [] are used.

Examples of TYPE constructs:

TYPE IntList = [Int]
TYPE Trees = [Tree]

5.5 INCLUDE

Other UUAG files can be included using the following construct:

INCLUDE string

The string is a file name, between double quotes. The suffix of the file (.ag , or
.lag) should not be omitted. The file should contain valid UUAG statements. These
statements are inlined in the place of the INCLUDE statement.

5.6 Code Block

A code block is a piece of Haskell code enclosed by curly braces.

{ haskellcode }

15

There exist three kinds of code blocks: top-level, type, and expression code blocks.
A top-level code block contains Haskell declarations, such as import declarations,
and function and type definitions. A name can be writen before a top-level code
block. The code blocks are sorted by their names, and appended to the code
generated by the UUAG system. A special name imports is used to mark code blocks
containing import declarations. These are copied to the start of the generated code,
as Haskell only allows import declarations at the beginning of a file.

An example of two code blocks, an import declaration and a function definition:

imports
{
import List
}
-- simple implementation of quicksort:
{
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = let (l,r) = partition (<=x) xs

in qsort l ++ [x] ++ qsort r
}

A type code block contains a Haskell type and may be used as types in DATA,
TYPE, and ATTR declarations. Examples:

DATA Module
| Module name:{Maybe String} body:Declarations

TYPE Points = [{(Int,Int)}]

ATTR [env:{[(String,Int)]} | |]

Finally expression code blocks contain a Haskell expression and occur as the right-
hand side of attribute definitions in SEM statements. Apart from normal Haskell
code they may contain references to attributes. These references are prefixed with
an @-symbol, to distinguish them from ordinary Haskell identifiers. Examples:

SEM Tree [| | min:{Int}]
| Node lhs.min = { min @left.min @right.min } -- an expression code block

The contents of a block is the plain text between an open and a close brace. The
text is a code block is not interpreted by the UUAG system.

any ::= [”\0”..”\255”] (any character)
codeblock ::= ”{”codeblockcontent∗”}”
codeblockcontent ::= any except {, and }

| codeblock

Curly braces occurring inside the Haskell code must be balanced. This includes
curly braces in comments, and in string and character literals.

An example of a code block containing a nested pair of braces:

16

{
f a b c = let { d = b*b - 4*a*c

; result1 = (-b + sqrt d) / 2*a
; result2 = (-b - sqrt d) / 2*a
; result | d > 0 = [result1, result2]

| d == 0 = [result1]
| d < 0 = []

}
in result

All curly braces Haskell constructs, such as do, let must be matched. However,
curly braces in string, or character literals may cause problems. The balancing rule
forbids code blocks such as:

{
openbrace = "{"
}

This problem can be fixed by inserting a matching brace in comments. In the
following code the curly braces are balanced:

{
openbrace = "{"
-- }, just to balance braces
}

5.7 Comments

One-line comments start with two dashes (--) and end at the end of the line.
Multi-line comments start with {- and end with -}. As in Haskell comments can
be nested.

{-
Definition of a datatype for binary trees
-}
DATA Tree

| Leaf val:Int
| Node left:Tree right:Tree -- a node has two subtrees

5.8 Names

Names start with a letter followed by a (possibly empty) sequence of letters, digits,
and the symbols _ and ’. A name for a nonterminal or constructor must start
with an upper-case letter. A name of a field or attribute must start with a lower-
case letter. The following words are reserved and cannot be used as names: DATA,
EXT, ATTR, SEMTYPE, USE, loc, lhs, and INCLUDE.

Valid names:

17

-- nonterminals or constructors:
Node
Expression
Tree_Node
-- field names or attributes:
left
long_name
field2

5.9 Strings

A string in AG is sequence of characters enclosed by double quotes ("). The struc-
ture of strings is similar to Haskell strings. The escape character is a backslash
(\). Below a table with the most common escape sequences:
\’ single quote (’)
\" double quote (")
\n newline
\t tab
\nnn character with ascii-code nnn

For a more detailed description of string

and escape sequences see the Haskell Report[?]. Examples of valid strings:

"hello world"
"line 1\nline 2"
"hello\32world"

6 Copy Rule

When a definition for an attribute is missing, the UUAG can often derive a rule for
it. These automatic rules, also known as copy rules, are based on name equality of
attributes. They save a lot of otherwise trivial typing, thus making your programs
easier to read by just leaving the essential parts in the code. If in the list of rules
for a constructor a rule for an attribute attr1 is missing then UUAG system tries
to derive a rule for this attribute. This is done by looking for an attribute attr2
with the same name as attr1 in the sets of synthesised attributes of the children of
the constructor and in the set of inherited attributes of the nonterminal it belongs
to. If such an attribute attr2 is found then the value of attr1 is set to the value
of attr2 . This section firstly shows two examples and then defines a generalisation
that captures both(and others). There are also two special copy rules, the USE, and
SELF rules, which are explained at the end of this section.

