
The LuaTEX-ja package

The LuaTEX-ja project team

December 12, 2015

Contents

I User’s manual 3

1 Introduction 3
1.1 Backgrounds . 3
1.2 Major changes from pTEX . 3
1.3 Notations . 4
1.4 About the project . 5

2 Getting Started 6
2.1 Installation . 6
2.2 Cautions . 7
2.3 Using in plain TEX . 7
2.4 Using in LaTEX . 7

3 Changing Fonts 8
3.1 plain TEX and LaTEX2𝜀 . 8
3.2 luatexja-fontspec package . 9
3.3 Presets of Japanese fonts . 10
3.4 \CID, \UTF, and macros in japanese-otf package . 13
3.5 Changing default Japanese fonts . 13

4 Changing Internal Parameters 14
4.1 Range of JAchars . 14
4.2 kanjiskip and xkanjiskip . 16
4.3 Insertion setting of xkanjiskip . 16
4.4 Shifting the baseline . 17
4.5 kinsoku parameters and OpenType features . 18

II Reference 19

5 \catcode in LuaTEX-ja 19
5.1 Preliminaries: \kcatcode in pTEX and upTEX . 19
5.2 Case of LuaTEX-ja . 19
5.3 Non-kanji characters in a control word . 20

6 Directions 20
6.1 Boxes in different direction . 20
6.2 Getting current direction . 22
6.3 Overridden box primitives . 22

7 Font Metric and Japanese Font 23
7.1 \jfont . 23
7.2 \tfont . 25
7.3 Prefix psft . 25
7.4 Structure of a JFM file . 26
7.5 Math font family . 29
7.6 Callbacks . 29

1

8 Parameters 31
8.1 \ltjsetparameter . 31
8.2 \ltjgetparameter . 33

9 Other Commands for plain TEX and LaTEX2𝜀 34
9.1 Commands for compatibility with pTEX . 34
9.2 \inhibitglue . 35
9.3 \ltjdeclarealtfont . 35

10 Commands for LaTEX2𝜀 35
10.1 Patch for NFSS2 . 35
10.2 Detail of \fontfamily command . 37

11 Addon packages 38
11.1 luatexja-fontspec . 38
11.2 luatexja-otf . 39
11.3 luatexja-adjust . 40
11.4 luatexja-ruby . 41
11.5 lltjext.sty . 41

III Implementations 42

12 Storing Parameters 42
12.1 Used dimensions, attributes and whatsit nodes . 42
12.2 Stack system of LuaTEX-ja . 44
12.3 Lua functions of the stack system . 45
12.4 Extending Parameters . 45

13 Linebreak after a Japanese Character 46
13.1 Reference: behavior in pTEX . 46
13.2 Behavior in LuaTEX-ja . 46

14 Patch for the listings Package 48
14.1 Notes and additional keys . 48
14.2 Class of characters . 49

15 Cache Management of LuaTEX-ja 50
15.1 Use of cache . 50
15.2 Internal . 51

References 52

This documentation is far from complete. It may have many grammatical (and contextual)
errors. Also, several parts are written in Japanese only.

2

Part I

User’s manual

1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents
in TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without
using very complicatedmacros. But this point is a mixed blessing: pTEX is left behind from other extensions
of TEX, especially 𝜀-TEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the
UTF-8 encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and 𝜀-pTEX (merging of
pTEX and 𝜀-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua “callbacks”, users
can customize the internal processing of LuaTEX. So there is no need to modify sources of engines to
support Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major changes from pTEX

The LuaTEX-ja package is under much influence of pTEX engine. The initial target of development was to
implement features of pTEX. However, implementing all feature of pTEX is impossible, since all process of
LuaTEX-ja must be implemented only by Lua and TEXmacros. Hence LuaTEX-ja is not a just porting of pTEX;
unnatural specifications/behaviors of pTEX were not adopted.

The followings are major changes from pTEX. For more detailed information, see Part III or other sec-
tions of this manual.

■Commandnames pTEX addes several primitives, such as \kanjiskip, \prebreakpenalty, and, \ify-
dir. They can be used as follows:

\kanjiskip=10pt \dimen0=kanjiskip
\tbaselineshift=0.1zw
\dimen0=\tbaselineshift
\prebreakpenalty`ぁ=100
\ifydir ... \fi

However, we cannot use them under LuaTEX-ja. Instead of them, we have to write as the following.

\ltjsetparameter{kanjiskip=10pt} \dimen0=\ltjgetparameter{kanjiskip}
\ltjsetparameter{talbaselineshift=0.1\zw}
\dimen0=\ltjgetparameter{talbaselineshift}
\ltjsetparameter{prebreakpenalty={`ぁ,100}}
\ifnum\ltjgetparemeter{direction}=4 ... \fi

Note that pTEX adds new two useful units, namely zw and zh. As shown above, they are changed by
\zw and \zh respectively, in LuaTEX-ja.

■Linebreak after a Japanese character In pTEX, a line break after Japanese character is ignored (and
doesn’t yield a space), since line breaks (in source files) are permitted almost everywhere in Japanese
texts. However, LuaTEX-ja doesn’t have this feature completely, because of a specification of LuaTEX. For
the detail, see Section 13.

3

■Spaces related to Japanese characters The insertion process of glues/kerns between two Japanese
characters and between a Japanese character and other characters (we refer glues/kerns of both kinds as
JAglue) is rewritten from scratch.

• As LuaTEX’s internal ligature handling is node-based (e.g., of{}fice doesn’t prevent ligatures), the
insertion process of JAglue is now node-based.

• Furthermore, nodes between two characters which have no effects in line break (e.g., \special
node) and kerns from italic correction are ignored in the insertion process.

• Caution: due to above two points, many methods which did for the dividing the process of the insertion
of JAglue in pTEX are not effective anymore. In concrete terms, the following two methods are not
effective anymore:

ちょ{}っと ちょ\/っと

If you want to do so, please put an empty horizontal box (hbox) between it instead:

ちょ\hbox{}っと

• In the process, two Japanese fonts which only differ in their “real” fonts are identified.

■Directions From version 20150420.0, LuaTEX-ja supports vertical writing. We implement this feature
by using callbacks of LuaTEX; so it must not be confused with Ω-style direction support of LuaTEX itself.
Due to implementation, the dimension returned by \wd, \ht, or \dp depends on the content of the register
only. This is major difference with pTEX.

■\discretionary Japanese characters in discretionary break (\discretionary) is not supported.

■Greek and Cyrillic letters, and ISO 8859-1 symbols By default, LuaTEX-ja uses Japanese fonts to
typeset Greek andCyrillic letters, To change this behavior, put \ltjsetparameter{jacharrange={-2,-3}}
in the preamble. For the detailed description, see Subsection 4.1.

From this version, characters which belongs both ISO 8859-1 and JIS X 0208, such as ¶ and §, are now
typeset in alphabetic fonts. This means that without the \fontspec (and luatexja-fontspec) package, these
characters are not typeset correctly.

1.3 Notations

In this document, the following terms and notations are used:

• Characters are classified into following two types. Note that the classification can be customized by
a user (see Subsection 4.1).

– JAchar: standing for characterswhich is used in Japanese typesetting, such asHiragana, Katakana,
Kanji, and other Japanese punctuation marks.

– ALchar: standing for all other characters like latin alphabets.

We say alphabetic fonts for fonts used in ALchar, and Japanese fonts for fonts used in JAchar.

• A word in a sans-serif font with underline (like prebreakpenalty) means an internal parameter for
Japanese typesetting, and it is used as a key in \ltjsetparameter command.

• A word in a sens-serif font without underline (like fontspec) means a package or a class of LaTEX.

• In this document, natural numbers start from zero. 𝜔 denotes the set of all natural numbers.

4

1.4 About the project

■Project Wiki Project Wiki is under construction.

• https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28en%29 (English)

• https://osdn.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

• https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28zh%29 (Chinese)

This project is hosted by OSDN.

■Members

• Hironori KITAGAWA • Kazuki MAEDA • Takayuki YATO

• Yusuke KUROKI • Noriyuki ABE • Munehiro YAMAMOTO

• Tomoaki HONDA • Shuzaburo SAITO • MA Qiyuan

5

https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28en%29
https://osdn.jp/projects/luatex-ja/wiki/FrontPage
https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28zh%29

2 Getting Started

2.1 Installation

The following packages are needed for the LuaTEX-ja package.

• LuaTEX beta-0.80.0 (or later)

• luaotfload v2.5 (or later)

• adobemapping (Adobe cmap and pdfmapping files)

• everysel (if you want to use LuaTEX-ja with LaTEX2𝜀)

• fontspec v2.4

• IPAex fonts (http://ipafont.ipa.go.jp/)

In summary, this version of LuaTEX-ja no longer supports TEX Live 2014 (or older version).
Now LuaTEX-ja is available from CTAN (in the macros/luatex/generic/luatexja directory), and

the following distributions:

• MiKTEX (in luatexja.tar.lzma); see the next subsection

• TEX Live (in texmf-dist/tex/luatex/luatexja)

• W32TEX (in luatexja.tar.xz)

IPAex fonts are also available in these distributions.

■Manual installation

1. Download the source, by one of the following method. At the present, LuaTEX-ja has no stable
release.

• Clone the Git repository:

$ git clone git://git.osdn.jp/gitroot/luatex-ja/luatexja.git

• Download the tar.gz archive of HEAD in the master branch from

http:
//git.osdn.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the
forefront of development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in
src/ are needed to work LuaTEX-ja.

3. If you downloaded this package from CTAN, you have to run following commands to generate
classes and ltj-kinsoku.lua (the file which stores default “kinsoku” parameters):

$ cd src
$ lualatex ltjclasses.ins
$ lualatex ltjsclasses.ins
$ lualatex ltjltxdoc.ins
$ luatex ltj-kinsoku_make.tex

Do not forgetThe last line (processing ltj-kinsoku make.tex). *.{dtx,ins} and ltj-kinsoku make.tex
used here are not needed in regular use.

4. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is
an example location. If you cloned entire Git repository, making a symbolic link of src/ instead
copying is also good.

5. If mktexlsr is needed to update the file name database, make it so.

6

http://ipafont.ipa.go.jp/
http://git.osdn.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz
http://git.osdn.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

2.2 Cautions

For changes from pTEX, see Subsection 1.2.

• The encoding of your source file must be UTF-8. Other encodings, such as EUC-JP or Shift-JIS, are
not supported.

• LuaTEX-ja is very slower than pTEX. Generally speaking, LuaJITTEX processes LuaTEX-ja about 30%
faster than LuaTEX, but not always.

• (Outdated) note for MiKTEX users LuaTEX-ja requires that several CMap files1 must be found
from LuaTEX. Strictly speaking, those CMaps are needed only in the first run of LuaTEX-ja after in-
stalling or updating. But it seems that MiKTEX does not satisfy this condition, so you will encounter
an error like the following:

! LuaTeX error ...iles (x86)/MiKTeX 2.9/tex/luatex/luatexja/ltj-rmlgbm.lua
bad argument #1 to 'open' (string expected, got nil)

If so, please execute a batch file which is written on the ProjectWiki (English).This batch file creates
a temporary directory, copy CMaps in it, run a test file which loads LuaTEX-ja in this directory, and
finally delete the temporary directory.

2.3 Using in plain TEX

To use LuaTEX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

• The following 12 Japanese fonts are preloaded:

direction classification font name “10 pt” “7 pt” “5 pt”

yoko (horizontal) mincho IPAex Mincho \tenmin \sevenmin \fivemin
gothic IPAex Gothic \tengt \sevengt \fivegt

tate (vertical) mincho IPAex Mincho \tentmin \seventmin \fivetmin
gothic IPAex Gothic \tentgt \seventgt \fivetgt

– With luatexja.cfg, one can use other fonts as “default” Japanese fonts (Subsection 3.5).
– A character in an alphabetic font is generally smaller than a Japanese font in the same size. So

actual size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts,
namely scaled by 0.962216.

• The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip)
is set to

(0.25 ⋅ 0.962216 ⋅ 10 pt)+1 pt
−1 pt = 2.40554 pt+1 pt

−1 pt.

2.4 Using in LaTEX

Using in LaTEX2𝜀 is basically same. To set up the minimal environment for Japanese, you only have to load
luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pLaTEX are plfonts.dtx and pldefs.ltx):

• Font encodings for Japanese fonts is JY3 (for horizontal direction) and JT3 (for vertical direction).

• Traditionally, Japanese documents use two typeface categories:mincho (明朝体) and gothic (ゴシッ
ク体). mincho is used in the main text, while gothic is used in the headings or for emphasis.

1UniJIS2004-UTF32-{H,V} and Adobe-Japan1-UCS2.

7

https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28en%29

classification family name

mincho (明朝体) \textmc{...} {\mcfamily ...} \mcdefault
gothic (ゴシック体) \textgt{...} {\gtfamily ...} \gtdefault

• By default, the following fonts are used for mincho and gothic:

classification family \mdseries \bfseries scale

mincho (明朝体) mc IPAex Mincho IPAex Gothic 0.962216
gothic (ゴシック体) gt IPAex Gothic IPAex Gothic 0.962216

Note that the bold series in both family are same as the medium series of gothic family. There is no
italic nor slanted shape for these mc and gt.

• Japanese characters in math mode are typeset by the font family mc.

• If you use the beamer class with the default font theme (which uses sans serif fonts) and with
LuaTEX-ja, you might want to change default Japanese fonts to gothic family. The following line
changes the default Japanese font family to gothic:
\renewcommand{\kanjifamilydefault}{\gtdefault}

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based
documents, you are better to use class files other than article.cls, book.cls, and so on. At the present,
we have the counterparts of jclasses (standard classes in pLaTEX) and jsclasses (classes by Haruhiko Oku-
mura), namely, ltjclasses2 and ltjsclasses3.

■geometry package and classes for vertical writing It is well-known that the geometry package
produces the following error, when classes for vertical writing is used:
! Incompatible direction list can't be unboxed.
\@begindvi ->\unvbox \@begindvibox

\global \let \@begindvi \@empty

Now, LuaTEX-ja automatically applies the patch lltjp-geometry to the geometry package, when the direction
of the document is tate (vertical writing).This patch lltjp-geometry also can be used in pLaTEX; for the detail,
please refer lltjp-geometry.pdf (Japanese).

3 Changing Fonts

3.1 plain TEX and LaTEX2𝜀
■plain TEX To change Japanese fonts in plain TEX, you must use the command \jfont and \tfont.
So please see Subsection 7.1.

■LaTEX2𝜀 (NFSS2) For LaTEX2𝜀, LuaTEX-ja adopted most of the font selection system of pLaTEX2𝜀 (in
plfonts.dtx).

• Commands \fontfamily, \fontseries, and \fontshape can be used to change attributes of
Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman
Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji

both — – \fontseries \fontshape —
auto select \fontencoding \fontfamily — — \usefont

2ltjarticle.cls, ltjbook.cls, ltjreport.cls, ltjtarticle.cls, ltjtbook.cls, ltjtreport.cls. The latter
ltjt*.cls are for vertically writtened Japanese documents.

3ltjsarticle.cls, ltjsbook.cls, ltjskiyou.cls.

8

lltjp-geometry.pdf

\fontencoding{⟨encoding⟩} changes the encoding of alphabetic fonts or Japanese fonts depending
on the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to
JY3, and \fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also
changes the current Japanese font family, the current alphabetic font family, or both. For the detail,
see Subsection 10.1.

• For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.
(In previous version of LuaTEX-ja, using \DeclareFontFamily didn’t cause any problem. But this
no longer applies the current version.)

• Defining a Japanese font shape can be done by usual \DeclareFontShape:

\DeclareFontShape{JY3}{mc}{bx}{n}{<-> s*KozMinPr6N-Bold:jfm=ujis;-kern}{}
% Kozuka Mincho Pr6N Bold

■Remark: Japanese characters in math mode Since pTEX supports Japanese characters in math
mode, there are sources like the following:

1 $f_{高温}$~($f_{\text{high temperature}}$).
2 \[y=(x-1)^2+2\quad よって\quad y>0 \]
3 $5\in 素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈素 ∶= { 𝑝 ∈ ℕ ∶ 𝑝 is a prime }.

