
c
Copyright byDaniel Charles Sturman1994

FAULT-ADAPTATION FOR SYSTEMS IN UNPREDICTABLE ENVIRONMENTS
BYDANIEL CHARLES STURMANB.S., Cornell University, 1991

THESISSubmitted in partial ful�llment of the requirementsfor the degree of Master of Science in Computer Sciencein the Graduate College of theUniversity of Illinois at Urbana-Champaign,1994Urbana, Illinois

ABSTRACTThis thesis describes a technique for designing systems which can adapt to patterns of faultsas they occur. Such adaptively dependable systems are especially critical in isolated systemswhich must maintain long-term fault tolerance and in open systems where future system con�g-urations are unknown. Through the use of a re
ective language structure, we support dynamicinstallation and composition of fault-tolerance protocols. These protocols are constructed asoperations on messages to allow reuse and transparency: applications and protocol may be de-veloped separately without prior knowledge of their future composition. We have implementedour techniques in the language Screed which runs on the actor platform Broadway. Details ofthe implementation are also described.
iii

ACKNOWLEDGEMENTSI would like to thank my advisor, Gul Agha, for supporting me in this work. I wouldalso like to thank the other members of the Open Systems Laboratory for their input andcontributions. In particular, I would like to thank Svend Fr�lund and Rajendra Panwar fortheir many comments on Broadway and Screed as well as their contributions to the re
ectivemodel. Finally, I would like to thank my parents and Lily, who provide an invaluable source ofsupport with their encouragements and love.
iv

TABLE OF CONTENTSChapter1 Introduction : 11.1 Introduction : 11.2 Related Work : 31.3 Background : 51.3.1 The Actor Model : 51.3.2 Object Orientation : 51.3.3 Re
ection : 62 Meta-level Architecture for Ultra-dependability : : : : : : : : : : : : : : : : : 82.1 A Meta-Level Architecture : 82.2 Transparency and Reuse : 92.3 A Replicated Server : 92.4 Composition of Dependability Characteristics : 123 Exception Handling : 163.1 Exception Handling Components : 163.2 Syntax for Exception Handling : 193.2.1 Description of Handlers : 193.2.2 Signal Generation : 203.3 Supporting Adaptive Dependability : 213.4 Recon�guring a Satellite to Preserve Failure Semantics : : : : : : : : : : : : : : : 224 Implementation : 244.1 The Structure of Broadway : 244.1.1 D�mon Structure : 244.1.2 Library : 264.2 Implementation of maud : 264.3 Implementation of Screed : 284.3.1 Explicit Continuations : 294.3.2 Implementation of Exception Handling : 304.4 Performance : 325 Conclusion : 345.1 Summary : 345.2 Future Work : 35v

5.2.1 Consistent Installation of Protocols : 355.2.2 Protocol Languages : 35AppendixA Broadway : 36A.1 Data Structures : 36A.1.1 A Basic Set of Data Structures : 36A.1.2 Data Type Characteristics : 37A.1.3 Designing Custom Data Structures : 38A.2 Structure of Actor Class C++ Representations : : : : : : : : : : : : : : : : : : : 38A.3 Actor Objects : 40A.4 The D�mon : 41A.5 Scheduler : 42A.6 Type Factory : 43A.7 Membership Monitor & Handler : 43A.8 The Platform : 44B Screed : 45B.1 Objects in Screed : 45B.2 Syntax : 45B.2.1 Statements : 46B.3 Data Types : 48B.3.1 Constants : 49B.4 Prede�ned Names : 49B.5 Library : 50B.5.1 Prede�ned Actors : 50B.5.2 Prede�ned Classes : 50Bibliography : 51
vi

LIST OF FIGURES2.1 A replication protocol installed on an arbitrary server. : : : : : : : : : : : : : : : 102.2 Code for the server-end mail queue which implements replication. : : : : : : : : : 102.3 Code for the client-end mail queue which implements replication. : : : : : : : : 112.4 The additional methods which allow for protocol composition. : : : : : : : : : : : 122.5 Partners and Owner relationships. : 132.6 Composed system using a replication protocol and message checksum protocol. : 143.1 The four roles involved with an exceptional condition. : : : : : : : : : : : : : : : 173.2 The structure of a handle block in Screed. : 193.3 An example of handler scopes and their e�ect. : : : : : : : : : : : : : : : : : : : 193.4 A prototypical adaptively dependable system. : 223.5 Example satallite architecture and result of replication. : : : : : : : : : : : : : : 224.1 Messages sent between meta- and base objects. : : : : : : : : : : : : : : : : : : : 274.2 Example transformation of an explicit continuation. : : : : : : : : : : : : : : : : 294.3 Code for the Directory class. : 314.4 Transformation of a handle statement into C++. : : : : : : : : : : : : : : : : : : 324.5 Performance times for various Broadway operations. : : : : : : : : : : : : : : : : 32A.1 A sample lookup function. : 39
vii

Chapter 1Introduction1.1 IntroductionThe failure semantics of a service refers to the set whose elements are the di�erent ways inwhich a service can fail [9]. This set serves as a contract with clients who use the service:failure semantics for a client are often dependent on the failure semantics of the services used.Therefore, an incorrect speci�cation of the failure semantics of one service can lead to a chainof incorrect failure semantics.For example, a data-base object may have omission-only failure semantics: any reply to aquery will be correct, but a reply is not guaranteed. Consider an accounting program whichassumes any results received from the data-base are correct. The accounting program willbalance records and trigger error-�nding services if the records do not balance. Assume theaccounting program's failure semantics specify that it should be conservative in invoking theerror-�nding services: if a possible error exists, the services should be invoked. If the data-baseviolates its failure semantics by replying with corrupt data that hides an error, the accountingprogram may incorrectly deduce a correct balance and never invoke the error-�nding services,thereby violating the accounting program's failure semantics.Failure semantics are enforced through the use of dependability protocols which guaranteean acceptably small probability that a failure whose type is not speci�ed may occur. Generally,the more speci�c the failure semantics, the greater the computational cost of the protocols.However, less stringent failure semantics for commonly used services may lead to a greaternumber of protocols necessary to enforce failure semantics on other services.Many systems have been developed to support the development of dependable computingapplications. In most of these systems, however, the failure semantics of a service are assumed tobe static and, therefore, the dependability protocols used are �xed at compile time. However, inmany computer systems, it is either unsatisfactory to adhere to a static set of failure semantics orimpossible to adequately enforce the semantics with a �xed group of dependability protocols. Insome systems, the protocols chosen may later prove incapable of correctly enforcing the speci�edfailure semantics. In others, the introduction of new services may require the restructuring offailure semantics. We illustrate these situations with two example systems:� Consider an embedded system which is required to function over a long duration, yetis fault-prone due to the uncertain environment in which it operates. If this systemis physically isolated, such as in the control system of a satellite, physical modi�cation1

of system components is almost impossible. In such a system, a change in the physicalenvironment may result in protocols designed for the old environment failing to uphold thefailure semantics in the new environment. New, more rigorous, dependability protocolsmay then be required to enforce the desired failure semantics of the system.� Consider an open system. In open systems, processes may be created and removed asnecessary. Creation of processes may be conditional on other events and, therefore, deter-mining the system con�guration statically may be impossible. Pre-existing services mayrequire a stricter set of failure semantics for a new client than was originally expected.Conversely, the existing clients may allow a new service to maintain less stringent fail-ure semantics. If this
exibility is not exploited, signi�cant performance may be lost.Therefore, it may be impossible to determine what failure semantics a process must have,or what protocols are necessary to enforce these semantics, until after it actually joinsthe system. Furthermore, the addition of new services may require a change in the fail-ure semantics of existing components. For example, a �le server may initially addresssafety only by check-pointing the �les to stable storage. New clients added to the system,however, may require the server to also provide persistence and a protocol to supportreplication may need to be added.In this thesis, we describe a methodology for the modular speci�cation of systems that canadapt a system's failure semantics and set of protocols enforcing the failure semantics to matchthe current environment. We call such systems adaptively dependable systems. We present amethodology which allows the reuse and transparent installation of dependability protocols aswell as their dynamic installation in a system. Our methodology, when combined with a suitablystructured exception handling mechanism and fault detection, allows for the development offault handlers which can maintain consistent failure semantics within a changing environmentand can alter failure semantics as system needs change. We have provided programmer supportfor our methodology in the language Screed which is implemented on our run-time systemBroadway.We employ re
ection as the enabling technology for dynamic installation of dependabilityprotocols. Re
ection means that a system can reason about and manipulate a representationof its own behavior. This representation is called the system's meta-level. The components ofan object that may be customized at the meta-level are referred to as the meta-architecture.In our case, the meta-level contains a description which implements the failure semantics of anexecuting application; re
ection thus allows dynamic changes in the execution of an applicationwith respect to dependability.Besides supporting dynamic installation, our meta-architecture supports transparency andreuse of dependability protocols. The meta-architecture allows protocols to be expressed asoperations on abstract messages. Since the individual �elds of a particular message are neverexamined, the same protocol may be used with di�erent applications.Given this technique for dynamic modi�cation of the dependability protocols used in asystem, we then describe how fault detection and exception handling may be used in conjunctionwith our meta-architecture to support adaptively dependable systems. We model both failuresand exceptions as objects. Each type of fault which may be detected is described as a speci�csystem exception.We construct managers | objects with meta-level capabilities | to address system excep-tions. Managers serve three purposes: 2

� A manager may correct for recoverable faults. The corrections allow the system to con-tinue to function despite a fault. This role is generally referred to as performing forwarderror recovery.� Managers provide failure prevention. When a manager discovers a pattern of componentfailures, it dynamically installs protocols which mask future failures or facilitate futurefault-correction by expanding the set of recoverable faults. In this manner, we have takenforward error recovery one step further: rather than simply adjusting the system state,the actual dependability characteristics of the system may be modi�ed.� Managers support recon�guration of the dependability protocols in a system. This may bedone either to alter the system's failure semantics or to correctly enforce these semanticsonce the environment changes. Thus, we can develop dependable long duration systemswhose fault patterns are not known at start-up time.A prototype implementation which tests these ideas is described. Our run-time systemBroadway supports our meta-architecture as well as failure detection and a set of system ex-ceptions. On top of Broadway, we have implemented the language Screed. Screed is a prototypeconcurrent actor language we use to illustrate our ideas. Screed provides complementary con-structs for both fault detection through exception handling and for dynamic installation ofprotocols through a meta-architecture. This language is presented as a demonstration of howsuch constructs may be added to existing languages.This thesis is organized as follows. This chapter discusses related work and backgroundinformation: in Section 1.2, we discuss other work in re
ection, exception handling, and indeveloping languages for fault-tolerance; Section 1.3 provides background information on re
ec-tion, the Actor model, and object-orientation. Chapter 2 discusses our meta-level architectureand how it may be used to construct dependability protocols. We also discuss the e�ect of ourmeta-level architecture on protocol performance. Chapter 3 describes exception handling inScreed and how exception handling may be used in conjunction with our meta-level architec-ture to implement adaptively dependable systems. We then illustrate this technique with anexample of a system adapting to a change in environment.Implementation details are then discussed in Chapter 4 where we discuss pertinent detailsof implementing our techniques for Broadway and Screed. The appendices provide a moredetailed description Broadway and Screed. Appendix A provides the Broadway User's Manualand Appendix B is the Screed Programmer's Guide.1.2 Related WorkA number of languages and systems o�er support for constructing fault-tolerant systems. InArgus [20], Avalon [13] and Arjuna [28], the concept of nested transactions is used to structuredistributed systems. Consistency and resilience is ensured by atomic actions whose e�ect arecheck-pointed at commit time. The focus in [24], [7] and [5] is to provide a set of protocolsthat represent common communication patterns found in fault-tolerant systems. None of theabove systems support the factorization of fault-tolerance characteristics from the applicationspeci�c code. In [33] and [25], replication can be described separate from the service beingreplicated. Our approach is more
exible since fault-tolerance schemes are not only describedseparately but they can also be attached and detached dynamically. Another unique aspect of3

our approach is that di�erent fault-tolerance schemes may be composed in a modular fashion.For example, check-pointing may be composed with replication without having either protocolknow about the other.Non-re
ective systems which support customization do so only in a system-wide manner.For example, customization in a micro-kernel based system [1] a�ects all the objects collectively.In an object-oriented system such as Choices [6], frameworks may be customized for a particularapplication. However, once customized, the characteristics may not change dynamically. Re-
ection in an object-based system allows customization of the underlying system independentlyfor each object. Because di�erent protocols are generally required for very speci�c subsets ofthe objects in a system, this
exibility is required for implementing dependability protocols.Re
ection has been used to address a number of issues in concurrent systems. For example,the scheduling problem of the Time Warp algorithm for parallel discrete event simulation ismodeled by means of re
ection in [35]. A re
ective implementation of object migration isreported in [32]. Re
ection has been used in the Muse Operating System [34] for dynamicallymodifying the system behavior. However, the literature is unclear as to the e�ect on e�ciencyof this generally re
ective system.Re
ective frameworks for the Actor languages MERING IV and Rosette have been proposedin [14] and [31], respectively. In MERING IV, programs may access meta-instances to modifyan object or meta-classes to change a class de�nition. In Rosette, the meta-level is describedin terms of three components: a container, which represents the acquaintances and script; aprocessor, which acts as the scheduler for the actor; and a mailbox, which handles messagereceptionThe concept of unifying exception handling and fault detection was originally proposedin [27] and then re�ned in [26]. In these papers, detected failures are considered asynchronousevents much as exceptional conditions are treated in distributed programming languages. There-fore, exception handling constructs provide a natural way to incorporate failure-response codeinto an application.Goodenough introduced the idea of exceptions and exception handling in [17]. Since then,many di�erent exception handling mechanisms have been proposed. Exception handling con-structs have been developed for object-based languages such as Clu [21] and Ada [10]. Dony [11]describes an approach for object-oriented languages which was implemented in Smalltalk. Thiswas the �rst approach that implemented exceptions as objects. Exception handling for C++ isdiscussed in [30]. A good overview of techniques proposed for other object-oriented languagescan be found in [12].A critical di�erence between object-oriented approaches to exception handling and non-object-oriented approaches such as CLU [21] or Ada [10] is that, in the non-object-orientedapproaches, the exception object is represented by a set of parameters to a function. Therefore,on generating the signal, this parameter list must provide all possible information used by thehandler.For concurrent systems, an approach has been proposed for languages which use RPCcommunication [8]. However, the technique is based on synchronized components which allowstheir constructions to be closer to that of a sequential system than an asynchronous system.Exception handling mechanisms have been proposed for other Actor languages. In [19], anexception handling mechanism was proposed for ABCL/1 and for Acore in [23]. These languagesuse complaint addresses to support exception handling. A complaint address is an address, spec-i�ed with each message, to which all signals are dispatched. Complaint address-based schemes4

