
Institut “Jožef Stefan”, Ljubljana, Slovenija
Department of Communication Systems (E-6)

GRASS-RaPlaT

Radio Planning Tool for GRASS

User Manual
V1.0a

Igor Ozimek, Andrej Hrovat, Andrej Vilhar, Tomaž Javornik

Ljubljana, September 2013

i

Contents

1. GRASS-RAPLAT OVERVIEW .. 1

2. RAPLAT IN DETAILS ... 3
2.1. RUN A COMPLETE RADIO COVERAGE COMPUTATION - R.RADCOV 4

2.1.1. Antenna types table ... 7

2.1.2. Computation region management .. 8

2.1.3. Parallel execution support .. 9

2.1.4. Reuse and Purge ... 10

2.1.5. Database support .. 10

2.1.6. Other parameters .. 10

2.2. RADIO PROPAGATION MODELS (ISOTROPIC ANTENNA) .. 11

2.2.1. r.fspl .. 11

2.2.2. r.hata ... 12

2.2.3. r.cost231 ... 14

2.2.4. r.hataDEM .. 15

2.2.5. r.waik .. 18

2.3. ADD TRANSMISSION ANTENNA - R.SECTOR .. 21
2.4. CALCULATE COMPLETE COVERAGE - R.MAXPOWER ... 24

2.4.1. The input cell list file .. 25

2.4.2. The output data table .. 25

2.5. PREPARE CLUTTER MAP - R.CLUTCONVERT ... 27

3. SRTM MAPS ... 30
3.1. SRTM MAPS AND GRASS LOCATIONS/PROJECTIONS ... 31
3.2. DOWNLOAD SRTM MAPS - M.GETSRTMMAPS ... 32

3.3. CONVERT SRTM MAPS TO A GRASS DEM - M.SRTMTOGRASS 33
3.4. PROJECT GRASS DEM TO THE FINAL CARTOGRAPHIC LOCATION 34
3.5. REMOVING VOIDS .. 34

3.6. WHAT ABOUT LAND USE / CLUTTER MAPS? ... 34
3.7. AN EXAMPLE: SRTM-BASED DEM FOR SLOVENIA... 35

4. VIRTUAL MACHINE - GRASS & RAPLAT PREINSTALLED 40
4.1. PRECONFIGURED UBUNTU USER ACCOUNTS .. 41
4.2. ABOUT GRASS INSTALLATION ... 41

4.3. ABOUT GRASS DATABASE ... 42
4.4. ABOUT MYSQL .. 42

4.5. ABOUT POSTGRESQL ... 43

5. NEW GRASS AND RAPLAT INSTALLATION .. 45
5.1. INSTALL MYSQL & POSTGRESQL ... 45

5.2. INSTALL GRASS AND RELATED SOFTWARE PACKAGES .. 45
5.3. INSTALL RAPLAT MODULES ... 48

5.4. SET UP GRASS DATABASE AND USERS ... 49
5.5. SET UP MYSQL / POSTGRESQL FOR USE WITH GRASS-RAPLAT 50

5.5.1. Set up MySQL ... 51

5.5.2. Set up PostgreSQL .. 52

ii

6. REFERENCES .. 54

iii

Figures

Fig. 1: GRASS-RaPlaT block diagram .. 3

Fig. 2: Coverage by three antennas on one location (r.hata, 900 MHz) .. 6

Fig. 3: Path loss at 2 GHz computed with r.fspl... 12

Fig. 4: Path loss at 900 MHz computed with r.hata... 13

Fig. 5: Path loss at 2 GHz computed with r.cost231 .. 15

Fig. 6: Basic concept of the hataDEM model ... 16

Fig. 7: Path loss at 2 GHz computed with r.hataDEM ... 17

Fig. 8: Path loss at 2 GHz computed with r.waik ... 20

Fig. 9: Path loss computed by r.sector, based on r.hata path loss (Fig. 4) 23

Fig. 10: Official land use map for the Ljubljana region ... 28

Fig. 11: The corresponding clutter map generated by r.clutconvert .. 28

Fig. 12: Commercial Slovenian DEM + Google Map.. 35

Fig. 13: Official (commercial) Slovenian DEM ... 36

Fig. 14: Slovenian DEM created from SRTM maps .. 36

Fig. 15: Differences between the comercial and SRTM-based Slovenian DEMs............................ 37

Fig. 16: Profile difference - lower-left corner to upper-right corner diagonal 37

Fig. 17: Profile difference - upper-left corner to lower-right corner diagonal 37

Fig. 18: Height difference histogram ... 38

Fig. 19: Slovenian DEM created from SRTM maps with voids filled (r.fillnulls) 38

Fig. 20: Differences between the comercial and the SRTM-based voids-filled Slovenian

DEMs ... 39

Tables

Table 1: An example of the cell list table .. 4

Table 2: Description of the cell list table columns .. 5

Table 3: An example of the antenna types table ... 8

Table 4: Parameters and their values for the Walfisch-Ikegami model .. 20

Table 5: Output data table format ... 25

1

1. GRASS-RaPlaT overview

GRASS GIS [1,2], shortly GRASS (Geographic Resources Analysis Support System), is a

free Geographic Information System (GIS) software used for geospatial data management and

analysis, image processing, graphics/maps production, spatial modeling, and visualization. It

is available as prebuilt packets for various Linux distributions, MS Windows and (Mac) OS

X, as well as in source code.

RaPlaT (Radio Planning Tool for GRASS) [3,4,5] is an add-on for GRASS for radio signal

coverage calculation. It uses the GRASS’ support for geographic environment (terrain relief)

and other GRASS functionalities (displaying, etc.) important for radio coverage computations

and display.

RaPlaT comprises a set of C modules (small programs written in C, specifically for the

GRASS environment) and Python scripts. They belong to the following groups:

1. A group of path loss model modules each calculating radio signal path loss according to

a specific radio signal propagation model. The obtained raster diagram, which tells the

path loss in [dB] in each point of the terrain surface, corresponds to a hypothetic

isotropic transmission antenna with 0 dB gain. This group currently comprises the

following modules:

 r.fspl - Free Space Path Loss model,

 r.hata - Okumura-Hata model,

 r.cost231 - COST 231 model,

 r.hataDEM - modified Hata - Okumura-Hata DEM model,

 r.waik - Walfish-Ikegami propagation model.

2. Module r.sector, which takes the isotropic path loss results calculated by a path loss

model module, and modifies it according to the selected antenna characteristics

(radiation pattern and gain), its position and orientation.

3. Module r.MaxPower, which calculates the received power in each raster point of the

terrain surface for one or more transmission antennas (e.g. for a cellular communication

network, like GSM or UMTS). In case of multiple transmission antennas, it calculates

the maximum received power from any transmitter in each receive point (raster point on

the terrain relief map), and can also build a data table (using e.g. MySQL or

PostgreSQL) comprising the relevant data of a chosen number of strongest received

signals in each receive point.

4. Script r.radcov, which helps the user by automatically calling the above modules. The

user only uses r.radcov and does not need to deal directly with individual modules listed

above.

5. Some other auxiliary modules (C-modules and Python scripts).

Most of the path loss model modules need only DEM (Digital Elevation Map, i.e. a raster

map describing the terrain profile) for their computations. Some modules (currently only

r.hataDEM) need also a so-called clutter map, which describes the signal fading at each raster

point due to the land use or type of vegetation (e.g. buildings, roads, forest, grass, rivers,

lakes, etc.). Unfortunately, geographical maps are generally not publicly and freely available.

When using RaPlaT in a professional environment (e.g. by a mobile network operator)

commercial DEM and clutter maps are normally available. For non-commercial use there are

other options. GRASS GIS web page itself provides some demo locations in US with DEM

and land-use maps, which can be used for demo purposes. Another option are publicly

2

available SRTM (Shuttle Radar Topography Mission) maps with global Earth coverage,

which were generated by NASA and are based on radar measurements performed during a

Space Shuttle mission in February 2000, [6,7].

The RaPlaT C modules are currently distributed as source code for Linux environment

only. They have been tested under Ubuntu 10.04 and 12.04 with GRASS versions 6.4.0 and

6.4.3RC2. Before use, the modules must be compiled using standard Linux tools and the

GRASS development environment. Standard precompiled GRASS Linux packages do not

include the development support, so GRASS must be installed from its source code

distribution. For someone familiar with Linux this is not a big problem, but to make RaPlaT

more accessible for users with less Linux experience, we created a virtual machine with

Ubuntu 12.04 and all the required components preinstalled. The virtual machine was prepared

with WMware Player, which is free for non-commercial use and can run on Linux and MS

Windows operating systems [8].

3

2. RaPlaT in details

The main overall structure of the RaPlaT tools is depicted in Fig 1. It consists of a number

of path loss model modules (implementing different radio propagation models), the r.sector

and r.MaxPower modules, and the r.radcov Python script which ties everything together.

Input and output data are depicted in Fig. 1 as differently colored parallelograms - textual

input and output files in orange, GRASS raster files in blue, and databases in yellow.

The user can call individual modules, however he/she would normally only call r.radcov,

which in turn calls other modules as necessary.

The user defines the parameters of one or more radio transmitters together with the chosen

path los models in a cell list file, which is a simple data table in the CSV (Comma-Separated

Values) format [9,10]. The list of all available antenna types is given in another CSV format

file, which references the actual antenna data files written in the standard MSI text format

[18]. The r.radcov script first executes the required path loss model modules for the given set

of transmitters (as specified in the cell list file), continues with calling r.sector for all the

transmission antennas and finishes with calling r.MaxPower for calculation of the overall

radio signal coverage.

RaPLaT path loss model modules and r.sector require a DEM map (DEM - Digital

Elevation Map), which describes the terrain relief. Some path loss models (r.hataDEM from

the above modules) additionally need a clutter map, which describes the signal loss due to the

land-use (buildings, forests, lakes, etc.)

Fig. 1 depicts an additional module, r.clutconvert, which is used for creation of clutter

maps (describing land-use-dependent signal loss) from general land-use GRASS raster maps.

Fig. 1: GRASS-RaPlaT block diagram

4

GRASS modules generally work in the so called current region, which defines the

geographic region extents and resolution (resampling of input maps, if necessary, is done

automatically). The r.radcov script lets the user set the computation region independently of

the current region (a temporal current region is established for the execution of the called

modules). RaPLaT reduces the execution times of the path loss models and r.sector modules

by additionally limiting computation to a circle with a given radius around each antenna. The

points outside this area are assigned the null value (no signal received). The r.radcov script

allows setting the radius independently for each antenna in the input cell list table (see below),

or globally with the radius_ovr command line parameter.

Radio coverage computation requires a GRASS location cartographic projection with

distances expressed in meters (e.g. the Gauss-Krueger coordinate system for Slovenia in our

case). It cannot work correctly in a location with so called Longitude/Latitude pseudo

projection, where locations and distances are expressed in angular degrees.

2.1. Run a complete radio coverage computation - r.radcov

A radio coverage computation could be accomplished by calling individual modules

(described in details later in this document): isotropic path loss model modules, r.sector and

r.MaxPower. Such use would be quite awkward and demanding, hence we created r.radcov, a

Python script, which ties everything together and calls individual modules as necessary. The

script gets the necessary information for radio coverage calculations from two tables written

in the CSV text format, and from the r.radcov command line parameters.

RaPlaT can be used to calculate coverage by radio signals from multiple transmitters, as is

the case with cellular networks (e.g. GSM radio network). The user describes the whole

configuration in a cell list file (“cell list” here is actually a list of installed antennas with

related data, as will be explained shortly). The file in the CSV format and can be created with

OpenOffice Spreadsheet (but also with MS Excel in the MS Windows environment - r.radcov

understands the peculiarities of the MS Excel CSV format, including its European version; the

RaPlaT tool itself is currently supported only on Linux).

The cell list file is specified with the csv_file command line parameter and contains a table,

an example of which is shown in Table 1 (three transmit antennas on a single location).

 Table 1: An example of the cell list table

 c
e
llN

a
m

e

 a
n
te

n
n
a
ID

 b
e
a
m

D
ir
e
c
ti
o

n

 e
le

c
tr

ic
a
lT

ilt
A

n
g
le

 m
e
c
h
a
n
ic

a
lA

n
te

n
n
a
T

ilt

 h
e
ig

h
tA

G
L

 a
n
te

n
n
a
T

y
p
e

 p
o
s
it
io

n
E

a
s
t

 p
o
s
it
io

n
N

o
rt

h

 p
o
w

e
r

 r
a
d
iu

s

 m
o

d
e
l

 P
1

 P
2

 P
1
1

IJS-A 1 30 0 0 20 COS-21 460697 99918 30 10 hata urban

IJS-B 2 135 0 0 20 COS-21 460697 99918 30 10 hata urban

IJS-C 3 270 0 0 20 COS-21 460697 99918 30 10 hata urban

The corresponding CSV file (as generated by OpenOffice Spreadsheet) would be:

"cellName","antennaID","beamDirection","electricalTiltAngle","mechanicalAntennaTilt","heightAG

L","antennaType","positionEast","positionNorth","power","radius","model","P1","P2","P3","P4","

P5","P6","P7","P8","P9","P10","P11"

"IJS-A",1,30,0,0,20,"COS-21",460697,99918,30,10,"hata","urban",,,,,,,,,,

"IJS-B",2,135,0,0,20,"COS-21",460697,99918,30,10,"hata","urban",,,,,,,,,,

5

"IJS-C",3,270,0,0,20,"COS-21",460697,99918,30,10,"hata","urban",,,,,,,,,,

The first line contains the header (in the example above, it is split into three lines to fit on

the page, but should actually be a single line). Each following line contains data for one

transmission antenna. The r.radcov script parses this table according to a special data

structure defined by a Python script variable, cellTableDescrib, which will not be explained

here (but is at least to a certain degree self-explanatory). The data columns, their types and

value constraints as defined by this structure are shown in Table 2.

