
1

eProsima RPC over DDS

Users Manual
Version 0.1.RC1

Experts in networking middleware

eProsima © 2012

2

eProsima
Proyectos y Sistemas de Mantenimiento SL
Ronda del poniente 2 – 1ºG
28760 Tres Cantos Madrid
Tel: + 34 91 804 34 48
info@eProsima.com – www.eProsima.com

Trademarks
eProsima is a trademark of Proyectos y Sistemas SL. All other trademarks
used in this document are the property of their respective owners.

License

eProsima RPC over DDS is licensed under the terms described in the
RPCDDS_LICENSE file included in this distribution.

Technical Support

 Phone: +34 91 804 34 48

 Email: Support@eProsima.com

mailto:info@eProsima.com
http://www.eprosima.com/
mailto:Support@eProsima.com

3

Table of Contents
eProsima RPC over DDS .. 1

1 Introduction... 5

1.1 Client/Server communications over DDS .. 5

1.2 Main Features .. 6

2 Building an application .. 7

2.1 Defining a set of remote procedures ... 8

2.1.1 IDL Syntax and mapping to C++ .. 9

2.1.2 Example .. 13

2.2 Generating specific remote procedure call support code 14

2.2.1 RPCDDSGEN Command Syntax : ... 14

2.2.2 Server side .. 14

2.2.3 Client side ... 14

2.3 Implementation of the server .. 15

2.3.1 API ... 15

2.3.2 Exceptions ... 16

2.3.3 Example .. 16

2.4 Implementation of the client ... 16

2.4.1 API ... 17

2.4.2 Exceptions ... 17

2.4.3 Example .. 18

3 Advanced concepts ... 19

3.1 Network transports .. 19

3.1.1 UDP Transport .. 19

3.1.2 TCP Transport ... 22

3.2 Asynchronous calls ... 25

3.2.1 Calling a Remote procedure asynchronously ... 25

3.2.2 Reply Call-back object... 26

3.3 One-way calls ... 27

3.4 Threading Server strategies ... 28

3.4.1 Single thread strategy ... 28

3.4.2 Thread Pool strategy .. 28

3.4.3 Thread per request strategy ... 29

4 WAN communication .. 30

5 Known Issues ... 31

4

5.1 RPCDDSGEN: .. 31

6 HelloWorld example in Visual Studio 2010 ... 32

6.1 Writing the IDL file ... 32

6.2 Generating specific code.. 32

6.3 Implementation of the client ... 33

6.4 Implementation of the server .. 34

6.5 Build and execute .. 34

5

1 Introduction
eProsima RPC over DDS is a high performance remote procedure call (RPC) framework.
It combines a software stack with a code generation engine to build services that work
efficiently in serveral platforms and programming languages.

eProsima RPC over DDS uses the Data Distribution Service (DDS) standard from the
Object Management Group (OMG) as the communications engine to transmit the
requests and the replays of remote procedure calls.

1.1 Client/Server communications over DDS

Distributed applications usually follow a communication pattern or paradigm to
interact between them. Actually there are three main patterns used in distributed
systems:

 Publish/Subscribe

 Client/Server

 Peer to Peer (P2P)
One example of client/server paradigm is the Remote Procedure Call (RPC). RPC allows
an application to cause a subroutine or procedure to execute in another address space
(commonly on another computer on a shared network).

eProsima RPC over DDS provides an implementation of this general concept of
invoking remote procedures. eProsima RPC over DDS is a service invocation framework
that enables developers to build distributed applications with minimal effort. It makes
transparent the remote procedure call to developer without the programmer explicitly
coding the details for this remote interaction and allows developers to focus his efforts
on their application logic.

RPCDDS

Proxy

RPCDDS

Server
Network

Request

Reply

6

1.2 Main Features

eProsima RPC over DDS provides an easy way to invoke remote proceduresand a high
performance and reliable communications engine (DDS).

eProsima RPC over DDS also exposes these features:

 Synchronous, asynchronous and one-way invocations.
o The synchronous invocation is the common invocation and it blocks the

client’s thread until the reply is received from the server.
o The asynchronous invocation sends the request to the server but it

doesn’t blocks the client’s thread. In the asynchronous invocation the
developer provides a callback object that will be invoked when the reply
is received from the server.

o The one-way invocation is a fire-and-forget invocation where the client
does not care about the success or failure of the invocation. The one-
way invocation does not expect any reply from the server.

 Different threading strategies for the server. These strategies define how the
server acts when a new request is received. Current supported strategies are:
single-thread strategy, thread-pool strategy and thread-per-request strategy.

o Single-thread strategy uses one thread for all incoming requests.
o Thread-pool strategy uses thread-pool’s threads to process the

incoming requests.
o Thread-per-request strategy creates a new thread for each new

incoming request and this new thread will process the request.

 Several communications transports:
o Reliable and high performance UDP transport
o NAT and firewall friendly TCP transport
o Shared Memory transport.

 Automatic Discovery: The framework makes use of the underlying DDS
discovery protocol to discover the different clients, servers and services.

 Complete Publish/Subscribe Frameworks: Users can mix RPC with DDS
Publish/Subscribe code in their applications.

