Debugging Storage M anagement Problems in Garbage-Collected
Environments

David L. Detlefs and Bill Kalsow
Digital Equipment Corporation
Systems Research Center
Palo Alto, CA 94301
{detlefs kal sow } @pa.dec.com

June 19, 1995

Abstract

Garbage collection does not solve al storage management problems; programs allocate too much
garbage, requiring excess collection, and may retain too much storage, causing heaps to grow too large.
This paper discusses these problems and presents tools implemented in the SRC Modula-3 system that

help solve them.

1 Introduction

Many garbage collection enthusiasts, present au-
thors included, have presented garbage collection
as a panacea for al storage management problems.
Like al marketing hype, this is something of an
exaggeration. This paper discusses storage man-
agement problems that occur in garbage-collected
systems, and describes some tools used in SRC
Modula-3 [4] [6] that aid in detecting and isolating
such problems.

2 Problemswith automatic storage
management

A garbage collector solves the two classic problems
of explicit storage management:

1. dangling pointers, where a block of storage
is deallocated too early, while pointers to the
block are still in use. If the block is reallo-
cated, different parts of the program will be

using the same region of memory for different
purposes, with disastrous results.

2. storageleaks, where blocks of storage are -
located but never deallocated. If thishappens
repeatedly in a long-running program, the
program’s memory requirements grow with-
out bound. This problem is the converse of
dangling pointers.

Tools like Purify [7] help identify these prob-
lems, but further programming is necessary to solve
them. However, when garbage collection is used,
these problems never occur.

If garbage coll ection solvesthese problems, then
what could go wrong? More than enough, as we
shall see. Excessiveallocation may causeoverly fre-
guent collection. Moreover, even with collection,
the heap may grow too large. There are avariety of
causes for surprisingly large heaps. data structures
that were designed without an upper bound on their
size, references to “dead” heap objects that are hid-
den behind abstraction boundaries, and references

hidden by the underlying compilation and runtime
system. We consider each these problemsin turn.

2.1 Excessive allocation

If a program allocates a great deal of storage for
short-term use, it creates a significant amount of
garbage. That garbage must be collected; the more
quickly garbageis created, the more often it must be
collected. Generational techniques can help greatly
in decreasing the cost of collecting such short-lived
garbage. However, it istill possibleto optimizethe
performance of most garbage-collected programs
by locally reusing storage for the most frequently-
allocated types, thereby avoiding garbage-collector
overhead. Of course, such techniqueshavethe same
dangers as explicit storage management.

2.2 Unbounded data structures

A garbagecollector collectsstoragethat isnot reach-
able from the root set (the stacks and global vari-
ables) of the program. If the amount of reachable
storage increases monotonically over time, a long-
running program will still run out of memory, even
with garbage collection. It is surprisingly common
for programmers of long-running systems to create
data structures that grow without bound. For exam-
ple, programs often use caches to avoid redundant
computation. If a program was originally used in
a‘“short-lived” context, that is, it was used to com-
pute a result and then exit, every result may have
been cached. If this same program is converted for
use in a “long-lived” server context, or is used on
much larger input problems, then this strategy isun-
acceptable; a policy and mechanism for regulating
the cache size must be added. Thismay sound obvi-
ous, but if the program is large and is devel oped by
many programmers, it may be difficult to pinpoint
al such data structures. Some may occur in unfa-
miliar libraries, perhapswritten by third parties, and
perhaps available only in object form.

2.3 References hidden by abstraction

A data structure whose concrete state references a
heap object whileits abstract state does not may also

cause the heap to grow too large. For example, con-
sider the simple stack type whose interface and im-
plementation are shown in figure 1.

The Pop procedure removes the top element
pointer from the abstract stack. But notethat the*re-
moved” pointer remains in the concrete state of the
stack; the el ens array isnot modified by Pop. So
if we pushed 100 pointersto large graph structures,
then popped them all, and then didn’t use the stack
again, the graph structureswould beretained aslong
asthe stack was; if the stack were a global variable,
thiswouldbefor theremainder of theprogram’slife-
time.

