
Debugging Storage Management Problems in Garbage-Collected
Environments

David L. Detlefs and Bill Kalsow
Digital Equipment Corporation

Systems Research Center
Palo Alto, CA 94301fdetlefs,kalsowg@pa.dec.com

June 19, 1995

Abstract

Garbage collection does not solve all storage management problems; programs allocate too much
garbage, requiring excess collection, and may retain too much storage, causing heaps to grow too large.
This paper discusses these problems and presents tools implemented in the SRC Modula-3 system that
help solve them.

1 Introduction

Many garbage collection enthusiasts, present au-
thors included, have presented garbage collection
as a panacea for all storage management problems.
Like all marketing hype, this is something of an
exaggeration. This paper discusses storage man-
agement problems that occur in garbage-collected
systems, and describes some tools used in SRC
Modula-3 [4] [6] that aid in detecting and isolating
such problems.

2 Problems with automatic storage
management

A garbage collector solves the two classic problems
of explicit storage management:

1. dangling pointers, where a block of storage
is deallocated too early, while pointers to the
block are still in use. If the block is reallo-
cated, different parts of the program will be

using the same region of memory for different
purposes, with disastrous results.

2. storage leaks, where blocks of storage are al-
located but never deallocated. If this happens
repeatedly in a long-running program, the
program’s memory requirements grow with-
out bound. This problem is the converse of
dangling pointers.

Tools like Purify [7] help identify these prob-
lems, but further programming is necessary to solve
them. However, when garbage collection is used,
these problems never occur.

If garbage collection solves these problems, then
what could go wrong? More than enough, as we
shall see. Excessive allocation may cause overly fre-
quent collection. Moreover, even with collection,
the heap may grow too large. There are a variety of
causes for surprisingly large heaps: data structures
that were designed without an upper bound on their
size, references to “dead” heap objects that are hid-
den behind abstraction boundaries, and references

hidden by the underlying compilation and runtime
system. We consider each these problems in turn.

2.1 Excessive allocation

If a program allocates a great deal of storage for
short-term use, it creates a significant amount of
garbage. That garbage must be collected; the more
quickly garbage is created, the more often it must be
collected. Generational techniques can help greatly
in decreasing the cost of collecting such short-lived
garbage. However, it is still possible to optimize the
performance of most garbage-collected programs
by locally reusing storage for the most frequently-
allocated types, thereby avoiding garbage-collector
overhead. Of course, such techniques have the same
dangers as explicit storage management.

2.2 Unbounded data structures

A garbage collector collects storage that is not reach-
able from the root set (the stacks and global vari-
ables) of the program. If the amount of reachable
storage increases monotonically over time, a long-
running program will still run out of memory, even
with garbage collection. It is surprisingly common
for programmers of long-running systems to create
data structures that grow without bound. For exam-
ple, programs often use caches to avoid redundant
computation. If a program was originally used in
a “short-lived” context, that is, it was used to com-
pute a result and then exit, every result may have
been cached. If this same program is converted for
use in a “long-lived” server context, or is used on
much larger input problems, then this strategy is un-
acceptable; a policy and mechanism for regulating
the cache size must be added. This may sound obvi-
ous, but if the program is large and is developed by
many programmers, it may be difficult to pinpoint
all such data structures. Some may occur in unfa-
miliar libraries, perhaps written by third parties, and
perhaps available only in object form.

2.3 References hidden by abstraction

A data structure whose concrete state references a
heap object while its abstract state does not may also

cause the heap to grow too large. For example, con-
sider the simple stack type whose interface and im-
plementation are shown in figure 1.

The Pop procedure removes the top element
pointer from the abstract stack. But note that the “re-
moved” pointer remains in the concrete state of the
stack; the elems array is not modified by Pop. So
if we pushed 100 pointers to large graph structures,
then popped them all, and then didn’t use the stack
again, the graph structures would be retained as long
as the stack was; if the stack were a global variable,
this would be for the remainder of the program’s life-
time.

This kind of problem can be especially bother-
some to pin down, since we are accustomed to think-
ing of our data types in abstract terms whenever pos-
sible. It is therefore necessary in a garbage-collected
environment to modify such data structures to keep
the references in the abstract and concrete states syn-
chronized. In the example above, we would modify
thePop procedure to remove the concrete reference,
as shown in figure 2.

