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Abstract. This tutorial is intended to teach digital finite state machine 
(FSM) design using VHDL with emphasis on digital signal processing 
(DSP). Some VHDL knowledge is presumed. Understanding of the 
theoretical DSP background is helpful but not required. 

 
 

1 Introduction 
The goal of this exercise is to teach finite-state-machine (FSM) design using VHDL. 
 
Nowadays, synthesizable description of digital hardware is either done with VHDL [1], 
Verilog [2]. Higher level design tools like SystemC/C++ [3] or HDL coder [4] typically 
generate optionally VHDL or Verilog code for further synthesis. 
 
Required software tools  
VHDL simulator ModelSim simulator [5] and VHDL synthesizer Quartus II 8.1 [6] are 
available at the CIP pools of Regensburg Univ. of Appl. Sciences or downloadable free from 
Altera [6]. The Altera Edition (ModelSim AE) is by a factor 2…3 slower than the paid 
versions. The ModelSim and Quartus II software used within this tutorial can be obtained free 
from Altera [6] and other sources.  
 
The particular tools used here are most probably no more available from Altera [6] and their 
latest versions of are significantly larger without any advantage for this tutorial. Therefore, 
ModelSim and Quartus tools used here are available for members of Regensburg Univ. of 
Appl. Sciences also at the internal network, drive k:\ [15]. 
 
Required knowledge  
For this tutorial some VHDL knowledge is presumed. It can be obtained or deepened e.g. with 
[7], [8]. Understanding of the theoretical background of DSP with respect to digital filter 
design is not required but helpful an can be obtained from [9]. This script is accompanied 
with the scripts “FSM Design for DSP Using Fixed-Point Numbers” [10] and “FSM Design 
for DSP Using Matlab” [11]. 
 
 
The organization of this document is as follows:  

Chapter 2  summarizes some fundamental FSM design rules and 
Chapter 3  some Fundamental Rules for Synchronous Design. 
Chapter 4  simulates a simple VHDL counter model using ModelSim. 
Chapter 5  uses Quartus II to synthesizes the VHDL counter model and download it to the 

DE2 board [12] with Altera Cyclone II FPGA. 
Chapter 6 is a short answer to some frequently asked questions on the VHDL statements 

used in this course. Significantly more details can be obtained from [7], [8]. 
Chapter 7 draws relevant conclusion and 
Chapter 8  offers references. 
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2 Some Fundamental FSM Desing Rules 
2.1 The FSM Model 
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Fig. 2.1-1: Finite-State Machine model. (Signal enable depends in the implementation.) 
 
 
Moore outputs depend on the state vector only. Mealy outputs can change value 
independently of the clock (difficult to test). 
 
The state memory is typically made of n D-flipflops. It can represent a finite number of 2n 
states. An infinite state memory is for example a capacitor, because it can memorize an 
infinite number of voltages. 
 
Fig. 2.1-2 compares the different ways to draw a FSM. 
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Fig. 2.1-2: Finite-State Machine models (a) Loop model, (b) combinational NextState logic 
described as table, (c) bubble model. 
 



M. Schubert  RED / PRED FSM Design for DSP Using VHDL Regensburg Univ. of Appl. Sciences 

 - 4 -

2.2 An Unequivocal Logic Representation for Synthesis 
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Fig. 2.2: Process flow of synthesis of digital circuits. 
 
 
A circuit can be described in many ways. For synthesis we need an unequivocal description as 
the bit-map shown in table 2.2 for combinational logic. Challenging is hierarchical design 
including blocks as e.g. multipliers as “black boxes” into the optimization process. 
 
1. Distinguish combinational from sequential logic. 
2. Sequential logic is typically realized with D-flipflops. 
3. Combinational logic: no memory, no tri-state outputs; unequivocal description: bit-

map. 
4. Synthesize logic with respect to target technology and goals 
 
 
Table 2.2: A bit map unequivocally describes the static behavior of combinational logic 

Combinational Logic Inputs Combinational Logic Outputs 
i1 i2 i3 i4 ... ix o1 o2 o3 ... oy 
0 0 0 0 ... 0 1 0 1 ... 0 
1 0 0 0 ... 0 0 1 1 ... 1 
1 1 0 0 ... 0 1 0 1 ... 1 
 
1 1 1 1 ... 1 1 1 0 ... 1 
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2.3 Some Fundamental Rules for Synchronous Design 
Experience has shown that the safest method for the design and test of digital circuits and 
systems is synchronous circuit design. 
 
A design is synchronous, if 
 all data storage elements are clocked and in normal operation change state only in response 

to the active edge of the clock signal, 
 the same active edge of the clock signal is applied at precisely the same time point at every 

clocked cell in the design. 
 
 
Not recommended: Non-synchronous changes of flipflop states: 
 
 

 
 
Fig. 2.3-1:  
Flipflop driving clock input of an 
other Flipflop 
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Do not gate clocks ! 
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Fig. 2.3-2: (a) Bad enable-flipflop (eff) with gated clock, (b) good eff, (c) transistor-level eff. 
 
 
Asynchronous designs are typically faster and less expensive but difficult to test. Use enable-
flipflops optimized on transistor-level when available. The maximum speed of the ripple 
counter below does not depend on its length, which is a significant advantage over the 
synchronous counter. However, synchronous circuits are easier to test. 
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Fig. 2.3-3:  (a) asynchronous 4-bit ripple counter, (b) synchronous 4-bit counter. 
 
 
A toggle flipflop (tff) and an enabled toggle flipflop (etff) uses  d=NOT(q). 
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3 VHDL Design for Synthesis 
3.1 Fundamental Guidelines for Synthesizable VHDL Code 

 Synthesizable code is typically termed rtl (register transfer level) Code. 
 Non-synthesizable code is typically termed behavioral (testbenches). 

 
 
3.1.1 Do not Reinvent the Wheel! 

According to Wikipedia [13] "Reinventing the wheel is a phrase that means to duplicate a 
basic method that has already previously been created or optimized by others" which 
normally doesn’t make sense. In most situations a simple rule delivers the best results:  
 

Describe your circuit as detailed as necessary and as general as possible. 
 

 What is synthesizable or not depends on your libraries. An adder or multiplier from 
your library is in the majority of cases significantly better than a self-made one. 

 Do not design primitives at gate level! Particularly flipflops (FFs) are optimized by the 
technology foundry. Use behavioral FF descriptions as detailed below. 

 For information on synthesis exceeding the recommendations below the reader is 
referred the literature, in particular to the work of Keating and Bricaud [14], which 
results from a joint design-for-reuse initiative of Cadence Systems and Mentor 
Graphics. 

 
 
3.1.2 Design for Portability and Reusability 

Preserving portability of VHDL models requires to design without taking advantage of 
features offered by particular soft- and hardware manufacturers. 
 
ASYNCHRONOUS RESET: Most FPGAs automatically reset all FFs when they are loaded. 
Therefore, some FPGA designers code FFs without reset. However, it is up-to date practice to 
test a design in a FPGA before copying the models into an ASIC. When HDL models are 
ported to an ASIC, memory without reset will have a problem, as FFs fall randomly into 
'0' or '1' state. 
 
