
PPSSZZ  1199::1166  ((PPiinndd..  11//  9977))  
UUNNIIVVEERRSSIITTII  TTEEKKNNOOLLOOGGII  MMAALLAAYYSSIIAA  

 
 

BORANG PENGESAHAN STATUS TESIS♦

 
JUDUL : A COMMUNICATION BETWEEN EMBEDDED TCP/IP SENSOR NODES 

 
 

SESI PENGAJIAN :  2006/2007 
 

Saya  _                             RUZAINI BINTI ABD RAZAK                                             _ 
              (HURUF BESAR) 
 
mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti 
Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut : 
 
 
1. Hakmilik tesis adalah di bawah nama penulis melainkan penulisan sebagai projek bersama dan 

dibiayai oleh UTM, hakmiliknya adalah kepunyaan UTM. 
2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan pengajian 

sahaja. 
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran di antara institusi 

pengajian tinggi. 
4. ** Sila tandakan ( √ ) 
 
 SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan 

Malaysia seperti yang termaktub didalam AKTA RAHSIA RASMI 
1972.) 

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh 
organisasi/badan di mana penyelidikan dijalankan.) 

 
 TIDAK 

TERHAD 
 

 
 Disahkan oleh, 

 
 

(TANDATANGAN PENULIS) 
 

(TANDATANGAN PENYELIA) 
 

Alamat Tetap : 118 ALOR LINTAH,          
                         22000 JERTEH,  
                         TERENGGANU.

Nama Penyelia : PROF. DR. NORSHEILA  
                            BINTI FISAL. 

 
 
Tarikh            :  22 NOVEMBER 2006

                 
 Tarikh             :  22 NOVEMBER 2006

 
 
 

√

 
Catatan *  Potong yang tidak berkenaan. 
 **  Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/ 

organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu dikelaskan sebagai 
SULIT atau TERHAD. 

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara 
penyelidikan, atas disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau 
Laporan Projek Sarjana Muda (PSM). 



 

 

 

 

 

 

 

 

“I declared that I had read this thesis and in my opinions the thesis had fulfill all of the 

requirements for obtaining a Bachelor’s Degree in Electrical Engineering 

(Telecommunication)” 

 

 

 

 

Signature  : ___________________________ 

Supervisor  : PROF. DR. NORSHEILA BINTI FISAL 

Date   : 22 NOVEMBER 2006                      

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

A COMMUNICATION BETWEEN EMBEDDED TCP/IP SENSOR NODES 

 

 

 

 

RUZAINI BINTI ABD RAZAK 

 

 

 

 

Submitted to the Faculty of Electrical Engineering in partial fulfillment of the 

requirements for the award of a degree in Bachelor of Electrical Engineering 

(Telecommunication) 

 

 

 

 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

NOVEMBER 2006 

 

 

 



 ii

 

 

 

 

 

 

 

I declare that this thesis entitled “A COMMUNICATION BETWEEN EMBEDDED 

TCP/IP SENSOR NODES” is the result of my own research except as cited in the 

references. The thesis has not been accepted for any degree and is not concurrently 

submitted in candidature of any other degree. 

 

 

 

 
 

 

 

 

 

 

 



 iii

 

 

 

 

 

 

 

 

 

 

 

 

“To my beloved mother, father and family 
 for their encouragement and blessing 

To my dearest friends  
for his support and understanding 

Thanks for all” 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

First of all, I am greatly indebted to ALLAH SWT on His blessing to make this 

project began successfully. 

 

 

I would like to take this opportunity to express my deepest gratitude to my 

beloved supervisor of this project, Prof. Dr. Norsheila Bt. Fisal who has relentlessly and 

tirelessly assisted me in completing this project. She has given me support and insight in 

doing this project and has patiently listened and guided. My utmost thanks also go to my 

family who has given me support throughout my academic years. 

 

 

 I also would like to express my gratitude to Mr. Adel, Mr. Ariff, Adib, Aziz, and 

my friends for the co-operation during doing this project. I also very big thank you to 

Hamka Mohd Harith who give support direct or indirectly to the project. Once again, 

thank you very much. 

 

 

 

 

 

 

 



 v

 

 

 

 

ABSTRACK 

 

 

 

 

A sensor network is a group of sensor nodes which are communicate among each other. 

Sensors are constrained in terms of memory and processing power because of their 

limited physical size and cost. These constraints have been considered too limiting for 

physical size sensor to be able to use the TCP/IP protocols. The purposed sensor node 

has ability to sense environmental data such as humidity, light, weight, and temperature, 

and has been ported with embedded TCP/IP protocol to perform the networking. The 

sensor node is equipped with a small microcontroller, a RF communication module, a 

sensor, and an energy source. This project was carried out to develop two nodes that also 

able to sense the temperature .The sensors nodes are embedded with TCP/IP stack and 

able to forward and receive data. The programming was developed with WinAVR 

development tools using C language. The hex code will be ported using AVRISP 

connector. Finally, the transmission of data between sensor nodes are measured and 

displayed on computer using hyper terminal (mikroBASIC) and Visual Basic 6.0 

interfacing. Each frame that transmitted contents 44 bytes data: 2 bytes header (link 

layer); 1byte checksum (link layer); 20 bytes TCP header; 20 bytes IP header; and 1 

byte data. All of those header were removed away to get the actual data. The result 

during transmission was captured with oscilloscope to identify every bit in the frame. 

 

 

  

 

 



 vi

 

 

 

 

ABSTRAK 

 

 

 

 

 Rangkaian pengesan adalah sekumpulan nod-nod pengesan yang saling 

berkomunikasi antara satu sama lain. Setiap nod pengesan dilengkapi dengan 

mikropengawal yang kecil, modul perhubungan RF, pengesan, dan satu sumber tenaga. 

Nod-nod pengesan ini terikat dari segi ingatan dan kuasa pemprosesan disebabkan oleh 

kos dan saiz fizikal yang terhad. Ciri-ciri ini telah dipertimbangkan amat terhad bagi saiz 

fizikal nod pengesan untuk berupaya menggunakan protokol TCP/IP. Nod pengesan 

mempunyai kebolehan untuk mengesan data daripada persekitaran seperti kelembapan, 

cahaya, berat dan suhu dan juga dolengkapi dengan protokol TCP/IP terbenam untuk 

perangkaian. Projek ini telah untuk dijalankan untuk membangunkan dua modul nod 

pengesan yang berupaya untuk mengesan nilai suhu, untuk memprogramkan tindanan 

TCP/IP ke dalam nod pengesan dan berupaya untuk menghantar data kepada nod yang 

seterusnya. Pengaturcaraan dibangunkan dengan sebuah perkakasan pembangunan 

WinAVR. Kod perenambelasan diprogramkan melalui penghubung AVRISP. Akhir 

sekali, penghantaran data di antara nod-nod pengesan ditentukan dan keputusan 

dipaparkan di skrin komputer menggunakan perisian hyper terminal (mikroBASIC) dan 

pengantaramuka Visual Basic 6.0. Setiap paket data uang dihantar nengandungi : 2 bait 

kepala;2 bait checksum;20 bait kepala TCP ; 20 bait kepala IP ; dan 1 bait data. Semua 

kepala ini ditapis untuk mendapatkan data. Data semasa penghantaran diukur 

menggunakan osiloskop. 

 

 

 



 vii

 

 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER TITLE       PAGE 

 

  TITLE       i 

  DECLARATION      ii 

  DEDICATION      iii 

  ACKNOWLEDGEMENT     iv  

  ABSTRACK       v 

  TABLE OF CONTENTS     vii 

  LIST OF TABLE      x 

  LIST OF FIGURE      xi 

  LIST OF ABBREVIATIONS    xiv 

  LIST OF APPENDICES     xvi 

 

 

 1 INTRODUCTION 

 1.1 Overview      1 

 1.2 Problem Statement     3 

 1.3 Objectives      3 

 1.4 Project Scope      4 

 

 2 BACKGROUND LITERATURE 

2.1 Wireless Sensor Network    5 



 viii

2.2 Sensor Networks Applications   6 

 2.3 Factors Influencing Sensor Network Design  7 

  2.4 TCP/IP Protocol Suites         15 

 2.5 TCP/IP Stack        15 

 

 3 METHODOLOGIES      

3.1 Introduction      18 

3.2 Hardware Design     19 

   3.2.1 AVR Microcontroller    21 

   3.2.2 Analog Temperature sensor   22 

   3.2.3 Transmitter Node    24 

   3.2.4 Receiver Node     26 

   3.2.5 RF Communication    28 

   3.2.6 AVR ISP Cable    30 

   3.2.7 RS232 Serial Cable    32 

3.3 Software Development    35 

   3.3.1 Transmitter Node    36 

   3.3.2 Receiver Node     39 

   3.3.3 uIP       41 

   3.3.4 Code Compiler  (WinAVR)   45 

   3.3.5 Visual Basic 6.0    47 

 

 4 RESULT        

  4.1 Result from Oscilloscope    52 

  4.2 Results at Hyper Terminal    58 

  4.3 Results at Visual Basic 6.0 GUI   59 

 

 5 CONCLUSION AND RECOMMENDATION 

  5.1 Discussion      61 

  5.2 Recommendation     62 

 



 ix

REFERENCES        63 

 

APPENDIX A        65 

APPENDIX B        88 

APPEBDIX C        94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

 

 

 

 

LIST OF TABLES 

 

 

 

 

NO TITLE        PAGE 

 

 

2.1 Frequency bands available for ISM applications   11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

 

 

 

 

LIST OF FIGURES 

 

 

 

 

NO  TITLE       PAGE 

 

 

1.1   Basic communication link of wireless sensor network  

2.1 The components of sensor nodes    9 

2.2 TCP/IP protocol suite      13 

2.3 TCP/IP input processing     16 

2.4 TCP/IP output processing     17 

3.1 Methodologies’ diagram     19 

3.2 Sensor node proposed designed    20 

3.3 Pin out of ATmega8535     21 

3.4 LM35 TO-202 package     23 

3.5 Common used circuit for LM35 DZ    23 

3.6 Transmitter node circuit     25 

3.7 PCB circuit layout for transmitter node   25 

3.8 PCB circuit for transmitter node    26 

3.9 Receiver node circuit      27 

3.10 PCB circuit layout for receiver node    27 

3.11 PCB circuit for receiver node     28 

3.12 Transmitter module      29 

3.13 Receiver module      30 

3.14 ISP cable circuit design     30 



 xii

3.15 PCB layout for ISP cable     31 

3.16 ISP cable       32 

3.17 RS232 DB9 pin out      33 

3.18 Pin out of MAX232      33 

3.19 Schematic circuit for RS232 serial cable   34 

3.20 PCB layout for RS232 serial cable    34 

3.21 RS232 serial cable      35 

3.22 Steps in designing the code programming   36 

3.23 Flowchart for transmitter node process   37 

3.24 Flowchart for USART transmitter node process  38 

3.25 Flowchart for receiver node process    39 

3.26 Flowchart for USART receiver node process   40 

3.27 Embedded software development process   41 

3.28 Main source code for transmitter (uIP)   42 

3.29 Main source code for receiver (uIP)    44 

3.30 Programmer notepad in WinAVR    46 

3.31 New project window      47 

3.32 Visual basic design      48 

3.33 Menu bars and title bars     48 

3.34 Microsoft Comm Control 6.0     49 

3.35 PonyProg2000 window     50 

4.1   Observed Data Transmission using USART  

  (without uIP - wired)      53 

4.2   Observed Data Transmission using USART  

  (with uIP – wired – before uIP process)   54 

4.3   Observed Data Transmission using USART  

  (with uIP – wired – after uIP process)   55 

4.4   Observed Data Transmission using USART  

  (with uIP – wireless – before uIP process)   56 

4.5   Observed Data Transmission using USART  

  (with uIP – wireless – after uIP process)   57 



 xiii

4.6   Received Data Displayed at HyperTerminal  

  (USART - with uIP – wireless – before uIP process)  58 

4.7   Received Data Displayed at HyperTerminal.  

  (USART - with uIP – wireless – after uIP process)  59 

4.8  Graphical User Interface     60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiv

 

 

 

 

LIST OF ABBREVIATIONS 

 

 

 

 

ADC    Analog to Digital Conversion 

AM   Amplitude Modulation 

ARP    Address Resolution Protocol 

AVR-GCC   AVR- GNU Compiler Collection 

AVR RISC   AVR Reduced Instruction Set Computer 

DHCP    Dynamic Host Configuration Protocol 

DNS    Domain Name System 

DTN    Delay Tolerant Network 

EEPROM   Electrically Erasable Programmable Read Only Memory 

FTP    File Transfer Protocol 

GPRS    Global Packet Radio Service 

HTTP    HyperText Transfer Protoco 

ICMP    Internet Control Message Protocol 

ISP    In-Circuit Serial Programmable 

KB    Kilo Byte 

LWIP    Light Weight Internet Protocol 

LSB    Least Significant Bit 

MHz    Megahertz 

MSB    Most Significant Bit 

OS    Operating System 

PPP    Point-to-Point Protocol 

RAM    Random Access Memory 



 xv

RF    Radio Frequency 

Rx    Receiver 

SLIP    Serial Line Interface Protocol 

SMTP    Simple Mail Transport Protocol 

SN    Sensor Network 

SRAM   Static Random Access Memory 

TCP/IP   Transmission Control Protocol/ Internet Protocol 

Tx    Transmitter 

UDP    User Datagram Protocol 

USART   Universal Synchronous Asynchronous Receiver Transmitter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xvi

 

 

 

 

LIST OF APPENDICES 

 

 

 

 

APPENDIX A : Transmitter And Receiver Node Source Codes   65 

APPENDIX B : Malefile Source Codes      88 

APPENDIX C : WinAVR Manual       94 

 

 



 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

A communication between wireless sensor networks is an information gathering 

paradigm based on the collective effort of many small wireless sensor nodes. The sensor 

nodes, which are intended to be physically small and inexpensive, are equipped with one 

or more sensor, a short range radio transceiver, a small microcontroller, and s power 

supply in the form of a battery [A.Dunkles, J.Alonso, T.Voigt, 2004]. 

 

 

Figure 1.1 shows the basic communication link of wireless sensor network, 

where the transmitter node is willing to forward the information to the target destination 

and the received data will be displayed at the computer. 

 

  

 

 



 

 

2

2

s Tx
Node 1

Rx
Node 2 Computer

ss Tx
Node 1

Rx
Node 2 Computer

 

 

 

 

 

 

 

 

 

Figure 1.1 : Basic communication link of wireless sensor network 

 

 

A wireless sensor network usually cannot operate in complete isolation, but must 

be connected to an external network through which monitoring and controlling entities 

can reach the sensornet. As TCP/IP, the Internet Protocol suite, has become the de-facto 

standard for large scale networking, it is interesting to be able to connect sensornet to 

TCP/IP networks.  

 

 

A.Dunkles (2004) had discussed three different ways to connect sensor network 

with TCP/IP networks: proxy architectures, DTN overlays, and TCP/IP for sensor 

networks. They conclude that the methods are in some sense orthogonal and that 

combinations are possible, but that TCP/IP for sensor networks currently has a number 

of issues that require further research before TCP/IP can be viable protocol family for 

sensor networking.   

 

 

 

 

 

 



 3

1.2 Problem Statement 

 

 

 Nowadays, sensor network becomes more important to human life whether for 

security, monitoring or to minimize power consumption. This project was developed 

because of the awareness to analyze sensor network system. Limited size of memory in a 

small size microcontroller is said to be limited criteria to run TCP/IP protocol into 

sensor nodes, thus through this project, we tried to embed uIP into AVR microcontroller. 

uIP is a small TCP/IP stack. The data transmission was observed by using the RF 

transmitter and also direct wire interface at the physical layer. 

 

 

 

 

1.3 Objectives 

 

 

The objectives of this project are: 

 

1. To develop wireless sensor network that distribute/transfer environmental data 

(eg: temperature) using TCP/IP protocol. 

2. To embed the uIP, a TCP/IP stacks protocol into sensor nodes. 

 

 

 

 

 

 

 

 

 

 3



 4

1.4 Project Scope 

 

 

 The scopes of work for this project are to develop sensor node (basic of the 

sensor network) that able to do sensing, processing and networking using: Processor 

(AVR microcontroller), Sensor type (Temperature sensor), Communication link (RF 

transmitter and receiver module), Frequency involved (433 MHz), TCP/IP Protocol (uIP 

stack). The microcontroller was programmed using C/C++, and then the source codes 

were compiled using GNU tools, WinAVR (AVR-GCC). The data collected by the 

analog temperature sensor was converted into digital representation (A/D Conversion). 

The transmitter and receiver nodes (PCB board) were built with DXP 2004 software. 

The AVRISP connector was built to program the INTEL hex code into the AVR 

microcontroller. Then wrote a device driver for target’s network device in uIP (serial), 

and configured the uIP codes to be used in the sensor device. After that, the uIP, a 

TCP/IP functions was embedded into the sensor nodes. This is done to perform a 

networking between sensor nodes. Then, the corresponding between sensor and 

transmitter that transfer data trough TCP/IP were done. The temperature (result) was 

displayed at the computer using Visual Basic 6.0 interfacing  

 

 

 

 4



 

 

 

 

CHAPTER 2 

 

 

 

 

BACKGROUND LITERATURE 

 

 

 

 

2.1 Wireless Sensor Network 

 

 

 Wireless sensor network are self-organizing wireless networks where all nodes 

take part in the process of forwarding packets. These tiny sensor nodes, which consist of 

sensing, data processing, and communicating components, leverage the idea of sensor 

networks based on collaborative effort of a large number of nodes. Sensor networks 

represent a significant improvement over traditional sensors. A sensor network is 

composed of a large number of sensor nodes, which are densely deployed either inside 

the phenomenon or very close to it.  

