Development of LEON3-FT Processor Emulator for
Flight Software Development and Test

Jong-Wook Chdj Hyun-Kyu Shir, Jae-Seung Léeand Yee-Jin Cheén

1 Satellite Flight Software Department (SWT), Koterospace Research Institue,
115 Gwahanno Yuseong Daejeon, Korea
{jwchoi, hkshin, jslee, yjcheon}@Kkari.re.kr

Abstract. During the development of flight software, the gassor emulator
and satellite simulator are essential tools fortvemfe development and
verification. SWT/KARI has developed the softwareséh spacecraft simulator
based on TSIM-LEON3 processor emulator from Aesoffaisler. But when
developing flight software using TSIM-LEON3, theige much limitation for
emulation of real LEON3-FT processor and it isidifft to change or modify
the emulator core to integrate FSW developmentfgtlat and satellite
simulator. To resolve these problems, this papesenmts the development of
new GUI-based and cycle-true LEON3-FT processorlamuas LAYSIM-
leon3 and describes the software development amdiggeng method on
VxWorks/RTEMS RTOS.

Keywords: LEON3, LAYSIM-leon3, emulator, ISS, Cycle-True, Ghised

1 Introduction

The microprocessor in on-board computer (OBC) gpoasible for performing the
flight software (FSW) which controls the satellaed accomplishes missions to be
loaded and executed, and it is specially desigmedd operated in the space
environment. Currently developing satellites by KARorea Aerospace Research
Institute) use the ERC32 processor and the LEON3#Eessor will be embedded
for the OBC of next-generation satellites, and ¢hpsocessors were developed by
ESA (European Space Agency)/ESTEC (European SpasealRch and Technology
Centre).

The processor emulator is an essential tool foeldg@ng FSW and the core of
building the satellite simulator, but there is aywémited selection for choosing
LEONS3 processor emulator. Only TSIM-LEON3 from Afeea Gaisler is available
for commercial purpose, so it is inevitable to pase TSIM-LEON3 continuously
for development of FSW and constructing the sa¢eflimulator. But TSIM-LEON3
does not support full features of the LEON3-FT nmadel it is difficult to change or
modify the emulator core to integrate FSW developmglatform and satellite
simulator.

In order to resolve these problems successfullynes LEON3-FT processor
emulator, LAYSIM-leon3, has been developed. LAYSIBNn3 is a cycle-true

instruction set simulator (ISS) for the LEON3-FTopessor and it includes the
embedded source-level debugger. Also LAYSIM-leoaB support the full system
simulator for the SCU-DM (Spacecraft Computer UDgtvelopment Model) based on
the LEON3-FT/GRLIB and various ASIC/FPGA cores.

This paper presents the architecture and desidrA¥SIM-leon3, and the result
of FSW development and test under LAYSIM-leon3Skction 2, we introduce the
emulation method and status of emulators for LEON& detailed simulation of the
LAYSIM-leon3 is discussed in Section 3. Sectionideg the software development
environment under LAYSIM-leon3 with VxWorks/RTEMSTRS. Finally we draw
the conclusion in Section 5.

2 Emulation Method and Emulator Status

The method of emulating the processor can be cagegbinto two major ways:
interpretation and dynamic translation. The intetation is the widely used method
for cross-platform program execution. It fetchedratruction from target executable
codes, decodes it to host platform such as x86 imaend then executes it. So it has
a large overhead for every converting instructemg it is very hard to meet the real-
time performance when target system is running igh Isystem clock. But this
method is relatively easy to implement and cydletemulation of the target platform.
The dynamic translation such as QEMU takes a diffeapproach. Blocks of target
instructions are complied to host instructions tdasTime (JIT)” as they
encountered and stored in memory. When the sanuk fidoencountered again, the
precompiled block is retrieved from memory and exed. This enables around 5 and
10 times remarkable performance than interpretedlagor. However this method
cannot emulate as cycle-true and lead issues aithet processor clock and 1/0O
timing [1]. So it is difficult to verify of flightsoftware modules which have time
constrained attributes.