Design for reusability is an important topic [14] that would exceed the scope of this tutorial. 
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3.1.3 Designing Edge-Triggered Memory 

Among the many possibilities of modeling sequential logic VHDL synthesizers are typically 
sensitive to the following constructs  
 
a) ps_dff:PROCESS(clk,reset) 

BEGIN 
  IF reset='0' THEN 
    q<='0' [AFTER delay]; 
  ELSIF clk'EVENT AND clk='1' THEN 
    q<=d [AFTER delay]; 
  END IF; 
END PROCESS ps_dff; 

b) ps_state_memory:PROCESS(clk,reset) 
BEGIN 
  IF reset ='0' THEN 
    state<=reset_state [AFTER delay];
  ELSIF clk'EVENT AND clk='1' THEN 
    state<=next_state [AFTER delay]; 
  END IF; 
END PROCESS ps_state_memory; 

 
Listing 3.1.3-1: Modeling memory: (a) for a scalar state and (b) for a state vector. 
 
 
The AFTER clause is optional, improves simulation and is ignored by the synthesizer. For FFs 
with inverting output a model as illustrated in Listing 3.1.3-2(a) is recommended, because it 
guarantees qb=NOT(q) in all situations.  
 
Not recommended are constructs assigning both q and qb within the PROCESS statement as 
shown in Listing 3.1.3-2(b). During initialization all processes run through and the forbidden 
situation q=qb='0' or  q=qb='1' may occur, when there is neither a rising clock edge 
nor reset='0'. 
 
 
a) ps_dff_good:PROCESS(clk,reset) 

BEGIN 
  IF reset='0' THEN 
    q<='0' AFTER delay; 
  ELSIF clk'EVENT AND clk='1' THEN 
    q<=d AFTER delay; 
  END IF; 
END PROCESS ps_dff_good; 
qb<=NOT(q); -- this is always o.k. 

 

b) ps_dff_err:PROCESS(clk,reset) 
BEGIN 
  IF reset ='0' THEN 
    q<='0' AFTER delay; 
    qb<='1' AFTER delay; 
  ELSIF clk'EVENT AND clk='1' THEN 
    q<=d AFTER delay; 
    qb<=NOT(d) AFTER delay; 
  END IF; 
END PROCESS ps_dff_err; 

 
Listing 3.1.3-2: FF model with inverting output: (a) recommended (b) not recommended. 
 
 
Many silicon foundries offer optimized enable flipflops (EFFs) and the construction shown in 
Fig. 2.3-2 can be realized as: 
 
 ps_state_memory:PROCESS(clk,reset) 

BEGIN 
  IF reset ='0' THEN 
    state<=reset_state; 
  ELSIF clk'EVENT AND clk='1' AND enable='1' THEN 
    state<=next_state; 
  END IF; 
END PROCESS ps_state_memory; 

 
Listing 3.1.3-3: Design of an enable flipflop (EFF). 
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3.1.4 Designing Combinational Logic 

Modeling combinational is well done with concurrent statements. Example for a 1-bit half 
adder: 
 
  sum       <= a xor b; 
  carry_out <= a AND b; 
 
In many situations designers use a PROCESS statement of the form 
 
  ps_combinational:PROCESS(sensitive_signals) 
  BEGIN 
    driven_output_signals <= f(sensitive_signals, other_signals); 
  END PROCESS ps_combinational; 
 
The process generates (forbidden) latches, if one of the following two basic rules for 
combinational logic is violated: 

1. All input signals of the process must be listed in its sensitivity list. 
2. All output signals must be driven all time. 

 
Violation example for rule 1: 
In the process below labeled  ps_partial_sensitivity_list  the assignment  
y<=b; can be executed if and only if an event on signal a occurs. To realize that a double-
edge triggered FF using signal a as clock signal is required, which is not combinational. 
 
  ps_partial_sensitivity_list:PROCESS(a) 
  BEGIN 
    y<=b;  -- latch generation: b is not in the sesitivity list! 
  END PROCESS ps_partial_sensitivity_list; 
 
Violation example for rule 2: 
In the process below labeled  ps_wrong  the assignment  next_y<=b;  can be executed if 
and only if  a='1'. When  a='0'  then  next_y  must not change. To guarantee this the 
synthesizer generates a latch, so that the code is no more purely combinational. This problem 
is removed in process ps_good. Don’t forget that y has now to appear in the sensitivity list 
because it is an input signal. 
 
a)   ps_wrong:PROCESS(a,b) 

  BEGIN 
    IF a='1' THEN  
      next_y <= b; 
    -- what happens if a='0'? 
    END IF; 
  END PROCESS ps_wrong; 
 

b)   ps_good:PROCESS(a,b,y) 
  BEGIN 
    IF a='1' THEN  
      next_y <= b; 
    ELSE 
      next_y <= y; 
    END IF; 
  END PROCESS ps_good; 

 
CASE | SELECT   versus   IF | "<= … WHEN"   statement. 
VHDL synthesizer manuals recommend to prefer CASE to IF statements wherever possible. 
This is because CASE uses one conditions for the evaluation of all situations as symbolized in 
Fig. 3.3.1(a) while the priority bit coding of the IF statement evaluates a new condition for 
every branch. The concurrent counterparts are SELECTed and conditional signal assignment. 
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Fig. 3.1.4: Conditional VHDL assignments (a) using the sequential CASE <condition> IS 
or concurrent  WITH <condition> SELECT  statement, (b) using the sequential IF 
<condition> THEN or concurrent  <signal> <= <expression> 
WHEN<condition>  statement 

 
 
End conditional statements with an OTHERS or ELSE clause. Be aware of state values 
other than '0' and '1', e.g. logic 'X'. Even if it is sure at the moment that all cases are 
covered by a CASE statement, the designer should keep in mind that the code may be 
maintained or reused by other persons. (Exceptions to this rule hold for FSM design using 
ONE process for next-state logic and memory -> see below.) 
 
 
Examples: Let us assume the following VHDL signal declaration: 
SIGNAL condition,a,b,y:std_logic ; 
 
Selected signal assignment: 
Concurrent Sequential 
 
 
WITH condition SELECT 
  y <= a  WHEN '0', 
       b  WHEN '1', 
      'X' WHEN OTHERS; 

p_case: PROCESS(condition,a,b) 
BEGIN 
  CASE condition IS 
    WHEN '0'    =>  y<=a; 
    WHEN '1'    =>  y<=b; 
    WHEN OTHERS =>  y<='X'; 
  END CASE 
END PROCESS p_case; 

 
Conditional signal assignment: 
Concurrent: Sequential 
 
 
y <=      a WHEN condition='0'  
     ELSE b WHEN condition='1'  
     ELSE 'X'; 

p_if: PROCESS(condition,a,b) 
BEGIN 
  IF condition='0'    THEN y<=a; 
  ELSIF condition='1' THEN y<=b; 
  ELSE                    y<='X'; 
  END IF 
END PROCESS p_if; 
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3.2 VHDL-Design of Synchronous Finite State Machines 

3.2.1 General Guidelines for Event-Driven FSM Design 
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Fig. 3.2.1-1: Clocked state machine structure: Mealy/Moore machine. Moore outputs depend 
only on state and not on stimuli, the latter may be asynchronous. Signal enable depends on 
the implementation (can be avoided by not changing NextState). 

