
(12) United States Patent

US007028259B1

US 7,028,259 B1
Apr. 11, 2006

(10) Patent N0.:
(45) Date of Patent: Jacobson

(54) INTERACTIVE LEGAL CITATION
CHECKER

(76) Inventor: Robert L. Jacobson, 1414 Laurel Ave.,
Apt. L301, Minneapolis, MN (US)
55403

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 706 days.

(21) Appl. No.: 09/775,184

(22) Filed: Feb. 1, 2001

Related US. Application Data

(60) Provisional application No. 60/179,572, ?led on Feb.
1, 2000.

(51) Int. Cl.
G06F 17/24 (2006.01)

(52) US. Cl. 715/531

(58) Field of Classi?cation Search 715/540,

715/530; 706/12
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,608,625 A * 3/1997 Bailey 715/540

6,502,081 B1* 12/2002 Wiltshire et a1. 706/12

OTHER PUBLICATIONS

Supnik, Paul D., “Getting Your Cites in Order” Los Angeles
Lawyer Magazine (Jun. 1989).*
WestCiteLink FAQ, at http://www.westlaw.com/citelink/
faq.wl (@ 2003).*
LexisNexis Citation Tools 2003, at http://support.lexisnexis.
com/CitationTools2003/record.

Brochure: CiteRiteTM For Windows®iFeatures Bene?ts,
Lexis’ Nexis, 2 pgs., not dated.
Website Print-Out: CiteRiteTMII, Lexis’ Nexis, 3 pgs.,
Copyright 1999.
Website Print-Out: CiteRiteTMII, Product Description,
Lexis’ Nexis, 2 pgs., Copyright 2001.
Sample CiteRite Report, Lexis’ Nexis, 10 pgs., not dated.
Website Print-Out: CompareRite Sample Printe, Lexis’
Nexis, 12 pgs., Jan. 18, 2001.
Website Print-Out: CiteltliLegal Citation Made Simple!,
Sidebar Software, Inc., 8 pgs., Copyright 1997-2001.
Cite-It/- Legal Citation Made Simple, User Manual, Sidebar
Software, Inc., 74 pgs., Copyright 1997-2000.
Website Print-Out: WestCiteLinkTM Overview, West Group,
38 pgs., Copyright 2001.
Brochure: Add New Dimension to Your Documents with
WestCiteLinkTM 3.0, West Group, 4 pgs., Copyright 2001.

(Continued)
Primary ExamineriHeather R. Herndon
Assistant ExamineriDoug Hutton
(74) Attorney, Agent, or F irmiPatterson, Thuente, Skaar &
Christensen, P.A.

(57) ABSTRACT

A software utility scans a word processing document to
locate citations to court opinions. It parses each citation to
determine its constituent elements, such as the citation’s
case name, the reporters in which it is published, its juris
diction and court, and its date. It then compares the citation
as it is written against stylistic rules for legal citations. If it
?nds a deviation from one of the stylistic rules, it displays
a message to inform the user of the error and, if possible,
suggests speci?c changes to correct the error. If the user
accepts one of the corrections, the utility makes that change
to the word processing document.

52 Claims, 10 Drawing Sheets
asp?ArticleID:CitationTolls2003idefault&Print1 (@
2005).*

@Samnla - Microsoft we":

file Edil 118W insert Fgrmat lauls Tabla Mildew Help

v. Cutter Biolo ieal In

deposition testimony to manufacture an issue of material fact, it may offer an affidavit that

expands upon, explains, or clari?es prior testimony. See Leslie v. Grupo ICA 198 F.3d 1152,

1157 (9th Cir. 1999); Messick v. Horizon Indus. Inc. 62 F.3d 1227, 1231 (9th Cir. 1995);%

50

two days of depositio
953 F1“ 262166-67 (gl‘fee Leslie v. Grugo ICA 199 Fan 1152, 1157 (9th Cit. 1999) I

_ Suggestion

‘Fee Leslie v. Gtugo ICA 198 F3d1152, 1157 (9th Cir. 1999) I

56

Federal Reporter

Page 1 Sec 1

Federal Reporter should be abbreviated as "F.3d_. Change "F3d" to "F.3d"?

Table T.1: United States .Iurlsdlctions, Federal

Courts atAppeals (eg. 2d on. 0.0.. Cir). previously Circuit Courts of Appeals (9.9 2d Cir), and Court 01
Appeals oillortha District at Columbia (D.C. Cir): Cite to F.. F2d. or F.3d.

’ \

@IEEWEIE
18914319 F., F.2d, F 3d

US 7,028,259 B1
Page 2

OTHER PUBLICATIONS

Website Print-Out: Getting Your Cites in Order, Paul D.
Supnik, 5 pgs., Sep. 27, 2000.
Website Print-Out: Buyer’s Guide to Corel WordPerfect
Legal Suite, Thomas L. Rowe, 4 pgs., Copyright 1998.
Website Print-Out: CiteRiteTM 5.5 and 7.0, review, Law
Of?ce Computing Magazine, 1 pg., Aug. 31, 2000.
Website Print-Out: Law Of?ce Software,
BlumbergEXcelsior, Inc., 2 pgs., Copyright 2000.
Manual: Using WestCheck® Version 3.2 for Windows®,
West Group, 18 pgs., Copyright 1999.
Brochure: CheckCiteTM 2000, Quick Reference, Lexis’
Nexis, 1 pg., Copyright 1999.
Website Print-Out: expertEaseTM Software,
overview, 33 pgs., Aug. 3, 2001.
Website Print-Out: Complex Document Proo?ng, LexTech
Inc., 2 pgs., Aug. 3, 2001.
Website Print-Out: Entrepreneurs Invading Israel to Find
Fortunes, Jessica Steinberg, Forward, 3 pgs., Copyright
1998.
Website Print-Out: Three Products to Watch Summer 1998,
Mark Rambler, Law Of?ce Technology Review, 2 pgs.,
Copyright 1998.
Website Print-Out: Beyond Spell Check Aug./Sep. 1998,
Richard Belthoif, Law Office Computing MagaZine, 2 pgs.,
Copyright 1998.
Website Print-Out: The Electronic Lawyer, Alan Pearlman,
Legal Tech Newsletter, 2 pgs., Copyright 1998.
Website Print-Out: Avoiding Silly Drafting Errors with Deal
Proof, Barry Bayer, Benjamin H. Cohen, Law O?ice
Technology Review, 3 pgs., Copyright 1998.
Website Print-Out: Across Our Desk, Bruce Brumberg,
National Association of Stock Plan Professionals, vol. 6, No.
1, Mar. 1998.