The seven processor emulators supporting ERC32.BadN2/3 shown in Table 1
have been developed in ESA-related companies,atstetvo emulators for ERC32
was developed by Satellite Flight Software Depant{WT) in KARI. LAYSIM-
leon3 has been developed based on LAYSIM-erc32agptiled the specific features
of LEON3-FT processor. Both LAYSIM-erc32 and LAYSIMon3 use the
interpretation method, whereas QEMU laysim-erc32suthe dynamic translation
method based on QEMU core.

Tablel. Processor Emulator Support Status for ERC32 & LEQN2

Emulator Type Pr ocessor Supplier Remark
TSIM Interpretation ~ ERC32, Aeroflex- Cycle True / Commercial

LEON2/3 GR Used for most ESA projects

KOMPSAT-3/5 Satellite Simulator in KARI

Leon-SVE Interpretation ~ LEON2 SpacebelFull representative of LEON2-FT
SIMERC32/ Interpretation ERC32, Astrium/ Astrium Internal (SIMERC32 emulator in SIMIX)
SIimLEON LEON2/3 CNES Used for Gaia Real-Time Simulator
Sim- Dynamic LEON3 Astrium Spacecraft Controller On-a Chip WitBRON3-FT

SCOC3 Translation
Sim-MDPA Interpretation ~ LEON2 Astrium Multi-DSP/Micro-Procs Architecture with LEON2FT

ESOC Interpretation ~ ERC32 ESOC/ Used for most ESOC/ESA ground system
Simulator VEGA

QERX Dynamic ERC32, SciSys/F Based on QEMU 0.9.1

Translation LEON2 FQTECH Used for Galileo Constellation Operation Simulator
QEMU Dynamic ERC32 SWT/ Based on QEMU 0.11.1
laysim- Translation KARI S/W development in VxWorks/ RTEMS RTOS
erc32
LAYSIM- Interpretation ~ ERC32 SWT/ Windows & Linux Platform
erc32 KARI Source Level Debugging and Cycle True

KOMPSAT-3/5 Ground Operation Simulator in KARI

3 Architectureand Design of LAY SIM-leon3

The LEON3-FT from Aeroflex Gaisler is a fault-todet version of the standard
LEON3 SPARC V8 processor, it is designed for opematn the harsh space
environment and includes functionality to detect arorrect errors in all on-chip
memories. It is a synthesizable VHDL model that t@nimplemented on FPGA
board or AISC, and it is just one of GRLIB whichaidibrary of reusable IP cores for
SoC development from Aeroflex Gaisler [2]. The LEEBHN-RTAX processor is a
SoC design based on LEON3-FT, implemented in thAX2D00S radiation-tolerant
FPGA with various application-specific IP cores.[3lhe SCU-DM developed by
KARI is based on LEON3FT-RTAX and various ASIC/FP@déres. Fig. 1 shows the
internal architecture of the SCU-DM.

|EEE-754 LEON3FT Debug Serial/JTAG
FPU SPARC V8 Support Unit | | Debug Link
4
8KB 4KB
icache | dcache
AMBA AHB interface

AHB AMBA AHB
Controller
LEON3-FT RTAX

AHB/APB AMBA APB

Memory
Controller Bridge
3

8/32bit memory bus SCU-DM Processor Board

| | 1 | | |
EEPROM RAM. Ethernet VME IPN 15538
‘ (1M8) ‘ ‘ (v8) H curl cut ‘ cul

SpaceWire ‘ GRFIFO

MUL&EDIV

RTC
Ctrl

IMSL
Ctrl

Ctrl

Fig. 1. The SCU-DM internal architecture

3.1 Architectureof LAYSIM-leon3

LAYSIM-leon3 has been developed by using the GNhgiter and the GTK library
for GUI, so it can be executed at Windows and Limplatform without any
modification. LAYSIM-leon3 can be divided into sevearts broadly. First the file
loader module is responsible for loading a LEON8gpam into memory, and it
analyzes and stores the symbol information and gigihg information according to
file format (a.out, elf, or binary format). The soe/disassembler module displays the
mixed format of source codes and disassembled @) source viewer. The 1U
(Integer Unit) execution module is the core of LA¥WSleon3 which executes

SPARC V8 instructions. The FPU execution modulesathe responsibility of FPU
operation. All GRLIB operations are controlled aextcuted by GRLIB execution
module. Trap or interrupts are treated by the inégrfupt handling module. Finally
the GUI control module takes care of the watchkpemt operation, real-time
register update, user control of GUI environment.