7

2 Building an application
eProsima RPC over DDS allows a developer to implement easily a distributed
application using remote procedure invocations. In this paradigm a server offers a set
of remote procedures that the client can call remotely. How the clients call these
remote procedures should be transparent for the developer. From the point of view of
the developer, a proxy object that represents the remote server could be created in his
application and this object would offer the set of remote procedures that the server
implements. In the same way, how server obtains a request from the network and
sends the reply should be transparent for the developer. Only the implementation of
remote procedures concerns to the developer.

eProsima RPC over DDS offers this transparency to the developer and facilitates the
development.
The general steps to build an application are:

 Define a set of remote procedures, using an Interface Definition Language.

 Generation of specific remote procedure call support code: a Client Proxy and a
Server Skeleton.

 Implement the server: Fill the server skeleton with the procedures behavior.

 Implement the client: Use the client proxy to invoke the remote procedures.
This section will describe the basic concepts of these four steps that a developer has to
follow to implement its distributed application. Advanced concepts are described in
section Advanced concepts.

8

2.1 Defining a set of remote procedures

Interface Definition Language (IDL) is used by eProsima RPC over DDS to define the
remote procedures that server will offer to clients. Data Type definitions used for
parameters in these remote procedures are also defined in the IDL file. The IDL
structure is based in CORBA 2.x IDL and it is described in the following schema:

eProsima RPC over DDS includes a java application named rpcddsgen. This application
parses the IDL file and generates C++ code for the specific set of remote procedures
that the developer has defined. rpcddsgen application will be described in the section
Generating specific remote procedure call support code.

eProsima RPC over DDS uses the same data types of its communications engine, DDS,
enabling the use of both technologies in the same application.

IDL File

Data Type definitions

Interface definition

Procedure definitions

9

2.1.1 IDL Syntax and mapping to C++

2.1.1.1 Simple types

eProsima RPC for DDS supports a variety of simple types that the developer can use in
the procedure’s parameters, returned values and in the definition of complex types.
The following table shows the supported simple types, how they are defined in the IDL
file and what the rpcddsgen generates in C++ language.

TABLE 1: SPECIFYING SIMPLE TYPES IN IDL FOR C++

IDL Type Sample in IDL File Sample Output Generated by
rpcddsgen

char char char_member DDS_Char char_member

wchar wchar wchar_member DDS_Wchar wchar_member

octet octet octet_member DDS_Octet octet_member

short short short_member DDS_Short short_member

unsigned short unsigned short ushort_member DDS_UnsignedShort ushort_member

long long long_member DDS_Long long_member

unsigned long unsigned long ulong_member DDS_UnsignedLong ulong_member

long long long long llong_member DDS_LongLong llong_member

unsigned long
long

unsigned long long ullong_member DDS_UnsignedLongLong ullong_member

float float float_member DDS_Float float_member

double double double_member DDS_Double double_member

boolean boolean boolean_member DDS_Boolean boolean_member

bounded string string<20> string_member char* string_member
/* maximum length = (20) */

unbounded
string

string string_member char* string_member
/* maximum length = (255) */

bounded
wstring

wstring<20> wstring_member DDS_Wchar* wstring_member
/* maximum length = (20) */

unbounded
wstring

wstring wstring_member DDS_Wchar* wstring_member
/* maximum length = (255) */

10

2.1.1.2 Complex types

Complex types can be created by the developer using simple types. These complex
types can be used as procedure’s parameters or returned values. The following table
shows the supported complex types, how they are defined in the IDL file and what
rpcddsgen generates in C++ language.

TABLE 2: SPECIFYING COMPLEX TYPES IN IDL FOR C++

IDL Type Sample in IDL File Sample Output Generated by
rpcddsgen

enum enum PrimitiveEnum {
 ENUM1,
 ENUM2,
 ENUM3
};
enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

typedef enum PrimitiveEnum {
 ENUM1,
 ENUM2,
 ENUM3
} PrimitiveEnum;
typedef enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
} PrimitiveEnum;

struct struct PrimitiveStruct {
 char char_member;
};

typedef struct PrimitiveStruct {
 DDS_Char char_member;
} PrimitiveStruct;

union union PrimitiveUnion switch(long)
{
 case 1:
 short short_member;
 default:
 long longt_member;
};

typedef struct PrimitiveUnion {
 DDS_Long _d;
 struct {
 short short_member;
 long longt_member;
 } _u;
} PrimitiveUnion;

typedef typedef short TypedefShort; typedef DDS_Short TypedefShort;

array
(See note below)

struct OneDArrayStruct {
 short short_array[2];
};
struct TwoDArrayStruct {
 short short_array[1][2];
};

typedef struct OneDArrayStruct {
 DDS_Short short_array[2];
} OneDArrayStruct;
typedef struct TwoDArrayStruct {
 DDS_Short short_array[1][2];
} TwoDArrayStruct;

bounded sequence
(See note below)

struct SequenceStruct {
 sequence<short,4>
 short_sequence;
};

typedef struct SequenceStruct {
 DDSShortSeq short_sequence;
} SequenceStruct;

unbounded
sequence
(See note below)

struct SequenceStruct {
 sequence<short>
 short_sequence;
};

typedef struct SequenceStruct {
 DDSShortSeq short_sequence;
} SequenceStruct;

Note: These complex types cannot be used directly as procedure’s parameter. In these cases, a typedef
has to be use to redefine them.