 
 
Avoid Mealy outputs if possible. Mealy outputs depend directly on input signals and are 
difficult to test because they are subject to change any time. The delay of a chain of modules 
with mealy outputs is difficult to predict. 
 
There are two possibilities to code the feedback-loop of a finite state machine: 

1. Using a single process for both next-state logic and memory. 
2. Using two processes: one for the next-state logic and an other for the memory. 

 
 
Example counter: We will now build the counter known from the Matlab model above. 

 
 
Fig. 3.2.1-2: The counter entity corresponds 
to the schematics symbol. The prefix 'c' 
denotes cPeriod as a constant (Constants 
are passed to a VHDL entity as "generics".) 
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A bitwidth cM can be declared directly using e.g. std_logic_vector(cM-1 DOWNTO 0) 
or INTEGER RANGE 0 TO 2**cM, or indirectly using e.g. INTEGER RANGE 0 TO 2**cM. 
In this case the bitwidth can be computed from the C-code 
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cM=(int)ceil(log(cMax)/log(2)), where the logarithms dualis can be computed from 
ld(x)=loga(x)/loga(2) for any base a. 
 
Entity: Assume the following Entity for the counter that counts from  0...cPeriod-1. 

ENTITY counter IS 
    GENERIC(cPeriod:POSITIVE:=10); 
    PORT(reset,clock,enable:IN std_logic; 
         maxflg:BUFFER std_logic; 
         count:BUFFER NATURAL RANGE 0 TO cPeriod-1 
        );  
END ENTITY counter; 
 
There are two design techniques to model the feedback-loop a FSM: Two PROCESS 
statements for next-state logic and memory or a single PROCESS statement for both. 
 
 
3.2.2 Two PROCESS Statements for Next-State Logic and State Memory 
ARCHITECTURE rtl_counter2 OF counter IS 
  SIGNAL NextCount:NATURAL RANGE 0 TO cPeriod-1; 
BEGIN 
  -- Begin NextState Logic: 
  p_ns:PROCESS(enable,count) BEGIN 
    IF enable='1' THEN 
      IF count = cPeriod-1 THEN 
        NextCount<=0; 
      ELSE 
        NextCount<=count+1; 
      END IF; 
    ELSE 
      -- what happens at enable ='0' ?! 
      NextCount<=count; 
    END IF; 
  END PROCESS; -- End NextState Logic 
  -- 
  -- Begin State Memory 
  p_mem:PROCESS(reset,clock) 
  BEGIN 
    IF reset='0' THEN 
      count <= 0; 
    ELSIF clock'EVENT AND clock='1' THEN 
      count <= NextCount; 
    END IF; 
  END PROCESS p_mem; 
  -- 
  -- output logic: 
  maxflg <= '1' WHEN count=cPeriod-1 ELSE '0'; 
END ARCHITECTURE rtl_counter2; 
 
CONFIGURATION con_counter2 OF counter IS 
  FOR rtl_counter2 
  END FOR; 
END CONFIGURATION con_counter2; 
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The above example reflects the state machine composed of next-state logic and memory. 
When choosing this solution, you should keep in mind the 2 rules for combinational logic:  

1. Have all input signals in the sensitivity list of the combinational-logic process and  

2. Drive every output-bit of the next-state logic any time in any situation. (Use ELSE and 
OTHERS keywords in IF and CASE statements, respectively!) 

 
One method to guarantee point two above is to begin the combinational next-state process 
with the following code line: 

  State <= NextState; 

Within a process the last of several signal assignments is valid. So we have driven any bit of 
the state vector and may now drive some of its bits if desired. 
 
 
3.2.3 One PROCESS Statement for Next-State Logic and State Memory 
ARCHITECTURE rtl_counter1 OF counter IS 
  SIGNAL NextCount:NATURAL RANGE 0 TO cPeriod-1; 
BEGIN 
  -- Counter 
  p_fsm:PROCESS(reset,clock) 
  BEGIN 
    IF reset='0' THEN 
      count <= 0; 
    ELSIF clock'EVENT AND clock='1' AND enable='1' THEN 
      IF count = cPeriod-1 THEN -- Begin NextState Logic 
        count <= 0; 
      ELSE 
        count <= count+1; 
      END IF;                   -- End NextState Logic 
    END IF; 
  END PROCESS p_fsm; 
  -- 
  -- output logic: 
  maxflg <= '1' WHEN count=cPeriod-1 ELSE '0'; 
END ARCHITECTURE rtl_counter1; 
 
 
This realization uses the same memory model as the example above, but replaces the next-
state assignment  count<=NextCount;  by the combinational logic. Advantages: 

 There are no other signals in the sensitivity list than reset and clock, 
 There is no ELSE  or OTHERS clause to define what happens when enable='0', 
 Such code is often easier to read, shorter and less error prone to maintain. 

 
To obtain the solution in example 2 from the solution in example 1 … 

1. Replace the statement count<=NextCount; (or state<=NextState;) inside the 
memory by the next-state logic. 

2. Rename NextCount to count (or NextState to state) and remove the signal 
declaration statement for the NextCount (or NextState) vector. 

3. Remove the process for the NextState logic. 
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4 Simulate the VHDL Model 
4.1 VHDL Testbench 
LIBRARY ieee; USE ieee.std_logic_1164.ALL; 
ENTITY tb_counter IS END ENTITY tb_counter; 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
ARCHITECTURE beh_tb_counter OF tb_counter IS 
  CONSTANT cPeriod:NATURAL:=10; 
  SIGNAL count:NATURAL RANGE 0 TO cPeriod-1; 
  SIGNAL reset,clock,maxflg:std_logic:='0'; 
  SIGNAL enable:std_logic; 
  -- 
  COMPONENT counter IS 
    GENERIC(cPeriod:POSITIVE:=10); 
    PORT(reset,clock,enable:IN std_logic; 
         maxflg:BUFFER std_logic; 
         count:BUFFER NATURAL RANGE 0 TO cPeriod-1 
        );  
  END COMPONENT counter; 
  CONSTANT fclk:REAL:=50.0E6; 
BEGIN 
  clock  <= NOT clock AFTER sec/(2.0*fclk); 
  reset  <= '0', '1' AFTER 12 ns; 
  enable <= '1', '0' AFTER 355 ns, '1' AFTER 545 ns; 
  i:counter GENERIC MAP(cPeriod) 
            PORT MAP(reset,clock,enable,maxflg,count); 
END ARCHITECTURE beh_tb_counter; 
 
CONFIGURATION con_tb_counter OF tb_counter IS 
  FOR beh_tb_counter 
    FOR i:counter USE ENTITY WORK.counter(rtl_counter2); -- config # 
    END FOR; 
  END FOR; 
END CONFIGURATION con_tb_counter; 
 

 

Fig. 4.1: Simulation of the code above obtained with the ModelSim simulator 
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Watch the VHDL code line above with comment "config #". It is configured to use 
architecture rtl_counter2 for entity counter. If this explicit configuration is omitted 
the default configuration is: Use the last compiled architecture for entity counter. 
 