do not allow for di�erent handlers to be bound to di�erent exceptions: all complaints are sentto the same destination. Such an approach makes supporting adaptive dependability, whereeach handler is an \expert" on a particular group of exceptions, very di�cult to implement.Furthermore, these complaint address schemes pass exception information in terms of a setnumber of parameters in a message rather than utilizing exception objects.1.3 BackgroundBefore discussing our meta-architecture and how we use it to support adaptively dependablesystems, we �rst discuss in greater detail some of the concepts used in this paper. Speci�cally, toillustrate our concepts we have chosen the Actor model of concurrent computation. The Actormodel was chosen due to the ease in which our re
ective architecture could be incorporated.We then brie
y discuss some of the advantages of object-oriented programming and how theyare important to our methods. Finally, we give a more in-depth discussion of re
ection andhow it relates to a programming language.1.3.1 The Actor ModelWe illustrate our approach using the Actor model [2, 3]. It is important to note that the idea ofusing re
ection to describe dependability is not tied to any speci�c language framework. Ourmethodology assumes only that resources can be created dynamically, if needed, to implementa particular protocol and that the communication topology of a system is recon�gurable. Ourmethodology does not depend on any speci�c communication model.Actors can be thought of as an abstract representation for the computing components ina multicomputer architecture. An actor is an encapsulated entity that has a local state. Thestate of an actor can only be manipulated through a set of operations.Actors communicate by asynchronous point-to-point message passing. A message is a re-quest for invocation of an operation in the target actor. Messages sent to an actor are bu�eredin a mail queue until the actor is ready to process the message. Each actor has a system-wideunique identi�er which is called a mail address. This mail address allows an actor to be ref-erenced in a location transparent way. In order to abstract over processor speeds and allowadaptive routing, preservation of message order is not guaranteed.The behavior of an actor is the actions performed in response to a message. These actionsmay include the dynamic creation of new actors. Actor addresses may be communicated inmessages and an actor may only communicate with another actor if it has the correct address.An actor's acquaintances are the mail addresses of known actors. An actor can only sendmessages to its acquaintances, which provides locality.1.3.2 Object OrientationIn an object-oriented environment, a program execution is organized as a collection of objects.Each object is an encapsulated entity, similar to an instance of an abstract data type. Thelocal data comprising each object may only be accessed through an interface speci�ed as a setof methods. The operations carried out by a method are not visible outside the object. Objectscommunicate with messages which invoke a method in the receiving object. The local data ofanother object can not otherwise be changed or accessed.5

Objects are instantiated from classes. A class is a user-de�ned abstraction. Classes maybe thought of as types and objects as elements of that type. Instantiation is the creation ofan object of a particular class. Classes contain the description (code) of the methods andof the instance variables for objects instantiated from that class. Classes may inherit fromother classes. Inheritance provides the inheriting class with the properties { the methods andinstances { of the ancestor class. The inheriting class can then utilize these properties as wellas augment them with new instances variables or methods. Methods may be inherited directlyor rede�ned, facilitating code reuse.Object-oriented languages allows for a modular development of systems. The implementa-tion of each component is hidden from other components: only the interface is known. In thisway, a component's implementation may change without a�ecting other components. Code mayalso be reused e�ciently since components share code by inheriting from a common ancestorclass.1.3.3 Re
ectionRe
ectionmeans that a system can manipulate a causally connected description of itself [29, 22].Causal connection implies that changes to the description have an immediate e�ect on thedescribed object. In a re
ective system, a change in these descriptions or meta-objects resultsin a change in how objects are implemented. The object for which a meta-object representscertain aspects of the implementation is called the base object.Meta-objects may be thought of as objects which logically belong in the underlying run-timesystem. For examples, a meta-object might control the message lookup scheme that wouldmap incoming messages to operations in the base object. Another meta-object may modifyhow values are read from memory. Using re
ection, such implementation-level objects can beaccessed and examined, and user de�ned meta-objects may be installed, yielding a potentiallycustomizable run-time system within a single language framework.The re
ective capabilities which are provided by a language are referred to as the meta-level architecture of the language. The meta-level architecture may provide variable levels ofsophistication, depending on the desirable level of customization. The most general meta-levelarchitecture is comprised of complete interpreters, thus allowing customization of all aspectsof the implementation of objects. In practice, this generality is not always needed and, fur-thermore, de�ning a more restrictive meta-level architecture may allow re
ection to be realizedin a compiled language. The choice of a meta-level architecture is part of the language de-sign. Customizability of a language implementation must be anticipated when designing therun-time structure. Although a restrictive meta-level architecture limits
exibility, it providesgreater safety and structure. If all aspects of the implementation were mutable, an entirelynew semantics for the language could be de�ned at run-time; in this case, reasoning about thebehavior of a program would be impossible.We limit our meta-level to only contain the aspects that are relevant to dependability.Application speci�c functionality is described in the form of base objects and dependabilityprotocols are described in terms of meta-objects. Thus, dependability is modeled as a specialway of implementing the application in question. Our methodology supports modularity sincefunctionality and dependability are described in separate objects. Since meta-objects can bede�ned and installed dynamically, the objects in a system can dynamically change the proto-cols enforcing their failure semantics as system needs change. Furthermore, new dependability6

protocols may be de�ned while a system is running and put into e�ect without stopping andrecompiling the system. For example, if a communication line within a system shows poten-tial for unacceptable error rates, more dependable communication protocols may be installedwithout stopping and recompiling the entire system.Since meta-objects are themselves objects, they can also have meta-objects associated withthem, giving customizable implementation of meta-objects. In this way, meta-objects realizinga given dependability protocol may again be subject to another dependability protocol. Thisscenario implies a hierarchy of meta-objects where each meta-object enforces a subset of thefailure semantics for the application in question. Each meta-object may be de�ned separatelyand composed with other meta-objects in a layered structure supporting reuse and incrementalconstruction of dependability protocols.Because installation of a malfunctioning meta-level may compromise the dependability ofa system, precautions must be taken to protect against erroneous or malicious meta-objects.To provide the needed protection of the meta-level, we introduce the concept of privilegedobjects called a managers. Only managers may install meta-objects. Using operating systemterminology, a manager should be thought of as a privileged process which can dynamically loadnew modules (meta-objects) into the kernel (meta-level). It should be observed that, because ofthe close resemblance to the operating system world, many of the operating system protectionstrategies can be reused in our design. We will not discuss particular mechanisms for enforcingthe protection provided by the managers in further detail here. Because only managers mayinstall meta-objects, special requirements can be enforced by the managers on the structureof objects which may be installed as meta-objects. For example, managers may only allowinstallation of meta-objects instantiated from special veri�ed and trusted libraries. Greateror fewer restrictions may be imposed on the meta-level depending on the dependability andsecurity requirements that a given application must meet.

7

Chapter 2Meta-level Architecture forUltra-dependabilityIn this chapter we introduce maud (Meta-level Architecture for Ultra Dependability) [4].maud supports the development of reusable dependability protocols. These protocols maythen be installed during the execution of an application. maud has been implemented onBroadway, our run-time environment for actors.We begin with a discussion of maud's structure. We then discuss how transparency andreusability of protocols are supported by this structure followed by an example of such a proto-col. We �nish this section by demonstrating how maud also allows the composition of protocolsand give an example of composition.2.1 A Meta-Level ArchitectureAs previously mentioned, maud is designed to support the structures that are necessary toimplement dependability. In maud, there are three meta-objects for each actor: dispatcher,mail queue and acquaintances. In the next three paragraphs we describe the structure of meta-objects in maud. Note that maud is a particular system developed for use with actors. Itwould be possible, however, to develop similar systems for most other models.The dispatcher and mail queue meta-objects customize the communication primitives ofobjects so that their interaction can be adjusted for a variety of dependability characteristics.The dispatcher meta-object is a representation of the implementation of the message-sendaction. Whenever the base object sends a message, the run-time system calls the transmitmethod on the installed dispatcher. The dispatcher performs whatever actions are needed tosend the given message. Installing dispatchers to modify the send behavior makes it possibleto implement customized message delivery patterns.A mail queue meta-object represents the mail queue holding the incoming messages sentto an actor. A mail queue is an object with get and put operations. After installation ofa mail queue meta-object, its get operation is called by the run-time system whenever thebase object is ready to process a message. The put operation on a mail queue is called by therun-time system whenever a message for the base object arrives. By installing a mail queue atthe meta-level, it is possible to customize the way messages
ow into the base object.8

The acquaintances meta-object is a list representing the acquaintances of a base object. Inan actor system, all entities are actors. Although they may be implemented as local state, evenprimitive data objects, such as integers or strings, are considered acquaintances in an actorsystem. Therefore, in an actor language the acquaintances and the mail queue comprise thecomplete state of an actor. The acquaintances meta-object allows for check-pointing of actors.Meta-objects are installed and examined by means of meta-operations. Meta-operations arede�ned in the class called Object which is the root of the inheritance hierarchy. All classesin the system inherit from Object , implying that meta-operations can be called on each actorin the system. The meta-operations change mailQueue and change dispatcher install mailqueues and dispatchers for the object on which they are called. Similarly, the meta-operationsget mailQueue , get dispatcher and get acquaintances return the meta-objects of a givenactor. If no meta-objects have been previously installed, an object representing the built-in,default, implementation is returned. Such default meta-objects are created in a lazy fashionwhen a meta-operation is actually called.2.2 Transparency and ReuseBy describing our dependability protocols in terms of meta-level dispatchers and mail queues, weare able to construct protocols in terms of operations on messages where we treat each messageas an integral entity. There are several advantages to developing dependability protocols in thismanner.The �rst advantage is the natural way in which protocols may now be expressed. Whendependability protocols are described in the literature, they are described in terms of operationson abstract messages, i.e. the actual contents of the messages are rarely considered. Therefore,it is logical to code protocols in a manner more closely resembling their natural languagedescription.Secondly, because the protocols are expressed in terms of abstract messages and becauseevery object may have a meta-level mail queue and dispatcher, a library of protocols may bedeveloped which may be used with any object in the system. Such a library would consist ofprotocols expressed in terms of a mail queue and dispatcher pair. The meta-objects may thenbe installed on any object in the system. Since the protocols deal only with entire messages, theactual data of such messages is irrelevant to the operation of the protocol. Only �elds commonto every message, such as source, destination, time sent, etc. need be inspected.The libraries may also be used with other applications, allowing the reuse of dependabilityprotocols. One set of developers could be responsible for the dependability of multiple softwaresystems and develop a protocol library for use with all of them. Since protocols implementedwith maud are transparent to the application, other development teams, who are responsiblefor development of the application programs, need not be concerned with dependability. In the�nal system, protocols from the library may be installed on objects in the application, providingdependability in the composed system.2.3 A Replicated ServerIn this section, we provide an example of how a protocol may be described using maud. Ina distributed system, an important service may be replicated to maintain availability despite9

MailQueue

Dispatcher

Key:

