
ConcurrentMentor: User Manual

Kishor Joshi

September 9, 2007

1 Overview

ConcurrentMentor consists of a message passing library which provides various communication
and synchronization abstractions, a visualization system to depict the run time behavior of user
programs and a run time system to set up the necessary addressing, synchronization, and remote
process execution facilities. In a nutshell, users write programs using functions from the message
passing library and use the run time system to execute their programs on specified hosts. A
command line tool cmrun is provided which is responsible for setting up the run time system and
executing specified processes. The visualization system, if enabled, comes up automatically after
cmrun is invoked. There is also an option to save visualization related data for later playback in
standalone mode. This document provides a reference to the command line tool cmrun and the
message passing library.

2 Hello World

Like most programming tutorials, we start with a hello world program. Here we describe how to
create a simple program and run it using our system. It is true that any any executable can be run
using our system, but the purpose is not served unless it is linked with the message passing library
and the program uses some form of message passing. A simple hello world program:

// hello.cpp

#include <iostream>

#include "cm.h"

using namespace std;

int main()

{

int myId, numProcs;

getMyId(&myId);

getNumProcs(&numProcs);

if(myId == 0)

1

cout<<"Hello World from process 0"<<endl;

else if(myId == 1)

cout<<"Hello World from process 1"<<endl;

}

The include file "cm.h" is required for using the message passing library. It contains prototypes of
all the objects supported by the library. Henceforth all our programs will include this header file.

getMyId() is a library function which returns the process id of the current process. This process
identifier is not the one assigned by the operating system, but it is the one assigned by our run
time system.

getNumProcs() is another library function which returns the total number of processes running in
that particular computation. Total number of processes is specified by the user while running the
programs.

These functions should be called at the beginning of the program. However, it is not mandatory.
But there is no reason not to do so. It makes a lot of things easier and in fact parallel programming
systems provide ways to access them via a function call or implicitly. Each process has a unique
process id assigned by the control process. The process ids start from 0 and are contiguous. So if
there are N processes in a particular computation, the process ids would be 0, 1, ..., N-1.

After saving the above code using your favorite editor, you will have to compile the program using
a C++ compiler. You should specify the correct path to the include file “cm.h” and the library file
“libcm.a””, but assuming that everything is installed in required locations, you can compile your
program as follows

g++ -o hello hello.cpp -lcm

Now to run the program, you will have to use the cmrun command. For this example we will require
two process running, which can be specified as an option to cmrun. At the shell type the following:

cmrun -np 2 hello

After this, the visualization window pops up. At this point you have to click the start button to
proceed. The output at the terminal is as follows:

Hello World from process 0

Hello World from process 1

The main visualization window is shown in figure 1 with various sections labeled.

3 cmrun

As mentioned earlier, cmrun is the run time system of ConcurrentMentor. When it is fired up, it
will perform the necessary initialization: setting up facilities for message passing, synchronization,

2

Figure 1: Main visual window

3

interfacing with the visual system, and then running the user programs on the specified machines.
The internal working of cmrun is not discussed in this manual, we will focus only on the command
line interface provided to the end users. The format of the command line is:

cmrun [-rsh|-ssh] [-nv] [-np nprocs] [-mf machinefile] [-help] userprog [arg1 ...]

cmrun [-rsh|-ssh] [-nv] [-mf machinefile] -pf programfile

[-rsh|-ssh]: specifies either rsh or ssh as remote login program. Default is rsh.

[-nv]: provides an option to disable the visualization system.

[-np nprocs]: -np is followed by a number which is the total number of processes to spawn.

[-mf machinefile]: machinefile contains the names of remote machines on which the programs
are to be run.

[-pf programfile]: programfile contains a list of programs and their arguments.

[-help]: displays a summary of options available.

[userprog arg1 arg2 ... arg n]: Specifies a user program and its arguments. userprog is
either an absolute or relative pathname, or a program name in the shell search path and arg1

arg2 ... argn are its arguments.

Notes:
- It is required to specify either a userprog in the command line or a program file via -pf option
but not both.
- When a program file is specified, -np option cannot be used or else it will result in an error.
- If machine file is not specified, all the programs run on the local host (the host where cmrun was
invoked from)
- When -help option is specified, a summary of available options is printed regardless of other op-
tions.
- But anything specified after userprog is not considered an argument to cmrun, not even the -help
option.

cmrun supports two models of computation: Single Program Multiple Data (SPMD) and Multiple
Program Multiple Data (MPMD). For SPMD model, program name can either be specified via the
command line or a program file. For MPMD, a program file has to be used.

4 File format

4.1 Program File

Program file is a text file which contains a list of programs and their command line arguments.
The program entries are separated by a newline. The arguments to a program should be specified
in the same line as the program. Anything beginning with # up to the next newline is treated as
a comment and ignored. Insignificant spaces, tabs or newline characters are also ignored.

4

You can specify absolute or relative paths of the programs in program file. You can also specify
programs that are in the shell search path.

The contents of a sample program file is listed for your convenience

#Comments are for your convenience. They are ignored

/home/grad/myid/progs/one my args #This is another comment

/home/grad/myid/progs/two other args

#And there can be more comments

Program file is specified via -pf option to cmrun. You have to specify either a program file or a
program name, but not both. If both are specified, cmrun prints an error message and quits. If you
specify the -pf option, you should not specify the -np option.

Process ids are assigned starting from the first entry. The first entry gets process id 0 and so on.

4.2 Machine File

Like program file it is also a text file, but it contains the machine names on which the user programs
are to be run. A machine name entry can either be a host name, a fully qualified domain name
(FQDN), or an IP address of the machine. Each entry is separated by one or more whitespace char-
acters (space, newline, tab). Comments start with # character upto the next newline. Comments
are for convenience and are ignored.

Machine file can contain duplicate entries. Duplicate entries are not ignored i.e. if a machine name
appears twice in a machine file, it is highly likely that the particular machine runs two programs.

The machine names specified in this file must be resolvable. If any entry cannot be resolved, it is
ignored and a warning message is displayed. If all entries cannot be resolved, the local host is used.
It is upto you to make sure that the machines specified in this file are up during the computation.
ConcurrentMentor does not deal with fault tolerance.