Event Handler s
GUI trol i
GUI GRLIB Iterfaces ((cusowce conral (=={ oU diassembler)
o A

ontrol, read
[GUI cycle/time control {f:(GUI execution control]
GUI memory show
control
GRLIBReg. _FPUReg. U Registers _ Jpeet show
maintain setch

MCFGT &] LA %"
HCFG2 g
MCFG3 fa 5
UARTD1 %
© 2
— b
g
VARicH H
Ce) 3
ARTSCT c o
R B || é Memory 7
— @ S| (RowRa) 5
0 3
W " E s
o 6 a7 [e g
< = 8
R L NeeT HE 3
30 g 35
L || Trap handler § B
GPIOIE) TS0 | | ioc = 3
= 3
show show U Execution Model §

GUI register show po

FPU Execution Model
GUI file loader
GRLIB Execution Model

Fig. 2. LAYSIM-leon3 Emulator Architecture

3.2 FileLoader Module

LEONS3 programs which can be loaded to LAYSIM-lear@ a.out file format from

VxWorks 5.4 output and elf file format from VxWork6.5, RCC (RTEMS

LEON/ERC32 Cross-Compiler) and BCC (Bare-C Crossfiiter System for

LEON). Also binary file format can be loaded to L&¥-leon3 with address option.
During loading a LEON3 program, the appropriatedkrais executed after the
analysis of file format, it extracts symbol and degding information and copies
text/data segments to memory. If a RAM based LE@X&ram is selected, then
stack/frame pointers of the IU are automatically st for its execution in RAM.

3.3 Source/Disassembler Module

If the matching C source code of a LEON3 progranictvlis loaded through the file
loader module is available, then the source/disalslsr module displays the mixed
format to GUI source viewer, otherwise it displagssembler code only. As for
disassemble, the rule of “Suggested Assembly Laggy@&yntax” [4] from SPARC is
adopted for the convenience of software engindérs.LEON3-FT, SPARC v8 core,
supports 5 type’s instructions such as load/staréghmetic/logical/shift, control
transfer, read/write control register and FP/CRrimsions.

To trace the code execution, LAYSIM-leon3 has timecfion of code coverage. In
GUI source viewer, the executed code line is hgdtied with blue color, untouched

code is colored in black, and current executingectige is marked with red color.
After execution, it can report the code coveragé¢hef LEON3 program with source
code.

3.4 U Execution Module

The U execution module which executes SPARC v&lcions operates as a single
thread, and it can be controlled by run, stop,,séé@, from GUI control toolbar or
console. It performs 7-stage instruction pipelifigh® LEON3-FT; FE (Instruction
Fetch) — DE (Decode) — RA (Register Access) — Exe(itite) — ME (Memory) — RA
(Register Access) — XC (Exception) — WR (Write).

All operations of the 1U execution module are shawifrigure 3. During the fetch
stage, it gets two instructions according to PC/dR@ memory or icache, and it
updates icache according to icache update rulé.dénnot access the memory as
indicated by PC/nPC, then the instruction access ¢rap will be occurred. After it
checks current pending interrupts and conditiorsp(PSR is enabled and interrupt
level is bigger than pil.PSR), it updates the tb#se register (TBR) and services a
highest pending interrupt. On instruction decodeget it analyzes SPARC v8
instruction to be executed, and it calls the cqoesling emulation function. The
execute/memory step performs the called functidmetexecuted and it reads required
register/memory, it stores the result into registemory back. If the decoded
instruction is a floating-point instruction, thenwill be treated by the FPU execution
module.