complete

Brochure: Drafting with Deal Proof Team, expeitEaseTM
Software, 2 pgs., not dated.
Brochure: Deal Proof 3.0, expeitEaseTM Software, 14 pgs.,
not dated.
Website Print-Out: Deal Proof Tech Requirements,
expeitEaseTM Software, 1 pg., Aug. 3, 2001.
expertEaseTM Software, Technology White Paper,
expeitEaseTM Software, 2 pgs., Copyright 1999-2001.
Website Print-Out: Legal Citation-overview, Oberon
Development, 1 pg., Copyright 1998-2001.
Website Print-Out: Legal Citation-Introduction to the
Basics, Oberon Development, 8 pgs., Copyright 2001.
Website Print-Out: Legal Citation-Sales Contacts/Pricing
Information, Oberon Development, 2 pgs., Copyright 1999.
Manual: Citation-Legal Edition, Oberon Development Ltd.,
80 pgs., Copyright 1999.
A Swedish Grammar Checker, J . Carlberger, R. Domeij, V.
Kann, O. Knutsson, Royal Institute of Technology,
Stockholm, Association for Computational Linguistics,
Copyright 2000, pp. 1-8.
Towards a Theory of Textual Errors, F. R. Bustamante, T.
Declerck, F. SancheZ Leon, Laboratorio de Linguistica
Informatica, University of Madrid, Spain, 13 pgs., not dated.
GramCheck: A Grammar and Style Checker, F.R.
Bustamante, F. SancheZ Leon, Escuela Politecnica Superior,
University Carlos III de Madrid, Spain, 7 pgs., not dated.
A Chart-Based Frameworkfor Grammar Checking Initial
Studies, A. Sagvall Hein, Department of Linguistics,
Uppsala University, Sweden, 12 pgs., not dated.
lips & Techniquesfor using the award wining suite oflegal
research products., Lexis-Nexis Research Software, 17 pgs.;
Copyright 1997.

* cited by examiner

U.S. Patent Apr. 11,2006 Sheet 1 0f 10 US 7,028,259 B1

Start Utility within Word 202
Processing Application and Select
Document Type, if appropriate

V 204
Scan Word Processing Document _/

S to Identify, Parse Build Possible —-_>
r Citation Structures & Evaluate 4

Structures

Citation Errors
w/ in Document?

Does Legal Citation
Conform to Stylistic Rules?

Display Legal Citation with 38
Error Highlighted

y 210
Display Error Message(s) J

y 212
Display Revel ant Blue Book Rule J

V 214

Display Suggestion(s) for Corrected Citation J

216 218
User Edits Suggestion _ ' Accept

for Corrected Citation Suggestion As Is?

+ 220
Edit Word Processing Document to Insert Correction J

l

FIG. 1

U.S. Patent Apr. 11,2006 Sheet 2 0f 10 US 7,028,259 B1

308

302 \ OuTpuT
\ Peripherals

4 \ Memory 304 >
CPU f _

306 So Tware
\ ‘

InEut > } Perip er'als 2O /

FIG. 2

U.S. Patent Apr. 11,2006 Sheet 3 0f 10 US 7,028,259 B1

<m QUE I "III!

E ...5EE§0 HE 956% And

U.S. Patent Apr. 11,2006 Sheet 10 0f 10 US 7,028,259 B1

Start Citation
Model

120

122

Search for Citation /
Clauses 4

+ 124
Attempt to identify type of clause - - Case J
Name, Reporter, Jurisdiction, Court & Date

no

128
Create date structure for‘ each J
possible combination of clauses

V 130

Evaluate and Assign Score to /
Each Combination of Clauses

l 132
Identify Type of Clause Based J

onScore

Create Complete Citation Objects 134
Data Structure for individual citation J
including the five types of clauses

Additional
Citation Clauses?

FIG. 5 End Citation
Model

US 7,028,259 B1
1

INTERACTIVE LEGAL CITATION
CHECKER

CLAIM TO PRIORITY

The present application claims priority to US. Provisional
Patent Application having Application No. 60/179,572, ?led
Feb. 1, 2000, and entitled “Interactive Legal Citation
Checker.”

COPYRIGHT CLAIM

A portion of the disclosure of this patent document
contains material Which is subject to copyright protection.
The copyright oWner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent ?le or records, but otherWise reserves all copyright
rights Whatsoever. No copyright is claimed to passages from
The Bluebook. A Uniform System of Citation.

FIELD OF THE INVENTION

The invention relates to citations to case opinions that are
typically found in legal Writings and, more particularly, to an
interactive system and method for locating and parsing the
legal citations, for verifying the stylistic accuracy of the
legal citations, and for displaying and implementing correc
tions of the legal citations.

BACKGROUND OF THE INVENTION

Legal citations to case opinions are typically found in
legal Writings. When attorneys Write legal briefs and memo
randa, When judges Write legal opinions, and When laW
students and laW professors Write academic papers, the
Writings typically contain citations to legal sources, such as
case opinions, statutes, and administrative regulations.
When Writing these citations, members of the United States
legal profession must folloW particular stylistic guidelines.
Most are expected to folloW the stylistic rules that are
promulgated in a handbook called the Bluebook: A Uniform
System of Citation (“the Bluebook”).

According to the Bluebook stylistic rules, a typical case
citation has the form “United States v. McDonald, 531 F.2d
196, 199*200 (4th Cir. 1976)”. In this citation, “United
States v. McDonald” represents the name of the case, “531
F.2d 196” represents volume 531, page 196 of the reporter
Federal Reporter, Second Series, “199*200” represents the
pinpoint page number to a speci?c passage, “4th Cir.”
represents the court that decided the opinion (the Federal
Fourth Circuit Court of Appeals), and “1976” represents the
year the opinion Was decided. Case names are often under
lined or italiciZed.

The Bluebook’s rules are quite speci?c and complex.
When adding a citation to a single court opinion, for
example, the Writer must adhere to 15 pages of general rules
that potentially apply, and must also consult several lengthy
tables for rules that are speci?c to that opinion’s jurisdiction.
Some of these rules differ depending on the context of the
citation. Further, the rules for citations to opinions from one
jurisdiction are often inconsistent With similar rules for those
of another jurisdiction, so the Writer must frequently consult
the appropriate table to ensure that he or she is using the
appropriate style for that jurisdiction.

Consequently, conscientious legal professionals must
devote a considerable amount of time to ensuring that they

20

25

30

35

40

45

50

55

60

65

2
have properly folloWed the Bluebook format. Since even the
most careful professional, hoWever, Will likely make some
errors that violate the Bluebook rules, a computer program
that locates citations in a Word processing document, checks
those citations for stylistic accuracy, and suggests and imple
ments corrections can provide a substantial bene?t in
improving accuracy and saving the user’s time.

In addition, a computer program that locates citations in
a document and parses their constituent components has
other applications. For example, many legal briefs are
required to have a “table of authorities,” an index of each
citation contained in a brief. Presently, Word processing
applications like Microsoft Word® have components that
generate tables of authorities; hoWever, these components
require the user to mark each citation manually in the Word
processing document. A program that automatically locates
and marks each citation in a document, such as the invention
described herein, Would help to improve the speed and
accuracy of building tables of authorities.

DESCRIPTION OF THE PRIOR ART

At least one other softWare application, called “CiteR
iteTM” and marketed by Reed Elsevier plc, checks Word
processing documents for Bluebook stylistic errors. This
program has several limitations, hoWever. First, the program
operates as a separate stand-alone application. Unlike the
present invention, Which operates as a “plug in” that Works
from Within a Word processing application, a user of Cit
eRiteTM must ?rst close the Word processing document and
then launch the separate CiteRiteTM application to check the
document. Second, the program merely generates a Written
report that lists potential errors. Unlike the present inven
tion, it does not suggest speci?c corrections and cannot edit
the Word processing document to implement those correc
tions. Rather, the user must revieW the report and manually
make any corrections. According to Reed Elsevier market
ing literature, CiteRiteTM improved upon prior, unnamed
cite-checking applications that Were even more limited, as
they required the user to “mar ” each citation before the
softWare could check it.