The entries in this file has one to one correspondence with the entries in the program file as far
as possible. The first program specified in the program file is run on the first machine specified
in the machine file. If there are more programs than available machines, the machines are used in
round robin fashion i.e. repeating from the top of the list after reaching the end. If there are more
machines than programs, the remaining machines are ignored.

The contents of a sample machine file

#This is a comment

bear bova anthony nonexistent.mtu.edu

asimov

herbert #Your note: This host goes down often.

5

From the above machine file there are five resolvable hosts bear, bova, anthony, asimomv, herbert
which are used, while the host nonexistent.mtu.edu is ignored and anything specified after #
character upto the next newline is treated as a comment.

IMPORTANT NOTE on remote machines:
ConcurrentMentor uses rsh or ssh to spawn remote processes. It is upto you to make sure that you
have proper access to the remote machines i.e. you do not require to enter password/passphrase
while accessing the machines remotely. For rsh protocol, make sure that you specify required
machine names in the ~/.rhosts file. For ssh, make sure that you use key based authentication
and can access remote machines without a passphrase.

5 System Information

From the point of view of user programs, two information about the runtime system are significant:
process id and number of processes.

1. Process id: As mentioned earlier, process id is the identifier of a process assigned by the run
time system. Process id begins from 0 and continue upto N-1, where N is the total number
of processes in that computation. The library provides a function to get the id of the current
process and most programs call it at the beginning.

void getMyId(int *myId);

myId is a pointer to the location where the information about the current process id is to be
stored. It is upto the user to make sure that the specified memory location is allocated. The
user program behavior is undefined in case the pointer points to an unallocated memory.

2. Number of processes: This is the information about total number of processes spawn by the
control process in the current computation. The number of process is specified either by the
-np option or the number of program entries in the program file. If none is specified, then the
default is 1. The library provides a function to get this information and it is called alongside
the getMyId() function.

void getNumProcs(int *numProcs);

numProcs is a pointer to the memory location where the information about number of pro-
cesses is to be stored. It should be a valid pointer as above, otherwise the behavior is
undefined.

3. Get last error: The library also provides a way to print a message that describes the last error
encountered.

void cmerror(char * msg);

msg is the pointer to the message to print alongside the error message.

6

6 Message Passing

ConcurrentMentor provides support for message passing between processes. Message passing makes
it feasible for multiple processes to communicate with each other, and synchronize. Exchanging
messages using low level communication facilities is possible, but it is a cumbersome process and
much of the effort gets wasted in learning details about them. So ConcurrentMentor provides an
abstraction of communication facilities to the user programs, which is transparent to actual location
of the machine on which they run. The communication primitives are called channels. Concur-
rentMentor supports one to one channels only i.e they connect two processes and the connected
processes can communicate with each other in either directions. You need to create a channel
object in your program in order to use the facilities. There are two types of channels: synchronous
and asynchronous.

6.1 Synchronous Channel

Synchronous channel is the one in which both send and receive blocks until it is complete in a
lockstep. The message passing is considered complete only when the message sent by the sender is
received by the receiver and the sender gets an acknowledgment of the receipt. Since corresponding
send and receive complete in a lockstep, both processes will have the same vector time right after
the completion.

Channel constructor

SynChannel(int destID, char *channelname = NULL);

Description:
Creates a synchronous channel between the calling process and the destination process as identified
by destID. Both the processes involved need to create a synchronous channel object in between
them in order for the channel creation to be successful.

Arguments:
destID: The destination process id.
channelname: Name of the channel. If not specified, the default value is NULL. In the default
case, the channel name is assigned by the library. This name is used by the visualization system
for display purpose.

Preconditions:
There should be no pre-existing synchronous channel between the calling process and the destination
process. This implies that between two processes there can be at most one synchronous channel.
In addition to that, a process cannot create a synchronous channel with itself.

Result:
A channel is created between the current process and the destination process if all the conditions
are met. If a process already has an existent synchronous channel to the destination process or it
tries to create a channel with itself, channel creation fails. When a channel cannot be created, all
subsequent operations on such channel also fail.

7

A simple program to create synchronous channel is listed below:

// syncc.cpp

// Program to create a synchronous channel and send data

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main(int argc, char *argv[])

{

int numbytes = 4;

getMyId(&myId);

getNumProcs(&numProcs);

if (myId == 0) {

char *sendbuf = new char[numbytes + 2];

int retval;

for (int i = 0; i < numbytes; i++) {

sendbuf[i] = ’A’;

}

sendbuf[numbytes] = ’\0’;

SynChannel *ch1 =

new SynChannel(1);

retval = ch1->send(sendbuf, numbytes);

cout << "send returned " << retval << endl;

delete sendbuf;

}

else {

char *recvbuf = new char[numbytes + 2];

int retval;

SynChannel ch1(0);

retval = ch1.receive(recvbuf, numbytes);

if (numbytes != -1) {

recvbuf[numbytes] = ’\0’;

cout << "Received data::"

<< recvbuf << endl;

}

cout << "receive returned " << retval << endl;

8

delete recvbuf;

}

return 0;

}

Compile this program and run it as follows:

g++ -o syncc syncc.cpp -lcm

cmrun -np 2 syncc

The following output is observed at the terminal:

Received data::AAAA

send returned 4

receive returned 4

Figure 2: History diagram for synchronous send

Figure 2 depicts the history diagram for the above program. A history diagram portrays the states
of all processes and various events of interest like send, receive etc. during the lifetime of the
processes. Each process is represented by an event line which is green when the process is running
normally and red when the process is blocked. The events are denoted by an event tag, with the
name of the event, in the event line. There are options to display the vector time corresponding to
all events, and to draw connections between events in different processes. A brief description about
the tags can be obtained by clicking Help->Graph/Diagram Tags menu from the main window.

9

Clicking on each event brings up a window highlighting the line of source code of the user program
which was responsible for that event. For this to work properly the source code should be in the
current working directory, i.e the directory from where cmrun is invoked.

Synchronous send

int send(void *message, int message size);

Description:
Sends message through the channel. This call blocks until the message is received and the receipt
is acknowledged by the receiver.

Arguments:
message: The pointer to message buffer. This cannot be NULL.
message size: The total number of bytes to send. Must be greater than or equal to 0.

Preconditions:
The channel should be existent. If the creation of channel had failed earlier, this operation too
will fail. For successful completion, it requires that the receiver is up for the entire duration. If
communication breaks between the two processes, this operation fails.

