

Kozio® VTOSTM
Evaluation & Tutorial Guide

Evalu
atio

n
 G
u
id
e

 Kozio VTOS Evaluation & Tutorial Guide

2 Version 1.1

Product names mentioned in this document are trademarks of their respective manufacturers and are used here only
for identification purposes.

© Copyright 2012, Kozio, Inc. All Rights Reserved.

Information in this document is subject to change without notice. The software described in this document is
furnished under a license agreement. The software may be used, copied or distributed only in accordance with that
agreement. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
any means, electronically or mechanically, including photocopying and recording for any purpose without the written
permission of Kozio Inc.

Kozio, Inc.
2015 Ionosphere Street Suite 201
Longmont, CO 80504 USA
Office: 303.776.1356

 Kozio VTOS Evaluation & Tutorial Guide

3 Version 1.1

Contents
1 Introduction ... 5

1.1 About this tutorial .. 5
1.2 Evaluation platform information .. 5
1.3 Prerequisites ... 5
1.4 Additional resources .. 5

2 Introduction to Integration Workbench .. 7
2.1 Quick Tour ... 7
2.2 Loading the Command Tree .. 8
2.3 Command Tree Hierarchy .. 8

2.3.1 Low-Level Commands .. 8
2.3.2 Test Methods ... 9
2.3.3 Performance Tests ... 9
2.3.4 Diagnostic Tests ... 10
2.3.5 Test Suites .. 10

2.4 Using the Command Tree .. 11
2.5 DUT Output Capture and Command Log .. 12

3 Basic User Interface Introduction ... 13
3.1 About this lesson .. 13
3.2 Launching VTOS ... 13
3.3 Issuing commands .. 14
3.4 Interrupting commands .. 15
3.5 Using command history ... 15
3.6 Automating commands .. 17
3.7 Lesson review .. 19

4 Using Test Suites .. 20
4.1 About this lesson .. 20
4.2 Running test suites ... 20
4.3 Dissecting test suites .. 21
4.4 Creating custom test suites... 23
4.5 Lesson review .. 25

5 Creating Custom Scripts ... 26
5.1 About this lesson .. 26
5.2 Seeing it all work ... 26
5.3 Understanding scripts... 26
5.4 Using comments... 28
5.5 Using the data stack ... 29
5.6 Defining new commands ... 31
5.7 Using input and output functions ... 32
5.8 Naming constants ... 33
5.9 Creating variables .. 34
5.10 Managing control flow ... 35
5.11 Using local variables .. 38
5.12 Creating custom tests ... 39
5.13 Custom DMA script ... 41
5.14 Lesson review .. 43

 Kozio VTOS Evaluation & Tutorial Guide

4 Version 1.1

 Kozio VTOS Evaluation & Tutorial Guide

5 Version 1.1

1 Introduction

Welcome to Kozio VTOS – the software designed to provide design verification and test for
embedded designs. VTOS is a special purpose Verification and Test Operating System (VTOS)
that first comes into play when the first prototype (simulated or real) is ready and then provides a
production test solution eliminating staff months or years of test software development. VTOS
can immediately verify new designs and isolate design errors at the earliest stages so that
hardware bugs do not go undetected. Fully automated manufacturing test capability is also
available for certifying manufactured boards before shipment and thus reducing support costs.
The software is delivered ready-to-run with an extensive library of test primitives and test suites,
avoiding internal development time for diagnostics.

1.1 About this tutorial
This tutorial is designed to introduce you to VTOS by providing you with a series of interactive
lessons that guide you through many of the software’s key features. Each lesson is organized
around a project that illustrates particular aspects of VTOS.

Each lesson is self-contained, so you may follow the lessons in whatever order best suits your
needs and interests. However, if you are new to VTOS, you should familiarize yourself with the
VTOS environment by completing Lesson 1: The Basics first. Although the lessons take you on
a planned tour of the software, you are of course encouraged to vary the lessons and experiment
with VTOS in whatever way satisfies your curiosity.

