United States Patent

Advani et al.

(19]

[11] E
[45] Reissued Date of Patent:

USOORE36394E

Re. 36,394
Nov. 16, 1999

Patent Number:

[54] DEVICE DRIVER AND ADAPTER BINDING 4,485,439 11/1984 Rothsteinccoeevvviviininnnnne 364/200
TECHNIQUE 4,493,034 1/1985 Angelle et al. ccoooovvrrerrvevvveeceens 364/200
4,494,188 1/1985 Nakane et al.cccevevvverrereennene 364/200
[75] Inventors: Hira Advani, Danbury, Conn.; Larry j:ggg:gg; Z }ggg g}lllalfll [y ;gjggg
. . ,589, ah et al. ovveeveeirieieeeies
g‘k?;:icnks’Teliancy L. Springen, both 4,701,848 10/1987 Clyde ..cccooomrvvmrrrirmecvrvrriinnens 364/300
Primary Examiner—Kevin J. Teska
[73] Assignee: International Business Machines Assistant Examiner—Ayni Mohamed
Corporation, Armonk, N.Y. Attorney, Agent, or Firm—Robert M. Carwell; Kenneth C.
Hill, Andrew J. Dillon
(22] Filed: Mar. 9, 1989 An operating system in a digital computer environment is
Related U.S. Patent Documents run as a virtual machine on a virtual resource manager. In
Reissue of: o order to provide a more dynamic environment for the
[64] Pate.nt No.: 4.649.479 operating system, linkages are made between the operating
Issued: - N’[ar ’10 1987 system device drivers and the corresponding real and virtual
Aopl NO' 06 /766 6’42 devices of the virtual resource manager. This is accom-
FiIljgd.' - Feb 2;; 1985 plished by assigning a “token” to the virtual resource
’ B manager. A device dependent information file corresponding
[51] Int. CLE .o GO6F 15/177 to the device is created. This file contains adapter dependent
[52] US. Clo oo 395/653 information including a hardward port address for the physi-
[58] Field of Searchccoovecrnccnn. 364/200, 300, cal device. The “token” is placed in the operating system
364/900; 395/500, 325 device driver at the time it is initiated. When the operating
system device driver is “opened” to drive the device, it uses
[56] References Cited the “token” to communicate with the virtual resource man-
ager device driver thereby accomplishing driver to driver
U.S. PATENT DOCUMENTS binding. This causes the virtual resource manager device
3828325 8/1974 Staffoned et al. ..o 364/200 driver to use the adapter dependent information in the
4330822 5/1982 Dodson 364/200 special file corresponding to the “token” and placed in the
4,455,619 6/1984 Masui et al. 364/900 process stack.
4,456,954 6/1984 Bullions, III et al. 364/200
4,475,156 10/1984 Federico et al.cccoevueruenee 364/300 13 Claims, 4 Drawing Sheets
JETC/ WS
READ
4% /28
PROG.
_/ETC/MSTR JETC/SYSTEM U VRMCONF
24
CONFC / ¥
BINDING | (M-
TABLE 1/F
26 2,
U0D (XX.0D CONFI16. D0
VECTOR | | XX.TABLES |30
TABLE
—_———VW—-_———— - ———— e ——_———— — — —— -
MANAGER ORIVER DEF\NE__COPE
' ' SEND_SVC

U.S. Patent Nov. 16, 1999 Sheet 1 of 4 Re. 36,394

FIG.1

VIRTUAL
MACHINE

N SVC
VIRTUAL MACHINE INTERFACE

SVC RETURN | | VIRTUAL
2 INTERRUPT

START 1/0 Svc | DEFINE OEVICE SVC
ATTACH DEVICE SVC

|

DEVICE TDRIVER — R

INITIALIZATION

124
1/0 INITIATION

CHECKX PARAMETERS

126

SLIH

128

1/0 OPERATION

HAROWARE INTERFACE

INTERRUPT (22

ADAPTER 20

Re. 36,394

U.S. Patent Nov. 16, 1999 Sheet 2 of 4
FIG.2
JETC/ WS
REA
46 /8 0
JETC/MSTR | | /ETC/SYSTEM P[R;)FG- VRMCONE
CONFIGURE
KERNEL conpc /2 B
BINDING ER{‘E-
TABLE 1 -
286 \
uDD {XX.0D CONFIG. DD
VECTOR XX. TABLES | 30
TABLE [
SN 111} . SIS ———_—— - —
SVC CALL
R
YRU X&‘,cg DEFINE_DEVICE
DEVICE DEFINE_CODE
MANAGER DRIVER SEND SYC~