2.4 References hidden by the system

A similar problem can occur in places beyond the
programmer’s control. Consider an execution of a
program with procedures, A, B, C, and D. A callsB, whose preamble reserves space on the stack for a
local variablex, a pointer to a heap objectX . B callsC, but saves on the stack the value of x, which had
been in a register, creating the situationshown in fig-
ure 3 (part a). C returns, and B returns, leaving the
pointer in a dead area of the stack, as shown in figure
3 (part b). At this point there is no problem; if X is
otherwise unreferenced, a collection could reclaim
it. But A now calls D, which also allocates space
on the stack to store a value. Before D stores any-
thing into this location, however, a collection occurs
– perhaps D requested a heap allocation. The heap
pointer stored by B is dead, but is located in the ac-
tive area of the stack, as shown in figure 3 (part c).
The objectX , and all objects reachable from it, will
be retained by the collection.

We should note that this problem is probably not
too important in single-threaded systems, since any
pointeron the stack that causes storage to be retained
in one collection is likely be overwritten by stack ac-

INTERFACE RefStack;
TYPE
T <: Public;
Public = OBJECT
push(r: REFANY);
pop(): REFANY;

END;
END RefStack.

MODULE RefStack;

REVEAL
T = Public BRANDED OBJECT
elems: ARRAY [0..99] OF REFANY;
sp: INTEGER := 0;
OVERRIDES
push := Push;
pop := Pop;

END;

PROCEDURE Push(self: T; elem: REFANY) =
BEGIN
self.elems[self.sp] := elem; INC(self.sp);

END Push;

PROCEDURE Pop(self: T): REFANY =
BEGIN
DEC(self.sp); RETURN self.elems[self.sp];

END Pop;

BEGIN END RefStack.

Figure 1: References hidden by abstraction.

PROCEDURE Pop(self: T): REFANY =
VAR res: REFANY;
BEGIN
DEC(self.sp);
res := self.elems[self.sp];
self.elems[self.sp] := NIL;
RETURN res

END Pop;

Figure 2: Corrected version of Pop.

tivity before the next collection occurs. However,
in multi-threaded environments, the problem may be
more serious. Imagine in the example above that
procedure D, instead of triggering a garbage collec-
tion, waits on a condition variable that is rarely sig-
nalled. The thread executing D will be blocked for
some time, perhaps for many garbage collections.
Those collections will retain the object X .

Note that this is not a problem confined to con-
servative collectors such as the collectors of Bartlett

[1] or Boehm and Weiser [2], which assume any
bit pattern in the stack that looks like a pointer is a
pointer. Lisp systems using hardware tags are just as
vulnerable; the pointer values in the stack locations
are perfectly valid pointers — they just aren’t live at
the time of collection. The Boehm-Weiser collector
attempts to prevent this problem; it zeros the part of
the stack above the stack pointer on each collection.
A complete solution to this problem requires a great
deal of cooperation between a garbage collector and

SP

SP

SP

(a heap object)

a. b. c.

X

C

B

A A A

D

x

Figure 3: References hidden by the runtime-system.

a compiler. The compiler must either enable the col-
lector to precisely determine which stack values and
registers are live at the start of a collection, or gen-
erate code to “NIL out” pointer-containing stack lo-
cations on procedure entry or exit.

Finally, we should note that while this problem
may seem obscure, it does occur in practice. Reten-
tion of excess storage was traced to precisely this
situation in the first version of the Vesta configura-
tion management system [5]. We know of no cer-
tain fix for this problem other than requiring com-
pilers to produce code in which procedures zero-
fill their stack frames on entry (or, alternatively, on
exit). The obvious performance penalties of these
solutions make them somewhat unattractive.

3 Tools

This section describes four tools we have devel-
oped to aid programmers both find and fix stor-
age management problems in long-lived garbage-
collected programs. These tools are all implemented

as part of the runtime system for SRC Modula-3.
We give “real-life” examples of the use of each tool.
These examples arise from problems encountered in
the Extended Static Checking (henceforth ESC) pro-
gram verification system being developed at SRC.

3.1 Diagnosing excessive allocation

Excessive allocation causes frequent and poten-
tially intrusive garbage collection. Shownew is a
tool that allows a user to observe the allocation be-
havior of a program. Shownew is integrated into the
runtime system, so that any SRC Modula-3 program
can be passed a special command-line argument that
will cause it to run under the control of a Shownew
process. Shownew presents a bar graph indicating
how much storage of each type is being allocated. A
menu allows the user to indicate whether the graph
should display the number of objects or bytes al-
located, and whether the numbers should indicate
totals since the beginning of the program, or only
new allocations since the display was last updated.