1.2 Evaluation platform information
VTOS supports a wide range of evaluation platforms, and consequently, this tutorial may refer to
features that are not supported on your evaluation platform. An effort has been made to select
examples and features that are common to most evaluation platforms, while still illustrating the
use of important VTOS features in depth. You are encouraged to read through lessons that may
not exactly fit your evaluation platform, as you can still learn important VTOS operating
principles from these lessons. Kozio is adding new test suites and tutorial lessons with each
release, so please drop us a line requesting the information you need to make an informed
decision.

1.3 Prerequisites
Before using this tutorial, you should have the VTOS software running on your evaluation
platform.

1.4 Additional resources
This VTOS tutorial is not intended to be a comprehensive manual for the VTOS software. The
tutorial only describes what is necessary to understand and complete the lessons. Consult the
following additional resources for more information about VTOS:

 Kozio VTOS Evaluation & Tutorial Guide

6 Version 1.1

 VTOS Command Reference. This reference manual contains a complete description of
the test suites, diagnostic tests, test methods, and low-level commands. Available upon
request.

 Integration Workbench User Manual. This reference manual contains information
regarding the operation of Integration Workbench which is used and the console
interacting with VTOS.

 Kozio VTOS Evaluation & Tutorial Guide

7 Version 1.1

2 Introduction to Integration Workbench

Integration Workbench (IW) is the user console for interacting with VTOS.

2.1 Quick Tour
Integration Workbench is a powerful user interface built for the purpose of design verification.
IW has the ability to run commands via a Command Line or user configurable Command Tree
interface. All output generated by VTOS is displayed in the VTOS Output Window. After
applying power to the device under test (DUT), boot messages will be displayed. Once the boot
sequence is complete the DUT online indicator will display “DUT online” and the command line
will become active.

Figure 2.1: Quick Tour

 Kozio VTOS Evaluation & Tutorial Guide

8 Version 1.1

2.2 Loading the Command Tree
A platform specific command tree can be loaded in the left window pane to provide a list of the
most commonly used commands for easy execution. The organization of the tree is described in
the next section. To load your platform specific Command Tree:

 Within Integration Workbench select “File/Load Command Tree”
 Select the appropriate command tree – E.g. CommandTree-BeagleBoardXM.kct or

CommandTree-Blaze.kct.

2.3 Command Tree Hierarchy
Each command tree component is organized into one to five sections: Low-Level Commands,
Test Methods, Performance Tests, Diagnostic Tests, and Test Suites.

2.3.1 Low-Level Commands
Low-Level Commands provide the most direct access to the hardware. Many low-level
commands are available for the operator to execute, each requiring specific input parameters.
Each high-level component, such as SDRAM, may have low-level commands associated with
them.

Figure 2.2: Low‐Level Commands

 Kozio VTOS Evaluation & Tutorial Guide

9 Version 1.1

2.3.2 Test Methods
Test methods are a set of diagnostic tests that deliver a pass/fail result. Most test methods require
input parameters.

Figure 2.3: Test Methods

2.3.3 Performance Tests
Some components, such as SDRAM, have a number of performance tests associated with them.
The Output Window displays a characterization of a given performance characteristic.

Figure 2.4: Performance Tests

 Kozio VTOS Evaluation & Tutorial Guide

10 Version 1.1

2.3.4 Diagnostic Tests
A set of diagnostic tests has been built on top of test methods using default input parameters. The
tests are pre-configured to your platform based on the layout and build for your design. The
diagnostic tests deliver a pass/fail result and do not require input parameters from the user.

2.3.5 Test Suites
Test suites are collections of diagnostic tests and/or other test suites that are executed in
sequence. Quick and comprehensive test suites are available for all devices. Test suites can also
be nested. For example, under the All Components folder in the Command Tree, over 140 tests
are packaged into a single command labeled Example Test Suite – long version. Multiple
components are tested and there are multiple levels of nesting under each suite.