U.S. Patent Nov. 16, 1999 Sheet 3 of 4 Re. 36,394

USER MODIFIES 40
DEVICE CONFIGURATION | FIG.3
4
PHYSICAL PORT # OF 5
DEVICE CONNECTION 5
SPECIFIED IN TABLE OF UNIX™ APPLICATION “OPENS® UNIX
ADAPTER CHARACTERISTICS DEVICE DRIVER . 10 USE
DEVICE
44 58
N | UNIX OEVICE ORIVER /
PASSES DEVICE
TOKEN TO VRM
! P 60y
MODIFY UNIX SYSTEM VRM PASSES REQUEST TO
CONFIGURATION FILES : ASSOCIATED YRM (0D)
JETC/MASTER , /ETC/SYSTEM DEVICE DRIVER [FOR CORRE-
SPONDING TOKEN # OF COOE)
4
748 62,
ASSIGN TOKEN #
(1ODN) TO DEVICE VRM DD USES ADAPTER
CHARACTERISTICS / PORT #
50 CORRESPONDING TO DEVICE
& TOKEN #, 10 DRIVE DEVICE
RE-IPL {RE-L0AD)
64
52
DEVICE , SET UP BY USER,
DEFINE - DEVICE TO VRM DRIVEN BY APPLICATION REQUESTS
WITH MODIFIED ADAPTER VIA UNIX 0D 8 VRM 0D
CHARACTERISTICS , INCL. PASSING
TOKEN # (10DN) FOR DEVICE
UPDATE UNIX DEVICE DRIVER
FOR DEVICE CHARACTERISTICS, /54
INCLUDING IDENTICAL TOKEN
FOR THE DEVICE

Re. 36,394

Sheet 4 of 4

Nov. 16, 1999

U.S. Patent

PNOOL *] 2 "
0, enaor v A
WS]
yilngd] en0o1 o—f W 00 R
| 614 [~ oor —{_*° \d 1AL INIOI
[(Higdn] vaw <\wg §539044 VLW 64315
/
94315 FNT0]
=TIN00]
—~{ 100 XI0_INGQI
B1840'INOO1 § 951 T —f——Ld3LS 0
R - JL'INO01 HOVALY
INQO! A
BOOY 1V1S'INJ0T 30007330 L = AVINTL TV
 N3dOXX} e |
0 S0~ T TR
Tan [3R00REA] WO a8

e —— e e

SS3400V 140d
(91/8) s118 viva
"HOOV AYON3N Oyvd
SS3¥00V INITT0d
ASYW INITOd
TINNVHD YHQ

JHYN 321A30 HEA

{1 # yoNIn]
Ay134 ¥O¥Y3

JdAL HILNIBd
MOT3Y3A0 NI
SBY1 ONvdX3

(2€254) YlydA

dW-=-/==+] IKVN J113 RYA
41 =-=/==+/ " INYN 3103 aon

1N0 INIL HOHHI Sa333 3NN
NO ¥0u¥3 S0334 Wy0d
10201084 XNN "SN1Y "¥HY)
BYH3/S11G NIYYA LHOM
31vy Gnve NIOBVH 1411
uiydn

|

|

|

_ .

| toun) o Lamaain
_

_

_

!

ot e . WV E— — — — — — — — — —— —— —— — T ———— — —

{ NOILYYN91INDD
40 A3AILD345 38y

$301A30 031404dNS TIV SNIVINGD) ¥3LSYM/2LY/

{ 53A140

301A30 XINM 434 "3

SYIINIY/NI/ = 100
XX = X1438d
"6 =4Orve

: 61d

SYIININd/ 913/ =100
"X =X143ud
"6 =HOTVYN

6141

321A30/¥314VQV Y3d-AYIND 3INO) W3ILSAS/1Y/

61d1/A30/N340

8 d31S * SNNY "lddV

(A4100%) 1 63]S

[(=nin"6=rvi) 61d1/A30/ |

313 NOILVRYONI

INION3430
AN
¢dils

{QONYH) €d3LS

ADIE

Re. 36,394

1

DEVICE DRIVER AND ADAPTER BINDING
TECHNIQUE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

TECHNICAL FIELD

The present invention generally relates to computer oper-
ating systems running as Virtual Machines (VM) on a
Virtual Resource Manager (VRM) and, more particularly, to
a technique for binding the device drivers of an operating
system to the corresponding real and virtual devices of the
virtual resource manager.

