

Signal Ranger_mk2 DSP
Board

User’s Manual

Bruno Paillard
Rev 03 February 28, 2006

MAIN FEATURES ..1

ARCHITECTURE AND BOOT MODES ...1

Technical Data:... 1

Software: ... 2

INSTALLATION..3

Software Installation .. 3
What Is Installed Where? ... 4

Hardware Installation .. 4

What To Do In Case The Driver Installation Fails.. 4

Led Indicator .. 5

Testing The Board .. 5

HARDWARE DESCRIPTION ...7

Connector Map... 7

Expansion Connector J4 .. 7
Power Supply Pins.. 8
DSP Pins... 9
FPGA Pins.. 9

System Frequencies .. 10

Peripheral Interfaces.. 10
Memory Map.. 10
EMIF Configuration ... 11
SDRAM.. 13
Flash ... 14
FPGA.. 14

Peripheral Access Benchmarks ... 17
SDRAM.. 17
Flash ... 18
FPGA.. 18

Factory-Default FPGA Logic .. 19
Hardware Details .. 20
Register Map .. 20

SOFTWARE INTERFACES ...20

How DSP Boards Are Managed .. 21

 1

Kernel vs Non-Kernel Interface Vis.. 21

Error Control.. 22
Low-Level USB Errors... 22
USB Retries.. 22
Application-Specific DSP Errors And Completion Codes ... 23

USB Lock-Up .. 23

Symbolic Access .. 23

Address Specification ... 25

LabView Interface.. 26
Core Interface Vis... 26
Flash Support Vis ... 40
FPGA Support Vis.. 42
Error Codes... 43
Example Code .. 44

C/C++ Interface. ... 45
Execution Timing And Thread Management ... 45
Calling Conventions ... 46
Building A Project Using Visual C++ “.Net”... 46
Exported Interface Functions.. 47
Error Codes... 58
Example Code .. 59

DSP CODE DEVELOPMENT...61

Code Composer Studio Setup.. 62

Project Requirements... 62

C-Code Requirements .. 62

Assembly Requirements... 62

Build Options .. 63
Compiler... 63

Required Modules .. 63
Real-Time-Support ... 63
Interrupt Vectors... 63

Link Requirements... 64
Memory Description File ... 64
Vectors Section... 64
Unused_ISR Section... 64

Global Symbols ... 64

Preparing Code For “Self-Boot” ... 64

 2

MINI-DEBUGGER ..65

Description Of The User Interface.. 66

“UNDER THE HOOD”..73

USB Communications .. 73
Communication Via The Control Pipe 0 .. 73
Communication Via The DSP Kernel : .. 75
FPGA Boot Table ... 76
DSP Boot Table.. 76
Constraints On The DSP Code Loaded In The Boot Flash .. 78
HPI Signaling Speed... 78
USB Benchmarks ... 78

DSP Communication Kernel ... 79
Differences With Previous Versions .. 79
Overview .. 79
Boot Modes .. 80
Processor State After Reset .. 80
Resources Used By The Kernel On The DSP Side .. 81
Functional Description Of The Kernel ... 82

High-Speed Communication Protocol .. 87
Setup Packet ... 87
Completion Packet.. 88

DSP SUPPORT CODE...89

DSP Flash Driver And Flash Programming Support Code.. 89
Overview Of The Flash Driver ... 89
Setup Of The Driver ... 90
C-Environment ... 91
Data Structures ... 91
User Functions.. 92

 3

Main Features

Signal_Ranger_mk2 is a fixed point DSP board featuring a 300MHz TMS320C5502 DSP, a 400
kgates SPARTAN 3 FPGA and a high-speed USB 2 interface, providing fast communications to
the board. The Windows driver allows the connection of any number of boards to a PC.
The DSP board may be used while connected to a PC, providing a means of exchanging data
and commands between the PC and DSP in real-time. It may also be used in stand-alone mode,
executing embedded DSP code.
Given its very flexible resources (DSP+FPGA) and the fact that it can work as a stand-alone
board, the Signal_Ranger_mk2 board may be used in many applications. With the addition of
analog daughter boards, Signal_Ranger_mk2 covers the following applications with ease:

• Multi-channel speech and audio acquisition and processing.
• Multi-channel control.
• Instrumentation and measurement.
• Vibro-acoustic analysis.
• Acoustic Array processing/Beamforming
• DSP software development.

Architecture And Boot Modes
The Signal Ranger_mk2 board includes a 1M word Flash ROM, from which the DSP may boot.
Furthermore, the Flash may also contain the configuration code of the FPGA, allowing the DSP to
initialize the FPGA with its logic as part of the initial boot process.
There are two ways the DSP can boot:
• Stand-Alone Boot: At Power-Up, the USB controller in stand-alone configuration

takes control of the DSP and FPGA. It loads a communication kernel into DSP RAM and
executes it. This kernel then looks in Flash memory for an FPGA logic description file. If it
finds it, it loads the FPGA. It then looks further in Flash memory for DSP code. If it finds it, it
loads it into RAM and executes it. By pre-programming the Flash memory with FPGA logic
and/or DSP code, the board can work in stand-alone mode, executing an embedded DSP
application directly from power-up.

• PC Boot: After the board has been connected to a PC, the PC can force
the DSP to reboot. In this mode, the PC can force the reloading of new FPGA logic and DSP
code. This mode may be used to “take control” of the DSP at any time. In particular, it may be
used to reprogram the Flash memory in a completely transparent manner, without using any
jumpers.

Even when the DSP board has booted in stand-alone mode, a PC can be connected at any time
to read/write DSP memory without interrupting the already executing DSP code. These functions
may be used to provide real-time visibility into, or send commands to the executing embedded
DSP code.

Technical Data:

• USB
USB 2.0 PC connection. Average data throughput: 18Mb/s (reads), 22Mb/s (writes). Stand-alone
USB controller requires no management from the DSP software.
• DSP

 1

TMS320C5502 16-bits fixed point DSP, running at 300 MHz, with 32Kwords of on-chip RAM.
• FPGA
XC3S400 FPGA. 400 000 gates. 56 kbits distributed RAM, 288 kbits block RAM, 16 dedicated
18x18 multipliers, 4 DCMs. Provides 63 user-configurable I/Os.
• Power supply
Signal Ranger_mk2 is Self-Powered using an external 5V (+-5%) power pack. It can work without
any connection to a PC.
• Memory

- 64 kbytes on-chip (DSP) double-access RAM, mapped in data and program spaces.
- 4 Mbytes external 75MHz Synchronous Dynamic RAM, mapped in data and program
space.
- 2 Mbytes external Flash Rom, mapped in data and program space.

TMS320C5502
(300 MHz)

EMIF

McBSP0,1

HPI

UART

SDRAM
(4 MB) (2 MB)

FLASH FPGA
(Spartan 3)

USB 2.0
stand-alone

LED

XF

J4 132-pins connector

BLOCK DIAGRAM

Int0,2,3
NMI

TIM0,1
GPIO3,5

Int1

Clkout

Type-B
controller

32 16

16
8

Hint/DSPint
2

63
DSP Reset

Figure 1: Block Diagram of the Signal Ranger mk2 DSP board

Software:

• Driver for Win2k and WinXP:

This driver allows the connection of any number of boards to the PC.
• Full-featured symbolic debugger:

The debugger includes features such as real-time graphical data plotting, symbolic read/write
access to variables, dynamic execution, Flash programming… etc. At its core, the mini-

 2

debugger uses the same interface libraries that a developer uses to design a stand-alone
DSP application. This insures a seamless transition from the development/debugging
environment to the deployed application.

• LabView interface:
This library of LabView VIs allows the development of LabView code to interface with the
DSP board. It includes VIs to download DSP code (COFF loader), launch DSP functions, and
read/write DSP memory while the DSP code is executing.

• C/C++ interface:
This DLL allows the development of PC code written in C/C++ to interface with the DSP
board. They include functions to download DSP code (COFF loader), launch DSP functions,
and read/write DSP memory while the DSP code is executing.

• SelfTest application:
This application tests all the hardware on the DSP board.

• Code examples:
Several demo LabView applications demonstrate the development of DSP code in C and in
assembly. They also show how to interface this code to a PC application written in LabView.
One demo Visual Studio application demonstrates the development of a PC application
written in C/C++.

• Flash driver and example code:
This driver includes all the code to configure and use the on-board 2 Mbytes Flash ROM from
within user DSP code.

• Factory-Default FPGA Configuration:
The board is provided with a factory default FPGA configuration, which provides 63
configurable digital I/Os.

Installation
Signal Ranger_mk2 works with Windows 2000 and Windows XP. None of the Signal
Ranger_mk2 software, including the driver, is compatible with the previous Signal Ranger
software. The new software must be installed.

Note: Do not connect the SignalRanger_mk2 DSP board into the PC’s USB port until the
software has been installed. The driver installation process, which occurs as soon as the board is
connected to the PC, requires that the driver file be present on the PC.

Software Installation
Simply execute Setup.exe, this will install two sets of files:

• The SignalRanger_mk2 software, including the required libraries, documentation, and demo

applications will be installed first. The installer creates a directory named SignalRanger_mk2
in C:\Program Files, and stores all the required files into it. It also creates shortcuts in the
Windows START menu.

• The LabVIEW 7.1 run-time engine is installed afterwards. This run-time engine is required to
execute the compiled versions of the demo applications. It is also required to use the C/C++
software interface. It is not required to use the LabVIEW software interface. The LabVIEW
7.1 run-time engine is installed in the C:\Program Files\National
Instruments\Shared\LabVIEW Run-Time\7.1 directory.

After this installation has been performed, it is necessary to install the USB driver for the board.
For this, refer to the hardware installation section below.

 3

What Is Installed Where?
The installer creates the C:\Program Files\SignalRanger_mk2 directory. This directory contains all
the software tools:
• A directory named Documentation containing all the required documentation, including this

document.
• A directory named Driver containing the driver for the board.
• A directory named Examples containing:

• A directory named C_Examples containing a zip file. When deflated, this zip file contains the
C/C++ interface demo application, including PC Visual .net project and DSP code.

• A directory named LabVIEW_Examples_DSPCode containing a zip file. When deflated, this zip
file contains the DSP code of the LabVIEW examples as well as documentation. The LabVIEW
code of these examples is in the main install directory, in the DemoLabview.llb library.

• All the LabVIEW libraries that are described in this document.
• The SRanger2.dll DLL, which is the lowest level of interface, and is required by all other

levels of interface.
• All the DSP executable files (“.out”) required by the interfaces. This includes both kernels, as

well as the Flash and FPGA support code.
• The SR2_SelfTest.rbt file, which contains the factory-default FPGA logic.
• The Revision_History.txt file, which details the revision history.

Hardware Installation
Note: Only power the board using the provided power-supply, or using a 5V (+-5%) power
supply. When using a custom power supply, make sure that the positive side of the supply is in
the center of the plug. Failure to use a proper power supply may damage the board.

• Power-up the board from the 5V adapter first.
• The LED should light-up red for 1/2s, to indicate that the board is properly powered, then

orange to indicate that the DSP section is functional.
• Connect the SignalRanger_mk2 board into the USB port of the PC.
• After a few seconds, Windows should detect the new board and present a standard driver

installation wizard.
• Make the proper selections to specify the location of the driver.
• When asked to, navigate to the directory C:\Program Files\SignalRanger_mk2\Driver, and

select the file SRm2.inf.
• Windows should install the driver.
• At this time the LED turns green to indicate that the PC is communicating with the board.
• After this first installation, the PC should always recognize the board automatically a few

seconds after it is connected. It may take more time if the board is connected into a different
USB root or hub on the PC. In that case it is possible that the PC indicate that a new device
has been found. However it should be able to find the driver automatically.

• At any time after the board has been connected to the PC, and the PC has recognized it, the
LED should be green. The LED must be green before attempting to run any PC application
that communicates with the board.

What To Do In Case The Driver Installation Fails
To do a manual driver installation, follow these steps:
• Power-up the board and connect it to the PC.
• Go to the START menu, under Settings\Control Panel\System.
• Select the Hardware tab.
• Press the Device Manager button.
• Go to the Universal Serial Bus Controllers item and expand it.

 4

• There should be an Unknown Device item in the tree.
• Right-click on the Unknown Device icon.
• Press on Update Driver.
• Then follow the driver installation procedure described above.

Led Indicator
The LED of the Signal Ranger_mk2 board has the following behaviour:
• It lights up red when the 5V power is first applied to the board. This indicates that the board is

properly powered.
• It turns orange on its own 1/2s after the board has been powered-up. This indicates that the

board went through its proper reset and initialization sequence. If boot DSP code was
previously programmed in the Flash ROM, this code is running when the LED is orange.

• It turns green whenever the board has been connected to the PC, and the PC has loaded its
driver. The green LED indicates that the PC is able to communicate with the board. The LED
must be green before attempting to execute any PC application that communicates with the
board.

• The LED turns orange whenever the USB connection is interrupted. This is the case when
the PC is turned off or goes into stand-by, or if the USB cable is pulled from the board or the
PC. However, the LED turning orange does not mean that the DSP code has stopped
running.

• The LED also may turn orange temporarily when the board is being initialized, or the FPGA is
reloaded by a PC application.

• The LED colour may be changed at any time by a user application.

Note: This LED behaviour is different from the LED behaviour of the Signal Ranger SP2 board.
In the latter case, the LED turning orange indicated PC enumeration, while the LED turning green
indicated DSP initialization. The meaning of the two colours has been reversed in the Signal
Ranger_mk2 board

Testing The Board
At any point after the board has been powered-up and connected to a PC (after the LED has
turned green), the SR2_Self_Test application may be run.

The user interface of the SelfTest application is given below:

Figure 2 SR2_Self_Test application

To run the application again after it has stopped, simply click on the arrow at the top left of the
window.

 5

The application initializes the board, then loads the kernel on the DSP, and proceeds to test the
DSP, external RAM, Flash and FPGA. Each test takes a few seconds to complete.

Note: The Flash test erases the contents of the Flash. A dialog is presented before this
operation so that the user may cancel it to preserve the Flash contents.

Note: The FPGA IO test configures all the IOs as outputs to test them. This may damage an IO,
or external logic, if any logic is connected to the FPGA (though the expansion connector J4)
during the test. A dialog is presented before this operation so that the user may cancel it to avoid
damaging connected IOs.

Indicators:
• Driver_ID: A character string of the form SRm2_x, where 0<x<n-1 refers to the actual board

being accessed.
Indexes x are given by the PC to Signal_Ranger_mk2 boards, at connection time, in the order
they are connected to the USB chain. For instance:

- SRm2_0 will be given to the first board connected
- SRm2_1 will be given to the second one...etc.

• HardRev: The firmware revision number of the on-board USB controller.
• USB_Errors: Indicates the number of USB errors detected during the test. Note that

the presence of some USB errors does not preclude the operation of the Signal_Ranger_mk2
board. The USB protocol is very robust to errors. However, this is usually an indication of a
poor USB cable or USB connection. When the error rate is too large it may cause a USB
communication break-down.

• DSP OK: Lights up green if the DSP test is successful. Lights-up red if it is not.
• SDRAM OK: Lights up green if the SDRAM test is successful. Lights-up red if it is not.
• Flash Present: Lights-up green if the Flash is detected. Lights-up red if it is not.
• Flash OK: Lights up green if the Flash test is successful. Lights-up red if it is not.

Does not light-up if the test is skipped.
• Flash Size: Should indicate 1024 kwords if the Flash is properly detected.
• Max Write Time: Indicates the time it takes to program one 16-bit word into the Flash. It

should be around 60µs if the Flash is in good shape.
• FPGA Loaded: Lights up green if the FPGA is loaded successfully. Lights-up red if it is

not.
• FPGA OK: Lights up green if the FPGA is able to communicate with the DSP. Lights-

up red if it is not. Does not light-up if the test is skipped.
• FPGA IO OK: Lights up green if the FPGA IO test is successful. Lights-up red if it is not.

Does not light-up if the test is skipped.

 6

Hardware Description
Connector Map
1

3

2

4

Figure 3

Legend:

1 USB port
2 Bi-color LED
3 5V Power Supply
4 Expansion connector J4

Expansion Connector J4

1 4 7
2 5 8
3 6 9

J4
...

No Function No Function No Function
1 +5V 2 Gnd 3 +2.5V
4 +1.8V 5 Gnd 6 +1.2V
7 +1.26V 8 Gnd 9 +3.3V
10 -3.3V 11 Gnd 12 DSP_Reset
13 CLKR0 14 Gnd 15 DR0
16 FSR0 17 Gnd 18 CLKX0

 7

19 DX0 20 Gnd 21 FSX0
22 CLKR1 23 Gnd 24 DR1
25 FSR1 26 Gnd 27 CLKX1
28 DX1 29 Gnd 30 FSX1
31 UART_Rx 32 Gnd 33 UART_Tx
34 NC 35 Gnd 36 NC
37 FPGA_17 38 Gnd 39 FPGA_15
40 FPGA_14 41 Gnd 42 FPGA_13
43 FPGA_12 44 Gnd 45 FPGA_11
46 FPGA_10 47 Gnd 48 FPGA_8
49 FPGA_7 50 Gnd 51 FPGA_6
52 FPGA_5 53 Gnd 54 FPGA_4
55 FPGA_2 56 Gnd 57 FPGA_1
58 FPGA_141 59 Gnd 60 FPGA_140
61 FPGA_137 62 Gnd 63 FPGA_135
64 FPGA_68 65 Gnd 66 FPGA_69
67 FPGA_70 68 Gnd 69 FPGA_73
70 FPGA_74 71 Gnd 72 FPGA_76
73 FPGA_77 74 Gnd 75 FPGA_78
76 FPGA_79 77 Gnd 78 FPGA_80
79 FPGA_82 80 Gnd 81 FPGA_83
82 FPGA_84 83 Gnd 84 FPGA_85
85 FPGA_86 86 Gnd 87 FPGA_87
88 FPGA_89 89 Gnd 90 FPGA_90
91 FPGA_92 92 Gnd 93 FPGA_93
94 FPGA_95 95 Gnd 96 FPGA_96
97 FPGA_97 98 Gnd 99 FPGA_98
100 FPGA_99 101 Gnd 102 FPGA_100
103 FPGA_102 104 Gnd 105 FPGA_103
106 FPGA_104 107 Gnd 108 FPGA_105
109 FPGA_107 110 Gnd 111 FPGA_108
112 FPGA_112 113 Gnd 114 FPGA_113
115 FPGA_116 116 Gnd 117 FPGA_118
118 FPGA_119 119 Gnd 120 FPGA_122
121 FPGA_123 122 Gnd 123 FPGA_124
124 FPGA_125 125 Gnd 126 FPGA_129
127 FPGA_130 128 Gnd 129 FPGA_131
130 FPGA_132 131 Gnd 132 FPGA_HS_EN

Power Supply Pins

+5V
This is the same +5V line that is brought to the power connector J2. The maximum current that
may be drawn from this pin is 500mA. It may be further limited by the capacity of the power-
supply that is used.

+2.5V
This is the FPGA’s Vccaux supply. A maximum of 200mA may be drawn from this pin.

 8

Note: This value takes into account the FPGA’s Vccaux quiescent current. This is valid when
the FPGA is not loaded or is loaded with the factory-default logic.

+1.8V
This supply is not used on-board. It is intended for external devices, such as ADC’s/DACs. A
maximum of 250mA may be drawn from this pin.

+1.2V
This is the FPGA’s Vccint supply. A maximum of 400mA may be drawn from this supply.

Note: This value takes into account the FPGA’s Vccint quiescent current. This is valid when the
FPGA is not loaded or is loaded with the factory-default logic.

+1.26V
This is the DSP’s CVdd supply. A maximum of 250 mA may be drawn from this supply.

+3.3V
This supply is used by the DSP, FPGA, Flash, SDRAM and USB controller. A maximum of
100mA may be drawn from this supply.

Note: This value takes into account the FPGA’s Vcco quiescent current. This is valid when the
FPGA is not loaded or is loaded with the factory-default logic. It does not take into account
current drawn from the FPGA’s I/O pins.

-3.3V
This supply is not used on-board. It is intended for analog devices, such as ADC’s/DACs. A
maximum of 60mA may be drawn from this pin.

DSP Pins

DSP_Reset
This is the DSP’s reset pin. It is activated (low) at power-up, and under control of the USB
controller. It may be used to reset external logic whenever the DSP is reset.

McBSP_0, McBSP_1
All the DSP’s McBSP_0 and McBSP_1 signals are provided on J4. These may be used to
interface external devices, such as AICs, to the DSP.

UART
The DSP’s UART Tx and Rx pins are provided on J4.

FPGA Pins

FPGA_i
All of the FPGA’s free I/Os and clock pins are provided on J4.

 9

FPGA_HS_EN
This is the FPGA’s HSWAP_EN pin. If pulled-up or left floating, all the FPGA I/Os are floating
during configuration. If it is pulled low, the FPGA I/Os are pulled-up during configuration. The
state of the FPGA I/Os after configuration is defined by the logic loaded into the FPGA, and the
state of HSWAP_EN has no bearing on it.

System Frequencies
The DSP crystal has a frequency of 20MHz. Immediately after reset, the various system
frequencies are as follows:
• CPU Core Clock: 20MHz
• SYSCLK1 (Fast Peripherals): 5MHz
• SYSCLK2 (Slow Peripherals): 5MHz
• SYSCLK3 (EMIF): 5MHz

However, the above configuration is short-lived. Just after reset, the kernel is loaded into DSP
memory and run. The kernel configures the clock generator as follows:
• CPU Core Clock: 300 MHz
• SYSCLK1 (Fast Peripherals): 150 MHz
• SYSCLK2 (Slow Peripherals): 75 MHz
• SYSCLK3 (EMIF): 75 MHz

Peripheral Interfaces

Memory Map
The following figure describes the DSP memory map. Addresses are in bytes.

 10

Figure 4 Memory Map

EMIF Configuration
The EMIF is properly configured by the kernel to access the Flash, SDRAM and FPGA.

 11

With the DSP running at 300MHz, the EMIF is configured by the DSP kernel to run at 75MHz (1/4
CPU clock).
The EMIF registers are configured as follows:
• EMIF Global Control Register 1 (0x0800) Value: 0x07FC

• NOHOLD = 1
• EK1HZ = 1
• EK1EN = 1

• EMIF Global Control Register 2 (0x0801) Value: 0x000A

• EK2RATE = 2
• EK2HZ = 1
• EK2EN = 0 (disabled)

• EMIF CE0 SPACE Control Register 1 (0x0804) Value: 0xFF33
(all fields are defaults, except MTYPE)

• TA = 3
• READ STROBE = 63
• MTYPE = 3
• WRITE HOLD MSB = 0
• READ HOLD = 3

• EMIF CE0 SPACE Control Register 2 (0x0805) Value: 0xFFFF
(all fields are default)

• WRITE SETUP = 15
• WRITE STROBE = 63
• WRITE HOLD = 3
• READ SETUP = 15

• EMIF CE2 SPACE Control Register 1 (0x0808) Value: 0xC811

• TA = 3
• READ STROBE = 8
• MTYPE = 1
• WRITE HOLD MSB = 0
• READ HOLD = 1

• EMIF CE2 SPACE Control Register 2 (0x0809) Value: 0x11E2

• WRITE SETUP = 1
• WRITE STROBE = 7
• WRITE HOLD = 2
• READ SETUP = 2

• EMIF CE3 SPACE Control Register 1 (0x080A) Value: 0xC422

• TA = 3
• READ STROBE = 4
• MTYPE = 1
• WRITE HOLD MSB = 0
• READ HOLD = 2

• EMIF CE3 SPACE Control Register 2 (0x080B) Value: 0x2122

• WRITE SETUP = 2
• WRITE STROBE = 4
• WRITE HOLD = 2

 12

• READ SETUP = 2

• EMIF SDRAM Control Register 1 (0x080C) Value: 0x5000

• TRC = 5 (6 cycles @75MHz for 70ns)
• SLFRFR = 0 (SDRAM in normal operation)

• EMIF SDRAM Control Register 2 (0x080D) Value: 0x4611 (0x4711 for init)

• SDWDTH[4:0] = 3 (4 banks, 11 row-bits, 8 col-bits)
• RFEN = 1 (Refresh Enable)
• INIT = 0 (No Init)
• TRCD = 1 (2 cycles @75MHz for 20ns)
• TRP = 1 (2 cycles @75MHz for 20ns)

• EMIF SDRAM Refresh Control Register (0x080E) Value: 0x0494

• Period = 1172 (15.625µs/row @ 75MHz)

• EMIF SDRAM Refresh Control Register 2 (0x080F) Value: 0x0000
(do not initialize, leave default value)

• Extra Refreshes = 0 (1 refresh)

• EMIF SDRAM Extension Register (0x0810) Value: 0x4527

• R2WDQM(L) = 0 (3 cycles recommended value (CL = 3))
• RD2WR = 4 (5 cycles recommended value (CL = 3))
• RD2DEAC = 1 (2 cycles recommended value (CL = 3))
• RD2RD = 0 (1 cycle recommended value (CL = 3))
• THZP = 2 (3 cycles @75MHz)
• TWR = 1 (2 cycles @75MHz for 20.33ns)
• TRRD = 0 (2 cycles @75MHz for 14ns)
• TRAS = 3 (4 cycles @75MHz for 42ns)
• TCL = 1 (3 cycles)

• EMIF SDRAM Extension Register 2 (0x0811) Value: 0x0005

• WR2RD = 0 (1 cycle recommended value (CL = 3))
• WR2DEAC = 1 (2 cycles recommended value (CL = 3))
• WR2WR = 0 (1 cycle recommended value (CL = 3))
• R2WDQM(H) = 1 (3 cycles recommended value (CL = 3))

SDRAM
This is a 2Mx32 (8 Mbytes) device. However, the EMIF interface only allows access to the first
half (1Mx32) of the device. Together with the on-chip RAM, the SDRAM device covers the whole
of the CE0 space.

Memory map
The SDRAM is interfaced on CE0, at byte-addresses 10000H to 3FFFFFH (word addresses 8000H
to 1FFFFFH). It follows the on-chip DSP DARAM.