Return value:

If successful, the return value is the total number of bytes sent.

If communication breaks, return value is 0.

In case of nonexistent channel, NULL message buffer, or negative message size is specified, return
value is -1.

Results:
Sender and the receiver will have the same vector clock values at the end.

Synchronous receive

int receive(void * message, int message size);

Description:
Receives message through the channel. Like send, this call too blocks until the message is received.
This call returns only after sending an acknowledgment to the sender.

Arguments:
message: The pointer to buffer where the receive message should be stored. This cannot be NULL.
message size: The total number of bytes to receive. Must be greater or equal to 0.

Preconditions:
Preconditions are similar to the send operation.

Return value:

Upon successful completion, the return value is total number of bytes received.

10

In case of error, the return value is -1.

Note: If there are less bytes available from the sender, then that value is returned instead of the
one requested. It is up to the user to pass a sufficiently allocated message buffer. If larger message
is received from the sender, only the requested size is copied to the given buffer and the remaining
message is discarded.

Results:

Sender and receiver will have the same vector clock values at the end.

The buffer pointed by message will have requested bytes or less.

// syncring.cpp

// Program to create a synchronous channel ring

// and pass data around the ring

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main(int argc, char *argv[])

{

int counter = 0;

getMyId(&myId);

getNumProcs(&numProcs);

//create a ring and pass message around

SynChannel *ch_left =

new SynChannel((numProcs + myId - 1) % numProcs);

SynChannel *ch_right =

new SynChannel((myId + 1) % numProcs);

cout << "Hello from process " << myId << endl;

if (myId == 0) {

ch_right->send(&counter, 4);

ch_left->receive(&counter, 4);

cout << "Counter at P0 = " << counter << endl;

} else {

ch_left->receive(&counter, 4);

counter++;

ch_right->send(&counter, 4);

11

}

}

Compile this program and run it as follows:

g++ -o syncring syncring.cpp -lcm

cmrun -np 3 syncring

Note: Number of processes must be greater than or equal to 3.

The following output is observed at the terminal:

Hello from process 0

Hello from process 1

Hello from process 2

Counter at P0 = 2

Figure 3: Space Time diagram for synchronous ring

Figure 3 depicts the space time diagram for the above program. A space time diagram shows
the causal relationship between the events of different processes. Each process is represented by
an event line which in turn consists of the events of interest. Unlike history diagram, the events
are limited to Synchronous/Asynchronous Send/Receive only. There are options to connect the
corresponding send and receive events, display the event labels, and display the vector time. A
brief description about the event labels can be obtained by clicking Help->Graph/Diagram Tags
menu from the main window. The events can be slided up and down in the event line as long as
the causal relations with other events are not violated.

Synchronous poll

12

int poll(int num);

Description:
Checks whether the channel is available for reading num bytes of data at that time. This call
returns immediately.

Arguments:
num: The size of message to check the readability.

Return value:

If successful, the number of bytes available for reading is returned.

If channel is unavailable for reading return value is -1.

Return value is -2 for permanent failures i.e in case of nonexistent channel, or invalid message size.

//syncp.cpp

// Synchronous channel poll

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main(int argc, char *argv[])

{

int numbytes = 0;

getMyId(&myId);

getNumProcs(&numProcs);

numbytes = 1;

if (myId == 0) {

char *sendbuf = new char[numbytes + 2];

int retval;

for (int i = 0; i < numbytes; i++) {

sendbuf[i] = ’A’;

}

sendbuf[numbytes] = ’\0’;

SynChannel *ch1 = new SynChannel(1);

sleep(1);

retval = ch1->send(sendbuf, numbytes);

cout << "send returned: " << retval << endl;

cout << "Data sent: " << sendbuf << endl;

13

delete sendbuf;

}

else {

char *recvbuf = new char[numbytes + 2];

int retval, count = 0;

SynChannel ch1(0);

while ((retval = ch1.poll(numbytes)) < 0) {

cout << "Iteration " << count++ << " in poll\n";

if (retval == -2)

break;

}

retval = ch1.receive(recvbuf, numbytes);

cout << "receive returned " << retval << endl;

cout << "Data received: " << recvbuf << endl;

delete recvbuf;

}

return 0;

}

Compile this program and run it as follows:

g++ -o syncp syncp.cpp -lcm

cmrun -np 2 syncp

The following output is observed at the terminal:

Iteration 0 in poll

receive returned 1

Data received: A

send returned: 1

Data sent: A

Checking channel validity

bool isValid();

Description:
To check whether the channel was created successfully.

Return value:
true if channel is existent.
false if channel is nonexistent.

14

6.2 Asynchronous Channel

Asynchronous channel has a nonblocking send and both blocking and nonblocking receive. The
sender does not wait for receiver to receive message, it rather returns immediately after the data
is copied to the communication buffer. This type of channel also supports optional message loss.
Message loss is specified by reliability factor, which is a value between 0.0 and 1.0, ranging from
totally unreliable to fully reliable. This factor can be specified at the time of channel creation by
either supplying a number or a user defined reliability function.

6.2.1 Channel constructor

This type of channel has two types of constructor depending upon how the user wants to specify
reliability. If a value is to be specified for reliability factor, then the first one can be used. In
some cases where nonuniform distribution is required, the second one can be used. The reliability
function should return a float value between 0.0 and 1.0.

AsynChannel(int dest, float rel, char * chname);

AsynChannel(int dest, float (*relfunction) (void), char *chname);

Description:
Creates an asynchronous channel between the calling process and the destination process as identi-
fied by dest. As in synchronous channel both the process involved need to create an asynchronous
channel between them in order for the channel creation to be successful. If channel is created by
only one process, the creation blocks until it hears from the destination.

Arguments:
dest: The destination process id.
chname: The name of the channel. This value is NULL by default, and in that case a default name
is assigned to the channel.
rel: The reliability factor. The default value is 1.0
relfunction: The reliability function.

Preconditions:
There should be no pre-existing asynchronous channel between the calling process and the desti-
nation process and a process cannot create channel with itself.

Result:
A channel is created between the calling process and the destination process if all conditions are
satisfied. In case of error, all subsequent operations on such channels fail.

6.2.2 Asynchronous Send

int send(void * msg, int msgsz);

Description:
Sends message through the channel. This call does not wait for an acknowledgment from the

15

receiver.