During the execution of each instruction, this medchecks the privilege, align,
trap condition of instruction. If exception case dscurred, then it sets the trap
environment and services trap operation where dcgsses the trap operation
according to LEON3 trap handling rule. If the ocedrtrap cannot be recovered then
the LEON3 mode is transited to error mode anddpstexecution. On non-critical
exception case, it calculates the cycle time dfrirmsion and it updates system clock
and timer registers through the GRLIB execution uledwhich also services the
timed event for various GRLIB operation and uselGARASICs. Lastly the 1U
execution module updates GUI environments for ttn&ARTS, etc.

register/memory

Service GRLIB
Execution Module
(Cycle/Time)

Update GUI
Environment

Fig. 3. LAYSIM-leon3 IU Execution Module Flow

3.5 FPU Execution Module

Because the FPU, GRFPU-lite of LEON3-FT, followEE=754 standard, LAY SIM-
leon3 uses the resources of x86 machine to perfeehd instruction and the results
are reflected into the FPU registers. If FPU exoepts occurred during FPU
operation, the FPU exception of host x86 machinfirss processed accurately and
then the exception information is applied to FSRJFR LAY SIM-leon3.

While the GRFPU-lite can perform a single FP indinn at a time, if FP
instructions are performed in succession, firstiruction is stored in FP queue
until the end of execution and gne.FSR is set tmtlémpty). The IU execution also
will be blocked till the empty of FP queue whichane the end of execution of FP
instruction. The calculation of cycle time of FPstruction is more complicated than
the IU case. And if the register which is the resi@iprevious execution of instruction
is used as a source operand in current instructiandware interlock adds one or
more delay cycles. Currently H/W interlock mechamis implemented in LAYSIM-
leon3 with the actual LEON3-FT.

The FPU mode is operated as the execution, execegiending exception mode.
During execution mode, if exceptions such as dilageero, overflow/underflow are
occurred, then it transits to the pending exceptionde, but the IU cannot
immediately aware of the error condition of FPUeT finally figures out the FPU
exception mode on executing another FP instructioen FPU mode is changed to
the exception mode, the FPU exception trap wilinveked by the IU (deferred trap).
If software handles the FPU exception properlynth® queue becomes empty and
FPU mode is changed to execution mode which opeFRenstruction, otherwise the
LEONS3-FT enters error mode which halts anymore aipan.

3.6 GRLIB Execution Module

The GRLIB execution module in LAYSIM-leon3 implented various IP cores such
as the memory controller, APBUART, GPTimer, IRQMBRGPIO, GRFIFO,
SpaceWire (SpW), etc. They consist of registersmorg, and controller where
software can be accessed as real hardware.

In case of memory controller, it sets the size &fMRROM and waitstates. If
software accesses an unimplemented area, the fith@rise, and waitstates will
consume the additional cycles of memory read/vajieration. The IRQMP controls
the 15 internal/external interrupts for CPU andiiit be treated by the trap/interrupt
handling module. The GRGPIO and GRFIFO are supgdriel AYSIM-leon3 for
external interface and DMA operation. The APBUARS implemented as GUI
console or can be redirected to external interf8&c&PTimers are also implemented
as the real hardware operation mechanism. The rsealé count of timers are
decremented as the cycle time of IU/FPU instructigecution, and if timer is expired,
then corresponding interrupt is invoked, it will tseated by the IU execution module
with the trap/interrupt handling module. The SpWdule can send/receive data via
virtual SpW channel to/from external SpW test emépt which is also software-
based simulator. All registers of GRLIB devices arapped to AMBA APB/AHB
address and controlled by event function and regigperations.

3.7 Trap/Interrupt Handling Module

The LEONS3-FT has 3 operation modes: reset, runy @node. It supports three types
of traps: synchronous, floating-point, and asynobts traps. Synchronous traps are
caused by hardware responding to a particularuogtm or by the Ticc instruction
and they occur during the instruction that causednt Floating-point traps caused by
FP instruction occur before that instruction is eteted. Asynchronous trap
(interrupt) occurs when an external event intesughte processor such as timers,
UART, and various controllers.

The software handlers for window overflow/underflérap among synchronous
traps are provided by RTOS or compiler, so theylmhandled correctly by software.
But other traps whose handlers are not installeghgnty by software will lead the
LEONS-FT to error mode. Interrupts can be procedsgdhe IU on no pending
synchronous trap. All trap operations are handlgdthe trap/interrupt handling
module as the real LEON3-FT trap operation.