Speed
The SDRAM device is clocked by ECLKOUT1. It can be clocked at a frequency up to 100MHz.
However, when the DSP is running at 300MHz, then ECLKOUT1 must be set to 1/4th the CPU
clock frequency (75MHz). This is the configuration that is provided as a default.

 13

If the CPU is set to run at 200MHz, then ECLKOUT1 may be set to ½ the CPU clock frequency.
In this condition the SDRAM would be clocked at 100MHz. This alternate configuration would give
a slightly faster SDRAM access time, at the cost of a slower DSP. This alternate configuration is
possible. However it is not the configuration that is provided as a default.

Flash
This is a 4 Mbytes device (2Mx16). However, the EMIF interface only allows access to half
(1Mx16) of the device.

Memory map
The device is interfaced on CE2, at byte addresses 800000H to 9FFFFFH (word addresses
400000H to 4FFFFFH).

Sectors
The FLASH is segmented into 32 sectors of 32kWords each.

Interrupt
The (inverted) RY/BY output of the device is connected to the DSP’s INT1 input. This way,
programming and erasure operations can be managed using INT1 interrupts. The provided Flash
driver uses INT1 to perform writes.

Access efficiency
Because this device is configured in the EMIF as a 16-bit wide memory, the EMIF always reads 2
words at a time regardless of whether one word or two words are specified by the DSP
instruction. When a CPU instruction specifies a single 16-bit word read, the EMIF reads two
consecutive words, and discards the one that is not specified in the instruction. This process
costs a read cycle every time a 16-bit word is read.
This does not happen when the EMIF writes to the Flash memory.

Incremental programming
Contrary to previous generations of Flash devices that have been used in Signal Ranger boards,
the Flash device used in Signal_Ranger_mk2 cannot be incrementally programmed. This means
that a word location that has been previously programmed MUST be erased before
reprogramming. This is true even if the reprogramming operation is only intended to turn some of
the remaining “1s” into “0s”.

FPGA

Memory map
The device is interfaced on CE3, at byte addresses C00000H to FFFFFFH (word addresses
600000H to 7FFFFFH).

Physical interface
The details of the interface between the FPGA and the DSP are as follows:
• Data lines: The 16 lower bits of the EMIF’s data bus are connected to the FPGA. Only the 8

lower bits are used during configuration.
• Data lines (low): The EMIF data bus lines D7 to D0 are connected to the FPGA pins

46, 47, 50, 51, 59, 60, 63 and 65 respectively. These are used for FPGA configuration and may
be used after configuration for FPGA read/write.

 14

• Data lines (high): The EMIF data bus lines D15 to D8 are connected to the FPGA pins
28, 30, 31, 32, 33, 35, 36, 44 respectively. These should be used for FPGA read/write after
configuration.

• Address lines: The EMIF lines A6 to A2 are connected to the FPGA pins 23, 24, 25, 26,
and 27 respectively. These may be used after configuration to distinguish between a
maximum of 32 logical addresses during FPGA read/write.

• RDWR_B The FPGA’s RDWR_B input is tied to ground. Therefore it is not possible
to read-back configuration data. This pin should not be used after configuration because it is
tied to ground.

• PROG_B The FPGA’s PROG_B input is connected to the DSP’s XF output and is
used to initiate FPGA configuration.

• DONE The FPGA’s DONE pin is pulled-up to 3.3V using a 10k resistor, and
connected to the DSP’s GPIO3 pin. GPIO3 should be configured as an input and is required
to monitor the FPGA’s configuration.

• INIT_B The FPGA’s INIT_B pin is pulled-up to 3.3V using a 10k resistor, and is
connected to the DSP’s INT3. It is required to monitor the FPGA’s configuration process and
may be used to trigger the INT3 interrupt after configuration. The INIT_B pin is also
connected to the DSP’s GPIO5 pin. GPIO5 should be configured as an input and may be
used as an alternate to INT3 to monitor the FPGA’s configuration process

• AWE The EMIF line AWE is connected to the FPGA’s CCLK through a 3.3V-
tolerant buffer. This signal is used to configure the FPGA. There is a maximum 4.4ns buffer
delay between the EMIF AWE line and the FPGA CCLK input. AWE is also connected to the
FPGA’s pin 56. This is a GCLK input. It may be used after configuration for an FPGA write
cycle.

• ARE The EMIF line ARE is connected to the FPGA pin 55. This is a GCLK
input. It may be used after configuration for an FPGA read cycle.

• AOE The EMIF line AOE is connected to the FPGA pin 53. This is a GCLK
input. It may be used after configuration for an FPGA read cycle.

• CE3 The EMIF line CE3 is connected to the FPGA CS_B. This pin is used to
select the FPGA during configuration. It may be used after configuration for an FPGA read or
write cycle.

• INT2 The DSP INT2 input is connected to the FPGA pin 20. It may be used
after configuration to trigger the INT2 interrupt. To use this as an external interrupt input, a
simple follower may be implemented inside the FPGA to connect a line from any general-
purpose IO on expansion connector J4 to the FPGA pin 20.

• INT0 The DSP INT0 input is connected to the FPGA pin 18. It may be used
after configuration to trigger the INT0 interrupt. To use this as an external interrupt input, a
simple follower may be implemented inside the FPGA to connect a line from any general-
purpose IO on expansion connector J4 to the FPGA pin 18.

• NMI The DSP NMI input is connected to the FPGA pin 21. It may be used
after configuration to trigger the NMI interrupt. To use this as an external interrupt input, a
simple follower may be implemented inside the FPGA to connect a line from any general-
purpose IO on expansion connector J4 to the FPGA pin 21.

• DSP CLKOUT The CLKOUT DSP clock output is connected to the FPGA pin 52. This is
a GCLK input and may be used to clock the FPGA design. By default it runs at 150MHz after
the kernel has been loaded.

• Clock TIM0 The TIM0 DSP clock IO is connected to the FPGA pin 128. This is a
GCLK input and may be used to clock the FPGA design.

• Clock TIM1 The TIM1 DSP clock IO is connected to the FPGA pin 127. This is a
GCLK input and may be used to clock the FPGA design.

EMIF Configuration
The EMIF is configured on CE3 (the FPGA address range) as a 32-bit device. The reason for this
is that if any other interface width is used (16 or 8 bits), the EMIF automatically makes several

 15

accesses during a read cycle to the device (2 accesses for a 16-bit interface and 4 accesses for
an 8-bit interface – read accesses are always performed for a total of 32 bits). Although the read
behaviour of the EMIF is generally only an annoyance when reading memory with a width other
than 32 bits (read cycles are wasted and unneeded data is discarded). The extra read cycles
might cause problems when reading specialized logic. For instance if the logic implemented on
the FPGA is a FIFO, the extra read cycles would advance the FIFO. More information on the
EMIF may be found in Texas Instrument’s document SPRU621.
Even though it is interfaced to the EMIF as a 32-bit interface, only the 16 lower bits of the EMIF’s
data bus are used to transport data to and from the FPGA. This provides more I/Os to be used in
the FPGA’s user logic.
Because of this particular arrangement, care must be exercised when transferring data to and
from the FPGA, and in particular when configuring the FPGA. More details are provided below.

FPGA Configuration
During configuration the EMIF address bits are ignored by the FPGA. A write to any address
within the CE3 space should be valid to send configuration data into the FPGA. However,
because the EMIF is a 32-bit interface, the address used for the access has an impact on
whether the high 16 bits or the low 16 bits of the data bus is used for the transfer. To make sure
that the data is transported on the low part of the data bus, which is the one interfaced to the
FPGA, make sure that an odd word-address (a byte-address that has its bit No 1 set to 1) is used
to access the FPGA, and make sure that a 16-bit access is used (not a 32-bit access). For
instance a series of word writes at byte-address C00002H may be used to configure the FPGA.

To initiate the configuration the DSP must send a low pulse at least 300ns-long on XF. It must
then wait for INIT_B (GPIO5) to go high or wait for at least 5ms after the rising edge on XF.

When configuring the FPGA only the lower 8 bits of data are used.

Suggested Setup After Configuration
After configuration it is suggested that the EMIF interface to the FPGA be kept configured as a
32-bit asynchronous interface, only using data bits 0 to 15 (the EMIF’s data bits 16 to 31 are not
physically connected to the FPGA).
Only the 5 lower address bits of the EMIF are connected to general purpose IOs of the FPGA.
These addresses may be used to select one among a maximum of 32 registers that may be
defined in the FPGA logic. The following table provides the address that must be used from the
DSP’s point of view, as a function of the 5 address lines. Just as for the configuration, the table
assumes that a word access is performed by the DSP.

FPGA Register Address DSP Byte-Address DSP Word-Address
00H C00002H 600001H
01H C00006H 600003H
02H C0000AH 600005H
03H C0000EH 600007H
04H C00012H 600009H

05H C00016H 60000BH
06H C0001AH 60000DH
07H C0001EH 60000FH
08H C00022H 600011H
09H C00026H 600013H
0AH C0002AH 600015H

0BH C0002EH 600017H
0CH C00032H 600019H
0DH C00036H 60001BH

 16

0EH C0003AH 60001DH
0FH C0003EH 60001FH
10H C00042H 600021H
11H C00046H 600023H

12H C0004AH 600025H
13H C0004EH 600027H
14H C00052H 600029H
15H C00056H 60002BH
16H C0005AH 60002DH
17H C0005EH 60002FH

18H C00062H 600031H
19H C00066H 600033H
1AH C0006AH 600035H
1BH C0006EH 600037H
1CH C00072H 600039H
1DH C00076H 60003BH
1EH C0007AH 60003DH

1FH C0007EH 60003FH

FPGA pinout constraints
Since some of the FPGA pins that can become user I/Os after configuration are physically tied to
DSP outputs, Vcc or Gnd, it is of critical importance that the FPGA designer properly check the
FPGA pinout after configuration. An improper FPGA pinout, leading for instance to an FPGA
output driving into a ground or an EMIF output, may lead to hardware damage. In particular, the
following FPGA pins should be checked:
• FPGA pins 28, 30, 31, 32, 33, 35, 36, 44, 46, 47, 50, 51, 59, 60, 63 and 65 are connected to

the EMIF’s data bus (D0 to D15). After configuration these FPGA pins should only be used to
exchange data with the DSP (in accordance to proper EMIF’s read/write cycle), configured as
inputs or left floating.

• FPGA pins 23, 24, 25, 26, and 27 are connected to the EMIF’s address bus (a0 to A4). After
configuration these pins should only be configured as inputs or left floating.

• FPGA pin 41 (RDWR_B) is tied to ground. After configuration this pin should only be
configured as an input or left floating.

• FPGA pins 40, 53, 55, and 56 are connected to EMIF control outputs. After configuration
these pins should only be configured as inputs or left floating.

• FPGA pins 52, 127 and 128 are connected to DSP clock outputs. After configuration these
pins should only be configured as inputs or left floating.

Peripheral Access Benchmarks
Note: The benchmarks below assume that the EMIF is ready to execute the read or write cycle. In
particular no SDRAM refresh cycle occurs during the read or write access.

SDRAM

16-bit Write
147 ns / 11 EMIF cycles

16-bit Read
240 ns / 18 EMIF cycles

 17

32-bit Write
147 ns / 11 EMIF cycles

32-bit Read
240 ns / 18 EMIF cycles

Flash

16-bit Write
147 ns / 11 EMIF cycles
• 1 cycle Write setup
• 7 cycles Write strobe
• 2 cycles Write hold
• 1 cycle Write hold period (added so that total cycle number is >= 11)

Note: This is not the programming time, but rather the time of the write cycle, which is part of
the programming operation.

16-bit Read
440 ns / 33 EMIF cycles
• 2 cycles Read setup
• 8 cycles Read strobe
• 1 cycle Read hold
• 2 cycles Read setup
• 8 cycles Read strobe
• 1 cycle Read hold
• 11 cycles Read hold period (added to last Read hold so that the sum is equal to 12 cycles)

Note: Because the Flash is configured as a 16-bit peripheral, a read operation in Flash actually
triggers two consecutive read cycles from the EMIF. The first one is at the required address. The
second one is at the following address. The data from the second read is discarded by the EMIF.
This does not occur with writes.

FPGA

16-bit Write
147 ns / 11 EMIF cycles
• 2 cycles Write setup
• 4 cycles Write strobe
• 2 cycles Write hold
• 3 cycles Write hold period (added so that total cycle number is >= 11)

16-bit Read
240 ns / 18 EMIF cycles
• 2 cycles Read setup
• 4 cycles Read strobe
• 2 cycles Read hold
• 10 cycles Read hold period (added to last Read hold so that the sum is equal to 12 cycles)

 18

Note: Because the FPGA is configured as a 32-bit peripheral, the EMIF only performs one read
cycle (rather than two consecutive read cycles) for each read operation at a specified address.

Factory-Default FPGA Logic
The Flash is loaded at the factory with a default FPGA Logic file. This file is loaded into the FPGA
at power-up by the Power-Up kernel. The file is called SR2_SelfTest.rbt, and may be found in the
C:\Program Files\SignalRanger_mk2 directory. In case the Flash is re-written with a different
FPGA configuration, the factory-default FPGA logic may be programmed into the Flash again
using the mini-debugger.
This factory-default logic implements three 16-bit General Purpose I/O Registers, and one 15-bit
General Purpose I/O Register.
The Logic only uses 3% of the FPGA’s logic resources, and does not consume significant power
beyond the FPGA’s quiescent current values (see Xilinx documentation).
The I/Os for these registers are mapped to the following pins of the J4 Expansion Connector:

No Function No Function No Function
37 PortC_0 38 Gnd 39 PortD_1
40 PortC_1 41 Gnd 42 PortD_2
43 PortC_2 44 Gnd 45 PortD_3
46 PortC_3 47 Gnd 48 PortD_4
49 PortC_4 50 Gnd 51 PortD_5
52 PortC_5 53 Gnd 54 PortD_6
55 PortC_6 56 Gnd 57 PortD_7
58 PortC_7 59 Gnd 60 PortD_8
61 PortC_8 62 Gnd 63 PortD_9
64 PortC_9 65 Gnd 66 PortD_10
67 PortC_10 68 Gnd 69 PortD_11
70 PortC_11 71 Gnd 72 PortD_12
73 PortC_12 74 Gnd 75 PortD_13
76 PortC_13 77 Gnd 78 PortD_14
79 PortC_14 80 Gnd 81 PortD_15
82 PortC_15 83 Gnd 84 PortB_0
85 PortA_0 86 Gnd 87 PortB_1
88 PortA_1 89 Gnd 90 PortB_2
91 PortA_2 92 Gnd 93 PortB_3
94 PortA_3 95 Gnd 96 PortB_4
97 PortA_4 98 Gnd 99 PortB_5
100 PortA_5 101 Gnd 102 PortB_6
103 PortA_6 104 Gnd 105 PortB_7
106 PortA_7 107 Gnd 108 PortB_8
109 PortA_8 110 Gnd 111 PortB_9
112 PortA_9 113 Gnd 114 PortB_10
115 PortA_10 116 Gnd 117 PortB_11
118 PortA_11 119 Gnd 120 PortB_12
121 PortA_12 122 Gnd 123 PortB_13
124 PortA_13 125 Gnd 126 PortB_14
127 PortA_14 128 Gnd 129 PortB_15
130 PortA_15 131 Gnd 132 FPGA_HS_EN

Each of the four ports (PortA, PortB, PortC, PortD) has two registers:

 19

• PortX_Dir is a direction register. It sets the corresponding pin as an input or an
output. By writing a bit pattern to the PortX_Dir register, any individual port pin may be
configured as an input (0) or an output (1).

• PortX_Dat is a data register. It may be read to determine the state of an input pin, or
written to set the state of an output pin.

Hardware Details
All pins are configured as inputs at power-up.

All inputs and outputs are programmed to conform to the LVCMOS 3.3V standard.

When a port pin is configured as an input, a weak keeper is instantiated for the input. This way,
the pin will keep its last set state if it is left floating.

Pins configured as outputs have a +- 12mA current capacity.

If FPGA_HS_EN is pulled-low during board power-up, then pull-ups will appear on all FPGA pins
during configuration. If FPGA_HS_EN is pulled-up or left floating during board power-up, then the
pull-ups will not be present during configuration. In any case, the pull-ups disappear after the
FPGA is configured, and only the weak keepers are left on the pins.

Note: The FPGA pins configured as inputs should not be driven by a voltage greater than 3.8V
when the FPGA is powered, or greater than 0.5V when the FPGA is not powered. Alternately, the
current through any input should be no more than 10mA. Refer to relevant Xilinx documentation
for details.
For applications where FPGA IOs may be driven by voltages higher than 3.3V, or may be driven
when the Signal Ranger mk2 board is not powered, we recommend the use of a bus switch such
as the SN74CB3T16211.

Register Map

Register Byte-Address Word-Address
Port_A_Dat C00002H 600001H

Port_A_Dir C00006H 600003H
Port_B_Dat C0000AH 600005H
Port_B_Dir C0000EH 600007H
Port_C_Dat C00012H 600009H
Port_C_Dir C00016H 60000BH
Port_D_Dat C0001AH 60000DH
Port_D_Dir C0001EH 60000FH

Software Interfaces
In the following sections the LabVIEW interface is used as an example. The same concepts that
are discussed are equally applicable to the C/C++ interface. Simply replace the term “VI” in the
text by “function”. Every specific VI discussed below has a corresponding function in the C/C++
interface.

 20

How DSP Boards Are Managed
Every time a DSP board is connected to the PC, the PC loads its driver, and creates a data
structure representing the board in the system. This data structure is accessed by a symbolic
name of the form “basename_i”, where basename is a symbolic name that represents the type of
board (for instance SignalRanger_mk2 boards have the name SRm2_), and i is a zero-based
number that is assigned to the board at connection time. For instance if 3 SignalRanger_mk2
boards are connected in sequence on the PC, their complete symbolic names will be SRm2_0,
SRm2_1and SRm2_2.

For each board that is opened (using the SR2_Base_Open_Next_Avail_Board VI in the LabVIEW
interface), the interface software creates and keeps an entry in a Global Board Information
Structure that contains information about open boards. This structure contains the following
information:
• A handle on the board driver that is required to access the board
• A board ID structure that contains the following:

• USB Vendor ID Number
• USB Product ID Number
• Hardware Revision Number

• A Symbol Table for the symbols of the kernel that is presently loaded on the DSP. This table
is created/updated, whenever a kernel is loaded or reloaded.

• A Symbol Table for the symbols of the user code that is presently loaded on the DSP. This
table is created/updated whenever new DSP code is loaded on the DSP.

• A High-Level USB retries structure. Whenever a USB transaction fails (because of noise on
the USB line or other abnormal conditions), the interface retries the transaction 5 times,
before returning an error. The structure is updated every time a transaction is retried. It
contains the complete call-chain of Vis that generated the faulty transaction. Note that this
error control structure is implemented at high-level, “on top of” the intrinsic USB error control.
The USB protocol itself will retry up to 3 times in case of USB errors, before failing the
transaction. High-Level retries occur only after a USB transaction is failed at low-level.

All the Vis of the interface must be passed a BoardRef number. This number points to the entry
corresponding to the selected board in the Global Board Information Structure. It is created by the
SR2_Base_Open_Next_Avail_Board VI.

When a board is closed, its entry in the Global Board Information Structure is deleted.

Note: The handle that the driver provides to access the board is exclusive. This means that only
one application, or process, at a time can open and manage a board. A consequence of this is
that a board cannot be opened twice. A board that has already been opened using the
SR2_Base_Open_Next_Avail_Board VI cannot be opened again until it is properly closed using
the SR2_Base_Close_BoardNb VI. This is especially a concern when the application managing
the board is closed under abnormal conditions. If the application is closed without properly closing
the board, the next execution of the application will fail to find and open the board, simply
because the corresponding driver instance is still open.
One procedure to get out of this lock-up is to completely close the application, disconnect the
board, then reconnect the board and re-open and run the application. Closing the application is
required in addition to disconnecting the board so that Windows may unload the driver.

Kernel vs Non-Kernel Interface Vis
Some of the memory transfer functions are supported by two seemingly equivalent groups of Vis :
Those that use a DSP kernel, and those that do not. There are major functional differences
between the two:

 21

• The most basic difference is that Vis that execute transfers using the kernel require the kernel
to be loaded in DSP memory and running properly to perform the transfer. Therefore they
may fail if the DSP has crashed. On the other hand, Vis that do not use the kernel only rely
on the hardware of the HPI to execute the transfer. They will not fail even if the DSP has
crashed. This is an important consideration when debugging code.

• Vis that use the kernel have access to any address range in any memory space. While Vis
that do not use the kernel are limited in scope. They can only transfer to and from the
memory that is directly accessible by the hardware of the HPI (essentially the DSP’s on-chip
DARAM).

• Vis that use the kernel use bulk pipes to achieve the transfer. Vis that do not use the control
pipe 0.
• One consequence of using bulk pipes for transfers using the kernel is that the transfer

bandwidth is much faster. Transfers using control pipe zero have only a limited bandwidth
(about 500kb/s for USB 1.1).

• Another consequence of using bulk pipes for transfers using the kernel is that the bandwidth is
shared with other USB devices in the same chain and is not guaranteed. There is a possibility
in principle that another device in the USB chain could take so much bandwidth that it would
slow down DSP board transfers considerably. On the other hand, transfers that do not use the
kernel benefit from the guaranteed bandwidth of control pipe zero (as low as it may be).

In short, transfers that use the kernel are higher-performance, and have a much wider scope. On
the other hand, transfers that do not use the kernel are much more reliable, especially during
debugging, or in circumstances where the DSP code may crash.

Error Control
There are four levels of error control, and four basic error types:

Low-Level USB Errors
The USB protocol itself provides a large amount of error control. The Host Controller Driver on
the PC retries packets that contain errors, because of noise, faulty cable or other abnormal
conditions up to three times per transaction before failing them. This level of error control is
generally hidden from the user, and the developer. The USB controller on the DSP board
however has an error counter that can be accessed by PC code to monitor the reliability of the
USB connection. This circular 4-bit error counter is incremented every time a USB error is
detected. Interface Vis are provided to read and reset this counter. This counter indicates the
errors occurring at the level of the USB protocol (low-level).

USB Retries
The software interface described below has its own layer of USB error control that operates at a
higher level. Whenever the Host Controller Driver on the PC decides to fail a transaction (after 3
retries), the interface software retries it up to 5 times. Every time it does, it logs an entry in the
Retry member of the Global Board Information Structure (see above), indicating the number of
retries, and the call-chain that led to the error. If after 5 times, the transaction is still not
successful, the VI that led to the error abandons and returns an error. The Retry member of the
Global Board Information Structure may be read at any time in order to determine if errors are
occurring on a regular basis.

High-Level Errors
When a USB transaction is failed at the level of the interface (after 5 high-level retries (i.e. 15 low-
level retries), then the transaction is failed at high-level, and the VI that created the conditions
returns an appropriate error code in its Error-Out structure. This error code may be processed by
the SR2_Base_Error_Message VI to obtain a text description of the error, as well as the call
chain that led to the error. Note that errors other than USB failed transactions are also reported in

 22

the Error-Out structure. For instance if critical files are missing (such as a kernel), this will also be
reported at this level.

Application-Specific DSP Errors And Completion Codes
The DSP kernel manages a field in its mailbox that may be used to return a user-specific error or
completion code whenever a user DSP function is executed. This error or completion code is
completely under the control of the developer. It may be used or not. This code is returned as an
ErrorCode indicator by all the Vis that access the DSP via the kernel.

Note: For this ErrorCode to be returned by the DSP, there must be no USB communication
error.

USB Lock-Up
Contrary to the situation for the previous Signal Ranger boards, there are situations in
Signal_Ranger_mk2 that can lead to a lock-up of the USB channel:
• The TMS320VC5502 has extensive clock and peripheral functionality under software control.

So much so that it is possible to stop the clock on the DSP by software. Stopping the CPU
clock will freeze the USB communication channel.

• Also, it is possible to disable the HPI completely by software. This situation will also freeze
the communication channel.

• The DARAM can only support 2 accesses per cycle, for which the CPU always has priority
against DMA and HPI accesses. Some rare sequences of instructions, when executed in a
tight loop require those two DARAM accesses per cycle, thereby completely denying access
of the DARAM block from which the code executes to the DMA and HPI. This condition
occurs only when the code is executing from the same DARAM block where the mail-box
resides (the first block).

Under either of these conditions the USB controller is unable to transfer data to and from the HPI.
More precisely, the USB controller waits indefinitely for the HPI to signal that it is ready to transfer
data, which never happens. The USB communication and the PC application controlling the DSP
board appear to freeze. No error message is passed to the user.

The easiest actions that can take the board out of this lock-up condition are:
• Disconnect and reconnect the USB connector or
• Cycle the board’s power-supply.

Symbolic Access
The DSP access Vis, including the memory read and write Vis, and the DSP function execution
Vis include full symbolic access. This means that memory reads and writes, as well as function
execution can be directed to a symbol defined when the DSP code is created, rather than to an
absolute address. This is a powerful feature, since it allows the PC code to be insensitive to a
rebuild of the DSP code. Indeed, after a DSP code is rebuilt, the addresses of the accessed
symbols may have changed, but the symbols stay the same, and therefore the PC-side of the
code does not have to be rebuilt.
The symbolic access works by comparing the ASCII string of the specified symbol to a symbol
table that is loaded in the Global Board Information structure, when the DSP code is loaded into
memory. When a match is found, the symbol is replaced by its value and its memory space, as
they are found in the symbol table. If no match is found, then an error is generated. To disable
symbolic access, simply leave the ASCII string of the symbol empty. In this case, the access is
made using the absolute address and memory space that are specified explicitly.
The symbol table corresponding to the DSP code is parsed and reloaded in the Global Board
Information structure from the DSP’s “.out” executable file every time a new DSP code is
reloaded into DSP memory. A new symbol table can also be reloaded from DSP’s “.out” file,

 23

without actually modifying the DSP code. This is useful to gain symbolic access on a DSP code
that is loaded and executed from Flash memory at power-up.