Figure 4: Shownew output (before).

Shownew allows the programmer to pinpoint what
types are being allocated most often and might be
causing excessive collection.

With Shownew, it is quite easy and almost al-
ways worthwhile to determine what types are allo-
cated most frequently in your program. The answers
are sometimes surprising, and occasionally repre-
sent bugs that are simple to correct. When the ESC
system was found to be embarrassingly slow on a
new example, we tried Shownew to see if exces-
sive allocation was a problem. The result is shown
in Figure 4. (Of course, the bars of the graph ap-
pear in color on a color monitor.) The identity of the
type allocated most frequently was a complete sur-
prise. ExprVarRefTbl.EntryList is an inter-
nal type used in the implementation of a set type
provided by the Modula-3 library. These allocations
were eventually traced to code that applied a vari-
able substitution to a universally quantified formula
(a ForAll), as shown in figure 5. The argument
exc is a set of “excluded” variables, variables that
are not to be substituted. Since a quantifier binds the
quantified variables, ForAllSubst adds its own
quantified variables, self.vs, to exc before ap-
plying the substitution to its body.

It happened that the type ExprVarSet.T
was implemented using hash tables. The set
type’s union method is non-destructive, so
exc.union(self.vs) makes a copy of exc,
adds the elements of self.vs, and returns the
copy. Note that the copy is discarded as soon as
the call to MkForAll returns.

We modified this procedure to avoid the copy, as
shown in figure 6. The usual way to avoid this copy,
and the one we used, is to substitute destructive op-
erations (in which exc is modified) for functional

operations (in which exc is not modified). The call
exc.unionD(self.vs), for example, adds the
elements of self.vs to the set exc, modifying its
value. Similarly, diffD destructively deletes ele-
ments from a set.

In this example, several assumptions are nec-
essary to argue the correctness of the transforma-
tion. First,exc is not being accessed by any concur-
rently executing threads. Second, it is a precondi-
tion of ForAllSubst that exc and self.vs are
disjoint. Third, the call self.body.subst(s,
exc) does not retain a reference to exc. Using
destructive operations often yields significant per-
formance benefits, but the subtlety of the assump-
tions necessary to show them correct argues that
they should be used sparingly. A tool like Shownew
helps identify the most promising targets.

The first picture in figure 7 shows the result
of Shownew on this program after the change de-
scribed above. Note that the EntryList type is
now only the sixth of the most frequently allocated
types; the number of EntryLists allocated de-
creased by more than 95%. Similar transformations
resulted in the situation shown in the second pic-
ture of that figure, where the absolute numbers of the
most frequently allocated types have dropped dra-
matically.

The implementation of Shownew is fairly sim-
ple. Each (garbage-collected) heap-allocated object
in Modula-3 has a header that contains a typecode,
a unique integer corresponding to the dynamic type
of the object. From a typecode it is easy to find the
name, size, and various other attributes of the corre-
sponding type. A NEW(T) expression in the source
is compiled to a call to the runtime’s allocation rou-
tine with the typecode of T as an argument. When

PROCEDURE ForAllSubst(self: ForAll; s: Subst.T;
exc: ExprVarSet.T): ForAll =

BEGIN
RETURN MkForAll(self.vs, self.body.subst(s, exc.union(self.vs)));

END ForAllSubst;

Figure 5: Excessive allocation (before).

PROCEDURE ForAllSubst(self: ForAll; s: Subst.T;
exc: ExprVarSet.T): ForAll =

VAR res: ForAll;
BEGIN
exc := exc.unionD(self.vs);
res := MkForAll(self.vs, self.body.subst(s, exc));
exc := exc.diffD(self.vs);
RETURN res;

END ForAllSubst;

Figure 6: Excessive allocation (after).

Figure 7: Shownew output (after)

Shownew is being used, the allocator counts the ob-
jects allocated of each type, periodically forwarding
that information to the Shownew process.