11

2.1.1.3 Parameter definition

There are three reserved words that are used in the procedure’s parameter
definitions. It is mandatory to use one of them in each procedure’s parameter
definition. The following table shows these three reserved words and their meaning:

Reserved
word

Meaning

in This reserved word specifies that the procedure’s parameter is an input parameter.

Inout This reserved word specifies that the procedure’s parameter acts as input and output
parameter.

output This reserved word specifies that the procedure’s parameter is only output parameter.

Suppose the type T is defined as the type of the parameter. If the parameter uses the
reserved word in and the type T is a simple type or an enumeration, then the type is
mapped in C++ as T. In the case the type T is a complex type, the type is mapped in C++
as const T&. If the parameter uses the reserved word inout or out, then the type is
mapped in C++ as T&. For the type of the returned value of the procedure, it is mapped
in C++ as T.
As was commented in section Complex types, array and sequence types cannot be
defined as a parameter type directly. To redefine these types it must be used a typedef
and use it as parameter type.

2.1.1.4 Function definition

A procedure’s definition is composed of two or more elements:

 The type of the returned value. void type is allowed.

 The name of the procedure.

 A list of parameters. This list could be empty.

An example of how a procedure should be defined is shown:

rpcddsgen application maps the functions following these rules:

 The type of the returned value is mapped in C++ as it was described in section
Parameter definition.

 Name of the C++ function is the same as the name of the defined function in
IDL.

 The order of the parameters in the C++ function is the same as in defined
function. The parameters are mapped in C++ as it was described in section
Parameter definition.

Following these rules the previous example would generate next C++ function:

long funcName(in short param1, inout long param2);

DDS_Long funcName(DDS_Short param1, DDS_Long& param2);

12

2.1.1.5 Interface definition

The set of remote procedures that the server will offer has to be encapsulated by an
IDL interface. An example of how an interface should be defined is shown:

The IDL interface will be mapped in three classes:

 InterfaceExampleProxy: A local server’s proxy that offers the remote procedures
to the client application. Client application should create an object of this class
and call the remote procedures.

 InterfaceExampleServerImpl: This class contains the remote procedures
definitions. These definitions should be implemented by the developer.
RPCDDS creates only one object of this class and this object is used by the
server.

 InterfaceExampleServer: The server implementation. This class executes a server
instance.

2.1.1.6 Limitations

rpcddsgen application has several limitations about IDL syntax:

 rpcddsgen can handle just one interface per IDL file.

 Type definitions must be declared before the interface.

 Two procedures cannot have the same name.

 The interface and the IDL file must have the same name.

 Complex types (array and sequences) used in procedure definitions must be
previously named using typedef keyword, as CORBA IDL 2.0 specification
enforces.

 No namespace (module keyword) support in this release.

interface InterfaceExample
{
 // Set of remote procedures.
};

13

2.1.2 Example

IDL syntax described in the previous subsection is shown through an example:

This example will be used as base of other examples in next sections.

// file Bank.idl

enum ReturnCode
{
 SYSTEM_ERROR,
 ACCOUNT_NOT_FOUND,
 AUTHORIZATION_ERROR,
 NOT_MONEY_ENOUGH,
 OPERATION_SUCCESS
};

struct Account
{
 string AccountNumber;
 string Username;
 string Password;
}; //@top-level false

interface Bank
{
 ReturnCode deposit(in Account ac, in long money);
};

14

2.2 Generating specific remote procedure call support code

Once the procedures are defined in a IDL file, we need to generate code for a client
proxy and a server. eProsima RPC over DDS provides the rpcddsgen tool to accomplish
this task: it parses the IDL file and generates the corresponding supporting code.

2.2.1 RPCDDSGEN Command Syntax :

The general syntax is:

Options:

Option Description
-ppPath <directory> Location of the C/C++ preprocessor.
-ppDisable Indicates that C/C++ preprocessor has not to be used.
-replace Replace generated files.
-example <platform> Creates a solution in the specific platform. This solution will be use by the developer

to compile the client and the server.
Possible values: i86Win32VS2010, x64Win64VS2010, i86Linux2.6gcc4.4.3,
x64Linux2.6gcc4.5.1

-version Shows the version of eProsima RPC over DDS

NOTE: Preprocesor can be safely disabled if you are not using macros in your IDL file.

rpcddsgen application generates several files. Significant files to the developer are just a
few and we will describe them in this section. The name of these files is generated
using the interface’s name defined in the IDL file. The <InterfaceName> nomenclature
has to be substitute by the interface’s name.

2.2.2 Server side

rpcddsgen generates a C++ source file with the definitions of the remote procedures and
a C++ header file with the declaration of these remote procedures. These files are the
skeleton of the servant that implements the defined interface and the developer can
use each definition in the source file to implement the behavior of the remote
procedure. These files are <InterfaceName>ServerImpl.h and
<InterfaceName>ServerImpl.cxx.
Also rpcddsgen generates a C++ source file with an example of a server application and
how create the server instance. This file is Server.cxx.

