(©Copyright by
Daniel Charles Sturman

1994

FAULT-ADAPTATION FOR SYSTEMS IN UNPREDICTABLE ENVIRONMENTS

BY
DANIEL CHARLES STURMAN

B.S., Cornell University, 1991

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign,1994

Urbana, lllinois

ABSTRACT

This thesis describes a technique for designing systems which can adapt to patterns of faults
as they occur. Such adaptively dependable systems are especially critical in isolated systems
which must maintain long-term fault tolerance and in open systems where future system config-
urations are unknown. Through the use of a reflective language structure, we support dynamic
installation and composition of fault-tolerance protocols. These protocols are constructed as
operations on messages to allow reuse and transparency: applications and protocol may be de-
veloped separately without prior knowledge of their future composition. We have implemented
our techniques in the language Screed which runs on the actor platform Broadway. Details of
the implementation are also described.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Gul Agha, for supporting me in this work. I would
also like to thank the other members of the Open Systems Laboratory for their input and
contributions. In particular, I would like to thank Svend Frglund and Rajendra Panwar for
their many comments on Broadway and Screed as well as their contributions to the reflective
model. Finally, I would like to thank my parents and Lily, who provide an invaluable source of
support with their encouragements and love.

v

TABLE OF CONTENTS

Chapter
1 Introduction
1.1 Introduction o o L e e e
1.2 Related Work oL L e
1.3 Background e
1.3.1 The Actor Modelo
1.3.2 Object Orientation
1.3.3 Reflection e
2 Meta-level Architecture for Ultra-dependability
2.1 A Meta-Level Architecture. oo oo
2.2 Transparency and Reuseo
2.3 A Replicated Server e
2.4 Composition of Dependability Characteristics
3 Exception Handling
3.1 Exception Handling Components,
3.2 Syntax for Exception Handling o 0.
3.2.1 Description of Handlers o o 0o
3.2.2 Signal Generation L L o Lo
3.3 Supporting Adaptive Dependability oo o o000
3.4 Reconfiguring a Satellite to Preserve Failure Semantics
4 Tmplementation
4.1 The Structure of Broadway L L o
4.1.1 Dzemon Structure oL Lo e e e
4.1.2 Library e e e e e e e e
4.2 Implementation of MAUD e e e e e
4.3 Implementation of Screed oL L
4.3.1 Explicit Continuations oL Lo
4.3.2 Implementation of Exception Handling
4.4 Performance Lo e
5 Conclusion e
Bl Summary ... Lo e e e
5.2 Future Work L

5.2.1 Consistent Installation of Protocols 35

5.2.2 Protocol Languages o e 35
Appendix

A Broadway e e e 36

A1 Data Structures e e e 36

A.1.1 A Basic Set of Data Structures, 36

A.1.2 Data Type Characteristicso oo 37

A.1.3 Designing Custom Data Structures 38

A.2 Structure of Actor Class C++4 Representations 38

A3 Actor Objects o o L 40

A4 The Deemon o o o o o e e e e e e e e e 41

A5 Scheduler 42

A6 Type Factory o o L o e 43

A.7 Membership Monitor & Handler 43

A.8 The Platform 44

B Screed e 45

B.1 Objectsin Screed oL L e 45

B.2 Syntax e 45

B.2.1 Statements 46

B.3 Data Types o o o 48

B.3.1 Constants 49

B.4 Predefined Names e e e 49

B.5 Library oL e e 50

B.5.1 Predefined Actors 50

B.5.2 Predefined Classes 50

Bibliography 51

vi

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

Al

LIST OF FIGURES

A replication protocol installed on an arbitrary server.
Code for the server-end mail queue which implements replication.
Code for the client-end mail queue which implements replication.
The additional methods which allow for protocol composition.
Partners and Owner relationships. o o000,
Composed system using a replication protocol and message checksum protocol.

The four roles involved with an exceptional condition.
The structure of a handle block in Screed.
An example of handler scopes and their effect.
A prototypical adaptively dependable system.
Example satallite architecture and result of replication.

Messages sent between meta- and base objects. o000
Example transformation of an explicit continuation.
Code for the Directory class. L
Transformation of a handle statement into C++.
Performance times for various Broadway operations.

A sample lookup function.

vii

10

Chapter 1

Introduction

1.1 Introduction

The failure semantics of a service refers to the set whose elements are the different ways in
which a service can fail [9]. This set serves as a contract with clients who use the service:
failure semantics for a client are often dependent on the failure semantics of the services used.
Therefore, an incorrect specification of the failure semantics of one service can lead to a chain
of incorrect failure semantics.

For example, a data-base object may have omission-only failure semantics: any reply to a
query will be correct, but a reply is not guaranteed. Consider an accounting program which
assumes any results received from the data-base are correct. The accounting program will
balance records and trigger error-finding services if the records do not balance. Assume the
accounting program’s failure semantics specify that it should be conservative in invoking the
error-finding services: if a possible error exists, the services should be invoked. If the data-base
violates its failure semantics by replying with corrupt data that hides an error, the accounting
program may incorrectly deduce a correct balance and never invoke the error-finding services,
thereby violating the accounting program’s failure semantics.

Failure semantics are enforced through the use of dependability protocols which guarantee
an acceptably small probability that a failure whose type is not specified may occur. Generally,
the more specific the failure semantics, the greater the computational cost of the protocols.
However, less stringent failure semantics for commonly used services may lead to a greater
number of protocols necessary to enforce failure semantics on other services.

Many systems have been developed to support the development of dependable computing
applications. In most of these systems, however, the failure semantics of a service are assumed to
be static and, therefore, the dependability protocols used are fixed at compile time. However, in
many computer systems, it is either unsatisfactory to adhere to a static set of failure semantics or
impossible to adequately enforce the semantics with a fixed group of dependability protocols. In
some systems, the protocols chosen may later prove incapable of correctly enforcing the specified
failure semantics. In others, the introduction of new services may require the restructuring of
failure semantics. We illustrate these situations with two example systems:

e Consider an embedded system which is required to function over a long duration, yet
is fault-prone due to the uncertain environment in which it operates. If this system
is physically isolated, such as in the control system of a satellite, physical modification

of system components is almost impossible. In such a system, a change in the physical
environment may result in protocols designed for the old environment failing to uphold the
failure semantics in the new environment. New, more rigorous, dependability protocols
may then be required to enforce the desired failure semantics of the system.

e Consider an open system. In open systems, processes may be created and removed as
necessary. Creation of processes may be conditional on other events and, therefore, deter-
mining the system configuration statically may be impossible. Pre-existing services may
require a stricter set of failure semantics for a new client than was originally expected.
Conversely, the existing clients may allow a new service to maintain less stringent fail-
ure semantics. If this flexibility is not exploited, significant performance may be lost.
Therefore, it may be impossible to determine what failure semantics a process must have,
or what protocols are necessary to enforce these semantics, until after it actually joins
the system. Furthermore, the addition of new services may require a change in the fail-
ure semantics of existing components. For example, a file server may initially address
safety only by check-pointing the files to stable storage. New clients added to the system,
however, may require the server to also provide persistence and a protocol to support
replication may need to be added.

In this thesis, we describe a methodology for the modular specification of systems that can
adapt a system’s failure semantics and set of protocols enforcing the failure semantics to match
the current environment. We call such systems adaptively dependable systems. We present a
methodology which allows the reuse and transparent installation of dependability protocols as
well as their dynamic installation in a system. Our methodology, when combined with a suitably
structured exception handling mechanism and fault detection, allows for the development of
fault handlers which can maintain consistent failure semantics within a changing environment
and can alter failure semantics as system needs change. We have provided programmer support
for our methodology in the language Screed which is implemented on our run-time system
Broadway.

We employ reflection as the enabling technology for dynamic installation of dependability
protocols. Reflection means that a system can reason about and manipulate a representation
of its own behavior. This representation is called the system’s meta-level. The components of
an object that may be customized at the meta-level are referred to as the meta-architecture.
In our case, the meta-level contains a description which implements the failure semantics of an
executing application; reflection thus allows dynamic changes in the execution of an application
with respect to dependability.

Besides supporting dynamic installation, our meta-architecture supports transparency and
reuse of dependability protocols. The meta-architecture allows protocols to be expressed as
operations on abstract messages. Since the individual fields of a particular message are never
examined, the same protocol may be used with different applications.

Given this technique for dynamic modification of the dependability protocols used in a
system, we then describe how fault detection and exception handling may be used in conjunction
with our meta-architecture to support adaptively dependable systems. We model both failures
and exceptions as objects. Each type of fault which may be detected is described as a specific
system exception.

We construct managers — objects with meta-level capabilities — to address system excep-
tions. Managers serve three purposes:

¢ A manager may correct for recoverable faults. The corrections allow the system to con-
tinue to function despite a fault. This role is generally referred to as performing forward
error Tecovery.

e Managers provide failure prevention. When a manager discovers a pattern of component
failures, it dynamically installs protocols which mask future failures or facilitate future
fault-correction by expanding the set of recoverable faults. In this manner, we have taken
forward error recovery one step further: rather than simply adjusting the system state,
the actual dependability characteristics of the system may be modified.

e Managers support reconfiguration of the dependability protocols in a system. This may be
done either to alter the system’s failure semantics or to correctly enforce these semantics
once the environment changes. Thus, we can develop dependable long duration systems
whose fault patterns are not known at start-up time.

A prototype implementation which tests these ideas is described. Our run-time system
Broadway supports our meta-architecture as well as failure detection and a set of system ex-
ceptions. On top of Broadway, we have implemented the language Screed. Screed is a prototype
concurrent actor language we use to illustrate our ideas. Screed provides complementary con-
structs for both fault detection through exception handling and for dynamic installation of
protocols through a meta-architecture. This language is presented as a demonstration of how
such constructs may be added to existing languages.

This thesis is organized as follows. This chapter discusses related work and background
information: in Section 1.2, we discuss other work in reflection, exception handling, and in
developing languages for fault-tolerance; Section 1.3 provides background information on reflec-
tion, the Actor model, and object-orientation. Chapter 2 discusses our meta-level architecture
and how it may be used to construct dependability protocols. We also discuss the effect of our
meta-level architecture on protocol performance. Chapter 3 describes exception handling in
Screed and how exception handling may be used in conjunction with our meta-level architec-
ture to implement adaptively dependable systems. We then illustrate this technique with an
example of a system adapting to a change in environment.

Implementation details are then discussed in Chapter 4 where we discuss pertinent details
of implementing our techniques for Broadway and Screed. The appendices provide a more
detailed description Broadway and Screed. Appendix A provides the Broadway User’s Manual
and Appendix B is the Screed Programmer’s Guide.

1.2 Related Work

A number of languages and systems offer support for constructing fault-tolerant systems. In
Argus [20], Avalon [13] and Arjuna [28], the concept of nested transactions is used to structure
distributed systems. Consistency and resilience is ensured by atomic actions whose effect are
check-pointed at commit time. The focus in [24], [7] and [5] is to provide a set of protocols
that represent common communication patterns found in fault-tolerant systems. None of the
above systems support the factorization of fault-tolerance characteristics from the application
specific code. In [33] and [25], replication can be described separate from the service being
replicated. Our approach is more flexible since fault-tolerance schemes are not only described
separately but they can also be attached and detached dynamically. Another unique aspect of

our approach is that different fault-tolerance schemes may be composed in a modular fashion.
For example, check-pointing may be composed with replication without having either protocol
know about the other.

Non-reflective systems which support customization do so only in a system-wide manner.
For example, customization in a micro-kernel based system [1] affects all the objects collectively.
In an object-oriented system such as Choices [6], frameworks may be customized for a particular
application. However, once customized, the characteristics may not change dynamically. Re-
flection in an object-based system allows customization of the underlying system independently
for each object. Because different protocols are generally required for very specific subsets of
the objects in a system, this flexibility is required for implementing dependability protocols.

Reflection has been used to address a number of issues in concurrent systems. For example,
the scheduling problem of the Time Warp algorithm for parallel discrete event simulation is
modeled by means of reflection in [35]. A reflective implementation of object migration is
reported in [32]. Reflection has been used in the Muse Operating System [34] for dynamically
modifying the system behavior. However, the literature is unclear as to the effect on efficiency
of this generally reflective system.

Reflective frameworks for the Actor languages MERING IV and Rosette have been proposed
in [14] and [31], respectively. In MERING IV, programs may access meta-instances to modify
an object or meta-classes to change a class definition. In Rosette, the meta-level is described
in terms of three components: a container, which represents the acquaintances and script; a
processor, which acts as the scheduler for the actor; and a mailboz, which handles message
reception

The concept of unifying exception handling and fault detection was originally proposed
in [27] and then refined in [26]. In these papers, detected failures are considered asynchronous
events much as exceptional conditions are treated in distributed programming languages. There-
fore, exception handling constructs provide a natural way to incorporate failure-response code
into an application.

Goodenough introduced the idea of exceptions and exception handling in [17]. Since then,
many different exception handling mechanisms have been proposed. Exception handling con-
structs have been developed for object-based languages such as Clu [21] and Ada [10]. Dony [11]
describes an approach for object-oriented languages which was implemented in Smalltalk. This
was the first approach that implemented exceptions as objects. Exception handling for C++ is
discussed in [30]. A good overview of techniques proposed for other object-oriented languages
can be found in [12].

