blackbox 130 INSTRUCTION MANUAL ### BLACK BOX LEVEL 130 (FIFTH EDITION REV. 1) July 2010 Part Number M-130-0-005-1P #### COPYRIGHT © Pulsar Process Measurement Limited, 2003 -10. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form without the written permission of Pulsar Process Measurement Limited. #### WARRANTY AND LIABILITY Pulsar Process Measurement Limited guarantee for a period of 2 years from the date of delivery that it will either exchange or repair any part of this product returned to Pulsar Process Measurement Limited if it is found to be defective in material or workmanship, subject to the defect not being due to unfair wear and tear, misuse, modification or alteration, accident, misapplication or negligence. #### DISCLAIMER support) Pulsar Process Measurement Limited gives nor implies any process guarantee for this product, and shall have no liability in respect of any loss, injury or damage whatsoever arising out of the application or use of any product or circuit described herein. Every effort has been made to ensure accuracy of this documentation, but Pulsar Process Measurement Limited cannot be held liable for any errors. Pulsar Process Measurement Limited operates a policy of constant development and improvement and reserves the right to amend technical details as necessary. Pulsar Process Measurement Inc. #### **TECHNICAL ENQUIRIES** Please contact Pulsar Process Measurement Limited for technical support. #### COMMENTS AND SUGGESTIONS Pulsar Process Measurement Limited If you have any comments or suggestions about this product, then please contact: | Cardinal Building | PO Box 5177 | |--|--| | Enigma Business Centre | Niceville | | Sandy's Road | FL 32578 - 5177 | | Malvern | | | Worcestershire | USA | | WR14 1JJ | | | United Kingdom | | | - | | | Tel: +44 (0) 1684 891371 | Tel: + 1 850 279 4882 | | Fax: + 44 (0) 1684 575985 | Fax: + 1 850 279 4886 | | Web Site: http://www.pulsar-pm.com | Web Site: http://www.pulsar-pm.com | | e-mail: info@pulsar-pm.com (general information) | e-mail: info.usa@pulsar-pm.com (general information) | | e-mail: support@ pulsar-pm.com (product | e-mail: support.usa@ pulsar-pm.com (product | support) # Contents | Chapter 1 Start Here | l | |---|----| | About this Manual | | | About the blackbox range | 2 | | Functional Description | 3 | | Product Specification. | | | EC Declaration of Conformity | 6 | | Chapter 2 Installation | 7 | | Power Supply Requirements | | | Location | | | Dimensions | | | Standard Enclosure | | | Large Enclosure (optional) | | | Terminal Connection Details | | | Power | | | Transducer | | | Relay Outputs | | | Current Output | | | RS232 Serial Interface | | | Voltage Selector and Fuse Location | | | Preparation for Operation | | | Maintenance | | | | | | Chapter 3 How To Use Your blockbox Level System | | | PC Handheld Programmer (Standard) | | | Communication Port Configuration | | | Handheld Communicator (Optional) | | | Onboard integral Keypad and Display (Optional) | | | Operating the Controls | | | Display | | | Keypad | | | Run Mode | | | LED's | | | Program Mode | | | How to Access Program Mode | | | Test Mode | | | LED's | | | Using the RS232 Serial Interface | | | Factory Defaults | | | • | | | Chapter 4 Programming Guide | 30 | | Level | | | Example 1 Level Measurement | 30 | | Example 2 Alternating Control (pump down) | 32 | | Volume (Optional) | 34 | | Example 3 Volume Application | | | Chanton 5 Paramatan Chida | 20 | | Chapter 5 Parameter Guide | | | Menu System Diagrams | | | Top Level Menu | | | Application MenuRelays Menu | | | RCIAYS IVICIIU | | | Data Logs Menu | | |-----------------------------|----| | Volume Menu | | | Display Menu | 39 | | Output Menu | | | Compensation Menu | | | Stability Menu | | | Echo Processing Menu | | | System Menu | 41 | | Test Menu | 42 | | Parameter Listing | 43 | | Application Parameters | 43 | | Operation | 43 | | Dimensions | 44 | | Remote Alarm | 46 | | SMS Time | 47 | | Relay Parameters | 49 | | Relay Type | 49 | | Alarms | | | Control | 53 | | Common Parameters | 55 | | Data Log Parameters | 56 | | Temperature | | | Volume (Optional) | | | Conversion | | | Breakpoints | | | Tables | | | Display Parameters | | | Options | | | Failsafe | | | Output Parameters | | | Range | | | Operation | | | Setpoint | | | Limits | | | Trim | | | Failsafe | | | Compensation Parameters. | | | 1 | | | Offset | | | Temperature | | | Stability Parameters | | | Damping | | | Filters | | | Echo Processing Parameters | | | Transducer Status | | | System Parameters | | | Passcode | | | System Information | | | Date & Time | | | Daylight Saving Time | | | Test Parameters | | | Simulation | | | Hardware | 76 | | toutou 6 Tuovible che etine | 70 | | napter 6 Troubleshooting | | | arameter Record | 79 | | | | ## Chapter 1 Start Here... Congratulations on your purchase of a Pulsar blockbox 130 Level System. This quality system has been developed over many years and represents the latest in high technology ultrasonic level measurement and control. It has been designed to give you years of trouble free performance, and a few minutes spent reading this operating manual will ensure that your installation is as simple as possible. #### About this Manual It is important that this manual is referred to for correct installation and operation. There are various parts of the manual that offer additional help or information as shown. At various parts of this manual you will find tips to help you. # **Additional Information** #### **Additional Information** At various parts of the manual, you will find sections like this that explain specific things in more detail. # References #### See Also References to other parts of the manual ## About the blackbox range The Pulsar blockbox is a non-contact Level Control System. It has been designed to provide a new concept in low cost maintenance-free fit and forget level measurement without any compromise on performance. The blackbox is ideally suited to applications where level monitoring, reporting, control or logging is required, with or without the need for a local display. The blackbox level system is available in a variety of different versions offering a wide choice of output options. The blockbox is very easy to use and may be calibrated quickly and simply via a laptop, using the software supplied with the unit, or alternatively by using the optional hand held calibrator, which connects to the unit via the RS232 interface, and provides an onboard LCD display. Certain models are also available with an optional LCD display and integral keypad fitted. All models of the blockbox range can be used with any of the extensive range of Pulsar dB transducers for distances up to 40m (131ft). The blackbox range is designed to provide you with highly reliable measurement in a robust and functional package that is easy to use and low in cost. ## **Functional Description** The blackbox ultrasonic Level System sends a transmit pulse to the transducer, which emits an ultrasonic pulse perpendicular to the transducer face, and the returned echo is sent back to the blackbox. The time taken to receive the echo is measured and the distance from the transducer face to the surface being monitored is calculated. The blockbox utilises the unique DATEM software (Digital Adaptive Tracking of Echo Movement). This is an unique digital mapping technique developed especially for Pulsar's range of ultrasonic level and control systems. It gives the system edge when identifying the "true target level" in the face of competing echoes from pipes, pumps or other obstructions. The blockbox can measure from 0.125m (0.41 feet) to 40m (131 feet) from the transducer to the surface being monitored, dependent on the application and transducer used. The blockbox can measure **level**, **space or distance** and provide a representative output. When fitted with the **optional display and keyboard** it can also measure and provide an output representative of **volume**. There are two user definable relays, with individual setpoints, which can be programmed to activate alarms or control functions, a mA output that can be used for remote indication purposes and a RS232 port, so that the blockbox can be programmed or monitored remotely by a PC or other equipment. The blackbox can be programmed either by PC, via the RS 232 Serial Interface, using the supplied software (standard) or by hand held calibrator (optional) which is connected to the blackbox via the RS 232 interface. Those units fitted with the optional onboard display can be programmed via the integral keyboard. All the parameters are stored in non-volatile memory, so are retained in the event of power interruption. ## **Product Specification** **Physical** Standard Wall Mount Enclosure **Outside dimensions** Weight Cable entry detail Large Wall Mount Enclosure (optional) **Outside dimensions** Weight Cable entry detail Enclosure material/description Transducer cable extensions Nominal separation **Environmental** IP Rating Max. & min. temperature (electronics) Flammable atmosphere approval **Approvals** CE approval Performance Accuracy Resolution Max. range Min. range Rate response Echo Processing Description 130 x 130 x 60 mm (5.12 x 5.12 x 2.36 inches) Nominal 0.65 kg (1.4lbs) underside fitted with 3 x M20, nylon cable glands suitable for 6 - 12mm cable 130 x 180 x 85 mm (5.12 x 7.09 x 3.35 inches) Nominal 0.75 kg (1.65lbs) underside fitted with 5 x M20, nylon cable alands ABS base with Polycarbonate lid. flammability rating UL94HB 2-core screened (2 conductor 20AWG screened) 1000 m (3,280 ft). For greater separation distances please consult Pulsar IP66/67 -20 °C to +50 °C (-4°F to 120°F) Safe area: compatible
with approved dB transducers (see transducer spec' sheet) See EC Declaration of Conformity 0.25% of the measured range or 6 mm (0.24") (whichever is greater) 0.1% of the measured range or 2 mm (0.08") (whichever is greater) Dependant on transducer (maximum 40m (131ft) dB40) Dependent upon transducer (minimum 0.125m (0.41ft) dB Mach 3) fully adjustable DATEM (Digital Adaptive Tracking of Echo Movement) Outputs Analogue output Isolated or non-isolated output of 4-20 mA or 0-20 mA into 1K Ω (user programmable and adjustable) 0.1% resolution Serial Port (Digital Output) Volt free contacts, number and rating Display (optional) RS232 for programming and data extraction 2 form "C" (SPDT) rated at 2A at 240V AC 2 x 12 alpha numeric **Programming** PC programming (standard) via RS232 using supplied software Remote programming (optional) via RS232 using optional hand held calibrator Onboard programming (optional) via integral keypad **Programming security** via passcode (user selectable and adiustable) Programmed data integrity via non-volatile RAM <u>Supply</u> Fuses Power supply 115 VAC +5% / -10% 50/60 Hz, 230 VAC +5% / -10% 50/60 Hz. dc 10 - 28V 10W maximum power (typically 5W) 50 mA at 230 VAC 100 mA at 115 VAC Remote Communicator Power Supply Power supplied via blackbox RS232 interface. Pulsar Process Measurement Limited operates a policy of constant development and improvement and reserve the right to amend technical details as necessary. ### **EC Declaration of Conformity** #### EC DECLARATION OF CONFORMITY #### PULSAR Blackbox series Relevant Directive(s) 2004/108/EC - EMC Directive and its amending Directives 2006/95/EC - Low Voltage Directive and its amending Directives Manufacturer's Name Pulsar Process Measurement Ltd. Manufacturer's Address Cardinal Building Enigma Business commercial Centre, Sandy's Road, Malvern, Worcestershire, England WR14 1EA Apparatus Pulsar Blackbox range. Standards Applied EN 61010-1:2001 Safety requirements for Electrical equipment for measurement, control, and laboratory use EN 61326: 2006, EN61000-6-3:2006, EN 61000-3-3:1995 + AMD 1 EN55022 Class B Radiated emissions. EN55022 Class B Conducted Emissions. CISPR 11 EN61000-3-2 Harmonic Current Emissions EN61000-3-3 Voltage Fluctuations and Flicker EN61000-4-2 Immunity to Electrostatic fields EN61000-4-3 Immunity to Radiated fields EN61000-4-4 Immunity to fast Transients EN61000-4-5 Immunity to Surges EN61000-4-6 Immunity to conducted Interference 28 June 2010 Rev 2.0 Signed IR Lllan Name: Jeff Allan (BSC) Pulsar Process Measurement. ### **Power Supply Requirements** The blackbox can operate from AC supply or from a DC battery. The AC is 115V + 5%/-10% 50/60Hz or 230V + 5%/-10% 50/60Hz, depending on the position of the selector switch. The DC is 10-28V. In all cases the blackbox will typically consume 5W of power, with a maximum of 10W. #### Location All electronic products are susceptible to electrostatic shock, so follow proper grounding procedures during installation. The blackbox level controller must be mounted in a non-hazardous (safe) Area, and the transducer fitted in the hazardous area. Note: the blackbox shown in the above