PRIOR ART

Virtual machine operating systems are known in the prior
art which make a single real machine appear to be several
machines. These machines can be very similar to the real
machine on which they are run or they can be very different.
While many virtual machine operating systems have been
developed, perhaps the most widely used is VM/370 which
runs on the IBM System/370. The VM/370 operating system
creates the illusion that each of several users operating from
terminals has a complete System/370. Moreover, each user
can use a different operating system running under VM/370.
For further background, the reader is referred to the text
book by Harvey M. Deitel entitled An Introduction to
Operating Systems, published by Addison-Wesley (1984),
and in particular to Chapter 22 entitled “VM: A Virtual
Machine Operating System”. A more in depth discussion
may be had by referring to the text book by Harold Lorin and
Harvey M. Deitel entitled Operating Systems, published by
Addison-Wesley (1981), and in particular to Chapter 16
entitled “Virtual Machines™.

The invention to be described hereinafter is primarily
intended for use with the UNIX operating system but may
have application with other operating systems which have
characteristics similar to the UNIX operating system. UNIX
is a trademark of Bell Telephone Laboratories, Inc., which
developed the operating system. It was originally developed
for use on a DEC minicomputer but has become a popular
operating system for a wide range of mini- and microcom-
puters. One reason for this popularity is that UNIX is written
in C language, also developed at Bell Telephone
Laboratories, rather than in assembly language so that it is
not processor specific. Thus, compilers written for various
machines to give them C capability make it possible to
transport the UNIX operating system from one machine to
another. Therefore, application programs written for the
UNIX operating system environment are also portable from
one machine to another. For more information on the UNIX
operating system, the reader is referred to UNIX™ System,
User’s Manual, System V, published by Western Electric
Co., January 1983. A good overview of the UNIX operating
system is provided by Brian W. Kernighan and Rob Pike in
their book entitled The UNIX Programming Environment,
published by Prentice-Hall (1984).

Physical devices, such as printers, modems and the like,
which are supported by the UNIX operating system appear
as an entry in the /dev (for device) directory. Application
programs running on UNIX handle devices as if they were
files. To send characters to a line printer, for example, the
application program issues a system command to the file
/dev/lp (for device, line printer). While the procedure is

10

15

20

25

30

35

40

45

50

55

60

65

2

convenient for the applications programmer, the UNIX
operating system programmer must write device driver
programs so that the physical devices can communicate with
the operating system.

SUMMARY OF THE INVENTION

In order to support a more dynamic system environment
for UNIX as a Virtual Machine (VM) running on a Virtual
Resource Manager (VRM), certain linkages must be made
between the UNIX device drivers and the corresponding real
and virtual devices in the virtual resource manager. By
virtual resource manager, what is meant is that part of a
virtual machine operating system which manages the
resources that are connected to the computer, as will be
understood by those skilled in the systems programming art.
Again, reference may be had to the text books by Deitel and
Lorin and Deitel mentioned above.

It is therefore an object of the present invention to provide
a scheme for dynamically binding the UNIX device drivers
to the virtual resource manager device drivers. This binding
capability enables a programmer writing an interrupt handler
for a new adapter being installed into the system to utilize
and move devices on an adapter with minimal effort and not
to have devices “wired” to a specific port. In the environ-
ment to be described in more detail hereinafter, the virtual
resource manager can be thought of as a sophisticated
hardware interface, analogous to the BIOS (Basic Input/
Output System) which is a relatively simple hardware inter-
face.

According to the invention, a “token” (Input/Output)
Device Number (IODN) corresponding to the device is
placed in the UNIX device driver. At the program initiation
time (Initial Program Load or IPL), this token is used to
define to the virtual resource manager the device, with
adapter dependent information which includes a hardware
port address for the physical device. A special file corre-
sponding to the device has been created. When this special
file is opened, the UNIX device driver retrieves the token for
the device and “attaches” to the virtual resource manager.
This causes the virtual resource manager device driver to use
the adapter dependent information corresponding to the
token and placed in the process stack. Thus, when the UNIX
device driver is “opened” to drive a device, it uses this token
passed to it to communicate with the virtual resource man-
ager device driver thereby accomplishing driver to driver
binding. As a result, this burden is eliminated from the writer
of the device driver programs.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
of the invention will be better understood from the following
detailed description with reference to the drawings, in
which:

FIG. 1is a block and flow diagram of the Virtual Resource
Manager (VRM) device driver model;

FIG. 2 is a block and flow diagram of the relational
structure of the virtual resource manager configuration
VRMCONF according to the present invention;

FIG. 3 is a flow diagram showing the device driver and
adapter binding technique according to the invention; and

FIG. 4 is a block and flow diagram illustrating the
scenario for device/port binding for the specific example of
a printer.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT OF THE
INVENTION

In the environment in which the invention is used, the
virtual resource manager consists of two basic types of

Re. 36,394

3

components; processes and interrupt handlers. Processes are
scheduled for execution through a prioritized round-robin
algorithm. Interrupt handlers are divided into two types;
First Level Interrupt Handlers (FLIHs) and Second Level
Interrupt Handlers (SLIHs). There is only one FLIH per
hardware interrupt level, and one SLIH per adapter on each
interrupt level. Both processes and interrupt handlers can be
installed from a virtual machine. Also, processes and inter-
rupt handlers can be created by processes within the virtual
resource manager. Basically, anything a virtual machine can
do with Virtual Machine Interface (VMI) Supervisory Calls
(SVCs), a virtual resource manager can do with function
calls to the virtual resource manager nucleus.

When components and devices are installed into the
virtual resource manager from a virtual machine, the virtual
machine supplies identifying Input/Output Code Numbers
(IOCNs) and identifying Input/Output Device Numbers
(IODNs). The virtual resource manager generates IODNs
for newly created instances of virtual devices. Within the
virtual resource manager, components and devices are
known by encoded identifications (IDs) which are generated
by the virtual resource manager. These IDs are unique and
dynamic; ie., each time an IODN is defined by a virtual
machine, the internal device identification will be different
even though the IODN is static. Only programmers writting
code for inside the virtual resource manager need be con-
cerned with the internal identifications since they are not
reflected above the virtual machine interface.

Referring now to FIG. 1 of the drawings, there is shown
a model of the virtual resource manager device driver. The
virtual machine 10 is interfaced with the virtual resource
manager driver 12 through a well defined virtual machine
interface 14. The virtual machine 10 issues calls to define
device supervisory calls (SVCs) and to attach device super-
visory calls as represented by block 16, and in response to
those calls, the virtual resource manager device driver 12 is
initialized at block 122 and provides an virtual interrupt to
the virtual machine 10. The virtual machine 10 also issues a
call to start an input/output supervisory call as represented
by block 18. This causes the virtual resource manager device
driver 12 to check device parameters in block 126 and
provide a return to the start input/output supervisory call
block 18 which then causes the virtual resource manager
device driver 12 to initiate input/output in block 124 and
provide a virtual interrupt to the virtual machine 10. A
virtual interrupt to the virtual machine 10 is also provided by
the SLIH 128. The adpater 20 provides interrupts to the
virtual resource manager device driver 12 and responds to
input/output operation commands from the device driver 12
via the hardware interface 22.

A device is defined at virtual resource manager initial
program load time for virtual resource manager devices or
when the operating system issues the appropriate “Define
Device SVC”. The device driver’s define device routine is
called at this time to disable the device’s adapter (interrupts,
DMA, and the like). The data passed to this routine is the
Define Device Structure (DDS) specified with the “Define
Device SVC”. The DDS which is passed to the device
driver’s define device routine contains a device dependent
area that provides the means by which the operating system
can pass configuration information to the device driver. The
define routine is responsible for copying this structure into
its static data area and returning its address. Each device
driver will define the parameters that must be contained in
the DDS device characteristics section in response to a
change characteristics operation.

A device is initialized by the virtual resource manager by
calling the “Start Device” routine. This occurs automatically

10

15

20

25

30

35

40

45

50

55

60

65

4

each time a virtual machine 10 attaches a device. The device
driver’s initialization routine is called at this time to enable/
initialize the device’s adapter. By not initializing the device
until it is attached saves system resources and allows a more
flexible use of hardware resources. For example, two
devices that do not support interrupt sharing could use the
same interrupt level if they are not both active. A device is
terminated by the virtual resource manager by calling the
“Start Device” routine with the stop option. The device
driver’s termination routine is called at this time to disable
the device’s adapter. This allows the device to be allocated
to a co-processor or resources used by the device to be
allocated to other devices.