 

 

On the other hand, this also means that sensor network protocols and algorithms 

must possess self-organizing capabilities. Another unique feature of sensor networks is 

the cooperative effort of sensor nodes. Sensor nodes are fitted with an on-board 

processor. Instead of sending the raw data to the nodes responsible for the fusion, sensor 



 6

nodes use their processing abilities to locally carry out simple computations and transmit 

only the required and partially processed data.  

 

 

Since large numbers of sensor nodes are densely deployed, neighbor nodes may 

be very close to each other. Furthermore, the transmission power levels can be kept low, 

which is highly desired in covert operations.  

 

 

 

 

2.2 Sensor Networks Applications 

 

 

Sensor networks may consist of many different types of sensors such as seismic, 

low sampling rate magnetic, thermal, visual, infrared, acoustic, and radar, which are able 

to monitor a wide variety of ambient conditions that include the temperature, humidity, 

vehicular movement, lightning condition, pressure, soil makeup, noise levels, the 

presence or absence of certain kinds of objects, mechanical stress levels on attached 

objects, and the current characteristics such as speed, direction, and size of an object. 

 

 

Sensor nodes can be used for continuous sensing, event detection, event ID, 

location sensing, and local control of actuators. The concept of micro-sensing and 

wireless connection of these nodes promises many new application areas. The 

applications were categorized into military, environment, health, home and other 

commercial areas. It is possible to expand this classification with more categories such 

as space exploration, chemical processing and disaster relief. 

 

 

 



 7

2.3 Factors Influencing Sensor Network Design 

 

 

L.F. Akyildiz (2001) had discussed that a sensor network design is influenced by 

many factors, which include fault tolerance; scalability; production costs; operating 

environment; sensor network topology; hardware constraints; transmission media; and 

power consumption. These factors are addressed by many researchers as surveyed in the 

paper. However, none of these studies has a full integrated view of all factors that are 

driving the design of sensor networks and sensor nodes. These factors are important 

because they serve as a guideline to design a protocol or an algorithm for sensor 

networks. In addition, these influencing factors can be used to compare different 

schemes. 

 

 

2.3.1 Fault tolerance 

 

 

 Fault tolerance is the ability to sustain sensor network functionalities without any 

interruption due to sensor node failures. Some sensor nodes may fail or be blocked due 

to lack of power, have physical damage or environmental interference. The failure of 

sensor nodes should not affect the overall task of the sensor network. This is the 

reliability or fault tolerance issue. As a result, the fault tolerance level depends on the 

application of the sensor networks, and the schemes must be developed with this in 

mind. 

 

 

2.3.2 Scalability 

 

 

 The number of sensor nodes deployed in studying a phenomenon may be in the 

order of hundreds or thousands. Depending on the application, the number may reach an 



 8

extreme value of millions. The new schemes must be able to work with this number of 

nodes. They must also utilize the high density nature of the sensor networks.  

 

 

2.3.3 Production costs 

 

 

 Since the sensor networks consist of a large number of sensor nodes, the cost of a 

single node is very important to justify the overall cost of the networks. If the cost of the 

network is more expensive than deploying traditional sensors, then the sensor network is 

not cost-justified. As a result, the cost of each sensor node has to be kept low. 

 

 

 

 

2.3.4 Hardware constraints 

 

 

 A sensor node is made up of four basic components as shown in Fig. 2.1: a 

sensing unit, a processing unit, a transceiver unit and a power unit. They may also have 

application dependent additional components such as a location finding system, a power 

generator and a mobilizer. Sensing units are usually composed of two subunits: sensors 

and analog to digital converters (ADCs). The analog signals produced by the sensors 

based on the observed phenomenon are converted to digital signals by the ADC, and 

then fed into the processing unit. The processing unit, which is generally associated with 

a small storage unit, manages the procedures that make the sensor node collaborate with 

the other nodes to carry out the assigned sensing tasks. A transceiver unit connects the 

node to the network. One of the most important components of a sensor node is the 

power unit. Power units may be supported by a power scavenging unit such as solar 

cells. 

 



 9

 

 
 

Figure 2.1 : The components of a sensor node.  

 

 

Though the higher computational powers are being made available in smaller and 

smaller processors, processing and memory units of sensor nodes are still scarce 

resources. For instance, the processing unit of a smart dust mote prototype is a 4 MHz 

Atmel AVR8535 micro-controller with 8 KB instruction flash memory, 512 bytes RAM 

and 512 bytes EEPROM [66]. TinyOS operating system is used on this processor, which 

has 3500 bytes OS code space and 4500 bytes available code space. 

 

 

 

 

2.3.5 Sensor network topology 

 

 

 Sheer numbers of inaccessible and unattended sensor nodes, which are prone to 

frequent failures, make topology maintenance a challenging task. Hundreds to several 

thousands of nodes are deployed throughout the sensor field. They are deployed within 

tens of feet of each other. The node densities may be as high as 20 nodes/m3. Deploying 

high number of nodes densely requires careful handling of topology maintenance. 

 

 



 10

2.3.6 Environment 

 

 

Sensor nodes are densely deployed either very close or directly inside the 

phenomenon to be observed. Therefore, they usually work unattended in remote 

geographic areas. They may be working in busy intersections, in the interior of a large 

machinery, at the bottom of an ocean, inside a twister, on the surface of an ocean during 

a tornado, in a biologically or chemically contaminated field, in a battlefield beyond the 

enemy lines, in a home or a large building, in a large warehouse, attached to animals, 

attached to fast moving vehicles, and in a drain or river moving with current. 

 

 

This list gives us an idea about under which conditions sensor nodes are expected 

to work. They work under high pressure in the bottom of an ocean, in harsh 

environments such as debris or a battlefield, under extreme heat and cold such as in the 

nozzle of an aircraft engine or in arctic regions, and in an extremely noisy environment 

such as under intentional jamming. 

 

 

 

 

2.3.7 Transmission media 

 

 

 In a sensor network, communicating nodes are linked by a wireless medium. 

These links can be formed by radio, infrared or optical media. To enable global 

operation of these networks, the chosen transmission medium must be available 

worldwide. One option for radio links is the use of industrial, scientific and medical 

(ISM) bands, which offer license-free communication in most countries. The 

International Table of Frequency Allocations contained in Article S5 of the Radio 



 11

Regulations (Volume 1), species some frequency bands that may be made available for 

ISM applications. They are listed in Table 2.2. 

 

 

 For sensor networks, a small-sized, low-cost, ultra low power transceiver is 

required. According to [68], certain hardware constraints and the trade-off between 

antenna efficiency and power consumption limit the choice of a carrier frequency for 

such transceivers to the ultrahigh frequency range. They also propose the use of the 433 

MHz ISM band in Europe and the 915 MHz ISM band in North America. 

 

 

 
 

Table 2.1 : Frequency bands available for ISM applications 

 

 

 

 

2.3.8 Power consumption 

  

 

The wireless sensor node, being a micro-electronic device, can only be equipped 

with a limited power source. In some application scenarios, replenishment of power 



 12

resources might be impossible. Sensor node lifetime, therefore, shows a strong 

dependence on battery lifetime. In a ad hoc sensor network, each node plays the dual 

role of data originator and data router. The disfunctioning of few nodes can cause 

significant topological changes and might require re-routing of packets and re-

organization of the network. Hence, power conservation and power management take on 

additional importance. It is for these reasons that researchers are currently focusing on 

the design of power-aware protocols and algorithms for sensor networks. 

 

 

 

 

2.4 TCP/IP Protocol Suites 

 

 

 TCP/IP is a Transmission Control Protocol/Internet Protocol. It is the most 

popular network protocol and the basis for the internet. TCP/IP protocol suite consists of 

a large collection of protocols that have been issued as Internet standards by the Internet 

Architecture Board (IAB). The protocol stack used by the sink and all sensor nodes is 

given in Fig. 3. This protocol stack combines power and routing awareness, integrates 

data with networking protocols, communicates power efficiently through the wireless 

medium, and promotes cooperative efforts of sensor nodes. 

 

 

 TCP/IP has 5 layers; Physical layer, Network Access layer, Internet layer, Host-

to-host layer known as transport layer and Application layer that shown in Figure 2.3. 

Each layer has its own function on transmitting data. 

 

 



 13

Application 

Transport 

Internet

Network Access

TCP/IP
Layers

Physical 

Telnet FTP SMTP DNS POP3SNMP

TCP UDP

IP
802.2
LLC PPP SLIP

Ethernet Serial Port

TCP/IP Protocol Suite

IGMPICMP OSPF

NON STANDART

Application 

Transport 

Internet

Network Access

TCP/IP
Layers

Physical 

Telnet FTP SMTP DNS POP3SNMP

TCP UDP

IP
802.2
LLC PPP SLIP

Ethernet Serial Port

TCP/IP Protocol Suite

IGMPICMP OSPF

NON STANDART

Application 

Transport 

Internet

Network Access

TCP/IP
Layers

Physical 

Telnet FTP SMTP DNS POP3SNMP

TCP UDP

IP
802.2
LLC PPP SLIP

Ethernet Serial Port

TCP/IP Protocol Suite

IGMPICMP OSPF

NON STANDART

 
 

Figure 2.2 : TCP/IP Protocol Suite 

 

 

Physical Layer 

 

 

 It covers the physical interface between data transmission device and a 

transmission medium or network. The internet protocol suite does not cover the physical 

layer of any network. The physical layer is responsible for frequency selection, carrier 

frequency generation, signal detection, modulation and data encryption. 

 

 

Network Access layer 

 

 

 Network access layer solved the problem of getting packet across a single 

network. Examples of such protocol are X.25 and Arpanet’s Host/IMP Protocol. The 

network access layer is responsible for the multiplexing of data streams, data frame 

detection, medium access and error control. It ensures reliable point-to-point and point-

to-multipoint connections in a communication network. In this project, the non standard 

format is used. 



 14

Internet layer 

 

 

 In the internet layer, IP performs the basic task of getting packet of data from 

source to destination. 

 

 

Transport layer 

 

 

 This layer is used in exchanging data and ensures that data arrives in the correct 

destination. In TCP/IP protocol suite, transport layer also determine which application 

any give data is intended for. This layer is especially needed when the system is planned 

to be accessed through Internet or other external networks. 

 

 

Application layer 

 

 

 The application layer is the most common network-aware programs 

interface use in order to communicate across a network with other programs. Designing 

an application layer management protocol has several advantages. Sensor networks have 

many different application areas, and accessing them through networks such as Internet 

is aimed in some current projects [69]. An application layer management protocol makes 

the hardware and software of the lower layers transparent to the sensor network 

management applications. 

 

 

 

 

 



 15

2.5 TCP/IP Stack 

 

 

Nowadays, the TCP/IP protocol suite has become a global standard for 

communication. TCP/IP is the underlying protocol used for web page transfers, e-mail 

transmissions, file transfers, and peer-to-peer networking over the Internet. For 

embedded systems, being able to run native TCP/IP makes it possible to connect the 

system directly to an intranet or even the global Internet. Embedded devices with full 

TCP/IP support will be first-class network citizens, thus being able to fully communicate 

with other hosts in the network. 

 

 

Traditional TCP/IP implementations have required far too much resource both in 

terms of code size and memory usage to be useful in small 8 or 16-bit systems. Code 

size of a few hundred kilobytes and RAM requirements of several hundreds of kilobytes 

have made it impossible to fit the full TCP/IP stack into systems with a few tens of 

kilobytes of RAM and room for less than 100 kilobytes of code. TCP is both the most 

complex and the most widely used of the transport protocols in the TCP/IP stack. TCP 

provides reliable full-duplex byte stream transmission on top of the best-effort IP layer. 

Because IP may reorder or drop packets between the sender and the receiver, TCP has to 

implement sequence numbering and retransmissions in order to achieve reliable, ordered 

data transfer. 

 

 

A.Dunkles (2004) had discussed that there are two small generic and portable 

TCP/IP implementations, lwIP (lightweight IP) and uIP (micro IP), with slightly 

different design goals. The lwIP implementation is a full-scale but simplified TCP/IP 

implementation that includes implementations of IP, ICMP, UDP and TCP and is 

modular enough to be easily extended with additional protocols. lwIP has support for 

multiple local network interfaces and has a flexible configuration option which makes it 

suitable for a wide variety of devices. The uIP implementation is designed to have only 



 16

the absolute minimal set of features needed for a full TCP/IP stack. It can only handle a 

single network interface and does not implement UDP, but focuses on the IP, ICMP and 

TCP protocols.  

 

 

From a high level viewpoint, the TCP/IP stack can be seen as a black box that 

takes incoming packets, and demultiplexes them between the currently active 

connections. Before the data is delivered to the application, TCP sorts the packets so that 

they appear in the order they were sent. The TCP/IP stack will also send 

acknowledgments for the received packets. 

 

 

Figure 2.4 shows how packets come from the network device, pass through the 

TCP/IP stack, and are delivered to the actual applications. In this example there are five 

active connections, three that are handled by a web server application, one that is 

handled by the e-mail sender application and one that is handled by a data logger 

application. 

 

 
 

Figure 2.3 : TCP/IP input processing. 

 

 

 A high level view of the output processing can be seen in Figure 2.5. The TCP/IP 

stack collects the data sent by the applications before it is actually sent onto the network. 



 17

TCP has mechanisms for limiting the amount of data that is sent over the network, and 

each connection has a queue on which the data is held while waiting to be transmitted. 

The data is not removed from the queue until the receiver has acknowledged the 

reception of the data. If no acknowledgment is received within a specific time, the data 

is retransmitted. 

 

 
 

Figure 2.4 : TCP/IP output processing. 

 

 

Data arrives asynchronously from both the network and the application, and the 

TCP/IP stack maintains queues in which packets are kept waiting for service. Because 

packets might be dropped or reordered by the network, incoming packets may arrive out 

of order. Such packets have to be queued by the TCP/IP stack until a packet that fills the 

gap arrives. Furthermore, because TCP limits the rate at which data that can be 

transmitted over each TCP connection, application data might not be immediately sent 

out onto the network. 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 

 

METHODOLOGIES 

 

 

 

 

3.1 Introduction  

 

 

This chapter describes methodology of developing the sensor nodes and in this 

project, it were divided into two sections; hardware design and software development. 

The discussion is started with hardware design and software development. Figure 3.1 is 

shown the diagram of the methodologies. The sensor nodes were simply designed to 

able provide sensing and networking. As was explained in previous chapter, a sensor 

network normally consist a large number of sensors. However for this project, the sensor 

network development was carried out for only two nodes. Thus, the data transmission 

will be verified between these sensor nodes.  

 

 

 

 

 

 



 19

Software
Development

Temperature
Sensor

RF Module

Sensing

Processing

Communication

Hardware
Design

Software
Development

Temperature
Sensor

RF Module

Sensing

Processing

Communication

Hardware
Design

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 : Methodologies’ Diagram 

 

 

 

 

3.2 Hardware Design 

 

 

 Figure 3.2 shows a diagram of the proposed design architecture for a sensor 

node. Temperature sensor were used to capture data from surroundings, and interfaced 

to the processor. An AVR microcontroller, ATmega8535 served as the brain of the 

system and the communications between these nodes were done through RF transmitter 

and receiver module. Each of sensor nodes used a 9V battery as an energy source. 

ATMEL AVR ISP Connector was built to upload the programming of AVR 

microcontroller chip through to the PC parallel port and RS232 serial cable also was 

built to connect the node to the computer. 

 



 20

TEMPERATURE SENSOR

SENSE/CAPTURE DATA

AVR MICROCONTROLER

DATA PROCESSING

RF TRANSCEIVER

COMMUNICATION

TEMPERATURE SENSOR

SENSE/CAPTURE DATA

AVR MICROCONTROLER

DATA PROCESSING

RF TRANSCEIVER

COMMUNICATION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 : Sensor Node Proposed Design 

  

 The components in sensor node development are as follow: AVR microcontroller 

ATmega8535:Analog Temperature sensor, LM35 DZ Transmitter and Receiver RF 

Module (optimal range 100m, 433.92MHz version, Data rates up to 4800 bps)A TCP/IP 

Protocol, uIP stack in each sensor nodes 

 

 

 To build the PCB hardware, firstly, designed the schematic circuits using the 

DXP2004 software. (Instruction to use this software will be discussed in Appendix). The 

schematics were converted into the PCB layouts. The PCB layouts were printed and 

pasted it on the PCB boards using photo paper. The PCB boards were put in the laminate 

machine to make sure the circuit drew on the board. The board that drew with the 



 21

schematic was put in the itching machine. After that, the boards were cleaned with 

thinner. Lastly, the boards were drilled and the devices were completed by soldering the 

equipment on the boards. 