diagram is for illustrative purposes only and may not be representative of the actual blackbox supplied. | FM APPROVED TRANSDUCERS | | |------------------------------------|--| | Class I, Div. 1, Group A, B, C & D | | | Class II, Div. 1, Group E, F & G | | | Class III | | When choosing a location to mount the enclosure, bear in mind the following: - Easy access to the enclosure is maintained. - The mounting surface is vibration-free. - The ambient temperature is between -20°C and 50°C (-4°F and 120°F). - There should be no high voltage cables or inverters close by. #### **Dimensions** ## **Standard Enclosure** The dimensions of the mounting holes are as shown below. The blackbox should be mounted by drilling four holes suitable for size 8 screws (length and type to suit your application) And fix all four screws by removing the top cover to access the pre-moulded mounting holes which are located in the base of the enclosure under the lid retaining screws. The full dimensions of the enclosure are as shown below. # **Cable Entry** There are 3 x 20mm (0.79") cable glands, suitable for 6-12mm (0.24" -0.63") cables, fitted to the base of the blockbox enclosure. # **Large Enclosure (optional)** The dimensions of the mounting holes are as shown below. The full dimensions of the enclosure are as shown below. # **Cable Entry** There are 5 x 20mm (0.79") cable glands, suitable for 6 - 12mm (0.24" - 0.63") cables, fitted to the base of the fitted to the base of the blackbox enclosure. ### **Terminal Connection Details** The terminal strip is as detailed below. There is also a wiring diagram attached to the board directly underneath the terminal strip. ## **Terminal Connections** ### **Power** The blackbox can operate from mains AC and automatically from a DC power source or battery backup, in the event of power failure, or can be operated permanently from DC or batteries. #### **Transducer** The transducer should be installed, and connected, in accordance with the installation instructions contained in the Transducer User Guide. The entire range of, standard dB transducers are certified for use in hazardous areas and different models, for each, are available for use in EEx m (Zone 1) or EEx ia (Zone 0). Wire the transducer to the blockbox transducer terminals as detailed below: Red = Power (Terminal 19) White = Signal (Terminal 20) Black = 0 volts (Terminal 18) Green (screen) = SCR (Terminal 17) When using 2 core screened extension cable, the Black and Green wires of the transducer should be connected to the screen of the extension cable and connected to the 0 volts terminal (Terminal 18). #### **ATEX** For **EEx m** (**Zone 1**) applications a transducer certified to **Sira 02ATEX5104X** is used, and must be supplied via a 4000A breaking fuse, which is fitted as standard to the **blockbox** level controller. For **EEx ia** (**Zone 0**) a transducer certified to **Sira 02ATEX2103X** is used, which must be connected to the **blockbox** via an external Zener barrier. #### FM For EEx m (Zone 1) applications a transducer certified to FM Class I Div 1 Group A, B, C & D, ClassII Div 1 Group E, F & G, Class III is used, and must be supplied via a 1500A breaking fuse, which is fitted as standard to the blockbox level controller. Restrictions do not use in the presence of these groups of Chemicals, Aliphatic Hydro Carbons, Ketones or Esters For EEx ia (I.S.) a transducer certified to FM Class I Div 1 Group A, B, C & D, ClassII Div 1 Group E, F & G is used, which must be connected to the blockbox via an external Zener barrier. See transducer label for certification details. ### **Relay Outputs** The two relays can be programmed to a variety of alarm and control functions. The relay contacts are all rated at 2A at 240V AC. All connections should be such that the short circuit capacity of the circuit to which they are connected, is limited by fuses rated so that they do not exceed the relay rating. ## **Current Output** This is an isolated mA output of 4 - 20mA or 0 - 20mA, and the load should not exceed 1K Ω . ## **RS232 Serial Interface** The serial interface is used to programme the blockbox either via a PC (standard) using the software supplied or alternatively using the hand held calibrator (optional). ## **Voltage Selector and Fuse Location** The voltage selector switch and AC mains power fuse is located, on the bottom board to the left and above of the power input terminals, as previously illustrated in the Terminal Connections Detail drawing. ## Important Information Before applying AC power (mains), make sure you have correctly selected the voltage selector switch which is located to the left and above of the mains supply input terminals, as illustrated in the Terminal Connections Detail drawing. Please note that all units are supplied set to 230 volts AC for safety reasons. Never operate the blackbox with the cover removed. An external switch or circuit breaker should be installed near to the blockbox to allow the supply to be removed during installation and maintenance. In addition, the relay contacts should also have a means of isolating them from the blockbox.. Interconnecting cables must be adequately insulated in accordance with local regulations. Strip back 30 mm of the outer insulation of the cable. Strip 5 mm of insulation from the end of each conductor. Twist all exposed strands of the conductor together. Insert the stripped conductor into the terminal block as far as it will go and tighten the terminal block screw. Ensure that all strands are firmly clamped in the terminal block and that there is no excess bare conductor showing, and no stray strands. DON'T FORGET Make sure you move the voltage selector switch to the correct position for your supply. ### **Important Information** If the equipment is installed or used in a manner not specified in this manual, then the protection provided by the equipment may be impaired. ## **Preparation for Operation** Before switching on, check the following: - ✓ The blackbox is mounted correctly and is in a 'safe' area. - ✓ The power supply is correctly installed. - ✓ The voltage selector switch is in the correct position. - ✓ The relays are connected correctly. #### Maintenance There are no user serviceable parts inside your blockbox, except the mains power fuse. If you experience any problems with the equipment, then please contact Pulsar Process Measurement for advice. To clean the equipment, wipe with a damp cloth. Do not use any solvents on the enclosure or transducer. ## Important Information The unique DATEM software comes into operation as soon as power is applied, and is designed to monitor a **moving level** or **target** with the **transducer** in a **fixed position**. If, after any period of use, it should become necessary to move the
transducer, for any reason, from its original operating position, switch off the blackbox, before proceeding, to prevent any undesirable updates to the DATEM trace. If after moving the transducer the reading is not as expected please refer to **Chapter 6 Troubleshooting**. # Chapter 3 How To Use Your blackbox Level System In order to view or change parameter values one of the following methods must be used: ## **PC Handheld Programmer (Standard)** Your blackbox 130 comes complete with the PC Handheld Programmer software, contained on CD. Insert the CD into the CD drive of the PC intended to be used to carry out the programming of the blackbox and install the software, following the on screen instructions. Once the software is installed connect the computer via its serial port to the blockbox RS232 serial interface RJ11 connector, located on the terminal connector strip, inside the blockbox enclosure. Double click the 'Handheld Programmer' icon, installed on your desktop and the PC will automatically connect to the blackbox. Once connected you will briefly see the message illustrated on the display below which, after connecting successfully, will then change to display the current measurement, dependent on mode and measurement unit's chosen. When using the PC Handheld Programmer software, keypad input can be achieved by using a 'mouse' or similar device to place the cursor over the relevant key followed by a 'left' click, alternatively numeric detail can be entered directly from the PC keyboard as can 'ENTER' and 'CANCEL' (Esc. Key). ## **Communication Port Configuration** If the PC Handheld Programmer fails to connect to the blackbox unit you may need to change the communications port that is being used, to do this 'right click' on the PC Handheld Programmer keypad and a 'pop up' menu will appear allowing you to select the appropriate communications port. ## **Handheld Communicator (Optional)** The optional Handheld communicator can be used to programme any number of blackbox units and works in a similar way to the PC Software. Connect the Handheld Communicator, with the cable supplied, to the RS232 interface via the RJ11 connector located on the terminal connector, inside the blackbox enclosure. Once connected you will briefly see a message, similar to that as seen when using the PC Software which, after connecting successfully, will then change to display the current measurement, dependent on mode and measurement unit's chosen. # **Onboard integral Keypad and Display (Optional)** When fitted, the blockbox can be programmed directly via the integral keypad. ## **Operating the Controls** ## **Display** The display in all cases is identical, the only difference being is that both the PC Programming Software (standard) and the Hand Held Calibrator (optional) need to be connected to the blockbox via the RS232 interface, where as the Onboard keypad and display (optional) are permanently connected to the blockbox provides information on the current mode of operation. While in the Run Mode it will display the current level reading and its units of measure, along with status messages with regards to the Transducer, Echo reception and Fail Safe Mode. When in the Program mode the display is used to read information on the Menu System, Parameter Number and parameter details and values, which can be entered. During Test Mode the display is used to monitor the simulated level. 1) **Main Display**, 6 digit numeric display: **Run Mode**, current measurement displayed, dependent on mode and measurement unit's chosen, and value of Hot Key function selected. **Program Mode**, displays parameter number and values entered for parameters. Test Mode, displays simulated level. 2) Auxiliary Display, scrolling twelve digit alpha numeric display *Run Mode*, displays measurement units (P104), status messages on signal and transducer, detail of Hot Key function selected. *Program Mode*, displays Menu and Sub Menu headings, parameter details and options. ## Keypad ## **Hot Keys** There are five hot keys on the keypad, which can be used to quickly access common parameters for viewing only, while in Run Mode. Pressing the hot key once will display the first parameter, then repeated pressing will display subsequent parameters, as available, then the blockbox reverts to Run Mode. In program mode, they have different functions, the functions are shown below. | Hot
Key | Run Mode | Program Mode | |------------|--|--| | Σ | Not used with blackbox 130. | Not used with blackbox 130. | | | Displays echo confidence, echo strength, H.A.L.L., average noise, peak noise or temperature. | Not used with blackbox 130. | | n | Not used with blackbox 130. | Reset parameter to default setting. | | mA | Instantaneous mA output. | Not used with blackbox 130. | | | Dependant on application displays Distance, Level, Space or Volume (optional) in units of measurement. | Not used with blackbox 130. | | * | Not used with blackbox 130. | Takes you to the last parameter edited, when you first enter program mode. | | • | Gives details of unit type, software revision and serial number. | Enter Decimal Point. | # Menu Keys The menu keys are used to navigate around the built in menu system and have the following functions: | Menu Key | Function | |----------|---| | | 1) Arrow keys for moving left and right around the menu system. | | | 2) Used in test mode to simulate the level moving up and down. | | ENTER | 1) Used to confirm each action (for example select a menu option) or when entering a parameter number or value. | | | 2) Used to confirm questions asked by your blackbox such as before restoring factory defaults. | | CANCEL | Used to navigate up a level in the menu system, and back to run mode. | | | Used to cancel a value entered in error. | # **Numeric Keys** These keys are used for entering numerical information during programming. There are two main operating modes for your blockbox, **Run Mode** and **Program Mode**. There is also a **Test Mode**, used for checking the set-up. All modes are now described. #### **Run Mode** This mode is used once the blackbox has been set up in program mode. It is also the default mode that the unit reverts to when it resumes operation after a power failure. When the blackbox is switched on for the first time, it will provide an output proportional to the distance from the transducer to the target, in metres. All relays by default are switched off. If either the PC Programming Software (standard) or the Hand Held Calibrator (optional), are connected to the blockbox, via the RS232 interface, while the blockbox is in the RUN mode then the current measurement will be displayed, dependent on mode and measurement unit's chosen. Models fitted with the optional LCD display and integral keypad will also display the current measurement, dependent on mode and measurement unit's chosen. After programming is complete, any relays that are set will operate when the measurement reaches the relevant setpoint. #### LED's There are two LED's which can be seen through the lid, of the blockbox enclosure, which will indicate the operational **status** of the unit while in **RUN** mode, as follows: blockbox without onboard display (standard). | LED 1