The following guidelines should be observed for the symbolic access to work properly:

• Only the global symbols found in the DSP’s “.out” file are retained in the symbol table. This

means that to allow symbolic access, variables declared in C should be declared as global
(outside all blocks and functions, and without the static keyword). Variables and labels
declared in assembly (function entry points for instance) should be declared with the directive
.global.

• When a variable or a function entry point is declared in C, the C compiler appends an
underscore at the beginning of the name. This underscore should not be omitted when
specifying a symbolic name for an access.

In this new version of the software interfaces, the symbolic access feature has been expanded to
allow access to structure members, with unlimited nesting capability. However, to benefit from
this new feature, the following guidelines should also be observed:
• The symbolic name accessed should be constructed using symbolic member names,

separated by “.”, just as it is done in C:
”Global_Struct_Name.Member_Name_1.Member_Name_2…” where:
- Global_Struct_Name is the global name given to the instance of the primary structure

to be accessed
- Member_Name_1 is the name of the member of the structure that is to be accessed
- Member_Name_2 is the name of the member of a structure nested within the

primary structure, to be accessed.
• When structure members are declared in C, the C compiler appends an underscore at the

beginning of the name. This underscore should not be omitted when specifying a symbolic
member name for an access.

• The DSP code should be compiled with the option Full Symbolic Debugging. Otherwise the
structure information is not present in the “.out” executable file.

For instance, if structures are declared in the following manner:

struct SignatureIndex { unsigned int i_sample [N_SigNibbles];
 unsigned int i_channel [N_SigNibbles];
 unsigned int i_mask [N_SigNibbles];
 };

#define SigBufSize 1000*6

struct SigBuffer { unsigned int Error;
 unsigned int Fill;
 unsigned int Size;

unsigned int InPoint;
unsigned int OutPoint;
unsigned int SigWord[SigBufSize];
struct SignatureIndex Index;

 };

struct SigBuffer SigBuf;

Then, to access the i_Channel member of the SignatureIndex structure that is nested within the
SigBuffer structure named SigBuf, the following symbol string should be used:

_SigBuf._SignatureIndex._i_Channel

Note the « _ » prefixing the structure name, as well as every member name.
Note : Symbolic access to a particular element of the i_Channel array is not allowed. However,
all memory access Vis allow an offset to be specified. This byte-address offset is simply added to
the base address computed from the symbolic name.

 24

All memory access Vis allow an offset to be specified for the access. This byte-address offset is
simply added to the base address specified explicitly (if symbolic access is disabled) or resolved
from the specified symbolic name. This offset can be used to access a particular element of an
array. However, care should be taken to the fact that this offset is always expressed as a number
of byte-addresses, rather than a number of elements of the type specified for the access. This
means that for accesses of 16-bit types the offset should be specified as a multiple of 2. For 32-
bit types, the offset should be specified as a multiple of 4. This type-independent behaviour is
required to allow the most flexibility when accessing arrays of undefined type (for instance arrays
of structures).

Address Specification
Contrary to the previous Signal Ranger platform, the new Signal_Ranger_mk2 platform
(TMS320VC5502) and its EMIF support different addressing standards including byte, 16-bit-
word, and 32-bit-word.
For simplicity and coherence, and because all the addresses that are described in a DSP’s “.out”
file are byte-addresses, all the interface software works with the byte-addressing standard. This
means that:
• All the addresses provided by the “.out” file are byte-addresses. In particular, the addresses

provided by the SR2_Base_Resolve_UserSymbol VI are byte-addresses.
• All symbolic addresses provided to all the access Vis (SR2_Base_K_Exec,

SR2_Base_Bulk_Move_Offset, SR2_Base_User_Move_Offset,
SR2_Base_HPI_Move_Offset, SR2_Flash_FlashMove) represent and point to byte-
addresses

• The explicit addresses provided externally to all of the access Vis (SR2_Base_K_Exec,
SR2_Base_Bulk_Move_Offset, SR2_Base_User_Move_Offset,
SR2_Base_HPI_Move_Offset, SR2_Flash_FlashMove) must be byte-addresses.

However, it is important to note that:
• Because of hardware constraints in the HPI, all PC accesses (reads and writes) are

performed in 16-bit words (2 bytes at a time). This means that access functions that transfer
(read or write) individual bytes always read or write an even number of bytes. Byte arrays are
padded if necessary.

• User code download is also subject to this constraint since it is performed using the same
functions that read and write data. This should not cause a problem when developing in C
because the compiler always creates sections that are aligned on an even byte-address.
When developing in assembly, the “.even” directive should be used systematically at the
beginning of any code section, to insure that code sections are aligned on even byte-
addresses.

• Because of the same hardware constraints, read and write accesses are always required to
occur on even byte-addresses. If an odd byte-address is passed to a transfer VI, it is
truncated so that the effective transfer address is the previous even byte-address. However,
this should never cause a problem because data is always aligned to an even byte-address
in DSP memory by the linker.

• Entry points are not subject to this constraint, so the execution address passed to the
SR2_Base_K_Exec VI may be an odd byte-address. Similarly, the Branch Address passed to
the SR2_Base_User_Move_Offset may be an odd byte-address.

• Most interface Vis that perform transfers (SR2_Base_Bulk_Move_Offset,
SR2_Base_User_Move_Offset, SR2_Base_HPI_Move_Offset) allow the addition of an offset
to the transfer address. Just like the address, this offset is also a byte-address offset. Just
like the address, the offset must also be even.

• Even though transfer addresses are always byte-addresses, the number of elements to
transfer to and from the PC is always specified in number of elements of the type being
transferred.

 25

LabView Interface
The provided LabView interface is organized as several VI libraries. All the libraries with names
ending in “_U” contain support Vis and it is not expected that the developer will have to use
individual Vis in these libraries.

Altogether, the LabView interface allows the developer to leverage Signal_Ranger_mk2’s real
time processing and digital I/O capabilities, with the ease of use, high-level processing power and
graphical user interface of LabView.

Core Interface Vis
These Vis are found in the Sranger2.llb library.

SR2_Base_Open_Next_Avail_Board
This Vi performs the following operations:
• Tries to find a DSP board with the selected driver ID that is connected, but presently free (not

opened), on the PC.
• If it finds one, creates an entry in the Global Board Information Structure.
• Waits for the Power-Up kernel to be loaded on the board.
• If “ForceReset” is true, forces DSP reset, then reloads the Host-Download kernel.
• Places the symbol table of the present kernel in the “Global Board Info” structure.

Controls:
• Driver ID: This is a character string representing the base name for the selected

board. For instance for Signal Ranger_mk2 boards, this string must be set to SRm2_.
• Restrict: This is a structure used to restrict the access by Vendor ID, Product ID or

Hardware Revision Number. If this control is wired, and if any of the members of the Restrict
structure are changed from their default, the access is restricted to the boards having the
selected parameters. Each member operates independently of the others. For instance if
HardRev is set, but idVendor and idProduct are left to its default 0 value, then only DSP
boards with the selected hardware revision will be opened, regardless of their Vendor or
Product Ids.

• ForceReset: If true, the DSP is reset and the host-download kernel is loaded. All
previously running DSP code is aborted.

• Error In LabView instrument-style error cluster. Contains error number and
description. Leave it unwired if this is the first interface VI in the sequence.

Indicators:
• BoardRef: This is a number pointing to the entry corresponding to the board in the in

Global Board Information Structure. All other interface Vis use this number to access the
proper board.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

Note: The handle that the driver provides to access the board is exclusive. This means that only
one application, or process, at a time can open and manage a board. A consequence of this is
that a board cannot be opened twice. A board that has already been opened using the
SR2_Base_Open_Next_Avail_Board VI cannot be opened again until it is properly closed using
the SR2_Base_Close_BoardNb VI. This is especially a concern when the application managing

 26

the board is closed under abnormal conditions. If the application is closed without properly closing
the board. The next execution of the application will fail to find and open the board, simply
because the corresponding driver instance is still open.

SR2_Base_Close_BoardNb
This Vi Closes the instance of the driver used to access the board, and deletes the corresponding
entry in the Global Board Information Structure. Use it after the last access to the board has been
made, to release Windows resources that are not used anymore.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_Get_BoardInfo
This Vi returns the board entry from the Global Board Information Structure.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Indicators:
• BoardInfo: Contains DSP board information. This information is described in section

“How DSP Boards are Managed”

SR2_Base_Complete_DSP_Reset
This VI performs the following operations:
• Temporarily flashes the LED orange
• Resets the DSP
• Reinitializes HPIC
• Loads the Host-Download kernel
These operations are required to completely take control of a DSP that is executing other code or
has crashed. The complete operation takes 500ms.

 27

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_WriteLeds
This Vi allows the selective activation of each element of the bi-color Led.
• Off
• Red
• Green
• Orange

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• LedState: This enum control specifies the state of the LEDs (Red, Green, Orange or

Off).
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_Read_Error_Count
The hardware of the USB controller contains an error counter. This 4-bit circular counter is
incremented each time the controller detects a USB error (because of noise or other reason).
The contents of this counter may be read periodically to monitor the health of the USB
connection. Note that a USB error usually does not lead to a failed transaction. The USB protocol
will retry packets that contain errors up to three times in a single transaction.

 28

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Error_Count: This is the value contained in the counter (between 0 and 15).
• Error out: LabView instrument-style error cluster. Contains error number and

description.

SR2_Base_Clear_Error_Count
This VI is provided to clear the 4-bit USB error counter.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_Load_User
This VI loads a user DSP code into DSP memory. If file path is empty, a dialog box is used. The
kernel has to be loaded prior to the execution of this VI. The DSP is reset prior to the load. After
loading the code, the symbol table is updated in the Global Board Information Structure.
The VI checks if the type of COFF file is right for the target DSP. If not an error is generated.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• File path: This is the file path leading to the COFF (.out) file of the DSP user code.

A dialog box is presented if the path is empty.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:

 29

• DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• NewFile path: This is the file path where the COFF file was found.
• EntryPoint: This is the address in DSP memory where execution should begin.
• Error out: LabView instrument-style error cluster. Contains error number and

description.

SR2_Base_Load_UserSymbols
This VI loads the symbol table in the Global Board Information Structure. If file path is empty, a
dialog box is used. Usually, this VI is used to gain symbolic access when code is already loaded
and running on the DSP (for instance code that was loaded at power-up). It is not necessary to
load symbols after executing SR2_Base_Load_User, or SR2_Base_LoadExec_User, since both
Vis update the symbol table automatically.
The VI checks if the type of COFF file is right for the target DSP. If not an error is generated.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• File path: This is the file path leading to the COFF (.out) file of the DSP user code.

A dialog box is presented if the path is empty.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• NewFile path: This is the file path where the COFF file was found.
• Error out: LabView instrument-style error cluster. Contains error number and

description.

SR2_Base_LoadExec_User
This VI loads a user DSP code into DSP memory and runs it from the address of the entry point
found in the COFF file. If file path is empty, a dialog box is used. The kernel has to be loaded
prior to the execution of this VI. The DSP is reset prior to beginning the load. After loading the
code, the symbol table is updated in the Global Board Information Structure.
The VI checks if the type of COFF file is right for the target DSP. If not an error is generated.
After completing the branch, the USB controller and the Vi waits for an acknowledge from the
DSP, to complete its execution. If this signal does not occur within 5s, the Vi will abort and return
an error. Normally the DSP code that is launched by this Vi should acknowledge the branch by
asserting the HINT signal (see section about the DSP Communication Kernel).

 30

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• File path: This is the file path leading to the COFF (.out) file of the DSP user code.

A dialog box is presented if the path is empty.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• NewFile path: This is the file path where the COFF file was found.
• EntryPoint: This is the address in DSP memory where execution should begin.
• ErrorCode: This is the error code, or completion code, returned by the user DSP

function that is executed (function residing at the entry point). The kernel documentation
mentions that the DSP function that is called (the entry function in this case) should contain
an acknowledge to signal that the branch has been taken. Just prior to sending the
acknowledge, the user DSP code has the opportunity to modify the ErrorCode field in the
mailbox. This error code is sent back to the PC by the USB controller after it has received the
acknowledge from the DSP. This error code is completely user-application-specific. It does
not need to be managed by the interface. If the DSP code does not modify the Error Code,
zero is returned.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_K_Exec
This Vi forces execution of the DSP code to branch to a specified address, passed in argument. If
Symbol is wired and not empty, the Vi searches in the symbol table for the address
corresponding to the symbolic label. If the symbol is not found, an error is generated. If Symbol is
not wired, or is an empty string, the value passed in DSPAddress is used as the entry point.
The kernel must be loaded and executing for this Vi to be functional.
After completing the branch, the USB controller and the Vi waits for an acknowledge from the
DSP, to complete its execution. If this signal does not occur within 5s, the Vi will abort and return
an error. Normally the DSP code that is launched by this Vi should acknowledge the branch by
asserting the HINT signal (see section about the DSP Communication Kernel).

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• DSPAddress: Physical branch address. It is used if for the branch if Symbol or

SymbolTable are empty or left unwired.
• Symbol: Character string of the symbol to be accessed. If Symbol is empty,

DSPAddress is used instead.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:

 31

• DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• ErrorCode: This is the error code, or completion code, returned by the user DSP
function that is executed. The kernel documentation mentions that the DSP function that is
called should contain an acknowledge to signal that the branch has been taken. Just prior to
sending the acknowledge, the user DSP code has the opportunity to modify the ErrorCode
field in the mailbox. This error code is sent back to the PC by the USB controller after it has
received the acknowledge from the DSP. This error code is completely user-application-
specific. It does not need to be managed by the interface. If the DSP code does not modify
the Error Code, zero is returned.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_Bulk_Move_Offset
This VI reads or writes an unlimited number of data words to/from the program, data, or I/O space
of the DSP, using the kernel. This transfer uses bulk pipes. The bandwidth is usually high (up to
22Mb/s for USB 2).
The VI is polymorphic, and allows transfers of the following types:
• Signed 8-bit bytes (I8), or arrays of this type.
• Unsigned 8-bit bytes (U8), or arrays of this type.
• Signed 16-bit words (I16), or arrays of this type.
• Unsigned 16-bit words (U16), or arrays of this type.
• Signed 32-bit words (I32), or arrays of this type.
• Unsigned 32-bit words (U32), or arrays of this type.
• 32-bit floating-point numbers (float), or arrays of this type.
• Strings
These represent all the basic data types used by the C compiler for the DSP.
To transfer any other type (structures for instance), the simplest method is to use a “cast” to allow
this type to be represented as an array of U16 on the DSP side (cast the required type to an array
of U16 to write it to the DSP, read an array of U16 and cast it back to the required type for a
read).

The DSP address and memory space of the transfer are specified as follows:
• If Symbol is wired, and the symbol is represented in the symbol table, then the transfer

occurs at the address and memory space corresponding to Symbol. Note that Symbol must
represent a valid address. Also, the DSP COFF file must be linked with the usual page
number convention:
• Program space = page number 0
• Data space = page number 1
• IO space = page number 2
All other page numbers are accessed as data space.

• If Symbol is unwired, then DSPAddress is used as the byte-address for the transfer, and
MemSpace is used as the memory space. Note that DSPAddress is required to be even, to
point to a valid 16-bit word (see section about Address Specification).

• The value of Offset is added to DSPAddress. This functionality is useful to access individual
members of structures or arrays on the DSP. Note that the value of Offset is always counted
in bytes (just as DSPAddress it is a byte-address offset, required to be even). This is required
to access an individual member of an heterogeneous structure.

• In case of a write, if the accessed data type is an 8-bit type (I8, U8, or string), then an
additional byte is appended if the number of bytes to transfer is odd. This is required because
native transfers are 16-bit wide. The extra byte is set to FFH.

 32

• Even if the accessed data type is an 8-bit type (I8, U8, or string), the access is required to
occur on an even byte address. This is because native transfers using the HPI are 16-bit
wide.

Note: The kernel must be loaded and executing for this Vi to be functional.

Note: Since the VI is polymorphic, to read a specific type requires that this type be wired at the
DataIn input. This simply forces the type for the read operation.

Note: When reading or writing scalars, Size must be left unwired.

The DSP’s internal representation uses 16-bit words. When reading or writing 8-bit data, the
bytes represent the high and low parts of 16-bit memory registers. They are presented MSB first
and LSB next.
When reading, or writing 32 bit data words (I32, U32 or Float), the PC performs 2 separate
accesses (at 2 successive memory addresses) for every transferred 32-bit word. In principle, the
potential exists for the DSP or the PC to access one word in the middle of the exchange, thereby
corrupting the data.
For instance, during a read, the PC could upload a floating-point value just after the DSP has
updated one 16-bit word constituting the float, but before it has updated the other one. Obviously
the value read by the PC would be completely erroneous.
Symmetrically, during a write, the PC could modify both 16-bit words constituting a float in DSP
memory, just after the DSP has read the first one, but before it has read the second one. In this
situation the DSP is working with an “old” version of half the float, and a new version of the other
half.
These problems can be avoided if the following precautions are observed:
• When the PC accesses a group of values, it does so in blocks of up to 32 16-bit words at a

time (up to 256 words if the board has enumerated on a USB_2-capable hub or root). Each of
these block accesses is atomic. The DSP is uninterruptible and cannot do any operation in
the middle of a block of the PC transfer. Therefore the DSP cannot “interfere” in the middle of
any single 32 or 256 block access by the PC.

• This alone does not guarantee the integrity of the transferred values, because the PC can still
transfer a complete block of data in the middle of another concurrent DSP operation on this
same data. To avoid this situation, it is sufficient to also make atomic any DSP operation on
32-bit data that could be modified by the PC. This can easily be done by disabling DSPInt
interrupts for the length of the operation for instance, then the PC accesses are atomic on
both sides, and data can safely be transferred 32 bits at a time.

Note: Data is transferred between the PC and DSP in atomic blocks of 32 (Full-Speed USB
connection) or 256 (High-Speed USB connection) words. To achieve this, the kernel function that
performs the block transfer disables interrupts during the transfer. The time it takes to transfer 32
or 256 words of data to the DSP’s on-chip RAM is usually very short (3.3ns/word). However, it
may take much longer (up to 240ns/word) if the transfer is performed to or from SDRAM. In this
case, the transfer time may be so long that it interferes with the service of other interrupts in the
system. This can be a factor especially when the USB connection is high-speed, because in this
case the block size is large (256 words). If this is the case, and transfer atomicity is not required,
then a custom DSP function should be used to handle the transfer, instead of than the standard
kernel function that is instantiated by SR2_Base_Bulk_Move_Offset. Such a custom transfer
function can be called by the SR2_Base_User_Move_Offset. An example of the use of such a
custom transfer function is provided in the examples directory. Another way to handle this case
would be to split the transfer at high-level so that only small blocks are transferred at a time.

 33

Note: Data is transferred between the PC and DSP in atomic blocks of 32 (Full-Speed USB
connection) or 256 (High-Speed USB connection) words, only if the transfer does not cross a 64k
words boundary. If the transfer does cross a boundary, the transfer is split at high-level so that
both halves of the transfer occur in the same 64k page. In this condition the transfer loses its
“atomicity”.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• DataIn: data words to be written to DSP memory. DataIn must be wired, even for

a read, to specify the data type to be transferred.
• MemSpace: Memory space for the exchange (data, program or IO). MemSpace is

only used if Symbol is empty or left unwired.
• DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used

if Symbol is empty or left unwired.
• 32-bitAlign: This control is provided for compatibility with other boards. On Signal

Ranger_mk2 the control has no effect as long as the byte-address provided is even (as it
must be).

• Size: Only used for reads of array types, represents the size (in number of
items of the requested data type) of the array to be read from DSP memory. For Writes, the
whole contents of DataIn are written to DSP memory, regardless of Size. When Size is wired,
the data can only be transferred as arrays, not scalars.

• Symbol: Character string of the symbol to be accessed. If Symbol is empty or
unwired, DSPAddress and MemSpace are used.

• Offset: Represents the offset of the data to be accessed, from the base address
indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of
the base address and the offset. Offset is useful to access individual members of a structure,
or an array.

• R/~W: Boolean indicating the direction of transfer (true->read, false->write).
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.

Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• DataOut: Data read from DSP memory.
• Real DSPAddress: Actual address where the transfer took place. This address takes into

account the resolution of Symbol (if used), and the effect of Offset.
• ErrorCode: This is the error code returned by the kernel function that is executed.

Kernel reads always return a completion code of 1, kernel writes always return a completion
code of 2.

 34

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_User_Move_Offset
This VI is similar to SR2_Base_Bulk_Move_Offset, except that it allows a user-defined DSP
function to replace the intrinsic kernel function that SR2_Base_Bulk_Move_Offset uses.
The operation of the USB controller and the kernel allows a user-defined DSP function to override
the intrinsic kernel functions (see kernel documentation below). For this, the user-defined DSP
function must perform the same actions with the mailbox as the intrinsic kernel function would
(kernel read or kernel write). This may be useful to define new transfer functions with application-
specific functionality. For example, a function to read or write a FIFO could be defined this way. In
addition to the data transfer functionality, a FIFO read or write function would also include the
required pointer management that is not present in intrinsic kernel functions.

Accordingly, SR2_Base_User_Move_Offset includes two controls to define the entry point of the
function that should be used to replace the intrinsic kernel function.
When the user-defined function is called, the mailbox contains:
• The BranchAddress field is set to the entry point of the function. This field is not normally

used directly by the DSP function. It is set to its entry point, leading to its execution.
• The TransferAddress field. It is set to the address corresponding to Symbol, if Symbol is

used, or to the user-defined 32-bit number DSPAddress if Symbol is not wired or is empty.
Note that this field is not required to contain a valid address. For instance in the case of a
FIFO management function, it could be a FIFO number instead.

• The NbWords field. This 16-bit number represents the number of words to transfer. It is
always between 1 and 32 (Full-Speed USB connection), or between 1 and 256 (High-Speed
USB connection). This represents the size of the data field of the mail-box. Tranfers of larger
data blocks are segmented into transfers of up to 32 or 256 words.

• The ErrorCode field. It is set to 1 for reads, and to 2 for writes.
• In the case of a write transfer, from 1 to 32 words, as indicated by NbWords, (1 to 256 words

for a High-Speed USB connection) have been written to the data field of the mailbox by the
USB controller prior to the DSP function call.

The user-defined function should perform its function. If it is a read, it should read the required
number of words from the data field of the mailbox. Then it should update the mailbox with the
following:
• If it is a write it should provide the required number of words to the Data field of the mailbox.
• Then it may update the ErrorCode field of the mailbox with a completion code that is

appropriate for the situation (this is the error code that is returned as the ErrorCode indicator
of the VI).

After this, the user-defined function should simply send an acknowledge.

A transfer of a number of words greater than 32 (greater than 256 for a High-Speed USB
connection) is segmented into as many 32-word (256-word) transfers as required. The user-
defined function is called at every new segment. If the total number of words to transfer is not a
multiple of 32 (256), the last segment contains the remainder.

The TransferAddress field of the mailbox is only initialized at the first segment. The user-defined
function may choose to increment it to point to successive addresses (this is what the intrinsic
kernel functions do), or may choose to leave it untouched (this would be appropriate if the field
contains a FIFO number for instance). The way this field is managed is completely application-
specific.

Note: If TransferAddress is used to transport information other than a real transfer address, the
following restrictions apply:
• The total size of the transfer must be smaller or equal to 32768 words. This is because

transfers are segmented into 32768-word transfers at a higher level. The information in

 35

TransferAddress is only preserved during the first of these higher-level segments. At the next
one, TransferAddress is updated as if it were an address to point to the next block.

• The transfer must not cross a 64 kWord boundary. Transfers that cross a 64 kWord boundary
are split into two consecutive transfers. The information in TransferAddress is only preserved
during the first of these higher-level segments. At the next one, TransferAddress is updated
as if it were an address to point to the next block

• TransferAddress must be even. It is considered to be a byte transfer address, consequently
its bit 0 is masked at high-level.

The NbWords field is initialized with the size of the segment transferred, at each segment.
The ErrorCode field is is only initialized at the first segment with the value 1 (read) or 2 (write).
The value that is returned to the ErrorCode indicator of the VI is the value that may be updated by
the user-defined function before acknowledging the LAST segment. If the user-defined function
does not update the Error Code, the same value (1 for reads, and 2 for writes) is returned back to
the PC.

Note: The kernel AND the DSP code of the user-defined function must be loaded and executing
for this Vi to be functional.

Note: The MemSpace control of the VI is not used. The user-defined function performs the type
of access that is coded within the function regardless of the value of MemSpace.

Note: The value of the R/~W indicator is reflected by the contents of the ErrorCode field of the
mailbox at the entry of the user-defined function. For reads, the value is 1, for writes the value is
2.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• DataIn: data words to be written to DSP memory. DataIn must be wired, even for

a read, to specify the data type to be transferred.
• MemSpace: Not used
• DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used

if Symbol is empty or left unwired. DSPAddress is written to the TransferAddress field of the
mailbox before the first call of the user-defined DSP function (the call corresponding to the
first segment). DSPAddress is not required to represent a valid address. It may be used to
transmit an application-specific code (a FIFO number for instance).

• 32-bitAlign: This control is provided for compatibility with other boards. On Signal
Ranger_mk2 the control has no effect as long as the byte-address provided is even (as it
must be).

 36

• Size: Only used for reads of array types, represents the size (in number of
items of the requested data type) of the array to be read from DSP memory. For Writes, the
whole contents of DataIn are sent to DSP memory, regardless of Size. When Size is wired,
the data can only be transferred as arrays, not scalars.

• Symbol: Character string of the symbol to be accessed. If Symbol is empty or
unwired, DSPAddress and MemSpace are used.

• Offset: Represents the offset of the data to be accessed, from the base address
indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of
the base address, and the offset. Offset is useful to access individual members of a structure,
or an array. If DSPAddress is used to transport application-specific data, Offset should not be
connected.

• R/~W: Boolean indicating the direction of transfer (true->read, false->write).
• BranchLabel: Character string corresponding to the label of the user-defined function. If

BranchLabel is empty or unwired, BranchAddress is used instead.
• BranchAddress: Physical base DSP address for the user-defined function.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.

Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• DataOut: Data read from DSP memory.
• Real DSPAddress: Actual address where the transfer took place. This address takes into

account the resolution of Symbol (if used), and the effect of Offset.
• ErrorCode: The value that is returned through the ErrorCode indicator is the value

that is updated by the user-defined DSP function before acknowledging the LAST segment
transferred. If the user function does not update the Error Code, the function returns 1 for
reads, and 2 for writes.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_HPI_Move_Offset
This VI is similar to SR2_Base_Bulk_Move_Offset, except that is relies on the hardware of the
HPI, rather than the kernel to perform the transfer.
Transfers are limited to the on-chip RAM that is directly accessible via the HPI (byte-addresses
00C0H to FFFFH). The MemSpace control is not used. This VI will perform transfers into and out
of the data and program space. This VI will transfer to any address accessible via the HPI,
regardless of memory space. The on-chip I/O space is not accessible. If an attempt is made to
write data outside the allowed range, the data is not written. If an attempt is made to read data
from outside the allowed range erroneous data is returned.

Note: The kernel does not need to be loaded or functional for this VI to execute properly. This
VI will complete the transfer even if the DSP has crashed, making it a good debugging tool.
Transfers with the HPI use the control pipe 0 instead of the fast bulk pipes used by
SR2_Base_Bulk_Move_Offset. The bandwidth for such transfers is typically low (500kb/s for USB
1.1). However it is guaranteed.

 37

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• DataIn: Data words to be written to DSP memory. DataIn must be wired, even for

a read, to specify the data type to be transferred.
• MemSpace: Memory space for the exchange (data, program or IO). MemSpace is

only used if Symbol is empty or left unwired.
Note: the memory space selection is not used. The actual transfer uses the hardware of the HPI,
regardless of the memory space selection.

• DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used

if Symbol is empty or left unwired.
• 32-bitAlign: This control is provided for compatibility with other boards. On Signal

Ranger_mk2 the control has no effect as long as the byte-address provided is even (as it
must be).

• Size: Only used for reads of array types, represents the size (in number of
items of the requested data type) of the array to be read from DSP memory. For Writes, the
whole contents of DataIn are written to DSP memory, regardless of Size. When Size is wired,
the data can only be transferred as arrays, not scalars.

• Symbol: Character string of the symbol to be accessed. If Symbol is empty or
unwired, DSPAddress is used.

• Offset: Represents the offset of the data to be accessed, from the base address
indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of
the base address, and the offset. Offset is useful to access individual members of a structure,
or an array.

• R/~W: Boolean indicating the direction of transfer (true->read, false->write).
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.

Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• DataOut: Data read from DSP memory.
• Real DSPAddress: Actual address where the transfer took place. This address takes into

account the resolution of Symbol (if used), and the effect of Offset.
• Error out: LabView instrument-style error cluster. Contains error number and

description.

SR2_Base_Resolve_UserSymbol
This Vi may be used to provide the address corresponding to a particular symbol in the symbol
table of the presently loaded DSP code. Used in conjunction with the data transfer Vis
(SR2_Base_Bulk_Move_Offset, SR2_Base_User_Move_Offset and
SR2_Base_HPI_Move_Offset) it allows more flexibility for choosing the actual transfer address.

 38

For instance the address may be transformed in an application-specific manner prior to the
transfer.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Symbol: Character string of the symbol to be accessed.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Index: This is the index of the symbol in the symbol table.
• Value: This is the resolution value of the symbol.
• MemSpace: This is the memory space for the symbol. Note that this value actually

reflects the “page number” that was used at link time for this symbol. For this number to
indicate a valid memory space, the symbol must be linked using the usual convention:
• 0 -> Program Space
• 1 -> Data Space
• 2 -> IO Space

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Base_Error Message
This Vi may be used to provide a text description of an error generated by a VI of the interface. It
is similar to a traditional LabVIEW Error Message VI, except that it contains all the error codes
that may be generated by the interface, in addition to normal LabVIEW error codes.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Type of Dialog: Selects one of 3 standard behaviours for error management.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Error Code: Provides the Error Code.

 39

• Error Message: Provides a text explanation of the error if one exists.
• Status: Boolean, indicates if there is an error (True) or not (False).
• Error out: LabView instrument-style error cluster. Contains error number and

description.

Flash Support Vis
These Vis are found in the SR2_Flash.llb library.
These Vis are provided to support Flash-programming operations. The Vis also cover Flash-
reading operations for symmetry. However, the SR2_Base_Bulk_Move_Offset VI can perfectly be
used to read the Flash, and does not require the presence of Flash support code.

SR2_Flash_InitFlash
This Vi downloads and runs the Flash support DSP code. The DSP is reset as part of the
download process. All DSP code is aborted. The Flash support code must be running in addition
to the kernel to support Flash programming Vis. The VI also detects the Flash, and if it finds one it
returns its size in kWords. If no Flash is detected, the size indicator is set to 0.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• FlashSize: This indicator returns the size of the Flash detected. If no Flash is
detected, it returns zero.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Flash_EraseFlash
This Vi erases the required number of 16-bit words from the Flash, starting at the selected
address. The erasure proceeds in sectors therefore more words may be erased that are actually
selected. For instance, if the starting address is not the first word of a sector, words before the
starting address will be erased, up to the beginning of the section. Similarly, if the last word
selected for erasure is not the last word of a section, additional words will be erased, up to the
end of the last selected sector. The erasure is such that the selected words, including the starting
address, are always erased.

Note: The sector size is 32 kwords.

Note: Erasure should only be attempted in the sections of the memory map that contain Flash.
Erasure attempts outside the Flash will fail.

 40

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• Starting Address: Address of the first word to be erased.
• Size: Number of words to be erased.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• Error out: LabView instrument-style error cluster. Contains error number and
description.

SR2_Flash_FlashMove
This VI reads or writes an unlimited number of data words to/from the Flash memory. Note that if
only Flash memory reads are required the VI SR2_Base_Bulk_Move_Offset should be used
instead (specifying program memory), since it does not require the presence of the Flash support
code.

The VI is polymorphic, and allows transfers of the following types:
• Signed 8-bit bytes (I8), or arrays of this type.
• Unsigned 8-bit bytes (U8), or arrays of this type.
• Signed 16-bit words (I16), or arrays of this type.
• Unsigned 16-bit words (U16), or arrays of this type.
• Signed 32-bit words (I32), or arrays of this type.
• Unsigned 32-bit words (U32), or arrays of this type.
• 32-bit floating-point numbers (float), or arrays of this type.
• Strings
These represent all the basic data types used by the C compiler for the DSP.
To transfer any other type (structures for instance), the simplest method is to use a “cast” to allow
this type to be represented as an array of U16 on the DSP side (cast the required type to an array
of U16 to write it to the DSP, read an array of U16 and cast it back to the required type for a
read).

An attempt to write outside of the Flash memory will result in failure.

The writing process can change ones into zeros, but not change zeros back into ones. If a write
operation is attempted that should result in a zero turning back into a one, then it results in failure.
Normally an erasure should be performed prior to the write, so that all the bits of the selected
write zone are turned back into ones.

Note: Contrary to previous generations of Flash devices that have been used in Signal Ranger
boards, the Flash device used in Signal_Ranger_mk2 cannot be incrementally programmed. This
means that a word location that has been previously programmed MUST be erased before
reprogramming. This is true even if the reprogramming operation is only intended to turn some of
the remaining “1s” into “0s”.

 41

In case of a write, if the accessed data type is an 8-bit type (I8, U8, or string), then an additional
byte is appended if the number of bytes to transfer is odd. This is required because native
transfers are 16-bit wide. The extra byte is set to FFH.

Since the VI is polymorphic, to read a specific type requires that this type be wired to the DataIn
input. This simply forces the type for the read operation.

Note: When reading or writing scalars, Size must be left unwired.

The DSP’s internal representation uses 16-bit words. When reading or writing 8-bit data, the
bytes represent the high and low parts of 16-bit memory registers. They are presented MSB first
and LSB next.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• DataIn: Data words to be written to Flash memory. DataIn must be wired, even

for a read, to specify the data type to be transferred.
• DSPAddress: Physical base DSP address for the transfer.
• 32-bitAlign: This control is provided for compatibility with other boards. On Signal

Ranger_mk2 the control has no effect as long as the byte-address provided is even (as it
must be).

• Size: Only used for reads of array types, represents the size (in number of
items of the requested data type) of the array to be read from DSP memory. For Writes, the
whole contents of DataIn are written to DSP memory, regardless of Size. When Size is wired,
the data can only be transferred as arrays, not scalars.

• R/~W: Boolean indicating the direction of transfer (true->read, false->write).
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.

Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• DataOut: Data read from Flash memory.
• Real DSPAddress: Actual address where the transfer took place. This address takes into

account the effect of Offset.
• Error out: LabView instrument-style error cluster. Contains error number and

description.

FPGA Support Vis
These Vis are found in the SR2_FPGA.llb library.

 42

SR2_FPGA_LoadConfiguration
This Vi downloads an “*.rbt” logic configuration file into the FPGA. The DSP is reset prior to the
download. All DSP code is aborted. The .rbt file must be valid, and must be correct for the
specified FPGA. Loading an invalid rbt file into an FPGA may damage the part.

Controls:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
• File path: This is the file path leading to the “.rbt” file describing the FPGA logic. A

dialog box is presented if the path is empty.
• Ctl Refnum: This is a refnum on the progress bar that is updated by the VI. This way,

a progress bar may be displayed on the front-panel of the calling VI.
• Error in: LabView instrument-style error cluster. Contains error number and

description of the previously running Vi.
Indicators:
• DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_Base_Open_Next_Avail_Board.vi
Use this output to propagate the reference number to other Vis.

• New file path: This is the file path where the “.rbt” file describing the FPGA logic was
found.

• Tools Version: ASCII chain indicating the version of the tools that were used to generate
the “.rbt” file.

• Design Name: ASCII chain indicating the name of the logic design.
• Architecture: ASCII chain indicating the type of device targeted by the “.rbt” file
• Device: ASCII chain indicating the device number targeted by the “.rbt” file
• Build Date: ASCII chain indicating the build date for the “.rbt” file
• Error out: LabView instrument-style error cluster. Contains error number and

description.

Error Codes
The following table lists the error codes that may be returned by the various Vis of the LabVIEW
interface.

Note: The list is not complete. Only the most usual codes are listed.

Error Nb Cause
00000002h Memory is full
00000003h Wrong memory zone accessed
00000004h End-of-file encountered
00000005h File already open
00000006h File I/O error
00000007h File not found
00000008h File permission error
00000009h Disk full

 43

0000000Ah Duplicate path
0000000Bh Too many files open
BFFC0804h No Board Detected
BFFC0805h Open board generate error
BFFC0806h Board info generate error
BFFC0807h Close board generate error
BFFC0808h DSP File not accessible
BFFC0809h Reset DSP generate error
BFFC0812h This DSP kernel is not for c5000
BFFC080Ah Unreset_DSP genrate error
BFFC080Bh DSP file not found
BFFC080Ch DSP file not valid
BFFC080Dh DSP file type not supported
BFFC080Eh DSP kernel does not compare
BFFC080Fh Write_hpi generate error
BFFC0810h Read_hpi generate error
BFFC0811h This DSP file is not for c5000
BFFC0813h Write and read test error
BFFC0814h DSP did not return… may have crashed
BFFC0815h Symbol not found in the table
BFFC0816h DSPInt generate error
BFFC0817h DSP Timeout
BFFC0818h Kernel not loaded
BFFC0820h Close driver error
3FFC0104h Error query not supported
BFFC0821h Open driver error
BFFC0822h Data move with kernel generates error
BFFC0823h Exec low level generates error
BFFC0824h Get pipe info generates error
BFFC0825h Reset DSP generates error
BFFC0826h HPI move generates error
BFFC0827h DSP int generates error
BFFC0828h Get configuration descriptor error
BFFC0829h Write Led generates error
BFFC082Ah Get device descriptor error
BFFC082Bh Read and write HPI control error
BFFC082Ch Change USB Timeout mode error
BFFC082Dh DSP code section does not check
BFFC082Eh FPGA file not valid
BFFC082Fh FPGA configuration aborted before the end
BFFC0830h Driver access error
BFFC0831h DSP family not recognized or board not open
BFFC0832h FPGA file not for target device family
BFFC0833h Section too large to fit in Flash
BFFC0834h DSP File may not be linked
BFFC0835h Section not aligned on an even byte address
BFFC0836h Erase Flash Error
BFFC0837h Write Flash Error

Example Code
Examples are provided to accelerate user development. These examples include the PC side,
and the DSP side of the code. On the DSP side, they include code written in assembly, as well as
code written in C. The LabVIEW side of these examples are contained in the LabVIEWDemo.llb
library in the main install directory. The DSP-side of these examples are zipped and stored in the
following directory:
C:\Program Files\ SignalRanger_mk2\Examples\LabVIEW_Examples_DSPCode\
LabviewInterfaceDemo.zip.
Simply unzip each file to deflate the corresponding example as well as documentation.

 44

C/C++ Interface.
This interface has been designed with C/C++ development in mind, and has only been tested on
the “.net” version of Microsoft’s Visual Studio. However, it may be possible to use it with other
development environments allowing the use of DLLs.
The C/C++ interface is provided in the form of a DLL called SRm2_HL.dll. Compared to the
LabVIEW interface, this interface provides a slightly more limited functionality. However, it covers
the essentials.

The aspects of the C/C++ interface that have been limited in comparison to the LabVIEW
interface are as follows:
• The LabVIEW interface provides polymorphic Vis to exchange data between the DSP and the

host PC. The C/C++ DLL only provides one function to exchange arrays of I16 (short) type.
This is not limiting because at low-level the transfers are performed using arrays of I16 data.
To exchange other types, the developer simply needs to cast these arrays of I16 data into
other types.

• The VI SR2_Base_Get_BoardInfo in the LabVIEW interface does not have an equivalent in
the C/C++ interface.

• The VI SR2_Base_ErrorMessage in the LabVIEW interface does not have an equivalent in
the C/C++ interface.

To work at run-time, this DLL requires that the following files, be in the same directory as the
user-mode application that uses it:
• SRm2_HL.dll - The main DLL supporting the API
• SRanger2.dll - A low-level support DLL
• SR2Kernel_HostDownload.out - The “Host-Download” DSP kernel code
• SR2Kernel_PowerUp.out - The “Power-Up” DSP kernel code
• SR2_Flash_Support.out - The Flash Support DSP code
• SR2_FPGA_Support.out - The FPGA support DSP code

Furthermore, the LabVIEW 7.1 run-time engine must be installed on the computer that needs to
use the DLL. The LabVIEW 7.1 run-time engine is installed automatically by the software
installation described at the beginning of this document. However, if the user wants to deploy an
application using the C/C++ interface, which is required to run on computers other than those on
which it was developped, the LabVIEW 7.1 run-time engine should be installed separately on
those computers. A run-time engine installer is available for free from the National Instruments
web site www.ni.com.

An example is provided, which covers the development of code in Visual C/C++. This example is
discussed at the end of this chapter.

Execution Timing And Thread Management
Two functions of the SRm2_HL DLL accessing the same Signal_Ranger_mk2 board cannot
execute concurrently. The previous function must have completed before a new one can be
called. Care should be taken in multi-threaded environments to ensure that all functions of the
interface accessing the same board do not run at the same time (in different threads). The
simplest method is to ensure that functions accessing the same board are executed in the same
thread. However, functions of the interface accessing different boards can be called concurrently.
All the functions of the interface perform an access to a Signal_Ranger_mk2 board via its USB
2.0 connection. The timing parameters (access time and throughput) depend a lot on the type of
connection (Full-Speed or High-Speed), and on the type of USB Host-Controller software on the
PC. They also depend to some extent on the USB traffic with other peripherals that may be
connected to the same USB root (Printer, Modem, Hard-Disk, Web-Cam…etc.), as well as on the
speed of the PC. Note that some of these other peripherals may use a large amount of the

 45

http://www.ni.com/

available USB bandwidth, and may lower the effective data transfer performance between the PC
and the Signal_Ranger_mk2 DSP board. USB bandwidth is shared among all the USB
peripherals connected to the same USB controller.
The Signal_Ranger_mk2 board has a USB 2.0 port. It connects at High-Speed (480mb/s) on any
USB 2.0-capable root or hub. It connects at Full-Speed (12Mb/s) on any root or hub that is only
USB 1.1-capable.
All the functions of the SRm2_HL DLL are blocking. This means that they do not return until the
requested action has been performed on the board.
None of the functions of the DLL can be blocked indefinitely. If the function cannot perform the
requested operation within a few seconds, a time-out occurs and the function returns with a non-
zero error code.

Further details about transfer speed benchmarks can be found in the Under the Hood – USB
Benchmarks section.

Calling Conventions
The functions are called using the C calling conventions, rather than the standard Windows API
(Pascal) conventions.
All the functions return a USB Error Code in the form of a 32-bit signed integer (long). This error
code is zero if no error occurred. If it is non-zero, its value indicates the type of error. The Error
Codes section lists the error codes. They are the same for the C/C++ interface as for the
LabVIEW interface.
Whenever a function must return a number, array or string, the corresponding space (of sufficient
size) must be allocated by the caller, and a reference to this space must be passed to the
function.
Whenever a function must return an element of variable size (an array or a string), the size of the
element that has been allocated by the caller is also passed to the function. This size argument is
the argument immediately following the pointer to the array or string in the calling line.

Building A Project Using Visual C++ “.Net”
To build a project using Visual C++ “.net” the following guidelines should be followed. An example
is provided to accelerate the learning curve.
• If the project is linked statically to the SRm2_HL.lib library, it must be loaded using the

DELAYLOAD function of Visual C++. To use DELAYLOAD, add delayimp.lib to the project (in
Visual C++ “.net” it can be found in Program Files\Microsoft Visual Studio .NET
2003\Vc7\lib\); in Project Properties, under Linker\Command Line\Additional Options, add the
command /DELAYLOAD:SRm2_HL.dll.

• Alternately, the DLL may be loaded dynamically using LoadLibrary and DLL functions must
be called using GetProcAddress. Do not link statically with the SRm2_HL.lib library without
using the DELAYLOAD function.

• Add #include "SRm2_HL.h" in the main.
• If using the DELAYLOAD function to link statically to the SRm2_HL.lib library, add

SRm2_HL.lib to the project.
• The following files must be placed in the folder containing the project sources:

• extcode.h
• fundtypes.h
• platdefines.h
• SRm2_HL.lib

Notes: All these files are found with the example that is provided. See example section below.

 46

Exported Interface Functions

SR2_DLL_Open_Next_Avail_Board
long __cdecl SR2_DLL_Open_Next_Avail_Board(char Driver_ID[],
 unsigned short ForceReset, unsigned short idVendor_Restrict,
 unsigned short idProduct_Restrict, char HardRev_Restrict[],

long *BoardRef);

Description:
This function performs the following operations:
• Tries to find a DSP board with the selected driver ID that is connected, but presently free, on

the PC.
• If it finds one, creates an entry in the Global Board Information Structure.
• Waits for the Power-Up kernel to be loaded on the board.
• If “ForceReset” is true, forces DSP reset, then reloads the Host-Download kernel.
• Places the symbol table of the present kernel in the “Global Board Info” structure.

Inputs:
• Driver ID: This is a character string representing the base name for the selected

board. For instance for Signal Ranger_mk2 boards, this string must be set to SRm2_.
• ForceReset: Set to 1 to reset the DSP and load the Host-Download kernel. In this case

all previously running code is aborted. Set to 0 to leave the DSP undisturbed. In this case, the
code that may be already running (code launched by the Power-Up kernel for instance)
continues running.

• idVendor_Restrict: This argument is used to restrict the access by Vendor ID. If this
control non-zero, the access is restricted to the boards having the selected Vendor ID. Set to
zero to avoid restriction.

• idProduct_Restrict: This argument is used to restrict the access by Product ID. If this
control non-zero, the access is restricted to the boards having the selected Product ID. Set to
zero to avoid restriction.

• HardRev_Restrict: This argument is used to restrict the access by the firmware
revision of the USB controller. If this string is not empty, the access is restricted to the boards
having the selected string for a hardware revision. Leave the string empty to avoid restriction.

Outputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the in

Global Board Information Structure. All other interface functions use this number to access
the proper board.

Note: The handle that the driver provides to access the board is exclusive. This means that only
one application, or process, at a time can open and manage a board. A consequence of this is
that a board cannot be opened twice. A board that has already been opened using the
SR2_DLL_Open_Next_Avail_Board function cannot be opened again until it is properly closed
using the SR2_DLL_Close_BoardNb function. This is especially a concern when the application
managing the board is closed under abnormal conditions. If the application is closed without
properly closing the board. The next execution of the application will fail to find and open the
board, simply because the corresponding driver instance is still open.

SR2_DLL_Close_BoardNb
long __cdecl SR2_DLL_Close_BoardNb(long BoardRef);

Description:
This function Closes the instance of the driver used to access the board, and deletes the
corresponding entry in the Global Board Information Structure. Use it after the last access to the
board has been made, to release Windows resources that are not used anymore.

 47

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board

Outputs:
N/A

SR2_DLL_Complete_DSP_Reset
long __cdecl SR2_DLL_Complete_DSP_Reset(long BoardRef);

Description:
This function performs the following operations:
• Temporarily flashes the LED orange
• Resets the DSP
• Reinitializes HPIC
• Loads the Host-Download kernel
These operations are required to completely take control of a DSP that is executing other code or
has crashed. The complete operation takes 500ms.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board

Outputs:
N/A

SR2_DLL_WriteLeds
long __cdecl SR2_DLL_WriteLeds(long BoardRef, unsigned short LedState);

Description:
This function allows the selective activation of each element of the bi-color Led.
• Off
• Red
• Green
• Orange

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.
• LedState: This enum control specifies the state of the LEDs (0->Off, 1->Red, 2-

>Green, 3->Orange).

Outputs:
N/A

SR2_DLL_Read_Error_Count
long __cdecl SR2_DLL_Read_Error_Count(long BoardRef,

 unsigned char *Error_Count);

Description:
The hardware of the USB controller contains an error counter. This 4-bit circular counter is
incremented each time the controller detects a USB error (because of noise or other reason).

 48

The contents of this counter may be read periodically to monitor the health of the USB
connection. Note that a USB error usually does not lead to a failed transaction. The USB protocol
will retry packets that contain errors up to three times in a single transaction.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.

Outputs:
• Error_Count: This is the value contained in the counter (between 0 and 15).

SR2_DLL_Clear_Error_Count
long __cdecl SR2_DLL_Clear_Error_Count(long BoardRef);

Description:
This function is provided to clear the 4-bit USB error counter.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.

Outputs:
N/A

SR2_DLL_Load_User
long __cdecl SR2_DLL_Load_User(long BoardRef, char file_path[],
 unsigned long *EntryPoint);

Description:
This function loads a user DSP code into DSP memory. If file_path is empty, a dialog box is used.
The kernel has to be loaded prior to the execution of this function. The DSP is reset prior to the
load. After loading the code, the symbol table is updated in the Global Board Information
Structure.
The function checks if the type of COFF file is right for the target DSP. If not an error is
generated.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.
• File path: This is the file path leading to the COFF (.out) file of the DSP user code.

A dialog box is presented if the path is empty.

Outputs:
• EntryPoint: This is the address in DSP memory where execution should begin.

SR2_DLL_Load_UserSymbols
long __cdecl SR2_DLL_Load_UserSymbols(long BoardRef, char file_path[]);

Description:
This function loads the symbol table in the Global Board Information Structure. If file_path is
empty, a dialog box is used. Usually, this function is used to gain symbolic access when code is
already loaded and running on the DSP (for instance code that was loaded at power-up). It is not
necessary to load symbols after executing SR2_DLL_Load_User, or SR2_DLL_LoadExec_User,
since both functions update the symbol table automatically.

 49

The function checks if the type of COFF file is right for the target DSP. If not an error is
generated.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.
• File path: This is the file path leading to the COFF (.out) file of the DSP user code.

A dialog box is presented if the path is empty.

Outputs:
N/A

SR2_DLL_LoadExec_User
long __cdecl SR2_DLL_LoadExec_User(long BoardRef, char file_path[],
 unsigned long *EntryPoint, unsigned short *ErrorCode);

Description:
This function loads a user DSP code into DSP memory and runs it from the address of the entry
point found in the COFF file. If file_path is empty, a dialog box is used. The kernel has to be
loaded prior to the execution of this function. The DSP is reset prior to beginning the load. After
loading the code, the symbol table is updated in the Global Board Information Structure.
The function checks if the type of COFF file is right for the target DSP. If not an error is
generated.
After completing the branch, the USB controller and the function wait for an acknowledge from
the DSP, to complete its execution. If this signal does not occur within 5s, the function will abort
and return an error. Normally the DSP code that is launched by this function should acknowledge
the branch by asserting the HINT signal (see section about the DSP Communication Kernel).

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.
• File path: This is the file path leading to the COFF (.out) file of the DSP user code.

A dialog box is presented if the path is empty.

Outputs:
• EntryPoint: This is the address in DSP memory where execution should begin.
• ErrorCode: This is the error code, or completion code, returned by the user DSP

function that is executed (function residing at the entry point). The kernel documentation
mentions that the DSP function that is called (the entry function in this case) should contain
an acknowledge to signal that the branch has been taken. Just prior to sending the
acknowledge, the user DSP code has the opportunity to modify the ErrorCode field in the
mailbox. This error code is sent back to the PC by the USB controller after it has received the
acknowledge from the DSP. This error code is completely user-application-specific. It does
not need to be managed by the interface. If the DSP code does not modify the Error Code,
zero is returned.

SR2_DLL_K_Exec
long __cdecl SR2_DLL_K_Exec(long BoardRef, char Symbol[],
 unsigned long DSPAddress, unsigned short *ErrorCode);

Description:
This function forces execution of the DSP code to branch to a specified address, passed in
argument. If Symbol is not empty, the function searches in the symbol table for the address
corresponding to the symbolic label. If the symbol is not found, an error is generated. If Symbol is
an empty string, the value passed in DSPAddress is used as the entry point.