4 Software Development/Test on LAY SIM-leon3

The Flight Software based on VxWorks 5.4/6.5 or RIEE can be loaded and
executed on LAYSIM-leon3 without any modifications ahe real hardware
environment. For s/w development on the SCU-DM, ISAM-leon3 supports the full
system simulator for the SCU-DM which has the Etbe(LAN91C), VME, IPN,
1553B, RTC, IMSL controllers. All devices are intatgd to memory mapped 1/O
area in LAYSIM-leon3 and controlled by event functiand register operations with
the same operation mechanism of GRLIB devices.

Figure 4 shows the software development environmeihg BCC and the
embedded debugger of LAYSIM-leon3 can debug as @csocode level and trace
variables/memory.

Gl bast LEONG T Pro wiotor:laysinleon 0.2 by ayriah [SCU-DM model]
Fio st vew o ook _virdow v | [T ey [
LN Y I e aaaaa—

s |EERERI R
g [eis =

PRC oo
PR orouEs
v orcosonm 10001170 WodesbeoD s
bTER oceoooomn0
v oxcoco00n0
< Gbal
@ oicososom
@ osconooss
oxioo0asi0
]
orenozom
oran0a1a
oxa00043C

8528 R

orconos0%0 = 64 bss 400DEZD 0O0O0N0S _bst ptresd i
bes 4000324 00000004 st pitre:
bss 4000823 00OO00DS st pibread_mu

b v
< wn
oxconoo0m N s doonasa: 00000004 bt pitre
orconos0%0 6 bss 400D 00000004 st pitve:
oxconoo0n
aroonoo0n
oxconoo0n
oxcocooma
fop Oxaozonon0
oxcocoom0

S8 6G2EREE

o 4000 00000004
1| 25 ke aoonac ooosoons
206 bss 400030 0OOU000% heap o

207 bes 4000360 D00DO20R time 5
[—

oxconoo000

oxcoc00ma0
oxcon00000
& oo

4 oxonoooo
5 oo

Fig. 4. S/W Development Environment on LAYSIM-leon3

Figure 5 shows the case of VxWorks/Tornado on WiveloTornado IDE is
connected with LAYSIM-leon3 through virtual networlhich enables FSW
members to develop, monitor and debug the FSW Tgtimado IDE. LAY SIM-leon3
is also connected with the 1553B Monitor/Simulatghich sends /receives 1553B
command/data to/from LAY SIM-leon3.

Software Development Environment (Tornado 2.0/VxWorks 5.4)

A

LAYSIM-leon3 (SCU-DM model)

15538 Monitor/Simulator
e
u E '

CEX|

virtual 15538 4

Virtual LAN91C R
Network ~ e
[

e

Fig. 5. S/W Development Environment with VxWorks 5.4/Taitn&.0 on LAY SIM-leon3

5 Conclusion

In this paper we introduced the development of LBEWN emulator, LAYSIM-leon3,

which is a GUI-based and cycle-true emulator and sapport the full system

simulator for the SCU-DM. And we described the wafte development and test on
LAYSIM-leon3. LAYSIM-leon3 shows the slightly loweperformance compared
with TSIM-leon3 due to overhead of GUI processibgt it supports significantly

better environment for s/w developers. Currently itstruction level verification test

has been completed and the operation level testdsrgoing. It will be the main core
of flight software simulator and operation simutaté SWT/KARI.

References

1. Alastari Pidgeon, Paul Robison, Sean McCellanRQEA High Performance Emulator for
Software Validation and Simulations. Proceedin®ASIA 2009, Istanbul, Turkey (2009)

2. Aeroflex Gaisler : GRLIB IP Core User's Manual. ergion 1.1.0-B4104,
http://www.gaisler.conf2010)

3. Aeroflex Gaisler : LEON3FT-RTAX Data Sheet andeltds Manual. Version 1.1.0.9,
http://www.qgaisler.conf2010)

4, SPARC International Inc : The SPARC Architecture Nan Version 8,
http://www.sparc.ord1992)