2.2.3 Client side

rpcddsgen generates a C++ source file with an example of a client application and how
this client application can call a remote procedure from the server. This file is
Client.cxx.
IMPORTANT: The IDL file name must be the same of the interface in order to compile
the generated solution.

rpcddsgen [options] <IDL file>

15

2.3 Implementation of the server

rpcddsgen application generates a class named <InterfaceName>ServerImpl. This class is a
skeleton of a servant that implements the interface that the server will offer. This
skeleton is located in the files <InterfaceName>ServerImpl.h and
<InterfaceName>ServerImpl.cxx. All remote procedures are defined in this class, and the
behavior of each one has to be implemented by the developer. For the remote
procedure deposit in the IDL example in section Example, its definition is:

Keep in mind a few things when this servant is implemented.

 in parameters can be used by the developer, but their allocated memory
cannot be freed, either any of their members.

 inout parameters can be modified by the developer, but before allocate
memory in their members, old allocated memory has to be freed.

 out parameters are not initialized. The developer has to initialize them.

The code generated by rpcddsgen contains a class that acts like the server. This class is
implemented in files <InterfaceName>Server.h and <InterfaceName>Server.cxx. The class is
named <InterfaceName>Server and it offers the interface implemented in the servant. A
service’s name is associated with this interface and client applications will use this
service’s name to connect with the server.
When an object of the class <InterfaceName>Server is created, proxies can establish a
connection with it. How this connection is created and how the proxies found the
server depends on the network transport that is set to be used by the server. These
transports are described in section Network transports. By default servers use the UDP
transport.

2.3.1 API

Using the suggested IDL example in section Example, the API of this class is:

The server provides two constructors. Both constructors expect in the serviceName
parameter the service’s name used by the server. In the strategy parameter is
expected a server’s strategy that defines how the server has to manage incoming
requests. Server’s strategies are described in the section Threading Server strategies.
Also they permit to configure the DDS domain identifier with the domainId parameter.

ReturnCode BankServerImpl::deposit(/*in*/const Account& ac, /*in*/ DDS_Long money)
{
 ReturnCode returnedValue = SYSTEM_ERROR;

 return returnedValue;
}

class BankServer : public eProsima::RPCDDS::Server
{
 public:

 BankServer(std::string serviceName,
 eProsima::RPCDDS::ServerStrategy *strategy,
 int domainId = 0);

 BankServer(std::string serviceName ,
 eProsima::RPCDDS::ServerStrategy *strategy,
 eProsima::RPCDDS::Trnsport *transport, int domainId = 0);

 virtual ~BankServer();
};

16

The first constructor doesn’t expect any more parameters and it creates a server that
uses the UDP transport. The second constructor expects the network transport that
will be used to establish connections with proxies.

2.3.2 Exceptions

In the server’s side, developers can inform to the proxies about an error in the
execution of the implemented remote procedures. eProsima RPC over DDS can catch
the eProsima::RPCDDS::ServerInternalException exception in the developer’s code. This
exception will be delivered to the proxy and will be thrown in the proxy’s side. An
example of how this exception can be thrown:

2.3.3 Example

Using the suggested IDL example, the developer can create a server in the following
way:

2.4 Implementation of the client

The code generated by rpcddsgen contains a class that acts like a proxy of the remote
server. This class is implemented in files <InterfaceName>Proxy.h and
<InterfaceName>Proxy.cxx. The proxy offers to the developer the server’s interface and
the developer can call its remote procedures directly.
The class is named <InterfaceName>Proxy. When an object of this class is created, a
connection is established with the remote server. How this connection is created and
how the server is found depends on the network transport that is set to be used by the
proxy. These transports are described in section Network transports. By default proxies
use the UDP transport.

ReturnCode BankServerImpl::deposit(/*in*/const Account& ac, /*in*/ DDS_Long money)
{
 ReturnCode returnedValue = SYSTEM_ERROR;

 throw eProsima::RPCDDS::ServerInternalException(“Error in deposit procedure”);

 return returnedValue;
}

unsigned int threadPoolSize = 5;
eProsima::RPCDDS::ThreadPoolStrategy *pool = NULL;
BankServer *server = NULL;

try
{
 pool = new eProsima::RPCDDS::ThreadPoolStrategy(threadPoolSize);
 server = new BankServer(“MyBankName”, pool);
 server->serve();
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

17

2.4.1 API

Using the suggested IDL example in section Example, the API of this class is:

The proxy provides two constructors. Both constructors expect in the remoteServiceName
parameter the service’s name used by the server to which the proxy wants to connect.
Also they permit to configure the DDS domain identifier with the domainId parameter
and through timeout parameter the maximum time for all remote procedure calls
before the proxy returns a timeout exception.
The first constructor doesn’t expect any more parameters and it creates a proxy that
uses the UDP transport. The second constructor expects the network transport that
will be used to establish the connection with the server.
The proxy provides to the developer the remote procedures. Using the suggested IDL
in section Example, a proxy will provide the remote procedure deposit. The function
deposit_async is the asynchronous version of the remote procedure. Asynchronous calls
are described in the section Asynchronous calls.