 

 

 

 

3.2.1 AVR Microcontroller 

 

 

 An 8 bit AVR RISC micro-controller was used as the brain of the sensor node as 

referred in [S.Hollar, 2000]. ATMEL ATmega8535 had 8K bytes of In-System 

Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 

bytes SRAM, 32 I/O lines, execution rate of one instruction per clock and can be 

attached to a PC ISA – bus network. Figure 3.3 shows Pin out of ATmega8535. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 : Pin out of ATmega8535 

 



 22

ATmega8535 supports ADC conversion start on auto-triggering on interrupt 

sources. All of the registers are directly connected to the Arithmetic Logic Unit (ALU), 

allowing two independent registers to be accessed in one single instruction executing in 

one clock cycle. In this project, the AVR ATmega8535 was used to take analog data 

from temperature sensor and convert them into digital representation. 

 

 

 The Universal Synchronous and Asynchronous serial Receiver and Transmitter 

(USART) is used in this project as it is a highly flexible serial communication device. 

The data frame format that used is 1 start bit; 8 data bits; 1 stop bit. The Transmitter 

consists of a single write buffer and a serial Shift Register. The write buffer allows a 

continuous transfer of data without any delay between frames. The Receiver is more 

complex than the Transmitter. The Receiver consists a Shift Register and a two level 

receive buffer (UDR).  

 

 

 

 

3.2.2 Analog Temperature sensor  

 

 

 The LM35 is an integrated circuit sensor that can be used to measure temperature 

with an electrical output proportional to the temperature (in oC). It has an output voltage 

that is proportional to the Celsius temperature. The scale factor is .01V/oC. The LM35 

does not require any external calibration or trimming and maintains an accuracy of  +/-

0.4 oC at room temperature and +/- 0.8 oC over a range of 0 oC to +100 oC. Another 

important characteristic of the LM35DZ is that it draws only 60 micro amps from its 

supply and possesses a low self-heating capability. The sensor self-heating causes less 

than 0.1 oC temperature rise in still air. The LM35 comes in many different packages, 

including the following: TO-92 plastic transistor-like package, T0-46 metal can 



 23

transistor-like package, 8-lead surface mount SO-8 small outline package and TO-202 

package. (Shown in the figure 3.4) 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 : LM335 TO-202 package. 

 

 

 Figure 3.5 shows the common used circuit for the sensor. In this circuit, 

parameter values commonly used are: Vc = 4 to 30v. But, 5v or 12 v are typical values 

used and Ra = Vc /10-6. Actually, it can range from 80 KW to 600 KW, but most just use 

80 KW. 

 

 

 

 

 

 

 

 

Figure 3.5 : Common Used Circuit for LM35 DZ 

 



 24

 The output voltage is converted to temperature by a simple conversion factor. 

The sensor has a sensitivity of 10mV / oC. Use a conversion factor that is the reciprocal 

that is 100V / oC. The general equation used to convert output voltage to temperature is: 

Temperature ( oC) = Vout * (100 oC/V). So if  Vout  is  1V , then, Temperature = 100 
oC. The output voltage varies linearly with temperature. 

 

 

 

 

3.2.3 Transmitter Node 

 

 

 Figure 3.6 shows the circuit constructed for the transmitter node that consists: a 

microcontroller; a temperature sensor; a voltage regulator and other passive 

equipment. The basic equipments for this microcontroller are the reset button and the 

oscillator circuit. The purpose of the reset button is to reset the program that embedded 

in the microcontroller and it consists of a reset button, a resistor and a capacitor. 

Besides, 8 MHz crystal oscillator is used to generate clocking for the microcontroller 

and it consists two capacitors for stability. Voltage regulator is used to regulate the 9V 

input voltage to 5V as the microcontroller circuit is powered by 5V. The circuit cannot 

directly powered by 5V without using the voltage regulator, it is because the circuit will 

not stable. The analog temperature sensor is connected to PORTA pin 5 and the 

transmitter module is attached to TXD pin at PORTD. The program is uploaded into the 

microcontroller through these pins: MISO, MOSI, SCK, and RESET. 

 

 

 

 

 

 

 



 25

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Transmitter Node Circuit. 

 

 

 Figure 3.7 shows the PCB layout for transmitter node. Double layer PCB circuit 

was implemented for this node because of the complexity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: PCB Circuit Layout for Transmitter Node 



 26

 Figure 3.8 shows the transmitter node that was built in this project. This board 

attached by transmitter module to communicate with receiver. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: PCB Circuit for Transmitter Node 

 

 

 

 

3.2.4 Receiver Node 

 

 

 Figure 3.9 shows the circuit constructed for the receiver node that consists: a 

microcontroller; eight LEDs to show the output; a voltage regulator and other passive 

equipment. The basic equipments for this microcontroller are totally same to the 

transmitter. The output LEDs are connected to PORTC. The 220 Ohm resisters that 

connected series to the LEDs are used to reduce some voltage before going through the 

LEDs. 

 

 

 

 



 27

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Receiver Node Circuit. 

 

 

 Figure 3.10 shows the PCB layout for receiver node. Double layer PCB circuit 

also was implemented for this node because of the complexity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: PCB Circuit Layout for Receiver Node 



 28

 Figure 3.11 shows the transmitter node that was built in this project. This board 

attached by receiver module to communicate with receiver. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: PCB Circuit for Receiver Node 

 

 

 

 

3.2.5 RF Communication 

 

 

 The wireless sensor network needs transmitter and receiver module to 

communicate between nodes. So, in this project, the transmitter and receiver module 

from RADIOTRONIX are used to the purpose.  

 

 

 

 

 

 



 29

3.2.5.1  Transmitter Module 

 

 

 The RCT-433-AS is ideal for sensor network applications where low cost and 

longer range is required. The transmitter operates from a 1.5-12V supply, making it ideal 

for battery-powered applications. The transmitter employs a Surface Acoustic Wave 

(SAW)-stabilized oscillator, ensuring accurate frequency control for best range 

performance. Output power and harmonic emissions are easy to control. Figure 3.12 

shows the transmitter module. 

 

 

 

 

 

 

 

 

Figure 3.12: Transmitter Module 

 

 

 

 

3.2.5.2  Receiver Module 

 

 

 The RCR-433-HP is ideal for sensor network applications where low cost and 

longer range are required. The receiver module requires no external RF components 

except for the antenna. The super-heterodyne design exhibits exceptional sensitivity and 

selectivity. A SAW filter can beaded to the antenna input to improve selectivity for 

applications that require robust performance. Figure 3.13 shows the receiver module. 

 



 30

 

 

 

 

 

 

Figure 3.13: Receiver Module 

 

 

 

 

3.2.6 AVR ISP Cable 

 

 

 AVR ISP (In System Programmable) Cable is used for uploading the hex into the 

microcontroller directly. The circuit diagram of ISP Cable is shown in figure 3.14 that 

can be built easily. The equipment that needed to built the cable are: connector; 

74LS245 chip; DB25; and other passive equipment.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: ISP Cable Circuit Design 



 31

 The ISP has only four signals to be implemented, which are MOSI, MISO, SCK 

and RESET. LED1 is as a indicator to detect the programmer either on or off. The LED 

turned on when PC started up and during the uploading. Otherwise, there might be some 

error occurred. The 74LS245, an octal tri-state buffer was used as the main component, 

makes the operation is extremely simple. It was used to provide the float state after the 

hex code has been written into the AVR chip. The two loop-back connections, pin 2 to 

12 and 3 and 11 is used to identify the ISP cable or so called as dongle. With both links 

in place the dongle is identified as a Value Added Pack Dongle. 

 

 

 Figure 3.15 shows the PCB layout for the cable. The simple circuit like this only 

needs a single layer PCB circuit  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: PCB Layout for ISP Cable 

 

 

 

 

 

 

 



 32

 Figure 3.16 shows the ISP Cable that built in this project. The cable is in small 

size and robust when built it as PCB circuit.  

 

 

 

 

 

 

 

 

 

Figure 3.16: ISP Cable 

 

 

 

 

3.2.7 RS232 Serial Cable 

 

 

 In this project, the DB9 version is used. Figure 3.17 shows the signals common 

for DB9 version. Note, that the protective ground is assigned to a pin at the large 

connector where the connector outside is used for that purpose with the DB9 connector 

version. 

 



 33

 
Figure 3.17: RS232 DB9 Pin Out 

 

 

 The MAX232 is the industrial standard IC for converting TTL/CMOS level 

signals to RS232 level signals. RS232 1s and 0s are at +12 and - 12V. Well the ATMEL 

only outputs 0-5V signals, so if we want to speak true RS232, we need to convert the 0-

5V signal pulses to their equivalent +/-12V RS232 pulses. 

 

 The MAX232 does exactly that. If we put 5V on the T1IN pin, we will see 12V 

on the T1OUT pin. This is how we pass data out to the computer. If we press a key in 

hyper terminal, a signal is sent down the line to the R1IN pin where the 12V signal 

coming from the computer is converted to a 0/5V signal coming out of R1OUT - a 

signal that the ATMEL understands. Figure 3.18 shows pin out of MAX232. 

 
 

Figure 3.18: Pin out of MAX232 



 34

 Figure 3.19 shows the schematic for the RS232 serial cable. The components that 

needed to build the cable are: MAX232 chip, DB9 connector; and four capacitors.  

 

 

1

2

3

4

5

6

7

8

9

11

10

J1

D Connector 9

C1+1 VDD 2

C1-3

C2+4

C2-5

VEE 6

T2OUT 7

R2IN 8R2OUT9

T2IN10 T1IN11

R1OUT12 R1IN 13

T1OUT 14

GND15

VCC 16

MAX232

VCC

1uF

C8

1uFC5

1uFC6

1uF

C7

ATMEL TX

 
 

 

Figure 3.19: Schematic Circuit for RS232 serial Cable 

 

 

 Figure 3.20 shows the PCB layout for the cable. A single layer PCB circuit also 

used for this simple circuit. 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: PCB Layout for RS232 Serial Cable 



 35

 

 

 Figure 3.21 shows the complete RS232 that used in this project.  

 

 

 
 

Figure 3.21: RS232 Serial Cable 

 

 

 

 

3.3 Software Development 

 

 

 In this project, the code programming was written in C language. First, we had to 

configure which registers will be used and setup specific pins for transmitting and 

receiving the data. Then, we drew the flowcharts for sensor nodes architecture as a guide 

to write the program code. In this project, the code of temperature sensing, data transmit 

and receive, and also the main loop in which we have to define the timer driver and the 

device driver were developed.  

 

 

 After that, those codes need to be compiled using a window platform of 

AVRGCC, WinAVR as it can handled the compiling, debugging and created the hex 

code as well. Figure 3.10 shows the steps in designing the code programming. After 



 36

compiling, the hex file that produced was uploaded into the chip using PonyProg2000. 

The analog temperature that measured by the sensor firstly converted into digital value 

before transmitting, and the received data were displayed at computer using Visual Basic 

terfacing. Figure 3.22 shows the flow in designing the code programming. 

 

in

 

 

Application’s
Flowchart

Programming 
Code using 

C/C++
Setup Makefile

Compile using
WinAVRGet Hex File

Upload Code
To target Device
(PonyProg2000)

(GUI – VB 6.0)

ISP CABLE

RS232
CABLE

Application’s
Flowchart

Programming 
Code using 

C/C++
Setup Makefile

Compile using
WinAVRGet Hex File

Upload Code
To target Device
(PonyProg2000)

(GUI – VB 6.0)

ISP CABLE

RS232
CABLE

 
 

 

Figure 3.22 : Steps in designing the code programming. 

 

.3.1 Transmitter Node 

 

 

 

3

 

 

 Figure 3.23 shows the flowchart for the overall transmitter node process. Firstly, 

the analogue value from the temperature sensor was measured and the value was 



 37

converted into digital value before processing. In the processing part, the data was added 

with the header (TCP [20 bytes] + IP [20 bytes] + non standard link layer header [3 

bytes]). After that the complete frame were transmitted using USART, and this flow will 

e repeated for the next data.  

 

b

 

Get input 
(sensor)?

ADC

UIP process = 
+ IP header + TCP header

+ header & cksum
for link layer

Transmit using USART

YES

NO

START

END

Get input 
(sensor)?
Get input 
(sensor)?

ADC

UIP process = 
+ IP header + TCP header

+ header & cksum
for link layer

Transmit using USART

YES

NO

START

END
 

 

 

Figure 3.23 : Flowchart for Transmitter Node Process 

 

 

 

 

 



 38

3.3.1.1 USART for Transmitter Node 

ta, we had to make sure that the transmitter buffer was empty to allow the 

ansmitting. 

 

 

 

 Figure 3.24 shows flowchart to transmit data using USART program. First, all 

parameters used in the program such as baud rate and frequency oscillator were defined. 

Then, we initialize USART where we set the frame format for data transmission (1 start 

bit; 8 data bits; and 1 stop bit) and activate the transmitter (TXD) pin. Then, after 

getting the da

tr

USART 
initialization

START

ADC
Conversion Complete?

Wait for empty
tx buffer

Transmit data
From USART buffer

END

STARTSTART

USART 
initialization

ADC
Conversion Complete?

ADC
Conversion Complete?

Wait for empty
tx buffer

Transmit data
From USART buffer

END

NO

YES
NO

YES

END
 

Figure 3.24 : Flowchart for USART Transmitter Node Process 

 

 

 



 39

3.3.2 Receiver Node 

rame were transmitted using USART, and this flow will be repeated for the 

ext data. 

 

 

 

 Figure 3.25 shows the flowchart for the overall receiver node process. Firstly, the 

frame received was read from USART buffer (UDR).After that the frame was processed 

to extract the data. In the processing part, the header (TCP [20 bytes] + IP [20 bytes] + 

non standard link layer header [3 bytes]) were separated from the data. Lastly, the 

complete f

n

Data 
receive?

Read incoming data
In USART buffer

Checksum, - header

UIP process =
- IP header – TCP header

Display data

YES

NO

START

END

Data 
receive?

Read incoming data
In USART buffer

Checksum, - header

UIP process =
- IP header – TCP header

Display data

YES

NO

START

END  
 

 

Figure 3.25 : Flowchart for Receiver Node Process 

 

 



 40

3.3.2.1  USART for Transmitter Node 

) pin. Then, 

 there were data received, the data could be read from the USART buffer. 

 

 

 

 

 Figure 3.26 shows flowchart to receive data using USART. First, all parameters 

used in the program such as baud rate and frequency oscillator were defined. Then, we 

initialize USART where we set the frame format for data transmission (1 start bit; 8 

data bits; and 1 stop bit) as at the transmitter and activate the receiver (RXD

if

USART 
initialization

START

Wait for data 
to be received

Read data 
from USART buffer

END

USART 
initialization

STARTSTART

Wait for data 
to be received

Read data 
from USART buffer

ENDEND

 

NO

YES

 

Figure 3.26 : Flowchart for USART Receiver Node Process 

 

 

 

 

 

 



 41

3.3.3 uIP  

ecause it determines the types of Linker, Loader and the object files to be 

roduced. 

 

ded Software Development Process 

 

 

 The C source code programming development process is shown in Figure 3.27. 

This is more details as it lists all the process from creating the code using high-level 

language (C language), the cross-compiler and finally uploading the executable file into 

the target system. For this purposes, the setup of Makefile of every source file is 

important b

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: Embed



 42

3.3.3.1 uIP Program Explanation 

ns for uIP programming. In this part, we will 

iscuss the code line by line in main.c.  

.3.3.1.1 Transmitter Part 

Figure 3.28 shows the main source code for uIP stack for transmitter node. 

 

Figure 3.28: The Main Source Code for uIP for Transmitter 

 

 

 The main program for uIP is main.c, where this program was included with all 

header file that used to call all functio

d

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 43

 This programming functions to control all of the transmitter tasks. In this part, 

the programming code description in main.c will be described. Firstly, int main(void) 

means the beginning of the program execution. While rs232dev_init( ) used to initialize 

the rs232 device and set the parameter of the device which is in source code rs232_tty. 

The uip_init( ) functions call the subroutine to check available ports and connection 

configure the uIP data structures and example1_init( ) functions call the function to 

defined port number for the application node. Both transmitter and receiver should have 

the same port number. Besides, uip_process(UIP_DATA) means the actual uIP function 

which does all the work such as to add the TCP/IP header and so on.  

 

 

 Whereas, *uip_appdata = acd( ) is a pointer points to the application data when 

the application (from ADC conversion) is called. If the application wishes to send data, 

this is where the application should write it. The rs232dev_send are functions to sends 

the packet in the uip_buf and uip_appdata buffers. The first 40 bytes of the packet (the 

IP and TCP headers) are read from the uip_buf buffer, and the following bytes (the 

application data) are read from the uip_appdata buffer. After sending one packet, the 

delay_1ms(1000) was called to make delay one second before transmitting next frame. 