We (the project members of LuaTEX-ja) think that using Japanese characters in math mode are allowed if
and only if these are used as identifiers. In this point of view,

• The lines 1 and 2 above are not correct, since “高温” in above is used as a textual label, and “よって”
is used as a conjunction.

• However, the line 3 is correct, since “素” is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 $f_{\text{高温}}$~%
2 ($f_{\text{high temperature}}$).
3 \[y=(x-1)^2+2\quad
4 \mathrel{\text{よって}}\quad y>0 \]
5 $5\in 素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈素 ∶= { 𝑝 ∈ ℕ ∶ 𝑝 is a prime }.

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change
Japanese fonts in math mode in this chapter. For the method, please see Subsection 7.5.

3.2 luatexja-fontspec package

To use the functionality of the fontspec package to Japanese fonts, it is needed to load the luatexja-fontspec
package in the preamble, as follows:

\usepackage[⟨options⟩]{luatexja-fontspec}

This luatexja-fontspec package automatically loads luatexja and fontspec packages, if needed.
In the luatexja-fontspec package, the following seven commands are defined as counterparts of original

commands in the fontspec package:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \setmonojfont∗

alphabetic fonts \fontspec \setmainfont \setsansfont \setmonofont

Japanese fonts \newjfontfamily \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontfamily \newfontface \defaultfontfeatures \addfontfeatures

9

The package option of luatexja-fontspec are the followings:

match
If this option is specified, usual family-changing commands such as \rmfamily, \textrm, \sffamily, …
also change Japanese font family.
Note that \setmonojfont is defined if and only if this match option is specified.

pass=⟨opts⟩
(Obsoleted) Specify options ⟨opts⟩ which will be passed to the fontspec package.

scale=⟨float⟩
Override the ratio of the font size of Japanese fonts to that of alphabetic fonts. The default value is
calculated automatically (for example, about 0.924865 when the ltjsarticle class is used).

All other options listed above are simply passed to the fontspec package. This means that two lines
below are equivalent, for example.
\usepackage[no-math]{fontspec}\usepackage{luatexja-fontspec}
\usepackage[no-math]{luatexja-fontspec}

The reason that \setmonojfont is not defined by default is that it is popular for Japanese fonts that
nearly all Japanese glyphs have same widths. Also note that kerning information in a font is not used
(that is, kern feature is set off) by default in these seven (or eight) commands. This is because of the
compatibility with previous versions of LuaTEX-ja (see 7.1).

Below is an example of \jfontspec.

1 \jfontspec[CJKShape=NLC]{KozMinPr6N-Regular}
2 JIS~X~0213:2004→辻\par
3 \jfontspec[CJKShape=JIS1990]{KozMinPr6N-Regular}
4 JIS~X~0208:1990→辻

JIS X 0213:2004→󱈫
JIS X 0208:1990→辻

3.3 Presets of Japanese fonts

One can load the luatexja-preset package to use several “presets” of Japanese fonts. This package provides
functions in a part of japanese-otf package and a part of PXchfon package by Takayuki Yato.

One can specified other options other than listed in this subsection. These are simply passed to the
luatexja-fontspec4. For example, the line 5 in below example is eqivalent to lines 1–3.
\usepackage[no-math]{fontspec}
\usepackage[match]{luatexja-fontspec}
\usepackage[kozuka-pr6n]{luatexja-preset}
%%--------
\usepackage[no-math,match,kozuka-pr6n]{luatexja-preset}

■General options

fontspec
With this option, Japanese fonts are selected using functionality of the luatexja-fontspec package.
This means that the fontspec package is automatically loaded by this package. This option is enabled
by default.

If you need to pass some options to fontspec, you can load fontspec manually before luatexja-preset:
\usepackage[no-math]{fontspec}
\usepackage[...]{luatexja-preset}

nfssonly
With this option, selecting Japanese fonts won’t be performed using the functionality of the fontspec
package, but only standard NFSS2 (hence without \addjfontfeatures etc.). This option is ignored
when luatexja-fontspec package is loaded.
When this option is specified, fontspec and luatexja-fontspec are not loaded by default. Nevertheless,
the packagefontspec can coexist with the option, as the following:

4if nfssonly option is not specified; in this case these options are simply ignored.

10

\usepackage{fontspec}
\usepackage[hiragino-pron,nfssonly]{luatexja-preset}

In this case, one can use \setmainfont etc. to select alphabetic fonts.

nodeluxe
Use one-weightedmincho and gothic font families.Thismeans that \mcfamily\bfseries, \gtfamily\bfseries
and \gtfamily\mdseries use the same font.This option is enabled by default.

deluxe
Useminchowith twoweights (medium and bold), gothicwith threeweights (medium, bold and heavy),
and rounded gothic5. The heavy weight of gothic can be used by “changing the family” \gtebfamily,
or \textgteb{...}. This is because the fontspec package can handle only medium (\mdseries) and
bold (\bfseries).

expert
Use horizontal/vertical kana alternates, and define a command \rubyfamily to use kana characters
designed for ruby.

bold
Substitute bold series of gothic for bold series of mincho.

90jis
Use 90JIS glyph variants if possible.

jis2004
Use JIS2004 glyph variants if possible.

jis
Use the JFM jfm-jis.lua, instead of jfm-ujis.lua, which is the default JFM of LuaTEX-ja.

Note that 90jis and jis2004 only affect with mincho, gothic (and possibly rounded gothic) defined by
this package. We didn’t taken account of when both 90jis and jis2004 are specified.

■Presets formulti weight Besides morisawa-pro and morisawa-pr6n presets, fonts are specified by
font name, not by file name. In following tables, starred fonts (e.g. KozGo…-Regular) are used for medium
series of gothic, if and only if deluxe option is specified.

kozuka-pro Kozuka Pro (Adobe-Japan1-4) fonts.
kozuka-pr6 Kozuka Pr6 (Adobe-Japan1-6) fonts.
kozuka-pr6n Kozuka Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

Kozuka Pro/Pr6N fonts are bundled with Adobe’s software, such as Adobe InDesign. There is not
rounded gothic family in Kozuka fonts.

family series kozuka-pro kozuka-pr6 kozuka-pr6n

medium KozMinPro-Regular KozMinProVI-Regular KozMinPr6N-Regularmincho bold KozMinPro-Bold KozMinProVI-Bold KozMinPr6N-Bold

KozGoPro-Regular* KozGoProVI-Regular* KozGoPr6N-Regular*medium KozGoPro-Medium KozGoProVI-Medium KozGoPr6N-Medium
gothic

bold KozGoPro-Bold KozGoProVI-Bold KozGoPr6N-Bold
heavy KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy

rounded gothic KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy

hiragino-pro Hiragino Pro (Adobe-Japan1-5) fonts.
hiragino-pron Hiragino ProN (Adobe-Japan1-5, JIS04-savvy) fonts.

Hiragino fonts are bundled with Mac OS X 10.5 or later. Some editions of a Japanese word-processor
“一太郎 2012” includes Hiragino ProN fonts. Note that the heavy weight of gothic family only sup-
ports Adobe-Japan1-3 character collection (Std/StdN).

5Provided by \mgfamily and \textmg, because rounded gothic is called maru gothic (丸ゴシック) in Japanese.

11

family series hiragino-pro hiragino-pron

medium Hiragino Mincho Pro W3 Hiragino Mincho ProN W3mincho bold Hiragino Mincho Pro W6 Hiragino Mincho ProN W6

Hiragino Kaku Gothic Pro W3* Hiragino Kaku Gothic ProN W3*medium Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
gothic

bold Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
heavy Hiragino Kaku Gothic Std W8 Hiragino Kaku Gothic StdN W8

rounded gothic Hiragino Maru Gothic Pro W4 Hiragino Maru Gothic ProN W4

morisawa-pro Morisawa Pro (Adobe-Japan1-4) fonts.
morisawa-pr6n Morisawa Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

family series morisawa-pro morisawa-pr6n

medium A-OTF-RyuminPro-Light.otf A-OTF-RyuminPr6N-Light.otfmincho bold A-OTF-FutoMinA101Pro-Bold.otf A-OTF-FutoMinA101Pr6N-Bold.otf

medium A-OTF-GothicBBBPro-Medium.otf A-OTF-GothicBBBPr6N-Medium.otf
gothic bold A-OTF-FutoGoB101Pro-Bold.otf A-OTF-FutoGoB101Pr6N-Bold.otf

heavy A-OTF-MidashiGoPro-MB31.otf A-OTF-MidashiGoPr6N-MB31.otf

rounded gothic A-OTF-Jun101Pro-Light.otf A-OTF-ShinMGoPr6N-Light.otf

yu-win Yu fonts bundled with Windows 8.1.
yu-osx Yu fonts bundled with OSX Mavericks.

family series yu-win yu-osx

medium YuMincho-Regular YuMincho Mediummincho bold YuMincho-Demibold YuMincho Demibold

YuGothic-Regular* YuGothic Medium*medium YuGothic-Bold YuGothic Bold

gothic bold YuGothic-Bold YuGothic Bold
heavy YuGothic-Bold YuGothic Bold

rounded gothic YuGothic-Bold YuGothic Bold

moga-mobo MogaMincho, MogaGothic, and MoboGothic. These fonts can be downloaded from
http://yozvox.web.fc2.com/.

family series default, 90jis option jis2004 option

medium Moga90Mincho MogaMinchomincho bold Moga90Mincho Bold MogaMincho Bold

Moga90Gothic MogaGothicmedium Moga90Gothic MogaGothic

gothic bold Moga90Gothic Bold MogaGothic Bold
heavy Moga90Gothic Bold MogaGothic Bold

rounded gothic Mobo90Gothic MoboGothic

■Presets for single weight Next, we describe settings for using only single weight.

noembed ipa ipaex ms

mincho Ryumin-Light (non-embedded) IPA Mincho IPAex Mincho MS Mincho
gothic GothicBBB-Medium (non-embedded) IPA Gothic IPAex Gothic MS Gothic

12

http://yozvox.web.fc2.com/

■Using HG fonts We can use HG fonts bundled with Microsoft Office for realizing multiple weights.

ipa-hg ipaex-hg ms-hg

mincho medium IPA Mincho IPAex Mincho MS Mincho

mincho bold HG Mincho E

Gothic medium
without deluxe IPA Gothic IPAex Gothic MS Gothic
with jis2004 IPA Gothic IPAex Gothic MS Gothic

otherwise HG Gothic M

gothic bold HG Gothic E

gothic heavy HG Soei Kaku Gothic UB

rounded gothic HG Maru Gothic PRO

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB, and HG Maru Gothic PRO are inter-
nally specified by:

default by font name (HGMinchoE, etc.).

90jis by file name (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf).

jis2004 by file name (hgrme04.ttc, hgrge04.ttc, hgrsgu04.ttc, hgrsmp04.ttf).

3.4 \CID, \UTF, and macros in japanese-otf package

Under pLaTEX, japanese-otf package (developed by Shuzaburo Saito) is used for typesetting characterswhich
is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is widely used, LuaTEX-ja supports some
of functions in the japanese-otf package, as an external package luatexja-otf.

1 \jfontspec{KozMinPr6N-Regular.otf}
2 森\UTF{9DD7}外と内田百\UTF{9592}とが\UTF{9AD9

}島屋に行く。
3

4 \CID{7652}飾区の\CID{13706}野家，
5 \CID{1481}城市，葛西駅，
6 高崎と\CID{8705}\UTF{FA11}
7

8 \aj半角{はんかくカタカナ}

森鷗外と内田百閒とが髙島屋に行く。
󱅏飾区の𠮷野家，葛城市，葛西駅，高崎と髙﨑
はんかくｶﾀｶﾅ

3.5 Changing default Japanese fonts

If luatexja.cfg can be seen fromLuaTEX, LuaTEX-ja automatically reads it.Themain use of luatexja.cfg
is for changing default Japanese fonts, when IPAex fonts cannot be installed in TEX system. One should
not overuse this luatexja.cfg; fonts which will be used in a document should be specified in its source.

For example,

\def\ltj@stdmcfont{IPAMincho}
\def\ltj@stdgtfont{IPAGothic}

makes that IPA Mincho and IPA Gothic will be used as default Japanese fonts, instead of IPAex Mincho
and IPAex Gothic.

For another example, the following two linesmakes that non-embedded fonts Ryumin-Light andGothicBBB-
Medium as default Japanese fonts (as the earlier version of LuaTEX-ja):

\def\ltj@stdmcfont{psft:Ryumin-Light}
\def\ltj@stdgtfont{psft:GothicBBB-Medium}

13

4 Changing Internal Parameters

There are many internal parameters in LuaTEX-ja. And due to the behavior of LuaTEX, most of them are
not stored as internal register of TEX, but as an original storage system in LuaTEX-ja. Hence, to assign or
acquire those parameters, you have to use commands \ltjsetparameter and \ltjgetparameter.

4.1 Range of JAchars

LuaTEX-ja divides the Unicode codespace U+0080–U+10FFFF into character ranges, numbered 1 to 217.
The grouping can be (globally) customized by \ltjdefcharrange. The next line adds whole characters
in Supplementary Ideographic Plane and the character “漢” to the character range 100.

\ltjdefcharrange{100}{"20000-"2FFFF,`漢}

A character can belong to only one character range. For example, whole SIP belong to the range 4 in
the default setting of LuaTEX-ja, and if you execute the above line, then SIP will belong to the range 100
and be removed from the range 4.

The distinction between ALchar and JAchar is performed by character ranges. This can be edited by
setting the jacharrange parameter. For example, the code below is just the default setting of LuaTEX-ja, and
it sets

• a character which belongs character ranges 1, 4, 5, and 8 is ALchar,

• a character which belongs character ranges 2, 3, 6, and 7 is JAchar.

\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, -8}}

The argument to jacharrange parameter is a list of non-zero integer. Negative integer −𝑛 in the list means
that “each character in the range 𝑛 is an ALchar”, and positive integer +𝑛 means that “… is a JAchar”.

Note that characters U+0000–U+007F are always treated as an ALchar (this cannot be customized).

■Default character ranges LuaTEX-ja predefines eight character ranges for convenience. They are
determined from the following data:

• Blocks in Unicode 6.0.

• The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japan1-6 and Unicode.

• The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The superscript “J” or “A” after the number shows whether each
character in the range is treated as JAchars or not by default. These settings are similar to the prefercjk
settings defined in PXbase bundle. Any characters equal to or above U+0080 which does not belong to
these eight ranges belongs to the character range 217.

Range 8A The intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a basic
character set for Japanese). This character range consists of the following characters:

• § (U+00A7, Section Sign)
• ¨ (U+00A8, Diaeresis)
• ° (U+00B0, Degree sign)
• ± (U+00B1, Plus-minus sign)

• ´ (U+00B4, Spacing acute)
• ¶ (U+00B6, Paragraph sign)
• × (U+00D7, Multiplication sign)
• ÷ (U+00F7, Division Sign)

Range 1A Latin characters that some of them are included in Adobe-Japan1-6. This range consists of the
following Unicode ranges, except characters in the range 8 above:

14

Table 1. Unicode blocks in predefined character range 3.

U+2000–U+206F General Punctuation U+2070–U+209F Superscripts and Subscripts
U+20A0–U+20CF Currency Symbols U+20D0–U+20FF Comb. Diacritical Marks for Symbols
U+2100–U+214F Letterlike Symbols U+2150–U+218F Number Forms
U+2190–U+21FF Arrows U+2200–U+22FF Mathematical Operators
U+2300–U+23FF Miscellaneous Technical U+2400–U+243F Control Pictures
U+2500–U+257F Box Drawing U+2580–U+259F Block Elements
U+25A0–U+25FF Geometric Shapes U+2600–U+26FF Miscellaneous Symbols
U+2700–U+27BF Dingbats U+2900–U+297F Supplemental Arrows-B
U+2980–U+29FF Misc. Mathematical Symbols-B U+2B00–U+2BFF Miscellaneous Symbols and Arrows

Table 2. Unicode blocks in predefined character range 6.