In addition, other softWare applications by Reed Elsevier
and West Publishing, called “CheckCiteTM” and
“WestCheckTM,” respectively, check citations for substan
tive, rather than stylistic, accuracy. These applications locate
citations in a Word processing document and compare them
to cases contained in their electronic databases. They verify
that the citations have the correct case name, correct report
ers, correct page and volume numbers, accurate quotations,
and so on. Like CiteRiteTM, they operate as stand-alone
applications and merely generate Written reports that list
perceived discrepancies. Further, they do not attempt to
check for stylistic accuracy; indeed, some of their sugges
tions are contrary to Bluebook stylistic rules.

Another program, “CiteItTM” by Sidebar SoftWare, Inc.,
attempts to enforce stylistic accuracy through a different
method: it requires a user to enter information about each
constituent element of a legal citation (such as the case
name, volume number, reporter abbreviation, etc.) into the
?elds of an electronic form. Based on this data, it generates
a complete citation that it pastes into a Word processing
document. At the time it generates the citation, it performs
certain tests for Bluebook stylistic accuracy on the constitu
ent elements and suggests corrections, such as suggesting
appropriate abbreviations for case names. The program is
limited, hoWever, in that it cannot locate or parse citations in
a Word processing document, and thus cannot identify errors

US 7,028,259 B1
3

or suggest corrections for citations after they have been
entered into the Word processing document. Rather, the
program requires users to adapt to a neW method for creating
citations and Works only With citations generated through
this method.

SUMMARY OF THE INVENTION

The present invention is a legal citation software utility
that preferably integrates With a Word processing application
as a “plug in”ithat is, When installed, it integrates itself into
the menu structure of the Word processing application and
operates While the Word processing document remains open
in the Word processing application. It interacts With the user
through dialog boxes that appear to originate from Within the
Word processing application. Thus, from the user’s perspec
tive, the softWare utility behaves like a component of the
Word processing application itself, much like a spelling
checker or Word count utility, rather than a stand-alone
application.

The user starts the legal citation softWare utility by
selecting a menu command from the Word processing appli
cation. The legal citation softWare utility then scans a Word
processing document to identify and parse citations. As it
identi?es each citation, it performs a series of tests to
determine Whether the citation conforms to stylistic rules. If
it encounters an error, it displays the citation With the error
highlighted, displays an error message, displays the relevant
Bluebook rule, and typically displays one or more citations
that incorporate a recommended/ suggested correction. The
user may then edit the citation manually, may reject the
recommended correction or may accept the recommended
correction. If the user selects a suggestion, the invention
automatically edits the Word processing document to incor
porate the change selected by the user. The invention then
continues to check that citation and other citations in the
document until no further errors are encountered.

The legal citation softWare utility has ?ve primary pro
cesses. First, it contains a component that permits the
invention to integrate With a Word processing application.
Second, it contains a detailed data structure, or object model,
that represents the various rules for each United States
jurisdiction and court. Third, it has a component that scans
a document for the constituent elements of citations and
builds a data structure that represents each citation. Fourth,
it has a component that tests each citation for speci?c errors.
Fifth, it has a component that displays identi?ed errors and
suggestions, and edits the Word processing document if a
suggestion is accepted. The folloWing brie?y describes each
of these processes.

1. Document Interface
The Document Interface integrates the invention With a

Word processing application. This component creates a data
structure that represents the Word processing document,
including each Word in the document. Other components of
the legal citation softWare utility use the Document Interface
to read the contents of, and make changes to, the Word
processing document.

2. Jurisdictions Object Model
The Jurisdictions Object Model is a hierarchical data

structure that contains a representation of the speci?c Blue
book rules for each of the United States’ jurisdictions. At the
highest level of the hierarchy, it contains a representation of
each of the 59 United States jurisdictions, representing the
federal court system and the court system for each state and
territory. Each jurisdiction, in turn, contains a representation

20

25

30

35

40

45

50

55

60

65

4
of each particular court used in that jurisdiction. Each court
contains a representation of information speci?c to that
court, such as the reporters used by the court and the valid
dates for cases from that court. Other components use the
Jurisdictions Object Model to identify courts, jurisdictions
and reporters in the document, to assess hoW they relate to
one another, and to apply speci?c tests to determine Whether
the citation is formatted correctly.

3. Citation Model
The Citation Model is the component of the legal citation

softWare utility that scans a document for elements of a
citation and then parses the elements by building a data
structure that represents each citation. The citation data
structure consists of other data structures, called “clauses,”
that represent each of the elements of a typical citation: a
case name, one or more citations to speci?c reporters, and
identi?cations of the jurisdiction, court and date of the case.
The Citation Model begins by locating each clause in a

passage of the Word processing document. Many phrases are
ambiguous, in that the same phrase may represent the name
of a reporter, jurisdiction or court. When the component
encounters such an ambiguity, it considers each possible
interpretation and assigns a score representing hoW close
that alternative comes to a correct, complete citation. It then
selects the interpretation With the highest score as being the
most likely interpretation of the citation. After the Citation
Model has identi?ed the best interpretation of a citation, it
passes a data structure representing this citation to other
components.

4. Check Modules
The Check Modules are a set of components Within the

legal citation softWare utility that perform a series of tests on
each citation data structure. In summary, the components
perform the folloWing tests:
One Module checks the case name clause to ensure it

conforms to Bluebook rules for the formatting and style
of case names.

One Module checks each reporter clause to ensure that the
reporter has the correct abbreviation and other format
ting, such as a volume number and page number.

One Module checks Whether each reporter clause has a
designation of the reporter’s editor, if necessary, and
Whether that designation is formatted correctly.

One Module checks the jurisdiction clause and court
clause to determine Whether these clauses are abbrevi
ated correctly and Whether or not they are necessary.

One Module checks the date clause to determine Whether
it is formatted correctly and Whether the year is valid
for the court.

One Module checks Whether the citation has the necessary
reporter or reporters for its court.

One Module checks Whether the citation’s clauses are in
the correct order and Whether the correct punctuation is
used betWeen the clauses.

5. Error Form

When a Check Module identi?es an error, it calls the Error
Form, a module Within the legal citation softWare utility that
displays the problematic citation and implements sugges
tions. The Error Form displays a dialog box, or WindoW, that
appears on top of the Word processing document. That
dialog box displays the citation With the error highlighted, an
error message explaining the error and the options the user
has to correct it, and the text of the Bluebook rule that
applies to this error.

US 7,028,259 B1
5

In addition, the Check Module may instruct the Error
Form to display one or more speci?c suggestions. If so, the
Error Form generates and displays citations that contain the
suggestions.

After displaying the error, the Error Form gives the user
the option of accepting one of the corrected citations, of
manually editing the citation in the word processor to
eliminate the error, or of ignoring the error. If the user
accepts one of the suggestions, the module edits the text of
the word processing document itself, through the Document
Interface, to incorporate that change.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a ?owchart depicting the basic, overall operation
of the legal citation software utility of the present invention.

FIG. 2 is a block diagram of one example of a hardware
con?guration that may be used to implement the legal
citation software utility of the present invention.