Arguments:
msg: The pointer to message buffer to send. This cannot be NULL or unallocated.
msgsz: The total number of bytes to send. Must be greater than or equal to 0.

Preconditions:
The channel should be existent. If the creation had failed earlier, the operation will fail. It does
not matter whether the receiver is reading the data send, however, it requires that the connection
is still intact.

Return value:
Number of bytes sent in case of successful operation
0 in case communication between the destination breaks.
-1 in case of nonexistent channel, NULL message buffer, or negative message size.

// asyncc.cpp

// To demonstrate the use of reliability function in asynchronous channel

#include <iostream>

#include <string.h>

#include <unistd.h>

#include <time.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int start, now;

int msgcount;

float reliabilityfunc()

{

float reliab = 0.0;

now = time(NULL);

if (msgcount > 5) {

reliab = 0.0;

} else {

reliab = 1.0;

}

msgcount++;

return reliab;

}

int main(int argc, char *argv[])

{

float rel;

start = time(NULL);

16

msgcount = 0;

getMyId(&myId);

getNumProcs(&numProcs);

if (myId == 0) {

int i = 0;

char *sendbuf = "abcd";

AsynChannel *ch1 = new AsynChannel(1, reliabilityfunc);

cout << "Reliability :" << reliabilityfunc() << endl;

for (i = 0; i < 10; i++) {

ch1->send(sendbuf, sizeof(sendbuf));

}

cout << "Send count : " << i << endl;;

}

else {

char recvbuf[10];

AsynChannel *ch1 = new AsynChannel(0);

while (ch1->receive(recvbuf, 4) >= 0) {

msgcount++;

}

cout << "Reveive count: " << msgcount << endl;

}

return 0;

}

Compile this program and run it as follows:

g++ -o asyncc asyncc.cpp -lcm

cmrun -np 2 asyncc

The following output is observed at the terminal:

Reliability :1

Send count : 10

Reveive count: 5

Figures 4 5 depicts the history diagram and space time diagram for the above program respectively.
Some send events in those figures do not have a corresponding receive events because of message
loss.

17

Figure 4: History diagram for asynchronous send

18

Figure 5: Space Time diagram for asynchronous send

19

6.2.3 Asynchronous Receive

int receive(void * msg, int msgsz);

int nbreceive(void * msg, int msgsz);

Description:
receive is the blocking version and nbreceive is the nonblocking version. This call receives data
from the channel. The blocking version waits until data is received, the nonblocking version does
not wait for data if not available at the time of call.

Arguments:
msg: The pointer to the buffer where the received message is to be stored.
msgsz: Number of bytes to receive from the channel.

Preconditions:
Channel should be existent. Receive on a create failed channel returns error.

Return value:
Number of bytes sent in case of success.
-1 in case of error. Error may be caused due to nonexistent channel, NULL message buffer, or
negative message size. Error also occur due to problem with connection.
Note: Nonblocking receive returns number of bytes if it can read that size of data from the channel.
Otherwise, the return value is -1 and it returns immediately without waiting for the data to arrive.

// asyncnbr.cpp

// To demonstrate the nonblocking receive

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main(int argc, char *argv[])

{

int numbytes = 10;

getMyId(&myId);

getNumProcs(&numProcs);

if (myId == 0) {

char *sendbuf = new char[numbytes + 2];

int retval;

for (int i = 0; i < numbytes; i++) {

sendbuf[i] = ’M’;

}

sendbuf[numbytes] = ’\0’;

20

AsynChannel *ch1 = new AsynChannel(1);

sleep(5);

retval = ch1->send(sendbuf, numbytes);

cout << myId << ": This time I snooze " << retval << endl;

sleep(15);

delete sendbuf;

}

else {

char *recvbuf = new char[numbytes + 2];

int retval;

AsynChannel ch1(0);

retval = ch1.nbreceive(recvbuf, numbytes);

if (retval == -1)

cout << myId << ": No message in channel" << endl;

//Let the sender send peacefully!!

sleep(6);

if (retval == -1) {

retval = ch1.nbreceive(recvbuf, numbytes);

if (retval == -1)

cout << myId << ": OOPS! no message again"

<< endl;

else

cout << myId <<

": YAHOO!! I finally received data" <<

endl;

}

delete recvbuf;

}

return 0;

}

Compile this program and run it as follows:

g++ -o asyncnbr asyncnbr.cpp -lcm

cmrun -np 2 asyncnbr

The following output is observed at the terminal:

1: No message in channel

0: This time I snooze 10

1: YAHOO!! I finally received data

21

6.2.4 Asynchronous poll

This is similar to synchronous poll.

6.2.5 Checking channel availability

This is similar to synchronous counterpart.

6.3 Vector Clock

Vector clock for a system of N processes is an array having N elements where each element is the
corresponding logical clock of each process. Each process increments its clock value every time
an event of interest occurs and timestamps every outgoing message using the vector clock. Each
process maintains vector clock and the clock is updated every time a message is received from other
processes or the control process. This class provides an interface to the vector time maintained by
the library. Since each process maintains one vector time, creating multiple objects of this type in
a single process refer to the same vector time.

6.3.1 Constructor

VectorClock()

Creates a vector clock object which points to the vector time maintained by the channel library.

6.3.2 +, +=, and ++ Operators

These operators increment the vector clock value corresponding to the current process by the
specified operand which must be greater than or equal to 0. The ++ operator increments the clock
value by one.

6.3.3 [] Operator

This operator returns the clock value corresponding to the process specified by the operand. If
the operand is out of range, the clock value corresponding to the current process is returned. This
operator provides a read-only access.

6.3.4 Print vector clock

void Print(void); This function prints the current vector clock value in string form, which is a
comma separated string containing clock values of each process starting from process 0.