Message send

Causal Connection

Eliminator

Server
 S1

Tagger

Server
 S

Tagger

Client
 A

Eliminator

Client
 B

2

ForwarderFigure 2.1: A replication protocol installed on an arbitrary server.processor faults. In this section, we will give an example of how maud can be used in an actordomain to develop a modular and application-independent implementation of a protocol whichuses replication to protect against crash failures.class Forwarder : MailQueue fvar actor backup, server;put(msg m) fm.base send();m.set dest(backup);m.send();ggFigure 2.2: Code for the server-end mail queue which implements replication.The protocol we describe is quite simple: each message sent to the server is forwarded toa backup copy of the server. In this manner, there is an alternate copy of the server in caseof a crash. Reply messages from both the original and backup servers are then tagged and theclient eliminates duplicate messages.Figure 2.1 shows the resulting actions occurring when a message is sent to the replicatedservice. The original server is actor S1. When a message is received by the Forwarder, themessage is forwarded to the backup S2. S2 is initialized with the behavior and state of S1.Since they will receive the same messages in the same order, their state will remain consistent.Therefore, any replies will be identical and in the same order. The replies are tagged by thedispatchers of class Tagger and only the �rst copy of each message is passed on to the client byEliminator.Forwarding messages to the backup server is implemented using a meta-level mail queue.The Screed code for this mail queue is presented in Figure 2.2. Using a dispatcher, each reply10

class Eliminator : Mailq fvarint tag;actor members[2];actor client;/* No get method is required since we use* the default behavior inherited from Mailq */put(msg m) fint i;for (i := 0 to 1)if (m.get src() = members[i])/* Since the message was from a replica,* we know that the first argument is a tag and* the second is the original message.*/if (m.arg[0] < tag)/* Discard message */return;else if (m[0] = tag) fself.enqueue(m[1]);tag := tag + 1;ggFigure 2.3: Code for the client-end mail queue which implements replication.message of the server is tagged to allow the elimination of duplicate replies by the client. Amail queue at the client performs this duplicate elimination. The code for this mail queue isshown in Figure 2.3.We assume that managers themselves install appropriate meta-objects realizing a givendependability protocol. Therefore, we specify the relevant dependability protocols by describingthe behavior of the initiating manager as well as the installed mail queues and dispatchers. Amanager in charge of replicating a service takes the following actions to achieve the state shownin Figure 2.1:1. The speci�ed server is replicated by a manager by creating an actor with the same behaviorand state.2. A mail queue is installed for the original server to make it act as the Forwarder describedabove.3. The mail queues of the original clients are modi�ed to act as the Eliminator describedabove.4. The dispatchers of the servers are changed to tag all messages so that the Eliminator mayremove copies of the same message. 11

add mailq (actor aMailq) fif (mailq = nil) fself.change mailq(aMailq);else mailq.add mailq(aMailq);gadd dispatcher (actor aDispatcher) fif (dispatcher = nil) fself.change dispatcher(aDispatcher);else dispatcher.add dispatcher(aDispatcher);g Figure 2.4: The additional methods which allow for protocol composition.5. Upon detection of a crash of S1, the manager takes appropriate action to ensure all furtherrequests to the server are directed to S2. The manager may also create another backupat this time.Although this example is simple, it does illustrate some of the bene�ts of our approach.The manager initiating the replication protocol needs no advance knowledge of the service tobe replicated nor does the replicated service need to know that it is being replicated. Becausethe clients using the replicated service are not modi�ed in any way, this gives us the
exibilityto dynamically replicate and unreplicate services while the system is running.2.4 Composition of Dependability CharacteristicsIn some cases, dependability can only be guaranteed by using several di�erent protocols. Forexample, a system employing replication to avoid possible processor faults may also need toguarantee consensus on multi-party transactions through the use of three-phase commit or somesimilar mechanism. Unfortunately, writing one protocol which has the functionality of multipleprotocols can lead to very complex code. In addition, the number of possible permutations ofprotocols grows exponentially, making it necessary to predict all possibly needed combinationsin a system. Therefore, it is desirable to be able to compose two protocols written independently.In some cases this may not be possible due to a con
ict in the semantics of the two protocols. Inother cases, performance may depend greatly on the way in which two protocols are composed.For most common protocols such as replication, checksum error detection, message encryption,or check-pointing, composition is possible.Because the meta-components of an object are themselves objects in a re
ective system,there is a general solution for composing two protocols using maud. A simple change tothe meta-operations inherited from the Object class, along with a few restrictions on theconstruction of mail queues and dispatchers, allows us to layer protocols in a general way.Figure 2.4 shows how the add mailq and add dispatcher methods could be expressed in termsof the other meta-operations to allow layering.Because the current mail queue, mailq , and the current dispatcher, dispatcher , areobjects, we can install meta-objects to customize their mail queue or dispatcher. By addingprotocols in the above manner, the new mail queue functionality will be performed on incoming12

B

A

C

D EFigure 2.5: Partners and Owner relationships.messages before they are passed on to the \old" mail queues. For the send behaviors, theprocess is reversed with the oldest send behavior being performed �rst and the newest behaviorlast, thereby creating an onion-like model with the newest layer closest to the outside world.To preserve the model, however, several restrictions must be applied to the behavior ofdispatchers and mail queues. We de�ne the partner of a mail queue as being the dispatcherwhich handles the output of a protocol and the partner of a dispatcher as being the mail queuewhich receives input for the protocol. In Figure 2.5, B and C are partners as well as E and D.Each pair implements one protocol. It is possible for a meta-object to have a null partner.The owner application of a meta-object is inductively de�ned as either its base object, ifits base object is not a meta-object, or the owner application of its base object. For example,in �gure 2.5, A is the owner application of meta-objects B, C, D, and E. With the abovede�nition we can restrict the communication behavior of the actors so that:� A mail queue or dispatcher may send or receive messages from its partner or an objectcreated by itself or its partner.� Dispatchers may send messages to the outside world, i.e. to an object which is not amail queue or dispatcher of the owner application (although the message might be sentthrough the dispatcher's dispatcher). Dispatchers may receive transmit messages fromtheir base object.� Mail queues may receive messages from the outside world (through its own mail queue)and send messages when responding to get messages from their base object.� Objects created by a mail queue or dispatcher may communicate with each other, theircreator, or their creator's partner. 13

Because of the above restrictions, regardless of the number of protocols added to an objectthere is exactly one path which incoming messages follow | starting with the newest mailqueue | and exactly one path for outgoing messages in each object | ending with the newestdispatcher. Therefore, when a new dispatcher is added to an object, all outgoing messages fromthe object must pass through the new dispatcher. When a new mail queue is installed, it willhandle all incoming messages before passing them down to the next layer. Thus, a model ofobjects resembling the layers of an onion is created; each addition of a protocol adds a new layerin the same way regardless of how many layers currently exist. With the above rules, protocolscan be composed without any previous knowledge that the composition was going to occurand protocols can now be added and removed as needed without regard not just to the actoritself, but also without regard to existing protocols. In Figure 2.5, actors B and C are initiallyinstalled as one \layer". Messages come into the layer only through C and leave through B.Therefore, D and E may be installed with the add-mailq and add-dispatcher messages asif they were being added to a single actor. Now messages coming into the composite objectthrough E are then received by C. Messages sent are �rst processed by B and then by D.
Check−Out

MailQueue

Dispatcher

Key:

Message send

Causal Connection

Client
 A

Server
 S1

Server
 S2

Tagger Forwarder Tagger

Check−In Check−OutCheck−Out Check−In

(1)

(2)

(3)

(4)

(5)

(6)
(3)

(4) (5)

(6)

(7)

(8)

(7)

(9)

Check−In

Eliminator

Figure 2.6: Composed system using a replication protocol and message checksum protocol.14

Figure 2.6 shows the result of imposing the protocol described in Section 2.3 on a set of actorsalready using a checksum routine to guarantee message correctness. When a message is sentby the client A (1), the Check-Out dispatcher adds the checksum information to the message.The message is then forwarded to the replica as describe in Section 2.3 (2{3). The checksuminformation is removed by the Check-Inmail queue(4) and the messages are processed, resultingin a reply (5). The reply messages both have the checksum (6) information added before they aretagged and sent to the client (7). At the client, duplicate messages are removed, the checksuminformation is checked, and the message is delivered. Although this protocol would be di�cultto write as one entity, composition allows their modular, and therefore simpler, development.

15

Chapter 3Exception HandlingGiven a meta-level such as maud, it is still necessary for a programming language to provide
exible constructs for building adaptively dependable systems. In particular, it is important toconvey information to the correct entities when system failures occur. We have chosen exceptionhandling as the medium through which managers are informed of problems in the system. Thistechnique has been used extensively with forward error recovery: we simply extend the notionby having our managers prevent future failures through dynamic protocol installation.In this chapter, we describe the exception handling mechanism in Screed, our prototypeactor language. Details on the general syntax of Screed may be found in Appendix B. Tosupport adaptively dependable systems, faults and exceptions have been uni�ed as one conceptand exception handlers may be shared between objects. Broadway provides a set of systemexceptions, some of which are noti�cations of failures. For example, when an actor whichattempts to communicate with an unreachable node, a crash exception is generated.We begin with a discussion of the general structure of exception handling in Screed followedby a speci�c illustration of the syntax used. We then show how this structure may be used withthe meta-architecture to design adaptively dependable systems.3.1 Exception Handling ComponentsExceptions are signaled whenever an unexpected condition is encountered. An exception maybe signaled either by the run-time system or by the application. The former are referred to assystem exceptions and the latter as user-de�ned exceptions.Exceptions in Screed are represented as objects, as proposed in [11] for sequential object-oriented languages. None of the other concurrent languages discussed in Section 1.2 have takenthis approach. However, we feel this approach allows for more
exible and e�cient exceptionhandling: all the information needed by a handler is contained in one object.All system exceptions are derived, through inheritance, from the class exception. User-de�ned exceptions may inherit from the exception class or from any other node on the systemexception inheritance tree. Below, we discuss the parties involved in the generation of anexception and then the structure of system exceptions.There are four roles involved in handling any exceptional condition: invoker, signaler, ex-ception, and handler (see Figure 3.1). Each role is represented as an object in the system. Theinvoker initiates the method of the signaler which results in an exception. The occurrence of anexception generates a signal. When a signal occurs, a new exception object is created. The sig-16

naler noti�es the appropriate handler object of the exception's mail address. The handler mustthen diagnose the exception and perform any appropriate actions for handling the exception.In Screed, each message sent by the invoker is contained within a scope binding each possibleexception to a handler. When the signaler signals an exception, an exception object of theappropriate type is created. The address of this exception object is then communicated tothe appropriate handler as speci�ed by the exception handling scope at the invoker. Thiscommunication is asynchronous, invoking a method in the handler whose name is the same asthe exception's name and takes one parameter: the address of the exception object.Exception handlers are constructed by the programmer as Screed actor-classes. For eachexception a handler accepts, a method must exist with the same name as the exception andwhich takes an instance of the exception class as a parameter. In all other ways, handlers areidentical to other actor classes: they may have a set of instance variables, inherit from otherclasses, and may communicate with any of their acquaintances. They may also have other,non-exception methods.
invoker

exceptionhandler

Actor creation
Message sent

Message may be sent

signaler

Figure 3.1: The four roles involved with an exceptional condition.As mentioned above, when an exception is signaled, an object of the appropriate exceptionclass is instantiated and initialized with any information needed by the handler to process theexception. Some of the initialization �elds are supplied by the run-time system. These �eldsare contained in the exception class from which all exception objects inherit, and are utilizedthrough the methods inherited from the exception class.Additional arguments for the initialization of an exception may be speci�ed by the objectsraising a signal. For example, an arithmetic exception which is initiated by an applicationcould be initialized when signaled with the values of the operands in the arithmetic operation.This exception object would still have default values speci�ed by the system.Methods de�ned in the exception class make use of the system-supplied values. Thesemethods are:name returns the name of the exception as a method value. Since method names are �rst-classvalues in Screed, this method enables the invocation of the correct method in the handler.invoker returns the mail address of the actor which invoked the method resulting in thegeneration of the signal.signaler returns the mail address of the signal generator.17

source returns the name of the method in which the signal was generated.arguments returns a list of the arguments that were passed to the method in which the signalwas generated.request returns TRUE if the invoker is waiting on a reply (i.e. an explicit continuation wasspeci�ed), FALSE otherwise.reply This method allows a handler to reply to a request that was interrupted by the signal.This method can be used to supply an acceptable value to the invoker, thereby allowingthe continuation of the computation.Each exception handler may utilize only a few of these �elds. However, since our environ-ment is asynchronous, we want to preserve all available information. There are no guaranteesthat this information will be retained by either the invoker or the signaler. Use of exceptionobjects provides us with the
exibility to include a large amount of information without creat-ing complicated function calls or messages: all the information is packed into an object and isreferenced through a standard interface. In a procedural approach, long parameters lists wouldbe necessary to achieve the same e�ect.Broadway currently supports three di�erent system exceptions. All three inherit directlyfrom the class exception. A bad-method exception is instantiated when an actor receives amessage it cannot processes. The bad-method exception class provides the behavior of thedestination actor. In general, there is very little that may be done by the run-time objectsto correct such an error, but this information allows a handler to provide meaningful errormessages to the user.An arithmetic exception is generated whenever Broadway traps an arithmetic error. Cur-rently, this exception provides the state under which the exception occurred. We hope to soonexpand this exception to include a string representing the expression being evaluated.Broadway also provides some failure detection capabilities. Each node on Broadway has afailure detector which uses a watch-dog timer approach to detect the failure of, or inability tocommunicate with, other nodes. A crash exception is generated whenever an actor attempts tocommunicate with an actor on a non-existent or unreachable node. A crash exception consistsof the original message and the identity of the node which cannot be reached. Notice that,although Broadway has detected a component failure, it is treated identically to any othersystem exception. It is also possible for an object to subscribe to a failure detector. In thiscase, the subscriber will automatically receive an exception whenever a failure is detected, evenif the object never attempted try to communicate with the failed node.Besides detecting node crashes, Broadway will also handle the failure of individual actors.If an actor crashes due to an error that is trapped by Broadway, that actor address will bemarked as a crash. Currently, only arithmetic errors are trapped by Broadway and, therefore,this is the only manner in which a single actor may crash. If the defunct actor receives amessage, a dead-actor exception will be generated. The dead-actor exception inherits fromthe crash exception. It also contains a reference to the exception generated when the actorcrashed. (Currently, this is always an arithmetic exception.)18