 

4.2 Using the ModelSim Simulator 
The ModelSim and Quartus II installation files can be started from the CIP-Pools in the HS.R 
selecting Start  Fachbereiche  Elektrotechnik  Altera  {ModelSim | Quartus II}. 
 
The installation files  

 81_modelsim_6.3g_p1_ae_free.exe 
 81_quartus_free.exe 

and can also be obtained for self-installation from drive k:\Sb\Software\Altera\... 
 
 
Start the ModelSim simulator at Regensburg Univ. of Appl. Sciences (HS.R): 
File -> Change Directory -> …\counter -> ok 
Tools -> Tcl -> Execute Macro -> work.do 
 
 
The file work.do Tcl-contains the commands illustrated in the listing below. You can also 
type these commands into the transcript window. 
 

vlib work 

vmap work work 

vcom -work work counter.vhd 

vcom -work work rtl_ounter1.vhd 

vcom -work work rtl_counter2.vhd 

vcom -work work counter_tb.vhd 

vsim work.con_counter_tb 

do wave.do 

run 1 us 

# Create working library named work 

# Map logical name work to working lib. work  

# Compile file counter.vhd to working lib. work 

# Compile file counter1_rtl.vhd to lib. work 

# Compile file counter2_rtl.vhd to lib. work 

# Compile file counter_tb.vhd to lib. work 

# Simul. config. con_counter_tb located in work 

# Run file wave.do defining the wave-win 

# Simulate a time span of 1 μs 
 
 
Library creation and usage in ModelSim: 

vlib <physical_name> 
vmap <logical_name> <physical_name> 
 
Example: 
vlib ../adac_bin 
vmap adac_lib ../adac_bin 
vcom -work adac_lib ../filter.vhd 

 

# Create physical library <physical_name> 
# Map <logical_name> to <physical_name> 
 
# '.' stands for this and '..' for parent directory: 
# Create physical library ../adac_bin 
# Map logical name adac_lib to lib. adac_bin 
# Compile filter.vhd to library adac_lib 

Listing 4.2: How to create a physical library and a logical name for it within ModelSim 
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Exercise: Writing VHDL Code 
Take the architecture listings rtl_counter# (#=1,2) above. Delete some of the code lines 
describing the FSM as shown below. Rewrite the model by yourself and test it. 
 
 
ARCHITECTURE rtl_counter2 OF counter IS 
  SIGNAL NextCount:NATURAL RANGE 0 TO cPeriod-1; 
BEGIN 
  -- Begin NextState Logic: 
 
  p_ns:PROCESS(.....................) BEGIN 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
 
  END PROCESS; -- End NextState Logic 
  -- 
  -- Begin State Memory 
 
  p_mem:PROCESS(.....................) 
  BEGIN 
    IF reset='0' THEN 
      count <= 0; 
    ELSIF clock'EVENT AND clock='1' THEN 
 
.............................................................. 
 
    END IF; 
  END PROCESS p_mem; 
  -- 
  -- output logic: 
  maxflg <= '1' WHEN count=cPeriod-1 ELSE '0'; 
END ARCHITECTURE rtl_counter2; 
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ARCHITECTURE rtl_counter1 OF counter IS 
  SIGNAL NextCount:NATURAL RANGE 0 TO cPeriod-1; 
BEGIN 
  -- Counter 
  p_fsm:PROCESS(              ) 
  BEGIN 
    IF reset='0' THEN 
      count <= 0; 
    ELSIF clock'EVENT AND clock='1'........................... THEN 
      -- begin encapsulated combinational Next-State logic: 
       
         
           
         
           
         
       
      -- end of encapsulated combinational Next-State logic 
    END IF; 
  END PROCESS p_fsm; 
  -- 
  -- output logic: 
  maxflg <= '1' WHEN count=cPeriod-1 ELSE '0'; 
END ARCHITECTURE rtl_counter1; 
 
 
Hint: You will find the solution in “ARCHITECTURE rtl_counter# OF counter“ above (#=1,2). 
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5 Synthesize the VHDL Model 
VHDL Testbench for Synthesis & Download into the DE2 FPGA Board 

 

Fig. 5.1: The Terasic DE2 board with Altera FPGA, copied from the DE2 User Manual [12]. 
 
 
Using Altera’s Quartus II [6] to perform the synthesis 

Start Quartus II version 8.1 
Create a New Project -> Next ->  
     Directory: "…\counter", Files "counter.vhd" + "counter1_rtl.vhd"  
     Project: de2_counter, top-level design entity: de2_counter -> Finish 
Project -> Add/Remove Files in Project -> (add all required files) 
Assignments -> Import Assignments -> DE2_pin_assignments.csv -> Open, ok 
Processing -> Start Compilation 
Tools -> Netlist -> RTL Viewer (creates Fig. 3.3.6) 
Tools -> Programmer [1st use only: -> Hardware Setup -> USB-Blaster [USB-0] ] 
 

 

(a) Interface compent de2_counter  (b) Synthesized component counter  

Fig. 5.2: Quartus II 8.1 RTL Viewer: synthesized models 
 
 
Assignments between the port signals of the entity and corresponding on-board wires 
are defined within the file DE2_pin_assignments.csv supplied by Altera and can be 
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modified there. It is imported to Quartus2 using Assignments → Import Assignments... 
→ Filename. Short summary of the most important signals. 
 
 
Listing 5: VHDL Testbench for the counter module  
-- For Board: Altera DE2 with FPGA cyclone II EP2C35F672C6 
LIBRARY ieee;  
USE ieee.std_logic_1164.ALL,ieee.std_logic_signed.ALL; 
ENTITY de2_counter IS 
    PORT(CLOCK_50,CLOCK_27:IN std_logic; 
      key:IN std_logic_vector(3 DOWNTO 0); -- low when pressed 
      sw:IN std_logic_vector(17 DOWNTO 0); -- low when pulled down 
      ledg:BUFFER std_logic_vector(8 DOWNTO 0);  -- high active 
      ledr:BUFFER std_logic_vector(17 DOWNTO 0); -- high active 
      hex0,hex1,hex2,hex3,hex4,hex5,hex6,hex7:OUT std_logic_vector(0 TO 6); 
      gpio_0:BUFFER std_logic_vector(35 DOWNTO 0); 
      gpio_1:INOUT std_logic_vector(35 DOWNTO 0) 
    ); 
END ENTITY de2_counter; 
 