3.2 Excess retained storage

The previous section dealt with allocation. Alloca-
tion and heap size are obviously related, since some-
thing must be allocated to become part of the heap,
but they are also quite different. A type that is allo-
cated often may contribute nothing to the heap size,
if all instances quickly become garbage and are col-
lected, while a type that is allocated infrequently, but
whose instances are retained, will cause the heap to

grow without bound.
The rest of this section introduces three tools

used to diagnose problems in the theorem-prover
used in ESC. In long-running proofs, the theorem-
prover’s heap seemed to be growing continually
larger, while we expected the storage requirements
of the systems to quickly reach a steady state.

3.2.1 RTutils.Heap

The first tool we used was the procedure
RTutils.Heap, which reports the composition
of the heap by data type. If we explicitly run a col-
lection before generating such a report, we obtain

a breakdown by type of live objects in the heap.
RTutils.Heap has several options that allow the
report to be ordered by number of allocated objects
or bytes occupied, and to limit the report to the topn types by the requested ranking method. We mod-
ified ESC to periodically perform a garbage collec-
tion and call RTutils.Heap, reporting the top
10 types ranked by bytes occupied. Figure 8 shows
these reports near the beginning (but after we would
have expected the heap size to stabilize) and end of
an execution of the theorem-prover on a relatively
small test case.

The heap has grown by almost three megabytes.
The bulk of that increase can be attributed to the
type Enode.Parent, which grew by more than
two megabytes.

The addition of calls to RTutils.Heap to
the source code has helped us identify the first-
order term of our problem: we are retaining more
Enode.Parent objects than we expected. These
reports are useful enough that we left this debug-
ging code in permanently, with printing of the re-
ports controlled by an environment variable.

The implementation of RTutils.Heap re-
quires the ability to enumerate all the objects in the
heap and classify them by type. Recall that Modula-
3 heap objects are prefixed by headers containing a
typecode that uniquely designates a type. It is there-
fore simple to examine all heap objects, construct-
ing a table mapping typecodes to object counts and
bytes occupied. Finally, the table is sorted by the ap-
propriate metric and printed.

Two additional features of RTutils.Heap
merit explanation.

First, sometimes a report by typecode is too
coarse-grained. For some problems, it is conve-
nient to program in a Lisp-like style within Modula-
3. Instances of the type RefList.T are singly-
linked lists of generic pointers. This type can be
used much like a Lisp cons cell. In programs that use
such a style, lists are used in a number of different
ways. A report saying that the heap contains many
RefList.Ts may not identify which of the many
uses of the type is responsible for the retained stor-
age. In such a situation, the programmer can use the
RTAllocStats interface. This interface exports
a procedure EnableTrace, which takes a type-
code argument. Once EnableTrace is called for a

type, the header of each newly allocated object with
that type is annotated with a small integer represent-
ing the call site of the allocation. Abstractly, a call
site can be thought of as a snapshot of the stack at
the time of the allocation. Practically, it is the se-
quence of the top n program counter values on the
stack, where n defaults to 3 but can be set by the
user. The single program counter of the actual al-
location is insufficient; in the RefList case men-
tioned above, few RefList.Ts are allocated di-
rectly by clients of the interface; most are allocated
using convenience procedures of the interface like
RefList.Cons or RefList.List3. It would
be of little use to discover that most lists were allo-
cated within calls to Cons. Figure 9 shows an ex-
cerpt from one of these finer-grained reports.

Call-site tracking requires more from the run-
time system. The allocation routine must first de-
termine whether tracking is enabled for the type be-
ing allocated. If so, it must determine the call site,
which requires the ability to interpret a thread stack’s
contents at runtime; note that this code is highly
platform-specific. Because we use “unused” bits in
the standard object header to record call sites in-
formation, we are currently limited to 256 sites per
type. If this limit is reached, allocations at other sites
are credited to a site code reserved for other sites, as
shown in figure 9.

The second additional feature of RTutils
solves the opposite problem: when reports by type-
code are too fine-grained. For example, ESC pro-
cesses Modula-3 using M3TK [3], which translates
the source code into an abstract syntax tree (AST)
that ESC then analyzes. These AST’s are made up
of many different types; it would be tedious to de-
termine how much space is occupied by such trees
from the kind of report described above. How-
ever, the types of the tree nodes are organized in
a type hierarchy rooted at a generic AST.NODE
type. RTutils.Heap produces a second report
for Modula-3 object types that reflects the inheri-
tance hierarchy. Since Modula-3 supports only sin-
gle inheritance, this hierarchy is a simple tree. In fig-
ure 10 it becomes clear that AST nodes occupy about
1.2 megabytes, with different subtypes accounting
for different fractions of that total.