 50

The kernel must be loaded and executing for this function to work.
After completing the branch, the USB controller and the function wait for an acknowledge from
the DSP, to complete its execution. If this signal does not occur within 5s, the function will abort
and return an error. Normally the DSP code that is launched by this function should acknowledge
the branch by asserting the HINT signal (see section about the DSP Communication Kernel).

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.
• Symbol: Character string of the symbol to be accessed. If Symbol is empty,

DSPAddress is used instead.
• DSPAddress: Physical branch address. It is used if for the branch if Symbol is empty.

Outputs:
• ErrorCode: This is the error code, or completion code, returned by the user DSP

function that is executed (function residing at the entry point). The kernel documentation
mentions that the DSP function that is called (the entry function in this case) should contain
an acknowledge to signal that the branch has been taken. Just prior to sending the
acknowledge, the user DSP code has the opportunity to modify the ErrorCode field in the
mailbox. This error code is sent back to the PC by the USB controller after it has received the
acknowledge from the DSP. This error code is completely user-application-specific. It does
not need to be managed by the interface. If the DSP code does not modify the Error Code,
zero is returned.

SR2_DLL_Bulk_Move_Offset_I16
long __cdecl SR2_DLL_Bulk_Move_Offset_I16(long BoardRef,
 unsigned short ReadWrite, char Symbol[], unsigned long DSPAddress,
 unsigned short MemSpace, unsigned long Offset, short Data[],

long Size, unsigned short *ErrorCode);

Description:
This function reads or writes an unlimited number of data words to/from the program, data, or I/O
space of the DSP, using the kernel. This transfer uses bulk pipes. The bandwidth is usually high
(up to 22Mb/s for USB 2).

The DSP address and memory space of the transfer are specified as follows:
• If Symbol is wired, and the symbol is represented in the symbol table, then the transfer

occurs at the address and memory space corresponding to Symbol. Note that Symbol must
represent a valid address. Also, the DSP COFF file must be linked with the usual page
number convention:
• Program space = page number 0
• Data space = page number 1
• IO space = page number 2
All other page numbers are accessed as data space.

• If Symbol is unwired, then DSPAddress is used as the byte-address for the transfer, and
MemSpace is used as the memory space. Note that DSPAddress is required to be even, to
point to a valid 16-bit word (see section about Address Specification).

• The value of Offset is added to DSPAddress. This functionality is useful to access individual
members of structures or arrays on the DSP. Note that the value of Offset is always counted
in bytes (just as DSPAddress it is a byte-address offset, required to be even). This is required
to access an individual member of an heterogeneous structure.

Note: The kernel must be loaded and executing for this function to work.

 51

Note: Data is transferred between the PC and DSP in atomic blocks of 32 (Full-Speed USB
connection) or 256 (High-Speed USB connection) words. To achieve this, the kernel function that
performs the block transfer disables interrupts during the transfer. The time it takes to transfer 32
or 256 words of data to the DSP’s on-chip RAM is usually very short. However, it may take much
longer (up to 240ns/word) if the transfer is performed to or from SDRAM. In this case, the transfer
time may be so long that it interferes with the service of other interrupts in the system. This can
be a factor especially when the USB connection is high-speed, because in this case the block
size is large (256 words). If this is the case, and transfer atomicity is not required, then a custom
DSP function should be used to handle the transfer, instead of than the standard kernel function
that is instantiated by SR2_DLL_Bulk_Move_Offset_I16. Such a custom transfer function can be
called by the SR2_DLL_User_Move_Offset_I16. Another way to handle this case would be to
split the transfer at high-level so that only small blocks are transferred at a time.

Note: Data is transferred between the PC and DSP in atomic blocks of 32 (Full-Speed USB
connection) or 256 (High-Speed USB connection) words. However, this is only the case if the
transfer does not cross a 64k words boundary. If the transfer does cross a boundary, the transfer
is split at high-level so that both halves of the transfer occur in the same 64k page. In this
condition the transfer loses its “atomicity”.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board
• ReadWrite: Indicates the direction of transfer (1->read, 0->write).
• Symbol: Character string of the symbol to be accessed. If Symbol is empty,

DSPAddress and MemSpace are used instead.
• DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used

if Symbol is empty.
• MemSpace: Memory space for the exchange (0-> program, 1->data or 2->IO).

MemSpace is only used if Symbol is empty.
• Offset: Represents the offset of the data to be accessed, from the base address

indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of
the base address and the offset. Offset is useful to access individual members of a structure,
or an array.

• Size: Represents the size of the allocated Data array, as well as the number of
elements to read or write.

Outputs:
• ErrorCode: This is the error code returned by the kernel function that is executed.

Kernel reads always return a completion code of 1; kernel writes always return a completion
code of 2. This error code is different from the USB_Error_Code that is returned by the
function.

In/Outs:
• Data: Data words to be read from or written to DSP memory. For a read, the

caller must allocate the Data array prior to the call.

SR2_DLL_User_Move_Offset_I16
long __cdecl SR2_DLL_User_Move_Offset_I16(long BoardRef,

 unsigned short ReadWrite, char Symbol[],
unsigned long DSPAddress, unsigned long Offset,
char BranchLabel[], unsigned long BranchAddress,

 short Data[], long Size, unsigned short *ErrorCode);

Description:

 52

This function is similar to SR2_DLL_Bulk_Move_Offset, except that it allows a user-defined DSP
function to replace the intrinsic kernel function that SR2_DLL_Bulk_Move_Offset uses.
The operation of the USB controller and the kernel allows a user-defined DSP function to override
the intrinsic kernel functions (see kernel documentation below). For this, the user-defined DSP
function must perform the same actions with the mailbox as the intrinsic kernel function would
(kernel read or kernel write). This may be useful to define new transfer functions with application-
specific functionality. For example, a function to read or write a FIFO could be defined this way. In
addition to the data transfer functionality, a FIFO read or write function would also include the
required pointer management that is not present in intrinsic kernel functions.

Accordingly, SR2_DLL_User_Move_Offset includes two controls to define the entry point of the
function that should be used instead of the intrinsic kernel function.
When the user-defined function is called, the mailbox contains:
• The BranchAddress field is set to the entry point of the function. This field is not normally

used directly by the DSP function. It is set to its entry point, leading to its execution.
• The TransferAddress field. It is set to the address corresponding to Symbol, if Symbol is

used, or to the user-defined 32-bit number DSPAddress if Symbol is empty. Note that this
field is not required to contain a valid address. For instance in the case of a FIFO
management function, it could be a FIFO number instead.

• The NbWords field. This 16-bit number represents the number of words to transfer. It is
always between 1 and 32 (Full-Speed USB connection), or between 1 and 256 (High-Speed
USB connection). This represents the size of the data field of the mail-box.

• The ErrorCode field. It is set to 1 for reads, and to 2 for writes.
• In the case of a write transfer, from 1 to 32 words, as indicated by NbWords, (1 to 256 words

for a High-Speed USB connection) have been written to the data field of the mailbox by the
USB controller prior to the DSP function call.

The user-defined function should perform its function. If it is a read, it should read the required
number of words from the data field of the mailbox. Then it should update the mailbox with the
following:
• If it is a write it should provide the required number of words to the Data field of the mailbox.
• Then it may update the ErrorCode field of the mailbox with a completion code that is

appropriate for the situation (this is the error code that is returned as the ErrorCode indicator
of the VI).

After this, the user-defined function should simply send an acknowledge.

A transfer of a number of words greater than 32 (greater than 256 for a High-Speed USB
connection) is segmented by the interface into as many 32-word (256-word) transfers as required.
The user-defined function is called at every new segment. If the total number of words to transfer
is not a multiple of 32 (256), the last segment contains the remainder.

The TransferAddress field of the mailbox is only initialized at the first segment. The user-defined
function may choose to increment it to point to successive addresses (this is what the intrinsic
kernel functions do), or may choose to leave it untouched (this would be appropriate if the field
contains a FIFO number for instance). The way this field is managed is completely application-
specific.

Note: If TransferAddress is used to transport information other than a real transfer address, the
following restrictions apply:
• The total size of the transfer must be smaller or equal to 32768 words. This is because

transfers are segmented into 32768-word transfers at a higher level. The information in
TransferAddress is only preserved during the first of these higher-level segments. At the next
one, TransferAddress is updated as if it were an address to point to the next block.

• The transfer must not cross a 64 kWord boundary. Transfers that cross a 64 kWord boundary
are split into two consecutive transfers. The information in TransferAddress is only preserved

 53

during the first of these higher-level segments. At the next one, TransferAddress is updated
as if it were an address to point to the next block

• TransferAddress must be even. It is considered to be a byte-address, consequently its bit 0 is
masked at high-level.

The NbWords field is initialized with the size of the segment transferred, at each segment.
The ErrorCode field is is only initialized at the first segment with the value 1 (read) or 2 (write).
The value that is returned to the ErrorCode indicator of the VI is the value that may be updated by
the user-defined function before acknowledging the LAST segment. If the user-defined function
does not update the Error Code, the same value (1 for reads, and 2 for writes) is returned back to
the PC.

Note: The kernel AND the DSP code of the user-defined function must be loaded and executing
for this Vi to be functional.

Note: The value of the R/~W indicator is reflected by the contents of the ErrorCode field of the
mailbox at the entry of the user-defined function. For reads, the value is 1, for writes the value is
2.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board
• ReadWrite: Indicates the direction of transfer (1->read, 0->write).
• Symbol: Character string of the symbol to be accessed. If Symbol is empty,

DSPAddress is used instead.
• DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used

if Symbol is empty.
• Offset: Represents the offset of the data to be accessed, from the base address

indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of
the base address and the offset. Offset is useful to access individual members of a structure,
or an array.

• BranchLabel: Character string corresponding to the label of the user-defined function. If
BranchLabel is empty, BranchAddress is used instead.

• BranchAddress: Physical base DSP address for the user-defined function.
• Size: Represents the size of the allocated Data array, as well as the number of

elements to read or write.

Outputs:
• ErrorCode: This is the error code returned by the user function that is executed. This

error code is different from the USB_Error_Code that is returned by the function.

In/Outs:
• Data: Data words to be read from or written to DSP memory. For a read, the

caller must allocate the Data array prior to the call.

SR2_DLL_HPI_Move_Offset_I16
long __cdecl SR2_DLL_HPI_Move_Offset_I16(long BoardRef,

 unsigned short ReadWrite, char Symbol[],
unsigned long DSPAddress, unsigned short MemSpace, unsigned
long Offset, short Data[], long Size);

Description:

 54

This function is similar to SR2_DLL_Bulk_Move_Offset, except that is relies on the hardware of
the HPI, rather than the kernel to perform the transfer.
Transfers are limited to the on-chip RAM that is directly accessible via the HPI (byte-addresses
00C0H to FFFFH). The MemSpace control is not used. This VI will perform transfers into and out
of the data and program space. This VI will transfer to any address accessible via the HPI,
regardless of memory space. The on-chip I/O space is not accessible. If an attempt is made to
write data outside the allowed range, the data is not written. If an attempt is made to read data
from outside the allowed range erroneous data is returned.

Note: The kernel does not need to be loaded or functional for this function to execute properly.
This function will complete the transfer even if the DSP has crashed, making it a good debugging
tool.
Transfers with the HPI use the control pipe 0 instead of the fast bulk pipes used by
SR2_DLL_Bulk_Move_Offset. The bandwidth for such transfers is typically low (500kb/s for USB
1.1). However it is guaranteed.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board
• ReadWrite: Indicates the direction of transfer (1->read, 0->write).
• Symbol: Character string of the symbol to be accessed. If Symbol is empty,

DSPAddress and MemSpace are used instead.
• DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used

if Symbol is empty.
• MemSpace: Memory space for the exchange (0-> program, 1->data or 2->IO).

MemSpace is only used if Symbol is empty.
• Offset: Represents the offset of the data to be accessed, from the base address

indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of
the base address and the offset. Offset is useful to access individual members of a structure,
or an array.

• Size: Represents the size of the allocated Data array, as well as the number of
elements to read or write.

Outputs:
N/A

In/Outs:
• Data: Data words to be read from or written to DSP memory. For a read, the

caller must allocate the Data array prior to the call.

SR2_DLL_Resolve_UserSymbol
long __cdecl SR2_DLL_Resolve_UserSymbol(long BoardRef, char Symbol[],

 unsigned long *Value, unsigned short *MemSpace);

Description:
This function may be used to provide the address corresponding to a particular symbol in the
symbol table of the presently loaded DSP code. Used in conjunction with the data transfer
functions (SR2_DLL_Bulk_Move_Offset, SR2_DLL_User_Move_Offset and
SR2_DLL_HPI_Move_Offset) it allows more flexibility for choosing the actual transfer address.
For instance the address may be transformed in an application-specific manner prior to the
transfer.

Inputs:

 55

• BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board

• Symbol: Character string of the symbol to be accessed. If Symbol is empty,
DSPAddress and MemSpace are used instead.

• MemSpace: Memory space for the exchange (0-> program, 1->data or 2->IO).
MemSpace is only used if Symbol is empty.

Outputs:
• Value: This is the resolution value of the symbol.
• MemSpace: This is the memory space for the symbol. Note that this value actually

reflects the “page number” that was used at link time for this symbol. For this number to
indicate a valid memory space, the symbol must be linked using the usual convention:
• 0 -> Program Space
• 1 -> Data Space
• 2 -> IO Space

SR2_DLL_InitFlash
long __cdecl SR2_DLL_InitFlash(long BoardRef, double *FlashSize);

Description:
This function downloads and runs the Flash support DSP code. The DSP is reset as part of the
download process. All DSP code is aborted. The Flash support code must be running in addition
to the kernel to support Flash programming functions. The function also detects the Flash, and if
it finds one it returns its size in kWords. If no Flash is detected, the size indicator is set to 0.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board

Outputs:
• FlashSize: This indicator returns the size of the Flash detected in kWords. If no

Flash is detected, it returns zero.

SR2_DLL_EraseFlash
long __cdecl SR2_DLL_EraseFlash(long BoardRef,
 unsigned long StartingAddress, unsigned long Size);

Description:
This function erases the required number of 16-bit words from the Flash, starting at the selected
address. The erasure proceeds in sectors therefore more words may be erased that are actually
selected. For instance, if the starting address is not the first word of a sector, words before the
starting address will be erased, up to the beginning of the sector. Similarly, if the last word
selected for erasure is not the last word of a sector, additional words will be erased, up to the end
of the last selected sector. The erasure is such that the selected words, including the starting
address, are always erased.

Note: The sector size is 32 kwords.

Note: Erasure should only be attempted in the sections of the memory map that contain Flash.
Erasure attempts outside the Flash will fail.

Inputs:

 56

• BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.

• Starting Address: Address of the first word to be erased.
• Size: Number of words to be erased.

Outputs:
• N/A

SR2_DLL_FlashMove_I16
long __cdecl SR2_DLL_FlashMove_I16(long BoardRef,
 unsigned short ReadWrite, unsigned long DSPAddress,
 short DataIn[], long Size);

Description:
This function reads or writes an unlimited number of data words to/from the Flash memory. Note
that if only Flash memory reads are required the function SR2_DLL_Bulk_Move_Offset should be
used instead, since it does not require the presence of the Flash support code.

An attempt to write outside of the Flash memory will result in failure.

The writing process can change ones into zeros, but not change zeros back into ones. If a write
operation is attempted that should result in a zero turning back into a one, then it results in failure.
Normally an erasure should be performed prior to the write, so that all the bits of the selected
write zone are turned back into ones.

Note: Contrary to previous generations of Flash devices that have been used in Signal Ranger
boards, the Flash device used in Signal_Ranger_mk2 cannot be incrementally programmed. This
means that a word location that has been previously programmed MUST be erased before
reprogramming. This is true even if the reprogramming operation is only intended to turn some of
the remaining “1s” into “0s”.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board
• ReadWrite: Indicates the direction of transfer (1->read, 0->write).
• DSPAddress: Physical base DSP address for the exchange.
• Size: Represents the size of the allocated Data array, as well as the number of

elements to read or write.

Outputs:
• N/A

In/Outs:
• Data: Data words to be read from or written to Flash memory. For a read, the

caller must allocate the Data array prior to the call.

SR2_DLL_FPGA_LoadConfiguration
long __cdecl SR2_DLL_FPGA_LoadConfiguration(long BoardRef,
 char file_path[], char Tools_Version[], long lenTools,
 char Design_Name[], long lenDesign, char Architecture[],
 long lenArch, char Build_Date[], long lenBuild, char Device[],
 long lenDev);

 57

Description:
This function downloads an “*.rbt” logic configuration file into the FPGA. The DSP is reset prior to
the download. All DSP code is aborted. The .rbt file must be valid, and must be correct for the
specified FPGA. Loading an invalid rbt file into an FPGA may damage the part.

Inputs:
• BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR2_DLL_Open_Next_Avail_Board.
• file_path: This is the file path leading to the “.rbt” file describing the FPGA logic. A

dialog box is presented if the path is empty.
• lenTools: This is size of the string that has been allocated to contain the

Tools_Version output. A minimum of 60 characters must be allocated.
• lenDesign: This is size of the string that has been allocated to contain the

Design_Name output. A minimum of 60 characters must be allocated.
• lenArch: This is size of the string that has been allocated to contain the

Architecture output. A minimum of 60 characters must be allocated.
• lenBuild: This is size of the string that has been allocated to contain the Build_Date

output. A minimum of 60 characters must be allocated.
• lenDev: This is size of the string that has been allocated to contain the Device

output. A minimum of 60 characters must be allocated.

Outputs:
• Tools_Version: This string contains the Tools Version information found in the .rbt file. A

string of at least 60 Characters must be allocated by the caller prior to the call.
• lenDesign: This string contains the Design Name information found in the .rbt file. A

string of at least 60 Characters must be allocated by the caller prior to the call.
• lenArch: This string contains the Architecture information found in the .rbt file. A

string of at least 60 Characters must be allocated by the caller prior to the call.
• lenBuild: This string contains the Build Date information found in the .rbt file. A

string of at least 60 Characters must be allocated by the caller prior to the call.
• lenDev: This string contains the Device information found in the .rbt file. A string

of at least 60 Characters must be allocated by the caller prior to the call.

Error Codes
The following table lists the error codes that may be returned by the various functions of
SRm2_HL.dll.

Note: The list is not complete. Only the most usual codes are listed.

Error Nb Cause
00000002h Memory is full
00000003h Wrong memory zone accessed
00000004h End-of-file encountered
00000005h File already open
00000006h File I/O error
00000007h File not found
00000008h File permission error
00000009h Disk full
0000000Ah Duplicate path
0000000Bh Too many files open
BFFC0804h No Board Detected
BFFC0805h Open board generate error
BFFC0806h Board info generate error
BFFC0807h Close board generate error
BFFC0808h DSP File not accessible
BFFC0809h Reset DSP generate error

 58

BFFC0812h This DSP kernel is not for c5000
BFFC080Ah Unreset_DSP genrate error
BFFC080Bh DSP file not found
BFFC080Ch DSP file not valid
BFFC080Dh DSP file type not supported
BFFC080Eh DSP kernel does not compare
BFFC080Fh Write_hpi generate error
BFFC0810h Read_hpi generate error
BFFC0811h This DSP file is not for c5000
BFFC0813h Write and read test error
BFFC0814h DSP did not return… may have crashed
BFFC0815h Symbol not found in the table
BFFC0816h DSPInt generate error
BFFC0817h DSP Timeout
BFFC0818h Kernel not loaded
BFFC0820h Close driver error
3FFC0104h Error query not supported
BFFC0821h Open driver error
BFFC0822h Data move with kernel generates error
BFFC0823h Exec low level generates error
BFFC0824h Get pipe info generates error
BFFC0825h Reset DSP generates error
BFFC0826h HPI move generates error
BFFC0827h DSP int generates error
BFFC0828h Get configuration descriptor error
BFFC0829h Write Led generates error
BFFC082Ah Get device descriptor error
BFFC082Bh Read and write HPI control error
BFFC082Ch Change USB Timeout mode error
BFFC082Dh DSP code section does not check
BFFC082Eh FPGA file not valid
BFFC082Fh FPGA configuration aborted before the end
BFFC0830h Driver access error
BFFC0831h DSP family not recognized or board not open
BFFC0832h FPGA file not for target device family
BFFC0833h Section too large to fit in Flash
BFFC0834h DSP File may not be linked
BFFC0835h Section not aligned on an even byte address
BFFC0836h Erase Flash Error
BFFC0837h Write Flash Error

Example Code
An example is provided, including the PC side and the DSP side. This example may be found in
the following directory:
C:\Program Files\ SignalRanger_mk2\Examples\C_Examples\HLDLLCallExample.zip.
Simply unzip HLDLLCallExample.zip to deflate the example.
The example contains the following:
• A directory named UserFunctionDSPCode, which contains the DSP project and source code.
• A directory named TestHLDLL, which contains the Visual C++ .net project and source code.

Testing The Example Code
To test the example code, simply power-up the board and wait until its LED has turned green.
Then run the TestHLDLL.exe application found in the HLDLLCallExample\TestHLDLL\Debug
directory. The following figure shows the user-interface of the example application:

 59

Figure 5 C Example Application

Before attempting to run any of the tests, press the Make Connection button, and wait for the
application to return a zero error code. This first operation may take a few seconds, because it is
at this time that the SRm2_HL.dll DLL is loaded.
After a board connection has been successfully established, any test may be performed in any
order.
When all the tests have been performed press the Close Connection button to close the driver
and perform the necessary clean-up operations.
Then Pressing the Close button terminates the application.

Compile-Time Required Files
The following line must be present in the main source file:

include SRm2_HL.h

In the example it is placed at he beginning of the TestHLDLLDlg.cpp source file.
This include file itself includes the following files: extcode.h, fundtypes.h and platdefines.h,
All four files must be present in the same directory as TestHLDLLDlg.cpp for the compiler to build
the object code.
The SRm2_HL.lib and SRm2_HL.dll files must be present in the project directory.

Project Setup
To statically link with the SRm2_HL.dll do the following:

 60

• Go to the Add New Item To Project menu, and choose the SRm2_HL.lib file.
• Go to the Add New Item To Project menu, and choose the delayimp.lib to the project (in

Visual C++ “.net” it can be found in Program Files\Microsoft Visual Studio .NET
2003\Vc7\lib\).

• Go to the Project\Properties menu, choose Linker Options and click on Command Line. Add
the following linker command line:

/DELAYLOAD:SRm2_HL.dll

This command line delays the load of the DLL at run-time until the first call actually occurs. It
is required to the proper operation of the interface. Alternately, the DLL may be linked
dynamically (see Building a Project Using Visual C/C++ “.net”).

Run-Time Required Files
To insure the proper operation of any executable built, the following support files must be present
in the same directory as the executable:
• Sranger2.dll
• SRm2_HL.dll
• SR2_Flash_Support.out
• SR2_FPGA_Support.out
• SR2_Kernel_HostDownload.out
• SR2_Kernel_PowerUp.out

In addition, the following user-specific files must also be present:
• UserFunctionDSPCode.out. This is the DSP code required by the specific user application (in

this case the TestHLDLL.exe application).
• SR2_SelfTest.rbt. This is the FPGA logic required by the specific user application.

Note: Particular user-specific files may have a different name. These are the files that are
loaded by the example code.

Note: A specific FPGA logic may not be required. This example application loads this FPGA
logic to be able to test the FPGA.

Other Details
Other details of the implementation can be found in the source code (both DSP-side and PC-side)
in the form of comments.

DSP Code Development
When developing DSP code, two situations may arise:

• The DSP code is a complete application that is not intended to return to the previously

executing DSP code. This is usually the case when developing a complete DSP application in
C. In this case, the main of the DSP application is launched by a function called c_int00 that
is created by the compiler. When (if) the main returns, it goes back to a never-ending loop
within c_int00. It never returns to the code that was executing prior to this code.

• The DSP code is a simple function, intended to run, then return to the previously executing
DSP code (kernel or user-code). This process may be used to force the DSP to execute short
segments of code asynchronously from other code running on the DSP in the background.
The other code running in the background may either be the kernel or other user code that
has been launched previously.

 61

Several examples are provided to gain experience into the programming of the DSP board, and
its interface to a PC application. The examples directory contains examples of DSP code written
in C, as well as written in assembly. All DSP code developed for the Signal_Ranger_mk2 board
must comply with the following requirements.

Code Composer Studio Setup
The setup of Code Composer Studio should use a C55x simulator or emulator. Otherwise the
visual linker might not work as expected. If a simulator is used, we recommend using the C5502
“cycle-accurate” simulator. It is the closest to the physical DSP that is used on the board.

Project Requirements
In Code Composer Studio the project should be created for a C55x platform (NOT the C54x
platform).

C-Code Requirements
• When developing a function in C that will be launched by the K_Exec kernel process, and is

required to return to the previously executing code after its execution, the function must be
declared using the interrupt qualifier. This directs the compiler to protect the required DSP
registers on the stack, and to end the function with a RETI instruction, which properly
restores the context from the stack at completion. Furthermore, the function must include the
acknowledge macro (see code examples), which should be executed within 5s of the function
launch.

• When the function is not intended to return to the previously executing code (the main
function of a C project for instance), it is not required to be declared with the interrupt
qualifier. However, it still needs to contain the acknowledge within 5s of entry. The
acknowledge signals to the PC that the function has been successfully launched (see
sections on kernel for more details).

Assembly Requirements
• When developing a function in assembly that will be launched by the K_Exec kernel process,

and is required to return to the previously executing code after its execution, the function
must protect all the DSP registers that it uses on the stack. The function must end with a
RETI instruction, which properly restores the context from the stack at completion.
Furthermore, the function must include the acknowledge macro (see code examples), which
should be executed within 5s of the function launch.

• When the function is not intended to return to the previously executing code, it is not required
to protect the registers that it uses. However, it still needs to contain the acknowledge within
5s of entry. The acknowledge signals to the PC that the function has been successfully
launched (see sections on kernel for more details).