Green | LED 2
Red | Run Mode | |------------------|------------------|---------------------------------------| | Off | Off | No power to unit | | Constant
On | Constant
On | Internal Error | | Slow
Flashing | Slow
Flashing | Transducer fault | | Off | Slow
Flashing | Failed Safe /Loss of Echo | | Slow
Flashing | Off | Healthy signal unit working normally. | blackbox with onboard display (optional). | LED 1 | LED 2 | Run Mode | |----------|----------|--| | Off | Off | Relays are in there OFF state. | | Constant | Off | Relay 1 in its ON state | | On | | | | Off | Constant | Relay 2 in its ON state | | | On | | # **Program Mode** This mode is used to set up the blackbox or change information already set. You must use either the PC Software supplied (standard) or alternatively the unit can be set up with a Hand Held Calibrator (optional), both of which must be connected to the blackbox via the RS 232 Serial Interface. Those models fitted with the optional display can be set up by using the integral keypad on the unit. Entering a value for each of the parameters that are relevant to your application provides all the programming information. ## **How to Access Program Mode** To enter **program mode**, you simply enter the passcode, via the keypad on the PC Programming Software (standard), Hand Held Calibrator (optional) or integral keypad (optional), followed by the ENTER key. The **default passcode** is **1997**, so you would press the following: #### Note There is a time-out period of 15 minutes when in **program mode**, after which time **run mode** will be resumed if you do not press any keys. There are two means of editing parameters, directly or using the menu system. Each is now described. ### Using The Menu System The menu system has been designed to make the changing of parameters very simple. There are two levels of menu: **Main Menu** and **Sub Menu**. On the display there is a line of text that shows the menu system. Pressing the arrow keys scrolls the display between the top-level menu items, (as shown below, starting at Application). As you press the cursor keys to scroll left and right between these, you can press ENTER at any time to select it and take you to the sub-menu. Each of these options, along with their sub-menus are described in Chapter 5, **Parameter Guide**. When you move down into the sub-menu, you can scroll round
using the arrow keys, press ENTER to go to the required section of parameters. Once you have reached the relevant section, scroll through the parameters, and enter the necessary information. To enter the information, use the numeric keys and press ENTER and you will see the message "Saved!", if you press CANCEL, then no change will be made, and the message "Unchanged!!" will be displayed. When you have finished, press CANCEL to go back to the previous level. When you have reached the top level, then the blackbox will ask for confirmation before allowing you to go back into run mode. This is done by pressing ENTER at the display prompt. ## **Directly Editing Parameters** If you already know the number of the parameter, that you wish to look at or edit, simply type the number in at any time while you are in the menu system. Thus, if you are in either the menu or sub-menu level by pressing a numeric key, you can enter the parameter number directly and jump straight there. You cannot type a parameter number while at parameter level, only at one of the two menu levels. When you are at a parameter, the text line rotates automatically displaying the parameter name, number, the applicable units and the maximum and minimum figure you can enter. The top line shows the value you are setting. Once you have accessed a parameter, you can either just look at it, or change it. Once a parameter has been changed, press **ENTER** and you will see the message "**Saved!**" If you press CANCEL, then no change will be made, and the message "**Unchanged!!**" will be displayed. TIP You can jump straight to the last parameter you edited, by pressing '+/-' when you first enter program mode. #### **Test Mode** Test mode is used to simulate the application and confirm that all parameters and relay setpoints have been entered as expected. During simulation, there is a choice of whether the relays will physically change state (hard simulation) or not (soft simulation), the LED's will always change state to indicate that the relay setpoints have been activated, and the output will change in accordance to the chosen mode of operation. If you wish to test the logic of the system that the **relays are connected** to then select **hard simulation**, but if you **don't want to change the relay state**, then select a **soft simulation**. There are two simulation modes, **automatic** and **manual**. **Automatic** simulation will move the level up and down between empty level and maximum span, whereas **manual** simulation will allow **you** to move the level up and down using the arrow keys. To enter simulation, first go to **program mode**. Then, using the menu system, select menu item '**Test**' then sub-menu item '**Simulation**'. Simply change the value of the parameter **P980** to one of the following: - 1= Manual soft simulation - 2= Automatic soft simulation - 3= Manual hard simulation - 4= Automatic hard simulation To return to program mode, press **CANCEL** and test mode will end. When in **manual** simulation, by default test mode will move the level by 0.25m steps. Altering the **increment** (**P981**) will change this value. In automatic mode, the rate at which the level moves up and down is set by the increment (P981) in metres and the rate (P982) in minutes, which can be changed to make the level move up and down faster. E.g. if increment (P981) is set for 0.25m and rate (P982) is set to 1 min then the level will increase or decrease at a rate of 0.25m/min. To make the simulated level move slower, decrease the value in increment (P981) or increase the value in rate (P982). To make the simulated level move faster, increase the value in increment (P981) or decrease the value in rate (P982). #### LED's There are two LED's which can be seen through the lid, of the blackbox enclosure, which will indicate the **status** of the **relays** while in **simulation** as follows: #### blockbox without onboard display (standard). | Green | Red | Run Mode | |----------|----------|--| | Off | Off | Relays are in their OFF state. | | | | | | Off | Constant | Relay 1 in its ON state | | | On | | | Constant | Off | Relay 2 in its ON state | | On | | - | | Constant | Constant | Relay 1 and 2 in their ON state | | On | On | | ### blackbox with onboard display (optional). | LED 1 | LED 2 | Run Mode | |----------------|----------------|--| | Off | Off | Relays are in their OFF state. | | Constant
On | Off | Relay 1 in its ON state | | Off | Constant
On | Relay 2 in its ON state | | Constant
On | Constant
On | Relay 1 and 2 in their ON state | # Using the RS232 Serial Interface The RS232 serial interface is used to program the blockbox, and communicate between the blockbox and a PC using the optional blockbox PC and other associated Pulsar software packages, to obtain information such as data logging and view echo traces upload, download and save parameter files. In addition it can also be used to control or obtain information using a standard PC or other computer based equipment. To do so, the settings for control are as follows: baud rate 19,200, 8 data bits, no parity, 1 stop bits. The device should be connected to the RS232 Interface via the RJ11 connector as shown in **Chapter 2 Installation**. #### **Parameter Defaults** ## **Factory Defaults** ### **Factory Defaults** When first installing the blockbox, or subsequently moving or using the unit on a new application, before proceeding to program the unit for its intended application it is recommended that you ensure that all parameters are at their default values by completing a **Factory Defaults P930**, as described in Chapter 5 **Parameter Guide**. When you first switch the blockbox on it will provide an output proportional to the **distance** from the face of the transducer to the surface. All relays are set OFF. The **date** (P931) and **time** (P932) in the blockbox were set at the factory, but may need checking, and amending if, for example the application is in a time zone other than GMT, see Chapter 5 **Parameter Guide** for full details. In some applications it is simplest to empty the vessel, take a reading from the blackbox for distance and then setup the empty level to this figure. Once you are satisfied with the installation, and the blockbox is reading what you would expect in terms of distance from the face of the transducer to the material level, then you can proceed with programming, for the intended application. It is sensible to program all of the required parameters at the same time. The system will be then set-up. Note that the span is automatically calculated from the empty level, so the empty level should be entered first. #### Level ## **Example 1 Level Measurement** In this example, the blockbox and dB6 is being used to monitor a moving level within a vessel and is required to provide a 4 to 20mA output proportional to the level, over a range of 3.2m. In addition when the level rises to 2.5m, Relay '1' is required to give a high alarm and rest when the level falls to 2.4m. In the event that the level should fall to 0.5m then Relay '2' is to give a low alarm and reset once the level rise to 0.6m. To program the blockbox for this **Example**, proceed as follows. ### Access the **Program Mode** Key in the **passcode** 1997 and press **ENTER** Using the menu system access the parameters, as detailed below, and select the relevant options and **ENTER.** | Top Level
Menu | Sub Menu | Parameter Detail | Selected
Value | |-------------------|-----------|-------------------|-------------------| | Application | Operation | P100 Mode | 2 = Level | | | | P101 Xducer | 2 = dB6 | | | Distances | P104 Measnt Units | 1 = metres | | | | P105 Empty Level | 3.5 | | | | P106 Span | 3.2 | | Relays | Relay 1 | P210 Relay 1 Type | 1 = Alarm | | | | P211 R1Function | 1 = Level | | | | P212 R1 ID | 2 = High | | | | P213 R1 Set 1 | 2.5 | | | | P214 R1 Set 2 | 2.4 | | | Relay 2 | P220 Relay 1 Type | 1 = Alarm | | | | P221 R1Function | 1 = Level | | | | P222 R1 ID | 4 = Low | | | | P223 R1 Set 1 | 0.5 | | | | P224 R1 Set 2 | 0.6 | Programming is now complete and the unit can be returned to the run mode, press **CANCEL** until **Run Mode?** Is displayed on the display press **ENTER**, and the blockbox will return to the **Run Mode**. ## Note The 4 to 20mA output will be automatically set to the value of P106 Span, with 4mA being representative of 0% of Span (zero level) and 20mA 100% of Span (Full level). # **Example 2 Alternating Control (pump down)** A sump is typically used to temporarily hold water or effluent, and when the level reaches a specific point, the sump is pumped down, with the fluid being transferred to another process. empty distance (P105), 5.0m In this example a blockbox with dB6 is being used to control pumps on a **pump down** application, there are two pumps, and the **duty** pump is to be **alternated** between the pumps. This will operate as follows. During normal operation, **pump 1** will come on at 1.0 m, and pump down to 0.5 m. The setpoints are then shifted to **pump 2**, which will come on first next time. During peak periods, when **pump 1** cannot cope, **pump 1** will come on at 1.0m, **pump 2** will come on at 1.4 m, and pump down to 0.5 m. The setpoints are then shifted to **pump 2**, which will come on **first next time**. The 4 to 20mA output will be representative of level. To program the blockbox for this **Example**, proceed as follows. ### Access the **Program Mode** Key in the passcode 1997 and press ENTER Using the menu system access the parameters, as detailed below, and select the relevant options and **ENTER.** | Top Level