This kind of problem can be especially bother-
someto pin down, sincewe are accustomed to think-
ing of our datatypesin abstract terms whenever pos-
sible. Itistherefore necessary in agarbage-collected
environment to modify such data structures to keep
thereferencesintheabstract and concrete statessyn-
chronized. In the example above, we would modify
the Pop procedureto removethe concretereference,
as shownin figure 2.

24 Referenceshidden by the system

A similar problem can occur in places beyond the
programmer’s control. Consider an execution of a
program with procedures, A, B, C,and D. A cals
B, whaose preambl e reserves space on the stack for a
local variable s, apointer toaheap object X. B calls
(', but saves on the stack the value of z, which had
beeninaregister, creating the situationshowninfig-
ure 3 (part). C' returns, and B returns, leaving the
pointer in adead area of the stack, as showninfigure
3 (part b). At thispoint thereis no problem; if X is
otherwise unreferenced, a collection could reclaim
it. But A now calls D, which aso alocates space
on the stack to store avalue. Before I stores any-
thinginto thislocation, however, a collection occurs
— perhaps D requested a heap alocation. The heap
pointer stored by B isdead, but islocated in the ac-
tive area of the stack, as shown in figure 3 (part c).
The object X, and all objectsreachable from it, will
be retained by the collection.

We should notethat thisproblemisprobably not
too important in single-threaded systems, since any
pointer on the stack that causesstorageto beretained
inone collectionislikely be overwritten by stack ac-

| NTERFACE Ref St ack;
TYPE
T <: Public;
Public = OBJECT
push(r: REFANY);
pop(): REFANY;
END;
END Ref St ack.

MODULE Ref St ack;

REVEAL
T = Public BRANDED OBJECT
el ems: ARRAY [0..99] OF REFANY;
sp: | NTEGER : = 0;

OVERRI DES
push : = Push;
pop : = Pop;

END;

PROCEDURE Push(self: T; elem REFANY) =
BEG N
self.elems[self.sp] := elem INC(self.sp);
END Push;

PROCEDURE Pop(sel f: T): REFANY =
BEG N
DEC(sel f.sp); RETURN sel f.el enms[sel f.sp];
END Pop;

BEG N END Ref St ack.

Figure 1: References hidden by abstraction.

PROCEDURE Pop(self: T):

VAR res: REFANY;

BEG N
DEC(sel f.sp);
res := self.elenms[self.sp];
self.elems[sel f.sp] := NL;
RETURN res

END Pop;

REFANY =

Figure 2: Corrected version of Pop.

tivity before the next collection occurs. However,
in multi-threaded environments, the problem may be
more serious. Imagine in the example above that
procedure D, instead of triggering a garbage collec-
tion, waits on a condition variablethat is rarely sig-
nalled. The thread executing D will be blocked for
some time, perhaps for many garbage collections.
Those collectionswill retain the object X .

Note that thisis not a problem confined to con-
servative collector ssuch as the collectors of Bartl ett

[1] or Boehm and Weiser [2], which assume any
bit pattern in the stack that looks like a pointer is a
pointer. Lisp systemsusing hardwaretagsarejust as
vulnerable; the pointer valuesin the stack locations
are perfectly valid pointers— they just aren’t live at
thetime of collection. The Boehm-Weiser collector
attemptsto prevent this problem; it zeros the part of
the stack above the stack pointer on each collection.
A compl ete solution to this problem requires a great
deal of cooperation between a garbage collector and

(a heap object)

SP

SP

Figure 3: References hidden by the runtime-system.

acompiler. The compiler must either enablethe col-
lector to precisely determine which stack values and
registers are live a the start of a collection, or gen-
erate code to “NIL out” pointer-containing stack lo-
cations on procedure entry or exit.

Finally, we should note that while this problem
may seem obscure, it does occur in practice. Reten-
tion of excess storage was traced to precisely this
situation in the first version of the Vesta configura-
tion management system [5]. We know of no cer-
tain fix for this problem other than requiring com-
pilers to produce code in which procedures zero-
fill their stack frames on entry (or, alternatively, on
exit). The obvious performance penalties of these
solutions make them somewhat unattractive.