The restriction to single inheritance makes the
implementation of this report simple. Typecodes are

Near beginning:

Code Count TotalSize AvgSize Name
---- --------- --------- --------- ---------------
270 1 2457616 2457616 Enode.UndoStack
180 3352 616768 184 Enode.Parent
173 14623 350952 24 RefList.T
230 1 160024 160024 Simplex.RatArr2
294 3804 121728 32 SigTab.EntryList
233 4 81984 20496 <anon type>
143 1857 59424 32 Context.Literal
178 411 59184 144 Enode.Leaf
161 473 49192 104 MatchingRule.Rule
196 19 48216 2537 RTHooks.CharBuffer

--------- ---------
33714 4505664

Near end:

Code Count TotalSize AvgSize Name
---- --------- --------- --------- ---------------
180 16395 3016680 184 Enode.Parent
270 1 2457616 2457616 Enode.UndoStack
294 14542 465344 32 SigTab.EntryList
173 14611 350664 24 RefList.T
233 4 311360 77840 <anon type>
230 1 160024 160024 Simplex.RatArr2
178 852 122688 144 Enode.Leaf
232 1 64016 64016 Context.TritArray
143 1790 57280 32 Context.Literal
161 503 52312 104 MatchingRule.Rule

--------- ---------
59951 7684096

Figure 8: Use of RTutils.Heap

Code Count TotalSize AvgSize Name
---- --------- --------- --------- --------------------------
272 1 2457616 2457616 Enode.UndoStack
173 15416 369984 24 RefList.T

3436 82464 24 Cons + 16_3c in RefList.m3
SubWork + 16_59c in PredSx.m3
SubWork + 16_4dc in PredSx.m3

2333 55992 24 Cons + 16_3c in RefList.m3
CopySx + 16_130 in Clause.m3
CopySx + 16_c4 in Clause.m3

...
465 11160 24 OTHER SITES

...

Figure 9: RTutils.Heap output broken down by call site.

Code Count TotalSize AvgSize Name
---- --------- --------- --------- --------------------------
...
311 24866 1223512 49 AST.NODE
...
510 964 49208 51 M3AST_AS.STM
...
516 254 12192 48 M3AST_AS_F.Assign_st
...
527 39 2808 72 M3AST_AS_F.For_st
...

Figure 10: RTutils.Heap output broken down by the type hierarchy.

assigned to types in a pre-order traversal of the type
forest, so that the typecodes of the subtypes of a type
form a consecutive sequence of integers. The sub-
type test is therefore a simple range test, making it
easy to aggregate the numbers for a type and all its
subtypes.

In summary, RTutils.Heap answers some
of the most basic questions that must be answered
when debugging a storage management problem:
how big is the heap, what kind of objects are in it,
and how many objects of each type are in it? It
can answer these questions at finer or coarser grains
where necessary.

3.2.2 RTHeapStats.ReportReachable

RTutils.Heap identified what was filling up the
heap, but did not tell us why the objects filling the
heap were escaping collection. The next tool in
our kit helps answer that question. An object is
retained by garbage collection only if it is reach-
able from a root of the program, that is, from the
stacks, registers, or global variables. The proce-
dure RTHeapStats.ReportReachable tells
us how many bytes of storage are reachable from
the roots, breaking down the roots in various ways.
Each global variable in Modula-3 is associated with
some module. One list ranks the modules by bytes

reachable from their global variables. A more de-
tailed breakdown ranks the individual global vari-
ables by the amount of storage they reach. A second
section details storage reachable from thread stacks,
again, reporting both at coarse and fine grains. In the
coarse grained report, entire stacks are lumped to-
gether. In the fine grained report, stack frames are
printed along with the storage reachable from indi-
vidual references contained in those frames.

We modified ESC to call ReportReachable
periodically. Figure 11 shows excerpts from two re-
ports, one near the beginning of the program, but af-
ter we expected the heap size to reach a steady state,
and one from near the end.