A critical difference between object-oriented approaches to exception handling and non-
object-oriented approaches such as CLU [21] or Ada [10] is that, in the non-object-oriented
approaches, the exception object is represented by a set of parameters to a function. Therefore,
on generating the signal, this parameter list must provide all possible information used by the
handler.

For concurrent systems, an approach has been proposed for languages which use RPC
communication [8]. However, the technique is based on synchronized components which allows
their constructions to be closer to that of a sequential system than an asynchronous system.

Exception handling mechanisms have been proposed for other Actor languages. In [19], an
exception handling mechanism was proposed for ABCL/1 and for Acore in [23]. These languages
use complaint addresses to support exception handling. A complaint address is an address, spec-
ified with each message, to which all signals are dispatched. Complaint address-based schemes

do not allow for different handlers to be bound to different exceptions: all complaints are sent
to the same destination. Such an approach makes supporting adaptive dependability, where
each handler is an “expert” on a particular group of exceptions, very difficult to implement.
Furthermore, these complaint address schemes pass exception information in terms of a set
number of parameters in a message rather than utilizing exception objects.

1.3 Background

Before discussing our meta-architecture and how we use it to support adaptively dependable
systems, we first discuss in greater detail some of the concepts used in this paper. Specifically, to
illustrate our concepts we have chosen the Actor model of concurrent computation. The Actor
model was chosen due to the ease in which our reflective architecture could be incorporated.
We then briefly discuss some of the advantages of object-oriented programming and how they
are important to our methods. Finally, we give a more in-depth discussion of reflection and
how it relates to a programming language.

1.3.1 The Actor Model

We illustrate our approach using the Actor model [2, 3]. It is important to note that the idea of
using reflection to describe dependability is not tied to any specific language framework. Our
methodology assumes only that resources can be created dynamically, if needed, to implement
a particular protocol and that the communication topology of a system is reconfigurable. Our
methodology does not depend on any specific communication model.

Actors can be thought of as an abstract representation for the computing components in
a multicomputer architecture. An actor is an encapsulated entity that has a local state. The
state of an actor can only be manipulated through a set of operations.

Actors communicate by asynchronous point-to-point message passing. A message is a re-
quest for invocation of an operation in the target actor. Messages sent to an actor are buffered
in a mail queue until the actor is ready to process the message. FEach actor has a system-wide
unique identifier which is called a mail address. This mail address allows an actor to be ref-
erenced in a location transparent way. In order to abstract over processor speeds and allow
adaptive routing, preservation of message order is not guaranteed.

The behavior of an actor is the actions performed in response to a message. These actions
may include the dynamic creation of new actors. Actor addresses may be communicated in
messages and an actor may only communicate with another actor if it has the correct address.
An actor’s acquaintances are the mail addresses of known actors. An actor can only send
messages to its acquaintances, which provides locality.

1.3.2 Object Orientation

In an object-oriented environment, a program execution is organized as a collection of objects.
Each object is an encapsulated entity, similar to an instance of an abstract data type. The
local data comprising each object may only be accessed through an interface specified as a set
of methods. The operations carried out by a method are not visible outside the object. Objects
communicate with messages which invoke a method in the receiving object. The local data of
another object can not otherwise be changed or accessed.

Objects are instantiated from classes. A class is a user-defined abstraction. Classes may
be thought of as types and objects as elements of that type. Instantiation is the creation of
an object of a particular class. Classes contain the description (code) of the methods and
of the instance variables for objects instantiated from that class. Classes may inherit from
other classes. Inheritance provides the inheriting class with the properties — the methods and
instances — of the ancestor class. The inheriting class can then utilize these properties as well
as augment them with new instances variables or methods. Methods may be inherited directly
or redefined, facilitating code reuse.

Object-oriented languages allows for a modular development of systems. The implementa-
tion of each component is hidden from other components: only the interface is known. In this
way, a component’s implementation may change without affecting other components. Code may
also be reused efficiently since components share code by inheriting from a common ancestor
class.

1.3.3 Reflection

Reflection means that a system can manipulate a causally connected description of itself [29, 22].
Causal connection implies that changes to the description have an immediate effect on the
described object. In a reflective system, a change in these descriptions or meta-objects results
in a change in how objects are implemented. The object for which a meta-object represents
certain aspects of the implementation is called the base object.

Meta-objects may be thought of as objects which logically belong in the underlying run-time
system. For examples, a meta-object might control the message lookup scheme that would
map incoming messages to operations in the base object. Another meta-object may modify
how values are read from memory. Using reflection, such implementation-level objects can be
accessed and examined, and user defined meta-objects may be installed, yielding a potentially
customizable run-time system within a single language framework.

The reflective capabilities which are provided by a language are referred to as the meta-
level architecture of the language. The meta-level architecture may provide variable levels of
sophistication, depending on the desirable level of customization. The most general meta-level
architecture is comprised of complete interpreters, thus allowing customization of all aspects
of the implementation of objects. In practice, this generality is not always needed and, fur-
thermore, defining a more restrictive meta-level architecture may allow reflection to be realized
in a compiled language. The choice of a meta-level architecture is part of the language de-
sign. Customizability of a language implementation must be anticipated when designing the
run-time structure. Although a restrictive meta-level architecture limits flexibility, it provides
greater safety and structure. If all aspects of the implementation were mutable, an entirely
new semantics for the language could be defined at run-time; in this case, reasoning about the
behavior of a program would be impossible.

We limit our meta-level to only contain the aspects that are relevant to dependability.
Application specific functionality is described in the form of base objects and dependability
protocols are described in terms of meta-objects. Thus, dependability is modeled as a special
way of implementing the application in question. OQur methodology supports modularity since
functionality and dependability are described in separate objects. Since meta-objects can be
defined and installed dynamically, the objects in a system can dynamically change the proto-
cols enforcing their failure semantics as system needs change. Furthermore, new dependability

protocols may be defined while a system is running and put into effect without stopping and
recompiling the system. For example, if a communication line within a system shows poten-
tial for unacceptable error rates, more dependable communication protocols may be installed
without stopping and recompiling the entire system.

Since meta-objects are themselves objects, they can also have meta-objects associated with
them, giving customizable implementation of meta-objects. In this way, meta-objects realizing
a given dependability protocol may again be subject to another dependability protocol. This
scenario implies a hierarchy of meta-objects where each meta-object enforces a subset of the
failure semantics for the application in question. Each meta-object may be defined separately
and composed with other meta-objects in a layered structure supporting reuse and incremental
construction of dependability protocols.

Because installation of a malfunctioning meta-level may compromise the dependability of
a system, precautions must be taken to protect against erroneous or malicious meta-objects.
To provide the needed protection of the meta-level, we introduce the concept of privileged
objects called a managers. Only managers may install meta-objects. Using operating system
terminology, a manager should be thought of as a privileged process which can dynamically load
new modules (meta-objects) into the kernel (meta-level). It should be observed that, because of
the close resemblance to the operating system world, many of the operating system protection
strategies can be reused in our design. We will not discuss particular mechanisms for enforcing
the protection provided by the managers in further detail here. Because only managers may
install meta-objects, special requirements can be enforced by the managers on the structure
of objects which may be installed as meta-objects. For example, managers may only allow
installation of meta-objects instantiated from special verified and trusted libraries. Greater
or fewer restrictions may be imposed on the meta-level depending on the dependability and
security requirements that a given application must meet.

Chapter 2

Meta-level Architecture for
Ultra-dependability

In this chapter we introduce MAUD (Meta-level Architecture for Ultra Dependability) [4].
MAUD supports the development of reusable dependability protocols. These protocols may
then be installed during the execution of an application. MAUD has been implemented on
Broadway, our run-time environment for actors.

We begin with a discussion of MAUD’s structure. We then discuss how transparency and
reusability of protocols are supported by this structure followed by an example of such a proto-
col. We finish this section by demonstrating how MAUD also allows the composition of protocols
and give an example of composition.

2.1 A Meta-Level Architecture

As previously mentioned, MAUD is designed to support the structures that are necessary to
implement dependability. In MAUD, there are three meta-objects for each actor: dispatcher,
mail queue and acquaintances. In the next three paragraphs we describe the structure of meta-
objects in MAUD. Note that MAUD is a particular system developed for use with actors. It
would be possible, however, to develop similar systems for most other models.

The dispatcher and mail queue meta-objects customize the communication primitives of
objects so that their interaction can be adjusted for a variety of dependability characteristics.
The dispatcher meta-object is a representation of the implementation of the message-send
action. Whenever the base object sends a message, the run-time system calls the transmit
method on the installed dispatcher. The dispatcher performs whatever actions are needed to
send the given message. Installing dispatchers to modify the send behavior makes it possible
to implement customized message delivery patterns.

A mail queue meta-object represents the mail queue holding the incoming messages sent
to an actor. A mail queue is an object with get and put operations. After installation of
a mail queue meta-object, its get operation is called by the run-time system whenever the
base object is ready to process a message. The put operation on a mail queue is called by the
run-time system whenever a message for the base object arrives. By installing a mail queue at
the meta-level, it is possible to customize the way messages flow into the base object.

The acquaintances meta-object is a list representing the acquaintances of a base object. In
an actor system, all entities are actors. Although they may be implemented as local state, even
primitive data objects, such as integers or strings, are considered acquaintances in an actor
system. Therefore, in an actor language the acquaintances and the mail queue comprise the
complete state of an actor. The acquaintances meta-object allows for check-pointing of actors.

Meta-objects are installed and examined by means of meta-operations. Meta-operations are
defined in the class called Object which is the root of the inheritance hierarchy. All classes
in the system inherit from Object, implying that meta-operations can be called on each actor
in the system. The meta-operations change mailQueue and change_dispatcher install mail
queues and dispatchers for the object on which they are called. Similarly, the meta-operations
get mailQueue, get_dispatcher and get_acquaintances return the meta-objects of a given
actor. If no meta-objects have been previously installed, an object representing the built-in,
default, implementation is returned. Such default meta-objects are created in a lazy fashion
when a meta-operation is actually called.

2.2 Transparency and Reuse

By describing our dependability protocols in terms of meta-level dispatchers and mail queues, we
are able to construct protocols in terms of operations on messages where we treat each message
as an integral entity. There are several advantages to developing dependability protocols in this
manner.

The first advantage is the natural way in which protocols may now be expressed. When
dependability protocols are described in the literature, they are described in terms of operations
on abstract messages, i.e. the actual contents of the messages are rarely considered. Therefore,
it is logical to code protocols in a manner more closely resembling their natural language
description.

Secondly, because the protocols are expressed in terms of abstract messages and because
every object may have a meta-level mail queue and dispatcher, a library of protocols may be
developed which may be used with any object in the system. Such a library would consist of
protocols expressed in terms of a mail queue and dispatcher pair. The meta-objects may then
be installed on any object in the system. Since the protocols deal only with entire messages, the
actual data of such messages is irrelevant to the operation of the protocol. Only fields common
to every message, such as source, destination, time sent, etc. need be inspected.

The libraries may also be used with other applications, allowing the reuse of dependability
protocols. One set of developers could be responsible for the dependability of multiple software
systems and develop a protocol library for use with all of them. Since protocols implemented
with MAUD are transparent to the application, other development teams, who are responsible
for development of the application programs, need not be concerned with dependability. In the
final system, protocols from the library may be installed on objects in the application, providing
dependability in the composed system.

2.3 A Replicated Server

In this section, we provide an example of how a protocol may be described using MAUD. In
a distributed system, an important service may be replicated to maintain availability despite

Key:
Dispatcher

@
T MailQueue

_ _» Messagesend
—p Causal Connection

Figure 2.1: A replication protocol installed on an arbitrary server.

processor faults. In this section, we will give an example of how MAUD can be used in an actor
domain to develop a modular and application-independent implementation of a protocol which
uses replication to protect against crash failures.

class Forwarder : MailQueue {
var actor backup, server;
put(msg m) {
m.base_send();
m.set_dest(backup);
m.send();

¥
¥

Figure 2.2: Code for the server-end mail queue which implements replication.

The protocol we describe is quite simple: each message sent to the server is forwarded to
a backup copy of the server. In this manner, there is an alternate copy of the server in case
of a crash. Reply messages from both the original and backup servers are then tagged and the
client eliminates duplicate messages.

Figure 2.1 shows the resulting actions occurring when a message is sent to the replicated
service. The original server is actor S;. When a message is received by the Forwarder, the
message is forwarded to the backup S5. S5 is initialized with the behavior and state of 5;.
Since they will receive the same messages in the same order, their state will remain consistent.
Therefore, any replies will be identical and in the same order. The replies are tagged by the
dispatchers of class Tagger and only the first copy of each message is passed on to the client by
Eliminator.

Forwarding messages to the backup server is implemented using a meta-level mail queue.
The Screed code for this mail queue is presented in Figure 2.2. Using a dispatcher, each reply

10

class Eliminator : Mailq {
var
int tag;
actor members[2];
actor client;
/* No get method is required since we use
* the default behavior inherited from Mailq */
put(msg m) {
int i;
for (i := 0 to 1)
if (m.get_src() = members[i])
/* Since the message was from a replica,
* we know that the first argument is a tag and
* the second is the original message.
*/
if (m.arg[0] < tag)
/* Discard message */
return;
else if (m[0] = tag) {
self .enqueue(m[1]);
tag := tag + 1;

}

Figure 2.3: Code for the client-end mail queue which implements replication.

message of the server is tagged to allow the elimination of duplicate replies by the client. A
mail queue at the client performs this duplicate elimination. The code for this mail queue is

shown in Figure 2.3.