3.2 Syntax for Exception HandlingIn this section, we describe our two syntax additions to Screed which enable exception handling:the handle statement which associates exceptions with handlers, and the signal statementwhich generates an exception.3.2.1 Description of Handlershandle (exception1,exception2 with handler2,exception3 with handler2,...)f /* Any block of code goes here */g Figure 3.2: The structure of a handle block in Screed.In Screed, handlers can be associated exceptions for either entire actor classes or with arbitrarycode segments within a method. Figure 3.2 gives the syntax for a handle statement. Thestatement de�nes a scope over which speci�c exceptions are associated with a particular handler.If any method invocation contained within the code block of the handle statement results inan exception, the signal is routed to the correct handler as speci�ed by the with bindings.Exceptions are speci�ed as the name of the exception class and the handlers are addresses ofobjects.Handler statements may be nested. In this case, when an exception is generated, theinnermost scope is searched �rst for an appropriate handler. If a handler for the exception doesnot exist then higher level scopes are checked.handle (arithmetic with arithhandler,bad-method with aborthandler) fvar actor A;A := new complex(2,3);A.divide(C)(actor B) fhandle (arithmetic with myhandler)B.divide(D)(actor E) fmyNum := res;ggg Figure 3.3: An example of handler scopes and their e�ect.Figure 3.3 demonstrates the scoping rules. In the scope of the outer handle statement, if incomputing B (by dividing A by C), an arithmetic exception is generated (possibly by dividing19

by zero), the signal will be passed to arithhandler. The computation of E through the divisionof B by D, however, is in the scope of the second handle statement. Therefore, any arithmeticsignals generated by this action are sent to myhandler . Conversely, if our complex objects donot have a divide method, our actions will generate a bad-method signal which will be handledby aborthandler.Unlike the complaint address based schemes[19][23], our syntactic mechanisms do not requireexplicit speci�cation of a handler's address with each message. For any given scope, including asingle message send, handlers | our equivalent of complaint addresses | may be speci�ed foreach individual exception or for any group of exceptions. One handler need not be speci�ed forall exceptions. Additionally, our method takes greater advantage of the available inheritancemechanisms as well as the general structure of object-oriented languages: both exceptions andhandlers are expressed as objects in our system.The above constructs work well within methods. However, there are two levels of scopingabove the method level in Screed: the class and global levels. Exception handling at the classlevel is speci�ed through the use of a handler statement which encloses several method de�ni-tions. In this manner, exception handling may be speci�ed for an entire class by enclosing allmethods in one handler statement. Such a construction does not prohibit handler statementsinside the methods.A handle statement may not be de�ned across class boundaries as that would require theuse of shared variables between class instances. However, at the global level, Screed has asystem-de�ned handler class called Default-Handler. An instance of this class handles allsignals which are not caught by another handler. Default system behavior is for a signal tobe simply reported to the terminal. Default-Handler may be overwritten by a programmerde�ning a custom class of the same name. In this way, a �nal level of exception handling may bede�ned by the programmer. This type of facility is especially useful for writing debuggers. Anyexception not de�ned in a custom Default-Handler class is handled by the system-default.Note that the system creates only one instance of the Default-Handler class: all otherwiseunhandled signals are delivered to this instance.3.2.2 Signal GenerationAs mentioned previously, exceptions may be generated as user-de�ned signals. A signal isgenerated by a signal statement.signal exception-class-name(args : : :);The signal statement sends a message to the appropriate exception handler. The argu-ments are used for initialization of the exception as de�ned by the interface of the particularexception class. The signal is an asynchronous message send and does not interrupt the
owof control in the code.In many cases, it is necessary for the signaler of the exception to await a response from thehandler before proceeding. signal statements are treated, syntactically, as message sends toa handler. Therefore, explicit continuations may be speci�ed for signal statements as they arespeci�ed for Screed message-sends. In this manner, the handler may return a value to be usedby the signaler. Such a case would be:signal div-zero()(actor res) f: : : some use of res : : : 20

gFor this example, the exception handler would return an actor address as the value res. Therest of the signalling method will compute. However, the explicit continuation will be executedupon return of the result.In other systems, a special construct exists for generating signals within the current context,i.e. generate a signal which is caught by the handle statement in whose scope the statementoccurs. An example of such a construct would be the exit statement in Clu [21]. In Screed,such a construct in not necessary: the actor can explicitly send a message to the appropriateexception handler.3.3 Supporting Adaptive DependabilityA signi�cant di�erence between exception handling in Screed and other languages is the use ofthird-party exception handlers. In languages such as CLU [21], SR [18], and Ada [10], exceptionhandling routines are de�ned within the scope of the invoking objects. We refer to this approachas two-party exception handling (the invoker and the signaler) and our approach as three-partyexception handling (the invoker, the signaler and an independent handler). We have found thattwo-party exception handling is unsatisfactory for modeling the complex relationships betweenobjects such as those required for adaptively dependable systems.The key di�erence between two- and three-party systems is in the potential knowledge ofa given object. With two-party exception handling, the exception handler, which is also theinvoker, may know only of the exceptions caused by its invocations. Therefore, in such a systemit is very di�cult to develop a global picture of the fault pattern in the system. In a three-partysystem, such monitoring may be naturally expressed in terms of the exception handler sinceit may handle exceptions for a large group of objects or even the entire system. Furthermore,an autonomous exception handler may subscribe to any available failure detectors, therebyaugmenting the knowledge received through exception signals.A third-party exception handler may also be designated as an object with special rights. Inthis manner the system may be safely modi�ed in response to exceptions and failures. Sinceit is dangerous to allow the arbitrary modi�cation of one actor by another, most two-partysystems can express recon�guration of the system only by mimicking a three-party system, i.e.they must notify a third object with special rights of the exceptions they encounter and thisobject may then recon�gure the system.Thus in adaptively dependable systems, the resulting system architectures will look quitesimilar to Figure 3.4. In this �gure, the manager M receives input in the form of exceptionsfrom application objects and notices from the failure detector. Upon determination that thePrimary Node is unstable, M allocates the Backup Node and creates the appropriate objects toreplace the Primary Node. Note that, in actuality, M is probably a replicated entity to ensureits resilience and availability.Systems with such architectures may allow the dynamic installation of dependability pro-tocols or may simply support the recon�guration of several objects in response to exceptions.In either case, the system will have a manager with special rights to modify other objects. Themanager will act as the exception handler for some group of objects being monitored. Fur-thermore, the manager may also subscribe to failure-detection services. Upon receiving enoughinput to determine that some unacceptable condition exists, the manager recon�gures the groupover which it has authority. 21

Backup Node

Application

Failure Detector

ManagerFigure 3.4: A prototypical adaptively dependable system.3.4 Recon�guring a Satellite to Preserve Failure SemanticsTo illustrate the concepts we described above, consider a distributed system which is operatingin a hostile environment. A good example of such a system is a satellite with multiple processors,each with its own memory. Assume that the memory of these processors was developed tonever return incorrect data to a read. Instead, the memory will detect the error through somechecksum algorithm and return an error condition value. This reserved value can then be usedto signal an exception and initiate forward error recovery. The speci�cations for this systemstate that such memory errors should occur with probability 10�8. Such a system is shown inFigure 3.5. Notice that the manager is itself replicated to ensure fault-tolerance in this vitalsystem component.
Memory Memory Memory

M M M

Memory Memory Memory

M M MFigure 3.5: Example satallite architecture and result of replication.Once the system is launched, these memory components seem to operate correctly and themanager responsible for memory errors occasionally performs forward error recovery on the ob-jects. However, the rate at which these memory errors are occurring is unacceptably high (10�5faults/read) and system performance degrades signi�cantly due to repeated memory faults and22

subsequent error recovery. Therefore, the manager installs the replication protocol describedin Section 2.3. The resulting system is also shown in Figure 3.5. Since both the original actorand the replica will be reading values from di�erent memory locations, the probability thata memory error will be noticed is now 10�10, well within the speci�ed tolerance. When anexception occurs, the manager will still have to perform some corrections, but the system cankeep computing during this time and the error recovery will be simpli�ed due to the existenceof the replica. Considering the nature of the faults, the replica may be placed on the same nodeas the original actor. However, if instead of signalling an exception, nodes crashed when theycould not read memory, the replicas would have been placed on di�erent nodes.

23

Chapter 4ImplementationBroadway is a platform designed to facilitate experiments with distributed systems. To testour ideas involving adaptively dependable systems, we have implemented the meta-architecturedescribed in Chapter 2 and provided support for exception handling as described in Chapter 3.In the following sections, we provide an overview of the Broadway system structure and thendiscuss the details of supporting adaptive dependability. We also will present some performancenumbers for Broadway. Although the system was not designed for performance | instead beingoriented towards customizability and supporting experiments | we feel that comparing the costof basic operations provides insight into the use of actor systems.4.1 The Structure of BroadwayIn this section, we describe the structure of the Broadway system and brie
y outline its corecomponents. Additional details on the structure of these components may be found in Ap-pendix A.Broadway's functionality is supplied by a central D�mon as well as a set of system actors de-scribed by a library. The D�mon is the core of the Broadway system, supporting the scheduling,creation, and communication between actors. Since the D�mon implements communication,it is here that maud is implemented. Other, more complex functionality, is supported thougha library of system actors. These actors build upon the basic functionality supplied by theD�mon to support more complex behavior such as actor migration, exception handling, faultdetection, or I/O.Broadway actors are represented as instances of C++ classes. To provide the interfaceneeded by the D�mon to manipulate actors, all actor classes must inherit from the class Actor.This class maintains a mail queue, handles the transmission of messages, and supports thescheduling of an actor.4.1.1 D�mon StructureThe D�mon was written using C++ using an object-oriented design methodology and, there-fore, consists of several well-de�ned components. These components may be individually re-implemented to allow easy customization of the system. Below we present an outline of thefunctionality and structure of each of these components.24

Scheduler The current scheduling strategy on Broadway is based on a single thread of execu-tion shared by both the D�mon and all the actors on a node. Such a strategy was chosenfor its simplicity. Each actor processes one method invocation (message) in a round-robinmanner with the D�mon performing any necessary functions (such as receiving o�-nodemessages) between method invocations. Methods are, therefore, atomic actions and maynot be blocked after execution commences.Membership Monitor This object keeps track of which nodes are currently running Broad-way. When nodes crash, this object is noti�ed. It will then generate a signal to thesystem actor serving as the failure detector. Furthermore, the Membership Monitor isalways queried before a message is sent o� node. If a message is being sent to a non-existant node (i.e. the node crashed previously), this object will signal a system actor togenerate an exception.Local Actor Table This table contains a reference to each actor on the local node. Any actornot in this set is considered non-local.Foreign Actor Table Actor address include the identity of the creating node. Therefore, thistable need only store the addresses of those actors which have migrated o� their creatingnode. Such a structure keeps this table small and look-ups inexpensive.Behavior Table Given a Behavior value (i.e. a unique identi�er representing a particularactor class), the Behavior Table will provide a constructor for an instance of that class.This table enables o�-node creation and migration of actors.Factory Much in the same manner as the Behavior Table supports the creation of new actors,the Factory supports the creation of primitive type values included in messages. Eachprimitive type (i.e. those types which may be included in messages) has a unique iden-ti�er. When an o�-node message has been received, it will be in the form of a characterstream. For each value, the �rst two bytes in the stream identify its type. Given thebyte representation of a value, the Factory will then create a new instance of the correcttype, initializing it with the data in the character stream. In this manner, Broadwayprogrammers may include their own primitive types by simply registering them with theFactory object.Platform Since our scheduling is architecture-independent, the only machine-dependent por-tion of Broadway is inter-node communication. This functionality is encapsulated in thePlatform object. The Platform object presents a uniform interface for inter-node commu-nication so that only the implementation of this object need be changed to port Broadway.Currently, Broadway runs on ULTRIX DecStations and SunOS SparcStations. A port tothe CM-5 is currently underway.All of the above components are linked by the D�mon object. It is through calls to theD�mon object itself that local actors utilize these other components. For example, an actormay ask the D�mon to create a new actor. This involves creating a new instance using theBehavior Table and then adding it to the Scheduler.25