22

// vectorc.cpp

// To demonstrate the usage VectorClock class

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main(int argc, char *argv[])

{

getMyId(&myId);

getNumProcs(&numProcs);

VectorClock c1;

++c1;

if(myId == 0){

cout << "Printing vector clock id = " << myId << endl;

c1.Print();

}

CMBarrier();

if (myId == 0) {

cout << "Entering round 2" << endl;

c1.Print();

}

c1 += 10 + myId;

if(myId == 0){

cout << "Printing vector clock id = " << myId << endl;

c1.Print();

}

CMBarrier();

c1 + 20;

if(myId == 0){

cout << "Printing vector clock id = " << myId << endl;

c1.Print();

}

CMBarrier();

if (myId == 0) {

cout << "Entering round 3" << endl;

c1.Print();

23

}

c1 += -10;

if(myId == 0)

c1.Print();

CMBarrier();

c1 += -1000;

CMBarrier();

if(myId == 0)

c1.Print();

return 0;

}

Compile this program and run it as follows:

g++ -o vectorc vectorc.cpp -lcm

cmrun -np 2 vectorc

The following output is observed at the terminal:

Printing vector clock id = 0

<1 0>

Entering round 2

<1 1>

Printing vector clock id = 0

<11 1>

Printing vector clock id = 0

<31 12>

Entering round 3

<31 32>

<31 32>

<31 32>

6.4 Channel Monitor

This is an interface provided by the library to monitor availability of both synchronous and asyn-
chronous channels for receiving messages. This is similar to individual poling mechanisms in chan-
nels, but it provides a way to monitor multiple channels simultaneously.

24

6.4.1 Constructor

Monitor(Channel *channels[], int num);

Description:
Creates a monitor object.

Arguments:
channels: An array of synchronous, asynchronous, or both type of channels. Channel is the base
class of both types of channels, so the array could contain mixed type of channels.
num: The number of channels from the array to monitor.

Preconditions:
The channels array should be valid and populated. num must be greater than or equal to zero and
should contain the actual number of channels to monitor. It is the responsibility of user to make
sure that it does not lead to access outside the boundary of the array.

Result:
Creation of this type of object should always be successful unless there is some problem with
accessing the array in which case the behavior is undefined.

6.4.2 Select ready channels

int selectReady(int bytes, int ms);

Description:
Selects channels from which given size of data can be read or return within a timeout.

Return value:
The return value is the total number of channels out of the monitored channels that are readable.
If no channels are available then the return value is 0.

6.4.3 Get ready channels

int *readyChannels();

Description:
Returns the indices of channels that are ready for reading.

Return value:
The return value is an array containing the indices of channels that are ready for reading. The
number of valid elements in the given array is the return value of the call selectReady(). There
is also a separate function numReady() which returns the number of ready channels after the last
call to the selectReady() function.

25

6.4.4 Get number of ready channels

int numReady();

Description:
Returns the number of channels ready for reading after the last call to the selectReady() function.

Return value:
The number of channels ready for reading or 0 if no channels are ready.

7 Mutex

7.1 Constructor

DistMutex(char * name);

Description:
Creates a mutex object in the calling process.

Arguments:
name: Name of the mutex to be created. Mutexes across different processes are identified by names.
Two or more process have to create a mutex with the same name if they want to use the same
shared resource.

Preconditions:
There should no pre-existing mutex with the same name in the calling process. The name parameter
should not be NULL and the calling process should not exceed MAX SYNC OBJ number of mutexes.

Result:
A mutex object is created in the given process if all conditions are met. If any of the conditions is
not met, mutex creation fails and any subsequent operation on such mutex also fails.

7.2 Mutex Lock

int lock();

Description:
Locks the given mutex. If the mutex had been locked earlier by another process, then the calling
process waits until it is unlocked by the holding process.

Preconditions:
The mutex should be existent. If creation of mutex had failed earlier, this operation too will fail.
If a process tries to lock the same mutex in succession, without unlocking, then the behavior is
undefined.

26

Return value:
If successful, the return value is 1
On error, the return value is -1.

7.3 Mutex Unlock

int unlock();

Description:
Unlocks the given mutex.

Preconditions:
The mutex should be existent. If creation had failed earlier, this operation too will fail. If a process
tries to unlock a mutex without locking it first, or tries to unlock the same mutex in succession,
then the behavior is undefined.

Return value:
If successful, the return value is 1
On error, the return value is -1.

// mutex.cpp

// To demonstrate the use of distributed mutex

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main(int argc, char *argv[])

{

getMyId(&myId);

getNumProcs(&numProcs);

if (numProcs < 2)

cout << "Only one process!" << endl;

DistMutex *m1 = new DistMutex("Mutex1");

m1->lock();

cout << "Process " << myId << ", locking the mutex" << endl;

cout << "Other processes, if any, will follow after one second" << endl;

sleep(1);

27

m1->unlock();

return 0;

}

Compile this program and run it as follows:

g++ -o mutexl mutexl.cpp -lcm

cmrun -np 4 mutexl

The following output is observed at the terminal:

Process 2, locking the mutex

Other processes, if any, will follow after one second

Process 0, locking the mutex

Other processes, if any, will follow after one second

Process 3, locking the mutex

Other processes, if any, will follow after one second

Process 1, locking the mutex

Other processes, if any, will follow after one second

The history diagram for mutex lock and unlock operations is depicted in figure 6.

8 Barrier

8.1 Constructor

DistBarrier(char * name, int size);

Description:
Creates a barrier object in the calling process.

Arguments:
name : Name of the barrier to be created. Barriers across different processes are identified by
names. If two or more processes create a barrier with the same name, then the processes refer to
the same barrier.
size : The size of barrier.

Preconditions:
There should be no pre-existing barrier with the same name in the calling process. The name

parameter should not be NULL and the calling process should not exceed MAX SYNC OBJ number
of barriers. The size parameter should be between 1 and total number of processes. At least size
number of processes must create a barrier before it can be used.

28

Figure 6: History diagram for mutex lock and unlock

29

Result:
A barrier object is created in the calling process if all the conditions are met. If any of the conditions
is not met, barrier creation fails and any subsequent operation on such barrier also fails

The channel library also provides an implicit barrier named barrierALL with the size same as
the total number of processes. The implicit barrier need not be created by the user and can be
used via call to the function CMBarrier(). This barrier is also used by the collective operations in
topologies.

8.2 Barrier Wait

void wait();

Description:
Wait on the given barrier. All processes calling wait block until a number of processes, equal to
the size of the barrier, call wait on the given barrier. A barrier completes a generation when all
the processes creating it go through a wait operation. Barrier generation is handled transparently
by the library. If a barrier’s size is less than number of processes, only the first size number of
processes are blocked in each generation.

Preconditions:
The barrier should be existent. If creation had failed earlier, this operation too will fail.

Return value:
NONE
In case of error, the desired synchronization is not achieved.