 Table 2: Description of the cell list table columns

Name Type Allowed values Description

cellName name (see description) Cell name (characters 'A'..'Z', 'a'..'z', numbers, '_', '-')

antennaID id 1..999999 Antenna identification number

beamDirection i 0..360 Antenna horizontal direction
 (0: northwards; positive: clockwise)

electricalTiltAngle i 0..10 Antenna electrical vertical tilt (downwards)

mechanicalAntennaTilt i -90..+90 Antenna vertical direction (positive: downwards)

heightAGL f 0.0..300.0 Antenna height above the terrain

antennaType antype unconstrained Antenna type

positionEast i unconstrained Antenna position – E-W in [m]

positionNorth i unconstrained Antenna position – N-S in [m]

power f 0.0..140.0 Transmission power in [dBm] (1mW..10kW)

radius f 0.0..1000.0 Max. distance of the receiver in [km]

model s 'hata', 'cost231',

'hataDEM', 'waik',

'fspl', 'itm'

Radio signal path loss model

Parameters P1..P11 for the Hata model

P1 s 'urban', 'suburban',
'open'

Area type for the Hata model

P2 .. P11 - (not used)

Parameters P1..P11 for the Cost231 model

P1 s 'metropolitan',
'medium_cities'

Area type for the Cost231 model

P2 .. P11 - (not used)

Parameters P1..P11 for the hataDEM model

P1 f Unconstrained Parameter A0 for the hataDEM model

P2 f Unconstrained Parameter A1 for the hataDEM model

P3 f Unconstrained Parameter A2 for the hataDEM model

P4 f Unconstrained Parameter A3 for the hataDEM model

P5 .. P11 - (not used)

Parameters P1..P11 for the Walfisch-Ikegami (waik) model

P1 f 20..60 Parameter W0 (Free space loss correction)

P2 i 30..70 Parameter W1 (Reduced base antenna height correction)

P3 i 5..35 Parameter W2 (Range correction)

P4 i 3..15 Parameter W3 (Street width correction)

P5 i 3..25 Parameter W4 (Frequency correction)

P6 i 10..30 Parameter W5 (Building height correction)

P7 i 10..25 Parameter W6 (Street width [m])

P8 i 20..50 Parameter W7 (Distance between buildings [m])

P9 i 0..300 Parameter W8 (Building height [m])

P10 i 0..180 Parameter PHI_Street (Street orientation [deg])

P11 s 'metropolitan',
'medium_cities'

Area type

Parameters P1..P11 for the fspl (»free space«) model

P1 .. P11 - (not used)

6

Type means:

 name : character string (see description in the table). Used for the cell names.

 id : integer value, similar to type i (see below) but values must be unique (the same

value may not repeat). Used for antenna identification numbers in multi antenna

systems (cellular networks).

 antype : character string, allowed characters: letters, numbers, ' ', '-', '/' and '.' in any

order. Used to define for the antenna types.

 i : integer value with min and max bounds. If the value of both min and max

bounds is 0, the value is unbounded. The decimal point/comma is not allowed.

 f : floating point value with min and max bounds. If the value of both min and max

bounds is 0.0, the value is unbounded. The value can be written in the cell list file

without the decimal point/comma.

 s : a word (character string) form a set of allowed words. The columns to the right

can depend on this word (as defined by the cellTableDescrib variable; e.g. the Pn

columns depend on the word (model name) in the model column).

 - : arbitrary contents.

Empty lines are ignored. The character # as the first character of the cell name or the first

character in a line has a special meaning: it marks the cell as a comment only, effectively

disabling the cell. This is useful for simple and quick enabling/disabling of individual cells.

An example of radio coverage map (received signal strengths in [dBm]) for a system with

three antennas on a single location is shown in Fig. 2. The antennas used here were not a real

product but a mathematically created cosine type with half-power (-3 dB) beam width of

about 30° and gain 0 dBd.

Fig. 2: Coverage by three antennas on one location (r.hata, 900 MHz)

 Usage:

r.radcov [-rpc1] csv_file=string antmap_file=string dem_map=string

[clutter_map=string] [region=string] frequency=value cellnum=value out_map=string

db_driver=string database=string out_table=string [dbperf=value] [procnum=value]

[model_ovr=value] [radius_ovr=value] [rx_threshold=value] [--overwrite] [--verbose]

[--quiet]

7

 Flags:

 -r Reuse results from existing intermediate model/sector files

 -p (purge) Delete all unused sector radio coverage files

 -c (check) Test run without actually performing radio coverage

 Computation

 -1 Rx (dBm) values in output map replaced by 1.0 when above

 rx_threshold

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 csv_file Radio cell/sector table in CSV format

 default: sector_table.csv

 antmap_file Antennas map file

 default: $GISBASE/etc/radio_coverage/antenna_diagrams/antennamap.csv

 dem_map DEM file for radio coverage simulation

 default: dem_map@PERMANENT

 clutter_map Clutter map file (required for hataDEM model)

 default: clutter_map@PERMANENT

 region Computation region (dem,current or region,rast,n,e,s,w,res - see

 g.region)

 default: current

 frequency Radio frequency (MHz)

 default: 900

 cellnum Number of succesive path loss values to be written in the table

 default: 5

 out_map Simulated radio coverage - raster (output)

 default: out_raster

 db_driver Database driver

 options: none,dbf,mysql,pg

 default: none

 database Database name

 default: $GISDBASE/$LOCATION_NAME/$MAPSET/dbf

 out_table Simulated radio coverage - db table (output)

 default: out_db

 dbperf Database insert performance (rows/INSERT; 99: special fast mode via

 CSV)

 options: 1-99

 default: 20

 procnum Number of parallel processes (-1: automatic, 0: non-parallel)

 default: -1

 model_ovr Model override (with parameters)

 radius_ovr Radius override (km)

 rx_threshold Minimum received power (dBm) for radio signal coverage

 Example (does not create a data table):

r.radcov csv_file=cell_list_ijs.csv dem_map=dem_slovenia_25 out_map=ijs_abc

frequency=900 --o

2.1.1. Antenna types table

The list of available antenna types with corresponding parameters is given in a CSV format

file. The r.radcov script reads the antenna type for each cell from the cell list table (CSV file,

described above) and then uses the antenna types table to find the corresponding MSI file

describing the antenna’s characteristics. (The MSI format is described later in the r.sector

chapter.)

The antenna types table file is specified with the r.radcov’s antmap_file command line

parameter. The default path is $GISBASE/etc/radio_coverage/antenna_diagrams/

antennamap.csv, where the GISBASE environment variable is set by GRASS and contains

8

the path to its program directory. An example of the antenna types table is shown in Table 3

(only one antenna is listed).

 Table 3: An example of the antenna types table

antennaType Frequency frequencyLower frequencyUpper EDT MSIfilename technology

COS-21 1500 800 2200 0 COS_21 none

The CSV file must be in standard format (the modified European MS Excel semicolon-

separated-values format is not supported). The CSV file corresponding to Table 3 would be

(generated by OpenOffice Spreadsheet):

"antennaType","frequency","frequencyLower","frequencyUpper","EDT","MSIfilename","technology"

"COS-21",1500,800,2200,0,"COS_21","none"

The first line contains the header; each following line contains the following data:

 antennaType - antenna type name, allowed character are letters, numbers, ' ', '-', '/'

and '.' in any order,

 frequency - nominal frequency of the antenna in [MHz],

 frequencyLower - the lower frequency bound of the antenna in [MHz],

 frequencyUpper - the upper frequency bound of the antenna in [MHz],

 EDT - electrical tilt of the antenna in [°] (downwards), a non-negative integer

value,

 MSIfilename - the name of the MSI file without the .MSI or .msi extension that

describes the antenna characteristics for this particular combination of antenna type

& frequency & electrical tilt,

 technology - used to describe the type of the radio communication technology the

antennas is made for (e.g. GSM 900, GSM 1800, UMTS 2100); an arbitrary

comment, not used for processing.

Empty lines are ignored. The character # as the first character of the antenna type or the

first character in a line has a special meaning: it marks the line as a comment only.

An antenna type can support multiple frequency bands (nominal frequencies) and electrical

tilts, with each combination having different characteristics (described by the corresponding

MSI files). Hence, the same antenna type can appear in the table multiple times. The r.radcov

searches the table for rows with the required antenna type, electrical tilt and with the

frequency range (defined by the lower and upper frequency bound) that includes the

simulation radio frequency set by the frequency command line parameter of r.radcov. If

multiple table rows fulfill these requirements, r.radcov takes the one with the antenna

nominal frequency closest to the simulation radio frequency.

The MSI files must be located in the same directory with the antenna types table file or in

any of its optional subdirectories. Subdirectories can be used for logically grouping MSI files

and have no other meaning. The r.radcov automatically searches the whole directory subtree

for the MSI files. The MSI filenames must be unique even if located in different

subdirectories.

2.1.2. Computation region management

In general, GRASS modules (including the RaPlaT modules) perform computations in the

so called current region, which can be set with the GRASS command g.region. A region is a

rectangle defined by its geographic borders and resolution. The r.radcov script has a

9

command line parameter called region that allows user to specify a computational region for

the radio coverage computation, and temporarily sets it as the current region during the

computation. If signals can be received in this region that emanate from outside transmitters,

the computational region is automatically enlarged to include those transmitters.

The region parameter allows setting the computation region in a few different ways:

 region=current - the existing current region is used as the computation region (this

is the default setting),

 region=dem - the region of the DEM map (its extents and resolution) is used as the

computation region,

 region=region:saved_region_name (or region=region=saved_region_name) - a

prevoiously saved region is used as the computation region (the GRASS g.region

command can be used to save a current region),

 region=rast:raster_map (or region=rast=raster_map) - a GRASS raster map

region is used as the computation region (region=dem can be regarded as a special

shorthand form of region=rast:…),

 region=n:_,e:_,s:_,w:_,res:_ (or ’region=n=_ e=_ s=_ w=_ res=_’), with _

standing for numerical values, sets the computation region by explicitly defining its

extents and resolution; instead of all five values, any subset of them can be set

(with the rest of them retaining the existing values).

The last three ways of computation region definition (i.e. with exception of current and

dem) can be combined - e.g. the computation region can be defined with a raster map and then

the resolution modified. The mechanism is the same as in the case of the GRASS g.region

command because this command is actually used for region setting (after replacing ‘:’ with

‘=’ and ‘,’ with ‘ ’), so see g.region help for more detailed information.

After the computation region is defined with the above procedure, and before it is actually

set and used, r.radcov performs some refinements:

 unifies north-south and east-west resolution by taking the latter (east-west) for both

directions,

 rounds the resolution to the integer value (in [m]),

 rounds the region extents so that the values of pixel center coordinates are multiples

of the resolution value, and that this new region does exceed the extents of the

original one.

2.1.3. Parallel execution support

GRASS modules are generally single-thread processes that execute on a single processor

core. This is also true for RaPLaT modules. However, under certain limitations it is possible

to execute multiple modules in parallel on a multi-core processor [11,12]. To speed-up

coverage computation for multiple-antenna communication networks, r.radcov is capable of

calling and executing modules in parallel. The number of concurrently executing modules

(path loss model modules in the first step, and r.sector in the second step) is defined by the

value of the procnum command line parameter. By default (or setting procnum=-1, automatic

mode) the number of concurrently executing modules equals the number of existing processor

cores in the system. A positive value explicitly defines the number of modules to be executed

in parallel. Even if it is set to 1, the underlying parallel scheduling and stdout/stderr buffering

mechanisms are still active. The parallel mode of execution (and related supporting

mechanisms) can be switched off completely by setting procum=0.

10

2.1.4. Reuse and Purge

During the execution of r.radcov, intermediate GRASS maps are created by the path loss

model modules and by r.sector. They are not deleted automatically and can optionally be

reused for another similar coverage computation (these can be considered as a kind of caching

of the intermediate results for future computations). By avoiding unnecessary and possibly

lengthy re-computations of model path loss and r.sector intermediate results, the overall time

required for a radio coverage computation can be reduced considerably.

The names of intermediate maps are generated automatically and contain important

information that r.radcov needs to reuse them automatically in another radio coverage

computation. The names of the maps generated by the path loss model modules are built

according to the following pattern:

_model_P1_..._Pmax_positionEast_positionNorth_heightAGL_radius_frequency

e.g.:

_hata_urban_460697_99918_20_10_900

The names of the maps generated by r.sector are based on the above pattern (model in the

pattern below) extended with additional r.sector related information:

cellName-antennaID(model)_beamDirection_electricalTiltAngle_mechanicalAntennaTilt_antennaType

e.g.:

IJS-A-1_hata_urban_460697_99918_20_10_900_30_0_0_COS-21

By default, r.radcov ignores any existing intermediate maps and calculates everything

anew. The user can request reusing existing maps by specifying flag -r (“reuse”), however

this must be done with great caution. The intermediate map names do not contain information

about the DEM and clutter maps and the computation region that were used during their

creation. Hence, the user must keep in mind that the cached maps may only be used if the

maps and the computation region did not change.

The number of intermediate maps can become quite large, making a mess out of the user’s

mapset. When not needed any more, the user can request r.radcov to delete them by

specifying flag -p (purge, all maps with the names following the above patterns will be

deleted).

2.1.5. Database support

The r.radcov script supports writing the output data table, which is performed by

r.MaxPower. The related command line parameters cellnum, db_driver, database, out_table

and dbperf are equivalent to those of r.MaxPower and are described there. By default (if

db_driver is not defined or is set to none) no data table is created. The r.radcov script does not

check for the actually installed and GRASS-supported database management systems.

Instead, it has a fixed list of them: none, dbf (GRASS’ own built-in database), mysql

(MySQL) and pg (PostgreSQL). Of course, MySQL and PostgresSQL can only be used if

they are installed, and the GRASS’ support for them is also installed.

2.1.6. Other parameters

There are some more r.radcov command line parameters and flags that will be described

here briefly.