6.1 Examples

Very often one needs to pass a value from a node to all its children. Consider for
example the following code, in which a inherited attribute gmin is declared.

DATA Tree | Bin left,right:Tree

18

| Leaf val:Int

ATTR Tree [gmin:Int | |]

In this example rules for the syntesized attribute gmin of children of the construc-
tor Bin are missing. This is however no problem. The nonterminal Tree has an
inherited attribute with the same name and the UUAG system automatically inserts
the following rules:

SEM Tree
| Bin left.gmin = @lhs.gmin

right.gmin = @lhs.gmin

This kind of copy-rule is very convenient for copying an inherited attribute to all
nodes in a top-down fashion.

Another kind of copy-rule is a co-called chain-rule. For a chain rule an attribute
that is both inherited as well as synthesized is chained from left to right through
all children of a constructor. Consider for example the following code that numbers
all leaves in a Tree from left to right.

ATTR Tree [| label:Int |]

SEM Tree
| Leaf lhs.label = @lhs.label+1

Because the attribute label is declared inherited as well as synthesized the UUAG
system derives the following rules for the constructor Bin:

SEM Tree
| Bin left.label = @lhs.label

right.label = @left.label
lhs.label = @right.label

6.2 Generalised copy rule

The UUAG system implements a more general copy rule of which the examples above
are instances. If a rule is missing for an inherited attribute n of a child c of
constructor con, the UUAG system searches for an attribute with the same name(
n). The UUAG system searches for a suitable candidate in the following lists:

1. local attributes

2. synthesized attributes of children on the left of c

3. inherited attributes

4. fields

The search takes place in the order defined above, and the first occurrence of n
is copied. Thus local attributes have preference over others. When there are are

19

than one occurrences of n in the list of synthesized attributes of the children the
rightmost is taken.

When a rule for a synthesized attribute is missing the search for a candidate with
the same name takes place in a similar fashion. In the second step all children are
searched, again taking the rightmost candidate if more than one is found.

6.3 USE rules

A USE rule can be derived for a synthesized attribute whos declaration includes a
USE clause. A USE clause consists of two expressions; the first is an operator, and
the second is a default value. Suppose s is a synthesized attribute of nonterminaln,
that is declared with a USE clause. If for a constructor c of n a definition of s is
missing, a rule is derived as follows. Collect all synthesized attributes of constructor
c’s children with the same name as s. If this collection is empty the default value
declared in the USE clause is taken. If this collection contains only a single attribute,
then the value of this attribute is copied. Otherwise the values of the attributes are
combined using the operator and the result is used to define s.

For example:

DATA Tree
| Bin left,right:Tree
| Single val:Int
| Empty

ATTR Tree [|| sum USE {+} {0} : Int]
SEM Tree

| Single lhs.sum = @val

The UUAG system derives the following rules:

SEM Tree
| Bin lhs.sum = @left.sum + @right
| Empty lhs.sum = 0

6.4 SELF rules

The type SELF in an attribute declaration is equivalent to the type of the nontermi-
nal to which the attribute belongs. A synthesized SELF attribute can for example
be used if one wants a local copy of a tree, or wants to transform it. The SELF
attribute then holds the transformed version of the tree. A SELF attribute usually
holds a copy of the tree, except for a few places where a transformation is done.
The semantic rules required for constructing a copy of a tree call for each pro-
duction the corresponding constructor function on the copies of the children. The
UUAG system implements a special copy rule to avoid writing these trivial rules. For
each production of a nonterminal with a synthesized SELF attribute(n), the UUAG
system generates a local attribute containing the application of the corresponding

20

constructor to the SELF attributes of the children with the same name as n. The
value of the synthesized attribute is set to this local attribute.

For example for:

DATA Tree
| Bin left,right:Tree
| Leaf val:Int

ATTR Tree [| | copy : SELF]

the following semantic rules are generated:

SEM Tree
| Bin loc.copy = Bin @left.copy @right.copy

lhs.copy = @copy
| Leaf loc.copy = Leaf @val

lhs.copy = @copy

The default definitions for the local and sythesized SELF attributes can be overriden
by the programmer.

The following program is a complete attribute grammer for the rep-min problem
using as many copy rules as possible. For constructing the transformed the a SELF
attribute result is used. Note that only for the production Leaf an explicit definition
of this attribute is given. The definition for Bin is provided by an automatic rule.