// barrier.cpp

// To demonstrate the use of distributed barrier

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main(int argc, char *argv[])

{

int counter = 0;

getMyId(&myId);

getNumProcs(&numProcs);

DistBarrier *gb = new DistBarrier("GoodBarrier", numProcs);

AsynChannel ch_left((numProcs + myId - 1) % numProcs);

30

AsynChannel ch_right((myId + 1) % numProcs);

cout << "Hello from process " << myId << endl;

gb->wait();

if (myId == 0) {

ch_right.send(&counter, 4);

ch_left.receive(&counter, 4);

cout << "Counter at P0 = " << counter << endl;

} else {

ch_left.receive(&counter, 4);

counter++;

ch_right.send(&counter, 4);

cout << "Counter at P" << myId << " " << counter << endl;

}

gb->wait();

delete gb;

}

Compile this program and run it as follows:

g++ -o barrier barrier.cpp -lcm

cmrun -np 4 barrier

The following output is observed at the terminal:

Hello from process 0

Hello from process 1

Hello from process 2

Counter at P1 1

Counter at P2 2

Counter at P0 = 2

The history diagram for barrier wait operation is depicted in figure 7. It can be noted that the
vector time after passing a barrier is the same in all processes.

9 Topolgy

Topology is a higher level abstraction based on channels. It provides a convenient way to build
communication infrastructure for a group of processes. Channel library provides supports for var-
ious types of topology classes which includes constructor, send/receive functions, and collective
communication functions. Topology uses asynchronous channels for communication and since any

31

Figure 7: History diagram for barrier wait

32

two processes cannot have more than one such channel between them, processes cannot have com-
mon topologies in between them. For the processes that are in a topology, directed connected ones
have an implicit asynchronous channel between them and have to use the send/receive functions
provided by topology. Various types of topologies are supported.

General Topology: A topology is created based on user supplied topology map.
Constructor:

Topology(int **topmap);

topmap is a pointer to dynamically allocated 2D array which contains a map of the topology.
A link between process i and j exists if topomap[i][j] is greater than 0. The map must
correspond to a connected graph.

Fully Connected Topology: Each process is connected to every other process.
Constructor:

FullyConnectedTopology();

Linear Topolopgy
Constructor:

LinearArrayTopology();

Ring Topology
Constructor:

RingTopology();

Star Topology
Constructor:

StarTopology(int center = 0); center : The id of center process. Default value is 0.

Grid Topology
Constructor:

GridTopology(int row, int column);

row : The total number of rows in the topology.
column : The total number of columns in the topology.
rows * columns must be equal to the total number of processes

Torus Topology
Constructor:

TorusTopology(int row, int column);

row : The total number of rows in the topology.
column : The total number of columns in the topology.
rows * columns must be equal to the total number of processes

The following macros are defined in the message passing library:

CM UP: The north neighbor of a process if exists.

CM DOWN: The south neighbor of a process if exists.

33

CM LEFT: The left neighbor of a process if exists.

CM RIGHT: The right neighbor of a process if exists.

CM ANY: Any directly connected neighbor of a process.

9.1 Communication methods in a topology

A topology class provides various communication methods.

9.1.1 Topology send

int tsend(int destId, void *sendbuf, int size);

Description:
This function provides a way to send message to a directly connected process. The behavior is
same as asynchronous channel send.

Arguments:
destId : The process id of the destination process.
sendbuf : The pointer to the message buffer.
size : The total number of bytes to send. Must be greater than or equal to 0.

Preconditions:
Same as asynchronous channel.

Return value:
Same as asynchronous channel.

// tsend.cpp

// To demonstrate topology send and receive operations

#include <iostream>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main()

{

int **map;

getMyId(&myId);

getNumProcs(&numProcs);

map = new int *[numProcs];

for (int i = 0; i < numProcs; i++)

34

map[i] = new int[numProcs];

for (int i = 0; i < numProcs; i++)

for (int j = 0; j < numProcs; j++)

map[i][j] = 1;

Topology * t2 = new Topology(map);

if(myId == 0){

char * sndbuf = "mydata";

int length = strlen(sndbuf);

t2->tsend(1, sndbuf, length+1);

} else if(myId == 1){

char recvbuf[10];

int length = 7;

t2->treceive(0, recvbuf, length);

cout<<myId<<": Data received: "<<recvbuf<<endl;

}

return 0;

}

Compile this program and run it as follows:

g++ -o tsend tsend.cpp -lcm

cmrun -np 5 tsend

The following output is observed at the terminal:

1: Data received: mydata

9.1.2 Topology receive

int treceive(int sourceId, void *sendbuf, int size)

Description:
This function provides a way to receive message from a directly connected process. The behavior
is same as asynchronous channel receive.

Arguments:
sourceId : The process id of the destination process. If source is equal to CM ANY, then message
from any of the directly connected channel is received.
sendbuf : The pointer to the message buffer.
size : The total number of bytes to send. Must be greater than or equal to 0.

35

Preconditions:
Same as asynchronous channel.

Return value:
Same as asynchronous channel.

9.1.3 Topology broadcast

int broadcast(int rootID, void *sendbuf, int ssize, void *recvbuf, int rsize)

Description:
Message is broadcast from the originator to all the processes in the topology. All the processes in
the topology need to call this function

Arguments:
rootID : The process id of the process broadcasting.
sendbuf : The pointer to the message buffer being broadcast. This applies to root process only.
ssize : The total number of bytes being sent. This applies to root only.
recvbuf : The pointer to the buffer to store the received message. This applies to all processes.
rsize : The number of bytes to receive. This applies to all processes.

Preconditions:
Topology must be existent. The value of rootID must be same in all processes. The required buffers
should not be NULL and should point to a valid block of memory.

Return value:
On success, the number of bytes broadcast is returned for the root process and number of bytes
received for their processes. On error the return value is -1.

// topob.cpp

// To demonstrate the topology broadcast operation

#include <iostream>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main()

{

int recvbuf;

int sndbuf;

getMyId(&myId);

getNumProcs(&numProcs);

LinearArrayTopology t;

recvbuf = -1;

36

if(myId == 0){

sndbuf = 55;

}

t.broadcast(0, &sndbuf, 4, &recvbuf, 4);

cout<<myId<<": Data received: "<<recvbuf<<endl;

return 0;

}

Compile this program and run it as follows:

g++ -o topob topob.cpp -lcm

cmrun -np 5 topob

The following output is observed at the terminal:

3: Data received: 55

2: Data received: 55

0: Data received: 55

1: Data received: 55

9.1.4 Topology gather

int gather(int rootID, void *sendbuf, int ssize, void *recvbuf, int rsize)

Description:
The root process receives message segments from all processes, including itself, and constructs the
final message. The arrangement of final message is based on ascending order of processes ids.