4.1.2 LibraryOne of the primary design goals of Broadway was to provide a
exible platform for the develop-ment of di�erent concurrent programming languages. A programming language on Broadwaymust generate C++ code where all actor classes inherit from Actor. This is the sole restrictionplaced on the nature of the programming language. Therefore, to support a large range of po-tential languages, we have made the structure of the D�mon as general as possible. However,there are still parts of the system which must be dependent on the language conventions in use.For example, consider exception handling. There is a speci�c structure for exception han-dling in Screed, as described in Chapter 3. This structure involves formats for signal messages,for exceptions, and for handlers which are speci�c to Screed. Therefore, although the run-timesystem must be the one to detect most exceptions, it should not generate the exception objectsand signal messages itself.We implement such functionality in terms of a system library. For the exception handlingcase, the D�mon is given a set of function calls to make upon detection of speci�c exceptionalconditions. These function calls are to methods in a Screed actor. This Exception actor maythen generate objects and messages consistent with Screed formats. The library actors designedfor Screed were written primarily in Screed with minor modi�cations of the resultant C++ code.Exception Generator As described above, this actor generates the appropriate exceptionobjects and signals when an exceptional condition is discovered by Broadway.Failure Detector This actor is similar to the Exception Generator. However, since individualactors may \subscribe" to the failure detector, it is a separate entity. The Failure Detectoris noti�ed whenever Broadway detects a node crash or an actor crash.Control This actor is arguable the most important actor on a Broadway node. Control is theactor interface to the D�mon itself. Control handles o�-node requests for actor creationand migration. Control also receives noti�cation from other nodes when an actor hasmigrated, thereby keeping the Foreign Actor Table accurate.Timer The Timer provides a way for applications to measure performance. Timer provides astop-watch facility based on wall-clock time. The Timer receives requests and measuresits time using the Broadway D�mon. Current implementations of Broadway call theUNIX gettimeofday routine to return the time.Terminal The Terminal actor allows formatted input and output to the user. The numberof Terminal objects in the system is highly dependent on the system con�guration. Byproviding the Terminal as a library actor, the number and con�guration of user i/o maybe controlled by the language designer.Most extensions to Broadway should be in terms of library actors. For example, actormigration was added to Broadway by extending the functionality of the Control actor.4.2 Implementation of maudTo support dependability, the maud meta-architecture, as described in Chapter 2, was imple-mented on Broadway. Implementing general re
ection involves the use of run-time interpreta-26

tion of all re
ected objects. Since maud is a strictly limited meta-architecuture, however, itwas possible to implement maud e�ciently using compiled objects and redirection of messages.As described in Section 4.1, each actor on Broadway is represented as an instance of a C++class. Since these actors inherit from the class Actor, each has several prede�ned methods andstate variables. We implemented maud through the modi�cation of these prede�ned methods.Speci�cally, each actor has a send C++ method which will transmit a message, and adeliver C++ method which places an incoming message in its mail queue. Each actor alsokeeps two acquaintance variables | dispatcher and mailq| representing its meta-level objects.If either of these two objects have not yet been rei�ed, the acquaintance value is null. Throughoperations on these two variables the methods change mailq, change dispatcher, add mailq,and add dispatcher were easily implemented for all actors.
A

B

C

(m)

(PUT m)

(PUT (PUT m))(GET)

(GET)

(PUT m)

(m)

Causal Connection
 (Reflection)

Standard Message

Non−reflecting Message
 (base send)

Message Contents(...)Figure 4.1: Messages sent between meta- and base objects.To implement the dispatcher component of our meta-level, we modi�ed the send method ofthe Actor class so that it checks if a rei�ed dispatcher exists before transmission of the message.If such an actor does exist, a new message is constructed which will server as a transmitmethodinvocation and has the original message as the sole argument. This message is then sent to thedispatcher acquaintance. In this manner, any send operation in a base actor will result in atransmit method invocation in its meta-level dispatcher. If the meta-level dispatcher has itsown meta-level dispatcher, this meta-meta-object will receive its own transmit message if themeta-object transmits a message. In this manner, layered protocols operate correctly.A similar technique is used to implement meta-level mail queues. Figure 4.1 shows theactual messages resulting when a base object with a two-level mail queue hierarchy receives amessage. In our original (unoptimized) implementation, when the deliver method is invokedon the actor's C++ representation, the mailq acquaintance is checked and, if non-null, themessage is sent to the meta-level mail queue. As with the meta-level dispatcher implementa-tion, the original message becomes the only argument to a new message. For the mail queueimplementation, this new message will invoke the method put at the destination actor. Whenthe meta-level mail queue receives the message, its deliver method will, in turn, check to seeif it also has a meta-level mail queue. If so, this mail queue will receive its own put message27

with the old put message as the sole argument. In this manner, the highest level mail queue| i.e. the meta-level mail queue which has no meta-level mail queue of its own | will be the�rst to process the message.As described in Section 2.1, each meta-level mail queue must also have a get method. Themail queue should store all messages to be delivered to its base object until it receives a getrequest from the Broadway D�mon. Broadway will issue a get request when the base objectneeds another message to process. If the mail queue has no appropriate message to pass ontoits base object, it must record that a get message was received: no further get messages willbe sent by the D�mon until the base actor processes another message. Once synchronizationconstraints are implemented in Broadway [15], a constraint would prevent the delivery of aget message until the meta-level mail queue is prepared for the message (i.e. has messages todeliver).Unfortunately, the above implementation for mail queues involves a newly received mes-sage being passed \up" between mail queues using put messages and then \down" using getmessages. Half of these messages (the put messages) may be eliminated using caching of theaddress of the mail queue at the highest meta-level. The address of this mail queue is recordedat the base object as well as the current number of meta-levels. Upon reception of a message atthe base object, the appropriate message is created as if it was passed between the meta-levelmail queues. This message is then sent directly to the mail queue at the highest meta-level.Using caching in this manner, however, requires that new mail queues be added atomi-cally. Therefore was have also added the methods begin protocol and end protocol. Thesemethods work much like a test-and-set operation, checking to see if another protocol is beinginstalled and, if not, reserving the right for a particular entity to install a protocol (i.e. a mailqueue and dispatcher). Furthermore, no messages will be processed while protocols are beinginstalled. Although we have not yet included security functionality in Broadway, it is in thesemethods that any authorization checks would be made to ensure a trusted entity is installingthe protocol.One last component necessary for successful implementation of maud is the ability to sendmessages which are not processed by meta-objects. For example, a mail queue's response to aget message must be sent in this manner or the message will be repeatedly processed by thesame meta-level mail queues. The meta-level operations for adding mail queues must also beprocessed in this manner. To support these messages, Broadway provides a base send operatorwhich marks a message to not be processed by any meta-level objects.4.3 Implementation of ScreedFor the most part, our Screed compiler performs a simple translation from Screed to C++with calls to the Broadway D�mon. However, there are two key aspects of Screed that re-quire detailed implementation discussion. First, we will discuss explicit continuations. Explicitcontinuations are used whenever a value must be returned from a message send. Although anexplicit continuation is quite similar to a remote procedure call, it does not involve any explicitblocking of a method.We will then discuss how we implemented the exception handling scheme proposed in Chap-ter 3. As mentioned in Section 4.1, Broadway itself only provides very primitive exceptionhandling mechanisms in the form of a function call to a local actor. To implement exception28

foo(int x) fvarint y;A.boo(x,y)(int ret) fw := x + y + z;gg cont meth 1(int ret) fvarint y;int x;x = state [0];y = state [1];w := x + y + z;gfoo(int x) fvarint y;A.boo(self, cont meth 1,x,y);state [0] = x;state [1] = y;gFigure 4.2: Example transformation of an explicit continuation.handling for Screed, it was necessary to construct the appropriate system library actors as wellas generate the correct code for handle and signal statements.4.3.1 Explicit ContinuationsAn explicit continuation is speci�ed as a message send with an additional parameter list forreturn values. Currently, this auxiliary list must consist of either zero or one value. However,we plan to add multiple return values in future versions of Screed.The syntax for the explicit continuation is speci�ed as follows:<actor>.<method>(<arg-list>)([<ret-type><ret-var>]) f<expr-list>gInitially, this command acts as a standard Screed method invocation: a message is sent to actorfor the invocation ofmethod with the speci�ed argument list. The invoked actor is then expectedto return a value of type ret-type. The type of this return value is type-checked dynamicallyby Broadway when the continuation is invoked. The continuation body will execute after thisvalue has been returned with the returned value being bound to the variable ret-var.However, the rest of the enclosing method will be executed immediately after the initialmessage is sent. Therefore, the context in which the continuation will execute will have allvariables holding the value they had at the termination of the enclosing method. In the case ofstate-variables, these values may have changed even more due to other pending messages whichthe actor processes before the continuation. With the eventual introduction of synchronizationconstraints [15] to the language, the programmer will be better able to specify which methodsmay execute before completion of the continuation.The implementation of explicit continuations was fairly straight forward. The continuationbody itself is converted into a new method. This new method has, as its only parameter, thereturn value parameter speci�ed. It also has local variables corresponding to any local variables29

in the enclosing Screed method as well as the parameters of the local Screed method. Thecontinuation body is then processed in this manner to allow the nesting of explicit continuations.The explicit continuation is then converted to a standard asynchronous message send whose�rst two parameters are the address of the sending object and the name of the return method. Topreserve consistency, the Screed compiler put these two additional parameters on all messages;when there is no return method, null values are supplied. Broadway will automatically dropany messages to a null actor.Before the enclosing method ends, all local values (including the method parameters) aresaved in a prede�ned array called state . state is then unpacked into the appropriate localvariables. An example of this transformation is shown in Figure 4.2.One advantage of explicit continuations over RPC communication is that no blocking ofthe method is necessary. This also prevents deadlock in cases such as an object sending anRPC to itself. Although such deadlock would still be possible though the naive use of syn-chronization constraints, these constraints are completely under the control of the programmer.The programmer could exploit semantical information concerning the object to minimized thesynchronization whereas a compiler would always have to be conservative.4.3.2 Implementation of Exception HandlingThe exception handling tools provided by Broadway were designed to be generic and simple.On Broadway, each message holds the address of an exception handler to which all signalnoti�cation must be sent. To support system exceptions, Broadway calls a method in theException system actor. It is then the job of this system actor to generate an exception asdetailed by the programming language.The details of the Screed exception handling syntax were given in Section 3.2. We beginwith a discussion of how the handle statement was implemented and then discuss the signalstatement and our Exception system actor.4.3.2.1 Handle StatementsMost of the complexity in implementing the exception handling mechanism of Screed was in-volved with the handle statement. Since exceptions are rare events, it was decided that aminimal amount of exception handling information should be included with each Broadwaymessage. Therefore, Broadway limits each message to one exception handling address. Screedmust construct a single exception handler which will route the exception to the appropriatehandler speci�ed in the Screed program. Although this involves extra messages, the goal of theimplementation was to make non-exception generating messages e�cient even at the expenseof signal e�ciency.Screed uses the prede�ned class Directory to route exception signals. The Directory isinitialized with two array's and the size of these arrays. The Screed code for this class is shownin Figure 4.3. Two array's are used since structures have not yet been implemented for Screed.A new Directory object is created for each new handle statement executed: there is a one-to-one correspondence between Directory objects and handler scopes. Since exception handlingis asynchronous, the handler environment which existed when the message was sent must bepreserved even while the invoking actor continues to process other messages.The address of the Directory object is then included with each message in the handle scope.To implement nested handler scopes, each Directory object is also initialized with a reference to30

class Directory fvarmethod exceptions[MAXESIZE];actor handlers[MAXESIZE];int num;actor up;init(int n, method ex[], actor h[], actor u) fvar int i;num := n;up := u;exceptions := ex;handlers := h;gexception(actor ex) fex.name()(method n) fvarint i;int done;done := 0;i := 0;while (i != num & !done)if (exceptions[i] == n)done := 1;if (i != num)handlers[i].n(ex);else up.exception(ex);ggg Figure 4.3: Code for the Directory class.its parent scope. If a speci�c exception is not registered with a Directory, it passes the exceptionto its parent. To correctly preserve this scoping, each object now maintains a handler stack:when a new scope is entered, the new Directory is created, initialized, and its address pushedonto the stack; when the scope terminates, the address is popped o� the stack. The top levelenvironment is initialized with the address of Default-Handler: the global exception handler.The value current handler, which is a state variable de�ned in the Broadway Actor class, isalways re-initialized to the top stack value whenever the stack is modi�ed. Figure 4.4 shows ahandle statement and its transformation into C++ for Broadway.4.3.2.2 Signals & the Exception System ActorSignal statements are a simple translation into Broadway C++. The Actor class supports asignal method which is identical to send except that no destination is speci�ed: the exceptionhandler address of the current message is used instead. Therefore a Screed signal is translatedto the creation of the exception object and a standard message send.31

handle (arithmetic with myhandler) fB.divide(D)(actor E) fmyNum := res;gg old handler := current handler;current handler := new Directory;handle stack.push(current handler);ex[0] := arithmetic;h[0] := myhandler;current handler.init(1,ex,h,old handler);B.divide(D)(actor E) fmyNum := res;ghandle stack.pop();current handler := handle stack.top();Figure 4.4: Transformation of a handle statement into C++.The Exception system actor is also quite simple. At start-up, one Exception actor is createdon each node; this actor may not migrate. It contains a method for each system exception andBroadway is initialized with the physical address of the functions implementing these methods.These methods are then called directly by Broadway which provides the information detailedon page 17. Note that this always includes the message which caused the exception. TheException actor creates an instance of the appropriate exception object and sends a signal tothe handler speci�ed in original message.4.4 PerformanceIn this section, we present several performance numbers for Broadway. Broadway has been de-signed as an easily customizable test-bed for new concepts in distributed computing. Therefore,the design emphasis has not been on optimization. Even so, we felt presenting performancenumbers would give a valuable insight into the use of actor systems.Speci�cally, we compare several values for the UNIX implementation of Broadway. Inparticular, we compare communication costs and actor creation costs for both local and remoteoperations. The experiments were performed on a group of Sun 4 workstations at the Universityof Illinois. Message (Short) Message (Long) CreationLocal 348�s 378�s 289�sRemote 1620�s 5140�s 6570�sFigure 4.5: Performance times for various Broadway operations.Figure 4.5 presents the times for these operations on Broadway. Local operations are thoseoccurring with actors on a single node; remote operations involve inter-node communication.The message time is the time taken to send a message in one direction. Short messages are sentwith a single integer parameter. Long messages contain an additional array of 100 integers.32

Since local arrays are always passed by reference, the di�erence in the local case in minimal.However, the di�erence for the remote case is signi�cant.Actor creation is quite simple in the local case, involving only the allocation and initial-ization of a C++ object. This is important for actor languages on medium or low granularityarchitectures: many more actors will be created than the number of processors. For o�-nodecreation, at least three remote messages must be used. Therefore, creating a o�-node actoris an expensive operation. However, multiple o�-node actor creations may be chained whichwill signi�cantly reduce the overhead involved. We used this technique with 1000 remote actorcreations which completed in 3:12s. Therefore, chained o�-node creation is, on average, slightlyless than twice as expensive as an o�-node message send.The limiting factor on the o�-node operations was the network protocol itself: socket com-munication over ethernet is quite slow. We expect that on a higher performance architecture,such as the Thinking Machines Corporation's CM-5, our \remote" results will be signi�cantlybetter.