FIG. 3A depicts the menu commands that are added by the
software utility of the present invention to a word processing
application menu.

FIG. 3B depicts a dialog box that may be utiliZed by the
software utility of the present invention to determine the
type of legal document that will be reviewed by the software
utility.

FIG. 3C depicts an error form dialog box that may be
utiliZed by the software utility of the present invention to
display error messages and suggestions for correction to the
user of the software utility.

FIG. 3D depicts a drop-down box that may be utilized
within the error form of FIG. 3C to provide a user with a
listing of the relevant styliZe rule that is applicable to the
current error detected.

FIG. 3E depicts the error form dialog box wherein the
software utility of the present invention has provided the
user with more than one suggestion for correction.

FIG. 3F is a summary dialog box that may be utiliZed by
the software utility of the present invention to notify the user
of the number of changes that were made to legal citations
within a word processing document.

FIG. 4 depicts the hierarchical data structure utiliZed by
the Jurisdictions Object Model component of the legal
citation software utility of the present invention.

FIG. 5 is ?owchart showing the basic operation of the
Citation Model component of the legal citation software
utility of the present invention.

APPENDIX

An appendix containing a printed program listing of the
present invention is provided following the claims and
abstract of the application.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

A legal citation software utility of the present invention
when implemented within an existing word processing
application operates to locate legal citations within a word
processing document. The software utility then proceeds to
verify the stylistic accuracy of those legal citations accord
ing to established standards while providing the user the
opportunity to correct stylistic errors within the word pro
cessing document.

20

25

30

35

40

45

50

55

60

65

6
I. Basic Operation

Referring to FIG. 1, a ?owchart depicting the basic
operation of the legal citation software utility 20 of the
present invention is provided. It should be noted that the
?owchart is provided as a tool in understanding the basic
operation of the software utility 20; the sequence of steps in
the operation of the software utility 20 may be utiliZed in any
appropriate order to achieve the desired stylistic review of
legal citations without departing from the spirit or scope of
the invention. For example, the sequence of operational
steps may occur in an altered order, may occur in a manner
such that some operational steps are simultaneous with other
operational steps, or may include additional steps as desired.
As shown, per block 202, the software utility 20 is

activated within a running word processing application.
Then, per operations block 204, the software utility 20 scans
the word processing document to detect elements of the
legal citations within the document. If no elements of legal
citations are detected, per decision block 224, operation of
the software utility 20 is terminated, per block 226. How
ever, upon detecting elements of a legal citation, the soft
ware utility 20 parses the legal citation into possible citation
structures, and evaluates the structures to determine which
legal citation structure is most likely correct. The software
utility 20 then checks the legal citation to determine if it
conforms to established stylistic rules, such as those of the
Bluebook, per decision block 206. It should be noted that the
Bluebook is described herein as the chosen standard for
stylistic rules, however, other standards for stylistic rules
may be implemented within the software utility 20 without
departing from the spirit or scope of the invention.

If the legal citation conforms to the stylistic rules, the
software utility scans the word processing document for the
next occurrence of an element of a legal citation, per
operations block 204. If the legal citation structure does not
conform to stylistic rules, the legal citation is displayed to
the user with the portion of the citation containing an error
highlighted in red, per operations block 208. Of course,
other manners of highlighting an error may be used without
departing from the spirit or scope of the invention. Addi
tionally, one or more error messages describing the stylistic
error are displayed to the user, per operations block 210, as
is the relevant stylistic rule, per operations block 212.
Further, typically one or more suggestions as to the correct
format of the citation are provided, per operations block 214.
Upon receiving suggestions for correction, the user may

input their own correction or edit the suggested correction,
per input block 216. Alternatively, the user may accept the
suggestion for correction as is, per decision block 218. In the
instance the user inputs their own correction, edits the
suggested correction, or accepts the suggestion for correc
tion as is, the software utility 20 operates to directly edit the
word processing document and implements the correction,
per operations block 220.
Upon implementing the correction within the word pro

cessing document the software utility 20, the software utility
20 reparses the citation and checks it against all stylistic
rules, following the ?ow of the ?owchart of FIG. 1 once
again by returning to operations block 204. If no further
legal citations are detected within the word processing
document, per decision block 224, the operation of the
software utility 20 is terminated, per block 226.
The operation as described above is preferably imple

mented through a program operating on a personal com
puter. Speci?cally, the legal citation software utility 20 of the
present invention is preferably a program that is created with
the Visual Basic 6.0TM, Professional Edition programming

US 7,028,259 B1
7

language. It preferably operates on a personal computer
running Microsoft Windows@ 95, 98 or 2000. An example
hardware con?guration that may be used to implement the
softWare utility 20 is shoWn in FIG. 2. As indicated the
hardWare includes a personal computer 30 having a central
processing unit 302, memory 304 for storing the software
utility 20 and the Word processing application, as Well as
various input peripherals 306, e.g., keyboard, mouse, disk
drives, external memory, internet connection etc., and vari
ous output peripherals 308, e.g., monitor, printer, disk
drives, external memory, internet connection, etc. Of course,
other hardWare implementations, programming languages,
and operating platforms may be used Without departing from
the spirit or scope of the invention.
When installed utiliZing the above identi?ed program

ming language and operating platform, the legal citation
softWare utility 20 preferably operates as a “plug in” to the
Word processing applications encompassed Within Microsoft
Word® 97 and Microsoft Word® 2000 (collectively,
“Microsoft Word®”) That is, the softWare utility 20 func
tions as a component of the Word processing application,
rather than as a separate stand-alone application. The soft
Ware utility’s code can be run either as uncompiled code
directly from the Visual BasicTM 6 Editor or as a set of
compiled DLL type libraries. The softWare utility 20 inte
grates With Microsoft Word® through Microsoft’s Compo
nent Object Model, or “ActiveXTM,” technology. Data struc
tures are created through object-oriented techniques using
standard and custom object classes.
When the preferred embodiment of the softWare utility 20

is installed it preferably displays its operation to the user
through menu commands and dialog boxes that appear over
the existing Word processing document. Speci?cally, the
softWare utility preferably adds tWo menu commands, in this
instance entitled “BlueCheckTM” 40 and “BlueCheck
OptionsTM” 42, to Microsoft Word’s® menu structure 44,
see FIG. 3A. The user begins the main operation of the
preferred embodiment by selecting the “BlueCheckTM”
menu command 40. If the user has not previously selected
the “BlueCheck OptionsTM” menu command 42 for the
present Word processor document, the program displays the
BlueCheck OptionsTM dialog box 46, FIG. 3B. In the
BlueCheck OptionsTM dialog box 46, the user is requested to
set certain options that affect the stylistic tests that Will be
performed on the legal citations Within the Word processing
document. Speci?cally, the user is requested to enter
Whether the Word processing document is to be submitted to
a state court and, if so, Which state, a federal court, or
Whether it is a non-court document, e.g., memorandum or
laW revieW article.