U+2460–U+24FF Enclosed Alphanumerics U+2E80–U+2EFF CJK Radicals Supplement
U+3000–U+303F CJK Symbols and Punctuation U+3040–U+309F Hiragana
U+30A0–U+30FF Katakana U+3190–U+319F Kanbun
U+31F0–U+31FF Katakana Phonetic Extensions U+3200–U+32FF Enclosed CJK Letters and Months
U+3300–U+33FF CJK Compatibility U+3400–U+4DBF CJK Unified Ideographs Extension A
U+4E00–U+9FFF CJK Unified Ideographs U+F900–U+FAFF CJK Compatibility Ideographs
U+FE10–U+FE1F Vertical Forms U+FE30–U+FE4F CJK Compatibility Forms
U+FE50–U+FE6F Small Form Variants U+20000–U+2FFFF (Supplementary Ideographic Plane)
U+E0100–U+E01EF Variation Selectors Supplement

• U+0080–U+00FF: Latin-1 Supplement
• U+0100–U+017F: Latin Extended-A
• U+0180–U+024F: Latin Extended-B
• U+0250–U+02AF: IPA Extensions
• U+02B0–U+02FF: Spacing Modifier Letters

• U+0300–U+036F:
Combining Diacritical Marks

• U+1E00–U+1EFF:
Latin Extended Additional

Range 2J Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these charac-
ters.

• U+0370–U+03FF: Greek and Coptic
• U+0400–U+04FF: Cyrillic

• U+1F00–U+1FFF: Greek Extended

Range 3J Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Range 4A Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks
which are not in other predefined ranges. Hence, instead of showing the block list, we put the
definition of this range itself:

\ltjdefcharrange{4}{%
"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DC0-"4DFF, "A4D0-"A82F, "A840-"ABFF, "FB00-"FE0F,
"FE20-"FE2F, "FE70-"FEFF, "10000-"1FFFF, "E000-"F8FF} % non-Japanese

Range 5A Surrogates and Supplementary Private Use Areas.

Range 6J Characters used in Japanese. The block list is indicated in Table 2.

Range 7J Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indi-
cated in Table 3.

■Notes on U+0080–U+00FF You should treat characters in
textttU+0080–U+00FF as ALchar, when you use traditional 8-bit fonts, such as the textcomp package or
the marvosym package.

For example, the codepoint \textparagraph which is provided by the textcomp package is 182. This
codepoint corresponds ¶ (U+00B6) in Unicode. Similarly, \Frowny which is provided by the marvosym

15

Table 3. Unicode blocks in predefined character range 7.

U+1100–U+11FF Hangul Jamo U+2F00–U+2FDF Kangxi Radicals
U+2FF0–U+2FFF Ideographic Description Characters U+3100–U+312F Bopomofo
U+3130–U+318F Hangul Compatibility Jamo U+31A0–U+31BF Bopomofo Extended
U+31C0–U+31EF CJK Strokes U+A000–U+A48F Yi Syllables
U+A490–U+A4CF Yi Radicals U+A830–U+A83F Common Indic Number Forms
U+AC00–U+D7AF Hangul Syllables U+D7B0–U+D7FF Hangul Jamo Extended-B

package has the same codepoint as § (U+00A7). Hence, as previous versions of LuaTEX-ja, if these charac-
ters are treated as JAchars, then \textparagraph produces “ltjjachar‘¶” (in a Japanese font), and \Frowny
produces “§” (in a Japanese font).

To avoid such situations, the default setting of LuaTEX-ja is changed in this release so that all characters
U+0080–U+00FF are treated as ALchar.

If you want to output a character as ALchar and JAchar regardless the range setting, you can use
\ltjalchar and \ltjjachar respectively, as the following example.

1 \gtfamily\large % default, ALchar, JAchar
2 ¶, \ltjalchar`¶, \ltjjachar`¶\\ % default: ALchar
3 α, \ltjalchar`α, \ltjjachar`α % default: JAchar

¶, ¶,¶
α, α,α

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

• Glues/kerns specified in JFM. If \inhibitglue is issued around a JAchar, this glue will not be
inserted at the place.

• The default glue which inserted between two JAchars (kanjiskip).

• The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following. Note that only their values at
the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.

\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

Here \zw is a internal dimension which stores fullwidth of the current Japanese font. This \zw can be used
as the unit zw in pTEX.

The value of these parameter can be get by \ltjgetparameter. Note that the result by \ltjgetparameter
is not the internal quantities, but a string (hence \the cannot be prefixed).

1 kanjiskip: \ltjgetparameter{kanjiskip},\\
2 xkanjiskip: \ltjgetparameter{xkanjiskip}

kanjiskip: 0.0pt plus 0.4pt minus 0.4pt,
xkanjiskip: 2.40555pt plus 1.0pt minus 1.0pt

It may occur that JFM contains the data of “ideal width of kanjiskip” and/or “ideal width of xkanjiskip”.
To use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen (these “ideal width”
cannot be retrived by \ltjgetparameter).

4.3 Insertion setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars andALchars. For exam-
ple, xkanjiskip should not be inserted after opening parenthesis (e.g., compare “(あ” and “(あ”). LuaTEX-ja
can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode for JAchars
and alxspmode parameters ALchars respectively.

1 \ltjsetparameter{jaxspmode={`あ,preonly},
alxspmode={`\!,postonly}}

2 pあq い!う
pあqい!う

16

The second argument preonly means that the insertion of xkanjiskip is allowed before this character,
but not after. the other possible values are postonly, allow, and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore,
line 1 in the code above can be rewritten as follows:

\ltjsetparameter{alxspmode={`あ,preonly}, jaxspmode={`\!,postonly}}

One can use also numbers to specify these two parameters (see Subsection 8.1).
If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing

parameters to true/false, respectively.

4.4 Shifting the baseline

Tomake a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one
of the pair is needed. In pTEX, this is achieved by setting \ybaselineshift (or \tbaselineshift) to a
non-zero length (the baseline ofALchar is shifted below). However, for documents whose main language
is not Japanese, it is good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because
of this, LuaTEX-ja can independently set the shifting amount of the baseline of alphabetic fonts and that
of Japanese fonts.

Horizontal writing (yoko direction) etc. Vertical writing(tate direction)

Alphabetic fonts yalbaselineshift parameter talbaselineshift parameter
Japanese fonts yjabaselineshift parameter tjabaselineshift parameter

Here the horizontal line in the below example is the baseline of a line.

1 \vrule width 150pt height 0.2pt depth 0.2pt \
hskip-120pt

2 \ltjsetparameter{yjabaselineshift=0pt,
yalbaselineshift=0pt}abcあいう

3 \ltjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abcあいう

abcあいう abcあいう

There is an interesting side-effect: characters in different size can be vertically aligned center in a line,
by setting two parameters appropriately.The following is an example (beware the value is not well tuned):

1 \vrule width 150pt height4.417pt depth-4.217pt%
2 \kern-150pt
3 \large xyz漢字
4 {\scriptsize
5 \ltjsetparameter{yjabaselineshift=-1.757pt,
6 yalbaselineshift=-1.757pt}
7 漢字xyzあいう
8 }あいうabc

xyz漢字漢字 xyz あいうあいう abc

Note that setting positive yalbaselineshift or talbaselineshift parameters does not increase the depth of
one-letter syllable 𝑝 of Alchar, if its left-protrusion (\lpcode) and right-protrusion (\rpcode) are both
non-zero. This is because

• These two parameters are implemented by setting yoffset field of a glyph node, and this does not
increase the depth of the glyph.

• To cope with the above situation, LuaTEX-ja automatically supplies a rule in every syllable.

• However, we cannot use this “supplying a rule” method if a syllable comprises just one letter whose
\lpcode and \rpcode are both non-zero.

This problem does not apply for yjabaselineshift nor tjabaselineshift, becuse a JAchar is encapsulated
by a horizontal box if needed.

17

4.5 kinsoku parameters and OpenType features

Among parameters which related to Japanese word-wrapping process (kinsoku shori),

jaxspmode, alxspmode, prebreakpenalty, postbreakpenalty and kcatcode

are stored by each character codes.
OpenType font features are ignored in these parameters. For example, a fullwidth katakana “ア” on

line 10 in the below input is replaced to its halfwidth variant “ｱ”, by hwid feature. However, the penalty
inserted after it is 10 which is the postbreakpenalty of “ア”, not 20.

1 \ltjsetparameter{postbreakpenalty={`ア, 10}}
2 \ltjsetparameter{postbreakpenalty={`ｱ, 20}}
3

4 \newcommand\showpostpena[1]{%
5 \leavevmode\setbox0=\hbox{#1\hbox{}}%
6 \unhbox0\setbox0=\lastbox\the\lastpenalty}
7

8 \showpostpena{ア},
9 \showpostpena{ｱ},
10 {\addjfontfeatures{CharacterWidth=Half}\showpostpena{ア}}

ア10, ｱ20, ｱ10

18

Part II

Reference

5 \catcode in LuaTEX-ja

5.1 Preliminaries: \kcatcode in pTEX and upTEX

In pTEX and upTEX, the value of \kcatcode determines whether a Japanese character can be used in a
control word. For the detail, see Table 4.

\kcatcode can be set by a row of JIS X 0208 in pTEX, and generally by a Unicode block6 in upTEX. So
characters which can be used in a control word slightly differ between pTEX and upTEX.

5.2 Case of LuaTEX-ja

The role of \kcatcode in pTEX and upTEX can be divided into the following four kinds, and LuaTEX-ja can
control these four kinds separately:

• Distinction between JAchar or ALchar is controlled by the character range, see Subsection 4.1.

• Whether the character can be used in a control word is controlled by setting \catcode to 11 (enabled)
or 12 (disabled), as usual.

• Whether jcharwidowpenalty can be inserted before the character is controlled by the lowermost bit of
the kcatcode parameter.

• Linebreak after a JAchar does not produce a space.

Default setting of \catcode of Unicode characters are located in

plain LuaTEX luatex-unicode-letters.tex, which is based on unicode-letters.tex (for X ETEX).

LuaLaTEX now included in LaTEX kernel as unicode-letters.def.

However, the default setting of \catcode differs between X ETEX and LuaTEX, by the following reasons:

• (plain format) luatex-unicode-letters.tex is based on old unicode-letters.tex.

• The latter half of unicode-letters.tex and unicode-letters.def sets\catcode of several
characters to 11, via setting \XeTeXcharclass. However, this latter half does not exist (plain case),
or not executed (LaTEX case) in LuaTEX.

In other words,

plain LuaTEX Kanji nor kana characters cannot be used in a control word, in the default setting of plain
LuaTEX.

LuaLaTEX In recent (2015-10-01 or later) LuaLaTEX, Kanji and kana characters in a control word is sup-
ported (these catcode are 11), but not fullwidth alphanumerics and several other characters.

Thiswould be inconvenient for pTEX users to shifting to LuaTEX-ja, since several control words contain-
ing Kanji or other fullwidth characters, such as \西暦 or \１年目西暦 are used in pTEX. Hence, LuaTEX-ja
have a counterpart of unicode-letters.tex for LuaTEX, to match the \catcode setting with that of
X ETEX.

6upTEX divides U+FF00–U+FFEF (Halfwidth and Fullwidth Forms) into three subblocks, and \kcatcode can be set by a subblock.

19

Table 4. \kcatcode in upTEX

\kcatcode meaning control word widow penalty linebreak

15 non-cjk (treated as usual LaTEX)
16 kanji Y Y ignored
17 kana Y Y ignored
18 other N N ignored
19 hangul Y Y space

Table 5. Difference of the set of non-kanji JIS X 0208 characters which can be used in a control word

row col. pTEX upTEX LuaTEX-ja

・ (U+30FB) 1 6 N Y N
゛ (U+309B) 1 11 N Y N
゜ (U+309C) 1 12 N Y N
｀ (U+FF40) 1 14 N N Y
＾ (U+FF3E) 1 16 N N Y
￣ (U+FFE3) 1 17 N N Y
＿ (U+FF3F) 1 18 N N Y
〃 (U+3003) 1 23 N N Y
仝 (U+4EDD) 1 24 N Y Y
々 (U+3005) 1 25 N N Y
〆 (U+3006) 1 26 N N Y
〇 (U+3007) 1 27 N N Y
ー (U+30FC) 1 28 N Y Y
／ (U+FF0F) 1 31 N N Y
＼ (U+FF3C) 1 32 N N Y

row col. pTEX upTEX LuaTEX-ja

｜ (U+FF5C) 1 35 N N Y
＋ (U+FF0B) 1 60 N N Y
＝ (U+FF1D) 1 65 N N Y
＜ (U+FF1C) 1 67 N N Y
＞ (U+FF1E) 1 68 N N Y
＃ (U+FF03) 1 84 N N Y
＆ (U+FF06) 1 85 N N Y
＊ (U+FF0A) 1 86 N N Y
＠ (U+FF20) 1 87 N N Y
〒 (U+3012) 2 9 N N Y
〓 (U+3013) 2 14 N N Y
￢ (U+FFE2) 2 44 N N Y
Å (U+212B) 2 82 N N Y

Greek letters (row 6) Y N Y
Cyrillic letters (row 7) N N Y

5.3 Non-kanji characters in a control word

Because the engine differ, so non-kanji JIS X 0208 characters which can be used in a control word differ
in pTEX, in upTEX, and in LuaTEX-ja. Table 5 shows the difference. Except for four characters “・”, “゛”,
“゜”, “゠”, LuaTEX-ja admits more characters in a control word than upTEX.

Difference becomes larger, if we consider non-kanji JIS X 0213 characters. For the detail, see https:
//github.com/h-kitagawa/kct.

6 Directions

LuaTEX supports four Ω-style directions: TLT, TRT, RTT and LTL. However, neither directions are not well-
suited for typesetting Japanese vertically, hence we implemented vertical writing by rotating TLT-box by
90 degrees.

LuaTEX-ja supports four directions, as shown in Table 6. The second column (yoko direction) is just
horizontal writing, and the third column (tate direction) is vertical writing.The fourth column (dtou direc-
tion) is actually a hidden feature of pTEX. We implemented this for debugging purpose. The fifth column
(utod direction) corresponds the “tate (math) direction” of pTEX.

Directions can be changed by \yoko, \tate, \dtou, \utod, only when the current list is null. Also,
the direction of a math formula is changed to utod, when the direction outside the math formula is tate
(vertical writing).

6.1 Boxes in different direction

As in pTEX, one can use boxes of different direction in one document. The below is an example.

20

https://github.com/h-kitagawa/kct
https://github.com/h-kitagawa/kct

Table 6. Directions supported by LuaTEX-ja

horizontal (yoko direction) vertical (tate direction) dtou direction utod direction

Commands \yoko \tate \dtou \utod
Beginning of the page Top Right Left Right
Beginning of the line Left Top Bottom Top
Used Japanese font horizontal (\jfont) vertical (\tfont) horizontal (90∘ rotated)

Example

OOOO

_��

//銀は、Ag

OO OO_��

//

銀
は
︑A

g

OOOO _��

//
銀
は
、
A
g

OO OO_��

//
銀
は
、
A
g

(Notation used in Ω) TLT RTR, RTT LBL RTR

1 ここは横組% yoko
2 \hbox{\tate % tate
3 \hbox{縦組}% tate
4 の中に
5 \hbox{\yoko 横組の内容}% yoko
6 を挿入する
7 }
8 また横組に戻る% yoko

ここは横組

縦
組
の
中
に

横組の内容
を
挿
入
す
る また横組に戻る

Table 7 shows how a box is arranged when the direction inside the box and that outside the box differ.

■\wd and direction In pTEX, \wd, \ht, \dp means the dimensions of a box register with respact to the
current direction.This means that the value of \wd0 etc. might differ when the current direction is different,
even if \box0 stores the same box. However, this no longer applies in LuaTEX-ja.

1 \setbox0=\hbox to 20pt{foo}
2 \the\wd0,~\hbox{\tate\vrule\the\wd0}
3 \wd0=100pt
4 \the\wd0,~\hbox{\tate \the\wd0} 20.0pt,

20.0pt 100.0pt,

100.0pt

To access box dimensions with respect to current direction, one have to use the following commands
instead of \wd wtc.

\ltjgetwd⟨num⟩, \ltjgetht⟨num⟩, \ltjgetdp⟨num⟩
These commands return an internal dimension of \box⟨num⟩ with respect to the current direction.
One can use these in \dimexpr primitive, as the followings.

\dimexpr 2\ltjgetwd42-3pt\relax, \the\ltjgetwd1701

The following is an example.