ARCHITECTURE rtl_de2_counter OF de2_counter IS 
  CONSTANT cPeriod:NATURAL:=2_147_483_647; -- 2**31-1 
  CONSTANT cCountWidth:NATURAL:=32; 
  SIGNAL count:NATURAL RANGE 0 TO cPeriod-1; 
  CONSTANT cZeroVector:std_logic_vector(cCountWidth-1 DOWNTO 0):=(OTHERS=>'0'); 
  SIGNAL count_vector:std_logic_vector(cCountWidth-1 DOWNTO 0); 
  TYPE t_7seg IS ARRAY(0 TO 15) OF std_logic_vector(0 TO 6); 
  CONSTANT c7seg:t_7seg:=("1111110", "0110000", "1101101", "1111001",  
    "0110011", "1011011", "1011111", "1110000", "1111111", "1110011",  
    "1110111", "0011111", "1001110", "0111101", "1001111", "1000111"); 
  COMPONENT counter IS 
    GENERIC(cPeriod:POSITIVE:=10); 
    PORT(reset,clock,enable:IN std_logic; 
         maxflg:BUFFER std_logic; 
         count:BUFFER NATURAL RANGE 0 TO cPeriod-1 
        );  
  END COMPONENT counter; 
  SIGNAL reset,enable,maxflg:std_logic; 
BEGIN 
  reset  <= key(0); 
  enable <= key(1); 
  ledg(6) <= NOT ledg(6) WHEN clock_50'EVENT AND clock_50='1' AND maxflg='1'; 
  i:counter GENERIC MAP(cPeriod) PORT MAP(reset=>key(0),clock=>clock_50, 
                                enable=>key(1),count=>count,maxflg=>maxflg); 
  count_vector<=cZeroVector+count; 
  ledr <= count_vector(cCountWidth-2 DOWNTO cCountWidth-19); -- MSB='0' 
  ledg(8) <= NOT ledg(8) WHEN ledr(11)'EVENT AND ledr(11)='1'; 
  ledg(7)<=sw(7); ledg(5 DOWNTO 4)<=sw(5 DOWNTO 4); 
  ledg(3 DOWNTO 0) <= key; 
  -- use concatenated leading '0' as data type is std_logic_signed: 
  hex7<=NOT c7seg(CONV_INTEGER('0'&count_vector(31 DOWNTO 28))); 
  hex6<=NOT c7seg(CONV_INTEGER('0'&count_vector(27 DOWNTO 24))); 
  hex5<=NOT c7seg(CONV_INTEGER('0'&count_vector(23 DOWNTO 20))); 
  hex4<=NOT c7seg(CONV_INTEGER('0'&count_vector(19 DOWNTO 16))); 
  hex3<=NOT c7seg(CONV_INTEGER('0'&count_vector(15 DOWNTO 12))); 
  hex2<=NOT c7seg(CONV_INTEGER('0'&count_vector(11 DOWNTO  8))); 
  hex1<=NOT c7seg(CONV_INTEGER('0'&count_vector( 7 DOWNTO  4))); 
  hex0<=NOT c7seg(CONV_INTEGER('0'&count_vector( 3 DOWNTO  0))); 
END ARCHITECTURE rtl_de2_counter; 
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Table 5.1: Mapping of FPGA-internal VHDL signals to external devices on the DE2 board 

Signal in the PORT of entity  de2_...  Connected to element of DE2 board 
CLOCK_50,CLOCK_27:IN std_logic External 50MHz and 27MHz clocks 
key:IN std_logic_vector(3 DOWNTO 0);  the 4 push buttons below green diodes 
sw:IN std_logic_vector(17 DOWNTO 0);  low when pulled down 
ledg:BUFFER std_logic_vector(7 DOWNTO 0); Green LEDs, high active 
ledr:BUFFER std_logic_vector(17 DOWNTO 0); Red LEDs, high active 
hex0,hex1,hex2,hex3,hex4,hex5,hex6,hex7 7-segment displays, low-active 

 
 
Table 5.2: Functionality of the testbench de2_counter(rtl_de2_counter): 

Signal name mode features functionality comments 
key(0) IN '0' when key pressed reset resets all components when pressed 
key(1) IN '0' when key pressed enable for counter  
key(2) IN '0' when key pressed   
key(3) IN '0' when key pressed   
sw(17:0) IN '1' when pushed to board   
ledg(0) OUT LED is on @ '1' = key(0)= reset   
ledg(1) OUT LED is on @ '1' = key(1)= enable   
ledg(2) OUT LED is on @ '1' = key(2)  
ledg(3) OUT LED is on @ '1' = key(3)  
ledg(4) OUT LED is on @ '1' = sw(4)  
ledg(5) OUT LED is on @ '1' = sw(5)  
ledg(6) OUT LED is on @ '1' NOT ledg(6) @ maxflg toggles when maxflg='1' 
ledg(7) OUT LED is on @ '1' = sw(7)  
ledg(8) OUT LED is on @ '1' toggles with ledr(11) should flash with ca. 1Hz 
ledr(17:0) OUT LED is on @ '1' =count_vector(31:13) makes toggling msb’s visible 
hex7 OUT LEDs on @ '0' =>count_vector(31:28) makes counter content visible 
hex7 OUT LEDs on @ '0' =>count_vector(27:24) makes counter content visible 
hex7 OUT LEDs on @ '0' =>count_vector(23:20) makes counter content visible 
hex7 OUT LEDs on @ '0' =>count_vector(19:16) makes counter content visible 
hex7 OUT LEDs on @ '0' =>count_vector(15:12) makes counter content visible 
hex7 OUT LEDs on @ '0' =>count_vector(11:08) makes counter content visible 
hex7 OUT LEDs on @ '0' =>count_vector(07:04) makes counter content visible 
hex7 OUT LEDs on @ '0' =>count_vector(03:00) makes counter content visible 

 
 
The Quartus II 8.1 files to save (except from the VHDL files) are 
<project_name>.qpf ASCII Quartus Project file 
<project_name>.qsf ASCII Quartus Specification file 
<project_name>.sof Binary downloadable image  
 
The complete required information to rebuild the project is contained in the qpf and qsf files. 
(Linking of previously compiled files is not possible with the free version of Quartus II.) 
.qpf: Double-click left mouse button on the *.qpf file to open Quartus II with the respective 

project loaded. Use an ASCII editor and look into this file. 
.qsf: Use an ASCII editor to look into this file: It contains settings as the Signal–Pin 

assignments and the files are to compile. It is always dangerous to change such files 
with an ASCII editor, but adding or removing VHDL files to be compiled here might 
be easier and faster than using the menu “Project  Add/Remove File in Project...”. 

.sof: This final "result" file can be downloaded into the FPGA using the programmer. 
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6 VHDL 
This chapter points out some important issues of VHDL, it is no comprehensive tutorial. It is 
based on the author’s experience of frequently asked questions during circuit design courses 
with students having some previous knowledge on that topic. 
 