33

Chapter 5Conclusion5.1 SummaryIn this thesis, we have described a methodology for the development of adaptively dependablesystems. Adaptively dependable systems may function over a long duration despite a changingexecution environment. Whether the changes are due to a variance in the components compris-ing the system or to a change in the physical environment in which the component operates, theuse of dynamic protocol installation combined with exception handling allows fault toleranceto be guaranteed by the system.Dynamic protocol installation is enabled through the use of a meta-level architecture. Ourmeta-level architecture, maud, allows the customization of an object's communication behavioron a per-object basis. By describing protocols in terms of modi�cations to the communicationbehavior, protocols may be dynamically installed on objects as necessary. Furthermore, if aprotocol is no longer required, it may be removed. Through the use of caching and atomic pro-tocol installation, the meta-level description of protocols may be implemented with a minimalcost in performance.We also support composition of protocols. Provided there are no inherent semantic con
ictsbetween two protocols and both protocols are implemented using maud, these two protocolsmay then be composed without foreknowledge that a composition may occur. In this manner,protocols may be constructed in a modular fashion and later combined to provide the desiredlevel of fault-tolerance.To provide adaptive dependability, we combine dynamic protocol installation with exceptionhandling. We make extensive use of third-party exception handlers which are shared betweenmultiple objects. Since these handlers have privileges to modify meta-level objects, they aretermed managers. A single manager will be informed of all exceptions related to a particularproblem. The knowledge managers obtain as exception handlers may be augmented throughsubscription to failure-detection services. In this manner, the manager will have all informationnecessary for a correct diagnosis of fault patterns.The concepts described in this chapter have been implemented on Broadway | our actorrun-time system | and are accessed through the language Screed. Screed provides exceptionhandling constructs which support managers and provides access to the meta-level architectureimplemented in Broadway. 34

5.2 Future Work5.2.1 Consistent Installation of ProtocolsWhen installing a protocol on multiple objects, it is necessary to ensure consistency. Di�er-ent protocols may have di�erent rules for de�ning consistent installation. The best tool forcoordinating such operations is a multi-object constraint.Speci�cally, synchronizers [16] may be used to specify customized constraints for each proto-col or even a subset of objects in each protocol. Synchronizers are expressed in terms of eventsat the coordinated objects. These events may be restricted in several di�erent ways includingmutual exclusion, atomicity, or triggering.Synchronizers are currently being added to Broadway and Screed. When complete, protocolsmay be written in terms of maud and then have the rules for their consistent installationexpressed in terms of Synchronizers. Synchronizers are independent of the classes and objectsbeing coordinated. Therefore, a single installation policy may be reused with multiple protocols.5.2.2 Protocol LanguagesThe techniques proposed in this paper simplify the construction of dependability protocols byseparating application code from protocol code. Furthermore, transparency is preserved byconstructing protocols as operations on messages. However, protocols written using maud maystill be complex. This can be especially true when a protocol must follow the rules outlined inSection 2.4 for composition.We are currently investigating techniques for specifying protocols at a higher level. Again,the goal is to specify protocols in terms of operations on messages, but to also express commu-nication as being between arbitrary clients and a fault-tolerant service. The concepts of delay,message ordering, and failure should also be incorporated at a high level.These higher-level protocol speci�cations may then be \compiled down" into a meta-levelspeci�cation such as maud.
35

APPENDIX ABroadwayThis appendix describes, in detail, the design and implementation of Broadway. Speci�cally, thissection is designed to serve as a guide to both programmers designing languages for Broadwayas well as those who are modifying Broadway itself.We begin with a discussion of primitive data types | those data types which may bemessage values | and describe how programmers may add their own primitive types. We thenexplain the internal representation of actors and how inheritance is used to add language-basedfunctionality to the basic actor objects.Once the pertinent data structures have been explained, we describe the D�mon object andthe internal objects from which it is composed. These descriptions are aimed at those who wishto customize Broadway itself. We describe the interface of each object as well as its currentimplementation and interactions with other objects.A.1 Data StructuresEvery implementation of Broadway uses a set of primitive data types. By primitive we meanthat these types may exist as parameters in messages. There are currently eight such types:Integer , Real , String , Address , Method , Behavior , Msg and Array . However, to supportcustomization and the design of new actor languages, Broadway supports the development ofnew primitive data structures. This support allows the inclusion of instances of these primitivedata types in messages sent o�-node. We begin with a discussion of the built-in data structures,discuss the structure of all primitive types, and then explain how new data structures may beincorporated into Broadway.A.1.1 A Basic Set of Data StructuresThe default set of data types are those needed with almost any actor language. Integerand String are self-explanatory; Real are double precision
oating-point numbers; Address,Behavior, and Method are used to reference actors, actor classes, and actor methods, respec-tively. Each element of an Arraymay be any of these data-types. Multi-dimentional array's arerealized by having an Array whose elements are of type Array. To facilitate the developmentof meta-level actors, it was necessary to make Msg a �rst-class values.The interfaces to these data types is fairly straightforward. Integer can be interchangedwith the C++ int through type-casts or even assignment (=). The same applies to String36

with char * and Real with double . An Address is only created through the use of the build-in routines create and create off , i.e. an address is never directly created by the user.Behavior and Method are initialized at creation using a constructor which takes one integer. Itis up to the language to preserve the uniqueness of behaviors and methods: no naming serviceis currently provided with Broadway. Address, Behavior, and Method may be assigned orcompared for (in)equality to other values of the same type.An Array may be subscripted, as with normal C++ arrays. Each element of an Arrayis actually a pointer to a value. Therefore, memory must be allocated for an array elementbefore a value may be assigned to it. Assignment of an entire Array is also possible. However,the assignment operation is expensive as it copies each element of the array. Array also has aresize() operator which preserves as many original values as possible.The Array constructor may be supplied with no arguments | resulting in a Array of size 0| one argument specifying the size, or two arguments specifying the size of the Array and typeof each element. When the array element's type is speci�ed, Broadway allocates an element ofthe correct type o� the heap (using the C++ new command). Array's automatically check forout-of-range element accesses.Msg objects consist of a destination address, method to invoke at the destination, and anarray of contents. Messages may be directly subscripted to reference these contents. To assigna new value to a message, the add value method should be used. This procedure places thenew value in the next available �eld and increments a counter representing the number ofparameters.The Msg object constructor takes a single value: the maximum number of parameters themessage can take. If this value is not speci�ed, it defaults to 0. The message objects alsosupport a resize operator.A.1.2 Data Type CharacteristicsAll primitive data types must inherit from the class Value. The Value class is an abstract classwhich enforces the de�nition of several methods needed for message passing. These methodsare:short myclass() Return the integer value representing the object's type. This value must beunique to this subclass of Value and must be the �rst item \packed" when the convertingthe data structure to a character stream.int pack(char *buf) Pack the data structure into the character bu�er. The number of bytesused to pack the object is returned.char *unpack(char *buf) Unpack a data structure of this type from the character bu�er. Apointer to the start of the next object packed into the character bu�er is returned.void print() Print the value of the data structure: this method is used only when debugging.Classes which de�ne the above methods provide the support necessary to convert objectsof this class into byte streams and back. This support is necessary to include an object ofthis class in a message being transmitted to an actor on another physical node. Although thissupport is necessary, it is not su�cient to support a primitive type.Many operations in Broadway must operate on arbitrary primitive values in the form of aValue *. In particular, array and message subscripting return a pointer to a value. To allow37

the correct conversion and type checking of Value * to primitive types, type converter functionsare de�ned. These functions have de�nitions of the form:TYPE &ValToTYPE(Value *)where TYPE is the primitive type's name. For example, to convert a Value * to an Integer,the function ValToInteger is called. Since a reference to TYPE is returned from these functions,they do not result in the value being copied.A.1.3 Designing Custom Data StructuresAs mentioned previously, it is possible for a programmer to de�ne new primitive data types.The primary requirement for de�ning a new type is that the new data type inherit from Valueand de�ne all the methods required by this abstract class.Two macros must then be used to enable use of the data type in o�-node messages. Thesemacros register the type with the D�mon's Factory to allow creation of new objects fromcharacter streams. They also de�ne the ValToTYPE function mentioned above.MAKETYPE(type, id) This macro must appear at the global level. type is the name ofthe type and id is the integer value which will be returned by the myclass method ofthe type. MAKETYPE de�nes the ValToTYPE operator as well as a function for creation ofa new instance of the type.REGISTERTYPE(type, id) This macro must be in code which is executed before the typeis ever used. type is the name of the type being registered and id is the value which willbe returned by the myclass method of the type. REGISTERTYPE informs the Factory thatwhen the next value in a character stream begins with id, it will be a value of type type.For the default types, these macros are used in the �le typelib.cc. This �le serves as anexample of how these macros may be used.A.2 Structure of Actor Class C++ RepresentationsAll actors in Broadway must be represented by a C++ class which inherits from the classAClass . For this reason, the �le AClass.h must be included in all �les which declare actorclasses. The state of an actor should be represented as private items of a C++ class; themethods should be public items of the C++ class.In addition to de�ning the methods speci�ed for the actor, a lookup function must also beprovided. This function should take the form:void lookup(Method& meth, Array& v, int param)The de�nition of lookup must be public. The lookup method will be called by the system whenthere is a message to be processed. lookup should call the correct C++ method in the actorclass as speci�ed by the name meth . If a matching method cannot be found, the parent class'slookup function should be called. The number of parameters is provided in param to preventthe invocation of a method will invalid parameters.The array v contains the parameters to the method. Each element of v used as a parametershould be typechecked and converted to the correct type. Using the appropriate ValtoTYPE38

void Database::lookup(Method& m, Array &v, int params)f if (m == query n && params == 3)query(ValToInteger(v[0]),ValToAddress(v[1]),ValToMethod(v[2]));else if (m == update n && params == 4)update(ValToInteger(v[0]),ValToInteger(v[1]),ValToAddress(v[2]),ValToMethod(v[3]));else if (m == read n && params == 3)read(ValToInteger(v[0]),ValToAddress(v[1]),ValToMethod(v[2]));else AClass::lookup(m,v,params);g Figure A.1: A sample lookup function.function guarantees a correct conversion, as mentioned in Section A.1. A lookup function for adatabase actor is shown in �gure A.1.Interface to the D�mon is provided through routines inherited from AClass . There are�ve such routines.Address create(Behavior &) The daemon is called to look up the behavior, create an actorof that class, and return the address of the new actor.Address *create off(int node num, Behavior) Functions as with create, except that anactor of the speci�ed behavior is created on the node with id node num. This methodreturns the address of the newly created actor.void send(Address *dest, Method *meth, arg1, arg2..., 0) Takes a variable numberof parameters terminated by a 0. These parameters are packed into a message. Both thedestination and the method must be provided. All arguments must be pointers to valuesdue to the nature of the C++ varargs package.void dispatcher(Address disp) A meta-level operation which installs the actor with ad-dress disp as the dispatcher of this actor.void mailq(Address mailq) A meta-level operation which installs the actor with addressmailq as the mail queue of this actor.Note that these routines may only be used from within an actor's method: only actors maycreate other actors, send messages, or modify their meta-level.Each new behavior must also be registered with the D�mon. This is done through the macroDEF BEH . This macro must be provided with the Behavior value representing the behavior, the39

class name, and the path for the object �le de�ning the class (for later use with dynamicloading).For example, a class User, which is represented by Behavior \user b" and may be found in\/obj/user.o" would be de�ned as.DEFBEH(user b, User,"/obj/user.o");Note that the use of this macro should be at the global level, not in the setup function. Ingeneral, it is best to place these statements at the end of the �le.A.3 Actor ObjectsAs detailed above, each actor on Broadway has a corresponding instance of a C++ class. Theinstances always inherit from the class AClass, which provides many of the necessary built-inmethods. However, there is a set of methods and �elds associated with each object which wasnot discussed in Section A.2. These are the methods and �elds required by other objects inBroadway itself, regardless of the language being used. These methods and �elds are de�nedin the class Actor. Language-speci�c functionality is added in the class AClass which inheritsfrom the class Actor thereby guaranteeing that all actors satisfy the requirements for Broadwayas well as the programming language being designed.The methods in AClass are primarily helper methods to interface the actor's code withthe D�mon and provide functionality to assist the language designer. The methods and �eldsin Actor, however, assist in the scheduling and manipulation of the actor by the D�mon.Therefore, these methods and �elds, unlike those in AClass, are necessary for actors to existon Broadway. A di�erent language may be better implemented with a class other than AClass.In fact, the authors encourage language designers to develop their own custom root class. Anysuch new class, however, must always inherit from Actor to allow these objects to be scheduled,receive messages, etc.The methods of the class Actor are oriented towards the scheduling of the actors and actorcommunication. To support communication, the class Actor provides the methods send anddeliver. The send method transmits a new message. This transmission involves the locationof the destination actor and the use of the D�mon if o�-node communication is necessary. If themessage is local, the parameters are copied and the message is placed in the destination's mailqueue. The deliver method is invoked to place a new message in the actor's mail queue. Thismethod may be invoked by either a local actor performing a send or the D�mon upon receptionof an o�-node message. These two methods also support Broadway's meta-level architectureby routing messages to rei�ed dispatchers and mail queues as appropriate (see Section 2.1).To support scheduling, an actor may be in one of three states: active, pending, or bu�er.An actor in active state behaves as described above: this is the default state for all actors. Anactor which has an empty mail queue is pending and, for obvious performance reasons, is notinvoked by the scheduler until a new message is received. The methods pend marks the actoras in the pending state and the method is pend returns true if the actor is pending.The bu�er state is used to support migration and o�-node creation of actors. When an actoris in the bu�er state, it may receive messages but will never be scheduled to process a message.Such an actor serves solely as an address to which messages may be delivered. An actor ismarked as being in the bu�er state by the method only buffer and the method is bufferreturns true if the actor is a bu�er. 40