After closing the BlueCheck OptionsTM dialog box 46, the
BlueCheck Error FormTM 48 is displayed, see FIG. 3C.
When the preferred embodiment identi?es a perceived error,
it highlights the citation 50 in the Microsoft Word® docu
ment 52 and displays the current citation 50 in the Error
Form 48, With the error highlighted and With a message 54
explaining the error. In most instances, the softWare utility
20 also makes a speci?c suggestion; if so, it displays the
citation 56 as it Will appear if the user selects the suggested
change.
Upon displaying a suggestion, the user is preferably

presented With at least four options. In this instance the
options are indicated by four buttons Within the Error Form
48, i.e., “Change” 58, “Ignore” 60, “Ignore Rule” 62, and
“Cancel” 64. If the user selects the “Change” button 58, the
softWare utility 20 incorporates that change Within the Word
processing document 52 and looks for other errors in that

20

25

30

35

40

45

50

55

60

65

8
citation. If the user selects the “Ignore” button 60, the
suggestion is ignored and the softWare utility continues to
revieW the citation 50 for further errors. If the user selects
the “Ignore Rule” button 62, the error cited Will be ignored
for all subsequent citations containing the same error. If the
user selects the “Cancel” button 64, the softWare utility 20
is stopped from further error checking.

In some instances, it may identify more than one possible
change. If so, the preferred embodiment displays a list of
citations 56, each of Which contains one change, see FIG.
3E. The user may select the appropriate change by clicking
on the preferred suggestion. The softWare utility continues to
check for other errors in that citation 50 and subsequent
citations. When the softWare utility 20 has checked every
citation 50 in the document 52 and can identify no further
errors, it preferably provides an indication of the number of
changes made to the document 52. In this instance, the
softWare utility 20 displays a dialog box 70 that speci?es the
number of changes made, see FIG. 3E.
The user is also preferably presented With the option of

vieWing the relevant stylistic rule. In this instance, if the user
Wishes to see more information about an error message, he

or she may vieW the text of the relevant Bluebook rule by
selecting the “ShoW Rule” checkbox 66. Upon selecting the
checkbox 66, a drop-doWn WindoW 68 is provided Within the
Error Form 48 Wherein the relevant rule is displayed, see
FIG. 3D. When the softWare utility 20 has completed
checking one citation, it then checks subsequent citations.

It should be noted that While the above-described menu
commands and dialog boxes are the preferred manner of
interacting With a user of the softWare utility 20, numerous
other manners of interacting With a user may be utiliZed
Without departing from the spirit or scope of the invention.

II. Detailed Operation
The legal citation softWare utility 20 of the present

invention utiliZes ?ve primary processes to achieve the
operation described by the ?owchart, menu commands, and
dialog boxes described above. First, it contains a component
that permits the invention to integrate With a Word process
ing application, i.e., the Document Interface. Second, it
contains a detailed data structure, or object model, that
represents the various rules for each United States jurisdic
tion and court, i.e., the Jurisdictions Object Model. Third, it
has a component that scans a document for the constituent
elements of citations and builds a data structure that repre
sents each citation, i.e., the Citation Model. Fourth, it has a
component that tests each citation for speci?c errors, i.e., the
Check Modules. Fifth, it has a component that displays
identi?ed errors and suggestions, and edits the Word pro
cessing document if a suggestion is accepted, i.e., the Error
Form. The folloWing describes each of these processes in
detail utiliZing references to the Written code of the softWare
utility 20 as coded in Visual BasicTM 6.0, Professional
Edition.

II .A. Document Interface

The Document Interface is a set of code that functions as
an intermediary betWeen the active Microsoft Word® docu
ment (the “document”) and the other components of the
softWare utility 20. The Document Interface creates a data
structure that represents each document being used by the
softWare utility 20. In addition to the active Word processing
document (the document being edited by the user), the
Document Interface also alloWs other components to create
other Word processing documents. For example, the Error

US 7,028,259 B1
9

Form component uses the Document Interface to create a
neW “hidden” document, invisible to the user, that it uses to
generate suggestions.
When the Document Interface creates a document data

structure, it also creates a text data structure, the Words
Interface, that provides an interface for reading and editing
the text in that document. The Words Interface reads the text
in the document and parses the text into individual constitu
ent Words. As an illustration, assume that the Word process
ing document consists of the folloWing passage:
Once a plaintiff establishes a prima facie case of Title VII

discrimination through a disparate impact, the defen
dant must articulate a reasonable business justi?cation
for the practice. See Wards Cove Packing Co. v. Alonio,
490 US. 642, 659460 (1989).

The Words Interface parses this text into a series of indi
vidual Words: “Once” “a” “plainti?‘” “establishes,” etc. The
Words Component parses this text according to non-stan
dard rules; for example, punctuation marks are treated as
separate Words. Thus, the phrase “U.S.” consists of four
Words: the tWo letters and the tWo periods.

Other softWare utility components use the Words Inter
face to read and Write to the individual Words of the
document. For example, the code “Text:ActiveDoc.Words
(l, 3)” Will set the variable Text to the ?rst three Words of
the document (“Once a plaintiff’.)

Likewise, a component may use the Words Interface to
change the text in the Word processing document. For
example, the code “ActiveDoc.Words(l,l):“After”
”changes the ?rst Word in the Word processing document
(“Once”) to “After.”
The Words Interface alloWs other components to access

and set other information about individual Words or phrases,
such as hoW the text is formatted (Whether it is bold,
italiciZed or underlined), and the text’s Rich Text Format
formatting codes. It also alloWs other components to delete
or insert ranges of text.

II.B. Jurisdictions Object Model
The Jurisdictions Object Model represents the Bluebook

rules that are unique to each United States jurisdiction, such
as the name and abbreviation of each jurisdiction and court
and the reporters used by each court. The Jurisdictions
Object Model represents this information through a hierar
chical object-oriented data structure, as shoWn in FIG. 4.

The top level of the Jurisdictions Object Model is the
Jurisdictions Collection 90, a custom collection class. The
Jurisdictions Collection 90 contains 57 individual Jurisdic
tion Objects 92, one for each of the United States jurisdic
tions listed in Table T1 of the Bluebook. Each Jurisdiction
Object 92 contains speci?c information about that jurisdic
tion, such as its full name, its abbreviated name, and the
courts and reporters used by that jurisdiction.

Each Jurisdiction Object 92 contains a Courts Collection
94, a custom collection class. The Courts Collection 94
contains the individual Court Objects 96 for that jurisdic
tion. Each Court Object 96 contains speci?c information
about one court, such as the full name of the court, the
correct abbreviation for that court, the range of valid years
for that court, and the Court Group Object 98 associated
With that court.

The Court Group Objects 98 summariZe data about
reporters. This data is often common to several related
courts. For example, Table T1 of the Bluebook lists three
related federal courts, the United States Court of Federal
claims, the United States claims Court, and the Court of
claims. Each of these courts shares the same list of valid

20

25

35

40

45

50

55

60

65

10
reporters. The Jurisdictions Object Model represents this list
of reporters as a single Court Group Object 98. Each Court
Object 96 for these three federal courts shares a single Court
Group Object 98, rather than having a redundant list of
reporters for each court. Speci?cally, the Court Group
Object 98 contains a Reporter Collection 100 that represents
each of the reporters used by these courts, along With data
summarizing the rules governing the use of parallel and
non-parallel citations for these courts.