In addition to the right-click menu options of Help and Execute, the Test Suites also have two
additional menu options: Tree and Report. Both commands are accessed by right-clicking on a
highlighted test suite and selecting the command from the pop-up menu. The Tree and Report
commands will display a complete listing of all of the nested suites, and tests included in the
suite, in the Output Window. The Report will also include the current test status: Pending, Pass,
or Fail. This same information can be accessed by entering the “tree” or “report” command
followed by the test suite name on the Command Line. For example, on the Command Line enter
“report test.sdram” (without the quotes) and press Enter.

Figure 2.5: Test Suites Report Output

 Kozio VTOS Evaluation & Tutorial Guide

11 Version 1.1

2.4 Using the Command Tree
Commands in the command tree are executed by double clicking the requested test. Users can
expose additional options by right clicking on the desired command. All entries provide Help
and Execute options; Test Suites also provide Tree and Report.

 Execute – Run the selected command
 Report – Generate a results report for the last test run of the current session.
 Tree – The tree option will list the tests that are part of the selected command.
 Help – A brief explanation of the test contents

Figure 2.6: Right‐Clicking in the Command Tree

 Kozio VTOS Evaluation & Tutorial Guide

12 Version 1.1

2.5 DUT Output Capture and Command Log
Integration Workbench offers the user a command log for recording issued commands. Select the
“Command Log” button and a dialogue will open requesting the name of a log file. The user can
create multiple log files to capture different types of test or debug activities. This may be useful
when developing custom scripts. The files are stored as standard text and can be opened later for
review with a text editor such as Notepad.

Users can also save DUT output in a log file similar to the command log.

Figure 2.7: DUT Log

 Kozio VTOS Evaluation & Tutorial Guide

13 Version 1.1

3 Basic User Interface Introduction

In this lesson, you will learn to use the most basic features of the VTOS
command interpreter using a command line interface to interact with the
evaluation platform.

3.1 About this lesson
In this lesson, you will learn how to do the following:

 Launch VTOS.
 Run VTOS commands by entering them at the command prompt.
 Interrupt VTOS command execution.
 Use the VTOS command history and command editing facilities.
 Automate VTOS commands using script files.

This lesson will take approximately 60 minutes to complete.

3.2 Launching VTOS
Consult the appropriate evaluation application note for your specific platform for instructions on
how to connect the evaluation platform to your host computer and properly configure Integration
Workbench on your host to communicate with the target.

VTOS will launch automatically whenever the evaluation platform is powered up.

1. Start Integration Workbench on your host computer.
2. Power up the evaluation platform.

When the boot sequence is complete, the Command Prompt below the Output Window will
become active, and DUT online is displayed in the status bar. VTOS is now ready to accept your
commands.

 Kozio VTOS Evaluation & Tutorial Guide

14 Version 1.1

3.3 Issuing commands
VTOS indicates that it is connected and ready to accept a new command by displaying “DUT
online” and enabling the “kozio>” command prompt.

Figure 3.1: VTOS ready for command

To issue VTOS a command, type the name of the command at the Command Prompt, and press
the ENTER key. The Command Prompt will be disabled while VTOS is processing your request.
A new Command Line will become available when processing is complete and VTOS is ready
for your next command.

You can practice issuing commands to VTOS by running various tests that exercise the memory
controller and SDRAM on your evaluation platform. Try the following:

1. At the command prompt, type “test.sdram.data0”
kozio> test.sdram.data0

2. Press the ENTER key to submit the command.

Notice that the command displays a progress bar in the lower right corner of the window to
indicate that the test is running. When the test completes, VTOS will re-enable its command
prompt to indicate that it is ready for your next command. You can experiment further with
SDRAM tests using additional VTOS commands: “test.sdram.data1”, and
“test.sdram.address”. As you use these commands, notice that the VTOS command interpreter
does not distinguish between upper case and lower case letters. For instance, to the command
interpreter, test.sdram.data0 and test.SDRAM.data0 are equivalent names for the command
TEST.SDRAM.DATA0.