3 Tools

This section describes four tools we have devel-
oped to aid programmers both find and fix stor-
age management problems in long-lived garbage-
collected programs. Thesetoolsareall implemented

as part of the runtime system for SRC Modula-3.
We give“real-life” examples of the use of each tool.
These exampl es arise from problems encountered in
the Extended Static Checking (henceforth ESC) pro-
gram verification system being developed at SRC.

3.1 Diagnosing excessive allocation

Excessive allocation causes frequent and poten-
tially intrusive garbage collection. Shownew is a
tool that allows a user to observe the allocation be-
havior of aprogram. Shownew isintegrated into the
runtimesystem, so that any SRC Modula-3 program
can be passed aspecial command-line argument that
will causeit to run under the control of a Shownew
process. Shownew presents a bar graph indicating
how much storage of each typeisbeing alocated. A
menu allows the user to indicate whether the graph
should display the number of objects or bytes al-
located, and whether the numbers should indicate
totals since the beginning of the program, or only
new allocations since the display was last updated.

1]
ExprwarFefThl.EntryList
Expr. &ppl
Ewpr. Torr
Fred.BinQglme

total abject counts

F9667S 17893355
1 265565
390367
390367

334876

Prec. PE=primg 270678
Fred.Matimp §9549

11 4ea559 in ExprivarfefTolm3 37139
E=priarfiefThl.Default F7056
ExprvarietDef.T 37011
ExpriarRefTol.Defaultiterator |56450
EwxprvarietDef. terator J6407

Fred.For&llimep 36114
E=priarSetlist | terator 36104
FefList.T 9744
TextExtras.T 401
M 3A5 TMext 1terFarmal 1704
TextRefTal EntryList 1445
M 3DirFindFile.Info 1245
AST Iter.Mul T 974
Expriar. T 959
GC.BinOplmp 840
Exprvardetlist. T g22
M3CId. Definitions EEL]
Ferrnattar lmt TaAd

Figure 4: Shownew output (before).

Shownew allows the programmer to pinpoint what
types are being allocated most often and might be
causing excessive collection.

With Shownew, it is quite easy and amost al-
ways worthwhile to determine what types are alo-
cated most frequently in your program. Theanswers
are sometimes surprising, and occasionally repre-
sent bugs that are simple to correct. When the ESC
system was found to be embarrassingly slow on a
new example, we tried Shownew to see if exces
sive alocation was a problem. The result is shown
in Figure 4. (Of course, the bars of the graph ap-
pear in color on acolor monitor.) Theidentity of the
type allocated most frequently was a complete sur-
prise. Expr Var Ref Thl . Ent r yLi st isaninter-
na type used in the implementation of a set type
provided by the Modula-3 library. Theseallocations
were eventually traced to code that applied a vari-
able substitutionto a universally quantified formula
(aFor Al 1), as shown in figure 5. The argument
exc isaset of “excluded” variables, variables that
are not to be substituted. Since aquantifier bindsthe
quantified variables, For Al | Subst addsits own
quantified variables, sel f . vs, to exc before ap-
plying the substitution to its body.

It happened that the type ExprVar Set. T
was implemented using hash tables. The set
type's uni on method is non-destructive, so
exc. uni on(sel f.vs) makes a copy of exc,
adds the dements of sel f.vs, and returns the
copy. Note that the copy is discarded as soon as
thecall to MkFor Al | returns.

We modified thisprocedureto avoid the copy, as
shownin figure 6. Theusua way to avoid this copy,
and the one we used, isto substitute destructive op-
erations (in which exc is modified) for functional

operations (inwhich exc isnot modified). The call
exc. uni onD(sel f. vs), for example, addsthe
elementsof sel f . vs totheset exc, modifyingits
value. Similarly, di f f D destructively deletes ele-
ments from a set.

In this example, severa assumptions are nec-
essary to argue the correctness of the transforma-
tion. First, exc isnot being accessed by any concur-
rently executing threads. Second, it is a precondi-
tionof For Al | Subst thatexc andsel f. vs are
disjoint. Third, the call sel f. body. subst (s,
exc) does not retain a reference to exc. Using
destructive operations often yields significant per-
formance benefits, but the subtlety of the assump-
tions necessary to show them correct argues that
they should be used sparingly. A tool like Shownew
hel psidentify the most promising targets.