An actor is placed in the bu�er state when it is the process of moving from one node toanother. The actor at the old address is made into a bu�er to record any messages which arereceived during migration. If this were not done, the actor created at the migration destinationcould have an inconsistent state from the original actor. Instead, the bu�er actor holds allmessages received during migration. When migration is completed, the dump msg method isinvoked and all messages are sent to the new location. The method dump msg forces all messagesin the actor's mail queue to be resent. Assuming the local address tables have been updated,the messages will arrive at the new location.A.4 The D�monThe D�mon object is the heart of the Broadway system, serving as the \glue" between objectssuch as the Platform, Factory, or Scheduler. It is through the D�mon object that actors inBroadway access system commands and data structures. The D�mon object is also the onlyobject to access the Platform object and, therefore, provides a level of abstraction for actorsneeding to communicate with o�-node actors.Each D�mon is responsible for the scheduling and maintenance of a particular set of ac-tors. This set of actors is considered the \local" set. Therefore, each D�mon object de�nes alogical node in the system. In current implementations of Broadway, there is a one-to-one cor-respondence between D�mon objects and physical processors. However, it is not necessary toadhere to this organization and, provided that the Platform object can send messages to otherprocesses on the same physical node, multiple logical nodes may be located on a single physicalnode. Furthermore, in the case of shared-memory multi-processors, it would even be possiblefor several physical nodes to be contained in one logical node: one D�mon object monitors theactors whose threads are distributed over several physical processors.Any system con�guration may be realized in terms of modi�cations to the D�mon classand the Platform class. Therefore, for any programmer of the system, the actual systemcon�guration is transparent: each D�mon object is assumed to have a unique integer identi�erwhich, as with actor addresses, is location independent. For purposes of actor migration,communication with the D�mon, etc. only this identi�er need be known.Each Actor object has a pointer to the local D�mon. Through this reference, local actorsare able to access system commands and structures. When the node has been initialized andis ready to begin processing, the main Broadway routine calls the D�mon's run method. Thisin�nite loop continually calls the scheduler to process the next actor.The send offmethod takes a message and transmits it to an o�-node location. The locationis speci�ed in the message structure. The D�mon will also periodically be given permissionby the scheduler to process o�-node messages it has received. The D�mon calls read mail()between actor method invocations to read its own mail. In the current implementation of theD�mon, it will simply call its own private method receive off to process o�-node messages.Actors may be created through the use of the create method. This method takes a pointerto an object of type Actor (or any sub-class of Actor), adds the actor to the Scheduler object,and records the actor as a local actor. This routine is often called by objects of the Actor orAClass classes which provide higher level interfaces to create.The make buffer method takes the address of a local actor and modi�es that actor to bea message bu�er (see Section A.3). As a bu�er, an actor may receive messages, but is never41

scheduled and, therefore, never processes messages. Bu�ers are primarily used when an actoris migrating.The D�mon maintains two tables of actors: Local and Foreign. The Local table contains allactors on the local node, even if they are currently not in an active state (see Section A.3). TheForeign table contains a list of all actors who are no longer local to the node where they werecreated. If an actor is at its creator, then its location may be determined using the creatormethod of any Address referencing the actor. Otherwise, the Foreign table gives the properaddress.The D�mon also maintains a catalog of behaviors: Behaviors. This catalog allows the useof �rst class behaviors and o�-node creation of actors. Each entry in the catalog consists of aBehavior value (see Section A.1), a pointer to a creation function, and a UNIX path to theobject �le containing the behavior. This last �eld is currently unused, but was included inanticipation of a dynamic code loading facility being added to Broadway in the future.Below we describe the actor interface to the D�mon. The other components of the D�mon| Scheduler, Factory, Membership Monitor, and Handler are described in detail in their ownsections.As mentioned above, a pointer to the local D�mon object is a �eld in each Actor object.Therefore, local actors may directly access the D�mon through function calls. For remoteaccesses, however, special actors exists at each D�mon which provide system-level operationsto o�-node actors using the standard message-passing interface.The most important of these is an instance of the Control behavior. This actor has severalmethods which support o�-node access to local D�mon routines controlling actor creation andmigration. This actor is always the �rst created by any D�mon so will have the actor address<daemon id, 0 >. The method create at this actor takes an address, a behavior identi�er,and an array representing the state of the actor to create, as well as the identity of the D�monrequesting the creation. The receiving Control actor will then manipulate its D�mon to createan instance of the correct behavior and initialize its state and address. The Control will thensend a creation finished message to the Control actor of the requesting D�mon object.The creation finished method of the Control actor con�rms the completion of an o�-node creation. It allows the D�mon creating the actor to update its actor address tables andto forward any messages waiting for the newly created actor.A.5 SchedulerAs the name implies, the Scheduler is the object in Broadway which schedules actor method-invocations. Actors may be added and removed from the Scheduler by the D�mon through theuse of the Scheduler's add and remove methods. The method donext allows the Scheduler toexecute the next actor method.In current UNIX versions of Broadway, each node consists of a single thread which must beshared by all actors and the D�mon. The D�mon must invoke the Scheduler's donext methodeach time it is ready to process another actor message. In between calls to the Scheduler, theD�mon performs any necessary processing of its own, such as the delivery of o�-node messages.Such a scheduling scheme was chosen because of its simplicity and e�ciency. In particular,since each node has only one thread, there was no need to use any locks or semaphores inBroadway. However, this scheme also has problems. In particular, if any actor invokes amethod with an in�nite loop, that actor will halt computation on the entire node.42

Therefore, it may be desirable to create a multi-threaded system. With the use of a threadpackage, such an implementation could be achieved through modi�cation of the Scheduler'simplementation. With a one-thread per actor system, the donext method would simply initiatethe Scheduler's actions and the add and remove would be used to control which actors werecomputing.A.6 Type FactoryAs mentioned in Section A.1, it is possible to add new primitive data types to the Broadwayenvironment. The di�culty with these new additions is enabling their creation upon receptionof an o�-node message. It is the purpose of the D�mon's Factory object to enable this creation.Each message parameter in an o�-node message starts with a two byte header describing itstype. This header must be unique to a speci�c type. It is also preferred that these identi�ersare issued in numeric order, i.e. each new data type is issued the least unused header value.The Factory holds an array in which the ith element is a pointer to a creation function forthe type with unique header i. Given this convention, construction of the type factory is simple.When registering a new data type, the Factory's set method is invoked with the type headerand the creation function. The function is then recorded in the Factory's table.When a value in a character stream must be unpacked, its header is passed to the Factoryby the method make. make looks up the creation function, calls it, and returns the new Value*. The entity calling the factory may then call unpack on the Value * with the characterstream. Since unpack is a virtual function, it will initialize the new data structure correctlyfrom the character stream.A.7 Membership Monitor & HandlerMembership Monitor and Handler together implement the majority of system exceptions onBroadway. The Membership Monitor maintains a list of all nodes which are currently active.In the current UNIX versions of Broadway, all nodes must be active before any computationbegins, but may become inactive if a node crashes. The Membership Monitor has a querymethod which takes an integer and an optional pointer to a message. query returns true ifthe node represented by the integer is active, false otherwise. If a message is supplied toquery and the queried node is inactive, the Membership Monitor will call the handler with theo�ending message with the methods add and remove. Both of these methods take an integeridentifying the node whose status is being modi�ed. In some dynamic systems, the numberof nodes in the system may increase. Therefore, the Membership Monitor provides a resizemethod which allows the maximum number of nodes to be increased.The Handler is noti�ed whenever Broadway must generate an exception. The set crashand set bad node methods take a pointer to an Actor object and a reference to the method inthe Actor which will be invoked when an exception of that type must be generated. This Actorobject is the Exception actor in the set of system actorsThe methods crash and bad node then generate the exceptions. They invoke the methodon the Exception actor which was set earlier. This invocation takes the form of a functioncall since message formats may be speci�c to a single language. For example, Screed actorsexpect the �rst two parameters in any message to be a continuation address and method. By43

calling the methods in the Exception actor directly, language-speci�c details are factored outof Broadway and placed in the language's system library.A.8 The PlatformThe Platform class is designed to be the one class which must be modi�ed when Broadway isported from one operating system to another1 The platform object is responsible for all O/Sbased operations, speci�cally, those involved with interprocess communication.The most important methods in the Platform class are the transmit and receivemethods.The transmit method takes a bu�er, the size of the bu�er, and the node id to which the bu�ershould be transmitted. The transmit destination node should not be the local node. Thereceive method returns a list of bu�ers which are the messages received since the previousinvocation of this method.The Platform must also provide some basic operations for the management of messagebu�ers. The method new buffer returns a new bu�er (of type char *) into which a messageto be transmitted may be packed. The D�mon will call new buffer to provide a bu�er for eachnew message. The D�mon will use this bu�er as an argument to transmit. It is then theduty of the platform object to determine when this bu�er may be freed. This decision is basedsolely on the semantics of the communication model used by the operating system. Note thatin the UNIX implementation, this same bu�er is continually reused since sockets always copythe message before transmission.Since the Platform object allocates bu�ers for incoming messages, the method free buflistis used to inform the Platform that these bu�ers are no longer needed by the rest of the system.The D�mon will call free buflist once it has unpacked the messages in the bu�ers returnedby receive.All initialization of the new platform must be done in the constructor of Platform. In thecase of UNIX, when the constructor is called all socket connection are made. The destructorcloses these connections when Broadway is terminated.The only other two methods guaranteed by the Platform object assist the D�mon in un-derstanding the network con�guration. The method max nodes simply returns the number ofnodes (including the local node) in the Broadway network. The method get local id returnsthe particular node number of the local node.
1The only exception would be the redesign of the Scheduler to use a thread package. In such a case, theScheduler class will obviously have to be rewritten as part of the port.44

APPENDIX BScreedScreed is a prototypical actor language which runs on the actor platform Broadway. Besidesserving to simplify the construction of actor applications on Broadway, Screed also serves as anexample of how actor languages may be constructed for Broadway. Screed is by no means a com-plete language, but provides the basic functionality needed in a object-oriented programminglanguage along with several advanced constructs pertinent to the author's research interests.In the following sections we describe the syntax and semantics for Screed.B.1 Objects in ScreedScreed is an object-oriented language. Since Screed is an actor language, each object is an au-tonomous computing component which executes methods concurrently with every other object.Objects communicate through method invocations. These method invocations are representedin terms of asynchronous message passing. Although messages are guaranteed to be delivered(in a non-faulty environment), message ordering is not necessarily preserved; the programmershould consider this when constructing programs.Each Screed object is a collection of state variables and methods. Since objects may com-municate only through method invocation, all state variables are, by default, private variablesand may not be accessed by other objects. Currently all methods may be accessed by any otherobject. Each object has a unique, location-independent address. Addresses are �rst class valuesin Screed.B.2 SyntaxIn this section we present the basic syntax of Screed Version 1.0. Note that this syntax maychange in future versions of Screed. Actor classes are declared in Screed with the class state-ment. The class statement takes the name of the new class and a possible parent class fromwhich it inherits. State variables and methods may then follow. As in C and C++, f and g areused to open and close statements. The syntax of the class statement is as follows:class <class-name> [: <parent-class-name>] f[var <declaration-list>]<method-declarations>g 45