11

The radius_ovr and model_ovr parameters override per-cell settings in the previously

described cell list table. While settings there are individual for each transmit antenna (cell),

this two parameters set the radius and model with parameters globally, i.e. for all antennas.

The model_ovr parameter expects a comma-delimited list (without spaces) consisting of the

model name and its parameters as described in Table 1 (e.g. model_ovr=hata,urban).

The parameter rx_treshold is equivalent to that of the r.MaxPower module and is used

directly by that module. When specified, the received signal is ignored in those raster points

where its received strength (in [dBm]) falls below the threshold value.

The flag -1 (number one) modifies the output coverage map. Normally, the map contains

the received strengths of the strongest received signal in each raster point, in [dBm]. When

this flag is specified (usually together with rx_treshold) the map contains only binary

information about the signal coverage, i.e.1.0 or 0.0 if a point is covered or not covered,

respectively, by a signal (above the threshold, if one is specified).

The flag -c (“check”) causes r.radcov to not call and execute modules. Instead, it only

prints all the commands (module calls) that would be executed, and the contents of the related

input cell list file generated by r.radcov for r.MaxPower. (The file itself is a temporary file

and is automatically deleted when r.radcov completes its execution.)

2.2. Radio propagation models (isotropic antenna)

RaPLaT containes a number of modules that calculate radio signal path loss according to

various path loss models. The result is a raster GRASS map with each point having the value

of the signal fading in [dBm] in that point relative to the transmitter (no particular antenna is

assumed yet, the situation corresponds to the isotropic radiation diagram with 0 dB gain).

2.2.1. r.fspl

The r.fspl module calculates the radio signal loss according to the free space model (FSPL

– Free Space Path Loss), according to the equation (1), [13].

    MHzfkmRFSPL log20log204.32  (1)

where:

FSPL : loss in dB

R : distance between the transmitter and the receiver

f : transmission frequency in MHz

The model takes into account LOS (Line of Sight, i.e. the visibility between the transmitter

and the receiver), but in general this is a very simplified theoretical model that works fine in

empty space but does not give accurate results in real terrestrial propagation environments

where the signal loss deviates from the free space “squared distance” law (it generally

increases with distance with a higher exponent than 2).

An example of a path loss map obtained with r.fspl is shown in Fig. 3. (The transmitter is

placed at the IJS location in Ljubljana, computation is limited to 10 km around the

transmitter, the actual command used is listed in the Example below. The same holds for the

other models described in the next chapters.)

12

Fig. 3: Path loss at 2 GHz computed with r.fspl

 Usage:

r.fspl [-q] inputDEM=name output=name coordinate=x,y [ant_height=value]

frequency=value [radius=value] [--overwrite] [--verbose] [--quiet]

 Flags:

 -q Quiet

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 inputDEM Name of input raster map

 output Name for output raster map

 coordinate Base station coordinates

 ant_height Height of the antenna (m)

 default: 10

 frequency Frequency (MHz)

 radius Radius of calculation (km)

 default: 10

 Example:

r.fspl inputDEM=dem_slovenia_25@PERMANENT output=fspl_ijs_25

coordinate=460697,99918 ant_height=20 frequency=2000 radius=10 --o

2.2.2. r.hata

The r.hata module implements the Okumura-Hata radio propagation empirical model [14].

It is one of the most widely used models for radio coverage estimation and is based on the

empirically estimated rules (measured propagation data). It is valid for:

 carrier frequency: 150 - 1500 MHz,

 distance between transmitter and receiver: 1 - 20 km,

 effective BS (transmitter) antenna height: 30 - 200 m,

 effective MS (receiver) antenna height: 1 - 10 m.

13

It contains three sub-models, for urban, suburban and open geographic areas, as defined by

the following equations:

        kmRmhCmhMHzfL HU log)log55.69.44(log82.13log16.2655.69  (2)

 

4.5
28

log2

2











MHzf
LL USU

 (3)

      94.40log33.18log78.4
2

 MHzfMHzfLL UO (4)

      MHzfmhMHzfC MH log56.1)7.0log1.1(8.0  (5)

where:

LU, LSU, LO : loss in dB for urban, suburban and open environments, respectively

h : difference between the transmitter and receiver antenna heights

hM : receiver antenna height above the ground

CH : correction factor related to the receiver antenna height

R : distance between the transmitter and the receiver

f : transmission frequency in MHz

The rate of signal loss with the distance depends on the antenna height. For a very high

antenna, it approximates the loss in empty space (the “squared distance” law, 20 dB/decade).

The model ignores terrain configuration (relief, LOS), which is its main drawback, and the

loss due to land use (clutter map). The model can give useful results if there are no major

obstacles between the receiver and the transmitter.

An example of a path loss map obtained with r.hata is shown in Fig. 4.

Fig. 4: Path loss at 900 MHz computed with r.hata

 Usage:

r.hata [-q] inputDEM=name output=name coordinate=x,y [ant_height=value]

[radius=value] [area_type=string] frequency=value [--overwrite] [--verbose] [--

quiet]

14

 Flags:

 -q Quiet

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 inputDEM Name of input raster map

 output Name for output raster map

 coordinate Base station coordinates

 ant_height Height of the antenna (m)

 default: 10

 radius Radius of calculation (km)

 default: 10

 area_type Type of area

 options: urban,suburban,open

 default: urban

 frequency Frequency (MHz)

 Example:

r.hata inputDEM=dem_slovenia_25@PERMANENT output=hata_ijs_25

coordinate=460697,99918 ant_height=20 frequency=900 radius=10 --o

2.2.3. r.cost231

The r.cost231 module implements the COST231 empirical model, which extends the

Okumura-Hata model to the 1500-2000 MHz band [15]. It is valid for:

 carrier frequency: 1500 - 2000 MHz,

 distance between transmitter and receiver: 1 - 20 km,

 effective BS (transmitter) antenna height: 30 - 200 m,

 effective MS (receiver) antenna height: 1 - 10 m.

The model is based on the Hata model for the suburban areas:

     

    Ckmdmh

hamhMHzfdBL r





log)log55.69.44(

)(log82.13log9.3333.46
 (6)

where:

C : =0 for medium-sized cities and suburban areas, =3 for large cities’ centers

h : difference between the transmitter and receiver antenna heights

hr : receiver antenna height above the ground

d : horizontal distance between the transmitter and the receiver

f : transmission frequency in MHz

The height correction factor a(hr) is given by:

       8.0log56.1)7.0log1.1()( MHzfmhMHzfha rr (7)

The model is adjusted for higher transmission frequencies. It is mostly suitable for

medium-sized and large cities and assumes the transmit (base station) antenna to be

positioned above the surrounding buildings. The model only partially takes into account the

terrain configuration (the effective height h in the equation (6)) and ignores the signal loss

behind large obstacles.

An example of a path loss map obtained with r.cost231 is shown in Fig. 5.

15

Fig. 5: Path loss at 2 GHz computed with r.cost231

 Usage:

r.cost231 [-q] inputDEM=name output=name coordinate=x,y [ant_height=value]

[radius=value] [area_type=string] frequency=value [--overwrite] [--verbose] [--

quiet]

 Flags:

 -q Quiet

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 inputDEM Name of input raster map

 output Name for output raster map

 coordinate Base station coordinates

 ant_height Height of the antenna (m)

 default: 10

 radius Radius of calculation (km)

 default: 10

 area_type Type of area

 options: medium_cities,metropolitan

 default: medium_cities

 frequency Frequency (MHz

 Example:

r.cost231 inputDEM=dem_slovenia_25@PERMANENT output=cost231_ijs_25

coordinate=460697,99918 ant_height=20 frequency=2000 radius=10 --o

2.2.4. r.hataDEM

The r.hataDEM module implements a modified/extended Okumura-Hata model. The radio

signal loss depends on the transmission radio frequency, the distance between the transmitter

and the receiver, the height of the transmit and receive antennas, and also on the terrain

profile, land use and earth surface curvature. The model is valid for:

 carrier frequency: 10 MHz - 2 GHz,

16

 distance between transmitter and receiver: 200 m - 100 km,

 effective BS (transmitter) antenna height: 20 - 200 m,

 effective MS (receiver) antenna height: 1 - 5 m.

 The basic concept of the model is shown in Fig. 6.

model hataDEM

Parameters:

Hm, Hb, F,

A0-A3

Path loss

Constants,

Land use

related loss

Terrain profile,

Wedge diffraction,

Correction for Earth

surface curvature

Fig. 6: Basic concept of the hataDEM model

The general path loss equation of the model is:

        22
JDFRKDFRmkdBHOAdBL   (8)

where:

HOA : Okumura-Hata equation for “open” areas

mk : land-use related signal loss at the receiver location in [dB]

KDFR : contribution of wedge diffraction in [dB]

α : parameter related to KDFR

JDFR : diffraction loss due to the Earth surface curvature in [dB]

The Okumura-Hata path loss as defined by this model is:

         

        22
log78.4log49.4475.11log2.3

loglog3log2log10

MHzfMHzfmHm

mHeffkmdAmHeffAkmdAAdBHOA




 (9)

where:

A0-A3 : model tuning parameter

Heff : difference between the transmitter and receiver antenna heights

Hm : receiver antenna height above the ground

d : horizontal distance between the transmitter and the receiver

f : transmission frequency in MHz

We implemented the single-wedge loss as:

17

  
2

1
log20





dBLke (10)

21

21)(2

dd

dd
h







 (11)

where:

h : height of the wedge above the direct line between transmitter and receiver

d1, d2 : the distances of the mobile and base stations from the wedge

Since r.hataDEM was originally intended for calculation on smaller geographic areas

(cellular networks with transmitter-receiver distances of up to 35 km), it ignores the effect of

the Earth surface curvature. Additionally, we fixed the value of parameter α to α=1.

An example of a path loss map obtained with r.hataDEM is shown in Fig. 7.

Fig. 7: Path loss at 2 GHz computed with r.hataDEM

 Usage:

r.hataDEM [-q] inputDEM=name clutter=name output=name A0=value A1=value A2=value

A3=value coordinate=x,y [ant_height=value] [radius=value] frequency=value [--

overwrite] [--verbose] [--quiet]

 Flgas:

 -q Quiet

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 inputDEM Name of input raster map

 clutter Clutter raster map with path loss coefficients

 output Name for output raster map

 A0 Parameter A0

 A1 Parameter A1

 A2 Parameter A2

18

 A3 Parameter A3

 coordinate Base station coordinates

 ant_height Height of the antenna (m)

 default: 10

 radius Radius of calculation (km)

 default: 10

 frequency Frequency (MHz)

 Example:

r.hataDEM inputDEM=dem_slovenia_25@PERMANENT

clutter=clut_slovenia_25_loss@PERMANENT output=hataDEM_ijs_25

coordinate=460697,99918 ant_height=20 frequency=2000 radius=10 A0=42 A1=42 A2=-12

A3=0.1 --o

2.2.5. r.waik

The r.waik module implements the Walfisch-Ikegami semi-deterministic model for path

loss computation in microcells. It was developed in the framework of the COST231 project

[15] and is based on the Walfisch-Bertoni [16] and Ikegami [17] models. The model

computes path loss in two different ways, based on LOS (Line of Sight). It is valid for (the

receiver and transmitter antenna heights constraints are different for LOS and NLOS cases

and are described later):

 carrier frequency: 800 - 2000 MHz,

 distance between transmitter and receiver: 20 m - 5 km,

 receiver and transmitter height constraints are different for LOS and NLOS cases - see

below.

In the LOS case (transmitter-receiver visibility), the loss within the street canyon is defined

as:

         02,0,log20log2664.42  kmdMHzfkmddBL (12)

The first constant corresponds to the empty space loss at the distance of 20 m. The

transmitter antenna height must be at least 30 m, and there should be no obstacles in the first

Fresnel zone. The signal loss is exponential with the distance, the exponent value is 2,6.

In the NLOS case (no direct visibility between the transmitter and the receiver), the model

uses the following parameters:

 transmitter height: ht (4 m to 50 m),

 receiver height: hr (1 m to 3 m),

 buildings height: hroof (3 m  number of floors plus 3 m for gabled roofs and 0 m for

flat roofs),

 the transmitter antenna height above the roof height: ht=ht-W8,

 the receiver antenna height below the roof height: hr=W8-hr,

 spacing between buildings: b (if no data is available, the recommended value is

between 20 m and 50 m),

 street width: w (if no data is available, the recommended value is b/2),

 incident angle of radio rays:  (if no data is available, the recommended value is 90°).

The path loss is:

19

  









0,

0,
dB

0

0

msdrts

msdrtsmsdrts

LLL

LLLLL
L (13)

It consists of three components:

 the free space loss L0,

 the rooftop-to-street diffraction loss Lrts,

 the multiple screen diffraction loss Lmsd.

The free space loss is:

  fdWL log20)log(2000  (14)

The rooftop-to-street diffraction loss is:

 11)log(5)log(4)6log(32.8 LhWfWWWL rrts  (15)

where the orientation-related loss is:

















9055),55(11.05.4

5535),35(075.05.2

350,354.010

11







L (16)

The multiple screen diffraction loss is:

)7log(9)log()log(21 WfkdkkLL fdamsd  (17)

where the shadowing gain is:










rooft

rooftt

hh

hhh
L

0

)1log(18
21 (18)

The ka and kd parameters depend on the path length d and the transmitter height above the

roofs:

















mdhhhhdW

mdhhhhW

hhW

k

rooftrooft

rooftrooft

rooft

a

5.0),(4.01

5.0),(8.01

,1

 (19)

















rooft

roof

rooft

rooft

d hh
h

hh
W

hhW

k
,

)(15
2

,2

 (20)

Parameter ka represents the increase of path loss when the transmitter is located below the

roof levels, while parameters kd and kf represent the path loss due to distance and frequency.

The latter is defined by

)1
925

(4 1 
f

kk ff (21)

The value of kf1 is 1,5 for city centers, and 0,7 elsewhere.