2.4.2 Exceptions

While a remote procedure call is execute, an error could occur. In these cases
exceptions are used to report the error. Next exceptions can be thrown when a remote
procedure is called:

Exception Description
eProsima::RPCDDS::ClientInternalException This exception is thrown when there is a problem in the client

side.
eProsima::RPCDDS::ServerTimeoutException This exception is thrown when the maximum time was

exceeded waiting the server’s reply.
eProsima::RPCDDS::ServerInternalException This exception is thrown when there is a problem in the

server side.
eProsima::RPCDDS::ServerNotFoundException This exception is thrown when the proxy cannot find any

server.

All exceptions has the same base class eProsima::RPCDDS::Exception.

class BankProxy : public eProsima::RPCDDS::Client
{
 public:

 BankProxy(std::string remoteServiceName,
 int domainId = 0, long timeout = 10000);

 BankProxy(std::string remoteServiceName,
 eProsima::RPCDDS::Transport *transport,
 int domainId = 0, long timeout = 10000);

 virtual ~BankProxy();

 ReturnCode deposit(/*in*/ const Account& ac, /*in*/ DDS_Long money);

 void deposit_async(Bank_depositCallbackHandler &obj, /*in*/ const Account&
ac, /*in*/ DDS_Long money);

};

18

2.4.3 Example

Using the suggested IDL example, the developer can access to deposit procedure in the
following way:

BankProxy *proxy = NULL;

try
{
 proxy = new BankProxy(“MyBankName”);
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

Account ac;
DDS_Long money ;
ReturnCode depositRetValue;

Account_initialize(&ac);

try
{
 depositRetValue = proxy->deposit(ac, money);
}
catch(eProsima::RPCDDS::Exception &ex)
{
 std::cout << ex.what() << std::endl;
}

19

3 Advanced concepts

3.1 Network transports

eProsima RPC over DDS provides three network transports. These transports define
how a connection is established between a proxy and a server. The transports are:

 High performance and reliable UDP transport: The recommended option in LAN

 TCP transport: This transport is designed to be used in WAN cenarios.

 Shared memory transport: Enabled for same node communications.

3.1.1 UDP Transport

The purpose of this transport is to create a connection between a proxy and a server
that are located in a local network. This transport is implemented by two classes. One
is used by server’s proxies and the other is used by servers.

20

3.1.1.1 UDPClientTransport

UDPClientTransport class implements a UDP transport that should be used by proxy’s
servers.

This class has two constructors. The default constructor sets the UDP transport to
utilize DDS discovery mechanism. This discovery mechanism allows to the proxy to find
any server in the local network. There are two potential scenarios:

 In the local network there is only one server using the service’s name
requested. When a proxy is created, it will find the server and will create a
connection channel with it. When the client application uses the proxy to call a
remotely procedure, this server will execute this procedure and return the
reply.

 In the local network there are several servers using the same service’s name.
This scenario could occur when the user wants to have redundant server to
avoid failures in the system. When a proxy is created, it will find all servers and
will create a connection channel with each one. When the client application
uses the proxy to call a remotely procedure, all servers will execute the
procedure but the client will receive only one reply from one server.

When a proxy is created without a network transport, it creates internally a UDP
transport and this transport is created with this constructor. The second constructor
expects the IP address of the remote server in the to_connect parameter and then the
proxy will connect with the server located in that IP address.

Using the suggested IDL example in the section Example, the developer could create a
proxy that will connect with a specific server in a local network:

class UDPClientTransport : public Transport

{

 public:

 UDPClientTransport();

 UDPClientTransport(const char *to_connect);

 virtual ~UDPClientTransport();

};

21

3.1.1.2 UDPServerTransport

UDPServerTransport class implements a UDP transport that should be used by servers.

This class has one constructor. This constructor has no parameters and sets the UDP
transport to utilize DDS discovery mechanism. DDS discovery mechanism allows to the
server to discover any proxy in the local network. When a server is created without a
network transport, it creates internally a UDP transport and this transport is created
with this constructor.
Using the suggested IDL example in the section Example, the developer could create a
server that will connect with any proxy in a local network:

eProsima::RPCDDS::UDPClientTransport *udptransport = NULL;
BankProxy *proxy = NULL;

try
{
 udptransport = new eProsima::RPCDDS::UDPClientTransport(“192.168.1.12”);
 proxy = new BankProxy(“MyBankName”, udptransport);
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

Account ac;
DDS_Long money ;
ReturnCode depositRetValue;

Account_initialize(&ac);

try
{
 depositRetValue = proxy->deposit(ac, money);
}
catch(eProsima::RPCDDS::Exception &ex)
{
 std::cout << ex.what() << std::endl;
}

class UDPServerTransport : public Transport

{

 public:

 UDPServerTransport();

 virtual ~UDPServerTransport();

};

22

3.1.2 TCP Transport

The purpose of this transport is to create a connection between a proxy and a server
that are located in a WAN. This transport is implemented by two classes. One is used
by server’s proxies and the other is used by servers.

unsigned int threadPoolSize = 5;
eProsima::RPCDDS::ThreadPoolStrategy *pool = NULL;
eProsima::RPCDDS::UDPServerTransport *udptransport = NULL;
BankServer *server = NULL;

try
{
 pool = new eProsima::RPCDDS::ThreadPoolStrategy(threadPoolSize);
 udptransport = new eProsima::RPCDDS::UDPServerTransport();
 server = new BankServer(“MyBankName”, pool, udptransport);

 server->serve();
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

23

3.1.2.1 TCPClientTransport

TCPClientTransport class implements a TPC transport that should be used by proxy’s
servers.