The first picture in figure 7 shows the result
of Shownew on this program after the change de-
scribed above. Note that the Ent r yLi st typeis
now only the sixth of the most frequently alocated
types; the number of Ent ryLi st s alocated de-
creased by more than 95%. Similar transformations
resulted in the situation shown in the second pic-
tureof that figure, where the absol utenumbers of the
most frequently allocated types have dropped dra-
matically.

The implementation of Shownew is fairly sim-
ple. Each (garbage-collected) heap-allocated object
in Modula-3 has a header that contains a typecode,
aunique integer corresponding to the dynamic type
of the object. From atypecodeit is easy to find the
name, size, and various other attributes of the corre-
spondingtype. A NEW T) expression in the source
iscompiled to acall to the runtime's alocation rou-
tine with the typecode of T as an argument. When

PROCEDURE For Al | Subst (sel f: ForAll; s:
exc:

BEG N
RETURN MkFor Al l (sel f. vs,

END For Al | Subst ;

Expr Var Set . T) :

sel f. body. subst (s,

Subst . T;

ForAll =

exc. union(self.vs)));

Figure 5: Excessive alocation (before).

PROCEDURE For Al | Subst (sel f: ForAll; s:

exc: ExprVarSet.T):

VAR res: ForAll;
BEG N
exc := exc.unionD(sel f.vs);

res := MForAll (self.vs,
exc := exc.di ffD(self.vs);
RETURN res;

END For Al | Subst ;

sel f. body. subst (s,

Subst . T;

ForAll =

exc));

Figure 6: Excessive allocation (after).

total ohject counts

=

1] 220260 440520
Expr. &opl 3965585
Expr. TArr 396585
Fred.BinOplmp 340156
Pred.PExprimep 2748649

Pred.Matimg ann

ExpriarfiefThl EntryList 54760
ExpriarfefThl Default teratar 3B872

ExpriarSetDef lterator 36825
Pred.ForAlimp 36649
ExpriarSetlist 1terator J6E3S
Feflist.T 9744
TextExtras.T a401
111422359 in ExprivarRefThl.m3 2556
M 345 T et | terFormal 1709
TextRefThl. EntryList 1445
ExprarfiefThl Default 1282

total ohiect counts

a B7783

=

135567

Pred. BinOplmgp 1 20866

ExpriarRefThl EntryList S0040
ExprarfiefThl Default teratar 34136
ExpriarsetDef lterator 34093

Pred. ForAlimgp 33915
Expriarsetlist. 1terator 33890
Reflist.T 8571
TextExtras.T go02

Expr. Appl 7524

Expr. TArr 7524
Pred.PExprimep 4300

111422359 in ExprivarRefThl.m3 2055

M 345 T et | terFormal 1706
TextFefThl Entrelist |1 445

Figure 7: Shownew output (after)

Shownew isbeing used, the alocator countsthe ob-
jectsalocated of each type, periodically forwarding
that information to the Shownew process.

3.2 Excessretained storage

The previous section dealt with allocation. Alloca
tionand heap size are obviously related, since some-
thing must be allocated to become part of the heap,
but they are also quite different. A typethat isalo-
cated often may contribute nothing to the heap size,
if al instances quickly become garbage and are col-
lected, whileatypethat isallocated infrequently, but
whose instances are retained, will cause the heap to

grow without bound.

The rest of this section introduces three tools
used to diagnose problems in the theorem-prover
used in ESC. In long-running proofs, the theorem-
prover’'s heap seemed to be growing continually
larger, while we expected the storage requirements
of the systemsto quickly reach a steady state.

3.21 RTutils.Heap

The first tool we used was the procedure
RTuti | s. Heap, which reports the composition
of the heap by datatype. If we explicitly run acol-
lection before generating such a report, we obtain

a breakdown by type of live objects in the heap.
RTuti | s. Heap hassevera optionsthat alow the
report to be ordered by number of allocated objects
or bytes occupied, and to limit the report to the top
n types by the requested ranking method. We mod-
ified ESC to periodically perform a garbage collec-
tion and call RTuti | s. Heap, reporting the top
10 types ranked by bytes occupied. Figure 8 shows
thesereports near the beginning (but after we would
have expected the heap size to stabilize) and end of
an execution of the theorem-prover on a relatively
small test case.