Parameters W0-W8 should be set according to the recommended values given in Table 4.

20

 Table 4: Parameters and their values for the Walfisch-Ikegami model

Parameter Description Value range Default value

W0 Free space loss correction 20 - 60 32.5

W1 Reduced base antenna height correction 30 - 70 54

W2 Range correction 5 - 35 10

W3 Street width correction 3 - 15 10

W4 Frequency correction 3 - 25 10

W5 Building height correction 10 - 30 20

W6 Width of roads [m] (rec. W7 / 2) 15

W7 Building separation [m] (rec. 20 - 50) 30

W8 Height of buildings [m] - 12

The COST231-Walfish-Ikegami provides good path loss estimates if the transmission

antenna is located above the roof level. If it is located near the ground level, the estimates are

bad because the model does not take into account the waveguide effect of the large city street

canyons.

An example of a path loss map obtained with r.waik is shown in Fig. 8.

Fig. 8: Path loss at 2 GHz computed with r.waik

 Usage:

r.waik [-q] [--overwrite] [--verbose] [--quite] inputDEM=name output=name

coordinate=x,y [ant_height=value] frequency= value [radius= value]

[free_space_loss_correction= value] [bs_correction= value] [range_correction=value]

[street_width_correction=value] [frequency_correction=value]

[building_height_correction=value] [street_width=value]

[distance_between_buildings=value] [building_height=value] [PHI_Street=value]

[area_type=string]

 Flags:

21

 -q Quiet

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 inputDEM Name of input raster map

 output Name for output raster map

 coordinate Base station coordinates

 ant_height Height of the antennas (m)

 default: 10

 frequency Frequency (MHz)

 radius Radius of calculation (km)

 default: 10

 free_space_loss_correction Free space loss correction

 default: 32.5

 bs_correction Reduced base antenna height correction

 Default: 54

 range_correction Range correction

 default: 10

 street_width_correction Street width correction

 default: 10

 frequency_correction Frequency correction

 default: 10

 building_height_correction Building height correction

 default: 20

 street_width Widths of roads (m)

 default: 15

 distance_between_buildings Building separation

 default: 30

 building_height Heights of buildings (m)

 default: 12

 PHI_Street Street orientation angle (deg)

 default: 90

 area_type Type of area

 options: metropolitan,medium_cities

 default: medium_cities

 Example:

r.waik inputDEM=dem_slovenia_25@PERMANENT output=waik_ijs_25

coordinate=460697,99918 ant_height=20 frequency=2000 radius=10 --o

2.3. Add transmission antenna - r.sector

The path loss model modules described so far compute path loss for the case of isotropic

transmission (a hypothetical isotropic antenna with 0 dB gain), without considering actual

transmission antenna characteristics, position and orientation. The next step in to apply the

antenna radiation pattern, which is the task of the r.sector module. The antenna radiation

pattern and other data must be given in the MSI Planet Antenna File Format [18]. This is a

text format with the following structure:

 NAME <name>

 MAKE <make>

 FREQUENCY <frequency>

 H_WIDTH <h_width>

 V_WIDTH <v_width>

 FRONT_TO_BACK <front_to_back>

 GAIN <gain>

 TILT <tilt>

 POLARIZATION <polarisation>

 COMMENT <comment>

22

 HORIZONTAL 360

 0 <0H>

 .

 .

 359 <359H>

 VERTICAL 360

 0 <0V>

 .

 .

 359 <359V>

The variables are:

 NAME Name of the antenna

 MAKE Name of the manufacturer

 FREQUENCY Frequency in MHz

 H_WIDTH Opening angle in the horizontal plane between the -3 dB points

 V_WIDTH Opening angle in the vertical plane between the -3 dB points

 FRONT_TO_BACK Front to back ratio in dB

 GAIN Antenna gain in dBd when in dBi this must be specified

 TILT Electrical tilt of the main beam in degrees

 POLARIZATION Horizontal, vertical, +45 or -45

 COMMENT Comment

 0H..359H Horizontal gain data points per horizontal angle relative to

maximum gain being zero. Any value below zero is assumed to be

negative. Minus sign is not used with these values

 0V..359V Horizontal gain data points per horizontal angle relative to

maximum gain being zero. Any value below zero is assumed to be

negative. Minus sign is not used with these values

In practice, MSI files usually use only a subset of the parameters listed above, e.g. NAME,

FREQUENCY, GAIN in dBd (default) or dBi, TILT, COMMENT, and of course the

HORIZONAL 360 and VERTICAL 360 sections. Besides, the TILT parameters does not

necessarily specify the actual electrical tilt value to which the radiation pattern corresponds,

but is often assigned no value or the keyword ‘ELECTRICAL’ (for antennas not having or

having electrical tilt option, respectively).

An actual MSI file could look like this (this particular file does not describe a real physical

antenna but a mathematically generated one with the cosN radiation pattern):

 NAME COSN21

 FREQUENCY 2140

 GAIN 19 dBd

 TILT ELECTRICAL

 COMMENT simple cos^4 antenna diagram

 HORIZONTAL 360

 0 0.0000

 1 0.0139

 2 0.0556

 .

 .

 357 0.1251

 358 0.0556

 359 0.0139

 VERTICAL 360

 0 0.0000

 1 0.0139

 2 0.0556

 .

 .

 357 0.1251

 358 0.0556

 359 0.0139

23

The r.sector module only reads and uses the GAIN parameter value expressed in dBd or

dBi (i.e. relative to a dipole or isotropic antenna, respectively; dBd is default, x [dBd] = (x +

2,15) [dBi]), and the pattern definition specified in the HORIZONTAL and VERTICAL

sections. It calculates the 3-D radiation pattern based on the antenna’s given horizontal and

vertical patterns, its gain, and its physical position and direction. It then generates an output

path loss raster map by applying this pattern to the isotropic path loss raster map previously

computed by a path loss model module.

Fig. 9 shows an example of a path loss map calculated by r.sector, using the path loss map

previously computed by r.hata (shown in Fig. 4) and the just mentioned artificial cosN-type

antenna. The antenna is directed 30° eastwards (north is the reference, positive values

correspond to the clockwise rotation).

Fig. 9: Path loss computed by r.sector, based on r.hata path loss (Fig. 4)

 Usage:

r.sector [-q] pathloss_raster=name inputDEM=name output=name ant_data_file=string

beam_direction=value mech_tilt=value height_agl=value east=value north=value

[radius=value] [--overwrite] [--verbose] [--quiet]

 Flags:

 -q Quiet

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

pathloss_raster Omni antenna path loss raster

inputDEM Elevation model – required for transmitter height determination

output Name for output raster map

ant_data_file Antenna data file

beam_direction Beam direction (deg)

mech_tilt Mechanical antenna tilt (deg)

height_agl Above ground level height (m)

east Easting coordinate

north Northing coordinate

radius Radius of calculation (km)

 default: 10

24

 Example:

r.sector pathloss_raster=hata_ijs_25 inputDEM=dem_slovenia_25

output=sector_hata_ijs_25 ant_data_file=/usr/local/src/grass-6.4.3RC2/dist.i686-pc-

linux-gnu/etc/radio_coverage/antenna_diagrams/_demo_/COS_21.MSI beam_direction=30

mech_tilt=0 height_agl=20 radius=10 east=460697 north=99918 --o

2.4. Calculate complete coverage - r.MaxPower

The r.MaxPower module calculates the received radio signal strength(s) from one or more

transmitters (transmit antennas). It does this by taking the path loss raster map(s) produced by

r.sector and applying the corresponding transmission power(s). It obtains the list of all input

path loss raster maps with corresponding transmission powers (for all the transmission

antennas, here also called cells) in a CSV format text file. The module produces a raster map

file containing the received strength of the strongest received signal for each raster point. If a

rx_treshold parameter value is specified, the signals with lower received strengths are

ignored. If flag -1 (number one) is additionally specified, only a simple coverage area map is

generated (value 1 for the received signal above the threshold, 0 otherwise) instead of the

received signal strength map.

 In addition to the raster map, r.MaxPower can generate a data table (using standard

databases supported by GRASS, like MySQL or PostgreSQL and also the GRASS’ own built-

in DBF) containing data about a certain number (user selectable, parameter cell_num) of the

strongest received signals in each raster point, suitable for further processing by other non-

GRASS tools. The data table generation is activated by specifying the driver parameter with a

value other than none (dbf for GRASS’ DBF, mysql for MySQL, pg for PostgreSQL).

 Usage:

r.MaxPower [-q1] cell_input=string [rx_threshold=value] output=name table=string

driver=string database=string cell_num=value [dbperf=value] [--overwrite] [--

verbose] [--quiet]

 Flags:

 -q Quiet

 -1 Rx (dBm) values in output map replaced by 1.0 when above

 rx_threshold

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

cell_input Cells data table

rx_threshold Minimum received power [dBm] for radio signal coverage

 default: -999

output Name for output raster map

table Table name

driver Driver name

 options: mysql,ogr,pg,dbf,sqlite,none

 default: none

database Database name

 default: $GISDBASE/$LOCATION_NAME/$MAPSET/dbf/

cell_num Number of successive path loss values to be written in the table

dbperf Database insert performance(rows/INSERT; 99: special fast mode

 via CSV)

 options: 1-99

 default: 20

25

 Examples (the first one does not create a data table, but dummy values for the table

and cell_num parameters must be specified anyway; the second one creates a DBF

data table named ijs_abc in the default GRASS dbf folder within the user’s mapset):

r.MaxPower cell_input=cell_list output=ijs_abc table=ijs_abc cell_num=5 --o

r.MaxPower cell_input=cell_list output=ijs_abc table=ijs_abc driver=dbf dbperf=1

cell_num=5 --o

2.4.1. The input cell list file

The cell list file (“Cells data table”) is specified by the cell_input parameter. It is a text file

in a CSV-like (actually “Semicolon-Separated Values”) format, where each line contains data

for a transmission antenna (here also called cell):

<cell_name>;<antenna_index>;<sector-raster-map_name>;<transmit-power>;<model-with-parameters>

There can be a single cell, or a number of them (e.g. in the case of a cellular radio

network). No header line is used, and no empty lines are allowed (including at the end of file).

The only important columns are <sector-raster-map_name> and <transmit-power>. Other

columns are only informal and could be empty, they are written to the data table along with

the calculated received powers. Their purpose is:

 <cell_name> : an (arbitrary) cell name that helps the user identify the cell

identity/location,

 <antenna_index> : antenna index for uniquely identifying each antenna (cell) in the

system; there can be more than one antenna in a cell (e.g. two antennas might be

connected in parallel to a single transmission signal via a power splitter to obtain a

required transmission pattern),

 <model-with-parameters> : contains information about the radio propagation model

used, and its parameters (independently for each antenna).

Following is an example of a cell list file (no empty lines at the beginning/end):

IJS-A;1;IJS-A-1_hata_urban_460697_99918_20_10_900_30_0_0_COS-21;30;hata;urban

IJS-B;2;IJS-B-2_hata_urban_460697_99918_20_10_900_135_0_0_COS-21;30;hata;urban

IJS-C;3;IJS-C-3_hata_urban_460697_99918_20_10_900_270_0_0_COS-21;30;hata;urban

2.4.2. The output data table

The optionally generated data table contains one row of data for each raster point of the

output coverage raster map. Raster points with no coverage (no received radio signal from

any transmitter) are not included in the map, nevertheless the table can be quite large and

needs considerable time for creation. The row format of the table is shown in Table 5.

 Table 5: Output data table format

Column

name
x y Resolution cell1 id1 Pr1 model1 … cellN idN PrN modelN Ec/N0

format
int
6

int
6

int
4

varchar
32

int
6

real
6

varchar
128

…
varchar

32
int
6

real
6

varchar
128

real
6

Description of columns:

26

1. x: x coordinate of geographic location (a map raster point), in [m] (integer - 4 bytes,

default print length is 6).

2. y: y coordinate of geographic location (a map raster point), in [m] (integer - 4 bytes,

default print length is 6).

3. resolution: resolution of the computed coverage map, in [m] (integer - 4 bytes, default

print length is 4).

4. celli: cell name (varchar, max 32 chars (bytes)).

5. idi: antenna index (integer - 4 bytes, default print length is 6).

6. Pri: calculated received signal power in [dBm], received in this geographic location

(output map raster point) from celli (real - 4 bytes floating point, default print length is

6). Valid values are > -999.0. The value of -999.0 has a special meaning - no signal

received (replacing -∞).

7. modeli: Path loss model name with parameters, used for this celli (varchar, max 128

chars (bytes)).

8. Ec/N0: the received power od the strongest signal divided by the sum of the received

powers of all signals, in [dB] (real - 4 bytes floating point, default print length is 6).

Valid values are > -999.0. The value of -999.0 has a special meaning - no signal

received. (This data is useful for single frequency band systems such as those using

CDMA, e.g. UMTS.)

Columns 4, 5, 6 and 7 repeat N-times, as defined by the command line parameter cell_num

but not exceeding the number of all cells specified in the input cell list file.

The command line parameters related to the output data table are:

 driver : defines the database management system used (called also simply the

database). The default value none means that no database is used and no data table is

generated (other parameters are ignored, but dummy values for the table and cell_num

parameters must be specified anyway). Contrary to r.radcov (which does not check for

actually installed and supported databases but have a fixed list of them), r.MaxPower

uses GRASS’s information about available databases (and lists them when called with

flag -help). Value dbf selects GRASS’ own built-in database, which GRASS uses for

its own purposes. It is a relatively simple database with limited functionality and

efficiency and is not really recommended for use with RaPlaT except for simple cases.