We assume that managers themselves install appropriate meta-objects realizing a given
dependability protocol. Therefore, we specify the relevant dependability protocols by describing
the behavior of the initiating manager as well as the installed mail queues and dispatchers. A
manager in charge of replicating a service takes the following actions to achieve the state shown

in Figure 2.1:

1. The specified server is replicated by a manager by creating an actor with the same behavior

and state.

2. A mail queue is installed for the original server to make it act as the Forwarder described

above.

3. The mail queues of the original clients are modified to act as the Eliminator described

above.

4. The dispatchers of the servers are changed to tag all messages so that the Eliminator may
remove copies of the same message.

11

add mailq (actor aMailq) {
if (mailq = nil) {
self.change mailqg(aMailq);
else mailq.add mailq(aMailq);

}

add_dispatcher (actor aDispatcher) {
if (dispatcher = nil) {
self.change dispatcher(aDispatcher);
else dispatcher.add dispatcher(aDispatcher);

Figure 2.4: The additional methods which allow for protocol composition.

5. Upon detection of a crash of 51, the manager takes appropriate action to ensure all further
requests to the server are directed to 55. The manager may also create another backup
at this time.

Although this example is simple, it does illustrate some of the benefits of our approach.
The manager initiating the replication protocol needs no advance knowledge of the service to
be replicated nor does the replicated service need to know that it is being replicated. Because
the clients using the replicated service are not modified in any way, this gives us the flexibility
to dynamically replicate and unreplicate services while the system is running.

2.4 Composition of Dependability Characteristics

In some cases, dependability can only be guaranteed by using several different protocols. For
example, a system employing replication to avoid possible processor faults may also need to
guarantee consensus on multi-party transactions through the use of three-phase commit or some
similar mechanism. Unfortunately, writing one protocol which has the functionality of multiple
protocols can lead to very complex code. In addition, the number of possible permutations of
protocols grows exponentially, making it necessary to predict all possibly needed combinations
in a system. Therefore, it is desirable to be able to compose two protocols written independently.
In some cases this may not be possible due to a conflict in the semantics of the two protocols. In
other cases, performance may depend greatly on the way in which two protocols are composed.
For most common protocols such as replication, checksum error detection, message encryption,
or check-pointing, composition is possible.

Because the meta-components of an object are themselves objects in a reflective system,
there is a general solution for composing two protocols using MAUD. A simple change to
the meta-operations inherited from the Object class, along with a few restrictions on the
construction of mail queues and dispatchers, allows us to layer protocols in a general way.
Figure 2.4 shows how the add_mailg and add_dispatcher methods could be expressed in terms
of the other meta-operations to allow layering.

Because the current mail queue, mailq, and the current dispatcher, dispatcher, are
objects, we can install meta-objects to customize their mail queue or dispatcher. By adding
protocols in the above manner, the new mail queue functionality will be performed on incoming

12

Figure 2.5: Partners and Owner relationships.

messages before they are passed on to the “old” mail queues. For the send behaviors, the
process is reversed with the oldest send behavior being performed first and the newest behavior
last, thereby creating an onion-like model with the newest layer closest to the outside world.

To preserve the model, however, several restrictions must be applied to the behavior of
dispatchers and mail queues. We define the partner of a mail queue as being the dispatcher
which handles the output of a protocol and the partner of a dispatcher as being the mail queue
which receives input for the protocol. In Figure 2.5, B and (' are partners as well as ¥/ and D.
Each pair implements one protocol. It is possible for a meta-object to have a null partner.

The owner application of a meta-object is inductively defined as either its base object, if
its base object is not a meta-object, or the owner application of its base object. For example,
in figure 2.5, A is the owner application of meta-objects B, C', D, and £. With the above
definition we can restrict the communication behavior of the actors so that:

¢ A mail queue or dispatcher may send or receive messages from its partner or an object
created by itself or its partner.

e Dispatchers may send messages to the outside world, i.e. to an object which is not a
mail queue or dispatcher of the owner application (although the message might be sent
through the dispatcher’s dispatcher). Dispatchers may receive transmit messages from
their base object.

e Mail queues may receive messages from the outside world (through its own mail queue)
and send messages when responding to get messages from their base object.

e Objects created by a mail queue or dispatcher may communicate with each other, their
creator, or their creator’s partner.

13

Because of the above restrictions, regardless of the number of protocols added to an object
there is exactly one path which incoming messages follow — starting with the newest mail
queue — and exactly one path for outgoing messages in each object — ending with the newest
dispatcher. Therefore, when a new dispatcher is added to an object, all outgoing messages from
the object must pass through the new dispatcher. When a new mail queue is installed, it will
handle all incoming messages before passing them down to the next layer. Thus, a model of
objects resembling the layers of an onion is created; each addition of a protocol adds a new layer
in the same way regardless of how many layers currently exist. With the above rules, protocols
can be composed without any previous knowledge that the composition was going to occur
and protocols can now be added and removed as needed without regard not just to the actor
itself, but also without regard to existing protocols. In Figure 2.5, actors B and (' are initially
installed as one “layer”. Messages come into the layer only through C' and leave through B.
Therefore, D and F may be installed with the add-mailq and add-dispatcher messages as
if they were being added to a single actor. Now messages coming into the composite object
through F are then received by €. Messages sent are first processed by B and then by D.

Key:
s Dispatcher
¥ MailQueue
— _» Message send

—— Causal Connection

Figure 2.6: Composed system using a replication protocol and message checksum protocol.

14

Figure 2.6 shows the result of imposing the protocol described in Section 2.3 on a set of actors
already using a checksum routine to guarantee message correctness. When a message is sent
by the client A (1), the Check-Out dispatcher adds the checksum information to the message.
The message is then forwarded to the replica as describe in Section 2.3 (2-3). The checksum
information is removed by the Check-In mail queue(4) and the messages are processed, resulting
in areply (5). The reply messages both have the checksum (6) information added before they are
tagged and sent to the client (7). At the client, duplicate messages are removed, the checksum
information is checked, and the message is delivered. Although this protocol would be difficult
to write as one entity, composition allows their modular, and therefore simpler, development.

15

Chapter 3

Exception Handling

Given a meta-level such as MAUD, it is still necessary for a programming language to provide
flexible constructs for building adaptively dependable systems. In particular, it is important to
convey information to the correct entities when system failures occur. We have chosen exception
handling as the medium through which managers are informed of problems in the system. This
technique has been used extensively with forward error recovery: we simply extend the notion
by having our managers prevent future failures through dynamic protocol installation.

In this chapter, we describe the exception handling mechanism in Screed, our prototype
actor language. Details on the general syntax of Screed may be found in Appendix B. To
support adaptively dependable systems, faults and exceptions have been unified as one concept
and exception handlers may be shared between objects. Broadway provides a set of system
exceptions, some of which are notifications of failures. For example, when an actor which
attempts to communicate with an unreachable node, a crash exception is generated.

We begin with a discussion of the general structure of exception handling in Screed followed
by a specific illustration of the syntax used. We then show how this structure may be used with
the meta-architecture to design adaptively dependable systems.

3.1 Exception Handling Components

Exceptions are signaled whenever an unexpected condition is encountered. An exception may
be signaled either by the run-time system or by the application. The former are referred to as
system exceptions and the latter as user-defined exceptions.

Exceptions in Screed are represented as objects, as proposed in [11] for sequential object-
oriented languages. None of the other concurrent languages discussed in Section 1.2 have taken
this approach. However, we feel this approach allows for more flexible and efficient exception
handling: all the information needed by a handler is contained in one object.

All system exceptions are derived, through inheritance, from the class exception. User-
defined exceptions may inherit from the exception class or from any other node on the system
exception inheritance tree. Below, we discuss the parties involved in the generation of an
exception and then the structure of system exceptions.

There are four roles involved in handling any exceptional condition: invoker, signaler, ex-
ception, and handler (see Figure 3.1). Each role is represented as an object in the system. The
invoker initiates the method of the signaler which results in an exception. The occurrence of an
exception generates a signal. When a signal occurs, a new exception object is created. The sig-

16

naler notifies the appropriate handler object of the exception’s mail address. The handler must
then diagnose the exception and perform any appropriate actions for handling the exception.

In Screed, each message sent by the invoker is contained within a scope binding each possible
exception to a handler. When the signaler signals an exception, an exception object of the
appropriate type is created. The address of this exception object is then communicated to
the appropriate handler as specified by the exception handling scope at the invoker. This
communication is asynchronous, invoking a method in the handler whose name is the same as
the exception’s name and takes one parameter: the address of the exception object.

Exception handlers are constructed by the programmer as Screed actor-classes. For each
exception a handler accepts, a method must exist with the same name as the exception and
which takes an instance of the exception class as a parameter. In all other ways, handlers are
identical to other actor classes: they may have a set of instance variables, inherit from other
classes, and may communicate with any of their acquaintances. They may also have other,
non-exception methods.

N\ Actor creation
— > Message sent
— _»

invoker signaler

Message may be sent

exception

Figure 3.1: The four roles involved with an exceptional condition.

As mentioned above, when an exception is signaled, an object of the appropriate exception
class is instantiated and initialized with any information needed by the handler to process the
exception. Some of the initialization fields are supplied by the run-time system. These fields
are contained in the exception class from which all exception objects inherit, and are utilized
through the methods inherited from the exception class.

Additional arguments for the initialization of an exception may be specified by the objects
raising a signal. For example, an arithmetic exception which is initiated by an application
could be initialized when signaled with the values of the operands in the arithmetic operation.
This exception object would still have default values specified by the system.

Methods defined in the exception class make use of the system-supplied values. These
methods are:

name returns the name of the exception as a method value. Since method names are first-class
values in Screed, this method enables the invocation of the correct method in the handler.

invoker returns the mail address of the actor which invoked the method resulting in the
generation of the signal.

signaler returns the mail address of the signal generator.

17

source returns the name of the method in which the signal was generated.

arguments returns a list of the arguments that were passed to the method in which the signal
was generated.

request returns TRUE if the invoker is waiting on a reply (i.e. an explicit continuation was
specified), FALSE otherwise.

reply This method allows a handler to reply to a request that was interrupted by the signal.
This method can be used to supply an acceptable value to the invoker, thereby allowing
the continuation of the computation.

Each exception handler may utilize only a few of these fields. However, since our environ-
ment is asynchronous, we want to preserve all available information. There are no guarantees
that this information will be retained by either the invoker or the signaler. Use of exception
objects provides us with the flexibility to include a large amount of information without creat-
ing complicated function calls or messages: all the information is packed into an object and is
referenced through a standard interface. In a procedural approach, long parameters lists would
be necessary to achieve the same effect.

Broadway currently supports three different system exceptions. All three inherit directly
from the class exception. A bad-method exception is instantiated when an actor receives a
message it cannot processes. The bad-method exception class provides the behavior of the
destination actor. In general, there is very little that may be done by the run-time objects
to correct such an error, but this information allows a handler to provide meaningful error
messages to the user.

An arithmetic exception is generated whenever Broadway traps an arithmetic error. Cur-
rently, this exception provides the state under which the exception occurred. We hope to soon
expand this exception to include a string representing the expression being evaluated.

Broadway also provides some failure detection capabilities. Each node on Broadway has a
failure detector which uses a watch-dog timer approach to detect the failure of, or inability to
communicate with, other nodes. A crash exception is generated whenever an actor attempts to
communicate with an actor on a non-existent or unreachable node. A crash exception consists
of the original message and the identity of the node which cannot be reached. Notice that,
although Broadway has detected a component failure, it is treated identically to any other
system exception. It is also possible for an object to subscribe to a failure detector. In this
case, the subscriber will automatically receive an exception whenever a failure is detected, even
if the object never attempted try to communicate with the failed node.

Besides detecting node crashes, Broadway will also handle the failure of individual actors.
If an actor crashes due to an error that is trapped by Broadway, that actor address will be
marked as a crash. Currently, only arithmetic errors are trapped by Broadway and, therefore,
this is the only manner in which a single actor may crash. If the defunct actor receives a
message, a dead-actor exception will be generated. The dead-actor exception inherits from
the crash exception. It also contains a reference to the exception generated when the actor
crashed. (Currently, this is always an arithmetic exception.)

18

3.2 Syntax for Exception Handling

In this section, we describe our two syntax additions to Screed which enable exception handling:
the handle statement which associates exceptions with handlers, and the signal statement
which generates an exception.

3.2.1 Description of Handlers

handle (exceptionl,exception2 with handler2,
exceptiond with handler2,

/* Any block of code goes here */

Figure 3.2: The structure of a handle block in Screed.

In Screed, handlers can be associated exceptions for either entire actor classes or with arbitrary
code segments within a method. Figure 3.2 gives the syntax for a handle statement. The
statement defines a scope over which specific exceptions are associated with a particular handler.
If any method invocation contained within the code block of the handle statement results in
an exception, the signal is routed to the correct handler as specified by the with bindings.
Exceptions are specified as the name of the exception class and the handlers are addresses of
objects.