Comparing the reports identifies the Enode
module as the major offender. We see also that an
object of type SigTab.Default in the Enode
module went from reaching just over one megabyte
to almost three and one half. The only global vari-
able of this type in the module was named sigTab.
Once we had identified sigTab as a possible prob-
lem, a moment’s thought was sufficient to reveal
our mistake. The purpose of sigTab is to en-
sure that we never create distinct Enode.Parents
with identical children. For small examples it was
acceptable to remember all the parents ever cre-
ated. For large examples, however, such unbounded
growth leads to overly large heaps. This table is a
cache of parent nodes; we needed to invent a cache-
management policy for it. We can delete a Parent
from the table when it is no longer in use. Because
of its backtracking search structure, the prover “un-
winds” every action it takes; so we can delete a
Parent from the table when we undo the action
that added it in the first place.

We now briefly describe the implementation of
ReportReachable before continuing with our
detective story. Essentially, each line item in the re-
port is the result of a mini-garbage-collection. We
allocate a new bit vector large enough to serve as
mark bits for all the objects in the heap. To deter-
mine the set of objects reachable from some sub-
set r of the roots, we clear the mark bits, then (re-
cursively) mark each object reachable from r, us-
ing the mark bits to terminate the recursion. When
the mark phase is complete, we count the objects
and bytes corresponding to the mark bits. This algo-
rithm requires the ability to enumerate the pointer-

containing fields of an arbitrary heap object. Note
also that presenting the result of thread stack traver-
sals requires the same run-time interpretation of
thread stacks needed for call-site tracking in section
3.2.1.

Note that this process is potentially quite expen-
sive. If a heap contains a large linked data structure
that is reachable from many roots, that structure will
be traversed and counted once for each of the differ-
ent root references. In practice, however, the perfor-
mance ofReportReachable seems quite accept-
able; the reports shown above did not slow down the
the execution of the program greatly.

3.2.3 RTHeapDebug

In the ESC problem we have been discussing,
it was fairly easy to identify a problem once
RTHeapStats.ReportReachable led us to
an offending global variable. Sometimes, however,
this information may not be sufficient; it may be
difficult to determine what paths exist from the of-
fending root to objects of the problematic type. The
RTHeapDebug interface helps find such paths.

Even in a garbage-collected system, it is some-
times possible to identify a point in the program
where one expects an object to become garbage. In
our ongoing example, we added code to remove an
Enode.Parent from sigTab when the prover’s
search backtracked past the point where the parent
was first created and added to the table; we expected
the parent to be unreachable after it was deleted from
the table. RTHeapDebug allows the programmer
to check such expectations.

Calling RTHeapDebug.Free(r) asserts
that the reference r is unreachable. A call to
RTHeapDebug.CheckHeap does the equivalent
of a garbage-collection, traversing all reachable ob-
jects in search of any that have been asserted un-
reachable. If such an object is found, CheckHeap
prints a path from a root to the putatively unreach-
able object.

In the ESC example, we calledRTHeapDebug.
Free to assert that Enode.Parents removed
from sigTab by the undo code were unreach-
able. We called CheckHeap at a later point. We
were surprised to find that our assumption was
wrong. Figure 12 shows an excerpt of a report from

Near beginning:

HEAP: 0x14009a000 .. 0x140c98000 => 11.9 Mbytes

Module globals:
objects # bytes unit
--------- -------- -----------------

24471 4151816 Enode.m3
11116 698648 Context.m3
8390 579608 Clause.m3
...

Global variable roots:
objects # bytes ref type location
--------- -------- ---------- ----------------- ------------------

8450 3036328 0x140694008 Enode.UndoStack Enode.m3 + 2224
9065 1098920 0x1402a2558 SigTab.Default Enode.m3 + 1352
12925 703144 0x1400a7990 IntRefTbl.Default Enode.m3 + 4328
...

Near end:

HEAP: 0x14009a000 .. 0x141244000 => 17.6 Mbytes

Module globals:
objects # bytes unit
--------- -------- -----------------

43159 6534144 Enode.m3
11194 757936 Context.m3
5215 748008 Simplex.m3
...

Global variable roots:
objects # bytes ref type location
--------- -------- ---------- ----------------- ------------------

27149 3456264 0x1402a2558 SigTab.Default Enode.m3 + 1352
8632 3100256 0x140694008 Enode.UndoStack Enode.m3 + 2224
13471 727832 0x1400a7990 IntRefTbl.Default Enode.m3 + 4328
...

Figure 11: Use of RTHeapStats.ReportReachable.