Lastly is return 0 means the end of the program 

 

 

 

 

 

 

 

 

 

 

 

 



 44

3.3.3.1.2 Receiver Part 

 

 

 Figure 3.29 shows the main source code for uIP stack for receiver node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29: The Main Source Code for uIP for Receiver 

 

 

 This programming functions to control all of the receiving tasks. In this part, the 

programming code description in main.c will be described. As in the transmitter part, int 

main (void) means the beginning of the program execution. DDRC is a PORTC Data 

Direction Register. DDRC = 0XFF means the PORTC Data Direction Register was set 

to high to active the register. Besides, PORTC =0X00 means PORTC was set to low ( as 



 45

an output) to display the received data. After that, c= USART_RX( ) function called to 

read the incoming packet from USART buffer. Whereas, process( ) calls the subroutine 

to process the incoming packet. This function will extract the 8 bits data from the whole 

frame. Lastly is return 0 means the end of the program 

 

 

 

 

3.3.4 Code Compiler  (WinAVR) 

 

 

 In developing and compiling the source code, several software that available for 

free download from the net can be used. The source code was written in C, thus Visual 

C++ or any other C programmer could be used. But in compiling the code, another 

compiler that is more convenient for AVR microcontroller was used to compile the 

code. The selection of software in compiling the code developed depends on the easiest 

way and without the need of circuit emulator from the vendor. To program the code into 

the chip, an alternative way such as an ISP connector can be implemented. The 

followings are the software that might be use as the code compiler as well. 

 

 

 Figure 3.30 shows the Programmer Notepad window in WinAVR. In Figure 

3.30, the source code is displayed at the back, while the front window shows the 

makefile setup for the source code. After that, the source code will be executed by 

hitting Make All command in the Tool menu. WinAVR is a suite of executable, open 

source software development tools for the ATMEL series of RISC microprocessor 

hosted on the Windows platform. It includes the GNU GCC compiler for C and C++. So 

far, Win AVR supports only the DOS command-line platform. The user should familiar 

with DOS commands before using it. The user needs to study the Makefile and AVR-

GCC program. WinAVR development tools includes Compilers , Assembler, Linker , 



 46

Librarian, File converter , Other file utilities, C Library , Programmer software, 

Debugger, In-Circuit Emulator software, Editor / IDE , and many other support utilities.  

 

 

 The compiler in WinAVR is the GNU Compiler Collection, or GCC. This 

compiler was incredibly flexible and can be hosted on many platforms; it can target 

many different processors / operating systems (back-ends), and can be configured for 

multiple different languages (front-ends). . This is ideal for calling the make utility, 

which executes user’s Makefile, which in turn calls the compiler, linker, and other 

utilities used to build your software.  

 

 

 
 

Figure 3.30: Programmer Notepad in WinAVR 
 

 

 

 



 47

3.3.5 Visual Basic 6.0 

 

 

 Visual Basic 6.0 is used to design graphical user interface (GUI). This software 

is ease to use and implement as it provides functional ability in the software. The Visual 

Basic Integrated Development Environment (IDE) provides everything that is needed to 

develop applications in an easy-to-use-and-learn GUI. This is the example of opening 

screen that will appear in Visual Basic 6.0 software. Figure 3.31 shows the New Project 

Window is displayed when Visual Basic is started. 

 

 

 
 

Figure 3.31: The New Project Window  

 

 

 The codes provides in this software is user friendly and not complicated as the 

other software because it use the Basic Language. Figure 3.32 shows the Menu Bars and 

figure 3.33 shows the Title Bars provide information similar to most windows programs. 



 48

 
 

Figure 3.32: Visual Basic design 

 

 

 
 

Figure 3.33: Menu Bars and Title Bars 

 

 

 Microsoft Comm Control 6.0 needs to be added in to Toolbox as illustrates in 

figure 3.34. This tool is important in order to communicate with serial port. 

 



 49

 
 

Figure 3.34: Microsoft Comm Control 6.0 

 

 

 

 

3.3.6 Serial Device Programmer 
 

 

 To program the AVR microcontroller, a serial device programmer was used 

(PonyProg2000). Before programming the chip, we had to setup the interface whether to 

use serial or parallel connector. Then, calibrate the bus timing, choose the device to be 

used and setup the configuration and security bits. After all calibration and setting were 

done, the chosen hex file could be uploaded into the microcontroller. Before that, we had 

to ensure that we had chosen the right memory location for the programming which is 

flash memory. 

 

 

 Figure 3.35 illustrates PonyProg2000 window. It shows the hex file, which tells 

us the size of the program and the last memory that the program use. When the program 



 50

is successfully uploaded into microcontroller, it will show a notice that the program is 

successful 

the content the content 
in the memory.in the memory.
(memory filled (memory filled 
with hex code)with hex code)

Code has been Code has been 
downloaded into downloaded into 
Controller Controller 
successfullysuccessfully

the content the content 
in the memory.in the memory.
(memory filled (memory filled 
with hex code)with hex code)

Code has been Code has been 
downloaded into downloaded into 
Controller Controller 
successfullysuccessfully

 
 

Figure 3.35: PonyProg2000 window 
 

 



 

 

 

 

CHAPTER 4 

 

 

 

 

RESULT 

 

 

 

 

The goal of this project is to distribute the basic of wireless sensor network that 

can measure the temperature in different parts of the office to help in controlling the air 

flow. Finally, this project was succeeding to transmit and receive data implementing 

TCP/IP protocol. In this section we will discuss the result from experiments in this 

project. The results were measure with an oscilloscope and were displayed at hyper 

terminal and Visual Basic 6.0 GUI.  

 

 

 In view of the fact that it is data transmission between two sensor nodes, frame 

formats and data rate is important. In this project, it was defined that data transmission 

using USART with baud rate of 4800 bps, 8 bit frame format and Big Endian byte order 

of the data. The data rate was described by the number of bits transmitted each second, 

measured in bit per second (bps). Each frame contents 44 bytes data: 2 bytes header 

(link layer); 1byte checksum (link layer); 20 bytes TCP header; 20 bytes IP header; and 

1 byte data. 

 

 



 52

4.1 Result from Oscilloscope 

 

 

 The result will be elaborated in this section; which are analog data that has been 

converted into the digital form. In this section, the result during transmission was 

captured with oscilloscope to identify every bit in the frame. 

 

 

 

 

4.1.1 USART without uIP Wired 

 

 

 Figure 4.1 shows the result collected at the TXD pin and RXD pin during wired 

transmission. The data transmitted is only 1 byte (without uIP) and USART transmission 

format that have 1 start bit (star bit=0), 8 bit data, and 1 stop bit (stop bit=1) was used. 

The data is 0X0E (in hexadecimal) at temperature 23 oC. We have defined Big Endian 

byte order and 8 bit data each time the transmission, here we can see from the figure that 

the data transmit is 0011100001  

 

 

0 | 0111 | 0000 | 1 

 

Start bit 0XE 0X0 Stop bit  

 

 

 The actual data is 0X0E which is 00000111. 

 

 

 

 



 53

 

 

Tx

Rx

Start bit=0 Stop bit=1

Data=0x0E (27 Celsius)

Tx

Rx

Start bit=0 Stop bit=1

Data=0x0E (27 Celsius)

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Observed Data Transmission using USART (without uIP - wired) 
 

 

 

 

4.1.2 USART with uIP Wired 

 

 

 Figure 4.2 shows the result collected at the TXD pin and RXD pin during wired 

transmission. The data transmitted are 44 bytes (with uIP).  

 

 

 

 

 

 

 

 

 

 



 54

 

 

Tx

Rx

Start bit = 0 Stop bit = 1

0xFC : 1 byte of 44 bytes 

Tx

Start bit = 0 Stop bit = 1

0xFC : 1 byte of 44 bytes 

 

 

 

 

 

 

 
Rx 

 

 

 

 

Figure 4.2: Observed Data Transmission using USART  

(with uIP – wired – before uIP process) 

 

 

 Figure 4.3 shows the result collected at the TXD pin and RXD pin during wired 

transmission. The data transmitted are 44 bytes (with uIP) and USART transmission 

format that have 1 start bit (star bit=0), 8 bit data, and 1 stop bit (stop bit=1) was also 

used. The data is 0X0F (in hexadecimal) at temperature 29 oC. We have defined Big 

Endian byte order and 8 bit data each time the transmission, the extracted data is 

0111100001  

 

 

0 | 1111 | 0000 | 1 

 

Start bit 0XF 0X0 Stop bit  

 

. The actual data is 0X0F which is 00001111. 



 55

 

Tx

Rx
Start bit = 0

Stop bit = 1

Data = 0x0F, 29 Celsius

Tx

Rx
Start bit = 0

Stop bit = 1

Data = 0x0F, 29 Celsius

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Observed Data Transmission using USART  

(with uIP – wired – after uIP process) 

 

 

 

 

4.1.3 USART with uIP Wireless 

 

 

 Figure 4.4 shows the result collected at the TXD pin and RXD pin during wired 

transmission. The data transmitted are 44 bytes (with uIP).The figure shows several 

bytes of the frame. 

 

 

 

 

 

 

 



 56

 

Tx

Rx

Start bit = 0 Stop bit = 1

Header : 0x0C 0x02

Tx

Rx

Start bit = 0 Stop bit = 1

Header : 0x0C 0x02

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Observed Data Transmission using USART  

(with uIP – wireless – before uIP process) 

 

 

 Figure 4.5 shows the result collected at the TXD pin and RXD pin during wired 

transmission. The data transmitted are 44 bytes (with uIP) and USART transmission 

format that have 1 start bit (star bit=0), 8 bit data, and 1 stop bit (stop bit=1) was also 

used. At the receiver, the received frame will be processed to extract the data. After 

processing, extracted data is 0X0F (in hexadecimal) at temperature 29 oC. We have 

defined Big Endian byte order and 8 bit data each time the transmission, the extracted 

data is 0111100001  

 

 

0 | 1111 | 0000 | 1 

 

Start bit 0XF 0X0 Stop bit  

 

 



 57

. The actual data is 0X0F which is 00001111. 

 

 

Rx

Tx

Start bit = 0
Stop bit = 1

Data = 0x0F (29 Celsius)

Rx

Tx

Start bit = 0
Stop bit = 1

Data = 0x0F (29 Celsius)

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Observed Data Transmission using USART  

(with uIP – wireless – after uIP process) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58

4.2 Result at Hyper Terminal 

 

 

 Figure 4.6 shows the received data measured at RXD pin at 27 oC. Those data 

were not extracted. There are 44 bytes data in a frame: 2 bytes header (link layer); 1 byte 

checksum (link layer); 20 bytes TCP header; 20 bytes IP header; and 1 bite data. The 

data were displayed in hexadecimal.  

 

 

 

Data in a frame
44 bytes = 2 hdr
+ 1 cksm +
20 TCP header
+ 20 IP header
+ 1 data

Data = 0x0E
At 27 Celsius

Data in a frame
44 bytes = 2 hdr
+ 1 cksm +
20 TCP header
+ 20 IP header
+ 1 data

Data = 0x0E
At 27 Celsius

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Received Data Displayed at HyperTerminal.  

(USART - with uIP – wireless – before uIP process) 

 

 

 Figure 4.7 shows the extracted data at HyperTerminal measured at TXD pin at 

receiver node. All of those header were removed away to get the actual data. This data 

was measured at temperature 27 oC.  

 



 59

 

 

Received data
in hex

(after uip process)
At 27 celsius

Received data
in hex

(after uip process)
At 27 celsius

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Received Data Displayed at HyperTerminal.  

(USART - with uIP – wireless – after uIP process) 

 

 

 

 

4.3 Result at Visual Basic 6.0 GUI 

 

 

 The transmitter node gets data from environment, and sends the frame after 

processing. While at the receiver, the received frame was processed to retrieve the data. 

After that, the extracted data was transmitted to the computer through the RS232 serial 

cable in order to display the temperature value at the computer. So, the Graphical User 

Interface (GUI) was developed for this purpose using Visual Basic 6.0  

 

 



 60

 Figure 4.7 shows the GUI that developed to display the received temperature 

value. The background wills change depends on the temperature value. If the 

temperature is below than 30 oC, the background is green which is in normal condition. 

When the temperature is in range 31 oC to 40 oC, the background is yellow shows that 

now are hot condition. If the temperature is above 40 oC, the background is red meaning 

very hot condition.  

 

 

 

x > 40 degree ( very hot )

x < 30 degree (normal) 30< x < 41 degree (hot)

x > 40 degree ( very hot )

x < 30 degree (normal) 30< x < 41 degree (hot)

 

 

 

 

 

 

 

 

 

Figure 4.7: Graphical User Interface 



 

 

 

 

CHAPTER 5 

 

 

 

 

CONCLUSION AND RECOMMENDATION  

 

 

 

 

5.1 Discussion 

 

 

 Due to many constraints and limited resources such as power consumption, 

energy efficiency, available memory and buffering in the system that need to be 

considered, implementing a TCP/IP protocol into the small architecture of an embedded 

system seems to be a hard task. The source code that used to do the whole operations 

was written in C language and were complied using WinAVR. The IP address and the 

application port for transmitter node were configured to match with the receiver node. A 

non-standard format was used to handle the data at the Link Layer. The verification of 

data transmission was carried out for both wired and wireless communication.  

 

 

 In this thesis, the development of sensor nodes for both transmitter and receiver 

part has been presented. Although the development of sensor nodes was done using a 

small memory size of 8KB, the sensor nodes that can do sensing, processing and 

networking using TCP/IP protocol have been successfully developed. As elaborated in 



 62

the previous chapter, the data transmission between the sensor nodes operated correctly 

as developed in the programming sections. 

 

 

5.2 Recommendation 

 

 

 The work carried out in this project were focused on the development of a sensor 

node which constraint on sensing the temperature data, embedding the uIP stack into the 

sensor node and testing the data transmission as well. But during the testing, no further 

measurement was done to configure the delay, routing protocol, and medium access. The 

suggestions for the future works are the following: 

 

 

1. This project should be developed with smaller size, lower cost, but can be 

used in wider application and functions since the development is carried out 

without much constraint on the physical size and cost.  

2. In addition, more sensor nodes should be further developed to represent a real 

sensor and several sensor types can be combined to sense the data from 

surroundings, depends on the sensor network application. 

3. More analysis should be done in many angles such as in circuit design, 

antenna design, measurement methodologies, and result representation. 

 

 

 

 

 



 

 

 

 

REFERENCES 

 

 

 

 

1. William Stallings (2004) “Data and Computer Communications” International 

Edition: Seventh Edition, Upper Saddle River: NJ07458. Pearson Prentice Hall. 

 

2. A. Dunkels (May 2003). Full TCP/IP for 8-bit architectures. In MOBISYS`03, San 

Francisco, California. URL: http://dunkels.com/adam/uip 

 

3. A. Dunkels (May 2003).”uIP-A Free Small TCP/IP Stack”. Technical paper. 

 

4. A. Porret, T. Melly, C.C. Enz, E.A. Vittoz, A low-power low-voltage transceiver 

architecture suitable for wireless distributed sensors network, IEEE International 

Symposium on Circuits and Systems’00, Geneva, Vol. 1, 2000, pp.56–59. 

 

5. G.J. Pottie, W.J. Kaiser, Wireless integrated network sensors, Communications of 

the ACM 43 (5) (2000) 551–558. 

 

6. A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, SPINS: security protocols 

for sensor networks, Proceedings of ACM MobiCom’01, Rome, Italy, 2001, pp. 

189– 199. 

 

7. S. Hollar (2000). COTS Dust. Master Thesis, University of California, Berkeley. 

 

http://dunkels.com/adam/uip


 64

8. Jones, M. Tim (2002). TCP/IP Application Layer Protocols for Embedded Systems. 

Charles River Media, Inc.  