The heap has grown by almost three megabytes.
The bulk of that increase can be attributed to the
type Enode. Par ent , which grew by more than
two megabytes.

The addition of calls to RTutils. Heap to
the source code has helped us identify the first-
order term of our problem: we are retaining more
Enode. Par ent objectsthan we expected. These
reports are useful enough that we left this debug-
ging code in permanently, with printing of the re-
ports controlled by an environment variable.

The implementation of RTutil s. Heap re-
quiresthe ability to enumerate all the objectsin the
heap and classify them by type. Recall that Modula-
3 heap objects are prefixed by headers containing a
typecodethat uniquely designatesatype. Itisthere-
fore simple to examine all heap objects, construct-
ing a table mapping typecodes to object counts and
bytesoccupied. Finally, thetableis sorted by the ap-
propriate metric and printed.

Two additiona features of RTutil s. Heap
merit explanation.

First, sometimes a report by typecode is too
coarse-grained. For some problems, it is conve-
nient to programin aLisp-like stylewithin Modula-
3. Instances of the type Ref Li st. T are singly-
linked lists of generic pointers. This type can be
used muchlikealLispconscell. Inprogramsthat use
such a style, lists are used in a number of different
ways. A report saying that the heap contains many
Ref Li st . Ts may not identify which of the many
uses of the typeis responsible for the retained stor-
age. In such asituation, the programmer can usethe
RTAI | ocSt at s interface. This interface exports
a procedure Enabl eTr ace, which takes a type-
codeargument. OnceEnabl eTr ace iscaledfora

type, the header of each newly allocated object with
that typeisannotated with asmall integer represent-
ing the call site of the alocation. Abstractly, a call
site can be thought of as a snapshot of the stack at
the time of the allocation. Practically, it is the se-
guence of the top n program counter values on the
stack, where n defaults to 3 but can be set by the
user. The single program counter of the actual al-
location isinsufficient; in the Ref Li st case men-
tioned above, few Ref Li st. Ts are alocated di-
rectly by clients of the interface; most are alocated
using convenience procedures of the interface like
Ref Li st. Cons or Ref Li st . Li st 3. It would
be of little use to discover that most listswere alo-
cated within calls to Cons. Figure 9 shows an ex-
cerpt from one of these finer-grained reports.

Call-site tracking requires more from the run-
time system. The allocation routine must first de-
termine whether tracking is enabled for the type be-
ing alocated. If so, it must determine the call site,
whichrequirestheability tointerpret athread stack’s
contents at runtime; note that this code is highly
platform-specific. Because we use “unused” bitsin
the standard object header to record call sites in-
formation, we are currently limited to 256 sites per
type. If thislimitisreached, allocationsat other sites
are credited to asite code reserved for other sites, as
showninfigure 9.

The second additiona feature of RTutil s
solvesthe opposite problem: when reports by type-
code are too fine-grained. For example, ESC pro-
cesses Modula-3 using M3TK [3], which translates
the source code into an abstract syntax tree (AST)
that ESC then analyzes. These AST’s are made up
of many different types; it would be tedious to de-
termine how much space is occupied by such trees
from the kind of report described above. How-
ever, the types of the tree nodes are organized in
a type hierarchy rooted at a generic AST. NODE
type. RTutils. Heap produces a second report
for Modula-3 object types that reflects the inheri-
tance hierarchy. Since Modula-3 supportsonly sin-
gleinheritance, thishierarchy isasimpletree. Infig-
ure10it becomesclear that AST nodes occupy about
1.2 megabytes, with different subtypes accounting
for different fractions of that total.