1 \parindent0pt
2 \setbox32767=\hbox{\yoko よこぐみ}
3 \fboxsep=0mm\fbox{\copy32767}
4 \vbox{\hsize=20mm
5 \yoko YOKO \the\ltjgetwd32767, \\
6 \the\ltjgetht32767, \\ \the\ltjgetdp32767.}
7 \vbox{\hsize=20mm\raggedleft
8 \tate TATE \the\ltjgetwd32767, \\
9 \the\ltjgetht32767, \\ \the\ltjgetdp32767.}
10 \vbox{\hsize=20mm\raggedleft
11 \dtou DTOU \the\ltjgetwd32767, \\
12 \the\ltjgetht32767, \\ \the\ltjgetdp32767.}

よこぐみ

YOKO
38.48877pt,
8.46753pt,
1.15466pt.

TATE
9.6222pt,

19.24438pt,
19.24438pt.

D
TO

U
9.
62
22
pt
,

38
.4
88
77
pt
,

0.
0p
t.

21

Table 7. Boxes in different direction

typeset in yoko direction typeset in tate or utod direction typeset in dtou direction

tate/utod

ℎT𝑑T

𝑤T𝐻Y

𝐷Y

𝑊Y

𝑊Y = ℎT + 𝑑T,
𝐻Y = 𝑤T,
𝐷Y = 0 pt

yokoℎY

𝑑Y

𝑤Y
𝑊T

𝐻T𝐷T

𝑊T = ℎY + 𝑑Y,
𝐻T = 𝑤Y/2,
𝐷T = 𝑤Y/2

yokoℎY

𝑑Y

𝑤Y
𝑊D

𝐻D 𝐷D

𝑊D = ℎY + 𝑑Y,
𝐻D = 𝑤Y,
𝐷D = 0 pt

dt
ou

ℎD 𝑑D

𝑤D𝐻Y

𝐷Y

𝑊Y

𝑊Y = ℎD + 𝑑D,
𝐻Y = 𝑤D,
𝐷Y = 0 pt

dt
ou

ℎD 𝑑D

𝑤D𝑊T

𝐻T𝐷T

𝑊T = ℎD + 𝑑D,
𝐻T = 𝑑D,
𝐷T = ℎD

tate/utod

ℎT𝑑T

𝑤T𝑊D

𝐻D 𝐷D

𝑊D = 𝑤T,
𝐻D = 𝑑T,
𝐷D = ℎT

\ltjsetwd⟨num⟩=⟨dimen⟩, \ltjsetht⟨num⟩=⟨dimen⟩, \ltjsetdp⟨num⟩=⟨dimen⟩
These commands set the dimension of \box⟨num⟩. One does not need to group the argument ⟨num⟩;
four calls of \ltjsetwd below have the same meaning.
\ltjsetwd42 20pt, \ltjsetwd42=20pt, \ltjsetwd=42 20pt, \ltjsetwd=42=20pt

6.2 Getting current direction

The direction parameter returns the current direction, and the boxdir parameter (with the argument ⟨num⟩)
returns the direction of a box register \box⟨num⟩. The returned value of these parameters are a string:

Direction yoko tate dtou utod (empty)

Returned value 4 3 1 11 0

1 \leavevmode\def\DIR{\ltjgetparameter{direction}}
2 \hbox{\yoko \DIR}, \hbox{\tate\DIR},
3 \hbox{\dtou\DIR}, \hbox{\utod\DIR},
4 \hbox{\tate$\hbox{tate math: \DIR}$}
5

6 \setbox2=\hbox{\tate}\ltjgetparameter{boxdir}{2}
4, 3 , 1,

11 ,

tate
m
ath:11

3

6.3 Overridden box primitives

To copewithmultiple directions, the following primitives are overridden by LuaTEX-ja, using \protected\def.

22

Table 8. Differences between horizontal JFMs shipped with LuaTEX-ja

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

ちょっと！ 何ちょっと！何 ちょっと！何ちょっと！何 ちょっと！ 何ちょっと！何
漢漢 っっ 漢漢 っっ 漢漢 っっ

(Blue: jfm-ujis.lua, Black: jfm-jis.lua, Red: jfm-min.lua)

\unhbox⟨num⟩, \unvbox⟨num⟩, \unhcopy⟨num⟩, \unvcopy⟨num⟩

\vadjust{⟨material⟩}

\insert⟨number⟩{⟨material⟩}

\lastbox

\raise⟨dimen⟩⟨box⟩, \lower⟨dimen⟩⟨box⟩ etc., \vcenter

\vcenter

7 Font Metric and Japanese Font

7.1 \jfont

To load a font as a Japanese font (for horizontal direction), you must use the \jfont instead of \font,
while \jfont admits the same syntax used in \font. LuaTEX-ja automatically loads luaotfload package,
so TrueType/OpenType fonts with features can be used for Japanese fonts:

1 \jfont\tradgt={file:KozMinPr6N-Regular.otf:script=latn;%
2 +trad;-kern;jfm=ujis} at 14pt
3 \tradgt 当／体／医／区

當／體／醫／區

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font def
token, but a macro. Hence the input like \fontname\tradgt causes a error. We denote control sequences
which are defined in \jfont by ⟨jfont cs⟩.

■JFM a JFMhasmeasurements of characters and glues/kerns that are automatically inserted for Japanese
typesetting. The structure of JFM will be described in the next subsection. At the calling of \jfont, you
must specify which JFM will be used for this font by the following keys:

jfm=⟨name⟩
Specify the name of (horizontal) JFM. If specified JFM has not been loaded, LuaTEX-ja search and load
a file named jfm-⟨name⟩.lua.
The following JFMs are shipped with LuaTEX-ja:

jfm-ujis.lua A standard JFM in LuaTEX-ja. This JFM is based on upnmlminr-h.tfm, a metric for
UTF/OTF package that is used in upTEX. When you use the luatexja-otf package, you should use
this JFM.

jfm-jis.lua A counterpart for jis.tfm, “JIS font metric” which is widely used in pTEX. A ma-
jor difference between jfm-ujis.lua and this jfm-jis.lua is that most characters under
jfm-ujis.lua are square-shaped, while that under jfm-jis.lua are horizontal rectangles.

23

1 \ltjsetparameter{differentjfm=both}
2 \jfont\F=file:KozMinPr6N-Regular.otf:jfm=ujis
3 \jfont\G=file:KozGoPr6N-Medium.otf:jfm=ujis
4 \jfont\H=file:KozGoPr6N-Medium.otf:jfm=ujis;jfmvar=hoge
5 \F ）{\G 【】}（ % halfwidth space
6 ）{\H 『』}（ % fullwidth space
7

8 ほげ，{\G 「ほげ」}（ほげ）\par
9 ほげ，{\H 「ほげ」}（ほげ）% pTeX-like
10

11 \ltjsetparameter{differentjfm=paverage}

）【】（）『』（
ほげ，「ほげ」（ほげ）
ほげ，「ほげ」（ほげ）

Figure 1. Example of jfmvar key

ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ

ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ

1 \newcommand\test{\vrule ダイナミックダイクマ\vrule\\}
2 \jfont\KMFW = KozMinPr6N-Regular:jfm=prop;-kern at 17pt
3 \jfont\KMFK = KozMinPr6N-Regular:jfm=prop at 17pt % kern is activated
4 \jfont\KMPW = KozMinPr6N-Regular:jfm=prop;script=dflt;+pwid;-kern at 17pt
5 \jfont\KMPK = KozMinPr6N-Regular:jfm=prop;script=dflt;+pwid;+kern at 17pt
6 \begin{multicols}{2}
7 \ltjsetparameter{kanjiskip=0pt}
8 {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}
9

10 \ltjsetparameter{kanjiskip=3pt}
11 {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}
12 \end{multicols}

Figure 2. Kerning information and kanjiskip

jfm-min.lua Acounterpart for min10.tfm, which is one of the default Japanese fontmetric shipped
with pTEX.

The difference among these three JFMs is shown in Table 8.

jfmvar=⟨string⟩
Sometimes there is a need that ….

■Using kerning information in a font Some fonts have information for inter-glyph spacing. This
version of LuaTEX-ja treats kerning spaces like an italic correction; any glue and/or kern from the JFM
and a kerning space can coexist. See Figure 2 for detail.

Note that in \setmainjfont etc. which are provided by luatexja-fontspec package, kerning option is
set off (Kerning=Off) by default, because of the compatibility with previous versions of LuaTEX-ja.

■extend and slant The following setting can be specified as OpenType font features:

extend=⟨extend⟩ expand the font horizontally by ⟨extend⟩.

slant=⟨slant⟩ slant the font.

24

Table 9. Differences between vertical JFMs shipped with LuaTEX-ja

◆
◆
◆
◆
◆
◆
◆

あ
る
日
モ
モ
ち
ゃ

ん
が
お
使
い
で
迷

子
に
な
っ
て
泣
き

ま
し
た
．

◆
◆
◆
◆
◆
◆
◆

あ
る
日
モ
モ
ち
ゃ

ん
が
お
使
い
で
迷

子
に
な
っ
て
泣
き

ま
し
た
．

ち
ょ
っ
と
！

何

ち
ょ
っ
と
！

何

漢漢
っっ

Blue: jfm-ujisv.lua
Red: jfm-tmin.lua

Note that LuaTEX-ja doesn’t adjust JFMs by these extend and slant settings; you have to write new
JFMs on purpose. For example, the following example uses the standard JFM jfm-ujis.lua, hence letter-
spacing and the width of italic correction are not correct:

1 \jfont\E=KozMinPr6N-Regular:extend=1.5;jfm=ujis;-kern
2 \E あいうえお
3

4 \jfont\S=KozMinPr6N-Regular:slant=1;jfm=ujis;-kern
5 \S あいう\/ABC

あいうえお
あいう ABC

7.2 \tfont

…

7.3 Prefix psft

Besides “file:” and “name:” prefixes which are introduced in the luaotfload package, LuaTEX-ja adds
“psft:” prefix in \jfont (and \font), to specify a “name-only” Japanese font which will not be embedded
to PDF. Note that these non-embedded fonts under current LuaTEX has Identity-H encoding, and this
violates the standard ISO32000-1:2008 ([10]).

OpenType font features, such as “+jp90”, have no meaning in name-only fonts using “psft:” prefix,
because we can’t expect what fonts are actually used by the PDF reader.Note that extend and slant settings
(see above) are supported with psft prefix, because they are only simple linear transformations.

■cidkey Thedefault font defined by using psft: prefix is for Japanese typesetting; it is Adobe-Japan1-
6 CID-keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or
Korean typesetting.

1 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japan1-6;jfm=jis} % Japanese
2 \jfont\testD={psft:Ryumin-Light:jfm=jis} % default value is Adobe-Japan1

-6
3 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-6;jfm=jis} % Traditional Chinese
4 \jfont\testG={psft:SimSun:cid=Adobe-GB1-5;jfm=jis} % Simplified Chinese
5 \jfont\testK={psft:Batang:cid=Adobe-Korea1-2;jfm=jis} % Korean

Note that the code above specifies jfm-jis.lua, which is for Japanese fonts, as JFM for Chinese and
Korean fonts.

At present, LuaTEX-ja supports only 4 values written in the sample code above. Specifying other values,
e.g.,

\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

produces the following error:

1 ! Package luatexja Error: bad cid key `Adobe-Japan2'.
2

3 See the luatexja package documentation for explanation.
4 Type H <return> for immediate help.
5 <to be read again>

25

6 \par
7 l.78
8

9 ? h
10 I couldn't find any non-embedded font information for the CID
11 `Adobe-Japan2'. For now, I'll use `Adobe-Japan1-6'.
12 Please contact the LuaTeX-ja project team.
13 ?

7.4 Structure of a JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are
devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers
in design-size unit.

dir=⟨direction⟩ (required)
The direction of JFM. 'yoko' (horizontal) or 'tate' (vertical) are supported.

zw=⟨length⟩ (required)
The amount of the length of the “full-width”.

zh=⟨length⟩ (required)
The amount of the “full-height” (height + depth).

kanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)
This field specifies the “ideal” amount of kanjiskip. As noted in Subsection 4.2, if the parameter
kanjiskip is \maxdimen, the value specified in this field is actually used (if this field is not specified
in JFM, it is regarded as 0 pt). Note that ⟨stretch⟩ and ⟨shrink⟩ fields are in design-size unit too.

xkanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)
Like the kanjiskip field, this field specifies the “ideal” amount of xkanjiskip.

■Character classes Besides from above fields, a JFM file have several sub-tables those indices are
natural numbers. The table indexed by 𝑖 ∈ 𝜔 stores information of character class 𝑖. At least, the character
class 0 is always present, so each JFM file must have a sub-table whose index is [0]. Each sub-table (its
numerical index is denoted by 𝑖) has the following fields:

chars={⟨character⟩, ...} (required except character class 0)
This field is a list of characters which are in this character type 𝑖. This field is optional if 𝑖 = 0, since all
JAcharwhich do not belong any character classes other than 0 are in the character class 0 (hence, the
character class 0 contains most of JAchars). In the list, character(s) can be specified in the following
form:

• a Unicode code point
• the character itself (as a Lua string, like 'あ')
• a string like 'あ*' (the character followed by an asterisk)
• several “imaginary” characters (We will describe these later.)

width=⟨length⟩, height=⟨length⟩, depth=⟨length⟩, italic=⟨length⟩ (required)
Specify the width of characters in character class 𝑖, the height, the depth and the amount of italic
correction. All characters in character class 𝑖 are regarded that its width, height, and depth are as
values of these fields. The default values are shown in Table 10.

26

Direction of JFM 'yoko' (horizontal) 'tate' (vertical)

width field the width of the “real” glyph 1.0 (full-width)
height field the height of the “real” glyph 0.5 (half-width)
depth field the depth of the “real” glyph 0.5 (half-width)

italic field 0.0

Table 10. Default values of width field and other fields

height

depth

width

left
down

Consider a Japanese character node which belongs to a charac-
ter class whose the align field is 'middle'.

• The black rectangle is the imaginary body of the node. Its
width, height, and depth are specified by JFM.

• Since the align field is 'middle', the “real” glyph is cen-
tered horizontally (the green rectangle) first.

• Furthermore, the glyph is shifted according to values of
fields left and down. The ultimate position of the real
glyph is indicated by the red rectangle.

Figure 3. The position of the real glyph (horizontal Japanese fonts)

heightdepth

width
left

down (…)

Figure 4. The position of the real glyph (vertical Japanese fonts)

left=⟨length⟩, down=⟨length⟩, align=⟨align⟩

These fields are for adjusting the position of the “real” glyph. Legal values of align field are 'left',
'middle', and 'right'. If one of these 3 fields are omitted, left and down are treated as 0, and
align field is treated as 'left'. The effects of these 3 fields are indicated in Figures 3 and 4.
In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle'
or 'right'. For example, setting the align field to 'right' is practically needed when the current
character class is the class for opening delimiters’.

kern={[𝑗]=⟨kern⟩, [𝑗′]={⟨kern⟩, [ratio=⟨ratio⟩]}, ...}

glue={[𝑗]={⟨width⟩, ⟨stretch⟩, ⟨shrink⟩, [ratio=⟨ratio⟩, ...]}, ...}

Specifies the amount of kern or glue which will be inserted between characters in character class 𝑖
and those in character class 𝑗.
⟨ratio⟩ specifies how much the glue is originated in the “right” character. It is a real number between
0 and 1, and treated as 0.5 if omitted. For example, The width of a glue between an ideographic
full stop “。” and a fullwidth middle dot “・” is three-fourth of fullwidth, namely halfwidth from
the ideographic full stop, and quarter-width from the fullwidth middle dot. In this case, we specify
⟨ratio⟩ to 0.25/(0.5 + 0.25) = 1/3.
In case of glue, one can specify following additional keys in each [𝑗] subtable:

27

priority=⟨priority⟩ An integer in [−2, 2] (treated as 0 if omitted), and this is used only in line
adjustment with priority by luatexja-adjust (see Subsection 11.3). Higher value means the glue
is easy to stretch, and is also easy to shrink.

kanjiskip natural=⟨num⟩, kanjiskip stretch=⟨num⟩, kanjiskip shrink=⟨num⟩
These keys specifies the amount of the natural width of kanjiskip (the stretch/shrink part, re-
spectively) which will be inserted in addition to the original JFM glue. Default values of them
are all 0.
As an example, in jfm-ujis.lua, the standard JFM in horizontal writing, we have

• Between an ordinal letter “あ” and an ideographic opening bracket, we have a glue whose
natural part and shrink part are both half-width, while its stretch part is zero. However,
this glue also can be stretched as much as the stretch part of kanjiskip times the value of
kanjiskip stretch key (1 in this case).