Menu | Sub Menu | Parameter
Detail | Selected
Value | |-------------------|-----------|---------------------|-------------------| | Application | Operation | P100 Mode | 2 = Level | | | | P101 Xducer
| 2 = dB6 | | | Distances | P104 Measnt | 1 = metres | | | | P105 Empty Level | 5.0 | | | | P106 Span | 4.7 | | Relays | Relay 1 | P210 Relay 1 | 2 = Control | | | | P211 R1Function | 1 = General | | | | P212 R1 ID | 2 = Alternate | | | | P213 R1 Set 1 | 1.0 | | | | P214 R1 Set 2 | 0.5 | | | Relay 2 | P220 Relay 1 | 2 = Control | | | | P221 R1Function | 1 = General | | | | P222 R1 ID | 2 = Alternate | | | | P223 R1 Set 1 | 1.4 | | | | P224 R1 Set 2 | 0.5 | Programming is now complete and the unit can be returned to the run mode, press **CANCEL** until **Run Mode?** Is displayed on the display press **ENTER**, and the blockbox will return to the **Run Mode**. #### Note The mA output will be automatically set to the value of P106 Span, with 0 or 4 mA being representative of 0% of Span (zero level) and 20mA 100% of Span (Full level). ## Volume (Optional) ## **Example 3 Volume Application** Only available on blockbox 130D, fitted with optional LCD display and integral keypad. A cylindrical tank with a diameter of 2m and a flat base that is typically used to temporarily hold liquid, and you wish to know the volume of liquid. You also require a high and low alarm. In this example, if the level rises to 3.4 m, then the high level alarm (relay 1) will come on until the level drops to 3.2 m. If the level falls to 0.3m, then the low level alarm (relay 2) will come on until the level rises to 0.5 m. The display will show the volume of fluid in the tank and the mA output will be representative of Volume where 4mA = empty (0%) and 20mA = Max Volume (100%). To program the blockbox for this **Example**, proceed as follows. ## Access the **Program Mode** ## Key in the **passcode** 1997 and press **ENTER** Using the menu system access the parameters, as detailed below, and select the relevant options and **ENTER.** | Top
Level | Sub
Menu | Parameter Detail | Selected Value | |--------------|-------------|-------------------|-----------------------| | Application | Operation | P100 Mode | 5 = Volume | | ' ' | | P101 Xducer | 2 = dB6 | | | Distances | P104 Measnt Units | 1 = metres | | | | P105 Empty Level | 4.5 | | | | P106 Span | 3.8 | | Relays | Relay 1 | P210 Relay 1 Type | 1 = Alarm | | | | P211 R1Function | 1 = Level | | | | P212 R1 ID | 2 = High | | | | P213 R1 Set 1 | 3.4 | | | | P214 R1 Set 2 | 3.2 | | | Relay 2 | P220 Relay 1 Type | 1 = Alarm | | | | P221 R1Function | 1 = Level | | | | P222 R1 ID | 4 = Low | | | | P223 R1 Set 1 | 0.3 | | | | P224 R1 Set 2 | 0.5 | | Volume | Conversio | P600 Vessel Shape | 0 = Cyl.Flat Base | | | | P601 – P603 | Enter dimensions as | | | | Vessel Dimensions | required | | | | P604 Calc.Volume | Shows the volume | | | | | as calculated by the | | | | | blackbox | | | | P605 Volume Units | Select as required | | | | P606 | Enter value of any | | | | Correction Factor | correction factor | | | | | e.g. specific gravity | | | | | of material | | | | P607 Max. Volume | Displays the Max. | | | | | Vol. as calculated | | | | | by the blackbox | | | | 1.1 1. 1 | by the ordered | Programming is now complete and the unit can be returned to the run mode, press **CANCEL** until **Run Mode?** Is displayed on the display press **ENTER**, and the blockbox will return to the **Run Mode**. # **Chapter 5** Parameter Guide This chapter describes all of the parameters contained in your blockbox. ## **Menu System Diagrams** Shown below is a set of charts to show you how all the various parts can be found using the menu system. ## **Top Level Menu** ## **Application Menu** # **Relays Menu** # Data Logs Menu ### **Volume Menu** Only available on blockbox 130D, fitted with optional LCD display and integral keypad. # **Display Menu** ## **Output Menu** # **Compensation Menu** ## **Stability Menu** # **Echo Processing Menu** # **System Menu** # **Test Menu** ## **Parameter Listing** This section describes all of the parameters. Any parameter can be reset to its default, by pressing the hot key, while in program mode. # **Application Parameters** # **Operation** ## P100 Mode of Operation This parameter sets the mode of operation, when in run mode, and can be set to one of the following: | Option | Description | |--------------|---| | 1 = Distance | Display and Output relative to the distance from the | | (Default) | transducer to the surface. | | 2 = Level | Display and Output relative to how full the vessel is. | | 3 = Space | Display and Output relative to how empty a vessel is. | | When fi | tted with optional display and integral keypad | | 5 = Volume | Display and Output relative to volume of material in | | | the vessel. | | | | #### P101 Transducer This parameter should be set to the transducer being used with the unit, and can be set to one of the following: | Option | Description | |-------------------|-----------------------| | 1 = dB3 | Transducer is a dB3. | | 2 = dB6 (Default) | Transducer is a dB6. | | 3 = dB10 | Transducer is a dB10. | | 4= dB15 | Transducer is a dB15. | | 5= dB25 | Transducer is a dB25. | | 6 = dB40 | Transducer is a dB40. | | 7 = dBS6 | Transducer is a dBS6 | ### **Dimensions** #### P104 Measurement Units This parameter sets the units you want to use for programming and display | Option | Description | |----------------------|---| | 1 = metres (Default) | All units of measure are METRES | | 2 = cm | All units of measure are CENTIMETRES | | 3 = mm | All units of measure are MILLIMETRES | | 4 = feet | All units of measure are FEET | | 5 = inches | All units of measure are INCHES | ### P105 Empty Level This parameter is to be set to the maximum distance from the face of the transducer to the **empty point**, in **P104 Measurement Units**. Note this value affects span as well, (see important information below), so should be set before span. #### Important Information When changing the Empty Distance (P105) you can also recalculate the values for the Span so that it equals the empty distance (P105) minus Near Blanking (P107) and the Relay Setpoints, so that they remain at the same percentage values of the empty distance as they were before you changed the empty distance (P105). You will be asked the question "Recalculate Span?" if you choose yes (enter 1), then the span will be recalculated. Any other answer will leave the span at its original value. You will then be asked if you want to "Recalculate Setpoints?", if you choose Yes (enter 1), then all Relay Setpoints will be recalculated as a percentage of the new empty distance. Any other answer will leave the setpoints at their original values. # P106 Span This parameter should be set to the maximum distance from the **Empty Level** (P105) to the maximum material level. It is automatically set to be equal to the **Empty Level** (P105) less the **Near Blanking** distance (P107), when you set the empty level. ### P107 Near Blanking Distance This parameter is the distance from the face of the transducer that is not measurable, and is pre-set to the minimum value dependant on the Xducer (P101) selected. It should not be set to less than this figure, but can be increased, typical to ignore close in obstructions. | Transducer | Near Blanking Distance | |----------------------------|------------------------------------| | P101 = 1 Xducer is a dB3 | Default Blanking Distance = 0.125m | | P101 = 2 Xducer is a dB6 | Default Blanking Distance = 0.300m | | P101 = 3 Xducer is a dB10 | Default Blanking Distance = 0.300m | | P101 = 4 Xducer is a dB15 | Default Blanking Distance = 0.500m | | P101 = 5 Xducer is a dB25 | Default Blanking Distance = 0.600m | | P101 = 6 Xducer is a dB40 | Default Blanking Distance = 1.200m | | P101 = 7 Xducer is a dBS6 | Default Blanking Distance = 0.200m | #### P108 Far Blanking Distance This is the distance (as a **percentage** of **empty level P105**) beyond the empty point that the unit will be able to measure, and by **default** is pre-set to **20%** of the **empty level**. If the surface being monitored can extend beyond the **Empty Level** (**P105**) then the far blanking distance can be increased to a maximum of 100% of empty level. This parameter is always entered as a % of empty level. #### **Remote Alarm** When a Modem is connected to the blackbox, via the RS232 port, (Consult Pulsar or your local distributor for further details), the following parameters are used to set up the blackbox so that when the level reaches a specific alarm point, as determined by the setting of the relay(s) the unit will dial and connect to a remote telephone number to provide details of the event. #### P985 Tel. No.1 This parameter is used to enter the number of '0's that appear at the beginning of the telephone number to be dialled that is to receive the message. | Option | Description | | | |---------------------|---|--|--| | 0= None | No '0's present at the beginning of the | | | | | telephone number to be dialled. | | | | 1 = Add 0 (Default) | 1 '0' present at the beginning of the | | | | | telephone number to be dialled. | | | | 2= Add 00 | 2 '0's present at the beginning of the | | | | | telephone number to be dialled. | | | #### P986 Tel. No2 This parameter is used to enter to enter the next 6 digits, following the '0's, of the telephone number to be dialled. If there are less than 6 digits following the '0's then just enter the digits required, if there are more than 6 digits following the '0's then enter the first 6 digits and then proceed to P987 and enter the remaining digits. #### P987 Tel. No3 This parameter is used to enter any remaining digits of the telephone number to be dialled after completion of P985 and P986 above. ## Example Telephone number to be dialled is: 0 1234 123456 P985 Tel. No. 1 = 1(One '0' at the beginning of the telephone number) P986 Tel. No. 2 = 123412 (The next 6 digits following the '0's). P987 Tel. No. 3 = 3456
(Remaining digits of telephone number). #### P988 Call Type This parameter determines what type of connection is made via the modem. | Option | Description | |------------------|---| | 0= Off (Default) | Remote alarm function is disabled | | 1 = Ring | This option initiates a connection to a remote modem/computer which will then allow remote communication with the unit. Please consult Pulsar or your local distributor for further details. | | 2= SMS | This option initiates a predetermined message which is sent to the remote telephone number detailing date and time the alarm was initiated, the site ID, alarm condition and level at the time the alarm was initiated. | ## **SMS Time** The following parameters determine when and how often a SMS message is to be sent. #### P995 SMS Interval This parameter determines how often a SMS message will be sent. If the time interval is set at '0.00 mins.' then a SMS message will only be sent when an alarm condition occurs, when the time interval is set to anything other that zero then a SMS message will be sent at the relevant interval detailing the current level and/or any alarm condition present at that time. Entered in minutes. Min = 0.000, Max = 1440mins. Default = 0.00 mins. #### P996 Start Time Sets the time at which the SMS Interval is to Start. Entered as time. Min = 00:00, Max = 23:59 Default = 00:00 #### P997 Stop Time Sets the time at which the SMS Interval is to Stop. Entered as time. Min = 00:00, Max = 23:59 Default = 23:59 ## P998 SMS Days This parameter will determine on which days the SMS message is active and is entered as a Boolean value equating to the total of the days that the SMS message is required to be active. | Mon | Tue | Wed | Thu | Fri | Sat | Sun | |-----|-----|-----|-----|-----|-----|-----| | 1 | 2 | 4 | 8 | 16 | 32 | 64 | Add together any combination up to a maximum of 127 (every day). Examples: 21 = Mon, Wed, Fri., 31 = Mon to Fri., 10 = Tue and Thu. ## **Relay Parameters** All relay related parameters are prefixed with a 2^{**} . The second digit of the three figure parameter number denotes the relay number as follows: 21* parameters for Relay 1 22* parameters for Relay 2 The third digit selects specific parameters for the setting up of the relays, which can be selected individually and results in the following parameter numbers for each relay. Relay 1 210 to 218 Relay 2 220 to 228 ## **Relay Type** ## P210, P220 - Relay Type This parameter defines what type each relay should be, see the table below or available options. | Option | Description | |-------------------------|--| | 0= Not In Use (Default) | Relay not in use or