Handler statements may be nested. In this case, when an exception is generated, the
innermost scope is searched first for an appropriate handler. If a handler for the exception does
not exist then higher level scopes are checked.

handle (arithmetic with arithhandler,
bad-method with aborthandler) {
var actor A;
A := new complex(2,3);
A.divide(C) (actor B) {
handle (arithmetic with myhandler)
B.divide(D) (actor E) {
myNum := res;

Figure 3.3: An example of handler scopes and their effect.

Figure 3.3 demonstrates the scoping rules. In the scope of the outer handle statement, if in
computing B (by dividing A by '), an arithmetic exception is generated (possibly by dividing

19

by zero), the signal will be passed to arithhandler. The computation of £ through the division
of B by D, however, is in the scope of the second handle statement. Therefore, any arithmetic
signals generated by this action are sent to myhandler. Conversely, if our complex objects do
not have a divide method, our actions will generate a bad-method signal which will be handled
by aborthandler.

Unlike the complaint address based schemes[19][23], our syntactic mechanisms do not require
explicit specification of a handler’s address with each message. For any given scope, including a
single message send, handlers — our equivalent of complaint addresses — may be specified for
each individual exception or for any group of exceptions. One handler need not be specified for
all exceptions. Additionally, our method takes greater advantage of the available inheritance
mechanisms as well as the general structure of object-oriented languages: both exceptions and
handlers are expressed as objects in our system.

The above constructs work well within methods. However, there are two levels of scoping
above the method level in Screed: the class and global levels. Fxception handling at the class
level is specified through the use of a handler statement which encloses several method defini-
tions. In this manner, exception handling may be specified for an entire class by enclosing all
methods in one handler statement. Such a construction does not prohibit handler statements
inside the methods.

A handle statement may not be defined across class boundaries as that would require the
use of shared variables between class instances. However, at the global level, Screed has a
system-defined handler class called Default-Handler. An instance of this class handles all
signals which are not caught by another handler. Default system behavior is for a signal to
be simply reported to the terminal. Default-Handler may be overwritten by a programmer
defining a custom class of the same name. In this way, a final level of exception handling may be
defined by the programmer. This type of facility is especially useful for writing debuggers. Any
exception not defined in a custom Default-Handler class is handled by the system-default.
Note that the system creates only one instance of the Default-Handler class: all otherwise
unhandled signals are delivered to this instance.

3.2.2 Signal Generation

As mentioned previously, exceptions may be generated as user-defined signals. A signal is
generated by a signal statement.

signal exception-class-name(args...);

The signal statement sends a message to the appropriate exception handler. The argu-
ments are used for initialization of the exception as defined by the interface of the particular
exception class. The signal is an asynchronous message send and does not interrupt the flow
of control in the code.

In many cases, it is necessary for the signaler of the exception to await a response from the
handler before proceeding. signal statements are treated, syntactically, as message sends to
a handler. Therefore, explicit continuations may be specified for signal statements as they are
specified for Screed message-sends. In this manner, the handler may return a value to be used
by the signaler. Such a case would be:

signal div-zero() (actor res) {
. some use of res...

20

}

For this example, the exception handler would return an actor address as the value res. The
rest of the signalling method will compute. However, the explicit continuation will be executed
upon return of the result.

In other systems, a special construct exists for generating signals within the current context,
i.e. generate a signal which is caught by the handle statement in whose scope the statement
occurs. An example of such a construct would be the exit statement in Clu [21]. In Screed,
such a construct in not necessary: the actor can explicitly send a message to the appropriate
exception handler.

3.3 Supporting Adaptive Dependability

A significant difference between exception handling in Screed and other languages is the use of
third-party exception handlers. In languages such as CLU [21], SR [18], and Ada [10], exception
handling routines are defined within the scope of the invoking objects. We refer to this approach
as two-party exception handling (the invoker and the signaler) and our approach as three-party
exception handling (the invoker, the signaler and an independent handler). We have found that
two-party exception handling is unsatisfactory for modeling the complex relationships between
objects such as those required for adaptively dependable systems.

The key difference between two- and three-party systems is in the potential knowledge of
a given object. With two-party exception handling, the exception handler, which is also the
invoker, may know only of the exceptions caused by its invocations. Therefore, in such a system
it is very difficult to develop a global picture of the fault pattern in the system. In a three-party
system, such monitoring may be naturally expressed in terms of the exception handler since
it may handle exceptions for a large group of objects or even the entire system. Furthermore,
an autonomous exception handler may subscribe to any available failure detectors, thereby
augmenting the knowledge received through exception signals.

A third-party exception handler may also be designated as an object with special rights. In
this manner the system may be safely modified in response to exceptions and failures. Since
it is dangerous to allow the arbitrary modification of one actor by another, most two-party
systems can express reconfiguration of the system only by mimicking a three-party system, i.e.
they must notify a third object with special rights of the exceptions they encounter and this
object may then reconfigure the system.

Thus in adaptively dependable systems, the resulting system architectures will look quite
similar to Figure 3.4. In this figure, the manager M receives input in the form of exceptions
from application objects and notices from the failure detector. Upon determination that the
Primary Node is unstable, M allocates the Backup Node and creates the appropriate objects to
replace the Primary Node. Note that, in actuality, M is probably a replicated entity to ensure
its resilience and availability.

Systems with such architectures may allow the dynamic installation of dependability pro-
tocols or may simply support the reconfiguration of several objects in response to exceptions.
In either case, the system will have a manager with special rights to modify other objects. The
manager will act as the exception handler for some group of objects being monitored. Fur-
thermore, the manager may also subscribe to failure-detection services. Upon receiving enough
input to determine that some unacceptable condition exists, the manager reconfigures the group
over which it has authority.

21

— —_—

— -
)
- _
-~ — -
Y —_—
(> Applicat
Application
N - _

~ ~ _— - .
—_—— Failure Detector
@ Manager

Figure 3.4: A prototypical adaptively dependable system.

3.4 Reconfiguring a Satellite to Preserve Failure Semantics

To illustrate the concepts we described above, consider a distributed system which is operating
in a hostile environment. A good example of such a system is a satellite with multiple processors,
each with its own memory. Assume that the memory of these processors was developed to
never return incorrect data to a read. Instead, the memory will detect the error through some
checksum algorithm and return an error condition value. This reserved value can then be used
to signal an exception and initiate forward error recovery. The specifications for this system
state that such memory errors should occur with probability 1078, Such a system is shown in
Figure 3.5. Notice that the manager is itself replicated to ensure fault-tolerance in this vital
system component.

cwo o@e

Memory| Memory| Memory| Memory| Memory| Memory|

Figure 3.5: Example satallite architecture and result of replication.

Once the system is launched, these memory components seem to operate correctly and the
manager responsible for memory errors occasionally performs forward error recovery on the ob-
jects. However, the rate at which these memory errors are occurring is unacceptably high (107°
faults/read) and system performance degrades significantly due to repeated memory faults and

22

subsequent error recovery. Therefore, the manager installs the replication protocol described
in Section 2.3. The resulting system is also shown in Figure 3.5. Since both the original actor
and the replica will be reading values from different memory locations, the probability that
a memory error will be noticed is now 107'° well within the specified tolerance. When an
exception occurs, the manager will still have to perform some corrections, but the system can
keep computing during this time and the error recovery will be simplified due to the existence
of the replica. Considering the nature of the faults, the replica may be placed on the same node
as the original actor. However, if instead of signalling an exception, nodes crashed when they
could not read memory, the replicas would have been placed on different nodes.

23

Chapter 4

Implementation

Broadway is a platform designed to facilitate experiments with distributed systems. To test
our ideas involving adaptively dependable systems, we have implemented the meta-architecture
described in Chapter 2 and provided support for exception handling as described in Chapter 3.

In the following sections, we provide an overview of the Broadway system structure and then
discuss the details of supporting adaptive dependability. We also will present some performance
numbers for Broadway. Although the system was not designed for performance — instead being
oriented towards customizability and supporting experiments — we feel that comparing the cost
of basic operations provides insight into the use of actor systems.

4.1 The Structure of Broadway

In this section, we describe the structure of the Broadway system and briefly outline its core
components. Additional details on the structure of these components may be found in Ap-
pendix A.

Broadway’s functionality is supplied by a central Dzemon as well as a set of system actors de-
scribed by a library. The Daemon is the core of the Broadway system, supporting the scheduling,
creation, and communication between actors. Since the Damon implements communication,
it is here that MAUD is implemented. Other, more complex functionality, is supported though
a library of system actors. These actors build upon the basic functionality supplied by the
Daemon to support more complex behavior such as actor migration, exception handling, fault
detection, or 1/0.

Broadway actors are represented as instances of C+4 classes. To provide the interface
needed by the Daemon to manipulate actors, all actor classes must inherit from the class Actor.
This class maintains a mail queue, handles the transmission of messages, and supports the
scheduling of an actor.

4.1.1 Dsemon Structure

The Daemon was written using C4++ using an object-oriented design methodology and, there-
fore, consists of several well-defined components. These components may be individually re-
implemented to allow easy customization of the system. Below we present an outline of the
functionality and structure of each of these components.

24

Scheduler The current scheduling strategy on Broadway is based on a single thread of execu-
tion shared by both the Daemon and all the actors on a node. Such a strategy was chosen
for its simplicity. Each actor processes one method invocation (message) in a round-robin
manner with the Demon performing any necessary functions (such as receiving off-node
messages) between method invocations. Methods are, therefore, atomic actions and may
not be blocked after execution commences.

Membership Monitor This object keeps track of which nodes are currently running Broad-
way. When nodes crash, this object is notified. It will then generate a signal to the
system actor serving as the failure detector. Furthermore, the Membership Monitor is
always queried before a message is sent off node. If a message is being sent to a non-
existant node (i.e. the node crashed previously), this object will signal a system actor to
generate an exception.

Local Actor Table This table contains a reference to each actor on the local node. Any actor
not in this set is considered non-local.

Foreign Actor Table Actor address include the identity of the creating node. Therefore, this
table need only store the addresses of those actors which have migrated off their creating
node. Such a structure keeps this table small and look-ups inexpensive.

Behavior Table Given a Behavior value (i.e. a unique identifier representing a particular
actor class), the Behavior Table will provide a constructor for an instance of that class.
This table enables off-node creation and migration of actors.

Factory Much in the same manner as the Behavior Table supports the creation of new actors,
the Factory supports the creation of primitive type values included in messages. Fach
primitive type (i.e. those types which may be included in messages) has a unique iden-
tifier. When an off-node message has been received, it will be in the form of a character
stream. For each value, the first two bytes in the stream identify its type. Given the
byte representation of a value, the Factory will then create a new instance of the correct
type, initializing it with the data in the character stream. In this manner, Broadway
programmers may include their own primitive types by simply registering them with the
Factory object.

Platform Since our scheduling is architecture-independent, the only machine-dependent por-
tion of Broadway is inter-node communication. This functionality is encapsulated in the
Platform object. The Platform object presents a uniform interface for inter-node commu-
nication so that only the implementation of this object need be changed to port Broadway.
Currently, Broadway runs on ULTRIX DecStations and SunOS SparcStations. A port to
the CM-5 is currently underway.

All of the above components are linked by the Deaemon object. It is through calls to the
Daemon object itself that local actors utilize these other components. For example, an actor
may ask the Daemon to create a new actor. This involves creating a new instance using the
Behavior Table and then adding it to the Scheduler.

25

4.1.2 Library

One of the primary design goals of Broadway was to provide a flexible platform for the develop-
ment of different concurrent programming languages. A programming language on Broadway
must generate C++ code where all actor classes inherit from Actor. This is the sole restriction
placed on the nature of the programming language. Therefore, to support a large range of po-
tential languages, we have made the structure of the Daemon as general as possible. However,
there are still parts of the system which must be dependent on the language conventions in use.

For example, consider exception handling. There is a specific structure for exception han-
dling in Screed, as described in Chapter 3. This structure involves formats for signal messages,
for exceptions, and for handlers which are specific to Screed. Therefore, although the run-time
system must be the one to detect most exceptions, it should not generate the exception objects
and signal messages itself.

We implement such functionality in terms of a system library. For the exception handling
case, the Daemon is given a set of function calls to make upon detection of specific exceptional
conditions. These function calls are to methods in a Screed actor. This Exception actor may
then generate objects and messages consistent with Screed formats. The library actors designed
for Screed were written primarily in Screed with minor modifications of the resultant C++ code.

Exception Generator As described above, this actor generates the appropriate exception
objects and signals when an exceptional condition is discovered by Broadway.

Failure Detector This actor is similar to the Exception Generator. However, since individual
actors may “subscribe” to the failure detector, it is a separate entity. The Failure Detector
is notified whenever Broadway detects a node crash or an actor crash.

Control This actor is arguable the most important actor on a Broadway node. Control is the
actor interface to the Daemon itself. Control handles off-node requests for actor creation
and migration. Control also receives notification from other nodes when an actor has
migrated, thereby keeping the Foreign Actor Table accurate.

Timer The Timer provides a way for applications to measure performance. Timer provides a
stop-watch facility based on wall-clock time. The Timer receives requests and measures
its time using the Broadway Daemon. Current implementations of Broadway call the
UNIX gettimeofday routine to return the time.

Terminal The Terminal actor allows formatted input and output to the user. The number
of Terminal objects in the system is highly dependent on the system configuration. By
providing the Terminal as a library actor, the number and configuration of user i/o may
be controlled by the language designer.

Most extensions to Broadway should be in terms of library actors. For example, actor
migration was added to Broadway by extending the functionality of the Control actor.