 

9. A. Dunkels, The Contiki Operating System. Web page. 

URL:http://www.sics.se/~adam/contiki 

 

10. ATMEL corporation Website, URL: http://www.Atmel.com 

 

11. GNU groups, AVR-GCC mailing list, URL:http://www.avrfreaks.com.  

 

12. Jin Wook Lee (September 2002). Sensor Network and Technologies. 

 

http://www.atmel.com/
http://www.avrfreaks.com/


 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

TRANSMITTER AND RECEIVER NODE SOURCE CODES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 66

####################################################################### 
##########################                      ####################### 
                          /* TRANSMITTER NODE */ 
##########################                      ####################### 
####################################################################### 
#include "uip.h" 
#include "rs232dev.h" 
#include "app.h" 
#include <stdio.h> 
#include "compiler.h" 
#include <avr/io.h> 
#include "uip_arch.h" 
#define TIMER_PRESCALE    1024 
#define F_CPU             8000000 
#define TIMERCOUNTER_PERIODIC_TIMEOUT (F_CPU / TIMER_PRESCALE / 2 / 
256) 
static unsigned char timerCounter; 
void initTimer(void){ 
  TCCR0=0x07; 
  TIMSK |=_BV(TOIE0); 
  timerCounter = 0;} 
SIGNAL(SIG_OVERFLOW0){ 
  timerCounter++;} 
//***************** main *********************// 
int main(void) { 
int x; 
rs232dev_init(); 
uip_init(); 
example1_init(); 
while(1){ 
 uip_process(UIP_DATA); 
 *uip_appdata = adc(); 
 rs232dev_send(); 
 delay_1ms(1000);} 
  return 0;} 
##################################################################### 
     /* USART TX */ 
##################################################################### 
#include <avr/io.h> 
#define FOSC 8000000// Clock Speed 
#define BAUD 1200 
#define baudrate (FOSC/16/BAUD-1) 
unsigned int x; 
unsigned int ADCL_data, ADCH_data; 
//------------------ subrutin ------------------------ 
void USART_Init(unsigned int UBRR){ 
/* Set baud rate */ 
UCSRA &= 0xfd; 
UBRRH = (unsigned char)((UBRR)>>8); 
UBRRL = (unsigned char)(UBRR); 
/* Enable receiver and transmitter */ 
UCSRB = (1<<RXEN)|(1<<TXEN); 
/* Set frame format: 8data, no parity, 1 stop bit */ 
UCSRC = (1<< URSEL) | (1<< UCSZ1) |  (1<< UCSZ0);} 
//to transmit 16 bits 
void USART_Transmit(unsigned int x) {  
   /* Wait for empty transmit buffer */  



 67

   while ( !(UCSRA & (1<<UDRE)) ) ;  
   /* Start transmission */  
   UDR = x;  // send significant byte } 
unsigned char USART_RX(void) {  
   /* Wait for data to be received */  
   while (!(UCSRA & (1<<RXC))) ;                           
   /* Get and return received data from buffer */  
return UDR;} 
int adc (){ 
USART_Init(baudrate); 
DDRA = 0x00; //set PORTA as input 
PORTA = 0X00; 
// Activate ADC with Prescaler 2  
ADCSRA = 0b10000000 ; 
ADMUX = 0b00100100; 
ADCSRA |= 0B01000000;  
while (ADCSRA & _BV(ADSC) ) {} 
x = ADCH; 
return x;} 
####################################################################### 
      /*A Very Simple Application" from the uIP 0.6 documentation*/ 
####################################################################### 
#include "app.h" 
void example1_init(void){ 
 uip_listen(4500);} 
void example1_app(void){ 
 if(uip_newdata() || uip_rexmit()){ 
  uip_send("okqqqqqqqqqqqqqqqqqqqq\n", 24);}} 
####################################################################### 
                           /* RS232_DEV */ 
####################################################################### 
#include <avr/io.h> 
#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include "rs232dev.h" 
#include "uip.h"  
char indata[]; 
char *indataptr; 
void delay_1ms(unsigned int i){ 
 char j; 
 while(i--) 
 { 
  j=11415;   // 8Mhz Exteranl Crystal(CKSEL3..0 = 1,1,1,1) 
  while(j--);}} 
u8_t getchar_hextty_findnext(void) { 
  u8_t c; 
  char v; 
  while (*indataptr &&  
  !isalnum((int) (*indataptr))) { 
    indataptr++;} 
  if (*indataptr) { 
    v = *indataptr++;} else { 
    exit(0);} 
  if ((v >= '0')&&(v <= '9')) 
    c = v - '0'; 



 68

  else 
    c = toupper(v) - 'A' + 10; 
  return c;} 
u8_t getchar_hextty(void) { 
  u8_t c; 
  c = getchar_hextty_findnext(); 
  c = (c << 4) + getchar_hextty_findnext(); 
  return c;} 
#define SIO_RECV(c)  c=getchar_hextty() 
#define SIO_POLL(c)  (c=getchar_hextty()) 
#define MAX_SIZE UIP_BUFSIZE 
static u8_t slip_buf[MAX_SIZE]; 
#if MAX_SIZE > 255 
static u16_t len, tmplen; 
#else 
static u8_t len, tmplen; 
#endif /* MAX_SIZE > 255 */ 
/*-------------------------------------------------------------------*/ 
/* 
 * rs232dev_send(): 
 * 
 * Sends the packet in the uip_buf and uip_appdata buffers. The first 
 * 40 bytes of the packet (the IP and TCP headers) are read from the 
 * uip_buf buffer, and the following bytes (the application data) are 
 * read from the uip_appdata buffer. 
 */ 
/*-------------------------------------------------------------------*/ 
void rs232dev_send(void) { 
#if MAX_SIZE > 255 
  u16_t i; 
#else 
  u8_t i; 
#endif /* MAX_SIZE > 255 */ 
  u8_t *ptr; 
  u8_t c; 
SIO_SEND('r'); 
SIO_SEND('z'); 
  ptr = *uip_buf;  
  for(i = 0; i < 41/*uip_len*/; i++) { 
 if (i==13){ 
  *ptr = UIP_IPADDR0;} 
 if (i==14){ 
  *ptr = UIP_IPADDR1;} 
 if (i==15){ 
  *ptr = UIP_IPADDR2;} 
 if (i==16){ 
  *ptr = UIP_IPADDR3;} 
 if(i == 40) {  
  ptr = (u8_t*)uip_appdata; 
  c = *ptr; 
  PORTC=c;} 
    c = *ptr++; 
 SIO_SEND(c);}} 
/*-------------------------------------------------------------------*/ 
/* 
 * rs232dev_init(): 
 * Initializes the RS232 device and sets the parameters of the device. 



 69

 */  
/*-------------------------------------------------------------------*/ 
void rs232dev_init(void) { 
  indataptr = indata;} 
void SIO_SEND(unsigned char c) { 
  USART_Transmit(c);} 
/*-------------------------------------------------------------------*/ 
####################################################################### 
                            /* UIP STACK */ 
####################################################################### 
#include <avr/io.h> 
#include "uip.h" 
#include "uipopt.h" 
#include "uip_arch.h" 
/*-------------------------------------------------------------------*/ 
/* Variable definitions. */ 
u8_t uip_buf[UIP_BUFSIZE];   /* The packet buffer that contains 
    incoming packets. */ 
volatile u8_t *uip_appdata;  /* The uip_appdata pointer points to 
    application data. */ 
#if UIP_BUFSIZE > 255 
volatile u16_t uip_len;      /* The uip_len is either 8 or 16 bits, 
    depending on the maximum packet size. */ 
#else 
volatile u8_t uip_len; 
#endif /* UIP_BUFSIZE > 255 */ 
volatile u8_t uip_flags;     /* The uip_flags variable is used for 
    communication between the TCP/IP stack 
    and the application program. */ 
struct uip_conn *uip_conn;   /* uip_conn always points to the current 
    connection. */ 
struct uip_conn uip_conns[UIP_CONNS]; 
                             /* The uip_conns array holds all TCP 
    connections. */ 
u16_t uip_listenports[UIP_LISTENPORTS]; 
                             /* The uip_listenports list all currently 
    listning ports. */ 
static u16_t ipid;           /* Ths ipid variable is an increasing 
    number that is used for the IP ID 
    field. */ 
static u8_t iss[4];          /* The iss variable is used for the TCP 
    initial sequence number. */ 
#if UIP_ACTIVE_OPEN 
static u16_t lastport;       /* Keeps track of the last port used for 
    a new connection. */ 
#endif /* UIP_ACTIVE_OPEN */ 
/* Temporary variables. */ 
static u8_t c, opt; 
static u16_t tmpport; 
/* Structures and definitions. */ 
typedef struct { 
  /* IP header. */ 
  u8_t vhl, 
    tos,           
    len[2],        
    ipid[2],         
    ipoffset[2],   



 70

    ttl,           
    proto;      
  u16_t ipchksum; 
  u16_t srcipaddr[2],  
    destipaddr[2]; 
  /* ICMP (echo) header. */ 
  u8_t type, icode; 
  u16_t icmpchksum; 
  u16_t id, seqno;   
} ipicmphdr; 
#define TCP_FIN 0x01 
#define TCP_SYN 0x02 
#define TCP_RST 0x04 
#define TCP_PSH 0x08 
#define TCP_ACK 0x10 
#define TCP_URG 0x20 
#define IP_PROTO_ICMP   1 
#define IP_PROTO_TCP    6 
#define ICMP_ECHO_REPLY 0 
#define ICMP_ECHO       8      
/* Macros. */ 
#define BUF ((uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN]) 
#define ICMPBUF ((ipicmphdr *)&uip_buf[UIP_LLH_LEN]) 
#if UIP_STATISTICS == 1 
struct uip_stats uip_stat; 
#define UIP_STAT(s) s 
#else 
#define UIP_STAT(s) 
#endif /* UIP_STATISTICS == 1 */ 
#if UIP_LOGGING == 1 
#define UIP_LOG(m) printf("%s\n", m) 
#else 
#define UIP_LOG(m) 
#endif /* UIP_LOGGING == 1 */ 
/*-------------------------------------------------------------------*/ 
void 
uip_init(void){ 
  for(c = 0; c < UIP_LISTENPORTS; ++c) { 
    uip_listenports[c] = 0;} 
  for(c = 0; c < UIP_CONNS; ++c) { 
    uip_conns[c].tcpstateflags = CLOSED;} 
#if UIP_ACTIVE_OPEN 
  lastport = 1024; 
#endif /* UIP_ACTIVE_OPEN */} 
/*-------------------------------------------------------------------*/ 
#if UIP_ACTIVE_OPEN 
struct uip_conn * 
uip_connect(u16_t *ripaddr, u16_t rport){ 
  struct uip_conn *conn; 
  /* Find an unused local port. */ 
 again: 
  ++lastport; 
  if(lastport >= 32000) { 
    lastport = 4096;} 
  for(c = 0; c < UIP_CONNS; ++c) { 
    if(uip_conns[c].tcpstateflags != CLOSED && 
       uip_conns[c].lport == lastport) 



 71

      goto again;} 
  for(c = 0; c < UIP_CONNS; ++c) { 
    if(uip_conns[c].tcpstateflags == CLOSED)  
      goto found_unused;} 
  for(c = 0; c < UIP_CONNS; ++c) { 
    if(uip_conns[c].tcpstateflags == TIME_WAIT)  
      goto found_unused;} 
  return (void *)0; 
  found_unused: 
  conn = &uip_conns[c]; 
  conn->tcpstateflags = SYN_SENT | UIP_OUTSTANDING; 
  conn->snd_nxt[0] = conn->ack_nxt[0] = iss[0]; 
  conn->snd_nxt[1] = conn->ack_nxt[1] = iss[1]; 
  conn->snd_nxt[2] = conn->ack_nxt[2] = iss[2]; 
  conn->snd_nxt[3] = conn->ack_nxt[3] = iss[3]; 
  if(++conn->ack_nxt[3] == 0) { 
    if(++conn->ack_nxt[2] == 0) { 
      if(++conn->ack_nxt[1] == 0) { 
 ++conn->ack_nxt[0]; 
      } 
    } 
  } 
  conn->nrtx = 0; 
  conn->timer = 1; /* Send the SYN next time around. */ 
  conn->lport = htons(lastport); 
  conn->rport = htons(rport); 
  conn->ripaddr[0] = ripaddr[0]; 
  conn->ripaddr[1] = ripaddr[1]; 
  return conn;} 
#endif /* UIP_ACTIVE_OPEN */ 
/*-------------------------------------------------------------------*/ 
void 
uip_listen(u16_t port){ 
  for(c = 0; c < UIP_LISTENPORTS; ++c) { 
    if(uip_listenports[c] == 0) { 
      uip_listenports[c] = htons(port); 
      break; 
    } 
  } 
} 
/*-------------------------------------------------------------------*/ 
void 
uip_process(u8_t flag){ 
  uip_appdata = &uip_buf[40 + UIP_LLH_LEN]; 
  /* Check if we were invoked because of the perodic timer fireing. */ 
  if(flag == UIP_TIMER) { 
    /* Increase the initial sequence number. */ 
    if(++iss[3] == 0) { 
      if(++iss[2] == 0) { 
 if(++iss[1] == 0) { 
   ++iss[0];} 
      } 
    } 
    uip_len = 0; 
    if(uip_conn->tcpstateflags == TIME_WAIT || 
       uip_conn->tcpstateflags == FIN_WAIT_2) { 
      ++(uip_conn->timer); 



 72

      if(uip_conn->timer == UIP_TIME_WAIT_TIMEOUT) { 
 uip_conn->tcpstateflags = CLOSED;} 
    } else if(uip_conn->tcpstateflags != CLOSED) { 
      /* If the connection has outstanding data, we increase the 
  connection's timer and see if it has reached the RTO value 
  in which case we retransmit. */ 
      if(uip_conn->tcpstateflags & UIP_OUTSTANDING) { 
 --(uip_conn->timer); 
 if(uip_conn->timer == 0) { 
   if(uip_conn->nrtx == UIP_MAXRTX) { 
     uip_conn->tcpstateflags = CLOSED; 
     /* We call UIP_APPCALL() with uip_flags set to 
        UIP_TIMEDOUT to inform the application that the 
        connection has timed out. */ 
     uip_flags = UIP_TIMEDOUT; 
     UIP_APPCALL(); 
     /* We also send a reset packet to the remote host. */ 
     BUF->flags = TCP_RST | TCP_ACK; 
     goto tcp_send_nodata; 
   } 
   /* Exponential backoff. */ 
   uip_conn->timer = UIP_RTO << (uip_conn->nrtx > 4? 4: uip_conn-
>nrtx); 
   ++(uip_conn->nrtx); 
    
   /* Ok, so we need to retransmit. We do this differently 
      depending on which state we are in. In ESTABLISHED, we 
      call upon the application so that it may prepare the 
      data for the retransmit. In SYN_RCVD, we resend the 
      SYNACK that we sent earlier and in LAST_ACK we have to 
      retransmit our FINACK. */ 
   UIP_STAT(++uip_stat.tcp.rexmit); 
   switch(uip_conn->tcpstateflags & TS_MASK) { 
   case SYN_RCVD: 
     /* In the SYN_RCVD state, we should retransmit our 
               SYNACK. */ 
     goto tcp_send_synack; 
      
#if UIP_ACTIVE_OPEN 
   case SYN_SENT: 
     /* In the SYN_SENT state, we retransmit out SYN. */ 
     BUF->flags = 0; 
     goto tcp_send_syn; 
#endif /* UIP_ACTIVE_OPEN */ 
      
   case ESTABLISHED: 
     /* In the ESTABLISHED state, we call upon the application 
               to do the actual retransmit after which we jump into 
               the code for sending out the packet (the apprexmit 
               label). */ 
     uip_len = 0; 
     uip_flags = UIP_REXMIT; 
     UIP_APPCALL(); 
     goto apprexmit; 
      
   case FIN_WAIT_1: 
   case CLOSING: 



 73

   case LAST_ACK: 
     /* In all these states we should retransmit a FINACK. */ 
     goto tcp_send_finack;  
   } 
 } 
      } else if((uip_conn->tcpstateflags & TS_MASK) == ESTABLISHED) { 
 /* If there was no need for a retransmission, we poll the 
           application for new data. */ 
 uip_len = 0; 
 uip_flags = UIP_POLL; 
 UIP_APPCALL(); 
 goto appsend; 
      } 
    }    
    goto drop; 
  } 
  /* This is where the input processing starts. */ 
  UIP_STAT(++uip_stat.ip.recv); 
  /* Check validity of the IP header. */   
  if(BUF->vhl != 0x45)  { /* IP version and header length. */ 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.vhlerr); 
    UIP_LOG("ip: invalid version or header length."); 
    goto drop; 
  } 
  /* Check the size of the packet. If the size reported to us in 
     uip_len doesn't match the size reported in the IP header, there 
     has been a transmission error and we drop the packet. */ 
#if UIP_BUFSIZE > 255 
  if(BUF->len[0] != ((uip_len - UIP_LLH_LEN) >> 8)) { 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.hblenerr); 
    UIP_LOG("ip: invalid length, high byte."); 
                               /* IP length, high byte. */ 
    goto drop; 
  } 
  if(BUF->len[1] != ((uip_len - UIP_LLH_LEN) & 0xff)) { 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.lblenerr); 
    UIP_LOG("ip: invalid length, low byte."); 
                               /* IP length, low byte. */ 
    goto drop; 
  } 
#else 
  if(BUF->len[0] != 0) {        /* IP length, high byte. */ 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.hblenerr); 
    UIP_LOG("ip: invalid length, high byte."); 
    goto drop;} 
  if(BUF->len[1] != (uip_len - UIP_LLH_LEN)) {  /* IP length, low byte. 
*/ 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.lblenerr); 
    UIP_LOG("ip: invalid length, low byte."); 
    goto drop;} 
#endif /* UIP_BUFSIZE > 255 */   
  if(BUF->ipoffset[0] & 0x3f) { /* We don't allow IP fragments. */ 