• When developing a code section in assembly, the .even directive must be used at the
beginning of the section. This insures that code sections always begin on an even byte-
address. This is not required when developing code in C, because the C-Compiler itself uses
the .even directive in the assembly code it generates. This requirement only applies to code
sections.

 62

Build Options

Compiler
• Basic : The Full Symbolic Debug option should be used. This option does not yield code

that is larger or less efficient in any way. However, it provides the symbolic information in the
“.out” file that is necessary to access the labels and variables from their symbolic names. In
particular the symbolic information regarding structures is only provided in the “.out” file if this
option is used.

• Advanced: The Processor version (-v) field must be initialized with 5502. This way, the code
is optimized for the TMS320VC5502 DSP. There are some platforms in the C55x family that
do not have the full instruction set of the C5502. In addition, when a specific platform is not
indicated, the compiler may need to work around silicon bugs that are not present in the
C5502, but may be present in other DSPs in the same family, thereby creating less efficient
code.

• For versions of Code Composer Studio 3 and up, the new DWARF format is used to store
debug information in the COFF file. In order to have access to structure member information,
the “–-symdebug:coff” compiler option must be used. Simply insert the “–-
symdebug:coff” option at the end of the compiler command line.

Required Modules

Real-Time-Support
For a DSP code written in C, the rts55.lib or rts55x.lib (depending on the memory model) should
be added to the project files.

Interrupt Vectors
• If the project uses interrupts, the vectors.asm module should be added to the project. The

template file that is provided with the examples should be used as an example to generate an
interrupt vector table that provides the vectors for the user code. Simply modify the table as
required for the vectors that should be implemented.

• Do not modify the values of the following symbols:
• ISRKernel
• _RESET_K

• Do not modify the DSPINT interrupt vector. This would crash the DSP kernel that uses the

interrupt.
• Do not add an interrupt vector for the last interrupt (TRAP #31). This vector has been

intentionally omitted from the table because the kernel modifies it dynamically. Initializing this
vector would crash the kernel as soon as the vector table is loaded.

• If no interrupts other than DSPInt and Trap #31 (the interrupts used by the kernel) are used in

the project, it would normally not be required to provide a vectors section. Indeed, the vectors
of the interrupts used by the kernel are already initialized when the user takes control of the
DSP. However, it may be preferable to always include a vectors section for the reason
explained below.

Note that for projects written in C, a default vectors section is automatically included in the
rts55.lib or rts55x.lib if the project does not already define one. This default vectors section is not
compatible with the kernel and should never be used. The easiest way to avoid this default
vectors section is to include a user-defined vectors section that contains at least the proper
vectors for the operation of the kernel. Simply include the template file that is provided with the

 63

software installation in the project. This problem only occurs in projects that include the rts55.lib
or rts55x.lib. This is generally only the case for projects written in C/C++.

Link Requirements

Memory Description File
To link the code using the visual linker, use the Signal_Ranger_mk2.mem description file. This
file describes the memory map of the Signal Ranger_mk2 board. It includes the address ranges
that are reserved and should not be modified.

Vectors Section
The vectors section must be placed in the Vectors memory range, between byte addresses 100H
and 1FFH. Notice that the vectors section is a little bit smaller than the Vectors memory range.
This is because the vector for the TRAP #31 that is used by the kernel has been intentionally
omitted from the section (see above). Be sure to not load anything in this little space at the end of
the section as this would interfere with the operation of the kernel and most likely would crash the
kernel during the load of the DSP code.

Unused_ISR Section
The small Unused_ISR section provides a simple RETI for all the interrupts that are not used.
This way, if such an ISR is triggered, it harmlessly returns to the user code immediately upon
being triggered. This small section can be loaded anywhere with the rest of the code. It must
never be loaded at the end of the vectors section.

Global Symbols
Only the global symbols found in the DSP “.out” file are retained in the symbol table. This means
that to allow symbolic access to the software interface, variables declared in C should be
declared global (outside all blocks and functions, and without the static keyword). Variables and
labels declared in assembly (function entry points for instance) should be declared with the
assembly directive .global.

Preparing Code For “Self-Boot”
The on-board Flash circuit may be programmed to load DSP code and/or FPGA logic at power-
up, and to launch the execution of the specified DSP code. More information about DSP and
FPGA Flash boot tables is located in the following sections.
Once DSP code and/or FPGA logic have been developed and tested under control of the PC
(possibly using the mini-debugger), they may be programmed into Flash using the appropriate
functions of the mini-debugger.

The DSP code loaded in Flash must contain an acknowledge (see examples) at its beginning,
within 5s of execution, even when the code is launched from Flash. Usually, when developing in
C, this acknowledge is placed in the first lines of the main function.
Failure to include the acknowledge does not cause the DSP code to crash. However, it does
cause the USB controller to fail to recognize that the Power-Up kernel has been loaded. In this
circumstance it is necessary to reset the board in order to gain access from the PC. This reset in
turn would cause the boot-loaded DSP code to abort.

Note: The Acknowledge is also required for code that is written to be loaded directly from the
PC and executed using the SR2_K_Exec.vi interface VI, or using the Exec button of the mini-
debugger. Therefore DSP code that has been developed and tested using the mini-debugger, or

 64

code that is usually downloaded and executed from the PC should normally be ready to be
programmed into the boot-table “as is”.

More information about the acknowledge command may be found in the following sections about
the kernels.

To allow the DSP code programmed into Flash to boot properly, its entry point must be properly
defined in the link. This is not an absolute requirement for code that is loaded from the PC.
Indeed, Code loaded from the PC may be launched from any existing label, or even an arbitrary
address, using either the mini-debugger or the LabVIEW or C/C++ interfaces. However, the boot-
loader that executes from the kernel only launches code from the defined entry point. If none is
defined, the DSP code will most likely crash at power-up.

Mini-Debugger
The mini-debugger allows the developer to interactively:
• Reset the Signal Ranger mk2 board.
• Download a DSP executable file to DSP memory, or use the symbols of a DSP code already

in memory.
• Launch the execution of code from a specified address or from a symbolic label.
• Read and write CPU registers.
• Read and write DSP memory with or without symbolic access.
• Clear, program and verify the Flash memory.
• Interactively download an FPGA logic file into the FPGA

The mini-debugger can be used to explore the DSP’s features, or to test DSP code during
development.
The mini-debugger is simply a user-interface shell that leverages the capabilities of the PC
interface libraries to allow the developer to observe and modify DSP memory in real time, while
the DSP code is running. Since these are the very same libraries that are provided to develop PC
applications that use the board, the transition between debugging and field deployment is
completely seamless.

 65

Figure 6 User Interface of the Mini-Debugger

Description Of The User Interface
• Board id This is a text field where the prefix of the board driver ID should be typed. The

mini-debugger actually supports several related DSP boards. This field is used to indicate the
type of board that the mini-debugger should take control of. The small field to the right of
Board ID indicates the driver instance number for the board that has been opened by the
mini-debugger. The mini-debugger always opens the first board of the specified type that is
not already open. For Signal Ranger mk2 boards, the field should be initialized with SRm2_.

• USB Errors This indicator shows the number of USB errors in real time. It may be
used to monitor the “health” of the USB connection. This indicator is a 4 bit wrap-around
counter that is located within the hardware of the on-board USB controller. Note that many
USB errors can be detected, which will not affect the transmission at high level. This is due to
the intrinsic robustness of the USB protocol to errors.

• LoadCode Loads a DSP COFF file. The DSP is reset prior to the code download. The
application presents a file browser to allow the user to select the file. The file must be a
legitimate COFF (“.out”) file for the target DSP. After the COFF file has been successfully
loaded into DSP memory, the corresponding symbol table is loaded into the PC memory to
allow symbolic access to variables and labels. The code is not executed.

• LoadSym Loads the symbol table corresponding to a specified DSP code into the PC
memory to allow symbolic access to variables and labels. Nothing is loaded into DSP
memory. This is useful to gain symbolic access to a DSP code that may already be running,

 66

such as code loaded from Flash by the bootload process. The application presents a file
browser to allow the user to select the file. The file must be a legitimate COFF file for the
target DSP.

• Exec Forces execution to branch to the specified label or address. The DSP code that
is activated this way should contain an Acknowledge in the form of a Host Interrupt Request
(HINT). Otherwise the USB controller will time-out, and an error will be detected by the PC
after 5s. The simplest way to do this is to include the acknowledge macro at the beginning of
the selected code. This macro is described in the two demo applications.
Symbol or Address is used to specify the entry point of the DSP code to execute.
Symbol can be used if a COFF file containing the symbol has been loaded previously.
Otherwise, Address allows the specification of an absolute branch address. Address is used
only if Symbol is set to the “Force Address (No Symbol)” position.
When a new COFF file is loaded, the mini-debugger tries to find the _c_int00 symbol in the
symbol table. If it is found, and its value is valid (different from 0) Symbol points to its
address. If it is not found, Symbol is set to the “Force Address (No Symbol)” position.

• R_Regs Reads the CPU registers mapped in RAM at address 0000H, and presents the
data in an easy to read format.

Figure 7 Register presentation panel

 67

• W_regs Writes most of the CPU registers mapped in RAM at address 0000H. Some fields
are greyed out and cannot be written, either because the kernel uses them and would restore
them after modification, or because their modification would compromise its operation.

Figure 8 Register write presentation panel

• R_Mem Reads DSP memory and presents the data to the user.

The small slide button beside the button allows a continuous read. To stop the continuous
read, simply replace the slide to its default position.
The View parameter array is used to select one or several memory blocks to display. Each
index of the array selects a different memory block.
To add a new memory block, simply advance the index to the next value, and adjust the
parameters for the block to display. To completely empty the array, right-click on the index
and choose the “Empty Array” menu. To insert or remove a block in the array, advance the
index to the correct position, right-click on the Symbol field, and choose the “Insert Item
Before” or “Delete Item” menu.

For each block:
• Symbol or Address is used to specify the beginning of the memory block to display.

Symbol can be used if a COFF file containing the symbol has been loaded previously. If
Symbol is set to a position other than “Force Address (No Symbol)”, Address and MemSpace

 68

are forced to the value specified in the COFF file for this symbol. The list of symbols is cleared
when a new COFF file is loaded, or when the Mini-Debugger is stopped and run again. It is not
cleared when the DSP board is reset.
By right-clicking on the Symbol field, it is possible to remove or insert an individual element.

Note for MemSpace to specify the correct space, the DSP code must be linked using the usual
page-number convention:
0 -> Program Space
1 -> Data Space
2 -> IO space

Note: Specified addresses are byte-addresses

• MemSpace indicates the memory space used for the access. The position “???”

(Unknown) defaults to an access in the Data space. If Symbol is set to a specific symbol,
MemSpace is forced to the value specified in the COFF file for this symbol.

• Number specifies the number of elements to display.
• Type specifies the data type to display. Three basic widths can be used: 8 bits, 16 bits, and

32 bits. All widths can be interpreted as signed (I8, I16, I32), unsigned (U8, U16, U32), or
floating-point data. The native DSP representation is 16 bits wide. When presenting 8-bit data,
the bytes represent the high and low parts of 16-bit memory registers. They are presented MSB
first and LSB next. When presenting 32-bit data (I32, U32 or Float), the beginning address is
NOT automatically aligned to the next even address. The first address is taken as the upper 16
bits and the next address is taken as the lower 16 bits. This follows the standard bit ordering for
32-bit data. It is the responsibility of the developer to make sure that the alignment is correct;
otherwise the data does not make sense.

• Format specifies the data presentation format (Hexadecimal, Decimal or Binary).
• Scale specifies a scaling factor for the graph representation.
• X or 1/X specifies if the data is to be multiplied or divided by the scaling factor.

 69

Figure 9 Data presentation (Text mode)

Figure 10 Data presentation (Graph mode)

The user can choose between Text mode (figure 9), and Graph mode (figure 10) for the
presentation of memory data. In Text mode, each requested memory block is presented in
sequence. The addresses are indicated in the first column. In Graph mode, each memory block is
scaled, and represented by a separate line of a graph.

• W_Mem Allows the memory contents to be read and modified. The function first reads the
memory, using the View_parameters, and presents a Text panel similar to the one presented
for the R_mem function. The user can then modify any value in the panel, and press the
Write button to write the data back to memory.
Several points should be observed:
• Even though data entry is permetted in any of the cells of the panel, only those cells that were

displayed during the read phase (those that are not empty) are considered during the write.
• When an attempt is made to write an odd number of bytes, an additional byte is appended to

the byte array. This byte is set to FFH. This is necessary because all native transfers are
performed 16-bits at a time.

• Data must be entered using the same type and format as were used during the read phase.
• During the write phase ALL the data presented in the panel is written back to DSP memory, not

just the data that has been modified by the user. Normally this is the same data, however this
may have an importance if the data changes in real time on the DSP, because it may have
changed between the read and the write.

Note: When presenting, or writing 32 bit data words (I32, U32 or Float), the PC performs 2
separate accesses (at 2 successive memory addresses) for every transferred 32-bit word. In
principle, the potential exists for the DSP or the PC to access one word in the middle of the
exchange, thereby corrupting the data.

 70

For instance, during a read, the PC could upload a floating-point value just after the DSP has
updated one 16-bit word constituting the float, but before it has updated the other one. Obviously
the value read by the PC would be completely erroneous.
Symmetrically, during a write, the PC could modify both 16-bit words constituting a float in DSP
memory, just after the DSP has read the first one, but before it has read the second one. In this
situation The DSP is working with an “old” version of half the float, and a new version of the other
half.
These problems can be avoided if the following precautions are observed:
When the PC accesses a group of values, it does so in blocks of up to 256 16-bit words at a time
(32 words if the board is connected in full-speed). Each of these 256-word block accesses is
atomic (the DSP cannot do any operation in the middle of the PC access). Therefore the DSP
cannot “interfere” in the middle of any single 32-bit word access.
This alone does not guarantee the integrity of the transferred values, because the PC can still
transfer a complete block of data in the middle of a DSP operation on this data. To avoid this
situation, it is sufficient to also render the DSP operation on any 32-bit data atomic (by disabling
interrupts for the length of the operation), then the accesses are atomic on both sides, and data
can safely be transferred 32 bits at a time.

• W_Flash Allows the developer to load a DSP code and/or FPGA logic boot table into Flash

memory, or to clear the memory. A boot table directs the Power-Up kernel to load the DSP
and/or FPGA with the specified code and/or logic at start-up. Boot tables are described in
other sections of this document.
The W_Flash button brings a browser that allows the developer to choose the DSP code
(.out) and FPGA logic (.rbt) files. Not choosing a file does not preserve the Flash contents. If
no file is chosen for DSP code or FPGA logic, the corresponding boot table is erased from
Flash.
The operation systematically resets the DSP and loads the Flash support code that is
required for Flash programming operations.
DSP file Indicates the path chosen for the DSP code.
Nb Sections Indicates the number of sections of the DSP code to be loaded
into Flash ROM. Empty sections in the .out executable file are eliminated.
Entry Point Specifies the entry point of the code, as it is defined in the COFF
file.
DSP_Load_Address Indicates the load address of the boot table in Flash memory.
DSP_Last_Address Indicates the last address of the boot table in Flash memory.
FPGA file Indicates the path chosen for the FPGA logic file.
Tools version The version of the ISE tools that were used to generate the .rbt
file
Design name The name of the design as it appears in the .rbt file
Architecture The type of FPGA for which the rbt file is built.
Device The model number of the FPGA for which the .rbt file is built.
Date The build date of the .rbt file.
FPGA_Load_Address This is the address of the beginning of the FPGA boot table in
Flash memory.
FPGA_Last_Address This is the last address of the FPGA boot table in Flash memory.
It is normally 1FFFFH.
Write Press this button to execute the Flash programming or erasure. The
required sectors of Flash are erased prior to programming. Because the Flash is erased
sector by sector, rather than word by word, the erasure will usually erase more words than
what is strictly necessary to contain the DSP code or FPGA logic.
Cancel Press this button to cancel all operations and return to the mini-debugger.
Flash Size If the Flash is detected, this field indicates its size in kwords.

 71

Figure 11

• Chk_Flash This button brings a panel that is very similar to the W_Flash button. The only
difference is that this utility verifies the contents of the Flash, rather than program it. If no file
is selected for the DSP and/or FPGA, the corresponding verification is cancelled and always
indicates a positive result.

Figure 12

 72

• W_FPGA Allows the interactive downloading of an FPGA logic (.rbt) file to the FPGA.
A browser is presented when the button is pressed to allow the developer to choose the .rbt
file.
The operation systematically resets the DSP and loads the FPGA support code that is
required for FPGA load operations.

• Stop Stops the execution of the mini debugger.
• Reset Forces a reset of the board and reloads the Host-Download kernel. All previously

executing DSP code is aborted. This may be necessary to take control of a DSP that has
crashed. The DSP is not reset by default when the mini-debugger takes control of the board.
This allows code that may have been loaded and run by the Power-Up kernel to continue
uninterrupted.

“Under the hood”
USB Communications
Through the USB connection, the PC can read and write DSP memory, and launch the execution
of DSP code. PC-to-DSP USB communication use two mechanisms:
• The PC uses control pipe 0, via “Vendor Requests” to perform the following operations:

• Reset the DSP
• Change the color of the LED
• Read or write on-chip DSP memory using the HPI hardware.
• Read or write various USB registers, such as DSPState, and USB Error Count.

• The PC uses high-speed bulk pipes 2 (out) and 6 (in) to transfer data to and from any
location in any DSP space, as well as launch the execution of user DSP code.

Operations performed using the control pipe zero are slow and limited in scope, but very reliable.
They allow the PC to take control of the DSP at a very low-level. In particular, the memory
transfers do not rely on the execution of a kernel code on the DSP. All these operations can be
performed even when the DSP code is crashed. In particular, these operations are used to
initialize the DSP.
Operations performed using high-speed bulk pipes 2 and 6 are supported by the resident DSP
kernel. They provide access to any location in any memory space on the DSP. Transfers are
much faster than those using the control pipe 0. However, they rely on the execution of the
kernel. This kernel must be loaded and running before any of these operations may be attempted.
These operations may not work properly when the DSP code is crashed.
Operations performed on the DSP through the kernel must follow a protocol described in the
following sections.

Communication Via The Control Pipe 0
The following Vendor Requests support the operations that the PC can perform on the DSP
board via control pipe 0. All these operations are encapsulated into library functions in the PC
software interfaces.

Request Direction Code Action
DSPReset Out 10H Assert or release the DSP reset.

NOTE: Asserting the reset of the DSP also resets
the KPresent and K_State variables to zero,
indicating that the kernel is not present (see below).
wValue = 1: assert / 0: release.
wIndex = N/A

 73

wLength = N/A
DSPInt Out 11H Send a DSPInt interrupt through the HPI interrupt

process (interrupt vector xx64H).
W_Leds Out 12H Change the color of the bi-color LED (green, red,

orange or off).
wValue = 0 : off
wValue = 1 : red
wValue = 2 : green
wValue = 3 : orange
wIndex = N/A
wLength = N/A

HPIMove In/Out 13H Read or write 1-to2048 16-bit words (2 to 4096 bytes)
in the DSP memory accessible through the HPI.
wValue = Lower transfer address in
DSP memory map.
wIndex = Upper transfer address in
DSP memory map (XHPIA).
wLength = Nb of bytes to transfer
(must be even)
DataBlock 1 to 2048 16-bit words can
be transported in the Data Stage of the request.
NOTE: For OUT transfers, the address stored in
wIndex-wValue must be pre-decremented (i.e. it must
point to the address just before the first word is to be
written).

W_HPI_Control Out 14H Write the HPI control register. This can be used to
interrupt the DSP (DSPInt), or to clear the HINT
interrupt (DSP to Host interrupt).
Note : The DSPInt and HINT signals are
used by the kernel to communicate with the PC.
Developers should only attempt to use this if they
understand the consequences (see the kernel
description).
The BOB bit (bits 0 and 8 of the control register
should always be set (never cleared). Otherwise the
DSP interface will not work properly.
wValue = 16-bit word to write to HPIC
NOTE: Both LSB and MSB bytes must be identical.
wIndex = N/A
wLength = N/A

Set_HPI_Speed Out 15H Sets the HPI speed to slow or fast.
Note: The HPI speed is automatically set to slow at
power-up and whenever the DSP is reset via the
DSPReset command. Use this command to set the
HPI to fast after either event.
wValue = 1: Fast / 0: Slow.
wIndex = N/A
wLength = N/A

Move_DSPState In/Out 20H Reads or writes the state of the DSP.
wValue = N/A
wIndex = N/A
wLength = N/A
DataBlock : 2 bytes representing the
state of the DSP:
bKpresent (byte):

 74

- Kernel not Loaded -> 0
- Power-Up Kernel Loaded -> 1
- Host-Download Kernel Loaded -> 2
The Kpresent variable is 0 at power-up. It takes a few
seconds after power-up for the USB controller to load
and launch the kernel. The host should poll this
variable after opening the driver, and defer kernel
accesses until after the kernel is loaded.
bKstate (byte):
- Kernel_Idle -> 0

R_ErrCount In 22H Returns the USB error count
wValue = N/A
wIndex = N/A
wLength = N/A
DataBlock 1 word is transported in the
data block. This word represents the present USB
error count (between 0 and 15).

Reset_ErrCount Out 23H Resets the USB Error Count register to zero.

Communication Via The DSP Kernel :
The communication kernel enhances communications with the PC. Memory exchanges without
the kernel are limited to the memory space directly accessible from the HPI. Redirection of DSP
execution is limited to the boot-load of code at a fixed address immediately after reset. The kernel
allows Reads, and Writes to/from any location in any space (data, program or I/O), and allows
redirection of execution at any time, from any location, even in a re-entrant manner.

Actually two kernels may be used at different times in the life of a DSP application:
• Immediately after power-up, the USB controller loads a Power-Up Kernel in DSP memory

and executes it. The USB controller performs this function on its own, whether a host PC is
connected to the board or not. The kernel being functional is indicated by the LED turning
orange. After this the READ_DSPState Vendor command will return a KPresent value of 1
(see Vendor Commands above).

Note: the host should only invoke kernel commands after the KPresent variable reaches a non-
zero value.

This Power-Up Kernel performs the following functions:

• It checks in Flash memory if an FPGA descriptor file is present, and if it is, loads the FPGA with
the corresponding logic.

• It then checks in Flash memory if an executable DSP file is present, and if it is it loads and
executes it.

• It stays resident to respond to kernel commands from the host (K_Read, K_Write and K_Exec -
see below) once the board has been connected to a PC.

• Whenever the board is connected to a PC, the PC may reset the board and load a simpler
Host-Download Kernel into memory at any time. This Host-Download Kernel does not check
in Flash memory for FPGA logic or DSP code. It only waits for and responds to K_Read,
K_Write and K_Exec commands from the host. This gives the host PC a way to take control
of the DSP, and reload FPGA logic and DSP code different than what is described in the
Flash memory. In particular, this is required to reprogram the Flash memory with new FPGA
logic and/or DSP code.

After either of these kernels is on-line, the host PC may send K_Read, K_Write and K_Exec
commands. Each command launches a DSP operation (Data move or code branch) and waits for
the DSP to acknowledge completion of the operation. The DSP code that responds to the

 75

command must include this acknowledge within 5s of execution, otherwise a timeout occurs. The
intrinsic kernel functions supporting the K_Read and K_Write commands do include this
acknowledge. User DSP code that is launched through the K_Exec command must absolutely
include the acknowledge. For user DSP functions invoked by the K_Exec command, it is possible
that (by design or not) the acknowledge take a long time to be returned. USB spec 1.0 specifies
that a request should not be NAKed for more than 5s. For this reason, the acknowledge should
be returned within 5s. Normally the acknowledge is used to signal the completion of the function,
but for functions which take a long time to complete, the acknowledge should be returned at the
beginning of the function (to signal the branch), and another means of signaling completion
should be considered (polling a completion flag in DSP memory for instance).

FPGA Boot Table
An FPGA configuration table may be programmed in the Flash memory for the Power-Up Kernel
to load the FPGA. This table begins at the end of the Flash, at byte-address 9FFFFFH (word-
address 4FFFFFH), and goes backwards toward byte-address 9C0000H (word-address 4E0000H).
Byte-addresses 9C0000H to 9FFFFFH (4 sectors) of the Flash are reserved for the FPGA
configuration table.

Byte-
Address

Data Description

… Last word Last configuration word
…
… Data word
… Data word
9FFFF6H 3rd and 4th bytes Data word
9FFFF8H 1st and 2nd bytes Data word
9FFFFAH File length (LSB) Number of words that follow (LSB)
9FFFFCH File length (MSB) Number of words that follow (MSB)
9FFFFEH 3008H Magic number.

The configuration bytes are arranged LSB first. This means that the lower byte of the first word at
address 9FFFF8H is actually the first byte to be sent to the FPGA. The upper byte is the second,
and so on…

The Power-Up Kernel checks for the presence of the Magic Number 3008H at byte-addresses
9FFFFEH- 9FFFFFH. If it is found, it proceeds to load the data into the FPGA. The presence of the
magic number alone is enough to direct the kernel to load the data. No checks are performed to
make sure that the data is valid.

Note: The magic number should not be written if configuration data is not present in the Flash,
because then the FPGA will be configured with erroneous data. THIS MAY DAMAGE THE FPGA.

DSP Boot Table
A DSP boot table may be programmed in the Flash memory for the Power-Up Kernel to load the
DSP. This table begins at the beginning of the Flash, at byte-address 800000H (word-address
400000H), and goes toward byte-address 9BFFFFH (word-address 4DFFFFH).
The DSP and FPGA boot-tables grow in opposite direction to allow the DSP boot table to have a
maximum size of 917504 words (28 sectors) without interfering with the FPGA boot table. If the
DSP code is smaller, the sectors between the two boot tables may be used for general purpose
storage.

 76

The “Power-Up Kernel” checks byte-address 800000H for the presence of the Magic-Number if it
is present, it proceeds to load the following sections into RAM, and branches to the entry point of
the code.
No checks are performed to insure that the data in the table makes sense. In all likelihood, if the
magic number is correct but the rest of the data has not been programmed or is inconsistent, the
DSP will crash during the boot procedure.