The restriction to single inheritance makes the
implementation of thisreport smple. Typecodesare

Near beginning:

Code
270
180
173
230
294
233
143
178
161
196

Near end:

Code
180
270
294
173
233
230
178
232
143
161

Count
1
3352
14623
1
3804
4
1857
411
473
19

16395
1
14542
14611
4

1

852

1
1790
503

59951

Tot al Si ze
2457616
616768
350952
160024
121728
81984
59424
59184
49192
48216

4505664

Tot al Si ze
3016680
2457616

465344
350664
311360
160024
122688
64016
57280
52312

7684096

AvgSi ze
2457616
184

24
160024
32
20496
32

144

104
2537

AvgSi ze
184
2457616
32

24
77840
160024
144
64016
32

104

Enode. UndoSt ack
Enode. Par ent
RefList. T

Si npl ex. Rat Arr 2

Si gTab. EntrylLi st
<anon type>
Context. Literal
Enode. Leaf

Mat chi ngRul e. Rul e
RTHooks. Char Buf f er

Enode. Par ent
Enode. UndoSt ack
Si gTab. EntrylLi st
RefList. T

<anon type>

Si npl ex. Rat Arr 2
Enode. Leaf
Context. TritArray
Cont ext . Li teral
Mat chi ngRul e. Rul e

Figure 8: Useof RTuti | s. Heap

Code Count Total Si ze AvgSize Nane
272 1 2457616 2457616 Enode. UndoSt ack
173 15416 369984 24 RefList. T
3436 82464 24 Cons + 16_3c in ReflList.nB
SubWbrk + 16 _59c in PredSx.nB
SubWbrk + 16 _4dc in PredSx.nB
2333 55992 24 Cons + 16_3c in ReflList.nB
CopySx + 16_130 in C ause.nB
CopySx + 16_c4 in d ause.nB
465 11160 24 OTHER SI TES
Figure9: RTut i | s. Heap output broken down by call site.
Code Count Total Si ze AvgSize Nane
311 24866 1223512 49 AST. NODE
510 964 49208 51 MBAST_AS. STM
516 254 12192 48 MBAST_AS_F. Assi gn_st
527 39 2808 72 MBAST_AS_F. For _st

Figure 10: RTut i | s. Heap output broken down by the type hierarchy.

assigned to typesin a pre-order traversal of thetype
forest, sothat thetypecodes of the subtypesof atype
form a consecutive sequence of integers. The sub-
type test is therefore a simple range test, making it
easy to aggregate the numbers for atype and dl its
subtypes.

In summary, RTutil s. Heap answers some
of the most basic questions that must be answered
when debugging a storage management problem:
how big is the heap, what kind of objects arein it,
and how many objects of each type are in it? It
can answer these questionsat finer or coarser grains
where necessary.

3.22 RTHeapStats.ReportReachable

RTuti | s. Heap identified what wasfilling up the
heap, but did not tell us why the objects filling the
heap were escaping collection. The next tool in
our kit helps answer that question. An object is
retained by garbage collection only if it is reach-
able from a root of the program, that is, from the
stacks, registers, or globa variables. The proce-
dure RTHeapSt at s. Report Reachabl e tels
us how many bytes of storage are reachable from
the roots, breaking down the roots in various ways.
Each global variablein Modula-3 is associated with
some module. One list ranks the modules by bytes

reachable from their global variables. A more de-
tailed breakdown ranks the individual globa vari-
ables by the amount of storagethey reach. A second
section details storage reachabl e from thread stacks,
again, reporting both at coarse and finegrains. Inthe
coarse grained report, entire stacks are lumped to-
gether. In the fine grained report, stack frames are
printed along with the storage reachable from indi-
vidua references contained in those frames.

We modified ESC to call Repor t Reachabl e
periodically. Figure 11 shows excerpts from two re-
ports, one near the beginning of the program, but af-
ter we expected the heap sizeto reach asteady state,
and one from near the end.

Comparing the reports identifies the Enode
modul e as the mgjor offender. We see also that an
object of type Si gTab. Def aul t in the Enode
modul e went from reaching just over one megabyte
to amost three and one half. The only global vari-
ableof thistypeinthemodulewasnamed si gTab.
Oncewe had identified si gTab asa possible prob-
lem, a moment’s thought was sufficient to reveal
our mistake. The purpose of si gTab is to en-
surethat we never createdistinct Enode. Par ent s
with identical children. For small examples it was
acceptable to remember all the parents ever cre-
ated. For large examples, however, such unbounded
growth leads to overly large heaps. Thistableisa
cache of parent nodes; we needed to invent a cache-
management policy for it. We can delete a Par ent
from the table when it is no longer in use. Because
of its backtracking search structure, the prover “un-
winds’ every action it takes; so we can delete a
Par ent from the table when we undo the action
that added it in thefirst place.