programmed. | | 1= Alarm | Relay is programmed as an alarm relay, | | | which will de-energise ON , and energise | | | OFF . This will ensure an alarm is raised if | | | the power fails to the unit. | | 2= Control | Relay is programmed as a control relay, | | | which will energise ON, and de-energise | | | OFF. | ## **Alarms** **P210, P220 =1 (Alarm)** The **second parameter** for each relay determines the **function** of the alarm. ## P211, P221 - Relay Function This parameter defines what **function** the **alarm** will respond to as follows. | Option | Description | |------------------|--| | 0= Off (Default) | Relay will not operate. | | 1= Level | Alarm is based on the level in the vessel, and the type of level alarm (P212, 222) and two setpoints must be set (P213, 223 & P214, 224). Setpoints are entered in Display Units as referenced to Empty Level. | | 2= Temperature | Alarm is based on the temperature, and the type of temperature alarm (P212, 222) and two setpoints must be set (P213, 223 & P214, 224). The temperature used depends on the temperature source selected (P852). Setpoints are entered in °C. | | 3= Loss of Echo | Alarm is raised if the Failsafe Timer (P809) expires. No setpoints are required. | | 4= Loss of Clock | Alarm is raised if the real time clock fails. No setpoints are required. | Note that the loss of echo and loss of clock will also be shown on the display as "LOST ECHO" and "LOST CLOCK" respectively. The **third parameter** for each relay determines the **alarm ID** for the relay you wish to set. ## P212, 222 - Relay Alarm ID When P211, P221 = 3 (Loss of Echo) or 4 (Loss of Clock) This parameter has no function and will not be displayed. # **When P211, P221 = 1 (Level) or 2 (Temperature)** This parameter defines which **alarm type**, the relay should respond to, as follows. | Alarm ID | Description | Setpoints | |---------------------|---|---| | 1=General (Default) | Relay goes "ON" when
the value reaches the ON
setpoint and goes "OFF"
when the value reaches
the OFF setpoint. | P213, 223 is ON
Setpoint;
P214, 224 is OFF
Setpoint | | 2= High | Relay goes "ON" when
the value rises to the ON
setpoint and goes "OFF"
when the value lowers to
the OFF setpoint. | ON> OFF Relay Setpoints P213, 223 and P214, 224 Setpoints, can be set in any order as the unit 'knows' that you are setting a high level alarm. | | 3= Hi-Hi | Same as 2 = High, but different identifier. | | | 4= Low | Relay goes "ON" when
the value lowers to the
ON setpoint and goes
"OFF" when the value
rises to the OFF setpoint. | ON <off 'knows'="" 223="" 224.="" a="" alarm.<="" and="" any="" are="" as="" be="" can="" in="" level="" low="" order="" p213,="" p214,="" relay="" set="" setpoints="" setpoints,="" setting="" th="" that="" the="" unit="" you=""></off> | | 5= LoLo | Same as 4=Lo, but different identifier. | | | Alarm ID | Description | Setpoints | |------------------|---------------------------|------------------------------------| | 6= In bounds | Relay goes "ON" if | Relay Setpoints, | | | value is inside the zone | P213, 223 and | | | between the two | P2 1 4, 2 2 4 can be | | | setpoints. | set in any order as | | | | the unit 'knows' | | | | that you are setting | | | | an in bounds alarm. | | 7= Out of bounds | Relay goes "ON" if | Relay Setpoints | | | value is outside the zone | P213, 223 and | | | between the two | P214, 224 can be | | | setpoints. | set in any order as | | | | the unit 'knows' | | | | that you are setting | | | | an out of bounds | | | | alarm. | The **fourth parameter** and the **fifth parameter** for each relay set the **Alarm "ON"** and "**OFF"** points. For a **high alarm** the "**ON"** is set **higher than "OFF"**. For **low alarm** then "**ON"** is set **lower than "OFF"**. See the appropriate **alarm ID**, table (**P212**, **222**) for further information. ## When P211, P221 = 3 (Loss of Echo) or 4 (Loss of Clock) This parameter has no function and will not be displayed. # **When P211, P221 = 1 (Level) or 2 (Temperature)** # P213, P223 - Relay Setpoint 1 Determines the "ON" or "OFF" point for the alarm according to the ID selected. # P214, P224 - Relay Setpoint 2 Determines the "ON" or "OFF" point for the alarm according to the ID selected. ### **Important Information** **Setpoints** are entered in values according to the **function** selected. **Level -** entered in Display Units as referenced to Empty Level. **Temperature -** entered in °C. See the appropriate **alarm function**, table (**P211**, **221**) for further information. ### **Control** P210, P220 = 2 (Control) When a relay is being set up as a **control** relay, the **second parameter** that will be displayed in the menu determines its **function**. #### P211, P221 - Relay Function, This function is used, where it is required to **energise** the relay to switch a device, such as a pump, **ON** and **de-energise** the relay to switch the device **OFF**. | Options | Description | |-------------|--| | 0 = Off | Relay is always de-energised | | 1 = General | Relay will energise " ON " as set in Relay Setpoint 1 (P213, 223). And turns " OFF ", de-energises , as set in Relay Setpoint 2 (P214, 224). | # Important Information A control relay is started and stopped at the "ON" and "OFF" setpoints. To *control down* (reduce level) then set "ON" higher than "OFF". To *control up* (increase level) then set "ON" lower than "OFF". For relay 1 "ON" is P213, "OFF" is P214 and For relay 2 "ON" is P223, "OFF" is P224 The **third parameter** determines if the control is fixed or alternating. #### P212, 222 Relay Control ID P210, 220 = 2 (Control) **P211, 221 = 1 (General)** | ID | Description | |--------------|--| | 1= Fixed | All control devices are used to assist each other (run at the same time) and each device has its own setpoints. ('ON' P213, 223 & 'OFF' P214, 224). | | 3= Alternate | All control devices are used to
assist each other (run at the same time). With each device having its own setpoints, ('ON' P213, 223 & 'OFF' P214, 224) but each time all devices have stopped, then the setpoints are sequentially rotated between the devices to ensure equal usage. | The fourth parameter, and fifth parameter, are set to determine the switch points, "ON" and "OFF" for the relay. See control function, table (P211, 221, 231) for further information. # P213, P223 - Relay Setpoint 1 This parameter determines the "ON" point for the control relay. Relay Setpoints are entered in values of Measurement Units (P104). # P214, P224 - Relay Setpoint 2 This parameter determines the "**OFF**" point for the control relay. Relay Setpoints are entered in values of Measurement Units (P104). ## **Common Parameters** ## P217, P227 - Relay Closures The blockbox will record how many times each relay is operated, this parameter displays the number of times the relay has activated since the relay has been in use. It can be reset with any value. ## P218, P228 - Relay Fail Safe Your blockbox has a general fail-safe parameter **P808**. However, this can be overridden so that each individual relay has its own independent fail safe mode. This parameter determines what the relay will do in the event of the Fail safe Time (P809) expiring. | Option | Description | |-----------------|--| | 0 = Default | Relay assumes system default mode P808 | | 1 = Hold | Relay remains in its current state | | 2 = De-Energise | Relay will De-Energise | | 3 = Energise | Relay will Energise | ## **Data Log Parameters** The data log parameters contains the following information. ## **Temperature** The following parameters give information on temperature conditions seen by the **Temperature source** (**P852**) in °C. All of these parameters are read only and cannot be changed, though if P852 is changed they will be reset. ## P580 Minimum Temperature This parameter displays the minimum temperature recorded. ### P581 Minimum Temperature Date This parameter displays the date when the minimum temperature was recorded. #### P582 Minimum Temperature Time This parameter displays the time when the minimum temperature was recorded. ## P583 Maximum Temperature This parameter displays the maximum temperature recorded. # P584 Maximum Temperature Date This parameter displays the date when the maximum temperature was recorded. # P585 Maximum Temperature Time This parameter displays the time when the maximum temperature was recorded. # P586 Current Temperature This parameter displays the current temperature. ## Volume (Optional) Only available on blockbox 130D, fitted with optional LCD display and integral keypad and provides a variety of volume calculation features, with 11 pre-programmed vessel shapes. See Vessel Shape (P600) for more information. For each vessel you will need to know the dimensions (P601-603) in Measurement Units (P104) which are required to calculate the volume (P604) which will be displayed in the selected Volume Units (P605). If your vessel shape does not correspond with any of the pre-programmed vessel shapes, then you can use the **universal calculations**. For this you will need a level/volume graph or chart provided by the vessel manufacturer or you can create one based on the dimensions of the vessel. You can enter up to 32 pairs of breakpoints, and the more you enter, the greater accuracy of the volume calculation will be. #### Conversion #### P600 Vessel Shape This parameter determines which vessel shape is used when utilising "Volume Conversion". The choices are as shown in the table below, along with the **dimensions** that are required to be entered (**P601-P603**). | Vessel Shape | P600 Value | Dimensions | |--------------|---|--| | | P600=0 Cylindrical
Flat base (Default) | Cylinder diameter | | | P600=1=Rectangular
Flat base | Width and Breadth | | <u> </u> | P600=2 Cylindrical
Cone base | Cylinder diameter
and height of
bottom | | | P600=3 Rectangular
Pyramid base | Width and Breadth
of rectangular
section and height
of bottom | | Vessel Shape | P600 Value | Dimensions | |--|--|--| | | P600=4 Cylindrical
Parabola base | Cylinder diameter
and height of
bottom | | | P600=5 Cylindrical
Half-sphere base | Cylinder Diameter | | * | P600=6 Cylindrical
Flat sloped base | Cylinder diameter
and height of
bottom | | W M M | P600=7 Rectangular
Flat sloped base | Width and Breadth
of rectangular
section and height
of bottom | | T N | P600=8 Horizontal cylinder with flat ends | Cylinder diameter and tank length | | | P600=9 Horizontal cylinder with parabolic ends | Cylinder diameter,
length of one end
section, and tank
length | | | P600=10 Sphere | Sphere diameter | | Depart of Loyel | P600=11 Universal
Linear | No dimensions required, level and volume breakpoints used. | | and the second s | P600=12 Universal
Curved | No dimensions required, level and volume breakpoints used. | #### P601-P603 Vessel Dimensions These three parameters are used to enter the dimension required to calculate the volume. The dimensions required are as shown below and are entered **Measurements Units** (P104). | Vessel Shape | P601 | P602 | P603 | |-------------------------------|-----------|-----------|------------| | P600=0 | Cylinder | | | | Cylindrical Flat base | Diameter | | | | P600=1 | | Width of | Breadth of | | Rectangular Flat base | | rectangle | rectangle | | P600=2 | Height of | Cylinder | | | Cylindrical Cone base | base | Diameter | | | P600=3 | Height of | Width of | Breadth of | | Rectangular Pyramid base | base | rectangle | rectangle | | P600=4 | Height of | Cylinder | | | Cylindrical Parabola base | base | Diameter | | | P600=5 | Cylinder | | | | Cylindrical Half-sphere base | Diameter | | | | P600=6 | Height of | Cylinder | | | Cylindrical Flat sloped base | base | Diameter | | | P600=7 | Height of | Width of | Breadth of | | Rectangular Flat sloped base | base | rectangle | rectangle | | P600=8 | Length of | Cylinder | | | Horizontal cylinder flat ends | Cylinder | Diameter | | | P600=9 | Length of | Cylinder | Length of | | Horiz. Cyl. parabolic ends | Cylinder | Diameter | one end | | P600=10 | Sphere | | | | Sphere | Diameter | | | #### P604 Calculated Volume This parameter displays the maximum volume that has been calculated by the blockbox and is a Read Only parameter. The volume displayed will be shown in Volume Units (P605) and is the **total volume** available between **empty level (P105)** and 100% of **span (P106)**. #### P605 Volume Units This parameter determines the units that you wish to display, for volume conversion. It is used in conjunction with **P607** (maximum volume), and the units are shown on the display (subject to P810). The choices are: | Option | Description | |----------------------------|---| | 0 = No Units | Volume will be totalised with no units | | 1 = Tons | Volume will be totalised in Tons | | 2 = Tonnes | Volume will be totalised in Tonnes | | 3 = Cubic metres (Default) | Volume will be totalised in cubic metres | | 4 = Litres | Volume will be totalised in litres | | 5 = UK Gallons | Volume will be totalised in UK Gallons | | 6 = US Gallons | Volume will be totalised in US Gallons | | 7 = Cubic feet | Volume will be totalised in cubic feet | | 8 = Barrels | Volume will be totalised in barrels | | 9 = lbs (pounds) | Volume will be totalised in lbs (pounds) | #### P606 Correction Factor This parameter is used to enter a correction factor, when required, such as the specific