 
6.1 Design Units 

Table 6.1: Building blocks in VHDL 

 COMPONENT LIBRARY Comments 
To the outer world ENTITY PACKAGE Corresponds to a symbol 
Realization inside ARCITECTURE BPACKAGE BODY Corresponds to a schematics 
Combination  CONFIGURATION   
 
 
6.2 Compilation Order Dependence 

VHDL is compilation order dependent. It has no linker but only a loader. Sub-modules are 
loaded immediately during the compilation process. We can organize our VHDL code 
arbitrarily in different files, but it is important that code which is used by other code is 
compiled before the code using it. The compilation sequence is 
 
PACKAGE  ENTITY  ARCHITECTURE  PACKAGE BODY 
 
The package body may be compiled directly after the package but also as lastly. 
 
 
6.3 Kinds of Code: Concurrent – Sequential – Structural 

VHDL code can be written in three different modes: Concurrent is the default mode. In 
concurrent code the sequence of statements is irrelevant. Using components is structural and 
within a PROCESS statement or subprograms code is sequential, i.e. it is processed top-down. 
 
 
6.4 Data 

6.4.1 Data Objects 

VHDL handles data by one of the following data objects: 
 
1.SIGNAL:     interconnection wires 
2.VARIABLE:   local storage of temporary data 
3.CONSTANT:   named constant values 
 
Table 6.4.1 shows in which environment a data object may be declared and where it may be 
used, i.e. assigned or read. 
 
 



M. Schubert  RED / PRED FSM Design for DSP Using VHDL Regensburg Univ. of Appl. Sciences 

 - 22 -

Table 6.1: The three data objects and the environments where they may be declared and used. 

data object environment to be declared in environment to be used in 
SIGNAL concurrent everywhere 

VARIABLE sequential sequential 
CONSTANT everywhere everywhere 

 
 
 Objecs 
  _______________________|_______________________ 
 | | | 
 SIGNAL VARIABLE CONSTANT 
 
Fig. 6.4.1: VHDL data objects. 
 
 
6.4.2 Data Types 

Data object have to be declared with a data type. Available are scalar the types INTEGER, 
REAL, enumerated and BIT and the composite data types such ARRAY and RECORD.  
 
Scheme of data type declaration statements: 
 
TYPE type_name IS type_mark; 
SUBTYPE subtype_name IS <range_specification> OF type_name; 

 
Examples for type and subtype declarations: 
 
TYPE BOOLEAN IS (false,true); 
SUBTYPE t_address IS RANGE 0 TO 15 OF INTEGER; 
SUBTYPE NATURAL IS RANGE 0 TO INTEGER'HIGH OF INTEGER; 
 
 
 Types 
 | 
 _____________________|_______________________ 
 | | | | 
 Access Scalar File Composite 
  |  | 
  _____________|_____________  ___|___ 
 | | | | | |  
 Integer Real Physical Enumerated Array Record 
 
Fig. 6.4.2: VHDL data types. 
 
 
The assignment of a value to a data object is guarded such, that only values of the same data 
type or a subtype can be assigned to a data object. The user can specifiy own data types. See 
e.g. [Schubert: VHDL Skript] Chapter 2: Data for more details. 
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6.5 Libraries and Packages 

6.5.1 Using Existing Libraries and Packages 

Reinventing the wheel is inefficient. Better reuse existing code if possible. It is typically 
organized in libraries which are composed of packages. A typical library retrieval is 
 
(1) LIBRARY ieee; 
(2) USE ieee.std_logic_1164.ALL; 
(3) USE ieee.std_logic_unsigned."+"; 
(4) LIBRARY adac_lib; 
(5) USE adac_lib.pk_adac.ALL; 
(6) USE work.pk_mypack.ALL; 
 
The code above has the following meanings: 
Line (1):  "Retrieve library with name ieee". 
Line (2):  Use ALL from package std_logic_1164 found within library ieee. 
Line (3): Use only the declaration of the "+" operator found in package 

std_logic_unsigned within library ieee. Applied on bit-vectors as 
operands it will be synthesized as arithmetic summation and the most significant 
bit will not be interpreted as sign bit. (To treat the first bit as sign bit use the "+" 
operator from package std_logic_signed.) 

Line (4): "Retrieve library with name adac_lib". As it is not a standard library it must be 
introduced to the tool, the respective commands are tool dependent. 

Line (5):  Use ALL declarations from package pk_adac found within library adac_lib. 
Line (6):  Use ALL declarations from package pk_mypack found within library work. 

The working library work needs no LIBRARY statement, at is always linked. 
 
If the LIBRARY / USE statements are written above ... 
 an ENTITY, then they are valid for this entity and its architectures, 
 an ARCHITECTURE, then they are valid for this architecture, 
 a PACKAGE, then they are valid for this package and its package body, 
 a PACKAGE BODY, then they are valid for this PACKAGE BODY. 

 
 
6.5.2 Creating an Own Package 

Package and package body are like entity and architecture. Packages may contain non-
executable declarations only while package bodies may contain executable code also. 
Declarations made within a package are available whenever loading this package. 
Declarations made in a package body are known only in this package body below the 
declaration. Listing 4.2 shows Tcl-commands to create a library and symbol for it that can be 
used within the VHDL code when working with the ModelSim simulator. 
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LIBRARY ieee; USE ieee.std_logic_1164.ALL; 
PACKAGE pk_example IS 
  -- Declaration of an externally visible constant: 
  CONSTANT cExtern:INTEGER:=10; 
  -- 
  -- gate delay as "deferred" constant: no value assigned: 
  CONSTANT delay:TIME; 
  -- 
  -- multiplexer: interface declaration only, no executable code: 
  FUNCTION mux(sel:INTEGER;vec:std_logic_vector) RETURN std_logic; 
  --  
  SIGNAL big_array:std_logic_vector(1 TO 40_000); 
END PACKAGE pk_example; 
 
PACKAGE BODY pk_example IS 
  -- Declaration of an only internally visible constant: 
  CONSTANT cIntern:INTEGER:=20; 
  -- 
  -- here the deferred constant has to get its value: 
  CONSTANT delay:TIME:=2 ns; 
  -- 
  -- here the function mux has to get its body: 
  FUNCTION mux(sel:INTEGER;vec:std_logic_vector) RETURN std_logic IS 
  BEGIN 
    RETURN vec(sel); 
  END FUNCTION mux; 
END PACKAGE BODY pk_example; 
 
 
The package named  pk_example  above declares the constant cExtern. It will be 
available in the package body and everywhere where this package is declared. This is 
different from the constant cIntern declared within the package body below. It will be 
known only within this package body and below its declaration. 
 
The constant delay is a so-called deferred constant, as no value is assigned to it in the 
package. The assignment is deferred (Latin: carried away) into the package body. As the 
package body may be compiled as last design unit, different delays (e.g. for fast, typical, slow 
parameters) can be passed to the design by compiling nothing else than the package body. 
 
The external interface of the multiplexer function mux is declared in the package. In the 
package body function mux gets its executable body. If the declaration in the package is 
omitted, this function will be known only in the package body and after its declaration. 
 