UNIX device drivers in a non-virtual resource manager
environment interface directly to the system hardware. To
support the adding and/or deleting of devices and the
building of a new UNIX kernel, several UNIX system files
exist. These files fall into two categories; those required to
“make” the UNIX kernel (system tables) and those that are
constructed as the result of “making” a new kernel (binding
tables). In order to support a more dynamic system envi-
ronment for UNIX as a virtual machine running on a virtual
resource manager, the present invention provides certain
linkages between the UNIX device drivers and the corre-
sponding real and virtual devices in the virtual resource
manager. This linkage mechanism consists primarily of a
convention by which both real and virtual devices are
identified by a device number referred to as the IODN as
described above. In order to bind the UNIX device drivers
to the corresponding virtual resource manager components,
a mechanism is provided to communicate the IODN along
with other information to the UNIX device driver as part of
the normal UNIX initialization.

The virtual resource manager configuration (VRMCONF)
relational structure for UNIX is shown in FIG. 2. The
CONFIG.DD subcomponent 242 of VRMCONTF is itself a
device driver inside the UNIX kernel 24. As such, it is the
part of VRMCONF which issues the virtual resource man-
ager supervisory calls. It also is the mechanism by which the
IODN and other information gets passed to the respective
kernel device drivers. It passes this information via a kernel
function call. The function call is initiated via the “CFD-
DRU” input/output control issued to the CONFIG.DD. The
internal call, i.e. CONFIG.DD to kernel, is of the following
format:

(Xp-<d__init)(device, iodn, ilev, ddlen, ddptr),

where the parameters are

device: a dev__with the major/minor device numbers

iodn: the iodn to use for this device or O if not applicable

ipri: virtual interrupt level

ddlen: the length of the device dependent information or 0
if none

ddptr: a pointer to the device dependent information or O if
none

There are two key tables used in “making” the UNIX
kernel. These are /etc/master 26 and /etc/system 28 (alias
Jusr/sys/ct/dfile.std). The /etc/master 26 is an ASCII text file
containing information about every device the system is
capable of supporting. There is at least one entry in this file
for every real device. In the virtual resource manager
environment, the same is still true, but in addition, there
must be at least one entry for every virtual device (device
manager). The /etc/system file 28 is also an ASCII text file.
It contains information about every device driver on the
UNIX file system. There is at least one entry in this file for
each device driver. In the UNIX environment, there are both
real and pseudo device drivers. A pseudo device driver has

Re. 36,394

5

no real or virtual device associated with it. (Pseudo device
drivers is one way to gain access to the VMI_SVC_ calls.)
Entries for these pseudo device drivers are required in the
/etc/system file 28 in the virtual resource manager environ-
ment.

At least two tables are created as part of the UNIX kernel
build operation. One is known as “CONF.C” 244 and the
other as interrupt table 246. These are part of the UNIX
kernel 24 and are software vectoring tables. The CONF.C
table 244 is used by the kernel to locate each device driver
(major number) and the routines that driver supports. It is a
binding table which identifies each major device number and
relates that driver to a set of system calls. For example, the
UNIX system call OPEN /dev/devicel would be indexed
through the CONF.C table to find the UNIX device driver to
pass the call to as well as the specific routine to run as the
result of the OPEN system call. This continues to be true in
the virtual resource manager environment. In addition, the
normal use of this table is extended to contain pointers to the
UNIX Device Driver (UDD) tables, contained within the
device drivers, in which the IODN and device dependent
information are written during UNIX initialization as indi-
cated in FIG. 2. The UNIX device driver table structure is
shown below:

Status Flags

IODN INT_LEV/SUB_LEV LL Device Dep. Info.

Status-one entry per major/minor table entry

IODN-2-byte integer; tag by which the UDD knows its corresponding VRM
component, one entry per major/minor combination

INT_LEV-value 0-15 of virtual interrupt level

SUB__LEV-value 0-255 interrupt sub-level values (assigned at “ATTACH*
time

LL—Z)—yte integer; length of the device dependent information

Thus, the type of information in CONF.C does not change.
Additional binding information is added to provide pointers
into UDD data areas.