Before writing to the disk it creates the whole data table in the main memory (which

quickly runs out for large tables) and does not support fast writing modes (hence it can

be very slow for large tables, see also the dbperf parameter). GRASS includes support

for a number of external databases. When building GRASS from source, the GRASS

support must be activated for each database to be used, and that database must already

be installed. The two recommendable high-performance databases that are specifically

supported and tested with r.MaxPower are MySQL (parameter value msyql) and

PostgreSQL (parameter value pg).

 database : defines the name of existing database, where the output data table will be

created. The default value represents the location of the GRASS’ built-in DBF

database (which is always available, but is not recommendable for larger radio

coverage projects; the three environment variables represent GRASS working

environment - the basic GRASS database folder, the user-selected GRASS location

and the user’s GRASS mapset. The output data table is stored as a dbf-format file

named $GISDBASE/$LOCATION_NAME/$MAPSET/dbf/<table_name>.dbf. In case

27

of MySQL or PostgreSQL, the (empty) database must first be created with their own

tools, with an arbitrary name (e.g., a reasonable database name could be grass).

 table : defines the output table name for a particular radio coverage computation.

 cell_num : defines the number of the strongest received signals in each point of the

output coverage raster that are stored in the data table (see Table 5).

 dbperf : stands for “database performance” and selects faster modes of writing tables.

For dbperf values between 2 and 98, the so called multiple-row inserts are used, where

instead of a single data row, a group of data rows (2 to 98) is inserted with each SQL

INSERT statement. For MySQL and PostgreSQL, a reasonable value is 20, which is

the default. In our case it speeds up the data table creation around 2,5x for PostgreSQL

and 3,8x for MySQL (relative to the basic single-row insert mode). For the GRASS’

built-in DBF database, dbperf value should be set to 1, (the basic non-accelerated

mode, because GRASS DBF does not support multiple-row inserts). The value of 99

selects a special very fast mode which is supported only for MySQL and PostgreSQL.

It doesn’t write data rows directly into the output data table but instead creates an

intermediate CSV text file. This is at the end converted to the data table in a single

step, using non-standard database-specific commands (for MySQL: LOAD DATA

LOCAL INFILE ‘file.csv' INTO TABLE <table> FIELDS TERMINATED BY ','

ENCLOSED BY "'"; for PostgreSQL: COPY <table> FROM ‘file.csv' CSV QUOTE

'''';). In our case, by using this mode, speeds-up of data table creation of around 20x

were achieved.

2.5. Prepare clutter map - r.clutconvert

In addition to DEM, some radio signal propagation models (hataDEM in our case) need

also information about the signal loss at the receiver location related to the land use (e.g.

urban, agricultural, forest areas, etc.) This information is given in the form of a raster map

called clutter map, where the value of each raster point specifies the received signal loss in

[dB] in that point due the land use. Land use is often given as a raster map with values

specifying the use (e.g. 1 - irrigated agriculture, 2 - rangeland, 3 - coniferous forest, 4 -

deciduous forest, 5 - mixed forest, 6 - disturbed). The r.clutconvert module converts such land

use map to the corresponding clutter map. The conversion from land use types (integer

numbers) to signal loss values in [dB] is specified by a table defined in a text file. The

numbers representing land use depend on the particular land use map, and the radio signal

loss values depend on the radio frequency. Hence, even if there is only one land use map,

there will probably be a number of these conversion table files, each for a particular frequency

band. The one to be used by r.clutconvert is specified with its Path_loss_values command

line parameter).

The conversion table file consists of a number of lines. Lines can be either comment or

data lines. A comment line starts with ‘#’ and is ignored. A data line specifies conversion

from a land use value (an integer number) to the corresponding radio signal loss in [dB]

(generally a floating point value), with ‘:’ as separator. The following is an example of this

file (here, the first line is split into three lines to fit on the page, but is actually a single line):

#Terrene type loss factors - hataDEM model (1 - irrigated agriculture, 2 -

rangeland, 3 - coniferous forest, 4 - deciduous forest, 5 - mixed forest, 6 -

disturbed)

1:15.5

2:15

3:25

4:20

28

5:22

6:21

Fig. 10 shows the official (commercial) Slovenian land use map for the Ljubljana region (it

includes 12 categories). The corresponding clutter map generated by r.clutconvert is shown in

Fig. 11.

Fig. 10: Official land use map for the Ljubljana region

Fig. 11: The corresponding clutter map generated by r.clutconvert

 Usage:

r.clutconvert input=name Path_loss_values=name output=name [--overwrite] [--

verbose] [--quiet]

 Flags:

29

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 input Name of input raster map

 Path_loss_values Path loss factors for land use

 output Name for output raster map

 Example:

r.clutconvert input=clut_category Path_loss_values=/home/user1/convtable

output=clut_dBloss --o

30

3. SRTM maps

SRTM (Shuttle Radar Topography Mission) map are Digital Elevation Maps (DEMs)

obtained by a special radar system onboard Space Shuttle Endeavour during its 11-day

mission in February 2000 [6,7]. The maps are publicly available [7]. Two alternate sources of

SRTM based maps are [19] and [20]. Another interesting project producing global DEMs is

ASTER [21], however those maps are currently less reliable.

SRTM maps are an alternative source (free for non-commercial use) to produce a GRASS

DEM for a particular geographic region that can be used with RaPlaT for radio coverage

computation. The suitable version of maps is located at

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/ [7]. It contains six subdirectories for different

parts of the words: Africa, Australia, Eurasia, Islands, North_America and South_America.

Each SRTM3 map covers a geographic region of 1° (degree) longitude and latitude with

resolution of 3'' (arc seconds). This would result in the raster dimensions 1200x1200 (1200 =

1°/3'' = 3600/3). In fact, the raster dimension is 1201x1201, with region boundaries extending

1,5 arc second (half the pixel size) beyond the 1 degree bounds in all for directions (E, W, N,

S). (This way, the raster pixels on the region borders have their centers exactly at the 1°

bounds, and theses bordering pixels overlap with the bordering pixels of the four neighboring

regions.) The resolution of 3'' corresponds to roughly 90 m on the equator, and

correspondingly less in the E-W (longitude) dimension at other latitudes.

Maps are available as zipped files named according to the geographic coordinates (latitude,

longitude, in degrees). For northern and eastern locations, the names have the form

NyyExxx.hgt (with added .zip for zipped files), where yy and xxx represent the latitude and

longitude (in degrees, non-negative values) of the lower left (S, W) corner of the 1 degree

region. E.g., the file N45E014.hgt (which contains a part of Slovenia, including its capital

Ljubljana), covers the region between 45°-0.5'' and 46°+0.5'' North (latitude) and between

14°-0.5'' and 15°+0.5'' East (longitude). For the southern and western location, the N and E in

the file names are replaced by S and W, respectively.

The filename extension .hgt does not denote any special file format but simply stands for

the word "height". The file contains raw data with no special formatting. The data are

1442401 (1201x1201) values of elevations above the sea level in [m], each written as a two-

byte (16-bit) signed integer. Voids (raster points without a valid height data) are indicated by

the special value -32768. The integers are written in the "big-endian" form. The term

big/little-endian denotes the order of bytes which a particular processor type uses to write

multi-byte integer values into memory bytes (little-endian systems store the least significant

byte at the lowest memory byte address, while big-endian systems use the opposite order).

The Intel x86 processor family uses the little-endian form, hence in order to read the integer

values in .hgt files correctly on an Intel-based computer architecture (independently of the

operating system used), the two bytes must be swapped.

Compared to commercial DEM's, SRTM maps have some limitations. Their resolution is

not very high (3'' or 90 m at the equator) and they contain void areas without valid

measurements. The radar measurements were performed with 30 m x 30 m spatial sampling

with the following minimal required accuracies quoted at the 90% level [22]:

 ≤ 16 m absolute vertical height accuracy,

 ≤ 10 m relative vertical height accuracy,

 ≤ 20 m absolute horizontal circular accuracy.

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/

31

The actual accuracy of the generated maps is discussed in [23] and other documents, e.g.

[24,25].

Manually selecting and downloading individual one-degree SRTM maps and combining

them into a larger DEM would be cumbersome and error-prone, so we created scripts to

automate these tasks. The user only specifies the final region extents and the corresponding

SRTM repository (folder with files) and the rest is done automatically.

3.1. SRTM maps and GRASS locations/projections

Positions on the earth surface are defined globally in angular degrees relative to the equator

and the prime meridian (going through Greenwich). Why these coordinates are natural, the

third dimension, the height in meters (usually above the sea level), is a bit more complicated.

It depends on the Earth form, which is not exactly a sphere but is modeled as a spheroid

(ellipsoid of revolution). The current standard defining its parameters is WGS 84 (WGS -

Word Geodetic System).

Local geographic maps are made by projecting a part of the earth surface to a plane using

different cartographic projections (e.g. the Mercator projection with its parameters suitably

defined for a particular location). Positions on these maps can be expressed as distances in

meters relative to a suitably chosen reference point. Different countries generally use different

cartographic projections.

In GRASS, a basic property of each GRASS location (which in turn includes users'

GRASS mapsets) is its cartographic projection, which is defined at the time of the location

creation. The positions on maps belonging to such (projected) locations are expressed in

meters relative to the corresponding reference point. An example of such a GRASS location

projection that we use for Slovenia is (as printed by g.proj):

GRASS 6.4.0 (Slovenia):~ > g.proj -p

-PROJ_INFO---

name : Transverse Mercator

proj : tmerc

ellps : bessel

lat_0 : 0

lon_0 : 15

k : 0.9999

x_0 : 500000

y_0 : -5000000

towgs84 : 426.9206,142.6186,460.0871,4.90806,4.488093,-12.423166,17.1128

no_defs : defined

-PROJ_UNITS--

unit : metre

units : metres

meters : 1

GRASS 6.4.0 (Slovenia):~ >

A GRASS location can also be created without a cartographic projection by choosing the

so called Latitude/Longitude pseudo-projection. The positions on the corresponding map are

then expressed in angular degrees. The projection properties of such location are (as printed

by g.proj):

GRASS 6.4.0 (LongLat):~ > g.proj -p

-PROJ_INFO---

name : Lat/Lon

proj : ll

datum : wgs84

ellps : wgs84

no_defs : defined

32

-PROJ_UNITS--

unit : degree

units : degrees

meters : 1.0

GRASS 6.4.0 (LongLat):~/GRASS-GIS >

Radio coverage calculations depend on distances in meters and hence require a location

with a cartographic projection. SRTM maps, on the other hand, represent small one angular

degree patches using unprojected coordinates in angular degrees. Hence, a Longitude/Latitude

GRASS location must be created to handle and process these maps. After a GRASS DEM

map is created from a set of SRT maps, it can be projected to the final GRASS location (with

cartographic projection) using the GRASS r.proj command. All projections of coordinates

and whole GRASS raster maps between two coordinate systems are performed by the PROJ.4

library and the GDAL part of the related GDAL/OGR library.

In the next subchapter we will explain the tools and procedures for:

 downloading the necessary SRTM maps,

 joining them into a GRASS map in a Latitude/Longitude pseudo-projection GRASS

location,

 projecting the GRASS map to the final cartographic location,

 optionally removing void regions by interpolation,

 creating a dummy clutter map (in the absence of a real clutter map; required for

r.haraDEM).

At the end, an example is given in which a SRTM-based DEM map is generated for

Slovenia and compared with the official (commercial) DEM map.

3.2. Download SRTM maps - m.getSRTMmaps

To make downloading the necessary SRTM maps easier, we have developed a script,

m.getSRTMmaps. It downloads and extracts (unzips) the SRTM maps required for the chosen

region. The region is rectangular and defined by its bounds expressed in angular degrees

(parameters n, e, s and w).

In principle, m.getSRTMmaps does not depend on GRASS and would not need any special

GRASS support for it to work. However, for a consistent user experience, the script makes

use of the GRASS command line parsing mechanism and hence works only within the

GRASS environment (i.e. in a Terminal window where GRASS has been started). The

GRASS location and its projection properties are not important, but since the following steps

would normally be creating the longitude/latitude DEM map with the m.SRTMtoGRASS script

(described later), it would probably be used within a longitude/latitude GRASS location.

The m.getSRTMmaps script downloads and extracts (unzips) maps to a destination

directory defined with the parameter mapsdir. If mapsdir is not set, the current working

directory is used. During downloading, each required zipped map is downloaded only if

neither the zipped nor the extracted map with the same name exists yet in the destination

directory. During extracting, each required map is extracted only if no map with the same

name exists yet in the destination directory. In other words, existing file are kept unchanged

and the corresponding download/extract operations are skipped with informative message

printed on the screen.

By default, m.getSRTMmaps seeks the required maps in the Eurasia subdirectory

(http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Eurasia/). For other geographic regions, the

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Eurasia/

33

user must explicitly specify URL with the urldir parameter, substituting Eurasia with Africa,

Australia, Islands, North_America or South_America.

 Usage:

m.getSRTMmaps [-p] n=value s=value e=value w=value [urldir=string] [mapsdir=string]

[--verbose] [--quiet

 Flags:

 -p The list of required maps will be printed only (no downloading

 /extracting)

 --v Verbose module output

 --q Quiet module output

 Parameters:

 n Value for the northern edge [degrees]

 s Value for the southern edge [degrees]

 e Value for the eastern edge [degrees]

 w Value for the western edge [degrees]

 urldir URL of the required SRTM maps

 default: http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Eurasia/

 mapsdir Local directory for SRTM maps

 Example:

m.getSRTMmaps n=47.0 s=45.3 e=16.7 w=13.3

The example above downloads and extracts SRTM maps for the Slovenian geographic

region.

3.3. Convert SRTM maps to a GRASS DEM - m.SRTMtoGRASS

The m.SRTMtoGRASS script first converts the required (previously downloaded and

extracted) SRTM maps to GRASS maps (using the GRASS r.in.bin command). The GRASS

map names are generated by adding prefix tmp_ to the original SRTM map names (e.g. the

SRTM map N45E013.hgt is converted to GRASS map tmp_N45E013.

Next, the m.SRTMtoGRASS sticks (merges) just converted GRASS maps to the final DEM

map (using the GRASS r.patch command).