• Between an ideographic closeing brackets (the ideographic comma “，” is included) and an
ordinal letter, we have the same glue. Again, this glue also can be stretched as much as the
stretch part of kanjiskip times the value of kanjiskip stretch key (1 in this case).

Hence we have the following result:

1 \leavevmode
2 \ltjsetparameter{kanjiskip=0pt plus 3\zw}
3 \vrule\hbox to 15\zw{あ「い」う，えお}\vrule

あ 「い」 う， え お

end stretch=⟨kern⟩, end shrink=⟨kern⟩

■Character to character classes We explain how the character class of a character is determined,
using jfm-test.lua which contains the following:

[0] = {
chars = { '漢' },
align = 'left', left = 0.0, down = 0.0,
width = 1.0, height = 0.88, depth = 0.12, italic=0.0,

},
[2000] = {

chars = { '。', 'ﾋ' },
align = 'left', left = 0.0, down = 0.0,
width = 0.5, height = 0.88, depth = 0.12, italic=0.0,

},

Now consider the following input/output:

1 \jfont\a=file:KozMinPr6N-Regular.otf:jfm=test;+hwid
2 \setbox0\hbox{\a ヒ漢}
3 \the\wd0

15.0pt

Now we look why the above source outputs 15 pt.

1. The character “ヒ” is converted to its half width form “ﾋ” by hwid feature.

2. According to the JFM, the character class of “ﾋ” is 2000, hence its width is halfwidth.

3. The character class of “漢” is zero, hence its width is fullwidth.

4. Hence the width of \hbox equals to 15 pt.

This example shows that the character class of a character is generally determined after applying font
features by luaotfload.

However, if the class determined by the glyph after application of features is zero, LuaTEX-ja adopts
the class determined by the glyph before application of features. The following input is an example.

1 \jfont\a=file:KozMinPr6N-Regular.otf:jfm=test;+vert
2 \a 漢。\inhibitglue 漢 漢。漢

28

Table 11. Commands for Japanese math fonts

Japanese fonts alphabetic fonts

\jfam ∈ [0, 256) \fam
jatextfont ={⟨jfam⟩,⟨jfont cs⟩} \textfont⟨fam⟩=⟨font cs⟩
jascriptfont ={⟨jfam⟩,⟨jfont cs⟩} \scriptfont⟨fam⟩=⟨font cs⟩
jascriptscriptfont ={⟨jfam⟩,⟨jfont cs⟩} \scriptscriptfont⟨fam⟩=⟨font cs⟩

Here, the character class of the ideographic full stop “。” (U+3002) is determined as follows:

1. As the case of “ヒ”, the ideographic full stop “。” is converted to its vertical form “︒” (U+FE12) by
vert feature.

2. The character class of “︒”, according to the JFM is zero.

3. However, LuaTEX-ja remembers that this “︒” is obtained from “。” by font features. The character
class of “。” is non-zero value, namely, 2000.

4. Hence the ideographic full stop “。” in above belongs the character class 2000.

■Imaginary characters As described before, you can specify several imaginary characters in chars
field. The most of these characters are regarded as the characters of class 0 in pTEX. As a result, LuaTEX-ja
can control typesetting finer than pTEX. The following is the list of imaginary characters:

'boxbdd'
The beginning/ending of a hbox, and the beginning of a noindented (i.e., began by \noindent) para-
graph.

'parbdd'
The beginning of an (indented) paragraph.

'jcharbdd'
A boundary between JAchar and anything else (such as ALchar, kern, glue, …).

−1 The left/right boundary of an inline math formula.

■Porting JFM from pTEX See Japanese version of this manual.

7.5 Math font family

TEX handles fonts in math formulas by 16 font families7, and each family has three fonts: \textfont,
\scriptfont and \scriptscriptfont.

LuaTEX-ja’s handling of Japanese fonts in math formulas is similar; Table 11 shows counterparts to
TEX’s primitives for math font families. There is no relation between the value of \fam and that of \jfam;
with appropriate settings, you can set both \fam and \jfam to the same value. Here ⟨jfont cs⟩ in the
argument of jatextfont etc. is a control sequence which is defined by \jfont, i.e., a horizontal Japanese
font.

7.6 Callbacks

LuaTEX-ja also has several callbacks.These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load jfm callback
With this callback you can overwrite JFMs. This callback is called when a new JFM is loaded.

7Omega, Aleph, LuaTEX and 𝜀-(u)pTEX can handles 256 families, but an external package is needed to support this in plain TEX
and LaTEX.

29

1 function (<table> jfm_info, <string> jfm_name)
2 return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has
chars field which contains character codes whose character class is not 0.
An example of this callback is the ltjarticle class, with forcefully assigning character class 0 to
'parbdd' in the JFM jfm-min.lua.

luatexja.define jfont callback
This callback and the next callback form a pair, and you can assign characters which do not have
fixed code points in Unicode to non-zero character classes. This luatexja.define font callback
is called just when new Japanese font is loaded.

1 function (<table> jfont_info, <number> font_number)
2 return <table> new_jfont_info
3 end

jfont_info has the following fields, which may not overwritten by a user :

size The font size specified at \jfont in scaled points (1 sp = 2−16 pt).
zw, zh, kanjiskip, xkanjiskip These are scaled value of those specified by the JFM, by the font

size.
jfm The internal number of the JFM.
var The value of jfmvar key, which is specified at \jfont. The default value is the empty string.
chars The mapping table from character codes to its character classes.

The specification [i].chars={⟨character⟩, ...} in the JFM will be stored in this field as
chars={[⟨character⟩]= 𝑖, ...}.

char type For 𝑖 ∈ 𝜔, char type[𝑖] is information of characters whose class is 𝑖, and has the
following fields:

• width, height, depth, italic, down, left are just scaled value of those specified by the
JFM, by the font size.

• align is a number which is determined from align field in the JFM:

⎧
⎪
⎨
⎪⎩

0 'left' (default)
0.5 'middle'
1 'right'

• For 𝑗 ∈ 𝜔, [𝑗] stores a kern or a glue which will be inserted between character class 𝑖 and
class 𝑗.
If a kern will be inserted, the value of this field is [𝑗]={false, ⟨kern node⟩, ⟨ratio⟩},
where ⟨kern node⟩ is a node8. If a gluewill be inserted, we have [𝑗]={false, ⟨spec node⟩,
⟨ratio⟩, ⟨icflag⟩}, where ⟨spec node⟩ is also a node, and ⟨icflag⟩ = from jfm + ⟨priority⟩.

The returned table new_jfont_info also should include these fields, but you are free to add more
fields (to use them in the luatexja.find char class callback). The font_number is a font num-
ber.
A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx"
form for Adobe-Japan1 CID characters in a JFM.This callback doesn’t replace any code of LuaTEX-ja.

luatexja.find char class callback
This callback is called just when LuaTEX-ja is trying to determine which character class a character
chr_code belongs. A function used in this callback should be in the following form:

1 function (<number> char_class, <table> jfont_info, <number> chr_code)
2 if char_class~=0 then return char_class
3 else
4

8This version of LuaTEX-ja uses “direct access model” for accessing nodes, if possible.

30

5 return (<number> new_char_class or 0)
6 end
7 end

The argument char_class is the result of LuaTEX-ja’s default routine or previous function calls in
this callback, hence this argument may not be 0. Moreover, the returned new_char_class should
be as same as char_classwhen char_class is not 0, otherwise you will overwrite the LuaTEX-ja’s
default routine.

luatexja.set width callback
This callback is called when LuaTEX-ja is trying to encapsule a JAchar glyph node, to adjust its
dimension and position.

1 function (<table> shift_info, <table> jfont_info, <table> char_type)
2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which
are the amount of shifting down/left the character in a scaled point.
A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automat-
ically adjusted; the ratio (height ∶ depth) of glyphs is adjusted to be that of letters in the character
class 0. For example, suppose that

• The setting of the JFM: (height) = 88𝑥, (depth) = 12𝑥 (the standard values of Japanese Open-
Type fonts);

• The value of the real font: (height) = 28𝑦, (depth) = 5𝑦 (the standard values of Japanese
TrueType fonts).

Then, the position of glyphs is shifted up by

88𝑥
88𝑥 + 12𝑥

(28𝑦 + 5𝑦) − 28𝑦 = 26
25

𝑦 = 1.04𝑦.

8 Parameters

8.1 \ltjsetparameter

As described before, \ltjsetparameter and \ltjgetparameter are commands for accessing most pa-
rameters of LuaTEX-ja. One of the main reason that LuaTEX-ja didn’t adopted the syntax similar to that
of pTEX (e.g., \prebreakpenalty`）=10000) is the position of hpack_filter callback in the source of
LuaTEX, see Section 12.

\ltjsetparameter and \ltjglobalsetparameter are commands for assigning parameters. These
take one argument which is a ⟨key⟩=⟨value⟩ list. The difference between these two commands is the scope
of assignment; \ltjsetparameter does a local assignment and \ltjglobalsetparameter does a global
one. They also obey the value of \globaldefs, like other assignments.

The following is the list of parameters which can be specified by the \ltjsetparameter command.
[\cs] indicates the counterpart in pTEX, and symbols beside each parameter has the following meaning:

• “ ” : values at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole
hbox.

• “†”: assignments are always global.

jcharwidowpenalty =⟨penalty⟩∗ [\jcharwidowpenalty]
Penalty value for suppressing orphans. This penalty is inserted just after the last JAchar which is
not regarded as a (Japanese) punctuation mark.

kcatcode ={⟨chr code⟩,⟨natural number⟩}∗

An additional attributes which each character whose character code is ⟨chr code⟩ has. At the present
version, the lowermost bit of ⟨natural number⟩ indicates whether the character is considered as a
punctuation mark (see the description of jcharwidowpenalty above).

31

prebreakpenalty ={⟨chr code⟩,⟨penalty⟩}∗ [\prebreakpenalty]
Set a penalty which is inserted automatically before the character ⟨chr code⟩, to prevent a line starts
from this character. For example, a line cannot started with one of closing brackets “〗”, so LuaTEX-ja
sets

\ltjsetparameter{prebreakpenalty={`〙,10000}}

by default.
pTEX has following restrictions on \prebreakpenalty and \postbreakpenalty, but they don’t
exist in LuaTEX-ja:

• Both \prebreakpenalty and \postbreakpenalty cannot be set for the same character.
• We can set \prebreakpenalty and \postbreakpenalty up to 256 characters.

postbreakpenalty ={⟨chr code⟩,⟨penalty⟩}∗ [\postbreakpenalty]
Set a penalty which is inserted automatically after the character ⟨chr code⟩, to prevent a line ends
with this character.

jatextfont ={⟨jfam⟩,⟨jfont cs⟩}∗ [\textfont in TEX]

jascriptfont ={⟨jfam⟩,⟨jfont cs⟩}∗ [\scriptfont in TEX]

jascriptscriptfont ={⟨jfam⟩,⟨jfont cs⟩}∗ [\scriptscriptfont in TEX]

yjabaselineshift =⟨dimen⟩

yalbaselineshift =⟨dimen⟩ [\ybaselineshift]

tjabaselineshift =⟨dimen⟩

talbaselineshift =⟨dimen⟩ [\tbaselineshift]

jaxspmode ={⟨chr code⟩,⟨mode⟩}∗

Set whether inserting xkanjiskip is allowed before/after a JAcharwhose character code is ⟨chr code⟩.
The followings are allowed for ⟨mode⟩:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This is

the default value.

This parameter is similar to the \inhibitxspcode primitive of pTEX, but not compatiblewith \inhibitxspcode.

alxspmode ={⟨chr code⟩,⟨mode⟩}∗ [\xspcode]
Set whether inserting xkanjiskip is allowed before/after aALcharwhose character code is ⟨chr code⟩.
The followings are allowed for ⟨mode⟩:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is the

default value.

Note that parameters jaxspmode and alxspmode share a common table, hence these two parameters
are synonyms of each other.

autospacing =⟨bool⟩ [\autospacing]

autoxspacing =⟨bool⟩ [\autoxspacing]

32

kanjiskip =⟨skip⟩∗ [\kanjiskip]
The default glue which inserted between two JAchars. Changing current Japanese font does not alter
this parameter, as pTEX.
If the natural width of this parameter is \maxdimen, LuaTEX-ja uses the value which is specified in
the JFM for current Japanese font (See Subsection 7.4).

xkanjiskip =⟨skip⟩∗ [\xkanjiskip]
The default glue which inserted between a JAchar and an ALchar. Changing current font does not
alter this parameter, as pTEX.
As kanjiskip, if the natural width of this parameter is \maxdimen, LuaTEX-ja uses the value which is
specified in the JFM for current Japanese font (See Subsection 7.4).

differentjfm =⟨mode⟩†

Specify how glues/kerns between two JAchars whose JFM (or size) are different. The allowed argu-
ments are the followings:

average, both, large, small, pleft, pright, paverage

The default value is paverage. …

jacharrange =⟨ranges⟩

kansujichar ={⟨digit⟩, ⟨chr code⟩}∗ [\kansujichar]

direction =⟨dir⟩ (always local)
Assigning to this parameter has the same effect as \yoko (if ⟨dir⟩ = 4), \tate (if ⟨dir⟩ = 3), \dtou (if
⟨dir⟩ = 1) or \utod (if ⟨dir⟩ = 11). If the argument ⟨dir⟩ is not one of 4, 3, 1 nor 11, the behavior of
this assignment is undefined.

8.2 \ltjgetparameter

\ltjgetparameter is a control sequence for acquiring parameters. It always takes a parameter name as
first argument.

1 \ltjgetparameter{differentjfm},
2 \ltjgetparameter{autospacing},
3 \ltjgetparameter{kanjiskip},
4 \ltjgetparameter{prebreakpenalty}{`）}.

paverage, 1, 0.0pt plus 0.4pt minus 0.4pt, 10000.

The return value of \ltjgetparameter is always a string, which is outputted by tex.write(). Hence
any character other than space “ ” (U+0020) has the category code 12 (other), while the space has 10 (space).

• If first argument is one of the following, no additional argument is needed.

jcharwidowpenalty, yjabaselineshift, yalbaselineshift, autospacing, autoxspacing,
kanjiskip, xkanjiskip, differentjfm, direction

Note that \ltjgetparameter{autospacing} and \ltjgetparameter{autoxspacing} returns
1 or 0, not true nor false.

• If first argument is one of the following, an additional argument—a character code, for example—is
needed.

kcatcode, prebreakpenalty, postbreakpenalty, jaxspmode, alxspmode

\ltjgetparameter{jaxspmode}{...} and \ltjgetparameter{alxspmode}{...} returns 0, 1,
2, or 3, instead of preonly etc.

• \ltjgetparameter{jacharrange}{⟨range⟩} returns 0 if “characters which belong to the char-
acter range ⟨range⟩ are JAchar”, 1 if “… are ALchar”. Although there is no character range −1,
specifying −1 to ⟨range⟩ does not cause an error (returns 1).

33

• For an integer ⟨digit⟩ between 0 and 9, \ltjgetparameter{kansujichar}{⟨digit⟩} returns the
character code of the result of \kansuji⟨digit⟩.

• \ltjgetparameter{adjustdir} returns a integer which represents the direction of the surround-
ing vertical list. As direction, the return value 1 means down-to-up direction, 3 means tate direction
(vertical typesetting), and 4 means yoko direction (horizontal typesetting).

• For an integer ⟨reg num⟩ between 0 and 65535, \ltjgetparameter{boxdim}{⟨reg num⟩} returns
the direction of \box⟨reg num⟩. If this box register is void, the returned value is zero.

• The following parameter names cannot be specified in \ltjgetparameter.

jatextfont, jascriptfont, jascriptscriptfont, jacharrange

• \ltjgetparameter{chartorange}{⟨chr code⟩} returns the range number which ⟨chr code⟩ be-
longs to (although there is no parameter named “chartorange”).
If ⟨chr code⟩ is between 0 and 127, this ⟨chr code⟩ does not belong to any character range. In this
case, \ltjgetparameter{chartorange}{⟨chr code⟩} returns −1.
Hence, one can know whether ⟨chr code⟩ is JAchar or not by the following:

\ltjgetparameter{jacharrange}{\ltjgetparameter{chartorange}{⟨chr code⟩}}
% 0 if JAchar, 1 if ALchar

• Because the returned value is string, the following conditionals do notwork if kanjiskip (or xkanjiskip)
has the stretch part or the shrink part.