Note: This is a boot table. The DSP does not execute code from these locations. Instead, it reads
the various sections and loads them into on-chip RAM, from which the code is then executed.

Byte-
Address

Data Description

800000H 3009H Magic Number
800002H Nb_Sections Total Number of sections to load into

RAM
800004 Section Space 1st Section Memory space where to load the first

section
800006H Section Length (MSB) 1st

Section
MSB of the number of words that follow

800008H Section Length (LSB) 1st
Section

LSB of the number of words that follow

80000AH Address (MSB) 1st Section MSB of the load address for the
following section

80000CH Address (LSB) 1st Section LSB of the load address for the following
section

80000EH 1st Word 1st Section Data words
800010H 2nd Word 1st Section …
800012H

… …
… … …
… Last Word 1st Section …
… Section Space 2nd Section Memory space where to load the second

section
… Section Length (MSB) 2nd

Section
MSB of the number of words that follow

… Section Length (LSB) 2nd
Section

LSB of the number of words that follow

 Address (MSB) 2nd Section MSB of the load address for the
following section

 Address (LSB) 2nd Section LSB of the load address for the following
section

… 1st Word 2nd Section Data word
… 2nd Word 2nd Section Data word
… … …
… Entry Point (MSB) After loading the various sections, the

DSP transfers execution to this address.
… Entry Point (LSB) After loading the various sections, the

DSP transfers execution to this address.

Note: The Section Lengths, Load Addresses, and Entry Point are 32-bit words. They are stored
in the table MSB first. However, they do not need to be aligned on even addresses.

 77

Constraints On The DSP Code Loaded In The Boot Flash
The DSP code loaded in Flash must contain an acknowledge at its beginning (within 5s of
execution). Usually, when developing in C, this acknowledge is placed in the first lines of the main
function.
Failure to include the acknowledge does not cause the DSP code to crash. However, it does
cause the USB controller to fail to recognize that the Power-Up Kernel has been loaded. In this
circumstance it is necessary to reset the board in order to gain access from the PC. This reset in
turn causes the boot-loaded DSP code to abort.

Note: This requirement also applies to code that is written to be loaded directly from the PC and
executed using the SR2_K_Exec.vi interface VI. Therefore DSP code that has been developed
and tested using the mini-debugger, or code that is usually downloaded and executed from the
PC should normally be ready to be programmed into the boot-table as it is.

HPI Signaling Speed
On Signal Ranger_mk2, the signaling speed of the HPI must be slow immediately after the DSP
is taken out of reset. This includes after a power-up reset, and after reception of the DSPReset
vendor command. This is because in these circumstances the DSP (and the HPI) is running at
slow speed. It is only after the power-up or host-download kernel has been loaded and has had
time to adjust the CPU and HPI speed to the maximum for the DSP that the USB controller may
use the fast HPI signaling. This command is normally used to set the HPI speed to the maximum
after the power-up kernel has been detected or after the host-download kernel has been
downloaded. Note that it may take up to 500us after the kernel has adjusted the PLL, until the
DSP and HPI are clocked using the fast rate. Therefore the PC software should wait for at least
that amount before sending the command. The switch to high HPI signaling speed is
automatically performed by the board initialization functions of the LabVIEW and C/C++
interfaces.

USB Benchmarks
The Signal Ranger_mk2 board has a USB 2.0 port. This port connects at High-Speed (480mb/s)
on any USB 2.0-capable root or hub. It connects at Full-Speed (12Mb/s) on any root or hub that is
only USB 1.1-capable.

Full-Speed Timing
At Full-Speed (USB 1.1-compatible), USB frames occur at 1ms intervals. It may take up to 6
frames (up to 6ms) to perform a data transfer between the PC and the Signal Ranger_mk2 board.
The exact number of frames depends on the type of Host-Controller Software on the PC, and its
ability to schedule pending USB transactions in the leftover time of the current USB frame. This
means that every function of the LabVIEW and C/C++ interfaces that must get access to the USB
bus may take up to 6ms to complete, even if the amount of data transferred is minimal. This
represents a minimum access time. It is usually a factor for the functions that carry a small
amount of data.
At Full-Speed, the maximum transfer rate is 4.9Mb/s for reads, 5.8Mb/s for writes. This limited
transfer rate adds to the execution time of functions of the interface. The limited transfer rate is
usually a factor for the functions that transport large amounts of data.

High-Speed Timing
At high-Speed (USB 2.0-capable), USB micro-frames occur 8 times more frequently than at Full-
Speed (every 125µs). This means that the minimum access time is normally 8 times shorter than
at Full-Speed (up to 750µs). Data throughput is limited to 18Mb/s for reads, and to 22Mb/s for
writes.

 78

Typical Benchmarks
In High-Speed on an Enhanced Host Controller, the typical access time is 475µs, and the
bandwidth is 18Mb/ for reads, and 22Mb/s for writes.
In Full-Speed, on a Universal Host Controller, the typical access time is 6ms, and the bandwidth
is 4.9Mb/s for reads, 5.8Mb/s for writes.

DSP Communication Kernel

Differences With Previous Versions
There are several differences between the kernels used in this version of Signal Ranger, and the
kernels that were used in previous versions:

Location Of The Mailbox
The MailBox is not located at address 1000H anymore. It is now located within the code of the
kernel at address 0100H (byte-address 0200H). This facilitates the linking of user code, which
does not have to avoid the MailBox at address 1000H anymore. It is reflected in the
SignalRanger_mk2.mem memory description file.

Contents Of The Mailbox
The Branch-Address and Transfer-Address in the mailbox are now 32-bit words, to support
transfers and branches beyond the first 64k words of the memory spaces.
An Error-Code has been added in the mailbox, to return a possible error (or completion) code
when executing user functions. This error-code may be used by the user code. Kernel functions
always return the same completion code (1 for reads and 2 for writes) because they cannot fail
(see further in the text).

Size Of The Mailbox
The data field of the mailbox is now 256 words when the DSP board is connected to the PC in
High-Speed (480Mb/s). It is still 32 words when the DSP board is connected in Full-Speed
(12Mb/s).

Addresses Of The Various Functions Of The Kernel
The various functions of the kernel are not located at fixed addresses anymore, to allow for a
more compact kernel. The entry-points of the functions are different between the Power-up
kernel, and the Host-Download kernel. To accommodate this, the access to these functions is
now symbolic, with the symbols automatically loaded in an entry of the Global Board Information
Structure whenever the kernel is loaded or reloaded.

Size Of The Kernel
The overall size of the kernel has changed. However, both kernels (Power-Up and Host-
Download) fit completely before byte-address 0800H (word-address 0400H). It is reflected in the
SignalRanger_mk2.mem memory description file.

Overview
On the DSP side, the kernel that is used to support PC communications is extremely versatile, yet
uses minimal DSP resources in terms of memory and processing time. Accesses from the PC
wait for the completion of time critical processes running on the DSP, therefore minimizing
interference between PC accesses and real-time DSP processes.

 79

Three USB commands (K_Read, K_Write and K_Exec), are used to trigger kernel operations.
The exchange of data and commands between the PC and the DSP is done through a 262-word
mailbox area in page 0 of the on-chip DSP RAM.
The DSP interface works on 3 separate levels:
• Level 1: At level 1, the kernel has not yet been loaded onto the DSP. The PC relies on the

hardware of the DSP (HPI and DMA), as well as the USB controller, to exchange code and/or
data with DSP RAM. At this level, the PC has only a limited access to the on-chip DSP RAM.
For instance on the C5502, the PC can access byte-addresses between 00FEH and FFFFH.
This level is used, among other things, to download the kernel into DSP RAM, and launch its
execution.

• Level 2: At level 2, the kernel is loaded and running on the DSP. Through intrinsic
functions of the kernel, the PC can access any location in any memory space of the DSP,
and can launch DSP code from an entry point anywhere in memory. This level is used to load
user code in DSP memory, and launch it. Level 1 functions are still functional at level 2, but
rarely used because Level 2 functions provide more access. However, one possible
advantage of Level 1 function is that they do not rely on DSP software. Therefore they always
succeed, even when the DSP code is crashed.

• Level 3: Level 3 is defined when user code is loaded and running on the DSP. There is no
functional difference between levels 2 and 3. The level 1 and 2 functions are still available to
support the exchange of data between the PC and the DSP, and to redirect execution of the
user DSP code. The main difference is that at level 3, user functions are available too, in
addition to intrinsic functions of the kernel. At Level 3, with user code running, the K_Exec
Level 2 command can still be invoked to force DSP execution to branch to a new address.

Boot Modes
As is described in earlier sections, there are actually two kernels that are used:
A Power-Up Kernel is downloaded directly by the on-board USB controller shortly after power-up.
This kernel looks in Flash ROM to see if a DSP user-code and/or FPGA configuration file are
programmed. If so, it first loads the FPGA, then loads the DSP user code and branches to its
entry point. Therefore when the host PC takes control of the DSP, it is already at level 2.
Later on, the host PC may reset the DSP and reload a more limited Host-Download Kernel. This
kernel is similar to the Power-Up Kernel, except that it ignores the contents of the Flash ROM.
This way, it is possible for the host PC to completely take control of the DSP, without any
interference from user-code residing in Flash ROM.

Processor State After Reset
The processor state after reset depends on the boot mode:

Host-Download Boot:
In this case the kernel performs the following initializations:

• Places the Interrupt vector table at byte-address 0x0100H in the on-chip RAM.
• Initializes the following vectors that are used by the kernel:

• Reset vector: Points to reset routine of the kernel
• DSPInt vector: Points to DSPInt vector of the kernel. Used to manage DSP-PC

communications.
• TRAP #31 vector: Points to an address that is adjusted dynamically by the USB

controller. Used to manage DSP-PC communications.
• Adjusts the clocks as follows:

• CPU Core Clock: 300 MHz
• SYSCLK1 (Fast Peripherals): 150 MHz
• SYSCLK2 (Slow Peripherals): 75 MHz
• SYSCLK3 (EMIF): 75 MHz

 80

• Adjusts the stack as follows:
• Dual stack with fast return
• System-stack at word-address 0x8000H (top of on-chip memory)
• User-stack at word-address 0x7E00H (leaves 512 words for the system-stack).

• Sets the C55x CPU mode, rather than the C54x-compatible mode (bit C54CM = 0).
• Takes the on-chip boot ROM out of the memory map (bit MPNMC = 1)
• Initializes the EMIF so that the following peripherals may be used:

• FLASH ROM
• SDRAM
• FPGA

• Unmask DSPInt interrupt to allow DSP-PC communications:

Power-Up Boot And Neither User-Code Or FPGA Logic Present In Flash:
The kernel initializations are the same as for the Host-Download boot.

Power-Up Boot And FPGA Logic Detected In Flash:
In this case, in addition to the initializations performed normally, the FPGA logic specified in Flash
is also downloaded into the FPGA. The FPGA logic is functional when the user-code takes
control of the CPU. Also, the C environment has been established. The C environment is in effect
when the user takes control of the DSP.
The contents of the CPU registers conform to the following:
• ST1_55: CPL=1 M40=0 SATD=0 SXMD=1 C16=0

 FRCT=0 C54CM=0
• ST2_55: ARMS=1 RDM=0 CDPLC=0 AR[0-7]LC=0
• ST3_55: SATA=0 SMUL=0

Power-Up Boot And User-Code Executed From Flash:
In this case, in addition to the initializations performed normally, the user-code is downloaded and
run. Also, the C environment has been established. The C environment is in effect at the
beginning of the user-code.
The contents of the CPU registers conform to the following:
• ST1_55: CPL=1 M40=0 SATD=0 SXMD=1 C16=0

 FRCT=0 C54CM=0
• ST2_55: ARMS=1 RDM=0 CDPLC=0 AR[0-7]LC=0
• ST3_55: SATA=0 SMUL=0

Resources Used By The Kernel On The DSP Side

To function properly, the kernel uses the following resources on the DSP. After the user code is
launched, those resources should not be used or modified, in order to avoid interfering with the
operation of the kernel, and retain its full functionality.
• The kernel resides between byte-addresses 0000H and 07FFH in the on-chip RAM of the

DSP. The user should avoid loading code into, or modifying memory space below byte-
address 0800H.

• The PC (via the USB controller) uses the DSPInt interrupt from the HPI to request an access
to the DSP. This interrupt in turn triggers TRAP#31, which branches to user-code or an
intrinsic kernel function. If necessary, the user code can temporarily disable the DSPInt
interrupt through its mask, or the global interrupt mask INTM. During the time this interrupt is
disabled, all PC access requests are latched, but are held until the interrupt is re-enabled.
Once the interrupt is re-enabled, the access request resumes normally.

 81

• The kernel locates the interrupt vector table at byte-address 0100H. The user-code should not
relocate the interrupt vectors anywhere else.

• The communication kernel initializes the stack as a dual stack with fast return. The stack
pointers are initialized at word-addresses 7FFFH (system stack) and 7DFFH (data stack). The
user code can relocate the stack pointers temporarily, but should replace them before the last
return to the kernel (if this last return is intended). Examples where a last return to the kernel
is not intended include situations where the user code is a never-ending loop that will be
terminated by a board reset or a power shutdown. In these cases, the stack can be relocated
without concern.

Note: When branching to the entry point of a program that has been developed in C, the DSP
first executes a function called c_int00, which establishes new stacks, as well as the C
environment. This function then calls the user-defined “main”. When main stops executing
(assuming it is not a never-ending loop), it returns to a never-ending loop within the c_int00
function. It does not return to the kernel.
• The kernel uses the DSP in the C55x mode (not C54x compatibility mode).

Functional Description Of The Kernel
After the Power-Up Kernel finishes initializing the DSP, if it finds DSP code in Flash memory, this
DSP code is normally running when the user takes control of the DSP board.
After the Host-Download Kernel finishes initializing the DSP, or after the Power-Up Kernel
finishes initializing the DSP and did not find DSP code in Flash memory, the kernel is normally
running when the user takes control of the DSP. The kernel is simply a never-ending loop that
waits for the next access request from the PC. PC access requests are triggered by the DSPInt
interrupt from the HPI.

Launching A DSP Function
At levels 2 and 3, the kernel protocol defines only one type of action, which is used to read and
write DSP memory, as well as to launch a simple function (a function which includes a return to
the kernel or to the previously running code) or a complete program (a never-ending function that
is not intended to return to the kernel or to the previously running code). In fact, a memory read or
write is carried out by launching a ReadMem or WriteMem function, which belongs to the kernel
(intrinsic function) and is resident in DSP memory. Launching a user function uses the same
basic process, but requires that the user function be loaded in DSP memory prior to the branch.
The mailbox is an area in page 0 of the HPI-accessible RAM of the DSP.
The function of each field in the mailbox is described below.

Address Name Function
0100h-0101h BranchAddress 32-bit branch address (intrinsic read and write functions, or

user function)
0102h-0103h TransferAddress 32-bit transfer address (for K_Read and K_Write commands)
0104h NbWords Number of words to transfer
0105h ErrorCode User-application-specific Error Code or completion code.
0106h-0205h Data 256 data words used for transfers between the PC and the

DSP. Only the first 32 words are used when the board is
connected as a Full-Speed USB device.

To launch a DSP function (intrinsic or user code), the PC, via the USB controller, does the
following operations:
Initiates a K_Read, K_Write or K_Exec command. This command contains information about the
DSP address of the function to execute (user or intrinsic). For K_Read and K_Write, it also
contains information about the transfer address; and in the case of a Write transfer, it contains the
data words to be written to the DSP.

 82

• The USB controller places the DSP branch address into the BranchAddress field of the
mailbox. This branch address may be a user branch address (in the case of a K_Exec
command), or may be a kernel function address (in the case of a K_Read or K_Write
command).

• If data words are to be written to the DSP (K_Write), the USB controller places these words in
the Data field of the mailbox.

• If words are to be transferred to or from the DSP (K_Read or K_Write), the USB controller
places the number of words to be transferred, between 1 and 32 (Full-Speed USB
Connection), or between 1 and 256 (High-Speed USB connection) into the NbWords field of
the mailbox.

• If words are to be transferred to or from the DSP (K_Read or K_Write), the USB controller
places the DSP transfer address into the TransferAddress field of the mailbox.

• The USB controller clears the HINT (host interrupt) signal, which serves as the DSP function
acknowledge.

• The USB controller sends a DSPInt interrupt to the DSP, which forces the DSP to branch to
the intrinsic or user function.

When the DSP receives the DSPInt interrupt from the HPI, the kernel does the following:
If the DSP is not interruptible (because the DSPInt interrupt is temporarily masked, or because
the DSP is already serving another interrupt), the DSPInt interrupt is latched until the DSP
becomes interruptible again, at which time it will serve the PC access request.
If - or when - the DSP is interruptible, it:
• Fetches the branch address from the BranchAddress field in the mailbox, and writes it back

into the vector for the TRAP#31 software interrupt.
• Clears INTM. From this instant, the DSP becomes interruptible again, and can serve a critical

user Interrupt Service Routine (ISR). If no user ISR is pending, the DSP starts executing the
function requested by the PC (intrinsic or user function).

• Triggers the TRAP #31 interrupt, which causes the DSP to branch to the function or code
specified by BranchAddress.

• If data words are to be transferred from the PC (K_Write), the function reads those words
from the Data field of the mailbox and places them at the required DSP addresses.

• If data words are to be transferred to the PC (K_Read), these words are written by the DSP
to the Data field in the mailbox.

• If an error or completion code should be returned to the PC, the DSP function should update
the ErrorCode field of the mailbox.

• After the execution of the requested function, and the update of the ErrorCode field, the DSP
asserts the HINT signal, to signal the USB controller that the operation has completed. This
operation has been conveniently defined in a macro Acknowledge in the example codes, and
can be inserted at the end of any user function. Note that from the PC’s point of view, the
command seems to “hang” until the Acknowledge is issued by the DSP. User code should
not take too long before issuing the Acknowledge. If the acknowledge is not returned within
5s of the transfer request, the request is aborted on the PC, and an error is issued.

• If data words are to be transferred to the PC, upon reception of the HINT signal, the USB
controller fetches those words from the Data field in the mailbox area and sends them to the
PC in the data stage of the request (K_Read).

• Once the DSP function has completed its execution, a RETI instruction must be used to
return control to the kernel, or the previously executing user code, after the acknowledge.
This is not necessary however, and user code can keep executing without any return to the
kernel if this is what the user intends. In this case, subsequent PC accesses are still allowed,
which means the kernel is re-entrant.

Note: The size of the data field of the mailbox is 256 words. However the maximum size of a
transferred block of data depends on whether or not the Signal Ranger_mk2 board is connected
to the PC using a Full-Speed USB connection (12Mb/s), or a High-Speed USB connection

 83

(480Mb/s). The board is USB 2.0 compliant and enumerates at High-Speed on a USB 2.0 root or
hub. When the board is connected at High-Speed, the transfers are performed 256-words at a
time. When the board is connected at Full-Speed, the transfers are performed 32-words at a time.
Only the first 32 words of the data field of the mailbox are used in this case.

Since a PC access is requested through the use of the DSPInt interrupt from the HPI, it can be
obtained even while user code is already executing. Therefore it is not necessary to return to the
kernel to be able to launch a new DSP function. This way, user functions can be re-entered.
Usually, the kernel is used at level 2 to download and launch a user main program, which may or
may not return to the kernel in the end. While this program is running, the same process
described above can be used at level 3 to read or write DSP memory locations, or to force the
execution of other user DSP functions, which themselves may, or may not return to the main user
code, and so on… It is entirely the decision of the developer. If a return instruction (RETI) is used
at the end of the user function, execution is returned to the code that was executing prior to the
request. This code may be the kernel at level 2, or user code at level 3.

The acknowledgment of the completion of the DSP function (intrinsic or user code) is done
through the assertion of the HINT signal. This operation is encapsulated in the Acknowledge
macro in the example code for the benefit of the developer. This acknowledge operation is done
for the sole purpose of signaling to the initiating host command that the requested DSP function
has been completed, and that execution can resume on the PC side. Normally, for a simple user
function, which includes a return (to the main user code or to the kernel), this acknowledge is
placed at the end of the user function (just before the return) to indicate that the function has
completed. As a matter of good programming, the developer should not implement DSP functions
which take a long time before returning an acknowledge. In the case of a function which may not
return to the kernel or to previously executing user code, or in any case when the user does not
want the host command which initiated the access to hang until the end of the DSP function, the
acknowledge can be placed at the beginning of the user function. In this case it signals only that
the branch has been taken. Another means of signaling the completion of the DSP function must
then be used. For instance the PC can poll a completion flag in DSP memory.

During the PC access request, the DSP is only un-interruptible during a very short period of time
(between the taking of the DSPInt interrupt and the branch to the beginning of the user or intrinsic
function – the equivalent of 10 cycles). Therefore, the PC access process does not block critical
tasks that might be executing under interruption on the DSP (managing analog I/Os for instance).

During a transfer to and from the DSP, the DSP is also uninterruptible during the actual transfer
of each a 32-word block (or 256-word block for a HighSpeed USB connection). The actual
uninterruptible time depends on the target peripheral. For a read or a write from/to on-chip DSP
RAM, the uninterruptible time in CPU cycles is equal to the number of words transferred. Making
the actual transfer uninterruptible presents the advantage that any transfer up to 32-words (Full-
Speed) or 256-words (High-Speed) is atomic from the DSP’s perspective. In particular it insures
that when transferring double words, both the high and low part of the word are transferred
simultaneously. However, the block size is small enough that the transfer is quick and should not
pose a problem in most situations.

When transferring data to and from a slow peripheral such as the SDRAM, the uninterruptible
time may be up to 240ns/word. If the USB connection is high-speed, the block size is 256 words.
In such a case, the uninterruptible time may be so long that it interferes with the service of other
interrupts in the system. In such a situation two actions can be taken to solve the problem:
• Either split the transfer at high-level so that only small blocks are transferred at a time.
• Or use a custom DSP function to handle the transfer in place of the intrinsic kernel function.

Design this custom function to be non-atomic and interruptible. The examples folder contains
an example of such a custom function.

 84

Note: At the beginning of a DSP user function, it is required to protect (store) all the DSP
registers that are used within the function, and to restore them just before the return. Since the
function is launched through the DSPInt interrupt, it is done asynchronously from the main
executing code (kernel or user code). Responsibility of register protection must then be assumed
by the called user function. The situation is the same as for any interrupt function (it actually is an
interrupt function). All the intrinsic functions of the kernel perform this protection and will not
interfere with user code.
When the function is written in C it must be declared with the “interrupt” qualifier. Otherwise all the
registers used within the function may not be protected.
See sections on DSP Code Development for details.

Memory Read And Write
The kernel includes 6 intrinsic functions (ReadMem, WriteMem, ReadProg, WriteProg, ReadIO
and WriteIO), which are part of it, and are resident in memory at the time the kernel is executing.
These 6 functions allow the PC to read or write the DSP memory.

ReadMem, ReadProg, ReadIO :
These functions read nn successive words from the DSP memory at address aaaaaaaa
(1<=nn<=32 or 1<=nn<=256, depending on the USB connection speed).
To launch the execution of any of these functions, the PC (via the USB controller and the
invocation of K_Read) does the following:
• Writes the 32-bit entry point of the function (ReadMem, ReadProg or ReadIO resp.) into the

BranchAddress in the mailbox.
• Writes the 32-bit DSP transfer address aaaaaaaa, the TransferAddress in the mailbox.
• Writes the number nn of words to transfer, into NbWords in the mailbox.
• Sets the ErrorCode field of the mailbox to 1
• Clears the HINT signal.
• Sends a DSPInt interrupt to the DSP.

In response to these actions, the kernel does the following:
• Branches to the beginning of the function and becomes interruptible again.
• Pushes all the registers used within the function on the top of the stack (context protection).
• Reads the beginning transfer address aaaaaaaa in the TransferAddress field of the mailbox
• Reads nn words in the DSP memory and writes them into the Data field of the mailbox.
• Places the address directly following the block that has just been transferred into the

TransferAddress variable in the mailbox. This way subsequent accesses do not have to
reinitialize the address, to begin transferring the following words.

• Restores the context.
• Asserts the HINT signal, which signals the completion of the operation.
• Returns to the caller.

At this point, the USB controller does the following:
• Reads the nn words from the data field of the mailbox and sends them to the PC.
• Reads the ErrorCode field of the mailbox and sends it back to the PC. This error code is 1 for

reads.

The USB pipe (Pipe 6) that supports the exchange has a size of 64 bytes (32 words) for a Full-
Speed USB connection, and a 512 bytes (256 words) size for a High-Speed connection. For
transfers larger than the pipe size, the transfer is broken down into blocks of the pipe size. The
USB controller invokes the function and carries out the above operations for each of the pipe-
sized segments. Assertion of the HINT signal at the end of each segment triggers the transfer of
the block to the PC.

 85

In this case, the ErrorCode field of the mailbox is only set to one by the on-board USB controller
before the first segment. The value of the ErrorCode field that is carried back to the PC is the
value that has been last updated by the DSP before the last acknowledge.

Note: The number of words to read must not be zero.

WriteMem, WriteProg, WriteIO:
These functions write nn successive words into the DSP memory, from address aaaaaaaa
(1<=nn<=32 or 1<=nn<=256, depending on the USB connection speed).
To launch the execution of any of these functions, the PC (via the USB controller and the
invocation of K_Write) does the following:
• Places the nn words to write to DSP memory into the Data field of the mailbox.
• Writes the entry point of the function (WriteMem, WriteProg or WriteIO resp.) into the

BranchAddress variable in the mailbox.
• Writes the DSP transfer address (aaaaaaaa), into the TransferAddress variable in the

mailbox.
• Writes the number nn of words to transfer, into the NbWords field in the mailbox.
• Sets the ErrorCode variable of the mailbox to 2.
• Clears the HINT signal.
• Sends a DSPInt interrupt to the DSP.