 Kozio VTOS Evaluation & Tutorial Guide

15 Version 1.1

3.4 Interrupting commands
You can interrupt VTOS command execution at any time. Simply press the ESC key while the
command is running and confirm. The command will stop running immediately, and VTOS will
ready itself for your next command.

3.2: Confirm Abort Dialog

You can practice interrupting commands by following these steps:

1. At the command prompt, type “begin test.sdram.data0 again”

kozio> begin test.sdram.data0 again

This command will cause the SDRAM walking-zeroes test to loop infinitely. If you are
curious, the words begin, and again belong to the Kozio Scripting Language, kScript.
This scripting language is introduced later in this tutorial, and is described completely in
the Kozio kScript Reference.

2. Press the ENTER key to submit the command.

3. Interrupt the command at any time by pressing ESC and confirming.

VTOS stops the SDRAM test and enables its command prompt, indicating it is ready for your
next command.

Note: Interrupting memory tests may leave the data cache disabled. If your platform is running
slower than expected, execute the command “CPU.DCACHE.ENABLE”

3.5 Using command history
When issuing commands to VTOS, it saves these commands in a command history. The VTOS
command history facility gives you the ability to view, edit, and reissue the commands in this
history. Using this facility, you can correct typing errors and significantly reduce repetitive
keystrokes.

To invoke the command history facility, press the UP arrow key on your keyboard. This causes
the latest command in the command history to be displayed at the command prompt. To reissue
this command, simply press the ENTER key. To display the command prior to this one, press the
UP arrow key again. You can continue backward through the command history using the UP

 Kozio VTOS Evaluation & Tutorial Guide

16 Version 1.1

arrow key. Similarly, you can move forward through the command history using the DOWN
arrow key. You can reissue any of these commands by simply pressing the ENTER key while the
command is displayed at the command prompt.

To see this in action, try the following:

1. At the command prompt, type “test.sdram.data0” and press ENTER.

2. At the command prompt, type “test.sdram.data1” and press ENTER.

3. Press the UP arrow key. At the command prompt, VTOS will display the latest
command in the command history: kozio> test.sdram.data1

4. Press the UP arrow key again. At the command prompt, VTOS will display the next
latest command in the command history: kozio> test.sdram.data0

5. Press the ENTER key to reissue the command test.sdram.data0. VTOS runs this
command again.

Continue to practice reissuing commands from the command history by using the UP and DOWN
arrow keys to locate the commands, and then pressing the ENTER key to reissue these commands.
As you practice, notice that only a finite number of commands are saved in the command history.
Once the command history is full, the earliest command is discarded to make room for the latest
command. Notice that once you reach the earliest command in the history, continuing to press
the UP arrow key has no effect. Once you reach the latest command in the history, pressing the
DOWN arrow key exits the command history facility and you are returned to an empty command
prompt. Finally, notice that when you reissue a command, it becomes the latest command in the
command history.

In addition to viewing and reissuing prior commands, you can also edit them, and then reissue
them with these edits. Of course, you can also edit your current command before issuing it to
VTOS. This ability to edit commands is handy for correcting typing mistakes and reducing
repetitive keystrokes. To see it in action, try the following:

1. At the command prompt, type “tezt.sdram.data0”. Notice that ‘test’ is misspelled.

2. Press ENTER to submit the command. VTOS will respond with a message
indicating that it does not recognize the misspelled command.

kozio> tezt.sdram.data0
TEZT.SDRAM.DATA0 ? – No command with this name is defined!

3. Press the UP arrow key once. VTOS will display the command that has the typing
mistake: kozio> tezt.sdram.data0

4. Use the LEFT and RIGHT arrow keys to move the cursor to the location of the
typing error. Position the cursor to the right of the incorrect letter ‘z’.