\ifdim\ltjgetparameter{kanjiskip}>\z@ ... \fi
\ifdim\ltjgetparameter{xkanjiskip}>\z@ ... \fi

The correct way is using a temporary register.

\@tempskipa=\ltjgetparameter{kanjiskip} \ifdim\@tempskipa>\z@ ... \fi
\@tempskipa=\ltjgetparameter{xkanjiskip}\ifdim\@tempskipa>\z@ ... \fi

9 Other Commands for plain TEX and LaTEX2𝜀

9.1 Commands for compatibility with pTEX

The following commands are implemented for compatibility with pTEX. Note that the former five com-
mands don’t support JIS X 0213, but only JIS X 0208.The last \kansuji converts an integer into its Chinese
numerals.

\kuten, \jis, \euc, \sjis, \jis, \kansuji

These six commands takes an internal integer, and returns a string.

1 \newcount\hoge
2 \hoge="2423 %"
3 \the\hoge, \kansuji\hoge\\
4 \jis\hoge, \char\jis\hoge\\
5 \kansuji1701

9251,九二五一
12355,ぃ
一七〇一

To change characters of Chinese numerals for each digit, set kansujichar parameter:

1 \ltjsetparameter{kansujichar={1,`壹}}
2 \ltjsetparameter{kansujichar={7,`漆}}
3 \ltjsetparameter{kansujichar={0,`零}}
4 \kansuji1701

壹漆零壹

34

9.2 \inhibitglue

\inhibitglue suppresses the insertion of JAglue. The following is an example, using a special JFM that
there will be a glue between the beginning of a box and “あ”, and also between “あ” and “ウ”.

1 \jfont\g=file:KozMinPr6N-Regular.otf:jfm=test \g
2 \fbox{\hbox{あウあ\inhibitglue ウ}}
3 \inhibitglue\par\noindent あ1
4 \par\inhibitglue\noindent あ2
5 \par\noindent\inhibitglue あ3
6 \par\hrule\noindent あoff\inhibitglue ice

あ ウあウ
あ 1
あ 2
あ 3
あ office

With the help of this example, we remark the specification of \inhibitglue:

• The call of \inhibitglue in the (internal) vertical mode is simply ignored.

• The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does
not get over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as
shown in the last line of above example.

• The call of \inhibitglue in math mode is just ignored.

9.3 \ltjdeclarealtfont

Using \ltjdeclarealtfont, one can “compose”more than one Japanese fonts.This \ltjdeclarealtfont
uses in the following form:

\ltjdeclarealtfont⟨base font cs⟩⟨alt font cs⟩{⟨range⟩}

where ⟨base font cs⟩ and ⟨alt font cs⟩ are defined by \jfont. Its meaning is

If the current Japanese font is ⟨base font cs⟩, characters which belong to ⟨range⟩ is typeset by
another Japanese font ⟨alt font cs⟩, instead of ⟨base font cs⟩.

Here ⟨range⟩ is a comma-separated list of character codes, but also accepts negative integers: −𝑛 (𝑛 ≥ 1)
means that all characters of character classes 𝑛, with respect to JFM used by ⟨base font cs⟩. Note that
characters which do not exist in ⟨alt font cs⟩ are ignored.

For example, if \hoge uses jfm-ujis.lua, the standard JFM of LuaTEX-ja, then

\ltjdeclarealtfont\hoge\piyo{"3000-"30FF, {-1}-{-1}}

does

If the current Japanese font is \hoge, U+3000–U+30FF and characters in class 1 (ideographic
opening brackets) are typeset by \piyo.

10 Commands for LaTEX2𝜀

10.1 Patch for NFSS2

Japanese patch for NFSS2 in LuaTEX-ja is based on plfonts.dtx which plays the same role in pLaTEX2𝜀.
We will describe commands which are not described in Subsection 3.1.

additonal dimensions
Like pLaTEX2𝜀, LuaTEX-ja defines the following dimensions for information of current Japanese font:

\cht (height), \cdp (depth), \cHT (sum of former two),
\cwd (width), \cvs (lineskip), \chs (equals to \cwd)

and its \normalsize version:

35

\Cht (height), \Cdp (depth), \Cwd (width),
\Cvs (equals to \baselineskip), \Chs (equals to \cwd).

Note that \cwd and \cHT may differ from \zw and \zh respectively. On the one hand the former
dimensions are determined from the character “あ”, but on the other hand \zw and \zh are specified
by JFM.

\DeclareYokoKanjiEncoding{⟨encoding⟩}{⟨text-settings⟩}{⟨math-settings⟩}
\DeclareTateKanjiEncoding{⟨encoding⟩}{⟨text-settings⟩}{⟨math-settings⟩}

In NFSS2 under LuaTEX-ja, distinction between alphabetic fonts and Japanese fonts are only made by
their encodings. For example, encodings OT1 and T1 are encodings for alphabetic fonts, and Japanese
fonts cannot have these encodings. These command define a new encoding scheme for Japanese font
families.

\DeclareKanjiEncodingDefaults{⟨text-settings⟩}{⟨math-settings⟩}
\DeclareKanjiSubstitution{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}
\DeclareErrorKanjiFont{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}{⟨size⟩}

The above 3 commands are just the counterparts for \DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{⟨unified-cmd⟩}{⟨al-cmd⟩}{⟨ja-cmd⟩}

\DeclareRelationFont{⟨ja-encoding⟩}{⟨ja-family⟩}{⟨ja-series⟩}{⟨ja-shape⟩}
{⟨al-encoding⟩}{⟨al-family⟩}{⟨al-series⟩}{⟨al-shape⟩}

This command sets the “accompanied” alphabetic font (given by the latter 4 arguments) with respect
to a Japanese font given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local
assignment, where \DeclareRelationFont does a global assignment.

\userelfont
Change current alphabetic font encoding/family/… to the ‘accompanied’ alphabetic font family with
respect to current Japanese font family, whichwas set by \DeclareRelationFont or \SetRelationFont.
Like \fontfamily, \selectfont is required to take an effect.

\adjustbaseline
In pLaTEX2𝜀, \adjustbaseline sets \tbaselineshift to match the vertical center of “M” and that
of “あ” in vertical typesetting:

\tbaselineshift ←
(ℎM + 𝑑M) − (ℎあ + 𝑑あ)

2
+ 𝑑あ − 𝑑M,

where ℎ𝑎 and 𝑑𝑎 denote the height of “𝑎” and the depth, respectively. In LuaTEX-ja, this \adjustbaseline
does same task, namely setting the talbaselineshift parameter.

\fontfamily{⟨family⟩}
As in LaTEX2𝜀, this command changes current font family (alphabetic, Japanese, or both) to ⟨family⟩.
See Subsection 10.2 for detail.

\DeclareAlternateKanjiFont{⟨base-encoding⟩}{⟨base-family⟩}{⟨base-series⟩}{⟨base-shape⟩}
{⟨alt-encoding⟩}{⟨alt-family⟩}{⟨alt-series⟩}{⟨alt-shape⟩}{⟨range⟩}

As \ltjdeclarealtfont (Subsection 9.3), characters in ⟨range⟩ of the Japanese font (we say the
base font) which specified by first 4 arguments are typeset by the Japanese font which specified by
fifth to eighth arguments (we say the alternate font). An example is shown in Figure 5.

• In \ltjdeclarealtfont, the base font and the alternate font must be already defined. But this
\DeclareAlternateKanjiFont is not so. In other words, \DeclareAlternateKanjiFont is
effective only after current Japanese font is changed, or only after \selectfont is executed.

• …

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:

36

1 \DeclareKanjiFamily{JY3}{edm}{}
2 \DeclareFontShape{JY3}{edm}{m}{n} {<-> s*KozMinPr6N-Regular:jfm=ujis;}{}
3 \DeclareFontShape{JY3}{edm}{m}{green}{<-> s*KozMinPr6N-Regular:jfm=ujis;color=007F00}{}
4 \DeclareFontShape{JY3}{edm}{m}{blue} {<-> s*KozMinPr6N-Regular:jfm=ujis;color=0000FF}{}
5 \DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{green}{"4E00-"67FF,{-2}-{-2}}
6 \DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{blue}{ "6800-"9FFF}
7 {\kanjifamily{edm}\selectfont
8 日本国民は、正当に選挙された国会における代表者を通じて行動し、……}

日本国民は、正当に選挙された国会における代表者を通じて行動し、……

Figure 5. An example of \DeclareAlternateKanjiFont

1 \makeatletter
2 \SetRelationFont{JY3}{\k@family}{m}{n}{OT1}{pag}{m}{n}
3 % \k@family: current Japanese font family
4 \userelfont\selectfont あいうabc

あいう abc

10.2 Detail of \fontfamily command

In this subsection, we describe when \fontfamily⟨family⟩ changes current Japanese/alphabetic font
family. Basically, current Japanese fotn family is changed to ⟨family⟩ if it is recognized as a Japanese font
family, and similar with alphabetic font family.There is a case that current Japanese/alphabetic font family
are both changed to ⟨family⟩, and another case that ⟨family⟩ isn’t recognized as a Japanese/alphabetic font
family either.

■Recognition as Japanese font family First, Whether Japanese font family will be changed is deter-
mined in following order. This order is very similar to \fontfamily in pLaTEX2𝜀, but we re-implemented
in Lua. We use an auxiliary list 𝑁J.

1. If the family ⟨family⟩ has been defined already by \DeclareKanjiFamily, ⟨family⟩ is recognized as
a Japanese font family. Note that ⟨family⟩ need not be defined under current Japanese font encoding.

2. If the family ⟨family⟩ has been listed in a list 𝑁J, this means that ⟨family⟩ is not a Japanese font
family.

3. If the luatexja-fontspec package is loaded, we stop here, and ⟨family⟩ is not recognized as a Japanese
font family.
If the luatexja-fontspec package is not loaded, now LuaTEX-ja looks whether there exists a Japanese
font encoding ⟨enc⟩ such that a font definition named ⟨enc⟩⟨family⟩.fd (the file name is all lower-
case) exists. If so, ⟨family⟩ is recognized as a Japanese font family (the font definition file won’t be
loaded here). If not, ⟨family⟩ is not a Japanese font family, and ⟨family⟩ is appended to the list 𝑁J.

■Recognition as alphabetic font family Next, whether alphabetic font family will be changed is
determined in following order. We use auxiliary lists 𝐹A and 𝑁A,

1. If the family ⟨family⟩ has been listed in a list 𝐹A, ⟨family⟩ is recognized as an alphabetic font family.

2. If the family ⟨family⟩ has been listed in a list 𝑁A, this means that ⟨family⟩ is not an alphabetic font
family.

3. If there exists an alphabetic font encoding such that the family ⟨family⟩ has been defined under it,
⟨family⟩ is recognized as an alphabetic font family, and to memorize this, ⟨family⟩ is appended to
the list 𝐹A.

4. Now LuaTEX-ja looks whether there exists an alphabetic font encoding ⟨enc⟩ such that a font defi-
nition named ⟨enc⟩⟨family⟩.fd (the file name is all lowercase) exists. If so, current alphabetic font
family will be changed to ⟨family⟩ (the font definition file won’t be loaded here). If not, current
alphabetic font family won’t be changed, and ⟨family⟩ is appended to the list 𝑁A.

37

1 \jfontspec[
2 YokoFeatures={Color=007F00}, TateFeatures={Color=00007F},
3 TateFont=KozGoPr6N-Regular
4]{KozMinPr6N-Regular}
5 \hbox{\yoko 横組のテスト}\hbox{\tate 縦組のテスト}
6 \addjfontfeatures{Color=FF0000}
7 \hbox{\yoko 横組}\hbox{\tate 縦組}

横組のテスト
縦
組
の
テ
ス
ト
横組
縦
組

Figure 6. An example of TateFeatures etc.

Also, each call of \DeclareFontFamily after loading of LuaTEX-ja makes the second argument (fam-
ily) is appended to the list 𝐹A.

The above order is very similar to \fontfamily in pLaTEX2𝜀, but more complicated (clause 3.). This is
because pLaTEX2𝜀 is a format however LuaTEX-ja is not, hence LuaTEX-ja does not know calls of \DeclareFontFamily
before itself is loaded.

■Remarks Of course, there is a case that ⟨family⟩ is not recognized as a Japanese font family, nor an
alphabetic font family. In this case, LuaTEX-ja treats “the argument ⟨family⟩ is wrong”, so set both current
alphabetic and Japanese font family to ⟨family⟩, to use the default family for font substitution.

11 Addon packages

LuaTEX-ja has several addon packages.These addons arewritten as LaTEXpackages, but luatexja-otf and luatexja-
adjust can be loaded in plain LuaTEX by \input.

11.1 luatexja-fontspec

As described in Subsection 3.2, this optional package provides the counterparts for several commands
defined in the fontspec package (requires fontspec v2.4). In addition to OpenType font features in the
original fontspec, the following “font features” specifications are allowed for the commands of Japanese
version:

CID=⟨name⟩, JFM=⟨name⟩, JFM-var=⟨name⟩
These 3 keys correspond to cid, jfm and jfmvar keys for \jfont and \tfont respectively. See
Subsections 7.1 and 7.3 for details of cid, jfm and jfmvar keys.
The CID key is effective only when with NoEmbed described below. The same JFM cannot be used in
both horizontal Japanese fonts and vertical Japanese fonts, hence the JFM key will be actually used
in YokoFeatures and TateFeatures keys.

NoEmbed
By specifying this key, one can use “name-only” Japanese font which will not be embedded in the
output PDF file. See Subsection 7.3.

Kanjiskip=⟨bool⟩

TateFeatures={⟨features⟩}, TateFont=⟨font⟩
The TateFeatures key specifies font features which are only turned on in vertical writing, such as
Style=VerticalKana (vkna feature). Similarly, the TateFont key specifies the Japanese font which
will be used only in vertical writing. A demonstrarion is shown in Figure 6.

YokoFeatures={⟨features⟩}
The YokoFeatures key specifies font features which are only turned on in horizontal writing,. A
demonstrarion is shown in Figure 6.

38

1 \jfontspec[
2 AltFont={
3 {Range="4E00-"67FF, Color=007F00},
4 {Range="6800-"9EFF, Color=0000FF},
5 {Range="3040-"306F, Font=KozGoPr6N-Regular},
6 }
7]{KozMinPr6N-Regular}
8 日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のために、
9 諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……

日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のため
に、諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……

Figure 7. An example of AltFont

AltFont
As \ltjdeclarealtfont (Subsection 9.3) and \DeclareAlternateKanjiFont (Subsection 10.1),
with this key, one can typeset some Japanese characters by a different font and/or using different
features. The AltFont feature takes a comma-separated list of comma-separated lists, as the follow-
ing:

AltFont = {
...
{ Range=⟨range⟩ , ⟨features⟩ },
{ Range=⟨range⟩ , Font=⟨font name⟩ , ⟨features⟩ },
{ Range=⟨range⟩ , Font=⟨font name⟩ },
...

}

Each sublist should have the Range key (sublist which does not contain Range key is simply ignored).
A demonstrarion is shown in Figure 7.

■Remarkon AltFont, YokoFeatures, TateFeatureskeys In AltFont, YokoFeatures, TateFeatures
keys, one cannot specify per-shape settings such as BoldFeatures. For example,

AltFont = {
{ Font=HogeraMin-Light, BoldFont=HogeraMin-Bold,
Range="3000-"30FF, BoldFeatures={Color=007F00} }

}

does not work. Instead, one have to write

UprightFeatures = {
AltFont = { { Font=HogeraMin-Light, Range="3000-"30FF, } },

},
BoldFeatures = {
AltFont = { { Font=HogeraMin-Bold, Range="3000-"30FF, Color=007F00 } },

}

On the other hand, YokoFeatures, TateFeatures and TateFont keys can be specified in each list
in the AltFont key. Also, one can specify AltFont inside YokoFeatures, TateFeatures.

Note that features which are specified in YokoFeatures and TateFeatures are always interpreted
after other “direction-independent” features. This explains why \addjfontfeatures at line 6 in Figure 6
has no effect, because a color specification is already done in YokoFeatures and TateFeatures keys.