4.2 Implementation of MAUD

To support dependability, the MAUD meta-architecture, as described in Chapter 2, was imple-
mented on Broadway. Implementing general reflection involves the use of run-time interpreta-

26

tion of all reflected objects. Since MAUD is a strictly limited meta-architecuture, however, it
was possible to implement MAUD efficiently using compiled objects and redirection of messages.

As described in Section 4.1, each actor on Broadway is represented as an instance of a C++
class. Since these actors inherit from the class Actor, each has several predefined methods and
state variables. We implemented MAUD through the modification of these predefined methods.

Specifically, each actor has a send C++ method which will transmit a message, and a
deliver C++ method which places an incoming message in its mail queue. Each actor also
keeps two acquaintance variables — dispatcher and mailg — representing its meta-level objects.
If either of these two objects have not yet been reified, the acquaintance value is null. Through
operations on these two variables the methods change mailq, change dispatcher, add-mailq,
and add_dispatcher were easily implemented for all actors.

(PUT (PUT m)
~ag—= Causal Connection
(Reflection)
-<—— Standard Message (PUT m

- — — Non-reflecting Message
(base send)

(...) Message Contents

Figure 4.1: Messages sent between meta- and base objects.

To implement the dispatcher component of our meta-level, we modified the send method of
the Actor class so that it checks if a reified dispatcher exists before transmission of the message.
If such an actor does exist, a new message is constructed which will server as a transmit method
invocation and has the original message as the sole argument. This message is then sent to the
dispatcher acquaintance. In this manner, any send operation in a base actor will result in a
transmit method invocation in its meta-level dispatcher. If the meta-level dispatcher has its
own meta-level dispatcher, this meta-meta-object will receive its own transmit message if the
meta-object transmits a message. In this manner, layered protocols operate correctly.

A similar technique is used to implement meta-level mail queues. Figure 4.1 shows the
actual messages resulting when a base object with a two-level mail queue hierarchy receives a
message. In our original (unoptimized) implementation, when the deliver method is invoked
on the actor’s C++4 representation, the mailq acquaintance is checked and, if non-null, the
message is sent to the meta-level mail queue. As with the meta-level dispatcher implementa-
tion, the original message becomes the only argument to a new message. For the mail queue
implementation, this new message will invoke the method put at the destination actor. When
the meta-level mail queue receives the message, its deliver method will, in turn, check to see
if it also has a meta-level mail queue. If so, this mail queue will receive its own put message

27

with the old put message as the sole argument. In this manner, the highest level mail queue
— i.e. the meta-level mail queue which has no meta-level mail queue of its own — will be the
first to process the message.

As described in Section 2.1, each meta-level mail queue must also have a get method. The
mail queue should store all messages to be delivered to its base object until it receives a get
request from the Broadway Daemon. Broadway will issue a get request when the base object
needs another message to process. If the mail queue has no appropriate message to pass onto
its base object, it must record that a get message was received: no further get messages will
be sent by the Deemon until the base actor processes another message. Once synchronization
constraints are implemented in Broadway [15], a constraint would prevent the delivery of a
get message until the meta-level mail queue is prepared for the message (i.e. has messages to
deliver).

Unfortunately, the above implementation for mail queues involves a newly received mes-
sage being passed “up” between mail queues using put messages and then “down” using get
messages. Half of these messages (the put messages) may be eliminated using caching of the
address of the mail queue at the highest meta-level. The address of this mail queue is recorded
at the base object as well as the current number of meta-levels. Upon reception of a message at
the base object, the appropriate message is created as if it was passed between the meta-level
mail queues. This message is then sent directly to the mail queue at the highest meta-level.

Using caching in this manner, however, requires that new mail queues be added atomi-
cally. Therefore was have also added the methods begin protocol and end_protocol. These
methods work much like a test-and-set operation, checking to see if another protocol is being
installed and, if not, reserving the right for a particular entity to install a protocol (i.e. a mail
queue and dispatcher). Furthermore, no messages will be processed while protocols are being
installed. Although we have not yet included security functionality in Broadway, it is in these
methods that any authorization checks would be made to ensure a trusted entity is installing
the protocol.

One last component necessary for successful implementation of MAUD is the ability to send
messages which are not processed by meta-objects. For example, a mail queue’s response to a
get message must be sent in this manner or the message will be repeatedly processed by the
same meta-level mail queues. The meta-level operations for adding mail queues must also be
processed in this manner. To support these messages, Broadway provides a base_send operator
which marks a message to not be processed by any meta-level objects.

4.3 Implementation of Screed

For the most part, our Screed compiler performs a simple translation from Screed to C4++
with calls to the Broadway Daemon. However, there are two key aspects of Screed that re-
quire detailed implementation discussion. First, we will discuss explicit continuations. Explicit
continuations are used whenever a value must be returned from a message send. Although an
explicit continuation is quite similar to a remote procedure call, it does not involve any explicit
blocking of a method.

We will then discuss how we implemented the exception handling scheme proposed in Chap-
ter 3. As mentioned in Section 4.1, Broadway itself only provides very primitive exception
handling mechanisms in the form of a function call to a local actor. To implement exception

28

foo(int x) { _contmeth_1(int ret) {

var var
int y; int y;
A.boo(x,y)(int ret) { int x;
Wiz x +y+ oz; x = _state_[0];
1 = _state_[1];
; Wi X +y+ oz;
}
foo(int x) {
var
int y;

A.boo(self, contmeth 1,x,y);
state[0] = x;
state[1] = y;

1

Figure 4.2: Example transformation of an explicit continuation.

handling for Screed, it was necessary to construct the appropriate system library actors as well
as generate the correct code for handle and signal statements.

4.3.1 Explicit Continuations

An explicit continuation is specified as a message send with an additional parameter list for
return values. Currently, this auxiliary list must consist of either zero or one value. However,
we plan to add multiple return values in future versions of Screed.

The syntax for the explicit continuation is specified as follows:

<actor> . <method> (<arg-list>) ([<ret-type><ret-var>1) {
<expr-list>
}

Initially, this command acts as a standard Screed method invocation: a message is sent to actor
for the invocation of method with the specified argument list. The invoked actor is then expected
to return a value of type ret-type. The type of this return value is type-checked dynamically
by Broadway when the continuation is invoked. The continuation body will execute after this
value has been returned with the returned value being bound to the variable ret-var.

However, the rest of the enclosing method will be executed immediately after the initial
message is sent. Therefore, the context in which the continuation will execute will have all
variables holding the value they had at the termination of the enclosing method. In the case of
state-variables, these values may have changed even more due to other pending messages which
the actor processes before the continuation. With the eventual introduction of synchronization
constraints [15] to the language, the programmer will be better able to specify which methods
may execute before completion of the continuation.

The implementation of explicit continuations was fairly straight forward. The continuation
body itself is converted into a new method. This new method has, as its only parameter, the
return value parameter specified. It also has local variables corresponding to any local variables

29

in the enclosing Screed method as well as the parameters of the local Screed method. The
continuation body is then processed in this manner to allow the nesting of explicit continuations.

The explicit continuation is then converted to a standard asynchronous message send whose
first two parameters are the address of the sending object and the name of the return method. To
preserve consistency, the Screed compiler put these two additional parameters on all messages;
when there is no return method, null values are supplied. Broadway will automatically drop
any messages to a null actor.

Before the enclosing method ends, all local values (including the method parameters) are
saved in a predefined array called _state_. _state_is then unpacked into the appropriate local
variables. An example of this transformation is shown in Figure 4.2.

One advantage of explicit continuations over RPC communication is that no blocking of
the method is necessary. This also prevents deadlock in cases such as an object sending an
RPC to itself. Although such deadlock would still be possible though the naive use of syn-
chronization constraints, these constraints are completely under the control of the programmer.
The programmer could exploit semantical information concerning the object to minimized the
synchronization whereas a compiler would always have to be conservative.

4.3.2 Implementation of Exception Handling

The exception handling tools provided by Broadway were designed to be generic and simple.
On Broadway, each message holds the address of an exception handler to which all signal
notification must be sent. To support system exceptions, Broadway calls a method in the
Exception system actor. It is then the job of this system actor to generate an exception as
detailed by the programming language.

The details of the Screed exception handling syntax were given in Section 3.2. We begin
with a discussion of how the handle statement was implemented and then discuss the signal
statement and our Exception system actor.

4.3.2.1 Handle Statements

Most of the complexity in implementing the exception handling mechanism of Screed was in-
volved with the handle statement. Since exceptions are rare events, it was decided that a
minimal amount of exception handling information should be included with each Broadway
message. Therefore, Broadway limits each message to one exception handling address. Screed
must construct a single exception handler which will route the exception to the appropriate
handler specified in the Screed program. Although this involves extra messages, the goal of the
implementation was to make non-exception generating messages eflicient even at the expense
of signal efficiency.

Screed uses the predefined class Directory to route exception signals. The Directory is
initialized with two array’s and the size of these arrays. The Screed code for this class is shown
in Figure 4.3. Two array’s are used since structures have not yet been implemented for Screed.
A new Directory object is created for each new handle statement executed: there is a one-to-
one correspondence between Directory objects and handler scopes. Since exception handling
is asynchronous, the handler environment which existed when the message was sent must be
preserved even while the invoking actor continues to process other messages.

The address of the Directory object is then included with each message in the handle scope.
To implement nested handler scopes, each Directory object is also initialized with a reference to

30

class Directory {
var
method exceptions[MAXESIZE];
actor handlers[MAXESIZE];
int num;
actor up;

init(int n, method ex[], actor h[l, actor u) {
var int i;

num := n;
up := u;
exceptions := ex;

handlers := h;
}

exception(actor ex) {
ex.name() (method n) {

var
int 1i;
int done;

done := 0;

i = 0;

while (i !'= num & 'done)
if (exceptions[i] == n)

done := 1;
if (i !'= num)

handlers[i].n(ex);
else up.exception(ex);

Figure 4.3: Code for the Directory class.

its parent scope. If a specific exception is not registered with a Directory, it passes the exception
to its parent. To correctly preserve this scoping, each object now maintains a handler stack:
when a new scope is entered, the new Directory is created, initialized, and its address pushed
onto the stack; when the scope terminates, the address is popped off the stack. The top level
environment is initialized with the address of Default-Handler: the global exception handler.
The value current_handler, which is a state variable defined in the Broadway Actor class, is
always re-initialized to the top stack value whenever the stack is modified. Figure 4.4 shows a
handle statement and its transformation into C++ for Broadway.

4.3.2.2 Signals & the Exception System Actor

Signal statements are a simple translation into Broadway C++. The Actor class supports a
signal method which is identical to send except that no destination is specified: the exception
handler address of the current message is used instead. Therefore a Screed signal is translated
to the creation of the exception object and a standard message send.

31

handle (arithmetic with myhandler) { oldhandler := current handler;

B.divide(D) (actor E) { current_handler := new Directory;
myNum := res; _handle_stack.push(current handler);
} ex[0] := arithmetic;
} h[0] := myhandler;

current_handler.init(1,ex,h,old handler);

B.divide(D) (actor E) {
myNum := res;

1

_handle_stack.pop();
current handler := _handle stack.top();

Figure 4.4: Transformation of a handle statement into C++.

The Exception system actor is also quite simple. At start-up, one Exception actor is created
on each node; this actor may not migrate. It contains a method for each system exception and
Broadway is initialized with the physical address of the functions implementing these methods.
These methods are then called directly by Broadway which provides the information detailed
on page 17. Note that this always includes the message which caused the exception. The
Exception actor creates an instance of the appropriate exception object and sends a signal to
the handler specified in original message.

4.4 Performance

In this section, we present several performance numbers for Broadway. Broadway has been de-
signed as an easily customizable test-bed for new concepts in distributed computing. Therefore,
the design emphasis has not been on optimization. Even so, we felt presenting performance
numbers would give a valuable insight into the use of actor systems.

Specifically, we compare several values for the UNIX implementation of Broadway. In
particular, we compare communication costs and actor creation costs for both local and remote
operations. The experiments were performed on a group of Sun 4 workstations at the University
of Hlinois.

‘ | Message (Short) | Message (Long) | Creation |

Local 348us 378us 289us
Remote 1620us 5140us 6570w

Figure 4.5: Performance times for various Broadway operations.

Figure 4.5 presents the times for these operations on Broadway. Local operations are those
occurring with actors on a single node; remote operations involve inter-node communication.
The message time is the time taken to send a message in one direction. Short messages are sent
with a single integer parameter. Long messages contain an additional array of 100 integers.

32

Since local arrays are always passed by reference, the difference in the local case in minimal.
However, the difference for the remote case is significant.

Actor creation is quite simple in the local case, involving only the allocation and initial-
ization of a C+4 object. This is important for actor languages on medium or low granularity
architectures: many more actors will be created than the number of processors. For off-node
creation, at least three remote messages must be used. Therefore, creating a off-node actor
is an expensive operation. However, multiple off-node actor creations may be chained which
will significantly reduce the overhead involved. We used this technique with 1000 remote actor
creations which completed in 3.12s. Therefore, chained off-node creation is, on average, slightly
less than twice as expensive as an off-node message send.

The limiting factor on the off-node operations was the network protocol itself: socket com-
munication over ethernet is quite slow. We expect that on a higher performance architecture,
such as the Thinking Machines Corporation’s CM-5, our “remote” results will be significantly
better.