This class has one constructor. This constructor has one parameter. The parameter
to_connect expects the public IP address and port of the remote server and then the
proxy will connect with the server located in that public IP address. For more
information see section WAN communication.

Using the suggested IDL example in the section Example, the developer could create a
proxy that will connect with a server located in the public IP address 80.130.6.123 and
port 7600.

class TCPClientTransport : public Transport

{

 public:

 TCPClientTransport(const char *to_connect);

 virtual ~TCPClientTransport();

};

eProsima::RPCDDS::TCPClientTransport *tcptransport = NULL;
BankProxy *proxy = NULL;

try
{
 tcptransport = new
eProsima::RPCDDS::TCPClientTransport("80.130.6.123:7600");
 proxy = new BankProxy(“MyBankName”, tcptransport);
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

Account ac;
DDS_Long money ;
ReturnCode depositRetValue;

Account_initialize(&ac);

try
{
 depositRetValue = proxy->deposit(ac, money);
}
catch(eProsima::RPCDDS::Exception &ex)
{
 std::cout << ex.what() << std::endl;
}

24

3.1.2.2 TCPServerTransport

TCPServerTransport class implements a TPC transport that should be used by servers.

This class has one constructor. This constructor has two parameters. The parameter
public_address expects the public IP address and port where a proxy could find the
server. The parameter server_bind_port has to contain the local port that the server will
open to make the connection. For more information see section WAN communication.

Using the suggested IDL example in the section Example, the developer could create a
server that will be found in public IP address 80.130.6.123 and port 7600. This server will
open the port 7400 in its machine.

class TCPServerTransport : public Transport

{

 public:

 TCPServerTransport(const char *public_address, const char *server_bind_port);

 virtual ~TCPServerTransport();

};

unsigned int threadPoolSize = 5;
eProsima::RPCDDS::ThreadPoolStrategy *pool = NULL;
eProsima::RPCDDS::TCPServerTransport *tcptransport = NULL;
BankServer *server = NULL;

try
{
 pool = new eProsima::RPCDDS::ThreadPoolStrategy(threadPoolSize);
 tcptransport = new eProsima::RPCDDS::TCPServerTransport("80.130.6.123:7600",
“7400");
 server = new BankServer(“MyBankName”, pool, tcptransport);

 server->serve();
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

25

3.2 Asynchronous calls

eProsima RPC over DDS supports asynchronous calls: a client application can call a
remote procedure from a thread and the call won’t block the thread execution.

3.2.1 Calling a Remote procedure asynchronously

rpcddsgen generates one asynchronous call for each remote procedure. These methods
are named <RemoteProcedureName>_async. They received as parameters the object that
will be called when request had arrived and the input parameters of the remote
procedure. Using the IDL example, rpcddsgen will generate next asynchronous method
in the server proxy:

The asynchronous version of the remote procedures can generate an exception too.

The exceptions that could be thrown are:

Exception Description
eProsima::RPCDDS::ClientException This exception is thrown when there is a problem in

the client side.
eProsima::RPCDDS::ServerNotFoundException This exception is thrown when the proxy cannot

find any server.

Example:

void
deposit_async(Bank_depositCallbackHandler &obj, /*in*/ const Account& ac, /*in*/
DDS_Long money);

class Bank_depositHandler : public depositCallbackHandler
{
 void deposit(/*out*/ ReturnCode deposit_ret)
 {
 }

 virtual void on_exception(const eProsima::RPCDDS::Exception &ex)
 {
 }
}

void main()
{
 BankProxy *proxy = NULL;

 try
 {
 proxy = new BankProxy(“MyBankName”);
 }
 catch(eProsima::RPCDDS::InitializeException &ex)
 {
 std::cout << ex.what() << std::endl;
 }

 Account ac;
 DDS_Long money = 0;
 Bank_depositHandler deposit_handler;

 Account_initialize(&ac);

 try
 {
 proxy->deposit_async(deposit_handler, ac, money);
 }
 catch(eProsima::RPCDDS::Exception &ex)
 {
 std::cout << ex.what() << std::endl;
 }