The interrupt table 246 is an interrupt vectoring table
“made” with the kernel 24 in normal UNIX operation. The
Virtual Interrupt Vector Table is shown below and represents
information contained in the routine table:

INT_LEV/SUB_LEV MAIJ/MIN # PNTR (UNIX DD

INTR ROUTINE)

INT_LEV/SUB_LEV-Virtual Interrupt Identifier from VRM
MAIJ/MIN #-Identifier of UDD owning interrupt
PNTR-Pointer to UDD interrupt handling routine

This table is not “static” built as part of the kernel build but
is dynamically built at run-time. Each UNIX device driver
must call the kernel function call to receive interrupt sub-
level information while passing its major and minor number
as well as a pointer to the interrupt handler routine.

There is generally one table 30 similar to the UNIX
system tables per device type (/etc/ddi). These tables contain
device or device type specific information, while etc/master
26 and etc/system 28 contain information common to all
devices. The files containing device-dependent information
(the descriptive data that is associated with a particular
device) are as follows:

Jetc/disk etc/display
Jetc/diskette etc/tape
Jetc/printer etc/keyboard
Jetc/async etc/locator

Every UNIX device driver follows certain conventions.
While there is the concept of a predefined IODN, for some

10

15

20

25

30

35

40

45

50

55

60

65

6

of the nucleus components of a virtual resource manager, the
majority of the device/device manager tags (IODNs) will
vary in assignment. Only the nucleus virtual resource man-
ager components are allowed to default always to a specific
IODN. Therefore, UNIX device drivers are not allowed to
have “hardcode” device dependent information. Each UDD
writer will have a table entry for each IODN it controls. If
the UDD is a multiplexing device driver, i.e. deals with more
than one IODN, the table must reflect this situation. An
example of this is a UDD for controlling printers. This UDD
perhaps might control multiple printers. The defined mecha-
nism for handling this is the UNIX major device number
which reflects the Printer UDD and the minor number which
reflects the specific printer. Therefore, the size of the UDD
table is directly proportional to the number of minor devices.
Using CONF.C, this major/minor number combination is the
mechanism by which the correct table entry in the associated
UDD is updated.

Turning now to FIG. 3, the flow chart for the device driver
and adapter binding according to the invention is shown. In
block 40, it is assumed that the user modifies the device
configuration. To do this, the physical port number of the
device connection must be specified in the table of adapter
characteristics as indicated in block 42. Then, if the device
is a new device, the flow progresses to block 46; otherwise,
the flow progresses to block 54 as indicated by the decision
block 44. In block 46, the UNIX system configuration files
/etc/master 26 and etc/system 28 are modified. Then in block
48, a token (IODN) is assigned to the device. This is
followed in block 50 with a re-load operation, and then in
block 52, the device is defined to the virtual resource
manager with modified adapter characteristics, including
passing the token number for the device. Going now to block
54, the UNIX device driver is updated for device
characteristics, including an identical token number for the
device. The UNIX application “OPENS” the UNIX device
driver to use the device in block 56. This is followed in block
58 by the UNIX device driver passing the device token
number to the virtual resource manager. When the virtual
resource manager receives the token number, it passes a
request to the associated virtual resource manager device
driver for the corresponding token number as indicated in
block 60. In block 62, the virtual resource manager device
driver uses adapter characteristics and port number corre-
sponding to the device token number to drive the device thus
completing the device driver and and adpater binding. Then,
when the device is to be driven by an application, the device
which has been set up by the user is requested via the UNIX
device driver and the virtual resource manager device driver
as indicated in block 64.

To provide a more concrete example for those skilled in
the art of system programming and familiar with the UNIX
operating system, reference is now made to FIG. 4. In this
example, a line printer 70 identified as LPT9 is to be
attached to an RS232 serial adapter 72 having four ports
identified by the tokens IODNI, IODN2, IODN3, and
IODN4. The first step is to modify the /etc/system file 28 and
the /etc/master file 26. In these tables, the parameters for the
LPT9 printer are entered as major number=9, prefix=XX,
and DDI=/etc/printers. The /etc/master file 26 contains all
supported devices, irrespective of their configuration. In the
etc/system file 28, there is one entry per adapter/device, i.e.
per UNIX device driver.