33

Chapter 5

Conclusion

5.1 Summary

In this thesis, we have described a methodology for the development of adaptively dependable
systems. Adaptively dependable systems may function over a long duration despite a changing
execution environment. Whether the changes are due to a variance in the components compris-
ing the system or to a change in the physical environment in which the component operates, the
use of dynamic protocol installation combined with exception handling allows fault tolerance
to be guaranteed by the system.

Dynamic protocol installation is enabled through the use of a meta-level architecture. Our
meta-level architecture, MAUD, allows the customization of an object’s communication behavior
on a per-object basis. By describing protocols in terms of modifications to the communication
behavior, protocols may be dynamically installed on objects as necessary. Furthermore, if a
protocol is no longer required, it may be removed. Through the use of caching and atomic pro-
tocol installation, the meta-level description of protocols may be implemented with a minimal
cost in performance.

We also support composition of protocols. Provided there are no inherent semantic conflicts
between two protocols and both protocols are implemented using MAUD, these two protocols
may then be composed without foreknowledge that a composition may occur. In this manner,
protocols may be constructed in a modular fashion and later combined to provide the desired
level of fault-tolerance.

To provide adaptive dependability, we combine dynamic protocol installation with exception
handling. We make extensive use of third-party exception handlers which are shared between
multiple objects. Since these handlers have privileges to modify meta-level objects, they are
termed managers. A single manager will be informed of all exceptions related to a particular
problem. The knowledge managers obtain as exception handlers may be augmented through
subscription to failure-detection services. In this manner, the manager will have all information
necessary for a correct diagnosis of fault patterns.

The concepts described in this chapter have been implemented on Broadway — our actor
run-time system — and are accessed through the language Screed. Screed provides exception
handling constructs which support managers and provides access to the meta-level architecture
implemented in Broadway.

34

5.2 Future Work

5.2.1 Consistent Installation of Protocols

When installing a protocol on multiple objects, it is necessary to ensure consistency. Differ-
ent protocols may have different rules for defining consistent installation. The best tool for
coordinating such operations is a multi-object constraint.

Specifically, synchronizers[16] may be used to specify customized constraints for each proto-
col or even a subset of objects in each protocol. Synchronizers are expressed in terms of events
at the coordinated objects. These events may be restricted in several different ways including
mutual exclusion, atomicity, or triggering.

Synchronizers are currently being added to Broadway and Screed. When complete, protocols
may be written in terms of MAUD and then have the rules for their consistent installation
expressed in terms of Synchronizers. Synchronizers are independent of the classes and objects
being coordinated. Therefore, a single installation policy may be reused with multiple protocols.

5.2.2 Protocol Languages

The techniques proposed in this paper simplify the construction of dependability protocols by
separating application code from protocol code. Furthermore, transparency is preserved by
constructing protocols as operations on messages. However, protocols written using MAUD may
still be complex. This can be especially true when a protocol must follow the rules outlined in
Section 2.4 for composition.

We are currently investigating techniques for specifying protocols at a higher level. Again,
the goal is to specify protocols in terms of operations on messages, but to also express commu-
nication as being between arbitrary clients and a fault-tolerant service. The concepts of delay,
message ordering, and failure should also be incorporated at a high level.

These higher-level protocol specifications may then be “compiled down” into a meta-level
specification such as MAUD.

35

APPENDIX A

Broadway

This appendix describes, in detail, the design and implementation of Broadway. Specifically, this
section is designed to serve as a guide to both programmers designing languages for Broadway
as well as those who are modifying Broadway itself.

We begin with a discussion of primitive data types — those data types which may be
message values — and describe how programmers may add their own primitive types. We then
explain the internal representation of actors and how inheritance is used to add language-based
functionality to the basic actor objects.

Once the pertinent data structures have been explained, we describe the Daemon object and
the internal objects from which it is composed. These descriptions are aimed at those who wish
to customize Broadway itself. We describe the interface of each object as well as its current
implementation and interactions with other objects.

A.1 Data Structures

Every implementation of Broadway uses a set of primitive data types. By primitive we mean
that these types may exist as parameters in messages. There are currently eight such types:
Integer, Real, String, Address, Method, Behavior, Msg and Array. However, to support
customization and the design of new actor languages, Broadway supports the development of
new primitive data structures. This support allows the inclusion of instances of these primitive
data types in messages sent off-node. We begin with a discussion of the built-in data structures,
discuss the structure of all primitive types, and then explain how new data structures may be
incorporated into Broadway.

A.1.1 A Basic Set of Data Structures

The default set of data types are those needed with almost any actor language. Integer
and String are self-explanatory; Real are double precision floating-point numbers; Address,
Behavior, and Method are used to reference actors, actor classes, and actor methods, respec-
tively. Fach element of an Array may be any of these data-types. Multi-dimentional array’s are
realized by having an Array whose elements are of type Array. To facilitate the development
of meta-level actors, it was necessary to make Msg a first-class values.

The interfaces to these data types is fairly straightforward. Integer can be interchanged
with the C+4 int through type-casts or even assignment (=). The same applies to String

36

with char * and Real with double. An Address is only created through the use of the build-
in routines create and create_off, i.e. an address is never directly created by the user.
Behavior and Method are initialized at creation using a constructor which takes one integer. It
is up to the language to preserve the uniqueness of behaviors and methods: no naming service
is currently provided with Broadway. Address, Behavior, and Method may be assigned or
compared for (in)equality to other values of the same type.

An Array may be subscripted, as with normal C+4 arrays. Each element of an Array
is actually a pointer to a value. Therefore, memory must be allocated for an array element
before a value may be assigned to it. Assignment of an entire Array is also possible. However,
the assignment operation is expensive as it copies each element of the array. Array also has a
resize() operator which preserves as many original values as possible.

The Array constructor may be supplied with no arguments — resulting in a Array of size 0
— one argument specifying the size, or two arguments specifying the size of the Array and type
of each element. When the array element’s type is specified, Broadway allocates an element of
the correct type off the heap (using the C++ new command). Array’s automatically check for
out-of-range element accesses.

Msg objects consist of a destination address, method to invoke at the destination, and an
array of contents. Messages may be directly subscripted to reference these contents. To assign
a new value to a message, the add value method should be used. This procedure places the
new value in the next available field and increments a counter representing the number of
parameters.

The Msg object constructor takes a single value: the maximum number of parameters the
message can take. If this value is not specified, it defaults to 0. The message objects also
support a resize operator.

A.1.2 Data Type Characteristics

All primitive data types must inherit from the class Value. The Value class is an abstract class
which enforces the definition of several methods needed for message passing. These methods
are:

short myclass() Return the integer value representing the object’s type. This value must be
unique to this subclass of Value and must be the first item “packed” when the converting
the data structure to a character stream.

int pack(char *buf) Pack the data structure into the character buffer. The number of bytes
used to pack the object is returned.

char *unpack(char *buf) Unpack a data structure of this type from the character buffer. A
pointer to the start of the next object packed into the character buffer is returned.

void print() Print the value of the data structure: this method is used only when debugging.

Classes which define the above methods provide the support necessary to convert objects
of this class into byte streams and back. This support is necessary to include an object of
this class in a message being transmitted to an actor on another physical node. Although this
support is necessary, it is not sufficient to support a primitive type.

Many operations in Broadway must operate on arbitrary primitive values in the form of a
Value *. In particular, array and message subscripting return a pointer to a value. To allow

37

the correct conversion and type checking of Value * to primitive types, type converter functions
are defined. These functions have definitions of the form:

TYPE &ValToTYPE(Value *)

where TYPE is the primitive type’s name. For example, to convert a Value * to an Integer,
the function ValToInteger is called. Since a reference to TYPE is returned from these functions,
they do not result in the value being copied.

A.1.3 Designing Custom Data Structures

As mentioned previously, it is possible for a programmer to define new primitive data types.
The primary requirement for defining a new type is that the new data type inherit from Value
and define all the methods required by this abstract class.

Two macros must then be used to enable use of the data type in off-node messages. These
macros register the type with the Demon’s Factory to allow creation of new objects from
character streams. They also define the ValToTYPE function mentioned above.

MAKETYPE(type, id) This macro must appear at the global level. type is the name of
the type and id is the integer value which will be returned by the myclass method of
the type. MAKETYPE defines the ValToTYPE operator as well as a function for creation of
a new instance of the type.

REGISTERTYPE(type, id) This macro must be in code which is executed before the type
is ever used. type is the name of the type being registered and id is the value which will
be returned by the myclass method of the type. REGISTERTYPE informs the Factory that
when the next value in a character stream begins with id, it will be a value of type type.

For the default types, these macros are used in the file typelib.cc. This file serves as an
example of how these macros may be used.

A.2 Structure of Actor Class C++4 Representations

All actors in Broadway must be represented by a C++4 class which inherits from the class
AClass. For this reason, the file AClass.h must be included in all files which declare actor
classes. The state of an actor should be represented as private items of a C++ class; the
methods should be public items of the C++ class.

In addition to defining the methods specified for the actor, a lookup function must also be
provided. This function should take the form:

void lookup(Method& meth, Array& v, int param)

The definition of lookup must be public. The lookup method will be called by the system when
there is a message to be processed. lookup should call the correct C+4 method in the actor
class as specified by the name meth. If a matching method cannot be found, the parent class’s
lookup function should be called. The number of parameters is provided in param to prevent
the invocation of a method will invalid parameters.

The array v contains the parameters to the method. Each element of v used as a parameter
should be typechecked and converted to the correct type. Using the appropriate ValtoTYPE

38

void Database::lookup(Method& m, Array &v, int params)
{
if (m == queryn && params == 3)
query(ValToInteger(v[0]),
ValToAddress(v[1]),
ValToMethod(v[2]));
else if (m == updaten && params == 4)
update(ValToInteger(v[0]),
ValToInteger(v[1]),
ValToAddress(v[2]),
ValToMethod(v[3]));
else if (m == readn && params == 3)
read(ValToInteger(v[0]),
ValToAddress(v[1]),
ValToMethod(v[2]));
else AClass::lookup(m,v,params);

Figure A.1: A sample lookup function.

function guarantees a correct conversion, as mentioned in Section A.1. A lookup function for a
database actor is shown in figure A.1.

Interface to the Daemon is provided through routines inherited from AClass. There are
five such routines.

Address create(Behavior &) The daemon is called to look up the behavior, create an actor
of that class, and return the address of the new actor.

Address *create_off(int node num, Behavior) Functions as with create, except that an
actor of the specified behavior is created on the node with id node_num. This method
returns the address of the newly created actor.

void send(Address *dest, Method *meth, argl, arg2..., 0) Takes a variable number
of parameters terminated by a 0. These parameters are packed into a message. Both the
destination and the method must be provided. All arguments must be pointers to values
due to the nature of the C++ wvarargs package.

void dispatcher(Address disp) A meta-level operation which installs the actor with ad-
dress disp as the dispatcher of this actor.

void mailq(Address mailq) A meta-level operation which installs the actor with address
mailq as the mail queue of this actor.

Note that these routines may only be used from within an actor’s method: only actors may
create other actors, send messages, or modify their meta-level.

Each new behavior must also be registered with the Deemon. This is done through the macro
DEF BEH. This macro must be provided with the Behavior value representing the behavior, the

39

class name, and the path for the object file defining the class (for later use with dynamic
loading).

For example, a class User, which is represented by Behavior “user_b” and may be found in
“/obj/user.0” would be defined as.

DEFBEH(user b, User,"/obj/user.o");

Note that the use of this macro should be at the global level, not in the setup function. In
general, it is best to place these statements at the end of the file.

A.3 Actor Objects

As detailed above, each actor on Broadway has a corresponding instance of a C4++ class. The
instances always inherit from the class AClass, which provides many of the necessary built-in
methods. However, there is a set of methods and fields associated with each object which was
not discussed in Section A.2. These are the methods and fields required by other objects in
Broadway itself, regardless of the language being used. These methods and fields are defined
in the class Actor. Language-specific functionality is added in the class A Class which inherits
from the class Actor thereby guaranteeing that all actors satisfy the requirements for Broadway
as well as the programming language being designed.

The methods in AClass are primarily helper methods to interface the actor’s code with
the Daemon and provide functionality to assist the language designer. The methods and fields
in Actor, however, assist in the scheduling and manipulation of the actor by the Damon.
Therefore, these methods and fields, unlike those in A Class, are necessary for actors to exist
on Broadway. A different language may be better implemented with a class other than A Class.
In fact, the authors encourage language designers to develop their own custom root class. Any
such new class, however, must always inherit from Actor to allow these objects to be scheduled,
receive messages, etc.

The methods of the class Actor are oriented towards the scheduling of the actors and actor
communication. To support communication, the class Actor provides the methods send and
deliver. The send method transmits a new message. This transmission involves the location
of the destination actor and the use of the Daemon if off-node communication is necessary. If the
message is local, the parameters are copied and the message is placed in the destination’s mail
queue. The deliver method is invoked to place a new message in the actor’s mail queue. This
method may be invoked by either a local actor performing a send or the Daemon upon reception
of an off-node message. These two methods also support Broadway’s meta-level architecture
by routing messages to reified dispatchers and mail queues as appropriate (see Section 2.1).