11.2 luatexja-otf

This optional package supports typesetting characters in Adobe-Japan1 character collection (or other CID
character collection, if the font is supported). The package luatexja-otf offers the following 2 low-level
commands:

39

\CID{⟨number⟩}
Typeset a character whose CID number is ⟨number⟩.

\UTF{⟨hex number⟩}
Typeset a character whose character code is ⟨hex number⟩ (in hexadecimal).This command is similar
to \char"⟨hex number⟩, but please remind remarks below.

This package automatically loads luatexja-ajmacros.sty, which is slightly modified version of
ajmacros.sty9. Hence one can use macros which sre defined in ajmacros.sty, such as \aj半角.

■Remarks Characters by \CID and \UTF commands are different from ordinary characters in the fol-
lowing points:

• Always treated as JAchars.

• Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the
luaotfload package is not performed to these characters.

■Additional syntax of JFM The package luatexja-otf extends the syntax of JFM; the entries of chars
table in JFMnow allows a string in the form 'AJ1-xxx', which stands for the character whose CID number
in Adobe-Japan1 is xxx.

This extended notation is used in the standard JFM jfm-ujis.lua to typeset halfwidth Hiragana
glyphs (CID 516–598) in halfwidth.

■IVS support Recent fonts support Ideographic Variation Selector (IVS). It seems that luaotfload and
fontspec packages do not support IVS, so we implemented IVS support in luatexja-otf. IVS support is exper-
imental; if you want to enable this, load luatexja-otf and execute the following:

\directlua{luatexja.otf.enable_ivs()}

After executing the command above, you can use IVS like the following:

1 \Large
2 \jfontspec{KozMinPr6N-Regular}
3 奈良県葛0E0

100城市と，東京都葛0E0
101飾区．\\

4 こんにちは，渡
5 邉0E0

100邉0E0
101邉0E0

102邉0E0
103邉0E0

104

6 邉0E0
105邉0E0

106邉0E0
107邉0E0

108邉0E0
109

7 邉0E0
10A邉0E0

10B邉0E0
10C邉0E0

10D邉0E0
10E

8 さん．

奈良県葛城市と，東京都󱅏飾区．
こんにちは，渡邉邉邉邉邉邉邉邉邉
邉邉邉邉邉邉さん．

Specifying glyph variants by IVS precedes glyph replacement by font features. For example, only “葛”
in “葛西” is changed by font features jp78 or jp90, which does not followed by any variation selector.

1 \def\TEST#1{%
2 {\jfontspec[#1]{KozMinPr6N-Regular}%
3 葛0E0

100城市，葛0E0
101飾区，葛西}\\}

4 指定なし：\TEST{}
5 \texttt{jp78}：\TEST{CJKShape=JIS1978}
6 \texttt{jp90}：\TEST{CJKShape=JIS1990}

指定なし：葛城市，󱅏飾区，葛西
jp78：󱅏城市，󱅏飾区，󱅏西
jp90：葛城市，葛飾区，葛西

11.3 luatexja-adjust

(see Japanese version of this manual)
9Useful macros by iNOUE Koich!, for the japanese-otf package.

40

no adjustment 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
without priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
with priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが

Note: the value of kanjiskip is 0 pt+1/5 em
−1/5 em in this figure, for making the difference obvious.

Figure 8. Line adjustment

11.4 luatexja-ruby

This addon package provides functionality of “ruby” (furigana) annotations using callbacks of LuaTEX-ja.
There is no detailedmanual of luatexja-ruby.sty in English. (Japanesemanual is another PDF file, luatexja-ruby.
pdf.)

Group-ruby By default, ruby characters (the second argument of \ruby) are attached to base characters
(the first argument), as one object. This type of ruby is called group-ruby.

1 東西線\ruby{妙典}{みようでん}駅は……\\
2 東西線の\ruby{妙典}{みようでん}駅は……\\
3 東西線の\ruby{妙典}{みようでん}という駅……\\
4 東西線\ruby{葛西}{かさい}駅は……

東西線
みようでん

妙典駅は……
東西線の

みようでん

妙典駅は……
東西線の

みようでん

妙典という駅……
東西線

か さ い

葛西駅は……

As the above example, ruby hangover is allowed on the Hiragana before/after its base characters.

Mono-ruby To attach ruby characters to each base characters (mono-ruby), one should use \ruby mul-
tiple times:

1 東西線の\ruby{妙}{みよう}\ruby{典}{でん}駅は…… 東西線の
みよう

妙
でん

典駅は……

Jukugo-ruby Vertical bar | denotes a boundary of groups.

1 \ruby{妙|典}{みよう|でん}\
2 \ruby{葛|西}{か|さい}\
3 \ruby{神楽|坂}{かぐら|ざか}

みようでん

妙典
か

葛
さい

西
か ぐ ら

神楽
ざか

坂

If there are multiple groups in one \ruby call, A linebreak between two groups is allowed.

1 \vbox{\hsize=6\zw\noindent
2 \hbox to 2.5\zw{}\ruby{京|急|蒲|田}{けい|きゆう|かま|た}
3 \hbox to 2.5\zw{}\ruby{京|急|蒲|田}{けい|きゆう|かま|た}
4 \hbox to 3\zw{}\ruby{京|急|蒲|田}{けい|きゆう|かま|た}
5 }

けいきゆうかま

京急蒲
た

田
けいきゆう

京急
か また

蒲田
けい

京
きゆうかまた

急蒲田

If the width of ruby characters are longer than that of base characters, \ruby automatically selects the
appropriate form among the line-head form, the line-middle form, and the line-end form.

1 \vbox{\hsize=8\zw\noindent
2 \null\kern3\zw ……を\ruby{承}{うけたまわ}る
3 \kern1\zw ……を\ruby{承}{うけたまわ}る\\
4 \null\kern5\zw ……を\ruby{承}{うけたまわ}る
5 }

……を
うけたまわ

承
る ……を

うけたまわ

承る
……を

うけたまわ

承 る

11.5 lltjext.sty

pLaTEX supplies additional macros for vertical writing in the plext package. The lltjext package which we
want to describe here is the LuaTEX-ja counterpart of the plext package.

41

luatexja-ruby.pdf
luatexja-ruby.pdf

tabular, array, minipage environments
These environments are extended by <dir>, which specifies the direction, as follows:

\begin{tabular}<dir>[pos]{table spec} ... \end{tabular}
\begin{array}<dir>[pos]{table spec} ... \end{array}
\begin{minipage}<dir>[pos]{width} ... \end{minipage}

This option permits one of the following five values. If none of them is specified, the direction inside
the environment is same as that outside the enviromnent.

y yoko direction (horizontal writing)
t tate direction (vertical writing)
z utod direction if direction outside the env. is tate.
d dtou direction
u utod direction

\parbox<⟨dir⟩>[⟨pos⟩]{⟨width⟩}{⟨contents⟩}
\parbox command is also extended by <dir>.

\pbox<⟨dir⟩>[⟨width⟩][⟨pos⟩]{⟨contents⟩}
This commands typeset ⟨contents⟩ in LR-mode, in ⟨dir⟩ direction. If ⟨width⟩ is positive, the width of
the box becomes this ⟨width⟩. In this case, ⟨contents⟩ will be aligned …

picture environment

\rensuji[⟨pos⟩]{⟨contents⟩}, \rensujiskip

\Kanji{⟨counter name⟩}

\kasen{⟨contents⟩}, \bou{⟨contents⟩}, \boutenchar

参照番号

Part III

Implementations

12 Storing Parameters

12.1 Used dimensions, attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTEX-ja.

\jQ (dimension) \jQ is equal to 1Q = 0.25mm, where “Q” (also called “級”) is a unit used in Japanese
phototypesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called “歯” which equals to 0.25mm and used in Japanese photo-
typesetting. This \jH is the same \dimen register as \jQ.

\ltj@zw (dimension) A temporal register for the “full-width” of current Japanese font. The command
\zw sets this register to the correct value, and “return” this register itself.

\ltj@zh (dimension) A temporal register for the “full-height” (usually the sum of height of imaginary
body and its depth) of current Japanese font. The command \zh sets this register to the correct
value, and “return” this register itself.

42

\jfam (attribute) Current number of Japanese font family for math formulas.

\ltj@curjfnt (attribute) The font index of current Japanese font for horizontal direction.

\ltj@curtfnt (attribute) The font index of current Japanese font for vertical direction.

\ltj@charclass (attribute) The character class of a JAchar. This attribute is only set on a glyph node
which contains a JAchar.

\ltj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point
(2−16 pt).

\ltj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point
(2−16 pt).

\ltj@tablshift (attribute)

\ltj@tkblshift (attribute)

\ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\ltj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\ltj@icflag (attribute) An attribute for distinguishing “kinds” of a node. One of the following value
is assigned to this attribute:

italic (1) Kerns from italic correction (\/), or from kerning information of a Japanese font.These
kerns are “ignored” in the insertion process of JAglue, unlike explicit \kern.

packed (2)
kinsoku (3) Penalties inserted for the word-wrapping process (kinsoku shori) of Japanese char-

acters.
(from jfm − 2)–(from jfm + 2) (4–8) Glues/kerns from JFM.
kanji skip (9), kanji skip jfm (10) Glues from kanjiskip.
xkanji skip (11), xkanji skip jfm (12) Glues from xkanjiskip.
processed (13) Nodes which is already processed by ….
ic processed (14) Glues from an italic correction, but already processed in the insertion process

of JAglues.
boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a para-

graph.

\ltj@kcat 𝑖 (attribute) Where 𝑖 is a natural number which is less than 7. These 7 attributes store
bit vectors indicating which character block is regarded as a block of JAchars.

\ltj@dir (attribute) dir node auto (128)
dir node manual (256)

Furthermore, LuaTEX-ja uses several user-defined whatsit nodes for internal processing. All those
nodes except direction whatsits store a natural number (hence its type is 100). direction whatsits store
a node list, hence its type is 110. Their user id (used for distinguish user-defined whatsits) are allocated
by luatexbase.newuserwhatsitid.

inhibitglue Nodes for indicating that \inhibitglue is specified.The value field of these nodes doesn’t
matter.

stack marker Nodes for LuaTEX-ja’s stack system (see the next subsection). The value field of these
nodes is current group level.

char by cid Nodes for JAchar which the callback process of luaotfload won’t be applied, and the char-
acter code is stored in the value field. Each node of this type are converted to a glyph node after
the callback process of luaotfload. Nodes of this type is used in \CID, \UTF and IVS support.

43

replace vs Similar to char by cid whatsits above.These nodes are forALcharwhich the callback process
of luaotfload won’t be applied.

begin par Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in
list-like environments has a horizontal box for its label before the actual contents. So …

direction

These whatsits will be removed during the process of inserting JAglues.

12.2 Stack system of LuaTEX-ja

■Background LuaTEX-ja has its own stack system, and most parameters of LuaTEX-ja are stored in
it. To clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following
source:

1 \ltjsetparameter{kanjiskip=0pt}ふがふが.%
2 \setbox0=\hbox{%
3 \ltjsetparameter{kanjiskip=5pt}ほげほげ}
4 \box0.ぴよぴよ\par

ふがふが.ほ げ ほ げ.ぴよぴよ

As described in Subsection 8.1, the only effective value of kanjiskip in an hbox is the latest value, so
the value of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation
method of LuaTEX, this “5 pt” cannot be known from any callbacks. In the tex/packaging.w, which is a
file in the source of LuaTEX, there are the following codes:

1226 void package(int c)
1227 {
1228 scaled h; /* height of box */
1229 halfword p; /* first node in a box */
1230 scaled d; /* max depth */
1231 int grp;
1232 grp = cur_group;
1233 d = box_max_depth;
1234 unsave();
1235 save_ptr -= 4;
1236 if (cur_list.mode_field == -hmode) {
1237 cur_box = filtered_hpack(cur_list.head_field,
1238 cur_list.tail_field, saved_value(1),
1239 saved_level(1), grp, saved_level(2));
1240 subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave() is executed before filtered hpack(), where hpack filter callback is executed)
here. So “5 pt” in the above source is orphaned at unsave(), and hence it can’t be accessed from hpack filter
callback.

■Implementation The code of stack system is based on that in a post of Dev-luatex mailing list10.
These are two TEX count registers for maintaining information: \ltj@@stack for the stack level, and

\ltj@@group@level for the TEX’s group level when the last assignment was done. Parameters are stored
in one big table named charprop stack table, where charprop stack table[𝑖] stores data of stack
level 𝑖. If a new stack level is created by \ltjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in above paragraph “Background”, LuaTEX-ja uses another trick.
When the stack level is about to be increased, awhatsit nodewhose type, subtype and value are 44 (user defined),
stack marker and the current group level respectively is appended to the current list (we refer this node
by stack flag). This enables us to know whether assignment is done just inside a hbox. Suppose that the
stack level is 𝑠 and the TEX’s group level is 𝑡 just after the hbox group, then:

• If there is no stack flag node in the list of the contents of the hbox, then no assignment was occurred
inside the hbox. Hence values of parameters at the end of the hbox are stored in the stack level 𝑠.

10[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

44

380 \protected\def\ltj@setpar@global{%
381 \relax\ifnum\globaldefs>0\directlua{luatexja.isglobal='global'}%
382 \else\directlua{luatexja.isglobal=''}\fi
383 }
384 \protected\def\ltjsetparameter#1{%
385 \ltj@setpar@global\setkeys[ltj]{japaram}{#1}\ignorespaces}
386 \protected\def\ltjglobalsetparameter#1{%
387 \relax\ifnum\globaldefs<0\directlua{luatexja.isglobal=''}%
388 \else\directlua{luatexja.isglobal='global'}\fi%
389 \setkeys[ltj]{japaram}{#1}\ignorespaces}

Figure 9. Definiton of parameter setting commands

• If there is a stack flag node whose value is 𝑡 + 1, then an assignment was occurred just inside the
hbox group. Hence values of parameters at the end of the hbox are stored in the stack level 𝑠 + 1.

• If there are stack flag nodes but all of their values are more than 𝑡 + 1, then an assignment was
occurred in the box, but it is done in more internal group. Hence values of parameters at the end of
the hbox are stored in the stack level 𝑠.

Note that to work this trick correctly, assignments to \ltj@@stack and \ltj@@group@level have
to be local always, regardless the value of \globaldefs. To solve this problem, we use another trick: the
assignment \directlua{tex.globaldefs=0} is always local.

12.3 Lua functions of the stack system

In this subsection, we will see how a user use LuaTEX-ja’s stack system to store some data which obeys
the grouping of TEX.

The following function can be used to store data into a stack:

luatexja.stack.set_stack_table(index, <any> data)

Any values which except nil and NaN are usable as index. However, a user should use only negative inte-
gers or strings as index, since natural numbers are used by LuaTEX-ja itself. Also, whether data is stored lo-
cally or globally is determined by luatexja.isglobal (stored globally if and only if luatexja.isglobal
== 'global').

Stored data can be obtained as the return value of

luatexja.stack.get_stack_table(index, <any> default, <number> level)

where level is the stack level, which is usually the value of \ltj@@stack, and default is the default value
which will be returned if no values are stored in the stack table whose level is level.

12.4 Extending Parameters

Keys for \ltjsetparameter and \ltjgetparameter can be extended, as in luatexja-adjust.

■Setting parameters Figure 9 shows themost outer definition of two commands, \ltjsetparameter
and \ltjglobalsetparameter. Most important part is the last \setkeys, which is offered by the xkeyval
package.

Hence, to add a key in \ltjsetparameter, one only have to add a key whose prefix is ltj and whose
family is japaram, as the following.

\define@key[ltj]{japaram}{...}{...}

\ltjsetparameter and \ltjglobalsetparameter automatically sets luatexja.isglobal. Itsmean-
ing is the following.

luatexja.isglobal =
{
'global' global
'' local

(1)

45

This is determined not only by command name (\ltjsetparameter or \ltjglobalsetparameter), but
also by the value of \globaldefs.

■Getting parameters \ltjgetparameter is implemented by a Lua script.
For parameters that do not need additional arguments, one only have to define a function in the table

luatexja.unary_pars. For example, with the following function, \ltjgetparameter{hoge} returns
a string 42.