 74

    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.fragerr); 
    UIP_LOG("ip: fragment dropped.");     
    goto drop;} 
  /* Check if the packet is destined for our IP address. */ 
  if(BUF->destipaddr[0] != htons(((u16_t)UIP_IPADDR0 << 8) | 
UIP_IPADDR1)) { 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_LOG("ip: packet not for us.");         
    goto drop;} 
  if(BUF->destipaddr[1] != htons(((u16_t)UIP_IPADDR2 << 8) | 
UIP_IPADDR3)) { 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_LOG("ip: packet not for us.");         
    goto drop;} 
  if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header 
        checksum. */ 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.chkerr); 
    UIP_LOG("ip: bad checksum.");     
    goto drop;} 
  if(BUF->proto == IP_PROTO_TCP)  /* Check for TCP packet. If so, jump 
                                     to the tcp_input label. */ 
    goto tcp_input; 
  if(BUF->proto != IP_PROTO_ICMP) { /* We only allow ICMP packets from 
           here. */ 
    UIP_STAT(++uip_stat.ip.drop); 
    UIP_STAT(++uip_stat.ip.protoerr); 
    UIP_LOG("ip: neither tcp nor icmp.");         
    goto drop;} 
  UIP_STAT(++uip_stat.icmp.recv); 
  /* ICMP echo (i.e., ping) processing. This is simple, we only change 
     the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP 
     checksum before we return the packet. */ 
  if(ICMPBUF->type != ICMP_ECHO) { 
    UIP_STAT(++uip_stat.icmp.drop); 
    UIP_STAT(++uip_stat.icmp.typeerr); 
    UIP_LOG("icmp: not icmp echo."); 
    goto drop;} 
  ICMPBUF->type = ICMP_ECHO_REPLY; 
  if(ICMPBUF->icmpchksum >= htons(0xffff - (ICMP_ECHO << 8))) { 
    ICMPBUF->icmpchksum += htons(ICMP_ECHO << 8) + 1; 
  } else { 
    ICMPBUF->icmpchksum += htons(ICMP_ECHO << 8);} 
  /* Swap IP addresses. */ 
  tmpport = BUF->destipaddr[0]; 
  BUF->destipaddr[0] = BUF->srcipaddr[0]; 
  BUF->srcipaddr[0] = tmpport; 
  tmpport = BUF->destipaddr[1]; 
  BUF->destipaddr[1] = BUF->srcipaddr[1]; 
  BUF->srcipaddr[1] = tmpport; 
  UIP_STAT(++uip_stat.icmp.sent); 
  goto send; 
  /* TCP input processing. */   
 tcp_input: 
  UIP_STAT(++uip_stat.tcp.recv); 
  if(uip_tcpchksum() != 0xffff) {   /* Compute and check the TCP 



 75

           checksum. */ 
    UIP_STAT(++uip_stat.tcp.drop); 
    UIP_STAT(++uip_stat.tcp.chkerr); 
    UIP_LOG("tcp: bad checksum.");         
    goto drop;} 
  /* Demultiplex this segment. */ 
  /* First check any active connections. */ 
  for(uip_conn = &uip_conns[0]; uip_conn < &uip_conns[UIP_CONNS]; 
++uip_conn) { 
    if(uip_conn->tcpstateflags != CLOSED && 
       BUF->srcipaddr[0] == uip_conn->ripaddr[0] && 
       BUF->srcipaddr[1] == uip_conn->ripaddr[1] && 
       BUF->destport == uip_conn->lport && 
       BUF->srcport == uip_conn->rport) 
     goto found;    } 
  /* If we didn't find and active connection that expected the packet, 
     either this packet is an old duplicate, or this is a SYN packet 
     destined for a connection in LISTEN. If the SYN flag isn't set, 
     it is an old packet and we send a RST. */ 
  if(BUF->flags != TCP_SYN) 
    goto reset; 
  tmpport = BUF->destport; 
  /* Next, check listening connections. */   
  for(c = 0; c < UIP_LISTENPORTS && uip_listenports[c] != 0; ++c) { 
    if(tmpport == uip_listenports[c]) 
      goto found_listen;} 
  /* No matching connection found, so we send a RST packet. */ 
  UIP_STAT(++uip_stat.tcp.synrst); 
 reset: 
  /* We do not send resets in response to resets. */ 
  if(BUF->flags & TCP_RST)  
    goto drop; 
  UIP_STAT(++uip_stat.tcp.rst); 
  BUF->flags = TCP_RST | TCP_ACK; 
  uip_len = 40; 
  BUF->tcpoffset = 5 << 4; 
  /* Flip the seqno and ackno fields in the TCP header. */ 
  c = BUF->seqno[3]; 
  BUF->seqno[3] = BUF->ackno[3];   
  BUF->ackno[3] = c; 
  c = BUF->seqno[2]; 
  BUF->seqno[2] = BUF->ackno[2];   
  BUF->ackno[2] = c; 
  c = BUF->seqno[1]; 
  BUF->seqno[1] = BUF->ackno[1]; 
  BUF->ackno[1] = c; 
  c = BUF->seqno[0]; 
  BUF->seqno[0] = BUF->ackno[0];   
  BUF->ackno[0] = c; 
  /* We also have to increase the sequence number we are 
     acknowledging. If the least significant byte overflowed, we need 
     to propagate the carry to the other bytes as well. */ 
  if(++BUF->ackno[3] == 0) { 
    if(++BUF->ackno[2] == 0) { 
      if(++BUF->ackno[1] == 0) { 
 ++BUF->ackno[0];}} 
  } 



 76

  /* Swap port numbers. */ 
  tmpport = BUF->srcport; 
  BUF->srcport = BUF->destport; 
  BUF->destport = tmpport; 
  /* Swap IP addresses. */ 
  tmpport = BUF->destipaddr[0]; 
  BUF->destipaddr[0] = BUF->srcipaddr[0]; 
  BUF->srcipaddr[0] = tmpport; 
  tmpport = BUF->destipaddr[1]; 
  BUF->destipaddr[1] = BUF->srcipaddr[1]; 
  BUF->srcipaddr[1] = tmpport; 
  /* And send out the RST packet! */ 
  goto tcp_send_noconn; 
  /* This label will be jumped to if we matched the incoming packet 
     with a connection in LISTEN. In that case, we should create a new 
     connection and send a SYNACK in return. */ 
 found_listen: 
  /* First we check if there are any connections avaliable. Unused 
     connections are kept in the same table as used connections, but 
     unused ones have the tcpstate set to CLOSED. */ 
  for(c = 0; c < UIP_CONNS; ++c) { 
    if(uip_conns[c].tcpstateflags == CLOSED)  
      goto found_unused_connection;} 
  for(c = 0; c < UIP_CONNS; ++c) { 
    if(uip_conns[c].tcpstateflags == TIME_WAIT)  
      goto found_unused_connection;} 
  /* All connections are used already, we drop packet and hope that 
     the remote end will retransmit the packet at a time when we have 
     more spare connections. */ 
  UIP_STAT(++uip_stat.tcp.syndrop); 
  UIP_LOG("tcp: found no unused connections."); 
  goto drop; 
  /* This label will be jumped to if we have found an unused 
     connection that we can use. */ 
 found_unused_connection: 
  uip_conn = &uip_conns[c]; 
  /* Fill in the necessary fields for the new connection. */ 
  uip_conn->timer = UIP_RTO; 
  uip_conn->nrtx = 0; 
  uip_conn->lport = BUF->destport; 
  uip_conn->rport = BUF->srcport; 
  uip_conn->ripaddr[0] = BUF->srcipaddr[0]; 
  uip_conn->ripaddr[1] = BUF->srcipaddr[1]; 
  uip_conn->tcpstateflags = SYN_RCVD | UIP_OUTSTANDING; 
  uip_conn->snd_nxt[0] = uip_conn->ack_nxt[0] = iss[0]; 
  uip_conn->snd_nxt[1] = uip_conn->ack_nxt[1] = iss[1]; 
  uip_conn->snd_nxt[2] = uip_conn->ack_nxt[2] = iss[2]; 
  uip_conn->snd_nxt[3] = uip_conn->ack_nxt[3] = iss[3]; 
  uip_add_ack_nxt(1); 
  /* rcv_nxt should be the seqno from the incoming packet + 1. */ 
  uip_conn->rcv_nxt[3] = BUF->seqno[3]; 
  uip_conn->rcv_nxt[2] = BUF->seqno[2]; 
  uip_conn->rcv_nxt[1] = BUF->seqno[1]; 
  uip_conn->rcv_nxt[0] = BUF->seqno[0]; 
  uip_add_rcv_nxt(1); 
  /* Parse the TCP MSS option, if present. */ 
  if((BUF->tcpoffset & 0xf0) > 0x50) { 



 77

    for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { 
      opt = uip_buf[40 + UIP_LLH_LEN + c]; 
      if(opt == 0x00) { 
 /* End of options. */  
 break; 
      } else if(opt == 0x01) { 
 ++c; 
 /* NOP option. */ 
      } else if(opt == 0x02 && 
  uip_buf[40 + UIP_LLH_LEN + c + 1] == 0x04) { 
 /* An MSS option with the right option length. */  
 tmpport = (uip_buf[40 + UIP_LLH_LEN + c + 2] << 8) | 
   uip_buf[40 + UIP_LLH_LEN + c + 3]; 
 uip_conn->mss = tmpport > UIP_TCP_MSS? UIP_TCP_MSS: tmpport; 
  
 /* And we are done processing options. */ 
 break; 
      } else { 
 /* All other options have a length field, so that we easily 
    can skip past them. */ 
 c += uip_buf[40 + UIP_LLH_LEN + c + 1]; 
      }       
    } 
  } 
  /* Our response will be a SYNACK. */ 
#if UIP_ACTIVE_OPEN 
 tcp_send_synack: 
  BUF->flags = TCP_ACK;     
 tcp_send_syn: 
  BUF->flags |= TCP_SYN;     
#else /* UIP_ACTIVE_OPEN */ 
 tcp_send_synack: 
  BUF->flags = TCP_SYN | TCP_ACK;     
#endif /* UIP_ACTIVE_OPEN */ 
  /* We send out the TCP Maximum Segment Size option with our 
     SYNACK. */ 
  BUF->optdata[0] = 2; 
  BUF->optdata[1] = 4; 
  BUF->optdata[2] = (UIP_TCP_MSS) / 256; 
  BUF->optdata[3] = (UIP_TCP_MSS) & 255; 
  uip_len = 44; 
  BUF->tcpoffset = 6 << 4; 
  goto tcp_send; 
  /* This label will be jumped to if we found an active connection. */ 
 found: 
  uip_flags = 0; 
  /* We do a very naive form of TCP reset processing; we just accept 
     any RST and kill our connection. We should in fact check if the 
     sequence number of this reset is wihtin our advertised window 
     before we accept the reset. */ 
  if(BUF->flags & TCP_RST) { 
    uip_conn->tcpstateflags = CLOSED; 
    UIP_LOG("tcp: got reset, aborting connection."); 
    uip_flags = UIP_ABORT; 
    UIP_APPCALL(); 
    goto drop;} 
  /* All segments that are come thus far should have the ACK flag set, 



 78

     otherwise we drop the packet. */ 
  if(!(BUF->flags & TCP_ACK)) { 
    UIP_STAT(++uip_stat.tcp.drop); 
    UIP_STAT(++uip_stat.tcp.ackerr); 
    UIP_LOG("tcp: dropped non-ack segment."); 
    goto drop;} 
  /* Calculated the length of the data, if the application has sent 
     any data to us. */ 
  c = (BUF->tcpoffset >> 4) << 2; 
  /* uip_len will contain the length of the actual TCP data. This is 
     calculated by subtracing the length of the TCP header (in 
     c) and the length of the IP header (20 bytes). */ 
  uip_len = uip_len - c - 20; 
  /* First, check if the sequence number of the incoming packet is 
     what we're expecting next. If not, we send out an ACK with the 
     correct numbers in. */ 
  if(uip_len > 0 && 
     (BUF->seqno[0] != uip_conn->rcv_nxt[0] || 
      BUF->seqno[1] != uip_conn->rcv_nxt[1] || 
      BUF->seqno[2] != uip_conn->rcv_nxt[2] || 
      BUF->seqno[3] != uip_conn->rcv_nxt[3])) { 
    goto tcp_send_ack;} 
  /* Next, check if the incoming segment acknowledges any outstanding 
     data. If so, we also reset the retransmission timer. */ 
  if(BUF->ackno[0] == uip_conn->ack_nxt[0] && 
     BUF->ackno[1] == uip_conn->ack_nxt[1] && 
     BUF->ackno[2] == uip_conn->ack_nxt[2] && 
     BUF->ackno[3] == uip_conn->ack_nxt[3]) { 
    uip_conn->snd_nxt[0] = uip_conn->ack_nxt[0]; 
    uip_conn->snd_nxt[1] = uip_conn->ack_nxt[1]; 
    uip_conn->snd_nxt[2] = uip_conn->ack_nxt[2]; 
    uip_conn->snd_nxt[3] = uip_conn->ack_nxt[3]; 
    if(uip_conn->tcpstateflags & UIP_OUTSTANDING) { 
      uip_flags = UIP_ACKDATA; 
      uip_conn->tcpstateflags &= ~UIP_OUTSTANDING; 
      uip_conn->timer = UIP_RTO; 
    } 
  } 
  /* Do different things depending on in what state the connection is. 
*/ 
  switch(uip_conn->tcpstateflags & TS_MASK) { 
    /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not 
 implemented, since we force the application to close when the 
 peer sends a FIN (hence the application goes directly from 
 ESTABLISHED to LAST_ACK). */ 
  case SYN_RCVD: 
    /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and 
       we are waiting for an ACK that acknowledges the data we sent 
       out the last time. Therefore, we want to have the UIP_ACKDATA 
       flag set. If so, we enter the ESTABLISHED state. */ 
    if(uip_flags & UIP_ACKDATA) { 
      uip_conn->tcpstateflags = ESTABLISHED; 
      uip_flags = UIP_CONNECTED; 
      uip_len = 0; 
      UIP_APPCALL(); 
      goto appsend; 
    } 



 79

    goto drop; 
#if UIP_ACTIVE_OPEN 
  case SYN_SENT: 
    /* In SYN_SENT, we wait for a SYNACK that is sent in response to 
       our SYN. The rcv_nxt is set to sequence number in the SYNACK 
       plus one, and we send an ACK. We move into the ESTABLISHED 
       state. */ 
    if((uip_flags & UIP_ACKDATA) && 
       BUF->flags == (TCP_SYN | TCP_ACK)) { 
      /* Parse the TCP MSS option, if present. */ 
      if((BUF->tcpoffset & 0xf0) > 0x50) { 
 for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { 
   opt = uip_buf[40 + UIP_LLH_LEN + c]; 
   if(opt == 0x00) { 
     /* End of options. */  
     break; 
   } else if(opt == 0x01) { 
     ++c; 
     /* NOP option. */ 
   } else if(opt == 0x02 && 
      uip_buf[40 + UIP_LLH_LEN + c + 1] == 0x04) { 
     /* An MSS option with the right option length. */ 
     tmpport = (uip_buf[40 + UIP_LLH_LEN + c + 2] << 8) | 
       uip_buf[40 + UIP_LLH_LEN + c + 3]; 
     uip_conn->mss = tmpport > UIP_TCP_MSS? UIP_TCP_MSS: tmpport; 
     /* And we are done processing options. */ 
     break; 
   } else { 
     /* All other options have a length field, so that we easily 
        can skip past them. */ 
     c += uip_buf[40 + UIP_LLH_LEN + c + 1]; 
   }       
 } 
      }   
      uip_conn->tcpstateflags = ESTABLISHED;       
      uip_conn->rcv_nxt[0] = BUF->seqno[0]; 
      uip_conn->rcv_nxt[1] = BUF->seqno[1]; 
      uip_conn->rcv_nxt[2] = BUF->seqno[2]; 
      uip_conn->rcv_nxt[3] = BUF->seqno[3]; 
      uip_add_rcv_nxt(1); 
      uip_flags = UIP_CONNECTED | UIP_NEWDATA; 
      uip_len = 0; 
      UIP_APPCALL(); 
      goto appsend;} 
    goto drop; 
#endif /* UIP_ACTIVE_OPEN */ 
  case ESTABLISHED: 
    if(BUF->flags & TCP_FIN) { 
      uip_add_rcv_nxt(1 + uip_len); 
      uip_flags = UIP_CLOSE; 
      uip_len = 0; 
      UIP_APPCALL(); 
      uip_add_ack_nxt(1); 
      uip_conn->tcpstateflags = LAST_ACK | UIP_OUTSTANDING; 
      uip_conn->nrtx = 0; 
    tcp_send_finack: 
      BUF->flags = TCP_FIN | TCP_ACK;       



 80

      goto tcp_send_nodata;} 
    /* If uip_len > 0 we have TCP data in the packet, and we flag this 
       by setting the UIP_NEWDATA flag and update the sequence number 
       we acknowledge. If the application has stopped the dataflow 
       using uip_stop(), we must not accept any data packets from the 
       remote host. */ 
    if(uip_len > 0 && !(uip_conn->tcpstateflags & UIP_STOPPED)) { 
      uip_flags |= UIP_NEWDATA; 
      uip_add_rcv_nxt(uip_len);} 
    if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) { 
      UIP_APPCALL(); 
    appsend: 
      if(uip_flags & UIP_ABORT) { 
 uip_conn->tcpstateflags = CLOSED; 
 BUF->flags = TCP_RST | TCP_ACK; 
 goto tcp_send_nodata; 
      } 
      if(uip_flags & UIP_CLOSE) { 
 uip_add_ack_nxt(1); 
 uip_conn->tcpstateflags = FIN_WAIT_1 | UIP_OUTSTANDING; 
 uip_conn->nrtx = 0; 
 BUF->flags = TCP_FIN | TCP_ACK; 
 goto tcp_send_nodata;  
      } 
      /* If uip_len > 0, the application has data to be sent, in which 
         case we set the UIP_OUTSTANDING flag in the connection 
         structure. But we cannot send data if the application already 
         has outstanding data. */ 
      if(uip_len > 0 && 
  !(uip_conn->tcpstateflags & UIP_OUTSTANDING)) { 
 uip_conn->tcpstateflags |= UIP_OUTSTANDING; 
 uip_conn->nrtx = 0; 
 uip_add_ack_nxt(uip_len); 
      } else { 
 uip_len = 0; 
      } 
    apprexmit: 
      /* If the application has data to be sent, or if the incoming 
         packet had new data in it, we must send out a packet. */ 
      if(uip_len > 0 || (uip_flags & UIP_NEWDATA)) { 
 /* Add the length of the IP and TCP headers. */ 
 uip_len = uip_len + 40; 
 /* We always set the ACK flag in response packets. */ 
 BUF->flags = TCP_ACK; 
 /* Send the packet. */ 
 goto tcp_send_noopts; 
      }} 
    goto drop; 
  case LAST_ACK: 
    /* We can close this connection if the peer has acknowledged our 
       FIN. This is indicated by the UIP_ACKDATA flag. */      
    if(uip_flags & UIP_ACKDATA) { 
      uip_conn->tcpstateflags = CLOSED; 
    } 
    break; 
  case FIN_WAIT_1: 
    /* The application has closed the connection, but the remote host 