To support scheduling, an actor may be in one of three states: active, pending, or buffer.
An actor in active state behaves as described above: this is the default state for all actors. An
actor which has an empty mail queue is pending and, for obvious performance reasons, is not
invoked by the scheduler until a new message is received. The methods pend marks the actor
as in the pending state and the method is_pend returns true if the actor is pending.

The buffer state is used to support migration and off-node creation of actors. When an actor
is in the buffer state, it may receive messages but will never be scheduled to process a message.
Such an actor serves solely as an address to which messages may be delivered. An actor is
marked as being in the buffer state by the method only buffer and the method is buffer
returns true if the actor is a buffer.

40

An actor is placed in the buffer state when it is the process of moving from one node to
another. The actor at the old address is made into a buffer to record any messages which are
received during migration. If this were not done, the actor created at the migration destination
could have an inconsistent state from the original actor. Instead, the buffer actor holds all
messages received during migration. When migration is completed, the dump msg method is
invoked and all messages are sent to the new location. The method dump msg forces all messages
in the actor’s mail queue to be resent. Assuming the local address tables have been updated,
the messages will arrive at the new location.

A.4 The Daemon

The Dzemon object is the heart of the Broadway system, serving as the “glue” between objects
such as the Platform, Factory, or Scheduler. It is through the Damon object that actors in
Broadway access system commands and data structures. The Damon object is also the only
object to access the Platform object and, therefore, provides a level of abstraction for actors
needing to communicate with off-node actors.

Each Daemon is responsible for the scheduling and maintenance of a particular set of ac-
tors. This set of actors is considered the “local” set. Therefore, each Daemon object defines a
logical node in the system. In current implementations of Broadway, there is a one-to-one cor-
respondence between Damon objects and physical processors. However, it is not necessary to
adhere to this organization and, provided that the Platform object can send messages to other
processes on the same physical node, multiple logical nodes may be located on a single physical
node. Furthermore, in the case of shared-memory multi-processors, it would even be possible
for several physical nodes to be contained in one logical node: one Daemon object monitors the
actors whose threads are distributed over several physical processors.

Any system configuration may be realized in terms of modifications to the Daemon class
and the Platform class. Therefore, for any programmer of the system, the actual system
configuration is transparent: each Dzmon object is assumed to have a unique integer identifier
which, as with actor addresses, is location independent. For purposes of actor migration,
communication with the Dzmon, etc. only this identifier need be known.

Each Actor object has a pointer to the local Daemon. Through this reference, local actors
are able to access system commands and structures. When the node has been initialized and
is ready to begin processing, the main Broadway routine calls the Daemon’s run method. This
infinite loop continually calls the scheduler to process the next actor.

The send_off method takes a message and transmits it to an off-node location. The location
is specified in the message structure. The Daemon will also periodically be given permission
by the scheduler to process off-node messages it has received. The Damon calls read mail()
between actor method invocations to read its own mail. In the current implementation of the
Daemon, it will simply call its own private method receive_off to process off-node messages.

Actors may be created through the use of the create method. This method takes a pointer
to an object of type Actor (or any sub-class of Actor), adds the actor to the Scheduler object,
and records the actor as a local actor. This routine is often called by objects of the Actor or
AClass classes which provide higher level interfaces to create.

The make buffer method takes the address of a local actor and modifies that actor to be
a message buffer (see Section A.3). As a buffer, an actor may receive messages, but is never

41

scheduled and, therefore, never processes messages. Buffers are primarily used when an actor
is migrating.

The Demon maintains two tables of actors: Local and Foreign. The Local table contains all
actors on the local node, even if they are currently not in an active state (see Section A.3). The
Foreign table contains a list of all actors who are no longer local to the node where they were
created. If an actor is at its creator, then its location may be determined using the creator
method of any Address referencing the actor. Otherwise, the Foreign table gives the proper
address.

The Demon also maintains a catalog of behaviors: Behaviors. This catalog allows the use
of first class behaviors and off-node creation of actors. Each entry in the catalog consists of a
Behavior value (see Section A.l), a pointer to a creation function, and a UNIX path to the
object file containing the behavior. This last field is currently unused, but was included in
anticipation of a dynamic code loading facility being added to Broadway in the future.

Below we describe the actor interface to the Deemon. The other components of the Daemon
— Scheduler, Factory, Membership Monitor, and Handler are described in detail in their own
sections.

As mentioned above, a pointer to the local Dzmon object is a field in each Actor object.
Therefore, local actors may directly access the Daemon through function calls. For remote
accesses, however, special actors exists at each Daeemon which provide system-level operations
to off-node actors using the standard message-passing interface.

The most important of these is an instance of the Control behavior. This actor has several
methods which support off-node access to local Deemon routines controlling actor creation and
migration. This actor is always the first created by any Daemon so will have the actor address
<daemon_id, 0 >. The method create at this actor takes an address, a behavior identifier,
and an array representing the state of the actor to create, as well as the identity of the Dzemon
requesting the creation. The receiving Control actor will then manipulate its Daemon to create
an instance of the correct behavior and initialize its state and address. The Control will then
send a creation finished message to the Control actor of the requesting Daemon object.

The creation finished method of the Control actor confirms the completion of an off-
node creation. It allows the Daemon creating the actor to update its actor address tables and
to forward any messages waiting for the newly created actor.

A.5 Scheduler

As the name implies, the Scheduler is the object in Broadway which schedules actor method-
invocations. Actors may be added and removed from the Scheduler by the Damon through the
use of the Scheduler’s add and remove methods. The method donext allows the Scheduler to
execute the next actor method.

In current UNIX versions of Broadway, each node consists of a single thread which must be
shared by all actors and the Daemon. The Daemon must invoke the Scheduler’s donext method
each time it is ready to process another actor message. In between calls to the Scheduler, the
Daemon performs any necessary processing of its own, such as the delivery of off-node messages.

Such a scheduling scheme was chosen because of its simplicity and efficiency. In particular,
since each node has only one thread, there was no need to use any locks or semaphores in
Broadway. However, this scheme also has problems. In particular, if any actor invokes a
method with an infinite loop, that actor will halt computation on the entire node.

42

Therefore, it may be desirable to create a multi-threaded system. With the use of a thread
package, such an implementation could be achieved through modification of the Scheduler’s
implementation. With a one-thread per actor system, the donext method would simply initiate
the Scheduler’s actions and the add and remove would be used to control which actors were
computing.

A.6 Type Factory

As mentioned in Section A.1, it is possible to add new primitive data types to the Broadway
environment. The difficulty with these new additions is enabling their creation upon reception
of an off-node message. It is the purpose of the Daemon’s Factory object to enable this creation.

Each message parameter in an off-node message starts with a two byte header describing its
type. This header must be unique to a specific type. It is also preferred that these identifiers
are issued in numeric order, i.e. each new data type is issued the least unused header value.

The Factory holds an array in which the i element is a pointer to a creation function for
the type with unique header 7. Given this convention, construction of the type factory is simple.
When registering a new data type, the Factory’s set method is invoked with the type header
and the creation function. The function is then recorded in the Factory’s table.

When a value in a character stream must be unpacked, its header is passed to the Factory
by the method make. make looks up the creation function, calls it, and returns the new Value
*. The entity calling the factory may then call unpack on the Value * with the character
stream. Since unpack is a virtual function, it will initialize the new data structure correctly
from the character stream.

A.7 Membership Monitor & Handler

Membership Monitor and Handler together implement the majority of system exceptions on
Broadway. The Membership Monitor maintains a list of all nodes which are currently active.
In the current UNIX versions of Broadway, all nodes must be active before any computation
begins, but may become inactive if a node crashes. The Membership Monitor has a query
method which takes an integer and an optional pointer to a message. query returns true if
the node represented by the integer is active, false otherwise. If a message is supplied to
query and the queried node is inactive, the Membership Monitor will call the handler with the
offending message with the methods add and remove. Both of these methods take an integer
identifying the node whose status is being modified. In some dynamic systems, the number
of nodes in the system may increase. Therefore, the Membership Monitor provides a resize
method which allows the maximum number of nodes to be increased.

The Handler is notified whenever Broadway must generate an exception. The set_crash
and set_bad node methods take a pointer to an Actor object and a reference to the method in
the Actor which will be invoked when an exception of that type must be generated. This Actor
object is the Fxception actor in the set of system actors

The methods crash and bad node then generate the exceptions. They invoke the method
on the Exception actor which was set earlier. This invocation takes the form of a function
call since message formats may be specific to a single language. For example, Screed actors
expect the first two parameters in any message to be a continuation address and method. By

43

calling the methods in the Exception actor directly, language-specific details are factored out
of Broadway and placed in the language’s system library.

A.8 The Platform

The Platform class is designed to be the one class which must be modified when Broadway is
ported from one operating system to another! The platform object is responsible for all O/S
based operations, specifically, those involved with interprocess communication.

The most important methods in the Platform class are the transmit and receive methods.
The transmit method takes a buffer, the size of the buffer, and the node id to which the buffer
should be transmitted. The transmit destination node should not be the local node. The
receive method returns a list of buffers which are the messages received since the previous
invocation of this method.

The Platform must also provide some basic operations for the management of message
buffers. The method new buffer returns a new buffer (of type char *) into which a message
to be transmitted may be packed. The Daemon will call new_buffer to provide a buffer for each
new message. The Dazemon will use this buffer as an argument to transmit. It is then the
duty of the platform object to determine when this buffer may be freed. This decision is based
solely on the semantics of the communication model used by the operating system. Note that
in the UNIX implementation, this same buffer is continually reused since sockets always copy
the message before transmission.

Since the Platform object allocates buffers for incoming messages, the method free buflist
is used to inform the Platform that these buffers are no longer needed by the rest of the system.
The Demon will call free buflist once it has unpacked the messages in the buffers returned
by receive.

All initialization of the new platform must be done in the constructor of Platform. In the
case of UNIX, when the constructor is called all socket connection are made. The destructor
closes these connections when Broadway is terminated.

The only other two methods guaranteed by the Platform object assist the Daemon in un-
derstanding the network configuration. The method max nodes simply returns the number of
nodes (including the local node) in the Broadway network. The method get_local_id returns
the particular node number of the local node.

'The only exception would be the redesign of the Scheduler to use a thread package. In such a case, the
Scheduler class will obviously have to be rewritten as part of the port.

44

APPENDIX B

Screed

Screed is a prototypical actor language which runs on the actor platform Broadway. Besides
serving to simplify the construction of actor applications on Broadway, Screed also serves as an
example of how actor languages may be constructed for Broadway. Screed is by no means a com-
plete language, but provides the basic functionality needed in a object-oriented programming
language along with several advanced constructs pertinent to the author’s research interests.
In the following sections we describe the syntax and semantics for Screed.

B.1 Objects in Screed

Screed is an object-oriented language. Since Screed is an actor language, each object is an au-
tonomous computing component which executes methods concurrently with every other object.
Objects communicate through method invocations. These method invocations are represented
in terms of asynchronous message passing. Although messages are guaranteed to be delivered
(in a non-faulty environment), message ordering is not necessarily preserved; the programmer
should consider this when constructing programs.

Each Screed object is a collection of state variables and methods. Since objects may com-
municate only through method invocation, all state variables are, by default, private variables
and may not be accessed by other objects. Currently all methods may be accessed by any other
object. Each object has a unique, location-independent address. Addresses are first class values
in Screed.

B.2 Syntax

In this section we present the basic syntax of Screed Version 1.0. Note that this syntax may
change in future versions of Screed. Actor classes are declared in Screed with the class state-
ment. The class statement takes the name of the new class and a possible parent class from
which it inherits. State variables and methods may then follow. Asin C and C++, { and } are
used to open and close statements. The syntax of the class statement is as follows:

class <class-name> [: <parent-class-name>] {
[var <declaration-list>]
<method-declarations>

45

Notice that the declaration of a parent class is optional. All classes in Screed inherit certain
methods and state variables from a root class. Not specifying a parent class will default the
inheritance from the root class.

A declaration list is simply a set of type and variable name pairs. In each pair the type
name is followed by the variable name and each pair is followed by a semicolon. The legal type
names are discussed in Section B.3.

A method declaration consists of a method name, a list of formal parameters, and a method
body. In the method body, an optional declaration of local variables is followed by a list of
expressions. Formally, a method declaration may be described as:

<method-name> (< parameter-list>) {
[var <declaration-list>]
< expression-list>
}
The method name is any legal symbol and must be unique only within the set of methods of
that class. The parameter list is, again, a list of type-name, variable-name pairs. In this case
the pairs are separated by commas; no comma follows the last pair. The declaration list at
the head of the method body is identical to the declaration list of state variables in the class
definition and the expression list consists of any number of legal statements.

B.2.1 Statements

In this section the basic legal statements which comprise Screed methods are described. Most
of the syntax will resemble C or Pascal.

Assignment State, local, and parameter values may all be assigned to. Note, however, that
assignment to a parameter value has little effect since all method invocations are call-by-value.
An assignment has the following syntax:

<lvalue> := <expression>;
As discussed in Section B.3, the lvalue may be either a variable or an element in an array. The
expression may be any type-safe combination of Screed binary and unary operators.

If — Else The if statement in Screed is identical to that of C. The conditional expression
must be of type int. The else clause is optional, but is always associated with the most recent
if.
if (<cond-expr>) {
<true-expr-list>
} [else {
<false-expr-list>
.
As with C, the true and false expression lists do not require enclosing braces if they contain
only one expression.