gravity of the material so that the volume calculated is relative to the actual amount of material that can be contained between **empty level** (P105) and 100% of **span** (P106). **Default = 1** #### P607 Max Volume This parameter displays the actual maximum volume that has been calculated by the blockbox, i.e. **P604 Calculated Volume x P606 Correction Factor**, and is a Read Only parameter. The volume displayed will be shown in **P605 Volume Units** and is the total volume available between **empty level (P105)** and 100% of **span (P106)**. ## **Breakpoints** ## P610-P673 Level/Volume Breakpoints These parameters are used to create a profile of the vessel when P600=11 (universal linear) or P600=12 (universal curved). You should enter breakpoints in pairs, a reading for level and its corresponding volume. The more pairs you enter, the more accurate the profile will be. In the case of universal linear, then enter the level/volume at each of the points where the vessel changes shape. In the case of the universal curved, enter values around each arc tangent, as well as at the top and bottom. You must enter at least two pairs, and you can enter up to 32 pairs. ### Universal Linear (P600=11) This volume calculation creates a linear approximation of the level/volume relationship, and works best if the vessel has sharp angles between each section. You should enter a level/volume breakpoint for each place where the vessel changes direction, and numerous where the section is slightly curved (mostly linear, but has got a small arc). You can enter any number of pairs between 2 and 32. ## Universal Curved (P600=12) This volume calculation creates a curved approximation of the level/volume relationship, and works best if the vessel is non-linear, and there are no sharp angles. You should enter 2 level/volume breakpoints at the minimum and maximum levels, and several for each place where the vessel has got an arc. You can enter any number of pairs between 2 and 32. #### **Tables** #### P696 Reset Breakpoints This parameter allows the resetting, to the default value, of all previously set breakpoints (P610-673), without having to access them individually. When it is necessary to reset or amend particular breakpoints this can be achieved by directly accessing the desired parameter (P610-673) and changing as required. #### P697Number of Breakpoints Set This parameter allows you to review the number of breakpoints that have been set, without the need to access each individual one in turn, this is a "Read Only" parameter and no values can be entered. #### **Display Parameters** #### **Options** #### P801 Decimal Places This parameter determines the number of decimal places shown on the display of the PC Programming Software (standard), Hand Held Calibrator (optional) when connected, or on the onboard display (optional), while the blockbox is in the run mode. Minimum = 0 (No decimal places), Maximum 3 = (3 decimal Places) Default = 2 (2 decimal Places) #### **Failsafe** #### P808 Fail-safe Mode By default, if a fail-safe condition occurs, then the display and the output are held at their last **known** values until a valid reading is obtained. If required, then you can change this so that the unit goes to **high** (100% of span), or **low** (empty) as follows: | Option | Description | |---------------------|--| | 1 = Known (Default) | Remain at the last known value | | 2 = High | Will fail to the high value (100% of Span). | | 3= Low | Will fail to the low value (empty) | - See Also P218 (RL1), P228 (RL2) - Relay Fail-safe and P840 mA Output Fail-safe ### Important Information In the event of a **fail-safe** condition occurring, when the PC Handheld Communicator or the optional Handheld Communicator, are connected to the unit, or the optional onboard display is fitted the Display and Output can be configured to fail to a condition which is independent of each other. To set independent **Output Failsafe** see **P840.** #### P809 Fail-safe Time In the event of a fail-safe condition the fail safe timer determines the time before fail-safe mode is activated. **Default = 1min.** If the timer activates, the unit goes into fail-safe, as determined by P808 (Display), P218, 228 (Relays) and P840 (Output). When this happens, if the PC Handheld Communicator or the optional Handheld Communicator, are connected to the unit, or the optional onboard display is fitted, you will see the message "Failed Safe!" on the display, along with a message explaining why (lost echo or transducer fault, for example) When a valid measurement is obtained then the display and output will be restored and the timer is reset. ## **Output Parameters** ## Range ## P830 Out Range This parameter determines the range of the mA output, from the following. | Option | Description | |-------------------|--| | 0= Off | mA output disabled. | | 1 = 0 to 20 mA | mA output directly proportional to the out mode | | | (P831), so if the reading is 0% the output is 0 mA. If | | | the reading is 100% the output is 20 mA. | | 2= 4 to 20 mA | mA output directly proportional to the out mode | | (Default) | (P831), so if the reading is 0% the output is 4 mA. If | | | the reading is 100% the output is 20 mA. | | 3 = 20 to 0 mA | mA output inversely proportional to the out mode | | | (P831), so if the reading is 0% the output is 20 mA. If | | | the reading is 100% the output is 0 mA. | | 4= 20 to 4 mA | mA output inversely proportional to the out mode | | | (P831), so if the reading is 0% the output is 20 mA. If | | | the reading is 100% the output is 4 mA. | # **Operation** ### P831 Out Mode This parameter determines how the mA output relates to what is measured. By **default** it operates exactly the same as the display (**P100**), but it can be set to operate as follows: | Option | Description | |---|--| | 0 = Default | mA output relative to Mode P100 | | 1 = Distance | mA output relative to distance . | | 2 = Level | mA output relative to level . | | 3 = Space | mA output is relative to space . | | When fitted with optional display and integral keypad | | | 5 = Volume | mA output is relative to volume . | ## **Setpoint** By default the mA output will represent the empty (0 or 4mA dependant on (P830) Out Range) and 100% of the operational span (20mA), but you may wish to have the output represent a section of the operational span. For example, the application has an operational span of 6 metres but output is to represent empty (0 or 4mA dependant on (P830) Out Range) to a level of 5 metres (20mA). If so P834 (Low Level) should be set to 0.00 metres and P835 (High Level) should be set to 5 metres. #### P834 Out Low Value This parameter sets, in **Measurement Units** (P104), the value of 'level', 'distance' or 'space', depending on the selected **Out Mode** (P831) at which the low mA output will occur (0 or 4mA dependant on (P830) **Out Range**) **Default = 0.000m** ### P835 Out High Value This parameter sets, in **Measurement Units** (P104), the value of 'level', 'distance' or 'space', depending on the selected **Out Mode** (P831) at which the high mA output will occur (20mA). **Default = 6.000m** #### **Limits** #### P836 Out Low Limit This parameter sets the lowest value that the mA output will drop to, the default is 0mA, but you can override this if the device you connect to cannot for example accept less than 2mA, yet you want to use the 0-20mA range. #### Default = 0.00mA ## P837 Out High Limit This parameter sets the highest value that the mA output will rise to, the default is 20 mA, but you can override this if the device you connect to cannot for example accept more than 18 mA, yet you want to use the 0-20 mA range. **Default = 20.00\text{mA}** #### Trim #### P838 Out Low Trim If the remote device you are connected to is not calibrated, and not showing the correct **low value** (reading), then you can trim it using this parameter. You can either type in the offset directly, or use the arrow keys to move the output up and down until you get the expected result (reading) on the remote device that is connected. #### P839 Out High Trim If the remote device you are connected to is not calibrated, and not showing the correct **high value** (reading), then you can trim it using this parameter. You can either type in the offset directly, or use the arrow keys to move the output up and down until you get the expected result (reading) on the remote device that is connected. #### **Failsafe** #### P840 Out Fail Mode This parameter determines what happens to the output in the event of the unit going into fail-safe mode. The **default** is to do the same as the **system fail-safe** (**P808**), but this can be overridden to force the output to an independent fail-safe mode as follows: | Option | Description | |---------------|---| | 0 = Default | output will fail as per P808. | | 1 = Hold | output will retain its last known value. | | 2 = Low | output will fail to its low condition. | | 3 = High | output will fail to its high condition (20mA | | | maximum). | | 4 = Very Low | output will fail to its lowest or fault | | | condition: | | | 2mA when Range is 4 to 20mA. | | | 0mA when Range is 0 to 20mA . | | 5 = Very High | output will fail to its highest or fault | | | condition of greater than 20mA (22mA | | | maximum). | ## **Compensation Parameters** ### **Offset** #### P851 Measurement Offset The value of this parameter is added to the measured distance, in Measurement Units (P104). This Offset will be added to the level, as derived from the transducer, and will affect everything including the reading on
any display in use, relay setpoints and the output. ### **Temperature** ## P852 Temperature Source This parameter determines the source of the temperature measurement. By **default** it is set to automatic (**P852=1**), which will automatically detect if a temperature sensor is available from the transducer. If for any reason, no temperature input is received, then the **Fixed Temp** value is used, as set by **P854**. The temperature source can be specifically set as follows: | Option | Description | |-------------------------|--| | 1 = Automatic (Default) | Will automatically select transducer temperature sensor, if available, or fixed temperature (P854) if no temperature sensor found. | | 2 = Fixed | Always uses fixed temperature (P854) | ## P854 Fixed Temperature This parameter sets the temperature, in degrees centigrade to be used if **P852** (**Temperature Source**) = **2**. Default = 20° C ## **Stability Parameters** ## **Damping** Damping is used to damp the display, to enable it to keep up with the process but ignore minor surface fluctuations. ### P870 Fill Damping This parameter determines the maximum rate at which the unit will respond to an increase in level. It should be set slightly higher than the maximum vessel fill rate. **Default = 10.0000 metres/minute** ### P871 Empty Damping This parameter determines the maximum rate at which the unit will respond to a decrease in level. It should be set slightly higher than the maximum vessel empty rate. **Default = 10.0000 metres/minute** ### **Filters** The following parameters can be used to filter out unwanted changes of level caused by a 'rippled' or agitated surface. #### P881Fixed Distance This parameter determines the width of gate to be used in tracking an echo and under normal circumstances will not require changing, but it can be increased in the cases where the surface is moving extremely fast (in excess of 10m/min) to ensure smooth processing of the changing level. #### P882 Process Filter This parameter determines the number of 'cycles' that will be taken before a change in level is processed and the display updated. | Option | Description | |--------------------|---------------------------------------| | 1 = Fast | level will be updated every cycle | | 2 = Medium | level will be updated every 8 cycles | | 3 = Slow (Default) | level will be updated every 16 cycles | ## **Echo Processing Parameters** ### **Transducer Status** #### P900 Transducer Status This parameter shows the current state of the transducer. The value means the following. | Option | Description | | |-----------------|--|--| | 0= OK (Default) | Transducer working correctly. | | | 1= Disabled | Transducer is not being used | | | 2= Stuck High | Indicates that the power and signal lines on the | | | | transducer terminals are crossed over, or the