Signal big_array will be declared in any design unit where package pk_example is 
declared. It will be different signals which are independent from each other in any of those 
design units. 
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6.6 Arrays for State-Machine Design 

z-1 z-1 z-1

a1

xi ,

X(z)

s1

a2

a3

s2 scns2 ns3 nsc

yi, Y(z)
acz-1

s3ns1

filter_canon2 

 

(a) Digital Filter in 2nd canonical direct structure,  ai, si  and  nsi  (i=1...c) are bit-vectors. 

t_state

t_state :

t_StateVector :

t_coef :

t_CoefVector :

t_coef

 

(b) Data structures to realize the vectors of coefficients (ai) and data words (si, nsi). 

Fig. 6.6: (a) A model that requires a vector of bit-vectors and   (b) a VHDL realization. 
 
 
Fig. 6.6(a) illustrates a digital filter that requires vectors of bit-vectors. Fig. 6.6 (b) and 
listing 6.6 realize a single coefficient ai alias CoefVector(i) as bit-vector of type 
t_coef. All coefficients are summarized in the constant CoefVector of type 
t_CoefVector. A single state or next-state is realized as bit-vector of data type t_state. 
A vector of such signals, e.g. named state or NextState, can be declared as signal of 
type t_StateVector. 
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Listing 6.6 (a): The package pk_filter.  
(Note: Some synthesizers cannot assign the values of "deferred constant" CoefVector in the package body. In this case 
remove the package body and assign the values in the package. Doing so you loose the capability of changing filter 
coefficients by recompiling the package bode only, you have to recompile the entire design.) 

(1) ---------------------------------------------------------------------- 
(2) --  Module            : pk_filter 
(3) --  Designer          : Martin Schubert 
(4) --  Date last modified: 07.03.2011 
(5) --  Purpose           : Data Structures for Digital FIR Filter 
(6) ---------------------------------------------------------------------- 
(7) LIBRARY ieee; USE ieee.std_logic_1164.ALL; 
(8) PACKAGE pk_filter IS 
(9)   CONSTANT cDataInWidth:POSITIVE:=18;  -- Input-Data BitWidth 
(10)   CONSTANT cDataInFract:POSITIVE:=16;  -- No of Input-Data fract. Bits 
(11)   CONSTANT cDataOutWidth:POSITIVE:=18; -- Output-Data BitWidth 
(12)   CONSTANT cDataOutFract:POSITIVE:=16; -- No of Output-Data fract Bits 
(13)   CONSTANT cCoefWidth:POSITIVE:=18;    -- Coefficient's BitWidth 
(14)   CONSTANT cCoefFract:POSITIVE:=18;    -- No of Coef's fractional Bits 
(15)   SUBTYPE  t_DataIn  IS std_logic_vector(cDataInWidth-1  DOWNTO 0); 
(16)   SUBTYPE  t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0); 
(17)   SUBTYPE  t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0); 
(18)   TYPE     t_CoefVector IS ARRAY(NATURAL RANGE <>) OF t_coef; 
(19)   CONSTANT cTaps:POSITIVE:=33; 
(20)   CONSTANT CoefVector: t_CoefVector(1 TO cTaps); 
(21) END PACKAGE pk_filter; 

 
 
Listing 6.6 (b): The package body pk_filter.  

(22) PACKAGE BODY pk_filter IS 
(23)   CONSTANT CoefVector: t_CoefVector(1 TO cTaps) 
(24)                   := (OTHERS=>(cCoefWidth-6=>'1',OTHERS=>'0')); 
(25) END PACKAGE BODY pk_filter; 

 
 

6.7 Exercise: (Solutions at the end of this sub-chapter) (=16P) 
Complete package  pk_filter  in listing 6.7. 
 
Make sure that data type  std_logic  and vectors with elements of this type can be used 
according to the respective IEEE standard. (2P) 
 
Complete line (10) such, that data type  t_DataIn  declares a vector representing a number 
with  cDataInWidth  bits of type  std_logic .  (1P) 
 
Complete line (11) such, that data type  t_coef  declares a vector representing a number 
with  cCoefWidth  bits of type  std_logic . (1P) 
 
Complete line (12) such, that data type  t_CoefVector  declares a vector with elements 
type  t_coef . The index range of this vector can be defined later with natural numbers. (2P) 
 
No value is assigned to the constant in line (14). Where does this constant gets its value and 
what is the correct denomination of such a constant? (2P) 
 
 
.................................................................. 
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What do you write over an Entity to make all declarations in Package pk_filter available?  (2P) 
 
 
 
.................................................................. 
 
 
Listing 6.7: Package pk_filter. 

(1) .................................................................... 

(2) .................................................................... 

(3) PACKAGE pk_filter IS 

(4)   CONSTANT cDataInWidth:POSITIVE:=8;   -- Input-Data BitWidth 

(5)   CONSTANT cDataInFract:POSITIVE:=6;   -- No of Input-Data fract. Bits 

(6)   CONSTANT cDataOutWidth:POSITIVE:=18; -- Output-Data BitWidth 

(7)   CONSTANT cDataOutFract:POSITIVE:=16; -- No of Output-Data fract Bits 

(8)   CONSTANT cCoefWidth:POSITIVE:=18;    -- Coefficient's BitWidth 

(9)   CONSTANT cCoefFract:POSITIVE:=18;    -- No of Coef's fractional Bits 

(10)   ...TYPE  t_DataIn  IS ............................................. 

(11)   ...TYPE  t_coef    IS ............................................. 

(12)   ...TYPE  t_CoefVector IS .......................................... 

(13)   CONSTANT cTaps:POSITIVE:=33; 

(14)   CONSTANT CoefVector: t_CoefVector(1 TO cTaps); 

(15) END PACKAGE pk_filter; 
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Write a library statement at (16), that allows for the multiplication of numbers in the 
std_logic_vector-format using '*' (while library is known).  (1P) 
 
Line (17): Declaration of type  t_product  as funktion of constants such, that a signal of 
that type matches the product of t_DataIn and t_coef type signals. (1P) 
 
Line (18): declaration of signal  product  such, that we can write the VHDL command: 
"product<=DataIn*CoefVector(i);"  (2P) 
 
Lines (20) and (21): Complete the declarations of iPl und iPh such, that (22) works 
respecting the vector lengths and the number of fractional bits using the respective named 
constants in package pk_filter. (For the computation of iPl, iPh see document “FSM 
Design for DSP Using Fixed-Point Numbers” [10]). (2P) 
 

(16) .................................................................... 

(17) .................................................................... 

(18) .................................................................... 

(19) SIGNAL DataOut:t_DataOut; 

(20) CONSTANT iPl: ...................................................... 

(21) CONSTANT iPh: ...................................................... 