 81

       hasn't closed its end yet. Thus we do nothing but wait for a 
       FIN from the other side. */ 
    if(uip_len > 0) { 
      uip_add_rcv_nxt(uip_len);} 
    if(BUF->flags & TCP_FIN) { 
      if(uip_flags & UIP_ACKDATA) { 
 uip_conn->tcpstateflags = TIME_WAIT; 
 uip_conn->timer = 0; 
      } else { 
 uip_conn->tcpstateflags = CLOSING | UIP_OUTSTANDING; 
      } 
      uip_add_rcv_nxt(1); 
      goto tcp_send_ack; 
    } else if(uip_flags & UIP_ACKDATA) { 
      uip_conn->tcpstateflags = FIN_WAIT_2; 
      goto drop;} 
    if(uip_len > 0) { 
      goto tcp_send_ack;} 
    goto drop; 
  case FIN_WAIT_2: 
    if(uip_len > 0) { 
      uip_add_rcv_nxt(uip_len);} 
    if(BUF->flags & TCP_FIN) { 
      uip_conn->tcpstateflags = TIME_WAIT; 
      uip_conn->timer = 0; 
      uip_add_rcv_nxt(1); 
      goto tcp_send_ack;} 
    if(uip_len > 0) { 
      goto tcp_send_ack;} 
    goto drop; 
  case TIME_WAIT: 
    goto tcp_send_ack; 
  case CLOSING: 
    if(uip_flags & UIP_ACKDATA) { 
      uip_conn->tcpstateflags = TIME_WAIT; 
      uip_conn->timer = 0; 
    }}   
  goto drop; 
  /* We jump here when we are ready to send the packet, and just want 
     to set the appropriate TCP sequence numbers in the TCP header. */ 
 tcp_send_ack: 
  BUF->flags = TCP_ACK; 
 tcp_send_nodata: 
  uip_len = 40; 
 tcp_send_noopts: 
  BUF->tcpoffset = 5 << 4; 
 tcp_send: 
  /* We're done with the input processing. We are now ready to send a 
     reply. Our job is to fill in all the fields of the TCP and IP 
     headers before calculating the checksum and finally send the 
     packet. */     
  BUF->ackno[0] = uip_conn->rcv_nxt[0]; 
  BUF->ackno[1] = uip_conn->rcv_nxt[1]; 
  BUF->ackno[2] = uip_conn->rcv_nxt[2]; 
  BUF->ackno[3] = uip_conn->rcv_nxt[3]; 
  BUF->seqno[0] = uip_conn->snd_nxt[0]; 
  BUF->seqno[1] = uip_conn->snd_nxt[1]; 



 82

  BUF->seqno[2] = uip_conn->snd_nxt[2]; 
  BUF->seqno[3] = uip_conn->snd_nxt[3]; 
  BUF->srcport  = uip_conn->lport; 
  BUF->destport = uip_conn->rport; 
//#if BYTE_ORDER == BIG_ENDIAN   
  BUF->srcipaddr[0] = 1002; // ((UIP_IPADDR0 << 8) | UIP_IPADDR1); 
  BUF->srcipaddr[1] = 0010; // ((UIP_IPADDR2 << 8) | UIP_IPADDR3); 
//#else 
  //BUF->srcipaddr[0] = ((UIP_IPADDR1 << 8) | UIP_IPADDR0); 
  //BUF->srcipaddr[1] = ((UIP_IPADDR3 << 8) | UIP_IPADDR2); 
//#endif /* BYTE_ORDER == BIG_ENDIAN */ 
  BUF->destipaddr[0] = uip_conn->ripaddr[0]; 
  BUF->destipaddr[1] = uip_conn->ripaddr[1]; 
  if(uip_conn->tcpstateflags & UIP_STOPPED) { 
    /* If the connection has issued uip_stop(), we advertise a zero 
       window so that the remote host will stop sending data. */ 
    BUF->wnd[0] = BUF->wnd[1] = 0; 
  } else { 
#if (UIP_TCP_MSS) > 255 
    BUF->wnd[0] = (uip_conn->mss >> 8); 
#else 
    BUF->wnd[0] = 0; 
#endif /* UIP_MSS */ 
    BUF->wnd[1] = (uip_conn->mss & 0xff);  
  } 
 tcp_send_noconn: 
  BUF->vhl = 0x45; 
  BUF->tos = 0; 
  BUF->ipoffset[0] = BUF->ipoffset[1] = 0; 
  BUF->ttl  = UIP_TTL; 
  BUF->proto = IP_PROTO_TCP; 
#if UIP_BUFSIZE > 255 
  BUF->len[0] = (uip_len >> 8); 
  BUF->len[1] = (uip_len & 0xff); 
#else 
  BUF->len[0] = 0; 
  BUF->len[1] = uip_len; 
#endif /* UIP_BUFSIZE > 255 */ 
  ++ipid; 
  BUF->ipid[0] = ipid >> 8; 
  BUF->ipid[1] = ipid & 0xff; 
  /* Calculate IP and TCP checksums. */ 
  BUF->ipchksum = 0; 
  BUF->ipchksum = ~(uip_ipchksum()); 
  BUF->tcpchksum = 0; 
  BUF->tcpchksum = ~(uip_tcpchksum()); 
  UIP_STAT(++uip_stat.tcp.sent); 
 send: 
  UIP_STAT(++uip_stat.ip.sent); 
  /* The data that should be sent is not present in the uip_buf, and 
     the length of the data is in the variable uip_len. It is not our 
     responsibility to do the actual sending of the data however. That 
     is taken care of by the wrapper code, and only if uip_len > 0. */ 
  return; 
 drop: 
  uip_len = 0; 
  return;} 



 83

/*-------------------------------------------------------------------*/ 
##################################################################### 
        /* UIPOPT.H */ 
##################################################################### 
/* 
 * Copyright (c) 2001, Adam Dunkels. 
* This file is part of the uIP TCP/IP stack. 
 * 
 * $Id: uipopt.h,v 1.5 2002/01/13 21:12:41 adam Exp $ 
 * 
 */ 
#ifndef __UIPOPT_H__ 
#define __UIPOPT_H__ 
/* This file is used for tweaking various configuration options for 
   uIP. You should make a copy of this file into one of your project's 
   directories instead of editing this example "uipopt.h" file that 
   comes with the uIP distribution. */ 
/*-------------------------------------------------------------------*/ 
/* First, two typedefs that may have to be tweaked for your particular 
   compiler. The uX_t types are unsigned integer types, where the X is 
   the number of bits in the integer type. Most compilers use 
   "unsigned char" and "unsigned short" for those two, 
   respectively. */ 
typedef unsigned char u8_t; 
typedef unsigned short u16_t; 
/*-------------------------------------------------------------------*/ 
/* The configuration options for a specific node. This includes IP 
 * address, netmask and default router as well as the Ethernet 
 * address. The netmask, default router and Ethernet address are 
 * appliciable only if uIP should be run over Ethernet. 
 * All of these should be changed to suit your project. 
*/ 
/* UIP_IPADDR: The IP address of this uIP node. */ 
#define UIP_IPADDR0     0x0A  //10 
#define UIP_IPADDR1     0X02  //2 
#define UIP_IPADDR2     0X00  //0 
#define UIP_IPADDR3     0X0A  //10 
/*-------------------------------------------------------------------*/ 
#include "app.h" 
/* UIP_ACTIVE_OPEN: Determines if support for opening connections from 
   uIP should be compiled in. If this isn't needed for your 
   application, don't turn it on. (A web server doesn't need this, for 
   instance.) */ 
#define UIP_ACTIVE_OPEN 1 
/* UIP_CONNS: The maximum number of simultaneously active 
   connections. */ 
#define UIP_CONNS       10 
/* UIP_LISTENPORTS: The maximum number of simultaneously listening TCP 
   ports. For a web server, 1 is enough here. */ 
#define UIP_LISTENPORTS 10 
/* UIP_BUFSIZE: The size of the buffer that holds incoming and 
   outgoing packets. */ 
#d 
/* UIP_STATISTICS: Determines if statistics support should be compiled 
   in. The statistics is useful for debugging and to show the user. */ 
#define UIP_STATISTICS  0 
/* UIP_LOGGING: Determines if logging of certain events should be 



 84

   compiled in. Useful mostly for debugging. The function uip_log(char 
   *msg) must be implemented to suit your architecture if logging is 
   turned on. */ 
#define UIP_LOGGING     0 
/* UIP_LLH_LEN: The link level header length; this is the offset into 
   the uip_buf where the IP header can be found. For Ethernet, this 
   should be set to 14. For SLIP, this should be set to 0. */ 
#define UIP_LLH_LEN     0 
/*-------------------------------------------------------------------*/ 
/* The following configuration options can be tweaked for your 
 * project, but you are probably safe to use the default values. The 
 * options are listed in order of tweakability. 
 */ 
/* UIP_ARPTAB_SIZE: The size of the ARP table - use a larger value if 
   this uIP node will have many connections from the local network. */ 
#define UIP_ARPTAB_SIZE 8 
/* The maxium age of ARP table entries measured in 10ths of 
   seconds. An UIP_ARP_MAXAGE of 120 corresponds to 20 minutes (BSD 
   default). */ 
#define UIP_ARP_MAXAGE 120 
/* UIP_RTO: The retransmission timeout counted in timer pulses (i.e., 
   the speed of the periodic timer, usually one second). */ 
#define UIP_RTO         3 
/* UIP_MAXRTX: The maximum number of times a segment should be 
   retransmitted before the connection should be aborted. */ 
#define UIP_MAXRTX      8 
/* UIP_TCP_MSS: The TCP maximum segment size. This should be set to 
   at most UIP_BUFSIZE - UIP_LLH_LEN - 40. */ 
#define UIP_TCP_MSS     (UIP_BUFSIZE - UIP_LLH_LEN - 40) 
/* UIP_TTL: The IP TTL (time to live) of IP packets sent by uIP. */ 
#define UIP_TTL         255 
/* UIP_TIME_WAIT_TIMEOUT: How long a connection should stay in the 
   TIME_WAIT state. Has no real implication, so it should be left 
   untouched. */ 
#define UIP_TIME_WAIT_TIMEOUT 120 
/*-------------------------------------------------------------------*/ 
#ifndef LITTLE_ENDIAN 
#define LITTLE_ENDIAN  3412 
#endif /* LITTLE_ENDIAN */ 
#ifndef BIG_ENDIAN 
#define BIG_ENDIAN     1234 
#endif /* BIGE_ENDIAN */ 
// SPARC IS BIG_ENDIAN, INTEL IS LITTLE_ENDIAN 
#ifndef BYTE_ORDER 
#define BYTE_ORDER     BIG_ENDIAN 
#endif /* BYTE_ORDER */ 
#endif /* __UIPOPT_H__ */ 
####################################################################### 
##########################                      ####################### 
                           /* RECEIVER NODE */ 
##########################                      ####################### 
####################################################################### 
#include <avr/io.h> 
#include <stdio.h> 
#define TIMER_PRESCALE    1024 
#define F_CPU             8000000 
//************** main *****************// 



 85

int main () 
{ 
 int c; 
  
 DDRC=0XFF; 
 PORTC=0X00; 
  
 while(1){  
 c=USART_RX(); 
 process(); 
 } 
  
 return 0; 
} 
####################################################################### 
     /* DELAY */ 
####################################################################### 
#include <avr/io.h> 
typedef unsigned char byte; 
typedef unsigned int word; 
// 1msec UNIT delay function 
void delay_ms(unsigned int i) 
{ 
 word j; 
 while(i--) 
 { 
  j=11415;   // 8Mhz Exteranl Crystal(CKSEL3..0 = 1,1,1,1) 
  while(j--); 
 } 
} 
####################################################################### 
     /* USART RX */ 
####################################################################### 
#include <avr/io.h> 
#define FOSC 8000000// Clock Speed 
#define BAUD 1200 
#define baudrate (FOSC/16/BAUD-1)  
void USART_TX(unsigned char x); 
void USART_Init(unsigned int UBRR); 
unsigned char USART_RX(void); 
void hexASCII(unsigned char cr); 
unsigned int X,y,i,cr,a,data; 
void usart (void) { 
USART_Init(baudrate); 
} 
void USART_Init(unsigned int UBRR) 
{ 
/* Set baud rate */ 
UBRRH = (unsigned char)((UBRR)>>8); 
UBRRL = (unsigned char)(UBRR); 
/* Enable receiver and transmitter */ 
UCSRB = (1<<RXEN)|(1<<TXEN); 
/* Set frame format: 8data, no parity, 1 stop bit */ 
UCSRC = (1<< URSEL) | (1<< UCSZ1) |  (1<< UCSZ0); 
} 
void USART_TX(unsigned char x)  
{  



 86

   /* Wait for empty transmit buffer */  
   while ( !(UCSRA & (1<<UDRE)) ) ;  
   /* Start transmission */  
   UDR = x;  // send least significant byte  
} 
unsigned char USART_RX(void) {  
   /* Wait for data to be received */  
   while (!(UCSRA & (1<<RXC))) ;                           
    
   /* Get and return received data from buffer */  
return UDR; 
} 
####################################################################### 
     /* PROCESS RX */ 
####################################################################### 
#include <avr/io.h> 
#include <stdio.h> 
int *xx,a,cnt,j; 
/*----------------------------------------------*/ 
/*'IP: THIS FRAME NOT FOR US'*/ 
void drop (){ 
 PORTC=0XFF; 
 USART_TX('NO'); 
 } 
//****************** main *********************// 
void process () 
{ 
 unsigned char data1,data2,c,d,e,f,g,h=0,y,i,k; 
 unsigned char data[41],hdr[2] = "rz"; 
 unsigned char ctr, input; 
  
 if(c=='r'){ 
  c=USART_RX(); 
  if(c=='z'){ 
  for(j = 0; j <41 /* uip_len */; ++j) { 
  c=USART_RX(); //read incoming data from usart buffer 
  if(j == 3) i=c; 
  else if(j == 13) d=c; 
  else if(j == 14) e=c; 
  else if(j == 15) f=c; 
  else if(j == 16) g=c; 
  else if(j == 25) k=c; 
  else if(j == 40) h=c; 
  else c=c; 
   if(d==0x0A){  //check ip address 
    if(e==0x02){  
     if(f==0X00){  
      if(g==0X0A){  
       if(j==40){ 
       PORTC = h; 
       y=(2*h - 10 + 9); 
       USART_TX(y); 
       } 
      } 
      else drop(); 
     } 
     else drop(); 



 87

    }  
    else drop(); 
   }  
   else drop(); 
  }  
  //else drop(); 
  } 
  else drop(); 
   
 } 
  
} 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

MALEFILE SOURCE CODES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 89

######################################################################## 
    /* MAKEFILE */ 
######################################################################## 
# WinAVR Sample makefile written by Eric B. Weddington, Jörg Wunsch, et al. 
# Released to the Public Domain 
# Please read the make user manual! 
# Additional material for this makefile was submitted by: 
#  Tim Henigan 
#  Peter Fleury 
#  Reiner Patommel 
#  Sander Pool 
#  Frederik Rouleau 
#  Markus Pfaff 
# On command line: 
# make all = Make software. 
# make clean = Clean out built project files. 
# make coff = Convert ELF to AVR COFF (for use with AVR Studio 3.x or VMLAB). 
# make extcoff = Convert ELF to AVR Extended COFF (for use with AVR Studio 
#                4.07 or greater). 
# make program = Download the hex file to the device, using avrdude.  Please 
#                customize the avrdude settings below first! 
# make filename.s = Just compile filename.c into the assembler code only 
# To rebuild project do "make clean" then "make all". 
# MCU name 
MCU = atmega8535 
# Output format. (can be srec, ihex, binary) 
FORMAT = ihex  
# Target file name (without extension). 
TARGET = UIPslip 
# Optimization level, can be [0, 1, 2, 3, s]. 0 turns off optimization. 
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.) 
OPT = s 
# List C source files here. (C dependencies are automatically generated.) 
SRC = main.c app.c uip_arch.c uip.c rs232_tty.c usart_tx.c 
# If there is more than one source file, append them above, or modify and 
# uncomment the following: 
#SRC += foo.c bar.c 
# You can also wrap lines by appending a backslash to the end of the line: 
#SRC += baz.c \ 
#xyzzy.c 
# List Assembler source files here. 
# Make them always end in a capital .S.  Files ending in a lowercase .s 
# will not be considered source files but generated files (assembler 
# output from the compiler), and will be deleted upon "make clean"! 
# Even though the DOS/Win* filesystem matches both .s and .S the same, 
# it will preserve the spelling of the filenames, and gcc itself does 
# care about how the name is spelled on its command-line. 
ASRC =  
# List any extra directories to look for include files here. 
#     Each directory must be seperated by a space. 
EXTRAINCDIRS =  
# Optional compiler flags. 
#  -g:        generate debugging information (for GDB, or for COFF conversion) 
#  -O*:       optimization level 
#  -f...:     tuning, see gcc manual and avr-libc documentation 
#  -Wall...:  warning level 