While As with the if statement, the while statement in Screed is identical to that of C.
Again, the conditional must be of type int.

46

while (<true-expr>) {
<expr-list>
¥

For The for statement in Screed is not as flexible as in C and more closely mirrors that of
Pascal. Because incorrectly written while loops may never terminate and, therefore, may lead
to the halting of a node, we wanted to provide a loop statement which is guaranteed to be safe.
The for statement simply increments a pre-declared counter variable. A step statement will
be added in a later version. The current syntax is:

for (<counter> := <start-value> to <end-value>) {
<expr-list>

Method Invocation Communication is simple in Screed and the syntax is common to many
object-oriented languages. The main difference is that, since method is a primitive type, a
variable may represent the method to be invoked. In a case where a method name and a
method variable share the same name, the method variable will take precedence. The syntax
for a method invocation is:

<actor-address> . <method> (< arqgument-list>) ;
The argument list is a set of values, separated by commas. These values may be of any type,
but they will be dynamically type-checked by the receiving actor.

Explicit Continuations Besides the regular method invocation, it is also possible in Screed
to specify a method invocation with an explicit continuation. This explicit continuation may
take a return value from the method invocation and the continuation has access to all variables
in the scope in which it was declared.

<actor> . <method> (<arg-list>) ([<ret-type><ret-var>1) {
<expr-list>
}

The continuation body will execute after the actor receiving the initial message has finished
executing the appropriate method. However, the rest of the enclosing method will be executed
immediately after the initial message is sent. Therefore, the context in which the continuation
will execute will have all variables holding the value they had at the of the enclosing method.
In the case of state-variables, these values may have changed even more due to other pending
messages which the actor processes before the continuation. With the eventual introduction
of synchronization constraints to the language, the programmer will be better able to specify
which methods may execute before completion of the continuation.

When the explicit continuation is executed, the variable specified as ret-val of type ret-type
is given the return value of the invoked method. The type of this return value is type-checked
dynamically, by Broadway, when the continuation is invoked.

Return The return statement is used by any method which was invoked with an explicit
continuation method invocation. The return triggers the explicit continuation. Note that the
return does not cause the method to exit. A value may be supplied to return of any type;
this value will be type-checked dynamically before invocation of the continuation.

47

return [<ezpression>];
A return statement which is executed from a method which was not invoked with an explicit
continuation will have no harmful effect on the system.

Operators There are many binary and unary operators in Screed. Below is a list of them.
Operators currently work only on int and real types.

+ Addition,

— Subtraction or arithmetic negation,
*x Multiplication,

/ Division,

| Logical OR,

& Logical AND,

! Logical negation,

< Less-than,

<= Less-than or equal,

> Greater-than,

>= Greater-than or equal,

== Equality (works for all types).

New To create new actors, the new construct must be used. new takes an actor-class name
and an optional location and returns the address of the new actor.

new <class-name> [@ <location>]
As with the operators above, the new statement returns a value. Therefore, it may be used as
the right-hand side of assignment statements or as an actual parameter to an actor invocation.
The location is an int value which specifies a particular Broadway node. If no such location is
specified, Broadway will determine placement in some default manner.

B.3 Data Types

There are six primitive data types in Screed. There is currently only one operator for the con-
struction of more complex types, though others may be added in later versions. The primitive
types are:

int Integer type,
real Floating point numbers (double precision),

string Character strings,

48

actor Actor addresses,
method Holders of method names,
behavior Holders of class values,

msg Messages

As shown above, variable declarations are always proceeded by a var statement. The var
statement may then be followed by an arbitrary number of declarations of the form:

<primitive type> <wvariable-name>
The one type constructor is the array constructor. In Screed, arrays of any size and dimen-
sion may be declared. The declaration of arrays in Screed is as in C:

<primitive-type> <wvar-name>[<dimi1>][<dim2>]...;
In this case the ’[" and '] are actual operators and do not indicate optional text. All dimensions
must be integer expressions and the resulting array’s always have their first element at location

0.

B.3.1 Constants

Constants in Screed may be declared at the global level only. Each constant must have a type
and must be initialized upon declaration. The syntax for constant declarations is:

const <primitive type> <var-name> = <erpression>;
Constants may then be used anywhere following their declaration.

B.4 Predefined Names

Several built-in methods are inherited by every actor in the system. These methods provide
various types of system-level support for each actor. Currently, there are no safeguards in
Screed to prevent misuse of these methods although individual actors may overwrite them,
thereby disabling them. These methods are:

dispatcher(actor dis) Set the meta-level dispatcher for the actor.
mailg(actor mq) Set the meta-level mailq for the actor.
migrate(actor wh) Migrate the actor to the same node as wh.

exception(actor except) Notify actor of the exception except.

Note that any of the above methods may be overwritten in the actor class definitions if a
different behavior is desired. This is especially appropriate for the exception method which
currently notifies the user of the exception and then crashes the node.

There is one class-name in Screed which has a reserved meaning. This is the start class. A
start class should be defined with at least one method: init. An instance of this class will be
automatically created by Broadway and an init method will be sent to it. Therefore, the init
method acts as a main() in a C program; it is the entry point of the actor application. In all
other ways, the class start and its instances behave as standard actor classes.

49

B.5 Library

To assist the Screed programmer, there are several predefined classes and actors. Rather than
use special built-in function calls, these components provide system-level functionality using an
interface (message passing) which is consistent with the rest of the language.

B.5.1 Predefined Actors

To provide I/0O in a consistent and meaningful way, a special actor — whose address may be
referenced as io — is accessible at all scopes. The actor has a print method which takes a
variable number of arguments, the first of which is a format string. The rules for using the
print method are identical to the C libraries printf() function. Which terminal the I/O appears
on depends on the configuration of the system. However, once the system is configured, 1/0O
will refer to the appropriate actor to perform output.

To support failure detection, there exists on each node a failure detector actor which may
be reference by the name detect. Currently, the failure detector will only detect complete node
failures. To use the failure detector, an actor sends a subscribe message to the actor detect
with the address of the entity to notify in case of a crash, and the node which the actor is
interested in monitoring. A -1 for the node number mean the actor is interested in all crashes.
A subscription which would have the detector notify the subscribing actor if any node failed
would appear as:

detect.subscribe(self,-1);
Upon detection of a failure, the detector will send an exception message to all appropriately
subscribed actors. As explained below exception is a method built in to every actor.

B.5.2 Predefined Classes

Currently in Screed, there are two special classes besides those mentioned above for io and de-
tect. The Exception class is the root class for all exceptions. It provides the basic functionality
described in Chapter 3 for exception objects.

For timing analysis the Timer class exists. Instances of the class can be created to act as
a stop-watch. In the future its role will be expanded to generate periodic messages to actors.
The Timer class has three methods: reset, stop and read. reset resets the timer and starts it.
stop stops the timer, and read returns the result in a variable of type real. To receive the value
from read, and explicit continuation must be used.

50

Bibliography

[1]

[9]

[10]

[11]

M. Acceta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: A New Kernel Foundation for UNIX Developement. In USENIX 1986 Summer
Conference Proceedings, June 1986.

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
1986.

G. Agha. Concurrent Object-Oriented Programming. Communications of the ACM,
33(9):125-141, September 1990.

G. Agha, S. Frglund, R. Panwar, and D. Sturman. A Linguistic Framework for the Dynamic
Composition of DependabilityProtocols. In C.E. Landwehr, B. Randell, and L. Simoncini,
editors, Dependable Computing for Critical Applications 3, volume 8 of Dependable Com-
puting and Fault-Tolerant Systems, pages 345-363. IFIP Transactions, Springer-Verlag,
1993.

K. P. Birman and T. A. Joseph. Communication Support for Reliable Distributed Com-
puting. In Fault-tolerant Distributed Computing. Springer-Verlag, 1987.

Roy Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing amd Implement-
ing Choices: An Object-Oriented System in C+4. Communications of the ACM, pages
117-126, September 1993.

E. Cooper. Programming Language Support for Multicast Communication in Distributed
Systems. In Tenth International Conference on Distributed Computer Systems, 1990.

Antonio Corradi, Paola Mello, and Antonio Natali. Error Recovery Mechanisms for Re-
mote Procedure Call-Based Systems. In 8th Annual International Phoeniz Conference on

Computers and Communicaton Conference Proceedings, pages 502-507, Phoenix, Arizona,
March 1989. IEEE Computer Society Press.

F. Cristain. Understanding Fault-tolerant Distributed Systems. Communications of the

ACM, 34(2):56-78, 1991.

Quian Cui and John Gannon. Data-Oriented Exception Handling in Ada. IFFE Transac-
tions on Software Engineering, 18:98-106, May 1992.

Christophe Dony. Improving Exception Handling with Object-Oriented Programming. In
Proceedings of the 14th Annual International Computer Software and Applications Con-
ference, pages 36-42, Chicago, 1990. IEEE, Computer Society, IEEE.

51

[12]

[13]

[14]

[20]

[21]

[22]

[23]

[24]

[25]

Christophe Dony, Jan Purchase, and Russel Winder. FException Handling in Object-
Oriented Systems. OOPS Messanger, 3(2):17-29, April 1992.

Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector, editors. CAMELOT AND
AVALON: A Distributed Transaction Facility. Morgan Kaufmann Publishers, Inc., 1991.

Jacques Ferber and Jean-Pierre Briot. Design of a Concurrent Language for Distributed
Artificial Intelligence. In Proceedings of the International Conference on Fifth Generation
Computer Systems, volume 2, pages 755-762. Institute for New Generation Computer
Technology, 1988.

S. Frglund. Inheritance of Synchronization Constraints in Concurrent Object-Oriented
Programming Languages. In O. Lehrmann Madsen, editor, FCOOP’92 Furopean Confer-
ence on Object-Oriented Programming, pages 185-196. Springer-Verlag, June 1992. Lecture
Notes in Computer Science 615.

S. Frglund and G. Agha. A Language Framework for Multi-Object Coordination. In
Proceedings of ECOOP 1993. Springer Verlag, July 1993. LNCS 627.

John B. Goodenough. Exception Handling: Issues and a Proposed Notation. Communi-
cations of the ACM, 18(12):683-696, December 1975.

Daniel T. Huang and Ronald A. Olsson. An Exception Handling Mechanism for SR.
Computer Languages, 15(3):163-176, 1990.

Yuuji Ichisugi and Akinori Yonezawa. Ixception Handling and Real Time Features in
an Object-Oriented Concurrent Language. In A. Yonezawa and T. Ito, editors, Concur-
rency: Theory, Language, and Architecture, pages 92-109. Springer-Verlag, Oxford, UK,
September 1989. LNCS 491.

Barbara Liskov. Distributed Programming in Argus. Communications of the ACM,
31(3):300-312, March 1988.

Barbara Liskov and Alan Snyder. Exception Handling in Clu. [IFEF Transactions on
Software Engineering, 5(6):546-558, November 1979.

P. Maes. Computational Reflection. Technical Report 87-2, Artificial Intelligence Labora-
tory, Vrije University, 1987.

Carl Manning. ACORE: The Design of a Core Actor Language and its Compiler. Master’s
thesis, MIT, Artificial Intelligence Laboratory, August 1987.

S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication Substrate
for Fault-Tolerant Distributed Programs. Technical report, University of Arizona, Tucson,
1991.

M. H. Olsen, E. Oskiewicz, and J. P. Warne. A Model for Interface Groups. In Tenth
Symposium on Reliable Distributed Systems, Pisa, Italy, 1991.

52

[26]

Richard D. Schlichting, Falviu Christian, and Titus D. M. Purdin. A Linguistic Approach
to Failure Handling in Distributed Systems. In A. AviZienis and J.C. Laprie, editors,
Dependable Computing for Critical Applications, pages 387-409. IFIP, Springer-Verlag,
1991.

Richard D. Schlichting and Titus D. M. Purdin. Failure Handling in Distributed Program-
ming Languages. In Proceedings: Fifth Symposium on Reliability in Distributed Software
and Database Systems, pages 59-66, Los Angeles, CA, January 1986. IEEE Computer
Society Press.

Santosh Shrivastava, Graeme Dixon, and Graham Parrington. An Overview of the Arjuna
Distributed Programming System. IFEFE Software, pages 66-73, January 1991.

B. C. Smith. Reflection and semantics in a procedural language. Technical Report 272,
Massachusetts Institute of Technology. Laboratory for Computer Science, 1982.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, second edition,
1991.

C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. In OOFP-
SLA Proceedings, 1989.

T. Watanabe and A. Yonezawa. A Actor-Based Metalevel Arhitecture for Group-Wide
Reflection. In J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Foundations
of Object-Oriented Languages, pages 405-425. Springer-Verlag, 1990. LNCS 489.

C. T. Wilkes and R. J. LeBlanc. Distributed Locking: A Mechanism for Constructing
Highly Available Objects. In Seventh Symposium on Reliable Distributed Systems, Ohio
State University, Columbus, Ohio, 1988.

Y. Yokote, A. Mitsuzawa, N. Fujinami, and M. Tokoro. The Muse Object Architecture:
A New Operating System Structuring Concept. Technical Report SCSL-TR-91-002, Sony
Computer Science Laboratory Inc., Feburary 1991.

A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System, chapter Reflection
in an Object-Oriented Concurrent Language, pages 45-70. MIT Press, Cambridge, Mass.,
1990.

53