This script requires a Longitude/Latitude GRASS location to work and does not run in

cartographic (projected) GRASS locations. Parameters n, s, e, w and mapsdir are equivalent

to the equally named parameters of m.getSRTMmaps.

 Usage:

m.SRTMtoGRASS [-p] n=value s=value e=value w=value [mapsdir=string] out_DEM=string

[--overwrite] [--verbose] [--quiet]

 Flags:

 -p The list of required maps will be printed only (no downloading

 /extracting)

 --o Allow output files to overwrite existing files

 --v Verbose module output

 --q Quiet module output

 Parameters:

 n Value for the northern edge [degrees]

34

 s Value for the southern edge [degrees]

 e Value for the eastern edge [degrees]

 w Value for the western edge [degrees]

 mapsdir Local directory for SRTM maps

 out_DEM Output DEM

 Example:

m.SRTMtoGRASS n=47.0 s=45.3 e=16.7 w=13.3 out_DEM=outdem --o

The example above merges the SRTM maps covering the Slovenian region (downloaded

and extracted in the previous step) to the final DEM map. As a side effect, partial DEM maps

corresponding to the individual SRTM maps are created.

3.4. Project GRASS DEM to the final cartographic location

With previous steps we created a DEM map in a Longitude/Latitude GRASS location. For

normal work, we usually use GRASS locations with cartographic projections. This is

especially true for radio coverage computations, which require distances expressed in meters.

Hence, the just created DEM map must be projected from the original Longitude/Latitude

GRASS location to the final projected location. This can be done with the GRASS r.proj

command, which maps a raster map from a non-current GRASS location to the current one.

In the following example, the LongLat GRASS location is where the original SRTM-based

GRASS DEM was created. Cubic interpolation is used for mapping from the original SRTM

original (around 90 m in N-S direction) to the new resolution of 100 m. The command is run

within the user’s final cartographic GRASS location and projects the raster map outdem from

the mapset named user1 in the Longitude/Latitude location named LongLat to the currently

used (final) mapset and location.

r.proj input=outdem location=LongLat mapset=user1 output=outdem resolution=100

method=cubic --o

3.5. Removing voids

As has already been mentioned and will be illustrated in the next chapter for the case of

Slovenia, SRTM maps (and hence the resulting DEM) can contain void areas. GRASS

contains a module, r.fillnulls, that can fill void regions with interpolated values:

r.fillnulls input=outdem output=outdem_filled

This can be done in the final (projected) GRASS location. Of course, the interpolated

values can differ considerably from the correct ones, especially if the void regions are large.

3.6. What about land use / clutter maps?

Certain models (e.g. hataDEM) require a clutter map (land-use-related loss maps) in

addition to DEMs. In order to use such models, we must provide a clutter map. It can be

generated from a land use map with the previously described r.clutconvert GRASS/RaPlaT

module. In absence of a real land use map, a fake clutter map can be prepared that defines a

suitable constant land-use-related loss over the whole region covered by DEM. It can be

generated by the GRASS r.mapcalc command. Since it works in the current GRASS region,

we must first set the region to that of DEM to produce a region-wise compatible clutter map.

35

The following commands would produce a clutter map named outclut with 10 dB loss over

the whole DEM region defined by the raster map named outdem:

g.region rast=outdem

r.mapcalc outclut=10.0

3.7. An example: SRTM-based DEM for Slovenia

With the tools and procedures described in the next chapters, we will generate DEM for

Slovenia and compared it to the official (commercial) DEM. We will use the following

GRASS region definition for Slovenia (as printed by g.region):

GRASS 6.4.0 (Slovenia):~ > g.region -p

projection: 99 (Transverse Mercator)

zone: 0

datum: towgs84=426.9206,142.6186,460.0871,4.90806,4.488093,-12.423166,17.1128

ellipsoid: bessel

north: 195000

south: 25000

west: 370000

east: 630000

nsres: 100

ewres: 100

rows: 1700

cols: 2600

cells: 4420000

The official DEM is shown in Figs. 12 and 13 with Fig. 12 showing also the geographic

map (Google Map) of the region for reference.

Fig. 12: Commercial Slovenian DEM + Google Map

36

Fig. 13: Official (commercial) Slovenian DEM

Fig. 14 shows DEM created from the SRTM maps for the same region and with the same

color scale and color legend. The only obvious differences are significant voids (white areas)

mostly in the northwest mountainous region.

Fig. 14: Slovenian DEM created from SRTM maps

Fig. 15 shows height differences between the official and SRTM-based DEMs. White areas

represent the void areas of the SRTM-based DEM. They are accompanied with some small

areas of large height errors (reddish/greenish colored) reaching -436 to +366 m. The prevalent

color, however, is blue, which corresponds to relatively small errors.

37

Fig. 15: Differences between the comercial and SRTM-based Slovenian DEMs

Figs. 16 to 18 give some more insight into the SRTM-based DEM height error magnitude.

Figs. 16 and 17 show height errors along two diagonals: from lower-left corner to upper-right

corner (Fig. 16) and form upper-left corner to lower-right corner (Fig. 17). We can see that

errors of 20 m and even twice that much are not uncommon.

Fig. 16: Profile difference - lower-left corner to upper-right corner diagonal

Fig. 17: Profile difference - upper-left corner to lower-right corner diagonal

Fig 18 contains a histogram of height difference in Fig. 15. It shows that the mean height

error is approximatelly 0 and that the majority of errors are below about 30 m.

38

Fig. 18: Height difference histogram

This height error is somewhat larger that could be expected from the SRTM accuracy

specifications. A closer look reveals that high error values are largely related to steep slopes

where height errors are caused not only by direct height measurements errors but also by

horizontal position errors. E.g. for a very steep terrain of 45°, a horizontal position error of

20 m (which corresponds to only 20% of the pixel size for a 100 m map raster) could result in

a vertical position error of up to 20 m (depending on the direction of the horizontal position

error relative to the slope direction).

The void areas in the SRTM-based map in Fig. 14 can be removed by interpolation with

the GRASS GIS r.fillnulls command. The result is shown in Fig. 19. Voids are gone, but

while this can work well for small areas, large height errors can be introduced for large void

areas, as can be seen in Fig. 20 (some mountain peaks are completely lost with the

interpolated heights up to 1259 m below the actual peak height).

Fig. 19: Slovenian DEM created from SRTM maps with voids filled (r.fillnulls)

39

Fig. 20: Differences between the comercial and the SRTM-based voids-filled

Slovenian DEMs

Hence, filling (large) voids with interpolation is problematic, and could cause completely

false radio coverage results in case of putting a transmitter on a such location.

40

4. Virtual machine - GRASS & RaPlaT preinstalled

To make the use of GRASS RaPlaT easier, without the need to first install everything from

scratch, we prepared a VM (Virtual Machine, a “virtual appliance”) with Ubuntu OS and

GRASS/RaPlaT tools installed. It was prepared with WMware Player, which is a simple VM

hypervisor meant for personal desktop use. It is free for non-commercial use and can run on

Linux and MS Windows operating systems [8]. The original VM would run natively in

VMware Player and could easily be converted with VMware tools for other VMware’s VM

hypervisor (e.g. for ESXi, which is used in multiple-user server-based environments).

However, for distribution, we converted the RaPlaT VM to the OVF format (Open

Virtualization Format) which is compatible also with other vendors’ VM hypervisors, e.g.

with VirtualBox. The distribution contains three file:

 *.ovf file : It contains description of the virtual machine (number of CPUs, memory

size, and many other things) in XML text format.

 *.vmdk (Virtual Machine Disk) file : It contains the VM disk image (in compressed

form). This file format was originally developed by VMware but is now an open

format.

 *.mf (Manifest File) - This file is optional. It contains the SHA1 digest of the two

previously described files, and - if present - serves to check their integrity.

The VM disk size is 40 GB, the memory size is 1 GB, and only on processor (one

processor core) is used. The configured memory size and the number of CPU’s (or CPU

cores) are very modest so that the machine could be run on a host computer with limited

resources. This settings can be easily changed and it is recommended to set a larger memory

size and more CPU’s (CPU cores), especially if one wants to use the r.radcov’s parallel

execution support.

The RaPlaT VM was created with software installation and configuration performed

according to the installation procedures described in details in the next chapter. The following

main software was installed:

 Ubuntu 12.04 LTS (Precise Pangolin) desktop 32-bit.

 MySQL 5.5.

 PostgreSQL 9.1.

 GRASS 6.4.3RC2, a development installation from the source distribution, with

support for MySQL and PostgreSQL. A number of other packages (libraries), either

required or optionally used by GRASS, were also installed. This GRASS version is

officially a “Release Candidate” version, but marked as stable and recommended. (It

has some bugs corrected, which makes it a better choice compared to 6.4.2.)

 RaPlaT GRASS add-on.

The installed versions of software components are new, supported and recommended.

Unfortunately they (or their combination) exhibit some minor bugs, which are supposed to be

corrected in future versions. The two most obvious are:

 When exiting GRASS GUI (Graphic User Interface), i.e. closing the GRAS GIS

Layer Manager window, a message is displayed multiple times in the GRASS

Terminal (text) window (“(python:nnnn): LIBDBUSMENU-GLIB-WARNING **:

Trying to remove a child that doesn't believe we're its parent.”). There are no other

related problems and the message can safely be ignored. (It is a known bug caused

indirectly by an external standard library used by GRASS.)

41

 A GUI mouse problem in GRASS in connection with the new Ubuntu graphical

desktop GUI, Unity. The problem appears in certain situations, e.g. when the user in

the GRAS GIS Layer Manager window tries to add a map to the display and wants to

use the slider to browse the maps. It fails since pressing the left button (to hold and

move the slider) unexpectedly cancels the operation (a possible workaround is to first

press the right button followed by ESC to close the resulting pop-up menu, and then

the left button; or to browse maps by using the mouse scroll wheel).

4.1. Preconfigured Ubuntu user accounts

The following Ubuntu user accounts are preconfigured:

 user1 - this is the primary (administrative) account with sudo rights. It is also the

owner of the main GRASS database directories and the PERMANENT subdirectories,

hence this user is also the GRASS administrator.

 grassuser - this is an ordinary system account, but it is also the owner of the

corresponding GRASS mapset subdirectory(-s). This account can serve as a model for

an ordinary GRASS user.

The initial passwords for both accounts are equal to the usernames. It is strongly

recommended to change both as soon as possible, especially when (and before) enabling

the remote access over the network.

Both user accounts are members of the Ubuntu grass group, specially created for GRASS

users. A user must be a member of the grass group to have access to the GRASS database

containing GRASS locations with users’s mapsets.

4.2. About GRASS installation

The whole GRASS installation procedure would create two sets of binaries. The first one is

generated during the compilation (make) within the GRASS source directory (created by

decompressing the GRASS source distribution). In our case, the GRASS source directory is

/usr/local/src/grass-6.4.3RC2, the binaries are located in the dist.i686-pc-linux-gnu

subdirectory, and the command (shell script grass64) that is used to start the GRASS

application is located in bin.i686-pc-linux-gnu. To simplify calling of this script, we created a

symbolic link to it, grass64-d (d for “development installation”), in /usr/local/bin. Hence,

GRASS is started simply by typing grass64-d in a Terminal window.

After starting, GRASS creates an environment variable, GISBASE, which contains the

complete path to dist.i686-pc-linux-gnu. This directory contains the whole GRASS binary

distribution with everything needed to actually run GRASS. This location within the GRASS

source directory is suitable for development purposes including the development and

compilation of additional modules (like those from the RaPlaT source distribution). The place

for additional modules is in the doc subdirectory of the GRASS source directory. Simple

examples of such modules are already included there as part of the GRASS source

distribution.

The second set of binaries would be created from dist.i686-pc-linux-gnu (make install) in

the normal system location /usr/lib/grass64, and the GRASS start-up script grass64 in

/usr/bin. This second set of binaries in the final system location is not really necessary to use

GRASS, and was not created in our RaPlaT VM.

42

4.3. About GRASS database

GRASS uses a DBF-type database for storing its geographic maps and related information.

It has the form of a directory tree, with the first level of subdirectories containing GRASS

locations, and the second level containing GRASS user’s mapsets (including the special

PERMANENT mapsets, owned by the GRASS administrator). A suitable system location for

this database is in /var/local (complete database path /var/local/grassdata). The VM database

contains two demo locations:

 Slovenia, with a cartographic projection suitable for this geographic region. It

contains mapsets PERMANENT (containing a SRTM-based DEM for Slovenia), user1

and grassuser.

 LongLat, with Longitude/Latitude pseudo projection, which can be used for

processing SRTM maps (as described earlier). It contains only one mapset,

PERMANENT, for use by user1.

If GRASS DBF database is used also for output data tables optionally created by RapPlaT,

they are normally stored in the dbf subdirectory within the current user’s mapset. (Since each

table is an independent DBF-format file, it could also be stored in another location, e.g. the

user’s home directory).

4.4. About MySQL

The MySQL database in the RaPLaT VM already contains a pre-created database named

grass, which can be used to store data tables created by RaPlaT. Both preconfigured local

users, user1 and grassuser, have full access (“grant all”) on this database.

The following commands can be used (in a Terminal window) to list the existing MySQL

databases and data tables (the pre-created grass database in initially empty).

To login to MySQL and simultaneously connect the grass database:

mysql grass

This is a shortcut for first performing login to MySQL and then connecting the grass

database (SQL keywords are usually written in capitals although they are not case-sensitive):

mysql

CONNECT grass;

To list the available databases (must be logged-in to MySQL):

SHOW DATABASES;

To list the available data tables of the connected database:

SHOW TABLES;

To exit MySQL:

\q

For administrative tasks (e.g. creating new MySQL users), the root MySQL login is

required (no database if connected at login in this example, the user will be asked for the

password of the MySQL root account):

43

mysql -u root -p

 The password for root it is normally set during MySQL installation. In case of the RaPlaT

VM, it is the same as for the Ubuntu user1 account, i.e. user1. Again, it is strongly

recommended to change it, since any user with an Ubuntu account could potentially login to

MySQL as root.