In step 2, the DDI (device dependent information) file
may be modified for device or adpater parameters. Then, in
step 3, the character special file is created for the line printer
LPT9. This is followed, in step 4, with the initial program

Re. 36,394

7

load (IPL) sequence to execute the VRMCONFIG program.
In step 5, the VRMCONFIG program passes device depen-
dent information to the configuration (CONFIG) pseudo
device driver. In step 6, the CONFIG device driver makes
known the virtual resource manager device driver code to
the virtual resource manager, along with the token (IODN).
In step 7, the CONFIG device driver passes some device
information to the UNIX device driver, along with the same
token (IODN), which is stored in the table area of the UNIX
device driver. At this point, an application program can
“OPEN” the special file /dev/Ipt9 created in step 3 as
indicated in FIG. 4 at step 8. This causes, in step 9, the UNIX
device driver to use the IODN (passed in step 7) to go to the
virtual resource manager to “bind” to the virtual resource
manager device driver corresponding to the same token and
associated with the adapter port.

Other specific examples will readily suggest themselves
to those skilled in the art, and although the preferred
embodiment of the invention has been described as using the
UNIX operating system, other operating systems having
similar characteristics could be adapted for use in accor-
dance with the teachings of the invention. Therefore, it will
be understood by those skilled in the systems programming
art that while the invention has been particularly shown and
described with respect to a single preferred embodiment,
changes in form and detail may be made therein without
departing from the spirit and scope of the invention.

Having thus describe our invention, what we claim as
new, and desire to secure by Letters Patent is:

1. A device driver and adapter binding technique in which
an operating system having device drivers is run as a virtual
machine on a virtual resource manager having device drivers
of real and virtual devices comprising the steps of in a
computer system:

assigning a “token” to the virtual resource manager’s

device driver for the device to be bound to a device
driver of said operating system;

creating a device dependent information file in said oper-

ating system corresponding to said device to be bound,
said file including adapter dependent information for
said device;

placing said “token” in a device driver of said operating

system [at the time] when said operating system is
initiated; and

using said “token” placed in said device driver of said

operating system to communicate with the correspond-
ing virtual resource manager device driver when said
device driver of said operating system is opened to
drive said device, thereby binding the two drivers and
using the device dependent information in said device
dependent information file to drive the physical device.
2. A device driver and adaptive binding technique as
recited in claim 1 wherein a user may modify a device
configuration, said technique further comprising the steps
of:
specifying [the] a port number of the device connection in
a table of adapter characteristics; and

updating the device driver of said operating system for
device characteristics including said “token” for the
device if the device is not a new device before using
said “token” when said device driver of said operating
system is opened;

otherwise, repeating said steps of assigning, creating and

placing if the device is a new device.

3. A device driver and adaptive binding technique as
recited in claim 1 wherein the step of using said “token” is
performed with the following steps:

10

20

25

30

35

40

45

50

55

60

65

8

passing said “token” from said operating system device

driver to said virtual resource manager;

retrieving device dependent information from the associ-

ated virtual resource manager device driver corre-
sponding to said “token”; and

using said device dependent information to drive the

device.

4. A method of linking device drivers of an operating
system run as a virtual machine on a virtual resource
manager with the device drivers of said virtual resource
manager comprising the steps of in a computer system:

specifying [the] a port number of a device connection in

a table of adapter characteristics;

modifying the operating system configuration files and

assigning a token number to said device;
reloading said operating system to define said device to
said virtual resource manager with adapter character-
istics and passing said token number to an associated
device driver of said virtual resource manager;

opening the device driver of said operating system to use
said device;

passing said token number from said device driver to said

virtual resource manager;

retrieving [the] device dependent information from the

associated virtual resource manager device driver cor-
responding to said token number; and

using said device dependent information to drive said

device, thereby linking the device drivers of said oper-
ating system and said virtual resource manager.

5. The method recited in claim 4 wherein a user may
modify a device configuration further comprising the steps
of updating the device driver of said operating system for the
device characteristics including the identical token number
for the device if the device is not a new device.

6. A method of linking device drivers of an operating
system, run as a virtual machine on a virtual resource
manager, with the device drivers of said virtual resource
manager, comprising the steps of in a computer system:

providing an intermediate layer operating as the virtual

resource manager and having a plurality of first device
drivers for driving devices within the computer system;
providing a system configuration file which describes a
plurality of corresponding devices accessible by the
operating system through the first device drivers;

loading the operating system info the computer system,
wherein a plurality of second device drivers for the
plurality of accessible devices are linked to the oper-
ating system, and wherein the second device drivers are
linked to first device drivers from the intermediate
layer;
providing, to the second device drivers, device dependent
information for the plurality of accessible devices;

opening each second device driver to use a particular one
of the plurality of accessible devices, wherein the
device dependent information is accessed by the device
driver to drive one of the plurality of accessible devices
through a corresponding first device driver; and

using the device dependent information to drive the
plurality of accessible devices through the first device
drivers.