In response to these actions, the kernel does the following:
• Branches to the beginning of the function and becomes interruptible again.
• Pushes all the registers used within the function on the top of the stack (context protection).
• Reads the transfer address in the TransferAddress variable of the mailbox
• Reads the nn words from the Data field of the mailbox and writes them back to the DSP

memory at the aaaaaaaa transfer address.
• Places the address directly following the block that has just been transferred into the

TransferAddress variable in the mailbox. This way subsequent accesses do not have to
reinitialize the address, to begin transferring the following words.

• Restores the context.
• Asserts the HINT signal, which signals the completion of the operation.
• Returns to the caller.

At this point, the USB controller does the following:
• Reads the ErrorCode field of the mailbox and sends it back to the PC. This error code is 2 for

writes, since kernel functions do not use the code.

The USB pipe (pipe 2) that supports the exchange has a size of 64 bytes (32 words) for a Full-
Speed USB connection, and a 512 bytes (256 words) size for a High-Speed connection. For
transfers larger than the pipe size, the transfer is broken down into blocks of the pipe size. The
USB controller invokes the function and carries out the above operations for each of the pipe-
sized segments. Assertion of the HINT signal at the end of each segment triggers the transfer of
the next block from the PC.
In this case, the ErrorCode field of the mailbox is only set to 2 by the on-board USB controller
before the first segment. The value of the ErrorCode field that is carried back to the PC is the
value that has been last updated by the DSP before the last acknowledge.

Note: The number of words to read must not be zero.

Use Of The K_Read And K_Write Requests For User Functions
In principle, the K_Read and K_Write requests are used only to invoke the 6 intrinsic kernel
functions. However, nothing bars the developer from using these requests to invoke a user

 86

function. This may be useful to implement user functions that need to receive or send data
from/to the PC, because it gives them a way to efficiently use the mailbox, and the on-board USB
controller transfer process. To achieve this, the user function should behave in exactly the same
manner as the intrinsic functions do for Read resp. Write transfers. The BranchAddress field of
the mailbox should contain the entry point of a user function, rather than the address of an
intrinsic kernel function.
More details about this can be found in the description of the SR2_Base_User_Move_Offset VI in
the LabView Interface section, and in the SR2_DLL_User_Move_Offset_I16 function in the C/C++
Interface section.

It should be noted that arguments, data, and parameters can alternately be passed to/from the
PC into static DSP structures by regular (kernel) K_Read or K_Write requests after and/or before
the invocation of any user function. This provides another, less efficient but more conventional
way to transfer arguments to/from DSP functions.

High-Speed Communication Protocol
High-Speed communication with the DSP board is achieved through the use of bulk pipes 2 (out)
and 6 (in). The PC uses bulk pipe 2 to send packets to the DSP, and pipe 6 to receive packets
from the DSP. Communication through these pipes must follow the protocol described below.

The host PC can trigger three types of operation on the DSP:
• K_Read: The execution of a DSP function which brings back data from the DSP via the

Mailbox.
• K_Write: The execution of a DSP function which sends data to the DSP via the Mailbox.
• K_Exec: The execution of a DSP function without any data transport.

The kernel provides intrinsic functions to perform basic read and write operations from/to any
location in any memory space of the DSP. However, the user may also provide other read and
write functions that use the same K_Read and K_Write mechanism. This gives the developer the
ability to override the kernel functions with DSP code providing more specialized functions. For
instance, read and write user functions might also handle the synchronization and pointer
operations required to manage a FIFO on the DSP.

All three types of operations described above progress in the same way:
• The PC first sends a Setup Packet to the DSP board, indicating various information elements

such as the direction of transfer, transfer address, DSP branch address…etc. The structure
of the Setup Packet is the same for all three types of command.

• For a K_Write, the PC sends the data to the DSP board, for a K_Read, the PC collects the
data sent back by the DSP board. For a K_Exec, this step is skipped.

• The PC then waits for a Completion Packet from the DSP board, indicating that the requested
operation has completed.

Setup Packet
The Setup Packet contains the following information:
• A 32-bit DSP Branch Address BranchAddress. This is the address in DSP memory where

the function to be executed resides (read, write or user function).
• A 32-bit DSP Transfer Address TransferAddress. This is the address in DSP memory where

the data is to be read or written. For an execution without data transfer (K_Exec) the address
is ignored.

• A 16-bit Transfer Count NbWords number. For an execution without data transfer (K_Exec)
the Transfer Count is ignored. The transfer count is expressed in words. It must be between 1
and 32768.

 87

• A 16-bit Operation Type OpType code. This code is 0 for a K_Exec, 1 for K_Read, 2 for
K_Write.

Byte Nb Data
0 BranchAddress (LSB)
1 BranchAddress (byte 1)
2 BranchAddress (byte 2)
3 BranchAddress (MSB)
4 TransferAddress (LSB)
5 TransferAddress (byte 1)
6 TransferAddress (byte 2)
7 TransferAddress (MSB)
8 NbWords (LSB)
9 NbWords (MSB)
10 OpType (LSB)
11 OpType (MSB)

Note: The data in the setup packet is copied into the corresponding fields of the mailbox by the
USB controller before the DSP function residing at BranchAddress is called. These are the same
fields that are present at the beginning of the mailbox. The OpType field of the setup packet
corresponds to the ErrorCode field of the mailbox. Therefore in the case of a user DSP function,
this is the data that resides in the mailbox when the user function executes.

Note: In the case of a multi-packet data transfer (packets being 32-byte long in Full-Speed and
256-byte long in High-Speed), the above fields of the mailbox are only updated before the FIRST
call of the DSP function, corresponding to the transfer of the first packet. Subsequent calls
corresponding to subsequent packets do not modify these fields. However, this statement only
holds true if the multi-packet transfer is smaller than 32768 words, and if the transfer does not
cross a 64 kWords boundary. This is because transfers larger than 32768 words are segmented
at high-level into 32768-word transfers. At the beginning of each such transfer the whole contents
of the mailbox are updated. Similarly, transfers that cross a 64 kWords boundary are split into two
transfers that do not straddle the boundary. For each of these transfers, the whole contents of the
mailbox are updated.

Completion Packet
After the operation, the DSP board sends back a Completion Packet to the PC, indicating that the
operation has completed. This Completion Packet is built as follows:
• A 16-bit Error Code. This code is the content of the ErrorCode field of the mailbox that has

been updated by the DSP function prior to sending the last acknowledge to the USB
controller. This error code should be used in an application-specific manner. Consequently,
the user should define the relevant error codes if any are to be used.

Byte Nb Data
0 ErrorCode (LSB)
1 ErrorCode (MSB)

Note: In case of a multi-packet data transfer (K_Read or K_Write), the error code that is
returned to the PC as part of the completion packet represents the content of the ErrorCode field
of the mailbox before the acknowledge corresponding to the LAST call of the DSP function.

 88

Note: This Error Code does not represent conditions that may occur if the transfer does not
complete (for instance if the kernel is not on-line or if the DSP code is crashed at the time of the
transfer), in such conditions, the PC operation completes abnormally, and indicates a USB error.
The transmission of the Error Code can only occur if the transfer otherwise completes normally.
An Error Code may be used to signal application-specific conditions, such as the DSP not being
able to accept data at this time because a FIFO is full, or not being able to execute a function
because of the state it is in at the moment it receives the command.

Note: In the case of a K_Read or K_Write transaction, whether or not the Completion Code is
set to a meaningful value, and whether or not the DSP is able to absorb or supply the data, the
DSP function that handles the transfer must send an acknowledge for each elementary pipe-
sized transfer of the complete transaction. For instance, if the Signal_Ranger_mk2 board is
connected to the PC as a Full-Speed device, the pipe size is 64 bytes (32 words). For a K_Read
of 68 words, the complete transaction is segmented into two 32-word transactions, followed by
one 4-word transaction. In this case, the DSP must acknowledge each of the three elementary
segment transfers, even if it is not able to supply the data. In such a case, an appropriate Error
Code could be used to indicate to the PC in an application specific manner that the data collected
from the mailbox is not valid. The Error Code is read by the USB controller after the last
acknowledge is received from the DSP. In the above example, the DSP can set the error code at
any stage in the transfer. However the value that is returned to the PC is the value last updated
before the last acknowledge.

DSP Support Code
DSP Flash Driver And Flash Programming Support
Code
Several levels of support code are provided to the developers:
• A DSP driver library is provided to the developers who wish to include Flash programming

functions into their DSP code. This driver code is described below.
• A Flash programming DSP application is provided to support the Flash programming

functionality that is part of the interface libraries (LabVIEW and C/C++), as well as the mini-
debugger interface. This code is not described below. It is provided as an executable file
named SR2_Flash_Support.out. This DSP code is loaded and executed by the interface
functions that require its presence.

Overview Of The Flash Driver
A DSP driver is provided to help the user’s DSP code development. This driver takes the form of
a library named SR2FlashBootDriver.lib.
The driver is found in the C:\Program Files\SignalRanger_mk2\DSPSupport_Code. Simply unzip
the file to access its contents.

The driver is composed of C-callable functions, as well as appropriate data structures.

The functions allow read, erasure and sequential write accesses to the FLASH. The driver uses a
software write FIFO buffer, so that the write functions do not have to wait for each write operation
to be completed.

 89

Read functions are performed asynchronously and are very fast. Writes are sequential and are
performed under INT1 interrupt. The typical write time is 60 µs per word. Erasure is
asynchronous, and may be quite long (typ 0.5s/sector, max 3.5s per sector). Erasure functions
wait until all writes are completed before beginning. They are blocking, which means that
execution is blocked within the erasure function as long as the erasure is not completed.

Read, write and erase addresses are 32 bits.

Note: All addresses passed to and from the driver are byte-addresses. This is true, even
though the Flash memory is not byte-addressable. At the lowest level all operations are
performed and counted in 16-bit words. The numbers of operations to perform (read, write and
erase) are specified to the driver in number of 16-bit words. Nonetheless, all addresses are
byte-addresses. This is done to provide consistency with the rest of the Signal_Ranger_mk2
interface software that only uses byte-addresses. Since the Flash is not byte-addressable, the
byte-addresses that are passed to the driver are divided by two internally to point to the correct
16-bit words. Addresses that are returned from the driver are multiplied by two internally before
being returned.

Reads are very simple. They are performed asynchronously using the SR2FB_Read function.
This function returns the content of any 32-bit address.

Writes are performed sequentially using the SR2FB_Write function. Writes are performed at
addresses defined in the FB_WriteAddress register. This register is not user-accessible. It must
be initialized before the first write of a sequence, and is automatically incremented after each
write. The FB_WriteAddress register can be initialized using the SR2FB_SetAddress function,
or the SR2FB_WritePrepare function.
A write operation can turn ones into zeros, but cannot turn zeros back into ones. Normally, a
sector of Flash should be erased before any write is attempted within the sector.

Note: Contrary to previous generations of Flash devices that have been used in Signal Ranger
boards, the Flash device used in Signal_Ranger_mk2 cannot be incrementally programmed. This
means that a word location that has been previously programmed MUST be erased before
reprogramming. This is true even if the reprogramming operation is only intended to turn some of
the remaining “1s” into “0s”.

The SR2FB_WritePrepare function pre-erases all the sectors starting at the specified address,
and containing at least the specified sequential number of words. Because erasure is performed
sector by sector, this function may erase more words that are actually specified to the function.
The function then initializes the FB_WriteAddress register to the beginning address specified, so
that the next write is performed at the beginning of the specified memory segment.

The SR2FB_Write function does not wait for the write to be completed. It just places the word to
be written into the FB_WriteFIFO buffer and returns. The writes are actually performed under
interrupt control, without intervention from the user code.
The fill state of the write FIFO, as well as the state of write and erase errors can be monitored
using the SR2FB_FIFOState function.

Setup Of The Driver

Note: Contrary to the Flash drivers that have been provided in the past with previous versions
of Signal Ranger boards, this driver requires the C environment to work properly. This means that
driver functions should only be called from code written in C, or from code that has setup the C
environment prior to calling any of the functions (see details below).

 90

• All the functions of the driver that are defined below are contained in the

SR2FlashBootDriver.lib library. The user code must be linked with this library to function
properly (the library must be added to the project source files).

• When linking the library with a C project, the project must use the LARGE memory model.
This is required to be able to access all sectors of the FLASH, which span multiple pages of
64k.

• Since the writes are performed under INT1 interrupts, the INT1 interrupt vector must be
initialized to the “SR2FBINT” label. This label is the entry point of the INT1 interrupt routine.
The INT1 interrupt routine is defined in the SR2FlashBootDriver.lib library. See the C
example code provided with the board for an example of interrupt vector setup.

• A header file named SR2_FB_Driver.h is provided that declares all the functions of the
driver.

• Before any other function of the driver is called, the driver must be initialized using the
SR2FB_Init function.

C-Environment
Because the functions are C-Callable, the driver assumes the presence of the C-environment.
This environment is in effect by default when calling any function of the driver from code that has
been written in C. However, when calling these functions from code written in assembly the
following requirements should be observed:
The contents of the CPU registers should conform to the following:
• ST1_55: CPL=1 M40=0 SATD=0 SXMD=1 C16=0

 FRCT=0 54CM=0
• ST2_55: ARMS=1 RDM=0 CDPLC=0 AR[0-7]LC=0
• ST3_55: SATA=0 SMUL=0

In accordance to the C environment rules, the following registers are not protected by the driver
functions, and may be modified by any of the functions:
AC[0-3], XAR[0-4], T[0,1], ST0_55, ST1_55, ST2_55, ST3_55, RPTC, CSR, BRC0, BRC1, BRS1,
RSA0, RSA1, REA0 and REA1.

For information about C-calling rules, see Texas Instrument’s relevant documentation.

Data Structures

FB_WriteFIFO
FB_WriteFIFO is a 32-word buffer accessed with FIFO access logic. The FIFO itself is not user-
accessible. It may only be written by the SR2FB_Write function. It is only emptied under INT1
interrupt service routine.

FB_WriteAddress
FB_WriteAddress is a 32-bit unsigned word that always contains the address of the next word to
be written. FB_WriteAddress can be initialized by the SR2FB_SetAddress function or the
SR2FB_WritePrepare function. After each write completes, the FB_WriteAddress register is
automatically incremented. This increment happens in the INT1 interrupt routine. Therefore to the
user code the value always indicates the address for the next write, never the value of the write
that is in progress.
The current value of the FB_WriteAddress register can be read with the SR2FB_FIFOState
function.

 91

FB_WriteEraseError
FB_WriteEraseError is an integer that contains various error status bits. It is returned by several
functions, including SR2FB_SetAddress, SR2FB_FIFOState, SR2FB_WritePrepare and
SR2FB_Write.
Once an error bit is set to one, indicating an error, it stays one until the error word is cleared using
SR2FB_ErrorClear. Execution of SR2FB_Init also clears the error word.

Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
 SE WP WE

WE Write Error An error occurred during a write. Either a write was attempted at
an address that was not previously erased, or at an address outside of the useable address
range, or the ROM is not working properly.

WP Write in progress When it is one, this bit indicates that writes are in progress. This
bit is only cleared to 0 when the write FIFO is empty and the last write operation is completed. It
is set to one as soon as a new word is written into the write FIFO.

SE Sector Erase Error This bit indicates that an error occurred during the requested
sector erase operation. Either an erasure was attempted at an address outside the useable
address range, or the Flash is not working properly.

Note: When a write is attempted at an address that was not previously erased the usual
behaviour is that the process locks up indefinitely. The WP bit stays one indefinitely. There is no
timeout to unlock the write process. The next writes to the write FIFO may be accepted, but the
FIFO is not being emptied, therefore at some point the FIFO gets full and the SR2FB_Write
function blocks.

User Functions

unsigned long SR2FB_Init ()
Initializes the driver and resets the Flash circuit. It detects the Flash ROM and returns the
memory size in words, or zero if the circuit is not detected. This function must be called at least
once before any other function of the driver is called. This function may be called to reinitialize the
driver.
 Input: no input
 Output: no output
 Return: The size of the flash ROM in word

unsigned int SR2FB_SetAddress(unsigned long FB_WAddress)
This function waits for all pending writes to complete. Then it sets the FB_WriteAddress pointer
to the 32-bit byte-address passed in argument. The function does not check to make sure that the
address passed in argument is inside the allowable address range. If it is not, the subsequent
writes will simply fail. The function returns the current FB_WriteEraseError status.

Input: unsigned long FB_WAddress (byte): this is the 32-bit address for the next write
 Output: no output
 Return: The current WriteEraseError

unsigned short SR2FB_FIFOState(unsigned int *FB_FIFOCount, unsigned long
*FB_WAddress)
This function returns the number of words still in the write FIFO in the FB_FIFOCount argument,
and the present value of the FB_WriteAddress register in the FB_WAddress argument

 92

(FB_Waddress is converted to a byte-address internally before being returned). The function
returns the current FB_WriteEraseError status.

Note: A return value of zero for FB_FIFOCount does not mean that all writes are completed.
The last write may still be in progress. To verify that all writes have indeed been completed, the
WP bit in the FB_WriteEraseError status register should be checked.

 Input: ushort * FB_FIFOCount : This is the pointer to a variable for FIFOCount
output
 unsigned long* WAddress : This is the pointer to a 32-bit variable
FB_WAddress output (sp(2))
 Output: ushort FB_FIFOCount and unsigned long FB_WAddress
 Return: The current FB_WriteEraseError

void SR2FB_ErrorClear()
The function clears the current FB_WriteEraseError status register.
 Input: no input
 Output: no output
 Return: no return

int SR2FB_Read(unsigned long FB_RAddress)
The function returns the word read from the FB_RAddress byte-address. Note that no check is
performed to insure that the read occurs in the memory space occupied by the Flash ROM.
This function may be used to return the contents of any memory, regardless of its type.
 Input: unsigned long FB_RAdress (byte), this is the 32-bit read byte-address.

Output: no output
Return: The word read at the specified byte-address

unsigned int SR2DFB_WritePrepare(unsigned long FB_WAddress, unsigned
long FB_WSize)
The function pre-erases all the sectors of the Flash circuit, required to write a segment FB_WSize
long, from the FB_WAddress byte-address. It then initializes the FB_WriteAddress register to
the value of FB_WAddress, so that the next call to SR2FB_Write will effectively write at the
beginning of the prepared segment.
Because erasure is performed sector by sector only, this function may erase more words that are
actually specified. This is the case if FB_Waddress is not an address corresponding to the
beginning of a sector, or if FB_Waddress + FB_WSize -1 is not an address corresponding to the
end of a sector.
The function waits for all pending writes to complete before starting the erasure.
The function does not check to make sure that the erasure does not include any addresses
outside the useable address range of the Flash.
If during the preparation a sector erase is attempted outside the range of useable addresses, the
function simply fails.
The function returns the current FB_WriteEraseError status.
The function does not return until the erasure is completed. The time is dependant on the length
of the segment to be prepared. It typically takes 0.7s per sector to erase.

Note: The behaviour of the function is undefined if the requested FB_WSize is zero.

 Input: unsigned long FB_Waddress This is the starting byte-address of the segment
to prepare
 unsigned long FB_WSize This is the size of the segment to prepare

 93

 Output: no output
 Return: The current FB_WriteEraseError

unsigned int SR2FB_Write(int Data)
The function places the value of Data in the write FIFO. It normally returns without waiting for the
write to be completed. The low-level writes are performed under INT1 interrupts. However, if the
FIFO is full when the function is called, the function does wait for a slot to be available in the
FIFO, before placing the next value in the FIFO and returning.
It typically takes 60µs per word to program, so if the function is called while the FIFO is full, it may
not return before 60µs have elapsed.
The requested write begins as soon as the previous writes in the FIFO are completed. The data is
written at the current value of FB_WriteAddress.
The function does not check to make sure that the write is attempted inside the range of useable
addresses. If it is not, then the write will simply fail. The failure will not be detected until the data is
actually written from the FIFO to the Flash however. The function returns the current
FB_WriteEraseError status. However, this error word does not reflect the status of the requested
write, because the function does not wait for this write to actually begin.
 Input: short Data : this is the data to place in the FIFO
 Output: no output
 Return: The current FB_WriteEraseError

 94

	Main Features
	Architecture And Boot Modes
	Technical Data:
	Software:

	Installation
	Software Installation
	What Is Installed Where?

	Hardware Installation
	What To Do In Case The Driver Installation Fails
	Led Indicator
	Testing The Board
	Indicators:

	Hardware Description
	Connector Map
	Expansion Connector J4
	Power Supply Pins
	+5V
	+2.5V
	+1.8V
	+1.2V
	+1.26V
	+3.3V
	-3.3V

	DSP Pins
	DSP_Reset
	McBSP_0, McBSP_1
	UART

	FPGA Pins
	FPGA_i
	FPGA_HS_EN

	System Frequencies
	Peripheral Interfaces
	Memory Map
	EMIF Configuration
	SDRAM
	Memory map
	Speed

	Flash
	Memory map
	Sectors
	Interrupt
	Access efficiency
	Incremental programming

	FPGA
	Memory map
	Physical interface
	EMIF Configuration
	FPGA Configuration
	Suggested Setup After Configuration
	FPGA pinout constraints

	Peripheral Access Benchmarks
	SDRAM
	16-bit Write
	16-bit Read
	32-bit Write
	32-bit Read

	Flash
	16-bit Write
	16-bit Read

	FPGA
	16-bit Write
	16-bit Read

	Factory-Default FPGA Logic
	Hardware Details
	Register Map

	Software Interfaces
	How DSP Boards Are Managed
	Kernel vs Non-Kernel Interface Vis
	Error Control
	Low-Level USB Errors
	USB Retries
	High-Level Errors

	Application-Specific DSP Errors And Completion Codes

	USB Lock-Up
	Symbolic Access
	Address Specification
	LabView Interface
	Core Interface Vis
	SR2_Base_Open_Next_Avail_Board
	SR2_Base_Close_BoardNb
	SR2_Base_Get_BoardInfo
	SR2_Base_Complete_DSP_Reset
	SR2_Base_WriteLeds
	SR2_Base_Read_Error_Count
	SR2_Base_Clear_Error_Count
	SR2_Base_Load_User
	SR2_Base_Load_UserSymbols
	SR2_Base_LoadExec_User
	SR2_Base_K_Exec
	SR2_Base_Bulk_Move_Offset
	SR2_Base_User_Move_Offset
	SR2_Base_HPI_Move_Offset
	SR2_Base_Resolve_UserSymbol
	SR2_Base_Error Message

	Flash Support Vis
	SR2_Flash_InitFlash
	SR2_Flash_EraseFlash
	SR2_Flash_FlashMove

	FPGA Support Vis
	SR2_FPGA_LoadConfiguration

	Error Codes
	Example Code

	C/C++ Interface.
	Execution Timing And Thread Management
	Calling Conventions
	Building A Project Using Visual C++ “.Net”
	Exported Interface Functions
	SR2_DLL_Open_Next_Avail_Board
	SR2_DLL_Close_BoardNb
	SR2_DLL_Complete_DSP_Reset
	SR2_DLL_WriteLeds
	SR2_DLL_Read_Error_Count
	SR2_DLL_Clear_Error_Count
	SR2_DLL_Load_User
	SR2_DLL_Load_UserSymbols
	SR2_DLL_LoadExec_User
	SR2_DLL_K_Exec
	SR2_DLL_Bulk_Move_Offset_I16
	SR2_DLL_User_Move_Offset_I16
	SR2_DLL_HPI_Move_Offset_I16
	SR2_DLL_Resolve_UserSymbol
	SR2_DLL_InitFlash
	SR2_DLL_EraseFlash
	SR2_DLL_FlashMove_I16
	SR2_DLL_FPGA_LoadConfiguration

	Error Codes
	Example Code
	Testing The Example Code
	Compile-Time Required Files
	Project Setup
	Run-Time Required Files
	Other Details

	DSP Code Development
	Code Composer Studio Setup
	Project Requirements
	C-Code Requirements
	Assembly Requirements
	Build Options
	Compiler

	Required Modules
	Real-Time-Support
	Interrupt Vectors

	Link Requirements
	Memory Description File
	Vectors Section
	Unused_ISR Section

	Global Symbols
	Preparing Code For “Self-Boot”

	Mini-Debugger
	Description Of The User Interface

	“Under the hood”
	USB Communications
	Communication Via The Control Pipe 0
	Communication Via The DSP Kernel :
	FPGA Boot Table
	DSP Boot Table
	Constraints On The DSP Code Loaded In The Boot Flash
	HPI Signaling Speed
	USB Benchmarks
	Full-Speed Timing
	High-Speed Timing
	Typical Benchmarks

	DSP Communication Kernel
	Differences With Previous Versions
	Location Of The Mailbox
	Contents Of The Mailbox
	Size Of The Mailbox
	Addresses Of The Various Functions Of The Kernel
	Size Of The Kernel

	Overview
	Boot Modes
	Processor State After Reset
	Host-Download Boot:
	Power-Up Boot And Neither User-Code Or FPGA Logic Present In
	Power-Up Boot And FPGA Logic Detected In Flash:
	Power-Up Boot And User-Code Executed From Flash:

	Resources Used By The Kernel On The DSP Side
	Functional Description Of The Kernel
	Launching A DSP Function
	Memory Read And Write
	ReadMem, ReadProg, ReadIO :
	WriteMem, WriteProg, WriteIO:

	Use Of The K_Read And K_Write Requests For User Functions

	High-Speed Communication Protocol
	Setup Packet
	Completion Packet

	DSP Support Code
	DSP Flash Driver And Flash Programming Support Code
	Overview Of The Flash Driver
	Setup Of The Driver
	C-Environment
	Data Structures
	FB_WriteFIFO
	FB_WriteAddress
	FB_WriteEraseError

	User Functions
	unsigned long SR2FB_Init ()
	unsigned int SR2FB_SetAddress(unsigned long FB_WAddress)
	unsigned short SR2FB_FIFOState(unsigned int *FB_FIFOCount, u
	void SR2FB_ErrorClear()
	int SR2FB_Read(unsigned long FB_RAddress)
	unsigned int SR2DFB_WritePrepare(unsigned long FB_WAddress,
	unsigned int SR2FB_Write(int Data)