The MySQL users are stored in the database mysql in the table user. The following

commands can be used to list the existing users (root login is required, the first command lists

only the user names, while the second one prints all columns of the table):

SELECT user FROM mysql.user;

SELECT * FROM mysql.user;

The MySQL configuration file my.cnf is in the /etc/mysql directory. The main database

directory is /var/lib/mysql, where each database has its own subdirectory for its tables (the

database grass is stored in the directory /var/lib/mysql/grass).

The MySQL server can be restarted, stopped or started with the following commands:

sudo service mysql restart

sudo service mysql stop

sudo service mysql start

Besides the original MySQL user manual [26], short and useful quick start guides can be

found in the web, e.g. [27].

4.5. About PostgreSQL

The PostgreSQL database in the RaPLaT VM already contains a pre-created database

named grass, which can be used to store data tables created by RaPlaT. Both preconfigured

local users, user1 and grassuser, have full access on this database.

The following commands can be used (in a Terminal window) to list the existing

PostgreSQL databases and data tables (the pre-created grass database in initially empty).

To login to PostgreSQL with the database grass:

psql grass

To list the available databases (must be logged-in to PostgreSQL):

\l

To list the available data tables of the connected database:

\dt

To list all users:

SELECT * FROM pg_user;

To exit PostgreSQL:

\q

44

For administrative tasks, the user should run psql as the special Ubuntu user postgres using

sudo (no postgress password is set and required, but only users with sudo permission can run

it, e.g. user1):

sudo -u postgres psql

The PostgreSQL configuration files are in the /etc/postgresql/9.1/main directory. The main

database directory is /var/lib/postgresql/9.1/main.

The PosgreSQL server can be restarted, stopped or started with the following commands:

sudo service postgresql restart

sudo service postgresql stop

sudo service postgresql start

Besides the original PostgreSQL user manual [28], short and useful quick start guides can

be found in the web, e.g. [29].

45

5. New GRASS and RaPlaT installation

RaPlat C modules are currently distributed as source code for Linux environment only and

must be compiled before use. Standard precompiled GRASS Linux packages do not include

the development support needed for compilation of third-party modules, so GRASS must be

installed from its source code distribution. The required installation and configuration

procedure are described in this chapter. They were used to prepare the RaPlaT virtual machine

and would be used for installation on a standalone physical machine (with Ubuntu 12.04 pre-

installed). However, this description should be taken only as guidelines and your mileage may

vary (slightly) due to the constantly changing software updates and versions.

Installation of GRASS RaPlaT and related software described in this chapter was done on a

freshly installed and updated Ubuntu 12.04.1 desktop 32-bit operating system. In the example

below it is assumed, that the username of the primary user account (the one with

administration rights, i.e. sudo permissions) is user1.

5.1. Install MySQL & PostgreSQL

First we install the database management systems (shortly databases) that we want to use

with GRASS, so that GRASS make can find them and build the GRASS binaries properly. In

our case these are MySQL and PostgreSQL. We can install both databases in the Ubuntu

standard way with Ubuntu Software Center. (For MySQL, search for “mysql” (“mysql-

server” and “mysql-client”); for PostgreSQL, search for “postgresql”.)

During MySQL installation you are asked for the MySQL root user password. Note that

this has nothing to do with the Ubuntu root user account (which is by default disabled for

login, has no password defined, and sudo is used instead for administrative tasks). Any

Ubuntu user that knows the MySQL root password can gain administrative MySQL access.

PostgreSQL has a different approach to gain administrative access. Its administrative

permissions are assigned to a special Ubuntu user account, postgres, which is created during

its installation. This account is by default disabled for login and no password is defined, but it

can be used with sudo. Hence, no PostgreSQL password is required by default for the

administrative access, but it is available only to the users with Ubuntu administrative rights

(those with sudo permissions).

Originally, MySQL and PostgreSQL have only command line interfaces. If you prefer

GUI-based management, you can additionally install MySQL Workbench (search for “mysql-

workbench”) for MySQL and pgAdmin III for PostgreSQL. To connect to the databases you

use their internal administrative accounts root (for MySQL) and postgres (for PostgreSQL,

but you must first define its internal postgres password).

5.2. Install GRASS and related software packages

First update Ubuntu 12.04 with the latest updates (Ubuntu Update Manager, or commands

sudo apt-get update and sudo apt-get upgrade). Installation of GRASS from its source is

performed according to [30] in the following steps:

46

1. Install the required software packages (“dependencies” - libraries and other supporting

software). Use the following command (it is a bit different from what is suggested in

[30] for Ubuntu 12.04):

sudo apt-get install \

build-essential \

make flex bison gcc libgcc1 g++ cmake ccache \

python python-dev python-qt4 python-qt4-dev \

python-opengl \

python-wxversion python-wxtools python-wxgtk2.8 \

python-dateutil libgsl0-dev python-numpy \

wx2.8-headers wx-common libwxgtk2.8-dev libwxgtk2.8-dbg \

libwxbase2.8-dev libwxbase2.8-dbg \

libncurses5-dev \

zlib1g-dev gettext \

libtiff-dev libpng12-dev \

tcl8.5-dev tk8.5-dev \

libcairo2 libcairo2-dev \

sqlite3 libsqlite3-dev \

libpq-dev \

libreadline6 libreadline6-dev libfreetype6-dev \

txt2tags \

libfftw3-3 libfftw3-dev \

libqt4-core libqt4-dbg libqt4-dev libqt4-gui libqt4-sql libqt4-qt3support \

lsb-qt4 qt4-designer qt4-dev-tools qt4-doc qt4-qtconfig \

libapt-pkg-perl resolvconf \

libjasper-dev \

ruby \

subversion \

ffmpeg ffmpeg2theora \

libffmpegthumbnailer-dev \

libavcodec-dev \

libxmu-dev \

libavformat-dev libswscale-dev \

checkinstall \

libglu1-mesa-dev libxmu-dev

And for the MySQL support:

sudo apt-get install libmysqlclient-dev

2. Install pre-compiled packages for PROJ.4, GEOS and GDAL (of course this can also

be done with the graphical Ubuntu Software Center instead of the following

commands):

sudo apt-get install libproj-dev

sudo apt-get install libgeos-dev

sudo apt-get install libgdal-dev

3. Install GRASS.

From [31] download the GRASS source, in our case the latest version 6.4.3RC2.

Extract the downloaded file (grass-6.4.3RC2.tar.gz) to /usr/local/src, take ownership of

the resulting directory grass-6.4.3RC and make it the current director (cd):

cd /usr/local/src

sudo tar -xvzf /home/user1/Downloads/grass-6.4.3RC2.tar.gz

sudo chown -R user1:user1 grass-6.4.3RC2

cd /usr/local/src/grass-6.4.3RC2

47

Run configure with suitable configure parameters for the GRASS build process (type

configure --help to print help on usage and options; in the following example, support

for PostgreSQL is enabled and some non-default locations are specified):

CFLAGS="-O3" LDFLAGS="-s" ./configure \

--enable-largefile=yes \

--with-readline \

--with-nls \

--with-cxx \

--with-proj-share=/usr/share/proj \

--with-gdal \

--with-geos=/usr/bin/geos-config \

--with-python=yes \

--with-wxwidgets \

--with-cairo \

--with-tcltk-includes="/usr/include/tcl8.5/" \

--with-opengl-libs=/usr/include/GL \

--with-ffmpeg=yes --with-ffmpeg-includes="/usr/include/libavcodec

/usr/include/libavformat /usr/include/libswscale" \

--with-freetype=yes --with-freetype-includes="/usr/include/freetype2/" \

--with-postgres=yes \

--with-postgresql=yes --with-postgres-includes="/usr/include/postgresql" \

--with-sqlite=yes \

--with-mysql=yes --with-mysql-includes="/usr/include/mysql" \

--with-odbc=yes

 (Note that the line --with-ffmpeg above is split into two lines to fit on the page, but it

should be a single line.)

The warning “configure: warning: libmysqld not found” (if printed) can be ignored.

If the building process was successful, the configuration result is printed, in our case:

GRASS is now configured for: i686-pc-linux-gnu

 Source directory: /usr/local/src/grass-6.4.3RC2

 Build directory: /usr/local/src/grass-6.4.3RC2

 Installation directory: ${prefix}/grass-6.4.3RC2

 Startup script in directory: ${exec_prefix}/bin

 C compiler: gcc -O3

 C++ compiler: c++ -g -O2

 Building shared libraries: yes

 64bit support: no

 OpenGL platform: X11

 MacOSX application: no

 MacOSX architectures:

 MacOSX SDK:

 Tcl/Tk NVIZ: yes

 BLAS support: no

 C++ support: yes

 Cairo support: yes

 DWG support: no

 FFMPEG support: yes

 FFTW support: yes

 FreeType support: yes

 GDAL support: yes

 GEOS support: yes

 GLw support: no

 LAPACK support: no

 Large File support (LFS): yes

 Motif support: no

 MySQL support: yes

 NLS support: yes

 ODBC support: yes

48

 OGR support: yes

 OpenGL support: yes

 PNG support: yes

 PostgreSQL support: yes

 Python support: yes

 Readline support: yes

 SQLite support: yes

 Tcl/Tk support: yes

 wxWidgets support: yes

 TIFF support: yes

 X11 support: yes

Now we can proceed with compiling GRASS (using the configuration from the

previous step):

make -j2

If the process is successful, GRASS binary distribution subdirectory dist.i686-pc-linux-

gnu (or similar) is created in /usr/local/src/grass-6.4.3RC2. This distribution is fully

functional without any further installation steps. This location is also the location

where third party modules (in our case the RaPlaT modules) can be compiled (as

described later). GRASS can be started by running the shell script grass64 in the

bin.i686-pc-linux-gnu subdirectory. To make this script callable without explicitly

specifying its location, we create a symbolic link, grass64-d, in /usr/local/bin:

sudo ln -s /usr/local/src/grass-6.4.3RC2/bin.i686-pc-linux-gnu/grass64

/usr/local/bin/grass64-d

(Note that the line above is split into two lines to fit on the page, but it should be a

single line.)

From now on, GRASS can be started simply by typing grass64-d in a Terminal

window (of course, some other name can be used instead).

There is an optional additional step in installing GRASS, which we will not perform.

We could install GRASS to the standard Ubuntu system location for binaries with sudo

make install, or we could create a standard binary installation package with sudo

checkinstall. In any case, the previously created binaries created within

/usr/local/src/grass-6.4.3RC2 directory tree would remain unchanged.

Finally, we can update links to the most recent shared libraries with:

sudo ldconfig

Before starting GRASS for the first time, its DBF database directory must be set up (see

the next chapters).

5.3. Install RaPlaT modules

The RaPLaT modules (C modules and Python scripts) are distributed as source code, each

in its own directory. These directories should be copied into doc/raster (for C modules) and

doc/python (for Python scripts) subdirectories of the /usr/local/src/grass-6.4.3RC2 directory.

We then cd to each of the modules directories and execute make. For C modules, this

compiles the modules and generates the binary code in the bin subdirectory within dist.i686-

pc-linux-gnu (the proper place for GRASS binaries), and html help files in the docs/html

49

subdirectory. For Python scripts, make copies scripts to the appropriate place, i.e. the scripts

subdirectory within the /usr/local/src/grass-6.4.3RC2. (The make process for the Python

scripts is not really necessary since they are already executable and we can just copy them

manually wherever we want). From now on, the RaPlaT modules and scripts can be called

like any GRASS module or script within the GRASS environment (i.e. in the Terminal

windows where GRASS has been started and is running).

To simplify the installation, a shell script, RaPlaT_make, has been prepared that builds all

the modules in a single step. The detailed description is in the RaPlaT Quick Start Guide. The

RaPlaT distribution is accompanied with two additional archive files, one with a demo

antenna setup and another with RaPlaT demo commands and CSV files. Please consult

RaPlaT Quick Start Guide for their description and installation. The manual also contains a

short description of the demo GRASS database installation, which can be used instead of the

description in the following subchapter.

5.4. Set up GRASS database and users

When GRASS is started for the first time, it asks for the location of its database with

locations and mapsets. Hence, before starting GRASS, we have to set up its database. But

before doing that, we will create an additional Ubuntu group (grass, all GRASS users should

become its members) and an additional user account (grassuser, a generic non-privileged

GRASS user). The following example assumes that the primary user account is user1 (with

Ubuntu administrative permissions, i.e. sudo permissions), and it will also be used for the

GRASS database administration (it will be the owner of the database directory tree, except for

the personal mapsets subtrees, which are owned by individual non-privileged GRASS users).

Both, user1 and grassuser will be members of the grass group.

sudo addgroup grass

sudo adduser user1 grass

sudo adduser grassuser

sudo adduser grassuser grass

The GRASS DBF database has a form of a directory tree with the first-level subdirectories

representing locations, and the second-level directories representing user’s mapsets within a

location. A special mapset, PERMANENT, is present in each location and is readable by all

GRASS users and contains the location’s shared maps. Before starting GRASS, only the main

database directory must exist. A suitable location for it would be /var/local (e.g.

/var/local/grassdata). After starting GRASS, the administrative GRASS user (the one with

write access in this directory) can than create a new location (using the Location wizard

button, the special PERMANENT mapset is created in the location), and all users can create

their mapsets in a location (using the Create mapset button, provided that the write

permission on the location directory is set for the GRASS users group, grass in our demo

case).

Instead of starting with an empty GRASS database, it might be helpful to set-up the demo

GRASS database distributed with RaPlat. This database includes two locations:

 Slovenia, which can be used for radio coverage computations. It includes mapsets for

two users, user1 (the GRASS administrator) and grassuser (a normal non-privileged

GRASS user).

 LongLat, which can be used to convert and join SRTM maps to a GRASS DEM maps.