Path to ’free’ object:
Ref in root at address 0x14000a770...
Object of type Enode.UndoStack at address 0x14013c008...
Free object of type Enode.Parent at address 0x14013eac8...

Path to ’free’ object:
Ref in root at address 0x14000a770...
Object of type Enode.UndoStack at address 0x14013c008...
Free object of type Enode.Parent at address 0x14013eae0...

Path to ’free’ object:
Ref in root at address 0x14000a770...
Object of type Enode.UndoStack at address 0x14013c008...
Free object of type Enode.Parent at address 0x14013eaf8...

...

Figure 12: Use of RTHeapDebug.CheckHeap.

CheckHeap. There was only one variable in the
program of type Enode.UndoStack; it is the
stack on which undo records are written to imple-
ment the backtracking search. Apparently this stack
was pointing directly to objects we thought should
be unreachable.

A little investigation revealed the problem to
be a case of references hidden by abstraction, al-
most exactly the situation described in the exam-
ple of section 2.3. We considered the undo stack
as only the portion below the stack pointer, but the
garbage collector considered the entire array data
structure. Undo records above the stack pointer con-
tained pointers to otherwise unreachable objects. To
solve the problem we modified the pop operations of
the various undo stacks in the system to set pointers
in dead stack entries to NIL. This investigation has
purged ESC of its most egregious storage leaks.

It might be argued that the technique embod-
ied by RTHeapDebug is regressive, in that it re-
quires the programmer to do the equivalent of ex-
plicit storage management. There is some truth to
this argument. However, RTHeapDebug.Free
is needed only for types identified as storage prob-
lems, not for all deallocated objects. Calling
RTHeapDebug.Free for an object that is still ac-
cessible causes a graceful error message, while ac-
tually deallocating a still-accessible object is likely
to cause a confusing dangling pointer bug.

The implementation of RTHeapDebug uses
the WeakRef interface provided by the Modula-
3 runtime. A WeakRef.T is a reference to an
object that does not prevent the object from be-
ing collected. WeakRef provides a routine for
obtaining the “real” reference corresponding to a
WeakRef.T; this routine returns NIL if the refer-
enced object has been collected. RTHeapDebug
maintains a set of weak references to freed objects,
initially empty. RTHeapDebug.Free(r) adds
a weak reference corresponding to r to this set.
RTHeapDebug.CheckHeap first throws away
any elements in the set whose referents have been
collected, then searches for paths to the remaining
freed objects.

4 Conclusion

We present four classes of storage-management
problems that occur even in completely garbage-
collected systems: excessive allocation, data struc-
tures that grow without bound, references hidden by
abstraction boundaries, and references hidden by the
system. We have presented tools that aid the diag-
nosis of such problems. These tools are part of the
SRC Modula-3 system, but could easily be adapted
for other languages; in fact, some of the tools are not
specific to garbage-collected systems.

We feel that the trend towards long-lived server

programs will speed the adoption of garbage-
collected systems; the likelihood of pointer-smashes
or storage leaks in explicitly managed systems is far
too high for applications that must run reliably for
long periods. This paper addresses the (more man-
ageable!) storage management problems that re-
main once such systems have adopted garbage col-
lection.

References

[1] Joel F. Bartlett. Compacting garbage collec-
tion with ambiguous roots. Technical Report
88/2, Digital Equipment Corporation Western
Research Laboratory, February 1988.

[2] Hans-Juergen Boehm and Mark Weiser.
Garbage collection in an uncooperative envi-
ronment. Software Practice and Experience,
18(9):807–820, September 1988.

[3] Mick Jordan. An extensible programming en-
vironment for modula-3. In Proceedings of the
Fourth ACM SIGSOFT Symposium on Software
Development Environments.ACM, ACM Press,
1990.

[4] Bill Kalsow. SRC Modula-3 home page.
URL http://www.research.digital.com/SRC/
modula-3/html/home.html.

[5] Roy Levin and Paul Mcjones. The Vesta ap-
proach to precise configuration in large software
systems. Technical Report SRC-102, Digital
Equipment Corporation Systems Research Cen-
ter, 130 Lytton Ave., Palo Alto, CA 94301, June
1993.

[6] Greg Nelson, editor. Systems Programming in
Modula-3. Prentice-Hall, Englewood Cliffs, NJ,
1991.

[7] Pure Software, Los Altos, California. Purify
Version 1.1 Beta A, 1992. User manual.