Arguments:
rootID : The process id of the process gathering.
sendbuf : The pointer to the message buffer being sent. This applies to all processes.
ssize : The total number of bytes being sent. This applies to all processes.
recvbuf : The pointer to the buffer to store the received message. This applies root process only.
rsize : The number of bytes to receive. This applies to root process only.

Preconditions:
Topology must be existent. The value of rootID must be same in all processes. The required buffers
should not be NULL and should point to a valid block of memory.

Return value:
On success, the number of bytes sent to root is returned for the non root processes. The total
number of bytes received is returned for the root process. On error the return value is -1.

// topog.cpp

37

// To demonstrate the topology gather operation

#include <iostream>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main()

{

int sndbuf;

int * source = NULL;

getMyId(&myId);

getNumProcs(&numProcs);

if(numProcs != 4){

if(myId == 0)

cout<<"Error: Number of processes must be equal to 4"<<endl;

exit(-1);

}

GridTopology t(2, 2);

sndbuf = myId * 100;

if(myId == 0){

source = new int[numProcs];

for(int i = 0; i < numProcs; i++)

source[i] = 0;

}

t.gather(0, &sndbuf, 4, source, 4*numProcs);

if(myId == 0){

cout<<myId<<": Data gathered: "<<endl;

for(int i = 0; i < numProcs; i++)

cout<<source[i]<<endl;

}

delete [] source;

return 0;

}

Compile this program and run it as follows:

g++ -o topog topog.cpp -lcm

cmrun -np 4 topog

38

The following output is observed at the terminal:

0: Data gathered:

0

100

200

300

9.1.5 Topology scatter

int scatter(int rootID, void *sendbuf, int ssize, void *recvbuf, int rsize)

Description:
The root process divides the given message into N (N: number of processes in the topology) unique
chunks and sends the chunks to respective processes, including itself.

Arguments:
rootID : The process id of the process scattering.
sendbuf : The pointer to the message buffer being sent. This applies to root process only.
ssize : The total number of bytes being sent. This applies to root process only.
recvbuf : The pointer to the buffer to store the received message. This applies to all processes.
rsize : The number of bytes to receive. This applies to all processes.

Preconditions:
Topology must be existent. The value of rootID must be same in all processes. The required buffers
should not be NULL and should point to a valid block of memory.

Return value:
On success, the return value is total bytes sent in root process and number of bytes received in
other processes. The return value is -1 in case of errors.

// toposc.cpp

// To demonstrate the topology scatter operation

#include <iostream>

#include "cm.h"

using namespace std;

int myId, numProcs;

int main()

{

int recvbuf;

int * source = NULL;

getMyId(&myId);

getNumProcs(&numProcs);

39

if(numProcs < 2){

if(myId == 0)

cout<<"Number of processes must be greater than 2"<<endl;

exit(-1);

}

StarTopology t(1);

recvbuf = -1;

if(myId == 0){

source = new int[numProcs];

for(int i = 0; i < numProcs; i++)

source[i] = 100*i;

}

t.scatter(0, source, 4, &recvbuf, 4);

cout<<myId<<": Data received: "<<recvbuf<<endl;

return 0;

}

Compile this program and run it as follows:

g++ -o toposc toposc.cpp -lcm

cmrun -np 5 toposc

The following output is observed at the terminal:

2: Data received: 200

0: Data received: 0

3: Data received: 300

4: Data received: 400

1: Data received: 100

9.1.6 Topology reduce

int reduce(int rootID, void *sendbuf, void *recvbuf, int size, void *(*reduce function)

(void *, void *)

Description:
This function applies user defined global reduction function to the messages received from all
processes.

40

Arguments:
rootID : The process Id responsible for doing the reduce operation. sendbuf : The pointer to the
send buffer. Applies to all processes. recvbuf : The pointer to the receive buffer. Applies to root
only. size : The number of bytes to send. reduce function : The user defined reduction function.

Preconditions:
Topology must be existent. The value of rootID must be same in all processes. the required buffers
should not be NULL and should point to a valid block of memory.

Return value:
On success, total number of bytes sent to the root process is returned. On error , the return value
is -1.

// topore.cpp

// To demonstrate the topology reduce operation

#include <iostream>

#include "cm.h"

using namespace std;

void *reducefunc(void *a1, void *a2)

{

int arg1 = *(int *) a1;

int arg2 = *(int *) a2;

int *result = new int;

*result = arg1 + arg2;

return result;

}

int myId, numProcs;

int main()

{

int sndbuf;

int recvbuf;

getMyId(&myId);

getNumProcs(&numProcs);

FullyConnectedTopology t;

sndbuf = myId * 100;

if (myId == 0) {

int recvbuf = -1;

}

t.reduce(0, &sndbuf, &recvbuf, 4, reducefunc);

41

if (myId == 0) {

cout << myId << ": Data reduced: " << recvbuf<<endl;

}

return 0;

}

Compile this program and run it as follows:

g++ -o topore topore.cpp -lcm

cmrun -np 6 topore

The following output is observed at the terminal:

0: Data reduced: 1500

10 Visualization System

The function of this system is to visualize the runtime behavior of user programs. There are two
modes: realtime visualization invoked automatically by the control process or standalone playback
invoked from the command line. Realtime mode generates displays as it receives information from
the control process while the playback mode does so by reading previously saved visualization
data from a file. Realtime visualization can further be divided into two types: Interactive and
Non-interactive. The execution mode of visual system is specified during startup and it cannot be
changed later. The interactive feature is not available in standalone playback mode. Visualization
system is disabled if cmrun is started with a -nv option.

The main window of visualization system can be divided into following different portions:

Menus: Provides options to save the visualization related data to a file, or load visualization data
from a file if in standalone mode, display the online help from ConcurrentMentor website,
and display information about Graph/Diagram tags.

List view selection buttons: Selects the appropriate information to display in embedded list.

Non list view selection buttons: Opens a new window for each option.

Embedded list: A display area where the user can view various information depending upon
selection made.