(22) DataOut <= product(iPh DOWNTO iPl); 

 
 
 
 
 
Solutions: 
(1) LIBRARY ieee;  
(2) USE ieee.std_logic_1164.ALL; 
(3) PACKAGE pk_filter IS 
(4)   CONSTANT cDataInWidth:POSITIVE:=8;   -- Input-Data BitWidth 
(5)   CONSTANT cDataInFract:POSITIVE:=6;   -- No of Input-Data fract. Bits 
(6)   CONSTANT cDataOutWidth:POSITIVE:=18; -- Output-Data BitWidth 
(7)   CONSTANT cDataOutFract:POSITIVE:=16; -- No of Output-Data fract Bits 
(8)   CONSTANT cCoefWidth:POSITIVE:=18;    -- Coefficient's BitWidth 
(9)   CONSTANT cCoefFract:POSITIVE:=18;    -- No of Coef's fractional Bits 
(10)   SUBTYPE  t_DataIn  IS std_logic_vector(cDataInWidth-1  DOWNTO 0); 
(11)   SUBTYPE  t_coef    IS std_logic_vector(cCoefWidth-1 DOWNTO 0); 
(12)   TYPE     t_CoefVector IS ARRAY(NATURAL RANGE <>) OF t_coef; 
(13)   CONSTANT cTaps:POSITIVE:=33; 
(14)   CONSTANT CoefVector: t_CoefVector(1 TO cTaps); 
(15) END PACKAGE pk_filter; 
 
(16) USE ieee.std_logic_signed."*"; 
(17) TYPE t_product:std_logic_vector(cDataInWidth+cCoefWidth-1 DOWNTO 0) 
(18) SIGNAL product:t_product; 
(19) SIGNAL DataOut:t_DataOut; 
(20) CONSTANT iPl: INTEGER := cDataInFract + cCoefFract - cDataOutFract; 
(21) CONSTANT iPh: INTEGER := iPl + cDataOutWidth - 1; 
(22) DataOut <= product(iPh DOWNTO iPl); 
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6.8 Mixing INTEGER and std_logic_vector Data Types 

6.8.1 The Data Types INTEGER, NATURAL, POSITIVE 

After synthesis any integer is a bit-vector. In this subchapter we illustrate bit-to-integer and 
integer-to-bit conversions. 
 
VHDL requires INTEGER types to span a data range of at least –2 147 483 647 to 
+2 147 483 647. It is required that INTEGER'LEFT=-INTEGER'RIGHT. Furthermore 
there are the two predefined subtypes: 
 
SUBTYPE NATURAL  IS INTEGER RANGE 0 TO INTEGER'HIGH; 
SUBTYPE POSITIVE IS INTEGER RANGE 1 TO INTEGER'HIGH; 
 
The SUBTYPE declaration passed the properties of INTEGER on to NATURAL and 
POSITIVE. Example: When operators such as "+", "-" or "*" are declared for INTEGER 
types, they are automatically declared for its subtypes also. 
 
INTEGER is a 4 or 8 byte signed bit-vector, depending on the compiler. For example the 
following statements might synthesize to a 32- or 64-bit signal i  and a 3-bit signal j: 
 
SIGNAL i:INTEGER; 
SIGNAL j:INTEGER RANGE 0 TO 5; 
 
If it is not sure if INTEGER data range is wide enough a bit-vector declaration should be 
used: 
 
USE ieee.std_logic_signed."+"; 
...  
SIGNAL a, b, y:std_logic_vector(127 DOWNTO 0);  
... 
Y <= a + b; 
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6.8.2 Synthesizable std_logic_vector – to – INTEGER Conversion 

Both packes std_logic_signed and std_logic_unsigned within library ieee declare the 
following function, interpreting the first bit as sign bit or not, respectively: 
 
function CONV_INTEGER(ARG: STD_LOGIC_VECTOR) return INTEGER; 

 
Concatenation of a leading '0' bit will always deliver an unsigned interpretation. Example: 
 
IntegValue <= CONV_INTEGER('0' & StdLogicVector); 

 
Package std_logic_arith within library ieee declares function 
 
function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE: INTEGER) return STD_LOGIC_VECTOR; 

 
A vector’s number of elements can be obtained with attribute 'LENGTH, e.g.: vector'LENGTH. 
 
In the following example we convert signal int_in → bits_io → int_out → bits_out, where the 
last conversion to bits_out serves for comparison with bits_io. 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_signed.CONV_INTEGER; -- funktioniert 
USE ieee.std_logic_arith.CONV_STD_LOGIC_VECTOR; 
ENTITY conv_int_bitvec IS 
END conv_int_bitvec; 
 
ARCHITECTURE rtl_conv_int_bitvec OF conv_int_bitvec IS 
  SIGNAL bits_io,bits_out:std_logic_vector(7 DOWNTO 0); 
  SIGNAL int_in,int_out:INTEGER RANGE -128 TO 127; 
BEGIN 
  -- conversion integer <-> bitvector 
  int_in <= 5, -5 AFTER 1 ns, 100 AFTER 2 ns, -100 AFTER 3 ns; 
  bits_io <= CONV_STD_LOGIC_VECTOR(int_in,bits_io'LENGTH); 
  int_out <= CONV_INTEGER(bits_io); 
  bits_out <= CONV_STD_LOGIC_VECTOR(int_out,bits_out'LENGTH); 
END rtl_conv_int_bitvec; 
 
 
6.8.3 Synthesizable Multiplication Using Operator '*': 

Both packes std_logic_signed and std_logic_unsigned within library ieee declare the operator 
'*', interpreting the first bit as sign bit or not, respectively: 
 
function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 

 
The length of the returned product vector must be the sum of the lengths of the operand 
vectors. 
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6.8.4 Synthesizable Addition Using Operator '+' 

Both packes std_logic_signed and std_logic_unsigned within library ieee declare several 
overloadings of operator '+', interpreting the first bit as sign bit or not, respectively. 
 
If both operands are of type std_logic_vector the length of the returned sum vector must be 
the length of the longer operand vector: 
 
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 

 
If there is only one std_logic_vector input data type, then the length of the returned sum 
vector must be the length of the input std_logic_vector: 
 
function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR; 
function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR; 
function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 
function "+"(L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 

 
 
6.8.5 Synthesizable Subtraction Using Operator '-' 

Operator '-' is declared much the same as operator '+': 
 
Both packes std_logic_signed and std_logic_unsigned within library ieee declare several 
overloadings of operator '-', interpreting the first bit as sign bit or not, respectively. 
 
If both operands are of type std_logic_vector the length of the returned sum vector must be 
the length of the longer operand vector. 
 
function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 

 
If there is only one std_logic_vector input data type, then the length of the returned diffence 
vector must be the length of the input std_logic_vector: 
 
function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR; 
function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 
function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR; 
function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 
function "-"(L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; 

 
 
6.8.6 Synthesizable Comparisons 

Both packes std_logic_signed and std_logic_unsigned within library ieee declare the several 
overloadings of comparison operators, interpreting the first bit as sign bit or not, respectively. 
Declared omparisions are '<', '<=', '>', '>=', '=', '/=' standing for less than, less than or equal, 
greater than, greater than or equal, equal and unequal, respectively. In the packages 
mentioned above any of that operators has the following three overloadings as as '<': 
 
function "<"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN; 
function "<"(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN; 
function "<"(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN; 
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7 Conclusions 
This tutorial demonstrates the use of VHDL with the goal to implement a finite state machine 
(FSM) and data structures suitable to build a finite-impulse-response (FIR) filter. 
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