Each Reporters Collection 100 is a custom collection that
contains the individual Reporter Objects 102 used by a
particular group of courts. Each Reporter Object 102 con
tains several types of data about a particular reporter. First,
it includes the range of valid volume numbers for the
reporter, the range of valid dates for the reporter, and the full
name and correct abbreviation for the reporter. Second, it
speci?es Whether the reporter identi?es the court or juris
diction of the citation. For example, the reporter United
States Reports identi?es the jurisdiction (federal) and court
(Supreme Court) of a citation, While the regional reporter
North Western Reporter identi?es neither. Third, it identi?es
each editor used by the main reporter. For example, the
Reporter Object for United States Reports identi?es Wal
lace, Black, HoWard, Peters, Wheaton, Cranch and Dallas as
editors.
The Jurisdictions Object Model is initialiZed When it is

?rst used. The data about each jurisdiction and court is
loaded through subroutines in the Populate Jurisdictions
module, Which creates individual jurisdiction objects, court
objects, and court group objects, gets their individual prop
erties to the correct values, and places them in the appro
priate jurisdictions or courts collection. The data about each
reporter is loaded from a ?le on the user’s hard drive through
the Load Reporters module, Which uses data contained in the
?le to create individual reporter objects, sets their individual
properties to the correct values, and places them in the
correct reporters collection.
The Jurisdictions Collection, Courts Collection and

Reporters Collection each uses a similar subroutine, the Item
method, to identify Whether a particular phrase is a recog
niZed jurisdiction, court or reporter. For example, the code

Set JuFJurisdictions.Item(Phrase, True, True)
sets the variable Jur to a Jurisdiction Object that matches the
string contained in the variable Phrase, if there is such a
match. If Phrase contains “Minn.,” for example, it Would set
the Jur variable to the Jurisdiction Object for Minnesota.
Likewise, the code

Set CourtIJurisdictions.Item(“Minn.”,
Courts.Item(Phrase, True, True)

True, True).

sets the variable Court to the Minnesota court that matches
the string contained in the variable Phrase, if any. If Phrase
contains “Ct. App.,” it Will set Court to the Court Object for
the Minnesota Court of Appeals.
One problem With identifying and parsing citations in a

document is that a program must be able to correctly
interpret a citation even if the citation contains errors,
including typographical errors. For example, the Bluebook
instructs that Minnesota should be abbreviated as “Minn.,”
but users may omit punctuation (e.g., “Minn”), may use
incorrect capitaliZation (e.g., “MInn.”), may incorrectly use
the postal abbreviation (“MN”) or the unabbreviated name,
or may misspell it altogether (e.g., “Mnn.”). LikeWise,
although the Bluebook instructs that users should refer to the
Minnesota Court of Appeals as “Ct. App.,” Writers often
misspell it as “App. Ct.” or simply “App.” Thus, if a
program merely searches a Word processing document for

US 7,028,259 B1
11

the correct abbreviations, it Would overlook many phrases
that incorrectly identify a jurisdiction, court or reporter.

To overcome this problem, the Jurisdictions Model uses
fuzzy pattern matching techniques to be more fault-tolerant.
The Item method of the Jurisdictions Collection, Courts
Collection and Reporters Collection each use a custom class
called the Fuzzy Collection that uses a variety of techniques
to identify close, but inexact, matches.

First, the Fuzzy Collection ignores punctuation and capi
talization of the phrase. Thus, the above examples Would
return the Minnesota Jurisdictions Object for “MINN.,” and
Would return the Minnesota Court of Appeals Court Object
for “ctapp.”

Second, the Fuzzy Collection not only looks for the
correct abbreviation, like “Ct. App.” or “Minn.,” but also for
“aliases”iphrases, like “App.,” “App. Ct.,” “MN,” or
“Minnesota,” that are common misspellings of an expected
phrase.

Third, the Fuzzy Collection uses an edit distance algo
rithm to identify other typographical errors. The edit dis
tance algorithm Will identify one string as being equivalent
if it begins With the same character as the correct abbrevia
tion or the alias and has no more than one character in
difference. Thus, it Will identify “Ct. Ap.” or “Ct. Appp.” as
representing the Court of Appeals.

The Fuzzy Collection combines all of these techniques
When searching for a jurisdiction, court or reporter that
matches a phrase. Thus, it Will return Minnesota as a
jurisdiction from the phrase “min” even though the punc
tuation is Wrong, the capitalization is Wrong, and the phrase
is misspelled, and Will return the Court of Appeals for “Ap.
Ct.” even though the phrase is a misspelling of an alias.

II.C. Citation Model
The Citation Model locates individual “clauses” of a

citation by searching for key terms. As it identi?es the
individual clauses, it assembles them into a Citation Object,
a data structure that represents a complete citation. A How
chart depicting the basic operation of the Citation Model is
shoWn in FIG. 5.
Upon start of the Citation Model, per block 120, the

Citation Model searches for ?ve types of clauses, per
operations block 122: a case name clause that represents the
names of the parties to a case, a reporter clause that
represents a reporter, including a volume number and page
numbers, a jurisdiction clause and a court clause that rep
resents the jurisdiction and court of the deciding court, and
a date clause that represents the year or date of the opinion.
A Clause Locator identi?es these clauses, per operations

block 124, and uses someWhat different techniques to iden
tify the different types of clauses. As an example, consider
the folloWing citation:

Schlemmer v. Farmers Union Cent. Exch., 397 N.W.2d
903, 906 (Minn. Ct. App. 1986)

The Clause Locator identi?es case name clauses by
searching for the start and end of underlined phrases in the
Word processing documents. Thus, it identi?es “Schlemmer
v. Farmers Union Cent. Exch.” as representing the case
name in the above citation.

It identi?es reporter clauses, jurisdiction clauses and court
clauses by searching for text that resembles a knoWn
reporter, jurisdiction or court clause. Speci?cally, it searches
for the beginning of any abbreviations associated With these
clauses, using the fuzzy matching techniques described
above. The Clause Locator searches for a reporter, jurisdic
tion or court at each Word that consists of letters or numbers,
rather than a punctuation mark. It tests a range of phrases

20

25

30

35

40

45

50

55

60

65

12
that start at that Word and continue up to eleven Words
beyond that, and then Words its Way through shorter phrases.
It ignores, hoWever, phrases that end in a punctuation mark.
At Word number 13, for example, it tests the folloWing

phrases:
N.W.2d 903, 906 (Minn. Ct
N.W.2d 903, 906 (Minn
N.W.2d 903, 906
N.W.2d 903

N

It recognizes “N.W.2d” as the abbreviation for North West
ern Reporter, Second Series, and builds a reporter clause for
that phrase. Although it also recognizes “N.W.” as the
abbreviation for the original North Western Reporter, it does
not build a reporter clause representing “N.W.,” as “N.W.”
is contained Within the larger phrase “N.W.2d.” and
“N.W.2d” is folloWed by a page number.

Finally, the Clause Locator searches for years and dates
by looking for single numbers betWeen the range of 1600
and 2010, and for placeholders for years represented by four
underscores (“ ”). It also searches for full dates, such
as “Aug. 3, 1970,” through Visual Basic’sTM IsDate func
tion.