signal | | | | line is shorted to earth. | | | 3= Not Found | No transducer is detected. | | #### P901 Echo Confidence This parameter displays the most recent echo confidence from the transducer. It is useful to help find the best mounting location for the transducer, where you should aim to get the highest figure. It is a percentage of confidence that the echo reporting the level is the correct one. ## P902 Echo Strength This parameter shows the most recent echo strength figure for the transducer, where a higher figure indicates a better returned echo. ## P903 Average Noise This is the mean noise reading for the transducer. It is measured while the transducer is not firing, and gives an indication of the average amount of electrical noise present on the cabling. #### P904 Peak Noise This is the peak noise reading for the transducer. It is measured while the transducer is not firing, and gives an indication of the maximum amount of electrical noise present on the cabling. ## P905 Sensitivity This parameter determines the sensitivity of the unit. Please consult Pulsar for further information and assistance on changing the value of this parameter. #### P906 Side Clearance This parameter is used to set the distance by which the DATEM trace will "stand off" from around unwanted echoes such as obstructions. Please consult Pulsar for further information and assistance on changing the value of this parameter. ## **System Parameters** ## **Passcode** #### P921 Enable Code Enables the passcode (P922), which means the passcode must be entered to go into program mode. If **disabled** (set to 0), then no passcode is required, and ENTER is used to enter program mode. **Default = 1** (Enabled) #### P922 Passcode This is the passcode that must be used to enter program mode. The **default** is **1997**, but this can be changed to another value from 0 to 9999. ## **System Information** The following three parameters do not affect how the unit performs, but details, contained in them, may be required, by Pulsar, when making technical enquiries. #### P926 Software Revision This parameter will display the current software revision. It is read only, and cannot be changed. The **software revision** can also be viewed, while in **RUN** mode, by pressing the **decimal point key** when using any of the display options. #### P927 Hardware Revision This parameter will show details of the current hardware revision. It is read only and cannot be changed. #### P928 Serial Number This parameter will display the unit's serial number. It is read only, and cannot be changed. The **serial number** can also be viewed, while in **RUN** mode, by pressing the **decimal point key** when using any of the display options. #### P929 Site Identification This parameter allows you to give each unit an individual reference number, for identification purposes. You can set any number between 1 and 99999. ## P930 Factory Defaults This parameter resets all parameter values to the original Factory Set values that were installed when the unit was tested, before despatch to you. To **reset** parameters, enter **1** (**Yes**), and press **ENTER**, then you will see a message "**Entr if sure**", you should press **ENTER** again. If you press any other key at this point, the parameters will not be reset, and you will see a message confirming this. Once you have done this, program the unit, to the desired application. ### **Date & Time** The date and time is used, to control specific relay functions and date stamp certain events that are contained in the Data Logs. #### P931 Date This parameter shows the **current date**, in the format as set by **P933** (**Date Format**), and can be reset if required. #### P932 Time This parameter shows the **current time** and can be reset if required, in the format HH: MM (24-hour format). This is set initially at the factory for UK time. #### P933 Date Format This parameter allows you to alter the format that the date is displayed to your choice of DD: MM: YY, MM: DD: YY or YY: MM: DD. The default is DD: MM: YY. ## **Daylight Saving Time** ### **Important Information** In order to ensure the correct operation of Daylight Saving Time **P932 Time** should be checked, and adjusted if necessary, to ensure that it is set for the current valid time. #### P970 DST Enable When **Enabled** (set to 1) the internal clock will be automatically adjusted to compensate for the difference between standard time and **Daylight Saving Time. Default = 0 (Off)** #### P971 DST Difference This parameter sets the time difference between standard time and **Daylight** Saving Time. The time difference is entered in HH:MM. **Default = 01:00** #### P972 DST Start Time This parameter is used to set the **time** of day at which **Daylight Saving Time** will **start**, the time is entered in the format HH: MM (24-hour format). **Default = 02:00** ## P973 Start Day Use this parameter to enter the day of the week (P974) that Daylight Saving Time is to start. | Option | Description | |---------------------|-------------------------------| | 2= Monday | DST will start on a Monday | | 3= Tuesday | DST will start on a Tuesday | | 4= Wednesday | DST will start on a Wednesday | | 5= Thursday | DST will start on a Thursday | | 6= Friday | DST will start on a Friday | | 7= Saturday | DST will start on a Saturday | | 8= Sunday (Default) | DST will start on a Sunday | #### P974 Start Week This parameter will determine the **week** of the month (**P975**) in which **Daylight Saving Time** is to **start**. | Option | Description | |-------------------|---| | 1= Week 1 | DST will start on day (P973) in the first week | | | (P974) of the month (P975). | | 2= Week 2 | DST will start on day (P973) in the second | | | week (P974) of the month (P975). | | 3= Week 3 | DST will start on day (P973) in the third | | | week (P974) of the month (P975). | | 4= Week 4 | DST will start on day (P973) in the fourth | | | week (P974) of the month (P975). | | 5= Last (Default) | DST will start on day (P973) in the last week | | | (P974) of the month (P975). | ### P975 Start Month This parameter is used to select the **month**, in which **Daylight Saving Time** will **start**. | Option | Description | |--------------------|---| | 1= January | DST will start during the month of January | | 2= February | DST will start during the month of February | | 3= March (Default) | DST will start during the month of March | | 4= April | DST will start during the month of April | | 5= May | DST will start during the month of May | | 6=
June | DST will start during the month of June | | 7= July | DST will start during the month of July | | 8= August | DST will start during the month of August | | 9= September | DST will start during the month of September | | 10= October | DST will start during the month of October | | 11= November | DST will start during the month of November | | 12= December | DST will start during the month of December | ### P976 DST End Time This parameter is used to set the **time** of day at which **Daylight Saving Time** will **end**, the time is entered in the format HH: MM (24-hour format). **Default = 02:00** ## P977 End Day Use this parameter to enter the day of the week (P974) that Daylight Saving Time is to end. | Option | Description | |---------------------|-----------------------------| | 2= Monday | DST will end on a Monday | | 3= Tuesday | DST will end on a Tuesday | | 4= Wednesday | DST will end on a Wednesday | | 5= Thursday | DST will end on a Thursday | | 6= Friday | DST will end on a Friday | | 7= Saturday | DST will end on a Saturday | | 8= Sunday (Default) | DST will end on a Sunday | ## P978 End Week This parameter will determine the **week** of the month (**P975**) in which **Daylight Saving Time** is to **end**. | Option | Description | |-------------------|---| | 1= Week 1 | DST will end on day (P977) in the first week | | | (P978) of the month (P979). | | 2= Week 2 | DST will end on day (P977) in the second | | | week (P978) of the month (P979). | | 3= Week 3 | DST will end on day (P977) in the third week | | | (P978) of the month (P979). | | 4= Week 4 | DST will end on day (P977) in the fourth | | | week (P978) of the month (P979). | | 5= Last (Default) | DST will end on day (P977) in the last week | | | (P978) of the month (P979). | #### P979 Fnd Month This parameter is used to select the **month**, in which **Daylight Saving Time** will **end**. | Option | Description | |-----------------------|---| | 1= January | DST will end during the month of January | | 2= February | DST will end during the month of February | | 3= March | DST will end during the month of March | | 4= April | DST will end during the month of April | | 5= May | DST will end during the month of May | | 6= June | DST will end during the month of June | | 7= July | DST will end during the month of July | | 8= August | DST will end during the month of August | | 9= September | DST will end during the month of September | | 10= October (Default) | DST will end during the month of October | | 11= November | DST will end during the month of November | | 12= December | DST will end during the month of December | ### **Test Parameters** ### **Simulation** #### P980 Simulate Test mode is used to simulate the application and confirm that all parameters and relay setpoints have been entered as expected. During simulation, there is a choice of whether the relays will change state (hard simulation) or not (soft simulation), but the LED's will always switch according to how the relays have been programmed, and the output will change accordingly. If you want to test the logic of the system that the relays are connected to then select a hard simulation, but if you don't want to change the relay state, then select a soft simulation. There are two simulation modes, **automatic** and **manual**. Automatic simulation will move the level up and down between empty and full level and activate the relay and/or corresponding LED at the switchpoints programmed, if you wish to change the direction of the level movement at anytime this can be done by using the arrow keys. In manual simulation, using the arrow keys will allow you to move the level up and down as required. The choices for you to enter are as follows. - 1= Manual soft simulation - 2= Automatic soft simulation - 3= Manual hard simulation - 4= Automatic hard simulation To return to program mode, press CANCEL and test mode will end. #### P981 Increment By default, simulation mode will move by **0.25m** steps in manual simulation and by 0.25m/min in automatic simulation. Altering the increment can change this value. #### P982 Rate In automatic mode, the rate at which the level will move up and down is determined by distance, **P981 Increment** and the time, **P982 Rate** which can be changed as required. To increase the rate at which the level moves increase the **Increment** (**P981**) or decrease the **Rate** (**P982**). To decrease the rate at which the level moves decrease the **Increment** (**P981**) or increase the **Rate** (**P982**). ### **Hardware** #### P991 Hard Test Dependant on model type, when this parameter is selected, the unit will test the following in turn. - * **LED's**. Watch them change colour as shown on the display, and press, ENTER, if they operated as shown. - * **Relays**. Press a numeric key corresponding to the number of the relay you wish to test, and the relay will change state each time the key is pressed. If you press any other key, other than a valid relay number, then the test will end. - * **Segments**. All the segments on the LCD are lit up, so you can see if they all work. Press, ENTER, to end the test. The LED's all go green at the same time. - * **Keys**. You should press each key, to confirm it works, with a counter showing how many more keys you have to press. Be sure to press the **CANCEL** key last, as this will show if all keys were pressed or not. If they were not, then an error message is displayed. ### P992 Output Test This parameter will allow you to force a specified current on to the output to test any equipment that it is connected to. The figure you enter will be generated by the output. ### P993 Relay Test Press a numeric key corresponding to the number of the relay you wish to test, and the relay will change state each time the key is pressed. If you press any other key, other than a valid relay number, then the test will end. ### P994 Transducer Test Press any key on the keypad, other than 0, and the transducer will continually fire for 5 seconds, pressing 0 will terminate the test. # **Chapter 6** Troubleshooting This section describes many common symptoms, with suggestions as to what to do. | Symptom | What to Do | |---|---| | No reading being obtained, transducer not firing. | Check power supply. Check wiring to transducer. | | Incorrect reading being obtained