 90

#  -Wa,...:   tell GCC to pass this to the assembler. 
#    -ahlms:  create assembler listing 
CFLAGS = -g -O$(OPT) \ 
-funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums \ 
-Wall -Wstrict-prototypes \ 
-Wa,-adhlns=$(<:.c=.lst) \ 
$(patsubst %,-I%,$(EXTRAINCDIRS)) 
# Set a "language standard" compiler flag. 
#   Unremark just one line below to set the language standard to use. 
#   gnu99 = C99 + GNU extensions. See GCC manual for more information. 
#CFLAGS += -std=c89 
#CFLAGS += -std=gnu89 
#CFLAGS += -std=c99 
CFLAGS += -std=gnu99 
# Optional assembler flags. 
#  -Wa,...:   tell GCC to pass this to the assembler. 
#  -ahlms:    create listing 
#  -gstabs:   have the assembler create line number information; note that 
#             for use in COFF files, additional information about filenames 
#             and function names needs to be present in the assembler source 
#             files -- see avr-libc docs [FIXME: not yet described there] 
ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs  
# Optional linker flags. 
#  -Wl,...:   tell GCC to pass this to linker. 
#  -Map:      create map file 
#  --cref:    add cross reference to  map file 
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref 
# Additional libraries 
# Minimalistic printf version 
#LDFLAGS += -Wl,-u,vfprintf -lprintf_min 
# Floating point printf version (requires -lm below) 
#LDFLAGS += -Wl,-u,vfprintf -lprintf_flt 
# -lm = math library 
LDFLAGS += -lm 
# Programming support using avrdude. Settings and variables. 
# Programming hardware: alf avr910 avrisp bascom bsd  
# dt006 pavr picoweb pony-stk200 sp12 stk200 stk500 
# Type: avrdude -c ? 
# to get a full listing. 
AVRDUDE_PROGRAMMER = stk500 
AVRDUDE_PORT = com1    # programmer connected to serial device 
#AVRDUDE_PORT = lpt1 # programmer connected to parallel port 
AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex 
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep 
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) 
# Uncomment the following if you want avrdude's erase cycle counter. 
# Note that this counter needs to be initialized first using -Yn, 
# see avrdude manual. 
#AVRDUDE_ERASE += -y 
# Uncomment the following if you do /not/ wish a verification to be 
# performed after programming the device. 
#AVRDUDE_FLAGS += -V 
# Increase verbosity level.  Please use this when submitting bug 
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>  
# to submit bug reports. 
#AVRDUDE_FLAGS += -v -v 



 91

# --------------------------------------------------------------------------- 
# Define directories, if needed. 
DIRAVR = c:/winavr 
DIRAVRBIN = $(DIRAVR)/bin 
DIRAVRUTILS = $(DIRAVR)/utils/bin 
DIRINC = . 
DIRLIB = $(DIRAVR)/avr/lib 
# Define programs and commands. 
SHELL = sh 
CC = avr-gcc 
OBJCOPY = avr-objcopy 
OBJDUMP = avr-objdump 
SIZE = avr-size 
# Programming support using avrdude. 
AVRDUDE = avrdude 
REMOVE = rm -f 
COPY = cp 
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex 
ELFSIZE = $(SIZE) -A $(TARGET).elf 
# Define Messages 
# English 
MSG_ERRORS_NONE = Errors: none 
MSG_BEGIN = -------- begin -------- 
MSG_END = --------  end  -------- 
MSG_SIZE_BEFORE = Size before:  
MSG_SIZE_AFTER = Size after: 
MSG_COFF = Converting to AVR COFF: 
MSG_EXTENDED_COFF = Converting to AVR Extended COFF: 
MSG_FLASH = Creating load file for Flash: 
MSG_EEPROM = Creating load file for EEPROM: 
MSG_EXTENDED_LISTING = Creating Extended Listing: 
MSG_SYMBOL_TABLE = Creating Symbol Table: 
MSG_LINKING = Linking: 
MSG_COMPILING = Compiling: 
MSG_ASSEMBLING = Assembling: 
MSG_CLEANING = Cleaning project: 
# Define all object files. 
OBJ = $(SRC:.c=.o) $(ASRC:.S=.o)  
# Define all listing files. 
LST = $(ASRC:.S=.lst) $(SRC:.c=.lst) 
# Combine all necessary flags and optional flags. 
# Add target processor to flags. 
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS) 
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS) 
# Default target. 
all: begin gccversion sizebefore $(TARGET).elf $(TARGET).hex $(TARGET).eep \ 
 $(TARGET).lss $(TARGET).sym sizeafter finished end 
# Eye candy. 
# AVR Studio 3.x does not check make's exit code but relies on 
# the following magic strings to be generated by the compile job. 
begin: 
 @echo 
 @echo $(MSG_BEGIN) 
finished: 
 @echo $(MSG_ERRORS_NONE) 
end: 



 92

 @echo $(MSG_END) 
 @echo 
# Display size of file. 
sizebefore: 
 @if [ -f $(TARGET).elf ]; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); echo; fi 
sizeafter: 
 @if [ -f $(TARGET).elf ]; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); echo; fi 
# Display compiler version information. 
gccversion :  
 @$(CC) --version 
# Convert ELF to COFF for use in debugging / simulating in 
# AVR Studio or VMLAB. 
COFFCONVERT=$(OBJCOPY) --debugging \ 
 --change-section-address .data-0x800000 \ 
 --change-section-address .bss-0x800000 \ 
 --change-section-address .noinit-0x800000 \ 
 --change-section-address .eeprom-0x810000  
coff: $(TARGET).elf 
 @echo 
 @echo $(MSG_COFF) $(TARGET).cof 
 $(COFFCONVERT) -O coff-avr $< $(TARGET).cof 
extcoff: $(TARGET).elf 
 @echo 
 @echo $(MSG_EXTENDED_COFF) $(TARGET).cof 
 $(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof 
# Program the device.   
program: $(TARGET).hex $(TARGET).eep 
 $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) 
$(AVRDUDE_WRITE_EEPROM) 
# Create final output files (.hex, .eep) from ELF output file. 
%.hex: %.elf 
 @echo 
 @echo $(MSG_FLASH) $@ 
 $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@ 
%.eep: %.elf 
 @echo 
 @echo $(MSG_EEPROM) $@ 
 -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \ 
 --change-section-lma .eeprom=0 -O $(FORMAT) $< $@ 
# Create extended listing file from ELF output file. 
%.lss: %.elf 
 @echo 
 @echo $(MSG_EXTENDED_LISTING) $@ 
 $(OBJDUMP) -h -S $< > $@ 
# Create a symbol table from ELF output file. 
%.sym: %.elf 
 @echo 
 @echo $(MSG_SYMBOL_TABLE) $@ 
 avr-nm -n $< > $@ 
# Link: create ELF output file from object files. 
.SECONDARY : $(TARGET).elf 
.PRECIOUS : $(OBJ) 
%.elf: $(OBJ) 
 @echo 
 @echo $(MSG_LINKING) $@ 
 $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS) 



 93

# Compile: create object files from C source files. 
%.o : %.c 
 @echo 
 @echo $(MSG_COMPILING) $< 
 $(CC) -c $(ALL_CFLAGS) $< -o $@ 
# Compile: create assembler files from C source files. 
%.s : %.c 
 $(CC) -S $(ALL_CFLAGS) $< -o $@ 
# Assemble: create object files from assembler source files. 
%.o : %.S 
 @echo 
 @echo $(MSG_ASSEMBLING) $< 
 $(CC) -c $(ALL_ASFLAGS) $< -o $@ 
# Target: clean project. 
clean: begin clean_list finished end 
clean_list : 
 @echo 
 @echo $(MSG_CLEANING) 
 $(REMOVE) $(TARGET).hex 
 $(REMOVE) $(TARGET).eep 
 $(REMOVE) $(TARGET).obj 
 $(REMOVE) $(TARGET).cof 
 $(REMOVE) $(TARGET).elf 
 $(REMOVE) $(TARGET).map 
 $(REMOVE) $(TARGET).obj 
 $(REMOVE) $(TARGET).a90 
 $(REMOVE) $(TARGET).sym 
 $(REMOVE) $(TARGET).lnk 
 $(REMOVE) $(TARGET).lss 
 $(REMOVE) $(OBJ) 
 $(REMOVE) $(LST) 
 $(REMOVE) $(SRC:.c=.s) 
 $(REMOVE) $(SRC:.c=.d) 
# Automatically generate C source code dependencies.  
# (Code originally taken from the GNU make user manual and modified  
# (See README.txt Credits).) 
# 
# Note that this will work with sh (bash) and sed that is shipped with WinAVR 
# (see the SHELL variable defined above). 
# This may not work with other shells or other seds. 
# 
%.d: %.c 
 set -e; $(CC) -MM $(ALL_CFLAGS) $< \ 
 | sed 's,\(.*\)\.o[ :]*,\1.o \1.d : ,g' > $@; \ 
 [ -s $@ ] || rm -f $@ 
# Remove the '-' if you want to see the dependency files generated. 
-include $(SRC:.c=.d) 
# Listing of phony targets. 
.PHONY : all begin finish end sizebefore sizeafter gccversion coff extcoff \ 
 clean clean_list program 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

WinAVR MANUAL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 95

How to use WinAVR for the Microrobot AVR 
Products(Rev 0.1) 
 
Contents 
What is WinAVR? 
How to Install? 
How to Use WinAVR. 
How the Sample Source Code Works 
Useful Tips 
 
What is WinAVR? 
WinAVR (pronounced "whenever") is a suite of executable, open source software 
development tools for the Atmel AVR series of RISC microprocessors hosted on the 
Windows platform. It includes the GNU GCC compiler for C and C++. 
 
How to Install? 
Go to http://sourceforge.net/projects/winavr and download the latest version of WinAVR. 
Run the file you’ve downloaded. 
 
Warning : There are many different versions of AVR GCC. Installing more than one version 
of AVR GCC including ‘Maro GCC’ causes a problem. Uninstall any existing version of AVR 
GCC before installing a new version. 
 
How to Use WinAVR 
So far, WinAVR supports only the DOS command-line platform. The user should be familiar 
with DOS commands before using it. During the WinAVR installation, the program installer 
changes and/or adds some settings in your PC. You can see the added options using the 
‘set’ DOS command. 
 
Once WinAVR is installed, the user can call the installed programs from any folders. It is 
recommended to create a new folder for each source code for the purpose of simplicity. 
 
1) Download sample source codes at 
http://www.microrobotna.com/download/AVR_Source_Codes.zip and copy the file to the WinAVR 
folder and unzip it. 
 
2) The following folders are created in the C:\WinAVR\AVR_Source_Codes\. The folders 
are named after the CPU boards. 
 
Inchworm(AT90S4433) 
Inchworm(Maro_GCC) 
Inchworm(mega) 
MR8 
MR16 
MR161 
MR162 
MR163 
MR2313 
MR4433 
MR8515 
MR8535(AT90S) 
MR8535(mega) 
MR-Servo8 
Owl_Robot(AT90S4433) 
Owl_Robot(Maro_GCC) 
Owl_Robot(mega) 
 
Note: In the future, there might be some more folders. 



 96

Refer to Owl_Robot(mega) or Inchworm(mega) source for the MR-SERVO8 
board. 
 
Each folder contains three or more files. The following is the MR2313 folder’s contents. 
Makefile 
 
MR2313.c 
MR2313.hex 
(Note: The name ‘MR2313’ above varies in each folder.) 
All three files are text format files. You can open them and see the contents. 
 

 
# MCU name 
#MCU = at90s8515 
#MCU = at90s8535 
#MCU = at90s4433 
MCU = at90s2313 
#MCU = atmega163 
# Output format. (can be srec, ihex, binary) 
FORMAT = ihex 
# Target file name (without extension). 
TARGET = MR2313 
# Optimization level, can be [0, 1, 2, 3, s]. 0 turns off optimization. 
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.) 
OPT = 1 
#OPT = s 
. 
. 
. 
The portion of code above is a sample from a ‘makefile’. This is the only area you might 
consider modifying. 
MCU = Your CPU Name. 
FORMAT = ihex (Do not change.) 
TARGET = Your source code name without extension. If you create new source code and 
want to compile it, you have to change this entry to your source file name. 
OPT = 1 (Change at your own risk. In certain cases, this optimization option may cause 
unpredictable results. In that case, try other options.) 
 
/*----------------------------------------------------------------------------- 
* File: MR2313.C 
* Description: Turns on and off all the ports every 0.5 sec. 
* X-tal frequency = 8 MHz 
* 
* MICROROBOT NA Inc.(www.microrobotna.com) 
* Free Open Source. Free as in 'Free beer'. 
* You can do whatever you want with this stuff. 
* Don't even worry about buying a beer. ~ha ha 
* - James Jeong. 
*---------------------------------------------------------------------------*/ 
#include <avr/io.h> 
#define LED1 PB5 
typedef unsigned char byte; 
typedef unsigned int word; 
// 1msec UNIT delay function 
void delay_1ms(unsigned int i) 
{ 
word j; 
while(i--) 
{ 
j=14268; // 10Mhz Exteranl Crystal 
 
while(j--); 
} 
} 



 97

void ports_init(void) 
{ 
DDRB = 0xff; //Configures PORTB as an output port. 
DDRD = 0xff; //Configures PORTD as an output port. 
} 
void ports_set(void) 
{ 
PORTB = 0xff; //Outputs 0xff to PORTB. 
PORTD = 0xff; //Outputs 0xff to PORTD. 
} 
void ports_clear(void) 
{ 
PORTB = 0; //Outputs 0 to PORTB. 
PORTD = 0; //Outputs 0 to PORTD. 
} 
void start_signal(void) 
{ 
byte c; 
for(c=5; c>0; --c) 
{ 
PORTB &= ~_BV(LED1); // Bit clear.= Turn On LED1. 
delay_1ms(20); // 0.2 sec delay. 
PORTB |= _BV(LED1); // Bit set.= Turn Off LED1. 
delay_1ms(20); // 0.2 sec delay. 
} 
} 
int main(void) 
{ 
ports_init();//Ports Initialization 
start_signal(); // Toggle LED1 five times. 
while(1) // Keeps toggling all ports every 0.5 sec. 
{ 
ports_set(); 
delay_1ms(50); 
ports_clear(); 
delay_1ms(50); 
} 
} 
 
 
The above is example source code. 
3) Launch the DOS command line platform. 
4) Go to your WinAVR directory and select the folder which is the same as your board 
name. 
5) Type the command below and press ‘Enter’ to compile the source code. 
make all 
6) Launch the PonyProg2000 program and download the generated .hex file to your board. 
(Refer to ‘How to use PonyProg for Microrobot AVR Products(Eng).pdf’ for details.) 
7) To erase the files generated by the compiler, use the following command : 
make clean 
 
Useful Tips 
 
z Just follow the above instructions first before studying the makefile, make and avr-gcc 
program. These are quite complicated. You don’t have to understand them thoroughly 
the first time. Take your time, you will learn the process gradually. 
z If it seems that your AVR CPU is kind of slow, check the bit configuration. Refer to 
“Security Bit Settings for ATMega Family.pdf” for details. 
 
z Read make.txt which comes with WinAVR. 
 
z http://www.gnu.org/manual/manual.html : Compiler and make manuals. 
 
z Refer to your AVR gcc manual (C:\WinAVR\doc\avr-libc\avr-libc-usermanual\ 
index.html). This file comes with WinAVR. 
 
z Use the “Programmers Notepad” that comes with WinAVR. It is quite a cool editor. 


	FIRST SKALI.doc
	Nama Penyelia : PROF. DR. NORSHEILA  
	                            BINTI FISAL. 
	 
	Tarikh            :  22 NOVEMBER 2006


	ACKNOWLEDGEMENT.doc
	CHAPTER 1.doc
	CHAPTER 2.doc
	CHAPTER 3.doc
	 Figure 3.2 shows a diagram of the proposed design architecture for a sensor node. Temperature sensor were used to capture data from surroundings, and interfaced to the processor. An AVR microcontroller, ATmega8535 served as the brain of the system and the communications between these nodes were done through RF transmitter and receiver module. Each of sensor nodes used a 9V battery as an energy source. ATMEL AVR ISP Connector was built to upload the programming of AVR microcontroller chip through to the PC parallel port and RS232 serial cable also was built to connect the node to the computer. 
	  
	 The components in sensor node development are as follow: AVR microcontroller ATmega8535:Analog Temperature sensor, LM35 DZ Transmitter and Receiver RF Module (optimal range 100m, 433.92MHz version, Data rates up to 4800 bps)A TCP/IP Protocol, uIP stack in each sensor nodes 

	CHAPTER 4.doc
	CHAPTER 5.doc
	REFERENCES.doc
	APPENDIX A.doc
	APPENDIX B.doc
	APPENDIX C.doc