We now briefly describe the implementation of
Repor t Reachabl e before continuing with our
detective story. Essentially, each lineitem in there-
port is the result of a mini-garbage-collection. We
alocate a new bit vector large enough to serve as
mark bits for al the objects in the heap. To deter-
mine the set of objects reachable from some sub-
set r of the roots, we clear the mark bits, then (re-
cursively) mark each abject reachable from r, us-
ing the mark bits to terminate the recursion. When
the mark phase is complete, we count the objects
and bytes corresponding to the mark bits. Thisalgo-
rithm requires the ability to enumerate the pointer-

containing fields of an arbitrary heap object. Note
also that presenting the result of thread stack traver-
sas requires the same run-time interpretation of
thread stacks needed for call-site tracking in section
3.2.1.

Notethat this processis potentially quite expen-
sive. If aheap containsalarge linked data structure
that is reachablefrom many roots, that structurewill
betraversed and counted once for each of the differ-
ent root references. In practice, however, the perfor-
mance of Repor t Reachabl e seemsquiteaccept-
able; thereports shown above did not slow down the
the execution of the program greatly.

3.23 RTHeapDebug

In the ESC problem we have been discussing,
it was fairly easy to identify a problem once
RTHeapSt at s. Report Reachabl e led us to
an offending global variable. Sometimes, however,
this information may not be sufficient; it may be
difficult to determine what paths exist from the of-
fending root to objects of the problematic type. The
RTHeapDebug interface helps find such paths.

Even in a garbage-collected system, it is some-
times possible to identify a point in the program
where one expects an object to become garbage. In
our ongoing example, we added code to remove an
Enode. Par ent from si gTab when the prover’'s
search backtracked past the point where the parent
wasfirst created and added to the table; we expected
the parent to be unreachable after it wasdel eted from
the table. RTHeapDebug allows the programmer
to check such expectations.

Cdling RTHeapDebug. Free(r) asserts
that the reference r is unreachable. A call to
RTHeapDebug. CheckHeap does the equivaent
of agarbage-collection, traversing all reachable ob-
jects in search of any that have been asserted un-
reachable. If such an object isfound, CheckHeap
prints a path from a root to the putatively unreach-
able object.

Inthe ESC example, wecalled RTHeapDebug.
Free to assert that Enode. Par ent s removed
from si gTab by the undo code were unreach-
able. We called CheckHeap at alater point. We
were surprised to find that our assumption was
wrong. Figure 12 shows an excerpt of areport from

Near beginning:
HEAP: 0x14009a000 ..

Modul e gl obal s:

0x140c98000 => 11.9 Mytes

Enode. n83
Cont ext. nB
Cl ause. nB

0x140694008 Enode. UndoSt ack
0x1402a2558 Si gTab. Def aul t
0x1400a7990 | nt Ref Tbl . Def aul t

objects # bytes
24471 4151816
11116 698648

8390 579608
d obal vari abl e roots:
objects # bytes

8450 3036328

9065 1098920

12925 703144
Near end:

HEAP: 0x14009a000 ..

Modul e gl obal s:

0x141244000 => 17.6 Mytes

Enode. n83
Cont ext. nB
Si npl ex. n8

0x1402a2558 Si gTab. Def aul t
0x140694008 Enode. UndoSt ack

objects # bytes
43159 6534144
11194 757936

5215 748008
A obal variable roots:

objects # bytes

27149 3456264
8632 3100256
13471 727832

0x1400a7990 | nt Ref Tbl . Def aul t

| ocati on

Enode. nB + 2224
Enode. nB8 + 1352
Enode. nB + 4328

| ocation

Enode. B8 + 1352
Enode. nB + 2224
Enode. nB + 4328

Figure 11: Use of RTHeapSt at s. Repor t Reachabl e.

Path to
Ref

"free' object:
in root at address 0x14000a770. .

nj ect of type Enode. UndoStack at address 0x14013c008. .
Free object of type Enode.Parent at address 0x14013eacS8..

Path to
Ref

"free' object:
in root at address 0x14000a770. .

nj ect of type Enode. UndoStack at address 0x14013c008. .
Free object of type Enode.Parent at address 0x14013eaeO..