It has only the PERMANENT mapset for use with user1.

50

The GRASS administrator (user1 in our case) can create the database directory

/var/local/grassdata and extract the RaPlaT demo locations with the following commands:

sudo mkdir /var/local/grassdata

cd /var/local/grassdata

sudo tar -xvzf /home/user1/Downloads/RaPlaT_demolocs.tar.gz

The next step is to set the file and directory ownerships and permissions properly. The

whole database directory tree ownership is first given to the user user1 and group grass,

except for the individual user’s mapset where ownerships are given to the corresponding users

(only the grassuser’s mapset in our case):

sudo chown -R user1:grass /var/local/grassdata

sudo chown -R grassuser /var/local/grassdata/Slovenia/grassuser

(The above commands differ a bit from those in the Quick Start Guide but the result is the

same.)

If we want, we can apply some additional settings on the database directory tree (chances

are that some of these settings are already set by default). We can ensure that only the users

(owners of mapsets) have write access on their mapsets:

sudo chmod -R u+w,go-w /var/local/grassdata

We can allow non-privileged users to freely create their own mapsets in locations by

setting the group write permission on location directories:

sudo chmod g+w /var/local/grassdata/*

It is convenient to set the setgid bit on directories (the ls command displays it in place of

group x permission as s when x is set, and S otherwise). This way, the newly created files and

subdirectories will inherit the existing directory group ID (grass in our case) instead of getting

the primary group ID of the user creating them. This can be done with the following

command:

sudo find /var/local/grassdata -type d -exec chmod g+s {} \;

Be aware that by setting a group ID (grass in our case) other that the primary user group

(user1, grassuser), members of this group (grass) may gain unwanted write access to the

other users’ mapsets, hence it is wise to review the group write permissions on directories and

files within the database directory tree.

5.5. Set up MySQL / PostgreSQL for use with GRASS-RaPlaT

RaPLaT module r.MaxPower (called by r.radcov) optionally creates an output data table.

If we want to use MySQL or PostgreSQL to store it, the following must be done first:

 a database (or more of them) must be created to store these tables,

 GRASS users must be granted access to this database.

The following examples show how this was done for the RaPLaT demo VM. More

information about MySQL and PostgreSQL usage can be found in [26,27] and [28,29],

respectively.

51

In the examples below, the traditional command-line used interface is used. Various GUI-

based MySQL and PostgreSQL management tools can be used instead, e.g. MySQL

Workbench and pgAdmin III for MySQL and PostgreSQL, respectively.

5.5.1. Set up MySQL

We can create a MySQL database with the following command:

mysqladmin -u root create grass -p

The parameter -u root requires execution with the MySQL root account (to obtain

administration rights) and the user is asked for its password. This password is usually defined

during the MySQL installation and is independent from the Ubuntu root password (which is

by default not defined and login is disabled).

The following command sequence can be used to create MySQL users and grant them the

necessary permissions on the grass database. The first command runs the MySQL client,

performing login to the MySQL administrative root account. The second command lists

existing databases and is used to verify that the grass database does exist. The following four

commands create two MySQL local users, user1 and grassuser, and grant them all

permissions on the data tables in the grass database. The last command ends the MySQL

client session. (Command prompts are shown to differentiate between the Ubuntu shell and

PostgreSQL client commands.)

user1@ubuntu:~$ mysql -u root -p

mysql> SHOW DATABASES;

mysql> CREATE USER 'user1'@'localhost';

mysql> CREATE USER 'grassuser'@'localhost';

mysql> GRANT ALL ON grass.* TO 'user1'@'localhost';

mysql> GRANT ALL ON grass.* TO 'grassuser'@'localhost';

mysql> \q

The MySQL users are stored in the table user of the database mysql. The following

commands can be used to list the existing users (the first command lists only the usernames):

SELECT user FROM mysql.user;

SELECT * FROM mysql.user;

Besides being able to create data tables with RaPlaT (r.radcov, r.MaxPower) in the grass

database, the new MySQL users (user1, grassuser) can now also use the MySQL client mysql

to work with the grass data tables. E.g. to get the list of all data tables in the grass database,

user1 would execute the following commands:

user1@ubuntu:~$ mysql grass

mysql> SHOW TABLES;

mysql> \q

The default main database directory is /var/lib/mysql, where each database has its own

subdirectory for its tables (the database grass is stored in the directory /var/lib/mysql/grass).

The MySQL configuration file my.cnf is in the /etc/mysql directory. If necessary, the MySQL

server can be restarted, stopped or started with the following commands:

sudo service mysql restart

sudo service mysql stop

sudo service mysql start

52

5.5.2. Set up PostgreSQL

PostgreSQL administration is done using a special Ubuntu user account, postgres, which is

created during the PostgreSQL installation. By default, no password is defined for this

account and direct login is disabled. Instead, sudo is used, and all users having Ubuntu sudo

permission have administrative PostgreSQL access.

A user can become a postgress user with any of the following four commands:

sudo -u postgres -s

sudo su postgres

sudo -u postgres -i

sudo su - postgres

The last two commands also perform login, and set the current directory to the postgres

home directory, which is the main data directory for PostgreSQL databases

(/var/lib/postgresql by default).

Instead of explicitly becoming the postgres user (until exit is executed), only a per-

command user change is used in the following examples. The grass database can be created

with the following command:

sudo -u postgres createdb grass

The two users, user1 and grassuser, are created with the following commands:

user1@ubuntu:~$ sudo -u postgres createuser

Enter name of role to add: user1

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) n

Shall the new role be allowed to create more new roles? (y/n) n

user1@ubuntu:~$ sudo -u postgres createuser

Enter name of role to add: grassuser

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) n

Shall the new role be allowed to create more new roles? (y/n) n

In the described setup we created no PostgreSQL schema, so all users implicitly access the

public schema and are granted database access by default. Such setup is suitable for one or a

few cooperating users in a database.

Besides being able to create data tables with RaPlaT (r.radcov, r.MaxPower) in the grass

database, the new PostgreSQL users (user1, grassuser) can now also use the PostgreSQL

client psql to work with the grass data tables. To connect to the grass database, get the list of

all databases, data tables, users, and then exit, user1 (or grassuser) would execute the

following commands (command prompts are shown two differentiate between the Ubuntu

shell and PostgreSQL client commands):

user1@ubuntu:~$ psql grass

grass=> \l

grass=> \dt

grass=> SELECT * FROM "pg_user";

grass=> \q

The PostgreSQL configuration files are in the /etc/postgresql/9.1/main (for version 9.1).

The default main database directory is /var/lib/postgresql/9.1/main. If necessary, the

PostgreSQL server can be restarted, stopped or started with the following commands:

53

sudo service postgresql restart

sudo service postgresql stop

sudo service postgresql start

54

6. References

[1] GRASS GIS, Wikipedia, http://en.wikipedia.org/wiki/GRASS_GIS

[2] GRASS GIS, home page, http://grass.osgeo.org/

[3] GRASS-RaPlaT, The Radio Planning Tool for GRASS GIS system, Home page,

http://www-e6.ijs.si/index.php/en/software/grass-raplat

[4] Andrej Hrovat, Igor Ozimek, Andrej Vilhar, Tine Celcer, Iztok Saje, Tomaž Javornik,

Radio coverage calculations of terrestrial wireless networks using an open-source

GRASS system. WSEAS Transactions on Communications, 2010, vol. 9, no. 10, pp.

646-657.

[5] Igor Ozimek, Andrej Hrovat, Andrej Vilhar, Tine Celcer, Iztok Saje, Tomaž Javornik,

GRASS-RaPlaT - an open-source tool for radio coverage calculations, V: Joint

Workshop on Wireless Communications, 1-2 March 2011, Paris, France, JNCW 2011.

[S. l.]: IEEE, France section, 2011, 6 pp.

[6] Shuttle Radar Topography Mission, Wikipedia,

http://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission

[7] Shuttle Radar Topography Mission, NASA - Jet Propulsion Laboratory,

http://www2.jpl.nasa.gov/srtm/

[8] VMware Player, Home page, http://www.vmware.com/products/player

[9] Comma-separated values, Wikipedia,

http://en.wikipedia.org/wiki/Comma-separated_values

[10] Common Format and MIME Type for Comma-Separated Values (CSV) Files, RFC

4180, October 2005, http://www.rfc-editor.org/rfc/rfc4180.txt

[11] GRASS-Wiki, Category:Parallelization,

http://grasswiki.osgeo.org/wiki/Category:Parallelization

[12] GRASS-Wiki, Parallel GRASS jobs,

http://grasswiki.osgeo.org/wiki/Parallel_GRASS_jobs

[13] S. R. Saunders, Antennas and Propagation for Wireless communication systems.

[14] M. Hata, Empirical formula for propagation loss in Land Mobile radio services, IEEE

Transactions on Vehicular Technology, Vol. 29, no. 3, avgust 1980.

[15] D. J. Cichon, T. Kurner, Propagation prediction models, COST 231 Final Rep.,

http://www.lx.it.pt/cost231/

[16] J. Walfisch, H. L. Bertoni, A Theoretical Model of UHF Propagation in Urban

Environments, IEEE Trans. Antennas Propagat., Vol. 36, pp. 1788–1796, December

1988.

[17] J. Walfisch, H. L. Bertoni, A Theoretical Model of UHF Propagation in Urban

Environments, IEEE Trans. Antennas Propagat., Vol. 36, pp. 1788–1796, December

1988.

[18] MSI Planet Antenna File Format,

http://radiomobile.pe1mew.nl/?The_program:Definitions:MSI

[19] Digital elevation data, http://www.viewfinderpanoramas.org/dem3.html

[20] CGIAR-CSI, SRTM 90m Digital Elevation Database v4.1, http://www.cgiar-

csi.org/data/srtm-90m-digital-elevation-database-v4-1

http://en.wikipedia.org/wiki/GRASS_GIS
http://grass.osgeo.org/
http://www-e6.ijs.si/index.php/en/software/grass-raplat
http://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
http://www2.jpl.nasa.gov/srtm/
http://www.vmware.com/products/player
http://en.wikipedia.org/wiki/Comma-separated_values
http://www.rfc-editor.org/rfc/rfc4180.txt
http://grasswiki.osgeo.org/wiki/Category:Parallelization
http://grasswiki.osgeo.org/wiki/Parallel_GRASS_jobs
http://www.lx.it.pt/cost231/
http://radiomobile.pe1mew.nl/?The_program:Definitions:MSI
http://www.viewfinderpanoramas.org/dem3.html
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1

55

[21] ASTER Global Digital Elevation Map Announcement, , NASA - Jet Propulsion

Laboratory, http://asterweb.jpl.nasa.gov/gdem.asp

[22] Shuttle Radar Topography Mission, SRTM mission statistics, NASA - Jet Propulsion

Laboratory, http://www2.jpl.nasa.gov/srtm/statistics.html

[23] Rodriguez, E., C.S. Morris, J.E. Belz, E.C. Chapin, J.M. Martin, W.Daffer, S. Hensley,

2005, An assessment of the SRTM topographic products, Technical Report JPL D-

31639, Jet Propulsion Laboratory, Pasadena, California, 143 pp.,

http://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf

[24] Ricardo Passini, Karsten Jacobsen, Accuracy analysis of SRTM height models,

http://www.ipi.uni-hannover.de/uploads/tx_tkpublikationen/RP_KJ_07_SRTM.pdf

[25] Antonios Mouratidis, Pierre Briole, Kostas Katsambalos, SRTM 300 DEM (versions 1,

2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study

from North Greece, International Journal of Remote Sensing, Vol. 31, No. 23, 10

December 2010, 6205–6222, http://users.auth.gr/kvek/mouratidis_et_al_2010_ijrs.pdf

[26] MySQL 5.5 Reference Manual (Including MySQL Cluster NDB 7.2 Reference Guide),

http://dev.mysql.com/doc/index.html,

http://dev.mysql.com/doc/refman/5.5/en/index.html,

http://downloads.mysql.com/docs/refman-5.5-en.a4.pdf

[27] MySQL/MySQL Quick Start Guide,

http://www.coderguide.com/Guides:MySQL/MySQL_Quick_Start_Guide

[28] PostgreSQL 9.1.9 Documentation, The PostgreSQL Global Development Group,

http://www.postgresql.org/docs/manuals/,

http://www.postgresql.org/docs/9.1/interactive/index.html,

http://www.postgresql.org/docs/9.1/static/index.html,

http://www.postgresql.org/files/documentation/pdf/9.1/postgresql-9.1-A4.pdf

[29] PostgreSQL QuickStart/Reference Commands...,

http://www.linuxweblog.com/postgresql-reference

[30] GRASS-Wiki, Compile and Install Ubuntu,

http://grasswiki.osgeo.org/wiki/Compile_and_Install_Ubuntu

[31] GRASS GIS, Download, http://grass.osgeo.org/download/,

http://grass.osgeo.org/download/software/#g64x

http://asterweb.jpl.nasa.gov/gdem.asp
http://www2.jpl.nasa.gov/srtm/statistics.html
http://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf
http://www.ipi.uni-hannover.de/uploads/tx_tkpublikationen/RP_KJ_07_SRTM.pdf
http://users.auth.gr/kvek/mouratidis_et_al_2010_ijrs.pdf
http://dev.mysql.com/doc/index.html
http://dev.mysql.com/doc/refman/5.5/en/index.html
http://downloads.mysql.com/docs/refman-5.5-en.a4.pdf
http://www.coderguide.com/Guides:MySQL/MySQL_Quick_Start_Guide
http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/9.1/interactive/index.html
http://www.postgresql.org/docs/9.1/static/index.html
http://www.postgresql.org/files/documentation/pdf/9.1/postgresql-9.1-A4.pdf
http://www.linuxweblog.com/postgresql-reference
http://grasswiki.osgeo.org/wiki/Compile_and_Install_Ubuntu
http://grass.osgeo.org/download/
http://grass.osgeo.org/download/software/#g64x