Notice that the declaration of a parent class is optional. All classes in Screed inherit certainmethods and state variables from a root class. Not specifying a parent class will default theinheritance from the root class.A declaration list is simply a set of type and variable name pairs. In each pair the typename is followed by the variable name and each pair is followed by a semicolon. The legal typenames are discussed in Section B.3.A method declaration consists of a method name, a list of formal parameters, and a methodbody. In the method body, an optional declaration of local variables is followed by a list ofexpressions. Formally, a method declaration may be described as:<method-name>(<parameter-list>) f[var <declaration-list>]<expression-list>gThe method name is any legal symbol and must be unique only within the set of methods ofthat class. The parameter list is, again, a list of type-name, variable-name pairs. In this casethe pairs are separated by commas; no comma follows the last pair. The declaration list atthe head of the method body is identical to the declaration list of state variables in the classde�nition and the expression list consists of any number of legal statements.B.2.1 StatementsIn this section the basic legal statements which comprise Screed methods are described. Mostof the syntax will resemble C or Pascal.Assignment State, local, and parameter values may all be assigned to. Note, however, thatassignment to a parameter value has little e�ect since all method invocations are call-by-value.An assignment has the following syntax:<lvalue> := <expression>;As discussed in Section B.3, the lvalue may be either a variable or an element in an array. Theexpression may be any type-safe combination of Screed binary and unary operators.If { Else The if statement in Screed is identical to that of C. The conditional expressionmust be of type int. The else clause is optional, but is always associated with the most recentif. if (<cond-expr>) f<true-expr-list>g [else f<false-expr-list>g]As with C, the true and false expression lists do not require enclosing braces if they containonly one expression.While As with the if statement, the while statement in Screed is identical to that of C.Again, the conditional must be of type int. 46

while (<true-expr>) f<expr-list>gFor The for statement in Screed is not as
exible as in C and more closely mirrors that ofPascal. Because incorrectly written while loops may never terminate and, therefore, may leadto the halting of a node, we wanted to provide a loop statement which is guaranteed to be safe.The for statement simply increments a pre-declared counter variable. A step statement willbe added in a later version. The current syntax is:for (<counter> := <start-value> to <end-value>) f<expr-list>gMethod Invocation Communication is simple in Screed and the syntax is common to manyobject-oriented languages. The main di�erence is that, since method is a primitive type, avariable may represent the method to be invoked. In a case where a method name and amethod variable share the same name, the method variable will take precedence. The syntaxfor a method invocation is:<actor-address>.<method>(<argument-list>);The argument list is a set of values, separated by commas. These values may be of any type,but they will be dynamically type-checked by the receiving actor.Explicit Continuations Besides the regular method invocation, it is also possible in Screedto specify a method invocation with an explicit continuation. This explicit continuation maytake a return value from the method invocation and the continuation has access to all variablesin the scope in which it was declared.<actor>.<method>(<arg-list>)([<ret-type><ret-var>]) f<expr-list>gThe continuation body will execute after the actor receiving the initial message has �nishedexecuting the appropriate method. However, the rest of the enclosing method will be executedimmediately after the initial message is sent. Therefore, the context in which the continuationwill execute will have all variables holding the value they had at the of the enclosing method.In the case of state-variables, these values may have changed even more due to other pendingmessages which the actor processes before the continuation. With the eventual introductionof synchronization constraints to the language, the programmer will be better able to specifywhich methods may execute before completion of the continuation.When the explicit continuation is executed, the variable speci�ed as ret-val of type ret-typeis given the return value of the invoked method. The type of this return value is type-checkeddynamically, by Broadway, when the continuation is invoked.Return The return statement is used by any method which was invoked with an explicitcontinuation method invocation. The return triggers the explicit continuation. Note that thereturn does not cause the method to exit. A value may be supplied to return of any type;this value will be type-checked dynamically before invocation of the continuation.47

return [<expression>];A return statement which is executed from a method which was not invoked with an explicitcontinuation will have no harmful e�ect on the system.Operators There are many binary and unary operators in Screed. Below is a list of them.Operators currently work only on int and real types.+ Addition,� Subtraction or arithmetic negation,� Multiplication,= Division,j Logical OR,& Logical AND,! Logical negation,< Less-than,<= Less-than or equal,> Greater-than,>= Greater-than or equal,== Equality (works for all types).New To create new actors, the new construct must be used. new takes an actor-class nameand an optional location and returns the address of the new actor.new <class-name> [@ <location>]As with the operators above, the new statement returns a value. Therefore, it may be used asthe right-hand side of assignment statements or as an actual parameter to an actor invocation.The location is an int value which speci�es a particular Broadway node. If no such location isspeci�ed, Broadway will determine placement in some default manner.B.3 Data TypesThere are six primitive data types in Screed. There is currently only one operator for the con-struction of more complex types, though others may be added in later versions. The primitivetypes are: int Integer type,real Floating point numbers (double precision),string Character strings,48

actor Actor addresses,method Holders of method names,behavior Holders of class values,msg MessagesAs shown above, variable declarations are always proceeded by a var statement. The varstatement may then be followed by an arbitrary number of declarations of the form:<primitive type> <variable-name>The one type constructor is the array constructor. In Screed, arrays of any size and dimen-sion may be declared. The declaration of arrays in Screed is as in C:<primitive-type> <var-name>[<dim1>][<dim2>]: : :;In this case the '[' and ']' are actual operators and do not indicate optional text. All dimensionsmust be integer expressions and the resulting array's always have their �rst element at location0.B.3.1 ConstantsConstants in Screed may be declared at the global level only. Each constant must have a typeand must be initialized upon declaration. The syntax for constant declarations is:const <primitive type> <var-name> = <expression>;Constants may then be used anywhere following their declaration.B.4 Prede�ned NamesSeveral built-in methods are inherited by every actor in the system. These methods providevarious types of system-level support for each actor. Currently, there are no safeguards inScreed to prevent misuse of these methods although individual actors may overwrite them,thereby disabling them. These methods are:dispatcher(actor dis) Set the meta-level dispatcher for the actor.mailq(actor mq) Set the meta-level mailq for the actor.migrate(actor wh) Migrate the actor to the same node as wh.exception(actor except) Notify actor of the exception except.Note that any of the above methods may be overwritten in the actor class de�nitions if adi�erent behavior is desired. This is especially appropriate for the exception method whichcurrently noti�es the user of the exception and then crashes the node.There is one class-name in Screed which has a reserved meaning. This is the start class. Astart class should be de�ned with at least one method: init. An instance of this class will beautomatically created by Broadway and an init method will be sent to it. Therefore, the initmethod acts as a main() in a C program; it is the entry point of the actor application. In allother ways, the class start and its instances behave as standard actor classes.49

B.5 LibraryTo assist the Screed programmer, there are several prede�ned classes and actors. Rather thanuse special built-in function calls, these components provide system-level functionality using aninterface (message passing) which is consistent with the rest of the language.B.5.1 Prede�ned ActorsTo provide I/O in a consistent and meaningful way, a special actor | whose address may bereferenced as io | is accessible at all scopes. The actor has a print method which takes avariable number of arguments, the �rst of which is a format string. The rules for using theprint method are identical to the C libraries printf() function. Which terminal the I/O appearson depends on the con�guration of the system. However, once the system is con�gured, I/Owill refer to the appropriate actor to perform output.To support failure detection, there exists on each node a failure detector actor which maybe reference by the name detect. Currently, the failure detector will only detect complete nodefailures. To use the failure detector, an actor sends a subscribe message to the actor detectwith the address of the entity to notify in case of a crash, and the node which the actor isinterested in monitoring. A -1 for the node number mean the actor is interested in all crashes.A subscription which would have the detector notify the subscribing actor if any node failedwould appear as:detect.subscribe(self,-1);Upon detection of a failure, the detector will send an exceptionmessage to all appropriatelysubscribed actors. As explained below exception is a method built in to every actor.B.5.2 Prede�ned ClassesCurrently in Screed, there are two special classes besides those mentioned above for io and de-tect. The Exception class is the root class for all exceptions. It provides the basic functionalitydescribed in Chapter 3 for exception objects.For timing analysis the Timer class exists. Instances of the class can be created to act asa stop-watch. In the future its role will be expanded to generate periodic messages to actors.The Timer class has three methods: reset, stop and read. reset resets the timer and starts it.stop stops the timer, and read returns the result in a variable of type real. To receive the valuefrom read, and explicit continuation must be used.
50

Bibliography[1] M. Acceta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.Mach: A New Kernel Foundation for UNIX Developement. In USENIX 1986 SummerConference Proceedings, June 1986.[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,1986.[3] G. Agha. Concurrent Object-Oriented Programming. Communications of the ACM,33(9):125{141, September 1990.[4] G. Agha, S. Fr�lund, R. Panwar, and D. Sturman. A Linguistic Framework for the DynamicComposition of DependabilityProtocols. In C.E. Landwehr, B. Randell, and L. Simoncini,editors, Dependable Computing for Critical Applications 3, volume 8 of Dependable Com-puting and Fault-Tolerant Systems, pages 345{363. IFIP Transactions, Springer-Verlag,1993.[5] K. P. Birman and T. A. Joseph. Communication Support for Reliable Distributed Com-puting. In Fault-tolerant Distributed Computing. Springer-Verlag, 1987.[6] Roy Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing amd Implement-ing Choices: An Object-Oriented System in C++. Communications of the ACM, pages117{126, September 1993.[7] E. Cooper. Programming Language Support for Multicast Communication in DistributedSystems. In Tenth International Conference on Distributed Computer Systems, 1990.[8] Antonio Corradi, Paola Mello, and Antonio Natali. Error Recovery Mechanisms for Re-mote Procedure Call-Based Systems. In 8th Annual International Phoenix Conference onComputers and Communicaton Conference Proceedings, pages 502{507, Phoenix, Arizona,March 1989. IEEE Computer Society Press.[9] F. Cristain. Understanding Fault-tolerant Distributed Systems. Communications of theACM, 34(2):56{78, 1991.[10] Quian Cui and John Gannon. Data-Oriented Exception Handling in Ada. IEEE Transac-tions on Software Engineering, 18:98{106, May 1992.[11] Christophe Dony. Improving Exception Handling with Object-Oriented Programming. InProceedings of the 14th Annual International Computer Software and Applications Con-ference, pages 36{42, Chicago, 1990. IEEE Computer Society, IEEE.51

[12] Christophe Dony, Jan Purchase, and Russel Winder. Exception Handling in Object-Oriented Systems. OOPS Messanger, 3(2):17{29, April 1992.[13] Je�rey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector, editors. CAMELOT ANDAVALON: A Distributed Transaction Facility. Morgan Kaufmann Publishers, Inc., 1991.[14] Jacques Ferber and Jean-Pierre Briot. Design of a Concurrent Language for DistributedArti�cial Intelligence. In Proceedings of the International Conference on Fifth GenerationComputer Systems, volume 2, pages 755{762. Institute for New Generation ComputerTechnology, 1988.[15] S. Fr�lund. Inheritance of Synchronization Constraints in Concurrent Object-OrientedProgramming Languages. In O. Lehrmann Madsen, editor, ECOOP'92 European Confer-ence on Object-Oriented Programming, pages 185{196. Springer-Verlag, June 1992. LectureNotes in Computer Science 615.[16] S. Fr�lund and G. Agha. A Language Framework for Multi-Object Coordination. InProceedings of ECOOP 1993. Springer Verlag, July 1993. LNCS 627.[17] John B. Goodenough. Exception Handling: Issues and a Proposed Notation. Communi-cations of the ACM, 18(12):683{696, December 1975.[18] Daniel T. Huang and Ronald A. Olsson. An Exception Handling Mechanism for SR.Computer Languages, 15(3):163{176, 1990.[19] Yuuji Ichisugi and Akinori Yonezawa. Exception Handling and Real Time Features inan Object-Oriented Concurrent Language. In A. Yonezawa and T. Ito, editors, Concur-rency: Theory, Language, and Architecture, pages 92{109. Springer-Verlag, Oxford, UK,September 1989. LNCS 491.[20] Barbara Liskov. Distributed Programming in Argus. Communications of the ACM,31(3):300{312, March 1988.[21] Barbara Liskov and Alan Snyder. Exception Handling in Clu. IEEE Transactions onSoftware Engineering, 5(6):546{558, November 1979.[22] P. Maes. Computational Re
ection. Technical Report 87-2, Arti�cial Intelligence Labora-tory, Vrije University, 1987.[23] Carl Manning. ACORE: The Design of a Core Actor Language and its Compiler. Master'sthesis, MIT, Arti�cial Intelligence Laboratory, August 1987.[24] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication Substratefor Fault-Tolerant Distributed Programs. Technical report, University of Arizona, Tucson,1991.[25] M. H. Olsen, E. Oskiewicz, and J. P. Warne. A Model for Interface Groups. In TenthSymposium on Reliable Distributed Systems, Pisa, Italy, 1991.52

[26] Richard D. Schlichting, Falviu Christian, and Titus D. M. Purdin. A Linguistic Approachto Failure Handling in Distributed Systems. In A. Avi�zienis and J.C. Laprie, editors,Dependable Computing for Critical Applications, pages 387{409. IFIP, Springer-Verlag,1991.[27] Richard D. Schlichting and Titus D. M. Purdin. Failure Handling in Distributed Program-ming Languages. In Proceedings: Fifth Symposium on Reliability in Distributed Softwareand Database Systems, pages 59{66, Los Angeles, CA, January 1986. IEEE ComputerSociety Press.[28] Santosh Shrivastava, Graeme Dixon, and Graham Parrington. An Overview of the ArjunaDistributed Programming System. IEEE Software, pages 66{73, January 1991.[29] B. C. Smith. Re
ection and semantics in a procedural language. Technical Report 272,Massachusetts Institute of Technology. Laboratory for Computer Science, 1982.[30] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, second edition,1991.[31] C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. In OOP-SLA Proceedings, 1989.[32] T. Watanabe and A. Yonezawa. A Actor-Based Metalevel Arhitecture for Group-WideRe
ection. In J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Foundationsof Object-Oriented Languages, pages 405{425. Springer-Verlag, 1990. LNCS 489.[33] C. T. Wilkes and R. J. LeBlanc. Distributed Locking: A Mechanism for ConstructingHighly Available Objects. In Seventh Symposium on Reliable Distributed Systems, OhioState University, Columbus, Ohio, 1988.[34] Y. Yokote, A. Mitsuzawa, N. Fujinami, and M. Tokoro. The Muse Object Architecture:A New Operating System Structuring Concept. Technical Report SCSL-TR-91-002, SonyComputer Science Laboratory Inc., Feburary 1991.[35] A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System, chapter Re
ectionin an Object-Oriented Concurrent Language, pages 45{70. MIT Press, Cambridge, Mass.,1990.
53