for current level. | Measure actual distance from transducer head to surface of material. Enter Program Mode and directly access P21 (Set Distance) type in the measured distance, press ENTER, when prompted press ENTER again, wait until SET displayed. Return to Run Mode, display should now update to correct reading. | | Material level is consistently incorrect by the same amount. | Check empty level (P105), display offset (P802), and measurement offset (P851). | | LED's change colour at relevant relay switch points but relays do not change state. | Check supply to unit and ensure voltage selector set to correct position. | # Parameter Record ## APPLICATION # Operation | | Parameter Details | Entered Values | | | | | | |------|-------------------|----------------|---|---|---|---|---| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | P100 | Mode | 1 = Dist. | | | | | | | P101 | Xducer | 2 = dB6 | | | | | | ## Distances | | Parameter Details | Entered Values | | | | | | |------|-------------------|----------------|---|---|---|---|---| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | P104 | Measurement Units | 1=metres | | | | | | | P105 | Empty Level | 6.000 metres | | | | | | | P106 | Span | 5.700 metres | | | | | | | P107 | Near Blanking | 0.300 metres | | | | | | | P108 | Far Blanking | 20.0% | | | | | | # Remote Alarm | | Parameter Details | | Entered Values | | | | | | | |------|-------------------|-----------|----------------|---|---|---|---|--|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | | P985 | Tel. No. 1 | 1 = Add 0 | | | | | | | | | P986 | Tel. No. 2 | 0 | | | | | | | | | P987 | Tel. No. 2 | 0 | | | | | | | | | P988 | Call Type | 0 = Off | | | | | | | | # SMS Time | | Parameter Details | Entered Values | | | | | | | |------|-------------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P995 | Interval | 0.00 mins. | | | | | | | | P996 | SMS Start | 00:00 | | | | | | | | P997 | SMS Stop | 23:59 | | | | | | | | P998 | SMS Days | 0 | | | | | | | ## RELAYS # Relay 1 | | Parameter Details | Entered Values | | | | | | | |------|-------------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P210 | R1 Type | 0 = Off | | | | | | | | P211 | R1 Function | 0 = Off | | | | | | | | P212 | R1 Alarm ID/Pump | 1 = Off | | | | | | | | P213 | R1 Set 1 | 0.000 metres | | | | | | | | P214 | R1 Set 2 | 0.000 metres | | | | | | | |
P217 | R1 Closures | 0 | | | | | | | | P218 | R1 Fail Safe | 0 | | | | | | | # Relay 2 | | Parameter Details | | En | tered Va | lues | | | |------|-------------------|--------------|----|----------|------|---|---| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | P220 | R2 Type | 0 = Off | | | | | | | P221 | R2 Function | 0 = Off | | | | | | | P222 | R2 Alarm ID/Pump | 1 = Off | | | | | | | P223 | R2 Set 1 | 0.000 metres | | | | | | | P224 | R2 Set 2 | 0.000 metres | | | | | | | P227 | R2 Closures | 0 | | | | | | | P228 | R2 Fail Safe | 0 | | | | | | ## DATA LOGS # Temperature | | Parameter Details | Entered Values | | | | | | | | |------|----------------------|----------------|---|---|---|---|---|--|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | | P580 | Minimum Temperature | Read Only | | | | | | | | | P581 | Min Temperature Date | Read Only | | | | | | | | | P582 | Min Temperature Time | Read Only | | | | | | | | | P583 | Maximum Temperature | Read Only | | | | | | | | | P584 | Max Temperature Date | Read Only | | | | | | | | | P585 | Max Temperature Time | Read Only | | | | | | | | | P586 | Current Temperature | Read Only | | | | | | | | # VOLUME (OPTIONAL) # Conversion | | Parameter Details | | Entered Values | | | | | | | |------|--------------------|-------------|----------------|---|---|---|---|--|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | | P600 | Vessel Shape | 0 | | | | | | | | | P601 | Vessel Dimension 1 | 0.00 | | | | | | | | | P602 | Vessel Dimension 2 | 0.00 | | | | | | | | | P603 | Vessel Dimension 3 | 0.00 | | | | | | | | | P604 | Calculated Volume | Read Only | | | | | | | | | P605 | Volume Units | 3 = Cubic M | | | | | | | | | P606 | Correction Factor | 1.000 | | | | | | | | | P607 | Maximum Volume | Read Only | | | | | | | | # Breakpoints | | Parameter Details | | Ent | ered Val | ues | | | |------|----------------------|---------|-----|----------|-----|---|---| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | P610 | Level Breakpoint 1 | 0.00 | | | | | | | P611 | Volume Breakpoint 1 | 0.00 | | | | | | | P612 | Level Breakpoint 2 | 0.00 | | | | | | | P613 | Volume Breakpoint 2 | 0.00 | | | | | | | P614 | Level Breakpoint 3 | 0.00 | | | | | | | P615 | Volume Breakpoint 3 | 0.00 | | | | | | | P616 | Level Breakpoint 4 | 0.00 | | | | | | | P617 | Volume Breakpoint 4 | 0.00 | | | | | | | P618 | Level Breakpoint 5 | 0.00 | | | | | | | P619 | Volume Breakpoint 5 | 0.00 | | | | | | | P620 | Level Breakpoint 6 | 0.00 | | | | | | | P621 | Volume Breakpoint 6 | 0.00 | | | | | | | P622 | Level Breakpoint 7 | 0.00 | | | | | | | P623 | Volume Breakpoint 7 | 0.00 | | | | | | | P624 | Level Breakpoint 8 | 0.00 | | | | | | | P625 | Volume Breakpoint 8 | 0.00 | | | | | | | P626 | Level Breakpoint 9 | 0.00 | | | | | | | P627 | Volume Breakpoint 9 | 0.00 | | | | | | | P628 | Level Breakpoint 10 | 0.00 | | | | | | | P629 | Volume Breakpoint 10 | 0.00 | | | | | | | P630 | Level Breakpoint 11 | 0.00 | | | | | | | P631 | Volume Breakpoint 11 | 0.00 | | | | | | | P632 | Level Breakpoint 12 | 0.00 | | | | | | | P633 | Volume Breakpoint 12 | 0.00 | | | | | | | P634 | Level Breakpoint 13 | 0.00 | | | | | | | P635 | Volume Breakpoint 13 | 0.00 | | | _ | | | | P636 | Level Breakpoint 14 | 0.00 | | | | | | | | Parameter Details | | Ente | red Val | ıes | | |------|----------------------|------|------|---------|-----|--| | P637 | Volume Breakpoint 14 | 0.00 | | | | | | P638 | Level Breakpoint 15 | 0.00 | | | | | | P639 | Volume Breakpoint 15 | 0.00 | | | | | | P640 | Level Breakpoint 16 | 0.00 | | | | | | P641 | Volume Breakpoint 16 | 0.00 | | | | | | P642 | Level Breakpoint 17 | 0.00 | | | | | | P643 | Volume Breakpoint 17 | 0.00 | | | | | | P644 | Level Breakpoint 18 | 0.00 | | | | | | P645 | Volume Breakpoint 18 | 0.00 | | | | | | P646 | Level Breakpoint 19 | 0.00 | | | | | | P647 | Volume Breakpoint 19 | 0.00 | | | | | | P648 | Level Breakpoint 20 | 0.00 | | | | | | P649 | Volume Breakpoint 20 | 0.00 | | | | | | P650 | Level Breakpoint 21 | 0.00 | | | | | | P651 | Volume Breakpoint 21 | 0.00 | | | | | | P652 | Level Breakpoint 22 | 0.00 | | | | | | P653 | Volume Breakpoint 22 | 0.00 | | | | | | P654 | Level Breakpoint 23 | 0.00 | | | | | | P655 | Volume Breakpoint 23 | 0.00 | | | | | | P656 | Level Breakpoint 24 | 0.00 | | | | | | P657 | Volume Breakpoint 24 | 0.00 | | | | | | P658 | Level Breakpoint 25 | 0.00 | | | | | | P659 | Volume Breakpoint 25 | 0.00 | | | | | | P660 | Level Breakpoint 26 | 0.00 | | | | | | P661 | Volume Breakpoint 26 | 0.00 | | | | | | P662 | Level Breakpoint 27 | 0.00 | | | | | | P663 | Volume Breakpoint 27 | 0.00 | | | | | | P664 | Level Breakpoint 28 | 0.00 | | | | | | P665 | Volume Breakpoint 28 | 0.00 | | | | | | P666 | Level Breakpoint 29 | 0.00 | | | | | | P667 | Volume Breakpoint 29 | 0.00 | | | | | | P688 | Level Breakpoint 30 | 0.00 | | | | | | P669 | Volume Breakpoint 30 | 0.00 | | | | | | P670 | Level Breakpoint 31 | 0.00 | | | | | | P671 | Volume Breakpoint 31 | 0.00 | | | | | | P672 | Level Breakpoint 32 | 0.00 | | | | | | P673 | Volume Breakpoint 32 | 0.00 | | | | | Tables | | Parameter Details | Entered Values | | | | | | |------|------------------------|----------------|---|---|---|---|---| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | P696 | Reset Breakpoints | 0 | | | | | | | P697 | Number of B'points Set | Read Only | | | | | | ## DISPLAY # Options | | Parameter Details | Entered Values | | | | | | |------|-------------------|-------------------|--|--|--|--|--| | No. | Description | Default 1 2 3 4 5 | | | | | | | P801 | Decimal Places | 2 | | | | | | # Fail Safe | | Parameter Details | Entered Values | | | | | | |------|-------------------|----------------|---|---|---|---|---| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | P808 | Fail Mode | 1 = Known | | | | | | | P809 | Fail Time | 2.0 mins | | | | | | # OUTPUT # Range | | Parameter Details | Entered Values | | | | | | |------|-------------------|-------------------|--|--|--|--|--| | No. | Description | Default 1 2 3 4 5 | | | | | | | P830 | Out Range | 2 = 4 - 20 mA | | | | | | # Operation | | Parameter Details | | Entered Values | | | | | | |------|-------------------|-------------|-----------------|--|--|--|--|--| | No. | Description | Default | Default 1 2 3 4 | | | | | | | P831 | Out Mode | 0 = Default | | | | | | | # Set Point | | Parameter Details | Entered Values | | | | | | | |------|-------------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P834 | Out Low Level | 0.000 metres | | | | | | | | P835 | Out High Level | 6.000 metres | | | | | | | # Limits | | Parameter Details | Entered Values | | | | | | | |------|-------------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P836 | Out Low Limit | 0.00 mA | | | | | | | | P837 | Out High Limit | 20.00 mA | | | | | | | ## Trim | Parameter Details | | Entered Values | | | | | | | |-------------------|---------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P838 | Out Low Trim | 0.00 | | | | | | | | P839 | Out High Trim | 0.00 | | | | | | | ## Fail Safe | | Parameter Details | | Ent | ered Val | ues | Entered Values | | | | |------|-------------------|-------------|-----------------|----------|-----|----------------|--|--|--| | No. | Description | Default | Default 1 2 3 4 | | | | | | | | P840 | Out Fail Mode | 0 = Default | | | | | | | | ## COMPENSATION ## Offset | | Parameter Details | Entered Values | | | | | | |------|--------------------|----------------|-----------------|--|--|--|--| | No. | Description | Default | Default 1 2 3 4 | | | | | | P851 | Measurement Offset | 0.000 metres | | | | | | # Temperature | Parameter Details | | Entered Values | | | | | | | |-------------------|--------------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P852 | Temperature Source | 1 = Automatic | | | | | | | | P854 | Fixed Temperature | 20.00 Deg. C | | | | | | | ## **STABILITY** # Damping | | Parameter Details | Entered Values | | | | | | | |------|-------------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P870 | Fill Damping | 10.000 m/min | | | | | | | | P871 | Empty Damping | 10.000 m/min | | | | | | | # Filters | | Parameter Details | Entered Values | | | | | | |------|-------------------|----------------|---|---|---|---|---| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | P881 | Fixed Dist. | 0.20m | | | | | | | P882 | Process Filter | 3 = Slow | | | | | | ## ECHO PROCESS Xducer Status | | Parameter Details | Entered Values | | | | | | | | |------|-------------------|----------------|---|---|---|---|---|--|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | | P900 | Xducer Status | Read Only | | | | | | | | | P901 | Echo Confidence | Read Only | | | | | | | | | P902 | Echo Strength | Read Only | | | | | | | | | P903 | Average Noise | Read Only | | | | | | | | | P904 | Peak Noise | Read Only | | | | | | | | ## System ## Passcode | | Parameter Details | Entered Values | | | | | | | |------|-------------------|----------------|---|---|---|---|---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P921 | Enable Code | 1 = Yes | | | | | | | | P922 | Passcode | 1997 | | | | | | | # System Information | | Parameter Details | | Entered Values | | | | | | | |------|-------------------|-----------|----------------|---|---|---|---|--|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | | P926 | Software Revision | Read Only | | | | | | | | | P927 | Hardware Revision | Read Only | | | | | | | | | P928 | Serial Number | Read Only | | | | | | | | | P929 | Site Ident. | 1 | | | | | | | | # Date & Time | Parameter Details | | Entered Values | | | | | | | |-------------------|-------------|----------------|---|---|---|---
---|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | P931 | Date | Current Date | | | | | | | | P932 | Time | Current Time | | | | | | | | P933 | Date Format | 1=DD:MM:Y | | | | | | | # Daylight Save | Parameter Details | | Entered Values | | | | | | | | |-------------------|----------------|----------------|---|---|---|---|---|--|--| | No. | Description | Default | 1 | 2 | 3 | 4 | 5 | | | | P970 | DST Enable | 0 | | | | | | | | | P971 | DST Differen | 01:00 | | | | | | | | | P972 | DST Start Time | 02:00 | | | | | | | | | P973 | Start Day | 8 | | | | | | | | | P974 | Start Week | 1 | | | | | | | | | P975 | Start Month | 3 | | | | | | | | | P976 | DST End Time | 02:00 | | | | | | | | | P977 | End Day | 8 | | | | | | | | | P978 | End Week | 5 | | | | | | | | | P979 | End Month | 10 | | | | | | | |