7. A method for linking device drivers in a computer
operating system, run as a virtual machine on a virtual
resource manager, with the device drivers of said virtual
resource manager, wherein a user may modify a device
configuration, comprising the steps of:

Re. 36,394

9

providing an intermediate layer operating as the virtual
resource manager and having a plurality of first device
drivers for driving devices within the computer system;

creating a device dependent information file in the oper-
ating system corresponding to a physical device to be
bound, such file including device dependent informa-
tion for such device;

specifying a port number of the device connection in a
table of adapter characteristics;

updating a second device driver of the operating system
with device characteristics if the device is not a new
device when the device driver of the operating system
is opened;

otherwise, repeating said creating step if the device is a

new device; and

using, within the second device driver, the device depen-

dent information in the device dependent information
file to drive a first device driver within the intermediate
layer, which in turn drives the physical device.

8. A reconfigurable computer system having an operating
system run as a virtual machine on a virtual resource
manager, cOmprising:

an operating system;

a plurality of devices attached to the computer system;

an intermediate layer operating as the virtual resource
manager and having a plurality of first device drivers
for driving the devices;

a plurality of second device drivers coupled to the oper-
ating system and directly callable therefrom, wherein
the operating system communicates with the interme-
diate layer through the second device drivers, and
wherein said devices communicate with said interme-
diate layer through said first device drivers; and

means, connected to said operating system, for commu-
nicating stored device dependent information describ-
ing said devices fo said second device drivers when
said operating system is initialized, wherein said sec-
ond device drivers drive said first device drivers using
the device dependent information.

9. The system of claim 8, wherein said communicating
means includes, for each attached device, a device depen-
dent information file describing characteristics of such
device.

10. A reconfigurable computer system having an operat-
ing system run as a virtual machine on a virfual resource
manager, COmprising:

an operating system;

a plurality of devices attached to the computer system;

an intermediate layer operating as a virtual resource

manager and having a plurality of first device drivers
for driving the devices;

a plurality of second device drivers coupled to the oper-

ating system and directly callable therefrom, wherein

10

15

20

25

30

35

40

50

10

the operating system communicates with the interme-
diate layer through the second device drivers, and
wherein said devices communicate with said interme-
diate layer through said first device drivers;

means, connected fo said operating system, for commu-
nicating stored device dependent information describ-
ing said devices to said second device drivers when
said operating system is initialized, wherein said sec-
ond device drivers drive said first device drivers using
the device dependent information; and

a system file, in the computer system, describing the
attached devices, wherein said operating system reads
said system file when said operating system is
initialized, and wherein the second device drivers are
coupled to said operating system according to the
system file descriptions.

11. A reconfigurable computer system having an operat-
ing system run as a virtual machine on a virtual resource
manager, COmprising:

an operating system;

a plurality of devices attached to the computer system;

an intermediate layer operating as a virtual resource
manager and having a plurality of first device drivers
for driving the devices;

a plurality of second device drivers coupled to the oper-
ating system and directly callable therefrom, wherein
the operating system communicates with the interme-
diate layer through the second device drivers, and
wherein said devices communicate with said interme-
diate layer through said first device drivers;

means, connected fo said operating system, for commu-
nicating stored device dependent information describ-
ing said devices to said second device drivers when
said operating system is initialized, wherein said sec-
ond device drivers drive said first device drivers using
the device dependent information; and

wherein said device drivers have empty tables when they
are coupled to said operating system, and wherein the
device dependent information is placed into the empty
tables when said operating system is initialized.

12. The system of claim 11, wherein at least one second
device driver has more than one table containing device
dependent information, whereby one such second device
driver communicates with more than one device through a

first device driver.

13. The system of claim 10, further comprising:

a master file, in the computer system, containing template
descriptions of devices which can communicate with
said operating system through the first device drivers,
wherein entries in said system file are copied from said
master file when new devices are attached to the
system.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

Re. 36,394
November 16, 1999

PATENT NO. :
DATED
INVENTOR(S) : Advani et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 5, line 33, please change "LL-2-yte integer” to -LL-2-byte integer-.

Signed and Sealed this
Nineteenth Day of December, 2000

Q. TODD DICKINSON

Attesting Officer Commissioner of Patents and Trademarks