Path to
Ref

"free' object:
in root at address 0x14000a770. .

nj ect of type Enode. UndoStack at address 0x14013c008. .
Free object of type Enode.Parent at address 0x14013eaf 8..

Figure 12: Use of RTHeapDebug. CheckHeap.

CheckHeap. There was only one variable in the
program of type Enode. UndoSt ack; it is the
stack on which undo records are written to imple-
ment the backtracking search. Apparently this stack
was pointing directly to objects we thought should
be unreachable.

A little investigation revealed the problem to
be a case of references hidden by abstraction, al-
most exactly the situation described in the exam-
ple of section 2.3. We considered the undo stack
as only the portion below the stack pointer, but the
garbage collector considered the entire array data
structure. Undo records abovethe stack pointer con-
tai ned pointersto otherwise unreachabl e objects. To
solvethe problem we modified the pop operations of
the various undo stacksin the system to set pointers
in dead stack entriesto NI L. Thisinvestigation has
purged ESC of its most egregious storage leaks.

It might be argued that the technique embod-
ied by RTHeapDebug is regressive, in that it re-
quires the programmer to do the equivaent of ex-
plicit storage management. There is some truth to
this argument. However, RTHeapDebug. Fr ee
is needed only for types identified as storage prob-
lems, not for all deallocated objects. Calling
RTHeapDebug. Fr ee for an object that isstill ac-
cessible causes a graceful error message, while ac-
tually deallocating a still-accessible object is likely
to cause a confusing dangling pointer bug.

The implementation of RTHeapDebug uses
the WeakRef interface provided by the Modula-
3 runtime. A WeakRef. T is a reference to an
object that does not prevent the object from be-
ing collected. WeakRef provides a routine for
obtaining the “real” reference corresponding to a
WeakRef . T; thisroutinereturns NI L if the refer-
enced object has been collected. RTHeapDebug
maintains a set of weak references to freed objects,
initially empty. RTHeapDebug. Free(r) adds
a weak reference corresponding to r to this set.
RTHeapDebug. CheckHeap first throws away
any elements in the set whose referents have been
collected, then searches for paths to the remaining
freed objects.

4 Conclusion

We present four classes of storage-management
problems that occur even in completely garbage-
collected systems. excessive allocation, data struc-
turesthat grow without bound, references hidden by
abstraction boundaries, and references hidden by the
system. We have presented tools that aid the diag-
nosis of such problems. Thesetools are part of the
SRC Modula-3 system, but could easily be adapted
for other languages; infact, some of thetoolsare not
specific to garbage-collected systems.

We feel that the trend towards long-lived server

programs will speed the adoption of garbage-
collected systems; thelikelihood of pointer-smashes
or storageleaksin explicitly managed systemsisfar
too high for applications that must run reliably for
long periods. This paper addresses the (more man-
ageable!) storage management problems that re-
main once such systems have adopted garbage col-
lection.

References

[1] Joel F. Bartlett. Compacting garbage collec-
tion with ambiguous roots. Technical Report
88/2, Digita Equipment Corporation Western
Research Laboratory, February 1988.

[2] Hans-Juergen Boehm and Mark Weiser.
Garbage collection in an uncooperative envi-
ronment. Software Practice and Experience,
18(9):807-820, September 1988.

[3] Mick Jordan. An extensible programming en-
vironment for modula-3. In Proceedings of the
Fourth ACM SGSOFT Symposiumon Software
Devel opment Environments. ACM, ACM Press,
1990.

[4] Bill Kalsow. SRC Modula-3 home page.
URL http://www.research.digital.com/SRC/
modula-3/html/home.html.

[5] Roy Levin and Paul Mcjones. The Vesta ap-
proachto precise configurationinlarge software
systems. Technical Report SRC-102, Digita
Equipment Corporation Systems Research Cen-
ter, 130 Lytton Ave., Palo Alto, CA 94301, June
1993.

[6] Greg Nelson, editor. Systems Programming in
Modula-3. Prentice-Hall, Englewood Cliffs, NJ,
1991.

[7] Pure Software, Los Altos, California. Purify
Version 1.1 Beta A, 1992. User manual .