Interactive visualization selection: To enable or disable interactive visualization and to con-
figure stop points.

Interval selection bar: Provides the user to specify the interval between reading two consecutive
visual message.

42

Control buttons: Decide the state of visualization system. There are three buttons: Step,
Start/Resume, Pause. Start button appears during startup and user has to click it in order
to start the computation. After clicking, Start button changes to Resume. Step button is used
to read a single visual message each time it is clicked. Pause stops reading visual messages.
Clicking Resume after Step or Pause restores the default behavior of visualization system, i.e
to poll for visual message within the given timeout.

Figure 1 depicts various portions of the main visualization window.

10.1 History Diagram

As discussed earlier, a history diagram shows the the states of all processes and various events of
interest like send, receive etc. for every processes. Each process is represented by an event line
which is green when the process is running normally and red when the process is blocked. The
events are depicted by an event tag, with the name of the event, in the event line. There are options
to display the vector time corresponding to all events, and to draw connections between events in
different processes. The event tags are listed below:

MW - Mutex wait

ML - Mutex lock

MU - Mutex unlock

BW - Barrier wait

BL - Barrier leave

ES - Enter synchronous channel send

LS - Leave synchronous channel send

ER - Enter synchronous channel receive

LS - Leave synchronous channel receive

AS - Asynchronous channel send

AR - Asynchronous channel receive

Clicking on each event brings up a window highlighting the line of source code of the user program
which generated that event. For this the source code should be in the current working directory,
i.e the directory from where cmrun is invoked.

43

10.2 Space Time Diagram

As discussed earlier, a Space Time diagram shows the causal relationship between the events of
different processes. Each process is represented by an event line which in turn consists of the events
of interest. There are options to connect the corresponding send and receive events, display the
event labels, and display the vector time. The following are the events of interest in this diagram:

AS - Asynchronous channel send event

AR - Asynchronous channel receive event

SS - Synchronous channel send event

SR - Synchronous channel receive event

The events can be slided up and down in the event line as long as the causal relations with other
events are not violated.

11 Interactive Visualization

Interactive Visualization mode allows a user to specify stop points at which the user programs
block for user input. Stop points are like break points where the user programs wait for user
input. Those lines in the program source file where synchronous send/receive and asynchronous
send/receive operations are used can be configured as stop points. This mode is selected by clicking
in the Enable interactive visualization check box before clicking the start button. This feature
is not available in the standalone mode.

Users have an option to configure stop points. To configure stop points, click on Configure stop
points check box after which a window containing a list stop points pops up. The list may not be
empty if configure had been used earlier. Each entry contains filename, line number, and comma
separated process ids. An entry of the form file.cpp 12 0,1,2 would imply that line number 12
in file.cpp should be treated as a stop point for processes 0, 1, 2. The values specified here can be
arbitrary, and will be ignored if there is no match. If -1 is specified as a line number, every possible
points are stop points for those processes.

There is also an option make the user programs stop at every possible stop points. For this Stop
at all possible points check box should be selected. If this option is selected along with configure
stop points option, then this selection has no effect on the behavior of visual system.

11.1 Interactive diagram

Interactive diagram is the history diagram in the interactive visualization mode. It is similar to
the non-interactive mode history diagram, but has more features. Like history diagram, it displays
the state of all processes and various events of interest. In addition to that, visualization waits for
user input if the appropriate line in source file, causing synchronous send/receive and asynchronous

44

send/receive events, had been configured as a stop point. Those events are displayed in red color
and the processes are blocked at that point. To resume execution of a blocked process, right click
on the stopped event.

This diagram has a button Release All which releases all the stop points and causes the visual-
ization system to continue without interactive functionality.

The interactive functionality can be used to force the computation along a path. As depicted in
the example that follows, two processes create two mutexes and try to lock them in opposite order.
The programs could deadlock, but there are some paths that could avoid a potential deadlock.

// interactive.cpp

// Program to test interactive system

#include <iostream>

#include <string.h>

#include <unistd.h>

#include "cm.h"

using namespace std;

int main(int argc, char *argv[])

{

int myId, numProcs;

int neighbor;

int val = 0xdabe;

int rcvbuf = 0;

getMyId(&myId);

getNumProcs(&numProcs);

if(numProcs != 2){

cout<<"Number of processes must be 2 for this case"<<endl;

exit(0);

}

neighbor = (myId + 1) % numProcs;

AsynChannel *ch1 = new AsynChannel(neighbor);

if(!ch1->isValid()){

cout<<"Couldn’t create channel"<<endl;

exit(0);

}

DistMutex *m1 = new DistMutex("goodmutex1");

DistMutex *m2 = new DistMutex("goodmutex2");

ch1->send(&val, sizeof(int));

if(myId == 0)

m1->lock();

else

45

m2->lock();

val = 0xdead;

ch1->send(&val, sizeof(int));

if(myId == 0)

m2->lock();

else

m1->lock();

if(myId == 0){

m2->unlock();

m1->unlock();

}

else{

m1->unlock();

m2->unlock();

}

ch1->receive(&rcvbuf, sizeof(int));

ch1->receive(&rcvbuf, sizeof(int));

return 0;

}

Compile this program and run it as follows:

g++ -o interactive interactive.cpp -lcm

cmrun -np 2 interactive

There is no output observed at the terminal. For the interactive part, as soon as the visual window
pops up, first select “Enable interactive visualization” and “Stop at all possible points” and then
click start. The interactive view of first run is depicted in figure 8 in which the two processes are
allowed to deadlock. For the second run, the interactive view of which is shown in figure 9, process
1 is allowed to get both the mutex locks while process 0 blocks for input from the user. After
process 1 releases both the mutexes, process 0 is released by right clicking the blocked event. It
can be observed that a different path could be forced using the interactive system.

46

Figure 8: Interactive view: with two deadlocked processes

47

Figure 9: Interactive view: avoiding potential deadlock

48

12 Miscellaneous

1. If control process crashes in some unavoidable circumstances, the lock file $HOME/.concurrentmentor
will not be deleted. This will prevent running further instances of ConcurrentMentor. If any
error is displayed mentioning the above mentioned lock file, that file has to be deleted. Before
deleting a lock file manually, the message queue has to be cleaned up. The id of the message
queue is stored in the lock file.

2. When using remote hosts for running user programs, they must be checked for runaway
processes if control process crashes.

49