26

3.2.2 Reply Call-back object

The client is notified of the reply through an object that the developer passes as a
parameter to the asynchronous call. rpcddsgen generates one abstract class for each
remote procedure that user will use in asynchronous calls. These classes are named
<InterfaceName>_<RemoteProcedureName>CallbackHandler. Two abstract methods are
created inside these classes. One is called when the reply arrived. This function has as
parameters the output parameters of the remote procedure. The other function is
called in case of exception. User should create a class that inherits from
<InterfaceName>_<RemoteProcedureName>CallbackHandler class and implement both abstract
methods. Using the IDL example, rpcddsgen will generate next class:

The function that is called in case of exception could receive next exceptions:

Error code Description
eProsima::RPCDDS::ClientInternalException An exception occurs in the client side.
eProsima::RPCDDS::ServerTimeoutException The maximum time was exceeded waiting the server’s reply.
eProsima::RPCDDS::ServerInternalException An exception occurs in the server side.

class Bank_depositCallbackHandler
{
 public:
 virtual void deposit(/*out*/ ReturnCode deposit_ret) = 0;
 virtual void error(const eProsima::RPCDDS::Exception &ex) = 0;
};

27

3.3 One-way calls

Sometimes a remote procedure doesn’t need the reply from the server. For these
cases, eProsima RPC over DDS support one-way calls. A developer can define a remote
procedure as one-way, and when the client application calls the remote procedure, the
thread sends the request to the server but it won’t wait for the reply or an error.

To create a one-way call, the remote procedure has to be defined in the IDL file with
the following rules:

 The oneway reserved word must be used before the method definition.

 The returned value of the method must be the void type.

 The method cannot have any output parameter. Any parameter cannot be
defined with the reserved words inout or out.

An example of how a one-way procedure has to be defined using IDL:

interface Bank
{
 oneway void deposit(in Account ac, in long money);
};

28

3.4 Threading Server strategies

RPCDDS library offers several strategies that server could use when a request arrives.
The subsection describes these strategies.

3.4.1 Single thread strategy

This is the simplest strategy. The server only uses one thread for request management.
In this case the server only will be executing one request in time. The thread that
server uses to manage the request is the reception thread of DDS. To use Single Thread
Strategy, create the server providing a SingleThreadStrategy object in the constructor.

3.4.2 Thread Pool strategy

In this case, the server manages a thread pool that will be used to process the
incoming requests. For each request arrived the server assigns the request to a free
thread in the thread pool.

To use Thread Pool Strategy, create the server providing a ThreadPoolStrategy object in
the constructor.

eProsima::RPCDDS::SingleThreadStrategy *single = NULL;
BankServer *server = NULL;

try
{
 single = new eProsima::RPCDDS::SingleThreadStrategy();
 server = new BankServer(“MyBankName”, single);

 server->serve();
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

unsigned int threadPoolSize = 5;
eProsima::RPCDDS::ThreadPoolStrategy *pool = NULL;
BankServer *server = NULL;

try
{
 pool = new eProsima::RPCDDS::ThreadPoolStrategy(threadPoolSize);
 server = new BankServer(“MyBankName”, pool);

 server->serve();
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

29

3.4.3 Thread per request strategy

In this case, the server will create a new thread for each new request arrived to
processes the request.
To use Thread Pool Strategy, create the server providing a ThreadPerRequestStrategy
object in the constructor.

eProsima::RPCDDS::ThreadPerRequestStrategy *perRequest = NULL;
BankServer *server = NULL;

try
{
 perRequest = new eProsima::RPCDDS::ThreadPerRequestStrategy();
 server = new BankServer(“MyBankName”, perRequest);

 server->serve();
}
catch(eProsima::RPCDDS::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

30

4 WAN communication
eProsima RPC over DDS supports WAN networks through its TPC transport. A WAN
server could be accessible at its public IP address and any WAN proxy could connect to
this server. Usually a public server is behind a NAT with port forwarding. In this section
is explained how to configure the network in this case.

WAN Proxy

TCP Transport

IP address:

192.168.1.12

WAN Server

TCP Transport

IP address:

192.168.1.32

NAT router
WAN: 80.99.25.11

LAN: 192.168.1.0

NAT router
WAN: 80.99.25.12

LAN: 192.168.1.0

Port forwarding settings

WAN port 7600 to 192.168.1.32:7400

CONNECTION

tcptrans = new

 TCPClientTransport(“80.99.25.12:7600”);

BankProxy(tcptrans);

tcptrans = new

 TCPServerTransport(“80.99.25.12:7600”,

 “7400”);

BankServer(tcptrans);

The WAN server is located in a local network that has access to the WAN network
through a NAT router. The local IP address of the computer where the WAN server will
run is 192.168.1.32. It is decided that the WAN server will bind with the local port 7400
and it will be set with the parameter server_bind_port of the TCP transport. The public
IP address of this NAT router is 80.99.25.12. It must be set a port forwarding
configuration where data incoming in 7600 NAT router port will be forwarded to the
local address 192.158.1.32 and local port 7400. Then the WAN server can be created
with the public_address parameter of the TCP transport as “80.99.25.12:7600” and the
server_bind_port parameter as “7400”.
WAN proxy could connect with this WAN server whether its public IP address and port
is known. Then the WAN proxy can be created with the to_connect parameter of the
TCP transport as “80.99.25.12:7600”.