DATA Tree
| Bin left,right:Tree
| Leaf val:Int

DATA Root
| Root Tree

ATTR Tree [gmin:Int | | lmin USE {‘min‘} {0}:Int]
ATTR Root Tree [| | result:SELF]

SEM Tree
| Leaf lhs.lmin = @val

.result = Leaf @lhs.gmin
SEM Root
| Root tree.gmin = @tree.lmin

7 Grammar

Normal UUAG system source files have .ag as suffix. The UUAG system also supports
literate programming. Literate UUAG files have .lag as suffix. In literate mode all
text in a file is considered to be comments, except for those blocks enclosed between:
\begin{Code}, and \end{Code}. The begin and end commands should be placed
at the beginning of a line.

21

The remainder of this section presents the grammar of the UUAG system as EBNF
production rules. Parenthesis are used for grouping, nonterminals are printed
bold− face, and terminal symbols are printed between ”quotes”. A rule of form
X∗ means a repetion of zero or more times X; X+ is a repetion of one or more
times X, and X? is an optional occurrence of X. In the lexical syntax character
ranges are written between square brackets. For example [”A”..”Z”] represents the
range of uppercase letters.

7.1 Lexical Syntax

keywords = { ”DATA”, ”EXT”, ”ATTR”, ”SEM”, ”TYPE”
, ”USE”, ”loc”, ”lhs”, ”INCLUDE” }

uppercase ::= [”A” .. ”Z”]

lowercase ::= [”a” .. ”z”]

any ::= [”\0” .. ”\255”] (any character)

conid ::= uppercase identletter* except keywords

varid ::= lowercase identletter* except keywords

identletter ::= uppercase
| lowercase
| ”’”
| ” ”

string ::= ”"” stringcontents ”"”

codeblock ::= ”{” codeblockcontent* ”}”

codeblockcontent ::= any except ”{”, and ”}”
| codeblock

layoutcodeblock ::= layoutcontent*

layoutcontent ::= any (except letters that are less indented than reference column)

7.2 Context-free Grammar

ag ::= elem*

elem ::= ”DATA” conid attrDecls? dataAlt*
| ”ATTR” conid+ attrDecls
| ”TYPE” conid ”=” ”[” type* ”]”
| ”SEM” conid attrDecls? semAlt*
| varid? codeblock
| ”INCLUDE” string

22

attrDecls ::= ”[” inhAttrDecl* ”|” synAttrDecl* ”|” synAttrDecl* ”]”

type ::= conid
| codeBlock

inhAttrDecl ::= varids ”:” type

varids ::= varid (”,” varid)*

synAttrDecl ::= varids (”USE” codeBlock codeBlock)? ”:” type

dataAlt ::= ”|” conid field*

field ::= varids ”:” type
| conid

semAlt ::= ”|” conid+ semDef*

semDef ::= (varid | ”lhs”) attrDef+
| ”loc” locDef+

attrDef ::= ”.” varid assign expr

locDef ::= ”.” pattern assign expr

expr ::= codeBlock
| layoutCodeBlock

assign ::= ”=”
| ”:=”

pattern ::= conid pattern1*
| pattern1

pattern1 ::= varid (”@” pattern1)?
| ”(” patterns? ”)”
| ” ”

patterns ::= pattern (”,” pattern)*

23

8 Compiler flags

short option long option description
-m --module[=name] generate module header, specify module name
-d --data generate data type definitions
-f --semfuns generate semantic functions
-c --catas generate catamorphisms
-s --signatures generate type signatures for semantic functions

--newtypes use newtypes instead of type synonyms
-p --pretty generate pretty printed list of attributes
-r --rename prefix data constructors with the name of corresponding type

--nest use nested pairs, instead of large tuples
-o file --output=file specify output file
-v --verbose verbose error message format
-h,-? --help get usage information
-a --all do everything (-dcfsprm)

--prefix=prefix set prefix for semantic functions, default is sem_
--self generate self attribute for all nonterminals
--cycle check for cyclic attribute definitions
--version get version information

24

	About this document
	Reporting bugs
	The "Artistic License"
	Preamble
	Definitions:

	Getting Started
	Running the AG system
	Simple Attribute Grammar
	Adding attributes
	Compiling an attribute grammar
	Generated code
	RepMin continued
	Distribute global minimum
	Construct the result
	Haskell code blocks
	Compile and Run

	Language Constructs
	DATA declaration
	ATTR declaration
	SEM
	TYPE
	INCLUDE
	Code Block
	Comments
	Names
	Strings

	Copy Rule
	Examples
	Generalised copy rule
	USE rules
	SELF rules

	Grammar
	Lexical Syntax
	Context-free Grammar

	Compiler flags