1 function luatexja.unary_pars.hoge (t)
2 return 42
3 end

Here the argument of luatexja.unary_pars.hoge is the stack level of LuaTEX-ja’s stack system (see
Subsection 12.2).

On the other hand, for parameters that need an additional argument (this must be an integer), one
have to define a function in luatexja.binary_pars first. For example,

1 function luatexja.binary_pars.fuga (c, t)
2 return tostring(c) .. ', ' .. tostring(42)
3 end

Here the first argument 𝑡 is the stack level, as before. The second argument 𝑐 is just the second argument
of \ltjgetparameter.

For parameters that need an additional argument, one also have to execute the TEX code like
\ltj@@decl@array@param{fuga}

to indicate that “the parameter fuga needs an additional argument”.

13 Linebreak after a Japanese Character

13.1 Reference: behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, sincewords are not separated by spaces
in Japanese writings. However, this feature isn’t fully implemented in LuaTEX-ja due to the specification of
callbacks in LuaTEX. To clarify the difference between pTEX and LuaTEX, We briefly describe the handling
of a line break in pTEX, in this subsection.

pTEX’s input processor can be described in terms of a finite state automaton, as that of TEX in Section 2.5
of [1]. The internal states are as follows:

• State 𝑁 : new line

• State 𝑆: skipping spaces

• State 𝑀 : middle of line

• State 𝐾 : after a Japanese character

The first three states—𝑁 , 𝑆 , and 𝑀—are as same as TEX’s input processor. State 𝐾 is similar to state 𝑀 ,
and is entered after Japanese characters. The diagram of state transitions are indicated in Figure 10. Note
that pTEX doesn’t leave state 𝐾 after “beginning/ending of a group” characters.

13.2 Behavior in LuaTEX-ja

States in the input processor of LuaTEX is the same as that of TEX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress
a space by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-
line) is converted into an space token in the input processor. Sowe can use only the process_input_buffer
callback. This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTEX-ja are as follows:

46

start 𝑁

𝑀

𝑆

𝐾

scan a c.s.

G, O 10

G, O

1010

(∗)
(∗)

5 [␣]

G, O

55 [\par]

J

J

O

10

G, J

J

5

G Beginning of group (usually {)
and ending of group (usually }).

J Japanese characters.

5 end-of-line (usually ^^J).

10 space (usually ␣).

O other characters, whose category code is in
{3, 4, 6, 7, 8, 11, 12, 13}.

[␣], [\par] emits a space, or \par.

• We omitted about category codes 9 (ignored), 14 (comment), and 15 (invalid) from the above diagram. We also
ignored the input like “^^A” or “^^df”.

• When a character whose category code is 0 (escape character) is seen by TEX, the input processor scans a control
sequence (scan a c.s.). These paths are not shown in the above diagram.
After that, the state is changed to State 𝑆 (skipping blanks) in most cases, but to State 𝑀 (middle of line)
sometimes.

Figure 10. State transitions of pTEX’s input processor

A character U+FFFFF (its category code is set to 14 (comment) by LuaTEX-ja) is appended to
an input line, before LuaTEX actually process it, if and only if the following three conditions
are satisfied:

1. The category code of \endlinechar11 is 5 (end-of-line).
2. The category code of U+FFFFF itself is 14 (comment).
3. The input line matches the following “regular expression”:

(any char)∗(JAchar)({catcode = 1} ∪ {catcode = 2})
∗

■Remark The following example shows the major difference from the behavior of pTEX.

1 \fontspec[Ligatures=TeX]{Linux Libertine O}
2 \ltjsetparameter{autoxspacing=false}
3 \ltjsetparameter{jacharrange={-6}}xあ
4 y\ltjsetparameter{jacharrange={+6}}zい
5 u

xyzい u

It is not strange that “あ” does not printed in the above output. This is because TEX Gyre Termes does not
contain “あ”, and because “あ” in line 3 is considered as an ALchar.

Note that there is no space before “y” in the output, but there is a space before “u”. This follows from
following reasons:

• When line 3 is processed by process input buffer callback, “あ” is considered as an JAchar.
Since line 3 ends with an JAchar, the comment character U+FFFFF is appended to this line, and
hence the linebreak immediately after this line is ignored.

• When line 4 is processed by process input buffer callback, “い” is considered as an ALchar.
Since line 4 ends with an ALchar, the linebreak immediately after this line emits a space.

11Usually, it is ⟨return⟩ (whose character code is 13).

47

14 Patch for the listings Package

It is well-known that the listings package outputs weird results for Japanese input. The listings package
makes most of letters active and assigns output command for each letter ([2]). But Japanese characters are
not included in these activated letters. For pTEX series, there is no method to make Japanese characters
active; a patch jlisting.sty ([4]) resolves the problem forcibly.

In LuaTEX-ja, the problem is resolved by using the process_input_buffer callback. The callback
function inserts the output command (active character U+FFFFF) before each letter above U+0080. This
method can omits the process to make all Japanese characters active (most of the activated characters are
not used in many cases).

If the listings package and LuaTEX-ja were loaded, then the patch lltjp-listings is loaded automatically
at \begin{document}.

14.1 Notes and additional keys

■Variation selectors lltjp-listings add two keys, namely vsraw and vscmd, which specify howvariation
selectors are treated in lstlisting or other enviroments. Note that these additional keys are not usable
in the preamble, since lltjp-listings is loaded at \begin{document}.

vsraw is a key which takes a boolean value, and its default value is false.

• If the vsraw key is true, then variation selectors are “combined” with the previous character.

1 \begin{lstlisting}[vsraw=true]
2 葛0E0

100城市，葛0E0
101飾区，葛西

3 \end{lstlisting}
1 葛城市，󱅏飾区，葛西

• If the vsraw key is false, then variation selectors are typeset by an appropriate command, which is
specified by the vscmd key. The default setting of the vscmd key produces the following.

1 \begin{lstlisting}[vsraw=false,
2 vscmd=\ltjlistingsvsstdcmd]
3 葛0E0

100城市，葛0E0
101飾区，葛西

4 \end{lstlisting}

1 葛 VS
17城市，葛 VS

18飾区，葛西

For example, the following code is the setting of the vscmd key in this document.
1 \def\IVSA#1#2#3#4#5{%
2 \textcolor{blue}{\raisebox{3.5pt}{\tt%
3 \fboxsep=0.5pt\fbox{\tiny \oalign{0#1#2\crcr#3#4#5\crcr}}}}%
4 }
5 {\catcode`\%=11
6 \gdef\IVSB#1{\expandafter\IVSA\directlua{
7 local cat_str = luatexbase.catcodetables['string']
8 tex.sprint(cat_str, string.format('%X', 0xE00EF+#1))
9 }}}
10 \lstset{vscmd=\IVSB}

The default output command of variation selectors is stored in \ltjlistingsvsstdcmd.

■The doubleletterspace key Even the column format is [c]fixed, sometimes characters are not
vertically aligned. The following example is typeset with basewidth=2em, and you’ll see the leftmost “H”
are not vertically aligned.

1 : H :
2 : H H H H :

lltjp-listing adds the doubleletterspace key (not activated by default, for compatibility) to improve
the situation, namely doubles inter-character space in each output unit. With this key, the above input
now produces better output.

1 : H :
2 : H H H H :

48

14.2 Class of characters

Roughly speaking, the listings package processes input as follows:

1. Collects letters and digits, which can be used for the name of identifiers.

2. When reading an other, outputs the collected character string (with modification, if needed).

3. Collects others.

4. When reading a letter or a digit, outputs the collected character string.

5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \lst@ifletter indicates
whether the previous character can be used for the name of identifiers or not.

For Japanese characters, line breaks are permitted on both sides except for brackets, dashes, etc. Hence
the patch lltjp-listings introduces a new flag \lst@ifkanji, which indicates whether the previous char-
acter is a Japanese character or not. For illustration, we introduce following classes of characters:

Letter Other Kanji Open Close

\lst@ifletter T F T F T
\lst@ifkanji F F T T F
Meaning char in an identifier other alphabet most of Japanese char opening brackets closing brackets

Note that digits in the listings package can be Letter or Other according to circumstances.
For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese

open brackets, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected
character string is output in this case.

The following table summarizes 5 × 5 = 25 cases:

Next

Letter Other Kanji Open Close

Letter collects outputs collects
Other outputs collects outputs collects

Prev Kanji outputs collects
Open collects
Close outputs collects

In the above table,

• “outputs” means to output the collected character string (i.e., line breaking is permitted there).

• “collects” means to append the next character to the collected character string (i.e., line breaking is
prohibited there).

Characters above or equal to U+0080 except Variation Selectors are classified into above 5 classes by
the following rules:

• ALchars above or equal to U+0080 are classified as Letter.

• JAchars are classified in the order as follows:

1. Characters whose prebreakpenalty is greater than or equal to 0 are classified as Open.
2. Characters whose postbreakpenalty is greater than or equal to 0 are classified as Close.
3. Characters that don’t satisfy the above two conditions are classified as Kanji.

The width of halfwidth kana (U+FF61–U+FF9F) is same as the width ofALchar; the width of the other
JAchars is double the width of ALchar.

This classification process is executed every time a character appears in the lstlisting environment
or other environments/commands.

49

Table 12. cid key and corresponding files

cid key name of the cache used CMaps

Adobe-Japan1-* ltj-cid-auto-adobe-japan1.lua UniJIS2004-UTF32-* Adobe-Japan1-UCS2
Adobe-Korea1-* ltj-cid-auto-adobe-korea1.lua UniKS-UTF32-* Adobe-Korea1-UCS2
Adobe-GB1-* ltj-cid-auto-adobe-gb1.lua UniGB-UTF32-* Adobe-GB1-UCS2
Adobe-CNS1-* ltj-cid-auto-adobe-cns1.lua UniCNS-UTF32-* Adobe-CNS1-UCS2

15 Cache Management of LuaTEX-ja

LuaTEX-ja creates some cache files to reduce the loading time. in a similar way to the luaotfload package:

• Cache files are usually stored in (and loaded from) $TEXMFVAR/luatexja/.

• In addition to caches of the text form (the extension is “.lua”), caches of the binary, precompiled
form are supported.

– We cannot share same binary cache for LuaTEX and LuaJITTEX. Hence we distinguish them
by their extension, “.luc” for LuaTEX and “.lub” for LuaJITTEX.

– In loading a cache, the binary cache precedes the text form.
– When LuaTEX-ja updates a cache hoge.lua, its binary version is also updated.

15.1 Use of cache

LuaTEX-ja uses the following cache:

ltj-cid-auto-adobe-japan1.lua
The font table of a CID-keyed non-embedded Japanese font. This is loaded in every run. It is created
from three CMaps, UniJIS2004-UTF32-{H,V} and Adobe-Japan1-UCS2, and this is why these two
CMaps are needed in the first run of LuaTEX-ja.
Similar caches are created as Table 12, if you specified cid key in \jfont to use other CID-keyed
non-embedded fonts for Chinese or Korean, as in Page 25.

extra ***.lua
This file stores the table which stores the following.

• unicode variants in a font “***”
• vertical width of glyphs, if it is not equal to the sum of the height of ascender and the depth of
descender

• vertical variants

The following is the structure of the that table.

return {
{
[10955]={ -- U+2ACB "Subset Of Above Not Equal To"
[65024]=983879, -- <2ACB FE00>
["vwidth"]=0.98, -- vertical width
},
[37001]={ -- U+9089 "邉"
[0]=37001, -- <9089 E0100>
991049, -- <9089 E0101>
...
["vert"]=995025, -- vertical variant
},
...
},
["chksum"]="FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", -- checksum of the fontfile
["version"]=2, -- version of the cache
}

50

ltj-jisx0208.{luc|lub}
The binary version of ltj-jisx0208.lua. This is the conversion table between JIS X 0208 and Uni-
code which is used in Kanji-code conversion commands for compatibility with pTEX.

15.2 Internal

Cache management system of LuaTEX-ja is stored in luatexja.base (ltj-base.lua). There are three
public functions for cache management in luatexja.base, where ⟨filename⟩ stands for the file name
without suffix :

save cache(⟨filename⟩, ⟨data⟩)
Save a non-nil table ⟨data⟩ into a cache ⟨filename⟩. Both the text form ⟨filename⟩.lua and its binary
version are created or updated.

save cache luc(⟨filename⟩, ⟨data⟩[, ⟨serialized data⟩])
Same as save cache, except that only the binary cache is updated. The third argument ⟨serial-
ized data⟩ is not usually given. But if this is given, it is treated as a string representation of ⟨data⟩.

load cache(⟨filename⟩, ⟨outdate⟩)
Load the cache ⟨filename⟩. ⟨outdate⟩ is a function which takes one argument (the contents of the
cache), and its return value is whether the cache is outdated.
load cache first tries to read the binary cache ⟨filename⟩.{luc|lub}. If its contents is up-to-date,
load cache returns the contents. If the binary cache is not found or its contents is outdated, load cache
tries to read the text form ⟨filename⟩.lua. Hence, the return value of load cache is non-nil, if and
only if the updated cache is found.

51

References

[1] Victor Eijkhout. TEX by Topic, A TEXnician’s Reference, Addison-Wesley, 1992.

[2] C. Heinz, B. Moses. The Listings Package.

[3] Takuji Tanaka. upTeX—Unicode version of pTeX with CJK extensions, TUG 2013, October 2013.
http://tug.org/tug2013/slides/TUG2013_upTeX.pdf

[4] Thor Watanabe. Listings - MyTeXpert. http://mytexpert.osdn.jp/index.php?Listings

[5] W3C Japanese Layout Task Force (ed). Requirements for Japanese Text Layout (W3CWorking Group
Note), 2011, 2012. http://www.w3.org/TR/jlreq/

[6] 乙部厳己．min10フォントについて．
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf

[7] 日本工業規格 (Japanese Industrial Standard). JIS X 4051,日本語文書の組版方法 (Formatting rules
for Japanese documents), 1993, 1995, 2004.

[8] 濱野尚人，田村明史，倉沢良一．TEXの出版への応用—縦組み機能の組み込み—．
.../texmf-dist/doc/ptex/base/ptexdoc.pdf

[9] Hisato Hamano. Vertical Typesetting with TEX, TUGBoat 11(3), 346–352, 1990.

[10] International Organization for Standardization. ISO 32000-1:2008, Document management – Portable
document format – Part 1: PDF 1.7, 2008.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=51502

52

http://tug.org/tug2013/slides/TUG2013_upTeX.pdf
http://mytexpert.osdn.jp/index.php?Listings
http://www.w3.org/TR/jlreq/
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502

	I User's manual
	Introduction
	Backgrounds
	Major changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX

	Changing Fonts
	plain TeX and LaTeX2ε
	luatexja-fontspec package
	Presets of Japanese fonts
	\CID, \UTF, and macros in japanese-otf package
	Changing default Japanese fonts

	Changing Internal Parameters
	Range of JAchars
	kanjiskip and xkanjiskip
	Insertion setting of xkanjiskip
	Shifting the baseline
	kinsoku parameters and OpenType features

	II Reference
	\catcode in LuaTeX-ja
	Preliminaries: \kcatcode in pTeX and upTeX
	Case of LuaTeX-ja
	Non-kanji characters in a control word

	Directions
	Boxes in different direction
	Getting current direction
	Overridden box primitives

	Font Metric and Japanese Font
	\jfont
	\tfont
	Prefix psft
	Structure of a JFM file
	Math font family
	Callbacks

	Parameters
	\ltjsetparameter
	\ltjgetparameter

	Other Commands for plain TeX and LaTeX2ε
	Commands for compatibility with pTeX
	\inhibitglue
	\ltjdeclarealtfont

	Commands for LaTeX2ε
	Patch for NFSS2
	Detail of \fontfamily command

	Addon packages
	luatexja-fontspec
	luatexja-otf
	luatexja-adjust
	luatexja-ruby
	lltjext.sty

	III Implementations
	Storing Parameters
	Used dimensions, attributes and whatsit nodes
	Stack system of LuaTeX-ja
	Lua functions of the stack system
	Extending Parameters

	Linebreak after a Japanese Character
	Reference: behavior in pTeX
	Behavior in LuaTeX-ja

	Patch for the listings Package
	Notes and additional keys
	Class of characters

	Cache Management of LuaTeX-ja
	Use of cache
	Internal

	References