31

5 Known Issues

5.1 RPCDDSGEN:

 RPCDDSGEN will not generate correct project files if the interface and the IDL file
names are different.

32

6 HelloWorld example in Visual Studio 2010
In this section an example will be explain step by step. Only one remote procedure will
be defined. A client will call this remote procedure, passing as parameter a string with
a name. The server returns a new string that appends the name to a greeting sentence.

6.1 Writing the IDL file

Write a simple interface named HelloWorld that has a hello method. Store this IDL
definition in a file named HelloWorld.idl

6.2 Generating specific code

Open a command prompt and go to the directory containing HelloWorld.idl file.
Execute the following line:

// HelloWorld.idl

interface HelloWorld
{
 string hello(in string name);
};

rpcddsgen -ppDisable -example x64Win64VS2010 HelloWorld.idl

33

6.3 Implementation of the client

Open the Visual Studio 2010 solution HelloWorld-vs2010.sln. rpcddsgen creates an
example of a client application in the file Client.cxx. This example will use this base
template. Two line will be added: one sets a value to the remote procedure parameter
and the other prints the returned value in the output. Both lines are marked with a
comment in the next example. Open the file Client.cxx and add it.

#include "HelloWorldProxy.h"
#include "HelloWorldRequestReplyPlugin.h"
#include “exceptions/Exceptions.h”

int main(int argc, char **argv)
{
 HelloWorldProxy *proxy = NULL;

 // Creation of the proxy for interface "HelloWorld".
 try
 {
 proxy = new HelloWorldProxy(“HelloService”);
 }
 catch(eProsima::RPCDDS::InitializeException &ex)
 {
 printf("Error: %s\n", ex.what()); // This line prints the error.
 return -1;
 }

 // Create and initialize parameters.
 char* name = strdup("Richard"); // This line set the remote procedure's
parameter.
 // Create and initialize return value.
 char* helloRetValue = NULL;

 // Call to remote procedure "hello".
 try
 {
 helloRetValue = proxy->hello(name);

 printf("%s\n", helloRetValue); // This line prints the returned value.
 }
 catch(eProsima::RPCDDS::Exception &ex)
 {
 printf("Error: %s\n", ex.what()); // This line prints the error.
 }

 if(name != NULL) free(name);
 if(hello_ret != NULL) free(helloRetValue);

 delete(proxy);

 return 0;
}

34

6.4 Implementation of the server

rpcddsgen creates the server skelenton in the file HelloWorldServerImpl.cxx. In this file the
remote procedure is defined and it has to be implemented. This example implements
that the returned value will return a new string appending a greeting with the
parameter of the remote procedure. Open the file and copy this behavior:

6.5 Build and execute

Build the solution (F7) and go to <example_dir>\objs\x64Win64VS2010 directory. Just
double click on HelloWorldServer.exe to start the server. The server will inform that is
running:

Then launch HelloWorldClient.exe. You will see the result of the remote procedure call:

#include "HelloWorldServerImpl.h"

char* HelloWorldServerImpl::hello(/*in*/ char* name)
{
 char* hello_ret = NULL;

 // Allocate the returned value.
 hello_ret = (char*)calloc(100, 1);
 // Create the greeting sentence.
 sprintf(hello_ret, "Hello %s", name);

 return hello_ret;
}

INFO<eProsima::RPCDDS::Server::Server>: Server is running

Hello Richard

	eProsima RPC over DDS
	1 Introduction
	1.1 Client/Server communications over DDS
	1.2 Main Features

	2 Building an application
	2.1 Defining a set of remote procedures
	2.1.1 IDL Syntax and mapping to C++
	2.1.1.1 Simple types
	2.1.1.2 Complex types
	2.1.1.3 Parameter definition
	2.1.1.4 Function definition
	2.1.1.5 Interface definition
	2.1.1.6 Limitations

	2.1.2 Example

	2.2 Generating specific remote procedure call support code
	2.2.1 RPCDDSGEN Command Syntax :
	2.2.2 Server side
	2.2.3 Client side

	2.3 Implementation of the server
	2.3.1 API
	2.3.2 Exceptions
	2.3.3 Example

	2.4 Implementation of the client
	2.4.1 API
	2.4.2 Exceptions
	2.4.3 Example

	3 Advanced concepts
	3.1 Network transports
	3.1.1 UDP Transport
	3.1.1.1 UDPClientTransport
	3.1.1.2 UDPServerTransport

	3.1.2 TCP Transport
	3.1.2.1 TCPClientTransport
	3.1.2.2 TCPServerTransport

	3.2 Asynchronous calls
	3.2.1 Calling a Remote procedure asynchronously
	3.2.2 Reply Call-back object

	3.3 One-way calls
	3.4 Threading Server strategies
	3.4.1 Single thread strategy
	3.4.2 Thread Pool strategy
	3.4.3 Thread per request strategy

	4 WAN communication
	5 Known Issues
	5.1 RPCDDSGEN:

	6 HelloWorld example in Visual Studio 2010
	6.1 Writing the IDL file
	6.2 Generating specific code
	6.3 Implementation of the client
	6.4 Implementation of the server
	6.5 Build and execute