Because the Clause Locator simply looks to the text of
phrases to identify clauses, it does not distinguish betWeen
ambiguous phrases that could represent different types of
clauses. For example, the Word “Minn.” could represent
either an abbreviation of Minnesota Reporters, or the juris
diction for the state of Minnesota. Rather than attempting to
resolve this ambiguity, the Clause Locator simply creates
tWo separate clauses for “Minn.”ia reporter clause and a
jurisdiction clause.

As the Clause Locator identi?es clauses, a Citation
Builder interprets these clauses to determine Whether they
actually are part of a larger citation and to resolve any
ambiguities, per decision block 126. The broad fuzzy search
used by the Clause Locator Will identify many “false posi
tives”iphrases that are not parts of citations. For example,
the Word “Minnesota” or the abbreviation “Minn.” may
merely be part of a sentence or an address, not a citation.
LikeWise, the search process identi?es every instance of the
Word “a” as a potential abbreviation for the Atlantic
Reporter, Which is abbreviated “A.”
To determine Whether such phrases are part of a citation,

and to resolve ambiguities like that caused by the phrase
“Minn.,” the Citation Builder evaluates the clauses based on
their context With other recognized clauses. For each pos
sible combination of clauses in proximity to one another, the
Citation Builder creates a data structure, per operations
block 128, called a citation object, that represents a complete
citation. It then assigns a score, per operations block 130,
that represents hoW closely each citation object comes to a
complete and accurate citation. Assuming that any of these
combinations have a score above a minimum threshold, it
selects the combination With the highest score as represent
ing the best interpretation of the citation, per operations
block 132.

In the above example, the Citation Builder begins With the
tWo clauses that it identi?es, a case name clause and a
reporter clause, and builds a citation object containing only
those tWo clauses. It then builds a citation object that
contains additional clauses. To illustrate, it performs the
folloWing initial steps, With the name of each clause it
identi?es in brackets:

US 7,028,259 B1
13

Test 1: Schlemmer v. Farmers Union Cent. Exch. [Case
Name], 397 N.W.2d 903, 906 [Reporter]

Test 2: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter] (Minn.
[Reporter]

Test 3: Schlemmer v. Farmers Union Cent. Exch. [Case
Name], 397 N.W.2d 903, 906 [Reporter] (Minn. [Re
porter] Ct. App. [Court]

Test 4: Schlemmer v. Farmers Union Cent. Exch. [Case
Name], 397 N.W.2d 903, 906 [Reporter] (Minn. [Re
porter] Ct. App. [Court] 1986 [Date])

Test 5: Schlemmer v. Farmers Union Cent. Exch. [Case
Name], 397 N.W.2d 903, 906 [Reporter] (Minn. [Juris
diction]

Test 6: Schlemmer v. Farmers Union Cent. Exch. [Case
Name], 397 N.W.2d 903, 906 [Reporter] (Minn. [Juris
diction] Ct. App. [Court]

Test 7: Schlemmer v. Farmers Union Cent. Exch. [Case
Name], 397 N.W.2d 903, 906 [Reporter] (Minn. [Juris
diction] Ct. App. [Court] 1986 [Date])

When the Citation Builder encounters an ambiguous phrase,
like “Minn.,” it considers alternatives based on each possible
interpretation. Thus, in Tests 24 it interprets “Minn.” as a
reporter, While in Tests 547 it interprets “Minn.” as a
jurisdiction.

The Citation Builder determines Which tests to perform
through an algorithm that treats the individual clauses as
nodes of a tree data structure. In the above example, for
example, it interprets the case name clause as the top node
of the tree, the “N.W.2d” reporter clause as a child node, and
the ambiguous “Minn.” jurisdiction clause and reporter
clause as children of the “N.W.2d” reporter clause. The
Citation Builder recursively visits each node of the tree and
builds a citation object that composed of the present node
and all parent nodes.
As each citation object is constructed, the citation object

performs a number of further steps to interpret the citation.
First, it identi?es the most reasonable interpretation of the
citation’s jurisdiction and court, based on the citation
object’s reporter clauses, jurisdiction clauses and court
clauses. In the above example, it cannot identify a jurisdic
tion or court for Test 1 because North Western Reporter does
not identify any particular jurisdiction or court, and because
there is no jurisdiction clause or court clause. In Tests 2 and
5, it identi?es the citation as being to the Minnesota supreme
court, because there is a reporter or jurisdiction identifying
Minnesota. In Tests 3, 4, 6, and 7, it correctly identi?es the
citation as being the Minnesota court of appeals, based on
the court clause that it identi?es.

Second, the citation object identi?es volume numbers and
page numbers that are associated With any reporter clause.
Thus, it recogniZes “397” as the volume number for
“N.W.2d,” and “903, 906” as its page numbers.

Third, the citation object locates the ending punctuation
that folloWs the last clause. Thus, in Test 7, for example, it
correctly includes the close parenthesis mark to complete the
“(Minn. Ct. App. 1986” parenthetical phrase.

Fourth, the citation object calculates a score that repre
sents hoW closely its constituent clauses come to a complete
and accurate citation. This consists of several sub-processes.

First, each clause is assigned a score betWeen 0 and 1
based on hoW closely it appears to be complete, accurate,
and in the correct relationship to other clauses. In the
folloWing example, Which expands on the earlier example,
the score for each clause is indicated Within the brackets:

20

25

30

35

40

45

50

55

65

14
Test 1: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter: 0.93]

Test 2: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter: 1.00]
(Minn. [Reporter: 0.22]

Test 3: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter: 1.00]
(Minn. [Reporter: 0.29] Ct. App. [Court: 0.63]

Test 4: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter: 1.00]
(Minn. [Reporter: 0.29] Ct. App. [Court: 0.93] 1986
[Date: 1.00])

Test 5: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter: 1.00]
(Minn. [Jurisdiction: 0.70]

Test 6: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter: 1.00]
(Minn. [Jurisdiction: 1.00] Ct. App. [Court: 0.70]

Test 7: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], 397 N.W.2d 903, 906 [Reporter: 1.00]
(Minn. [Jurisdiction: 1.00] Ct. App. [Court: 1.00] 1986
[Date: 1.00])

In Test 1, the reporter clause has a loWer score because it is
not folloWed by a jurisdiction clause, court clause or date
clause, as Would be expected. In Tests 244, the “Minn.”
reporter clause receives a loW score because it does not have
a volume number or page numbers, and because there is no
comma betWeen it and the preceding reporter clause and no
open parenthesis mark betWeen it and the folloWing court
clauseithe punctuation that Would be expected if “Minn.”
Were actually a reporter. In Test 3, the court clause receives
a loWer score in part because there is no open parenthesis
mark betWeen it and the preceding reporter clause. In Tests
2, 3, 5, and 6, the trailing jurisdiction and court clauses have
loWer scores because they are not folloWed by a date clause
or a close parenthesis mark.

After each clause is assigned its oWn score, the citation
object assigns a total score for the citation, based on the
completeness of the citation and the individual scores of the
clauses. The score is assigned as folloWs:

If a case name clause is present, add 100 points times the
score of that clause.

If one or more reporter clauses are present, add 150 points
times the average score of those clauses.

If a date clause is present, add 100 points times the score
of that clause.

If a jurisdiction could be determined, add 100 points times
the score of the clause (jurisdiction clause, court clause
or reporter clause) that identi?es it.

If a court could be determined, add 50 points times the
score of the clause jurisdiction clause, court clause or
reporter clause) that identi?es it.

Subtract 50 points if there is more than one case name
clause, court clause or jurisdiction clause.

Subtract 50 points if there is more than one reporter clause
and the clauses are not contiguous to each other.

Subtract 10 points for each Word that is not recognized,
excluding punctuation.

Based on these calculations, the citation objects assigns the
folloWing total scores:

Test 1: 239
Test 2: 224
Test 3: 256
Test 4: 371
Test 5: 355
Test 6: 385
Test 7: 500

US 7,028,259 B1
15

Because Test 7 receives a perfect score of 500, the Citation
Builder identi?es that interpretation of the clauses as being
the correct interpretation. Of course, other methods of
scoring may be used Without departing from the spirit or
scope of the invention.
When the Citation Builder does not encounter a citation

With a perfect score, it tests further combinations, by exclud
ing earlier clauses, to ensure that it has not misinterpreted
the citation. If, for example, the citation had been incorrectly
formatted as:

Schlemmer v. Farmers Union Cent. Exch., Minn. Ct.
App., 397 N.W.2d 903, 906 (1986)

then no possibility Would have a perfect score, as jurisdic
tion clause and court clause are placed in an incorrect
position. Consequently, the Citation Builder performs a
deeper search in Which some earlier clauses (parent nodes)
are discarded, With the following result:

Test 1: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], Minn. [Reporter: 0.29] Jurisdiction: Min
nesota; Court: Minnesota Supreme Court; Score: 186

Test 2: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], Minn. [Reporter: 0.37] Ct. App. [Court:
0.63], 397 Jurisdiction: Minnesota; Court: Minnesota
Court of Appeals; Score: 213

Test 3: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], Minn. [Reporter: 0.37] Ct. App. [Court:
0.63], 397 N.W.2d 903, 906 [Reporter: 0.85] (Juris
diction: Minnesota; Court: Minnesota Court of
Appeals; Score: 210

Test 4: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 1.00], Minn. [Reporter: 0.37] Ct. App. [Court:
0.63], 397 N.W.2d 903, 906 [Reporter: 0.93] (1986
[Date: 100]) Jurisdiction: Minnesota; Court: Minne
sota Court of Appeals; Score: 315

Test 5: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 0.75], Minn. [Jurisdiction: 0.48] Jurisdiction:
Minnesota; Court: Minnesota Supreme Court; Score:
146

Test 6: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 0.75], Minn. [Jurisdiction: 0.78] Ct. App.
[Court: 0.70], 397 Jurisdiction: Minnesota; Court: Min
nesota Court of Appeals; Score: 177

Test 7: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 0.75], Minn. [Jurisdiction: 0.78] Ct. App.
[Court: 0.70], 397 N.W.2d 903, 906 [Reporter: 0.85] (
Jurisdiction: Minnesota; Court: Minnesota Court of
Appeals; Score: 315

Test 8: Schlemmer v. Farmers Union Cent. Exch. [Case
Name: 0.75], Minn. [Jurisdiction: 0.78] Ct. App.
[Court: 0.70], 397 N.W.2d 903, 906 [Reporter: 0.93]
(1986 [Date: 100]) Jurisdiction: Minnesota; Court:
Minnesota Court of Appeals; Score: 426

Test 9: Minn. [Reporter: 0.29] Ct. App. [Court: 0.63], 397
Jurisdiction: Minnesota; Court: Minnesota Court of
Appeals; Score: 93

Test 10: Minn. [Jurisdiction: 0.70] Ct. App. [Court: 0.70],
397 Jurisdiction: Minnesota; Court: Minnesota Court
ofAppeals; Score: 95

Test 11: Ct. App. [Court: 0.40], 397 N.W.2d 903, 906
[Reporter: 0.85] (Jurisdiction: none; Court: none;
Score: 168

Test 12: Ct. App. [Court: 0.40], 397 N.W.2d 903, 906
[Reporter: 0.93] (1986 [Date: 100]) Jurisdiction: none;
Court: none; Score: 279

Test 13: N.W.2d 903, 906 [Reporter: 0.93] (1986 [Date:
100]) Jurisdiction: none; Court: none; Score: 239

20

25

30

35

40

45

50

55

60

65

16
After each test is complete, it recogniZes Test 8 as being the
citation With the highest score, and thus the best interpreta
tion of the citation.

If an imperfect citation is folloWed by another citation, the
Citation Builder performs an even more thorough test.
Consider the folloWing example:
Schlemmer v. Farmers Union Cent. Exch., Minn. Ct.

App., 397 N.W.2d 903, 906 (1986); Khalifa v. State,
Minn. Ct. App., 397 N.W.2d 383, 387 (1986)

The Citation Builder tests 32 different interpretations of the
Schlemmer citation, including interpretations that include
elements of the Khalifa citation, to ensure that it has
considered every possibility. HoWever, it concludes that the
interpretation described in Test 8, above, remains the best
interpretation.

Certain citations, like the hypothetical citation “Jones v.
Smith, 68 U8. (1 Wall.) 100, 105 (1863),” contain paren
thetical identi?cations of the reporter’s editor (here, to
Wallace.) These citations can also be Written, incorrectly, as
“Jones v. Smith, 68 U.S. 100, 105 (1863)” or “Jones v. Smith,
1 Wall. 100, 105 (1863).” Consequently, the phrase “Wall.,”
by itself, does not identify Whether the phrase is used as
parenthetical identi?cation of the editor or as a full reporter.
The Clause Locator simply identi?es it as a reporter clause.
When a citation object is built Where one reporter clause

folloWs another, as “1 Wall.” folloWs “68 U.S., the citation
object assigns a score to determine hoW closely the second
clause appears like an editor parenthetical. If the score is
suf?ciently high, the citation object builds an editor clause
that contains the editor phrase. The editor clause is then
assigned as a part of the main reporter clause. Thus, in
“Jones v. Smith, 68 U8. (1 Wall.) 100, 105 (1863),” the
reporter clause consists of the entire “68 U8. (1 Wall.) 100,
105,” With a subsidiary editor clause that represents “1
Wall.”
Upon identifying or establishing the type of clause Within

each citation, a complete citation object for the citation
(containing all ?ve types of clauses) is created, per opera
tions block 134. The Citation Model then determines if
additional citation clauses are present, per decision block
136, and repeats the above-described process to identify the
types of clauses Within each citation. If no additional citation
clauses are present, the operation of the citation model is
terminated.

H.D. Check Modules
After the Citation Model identi?es each individual cita

tion, it passes its citation object to a series of modules called,
collectively, the Check Modules. Each check module per
forms a series of related tests on the citation object to
attempt to identify Bluebook stylistic errors.

After a citation has been parsed by the Citation Model, the
resulting citation object can be used to identify information,
or “properties,” about each speci?c clause. Because the
citation object is built through object-oriented techniques,
Which each clause represented as a separate object, these
properties can be accessed With relative simplicity.

For example, if the citation object has a date clause that
identi?es the year, the year can be accessed through the
code:
VaFCitationYear

This code sets the variable Var to a number representing the
year. Likewise, the text of the various clauses can be
accessed through commands like:

VaFCitationCourtClause.Text
VaFCitation.ReporterClauses(2).Text