 Kozio VTOS Evaluation & Tutorial Guide

17 Version 1.1

5. Press the BACKSPACE key to delete the letter ‘z’.

6. Type the letter ‘s’ to correct the misspelled word.

7. Press the ENTER key to submit the corrected command. VTOS will now run the
SDRAM walking-zeroes test.

8. Press the UP arrow key once. VTOS will display the command that you have just
run: kozio> test.sdram.data0

9. Use the BACKSPACE key to delete ‘0’ from the end of the word. Type '1' in its
place: kozio> test.sdram.data1

10. Press the ENTER key to submit the command. VTOS will now run the SDRAM
walking-ones test.

Continue using the SDRAM tests to practice using command history editing. As you practice,
notice how the names of the SDRAM tests all share a common prefix: test.sdram. As you
become familiar with command history editing, you will see that this naming convention allows
you to run the various SDRAM tests with a minimal number of keystrokes. This common-prefix
naming convention is used for all of the various VTOS test commands, and so it is worthwhile
learning how to exploit it to reduce your keystrokes. You will see later in this lesson that you can
also exploit this naming convention while using the online help system.

Table 3.1: Keyboard Shortcuts

Key Function

ENTER Issue command
UP Prior command
DOWN Next command
LEFT Move cursor left
RIGHT Move cursor right
BACKSPACE Delete character left of cursor

3.6 Automating commands
Over time you will identify VTOS command sequences that you need to run frequently or share
with others. Typing these command sequences directly at the command prompt can be tedious
and error-prone. As an alternative, you can save these command sequences in text files on your
host computer. You can then run these command sequences by submitting the file to VTOS via
the “DUT/Execute Script” menu option or simply drag and drop the text file to the Integration
Workbench Output Window or Command Line.

 To see this technique in action, try the following:

 Kozio VTOS Evaluation & Tutorial Guide

18 Version 1.1

1. Create a text file named lesson1.ksc on your host computer using your plain text
editor of choice (Windows Notepad, UNIX vi, etc.). The extension .ksc indicates
a Kozio script file; the .txt extension may also be used.

 Kozio VTOS Evaluation & Tutorial Guide

19 Version 1.1

2. Enter the following contents into the text file:

test.sdram.data0
test.sdram.data1
test.sdram.address

3. Save the text file to a known location on your host computer.

4. Use the Integration Workbench “DUT/Execute Script” menu option or drag and
drop your new text file to the Integration Workbench Output Window or
Command Line to execute the commands. VTOS will run the SDRAM walking
zeroes test, then the SDRAM walking ones test, and finally the SDRAM address
bus test.

Text files containing lists of commands are actually simple examples of kScript scripts. As your
knowledge of VTOS commands and the kScript scripting language grows, your ability to create
sophisticated automated command sequences will grow as well. You will explore the kScript
scripting language in a later lesson.

3.7 Lesson review
1. How does VTOS indicate it is ready to accept a new command?

VTOS enables its command prompt when it is ready to accept a new command.

2. How can you issue commands to VTOS using your keyboard?
To issue a command to VTOS, type the name of the command at the command
prompt and press ENTER on your keyboard.

3. How can you interrupt a command that is running?
To interrupt a command, press the ESC key and confirm in the popup dialog box.

4. What keys can you use to view items in the command history?
The UP arrow and DOWN arrow keys are used to view items in the command
history.

5. What keys can you use to edit and reissue commands in the command history?
The ENTER key is used to reissue commands from the command history. The LEFT,
RIGHT and BACKSPACE keys are used to edit items in the command history.

6. How can you automate frequently used command sequences?
To automate frequently used sequences of commands, save the sequences in a text
file on the host computer. Use the Integration Workbench “DUT/Execute Script”
menu option or simply drag and drop the text file to the Integration Workbench
Output Window or Command Line to execute the commands.

 Kozio VTOS Evaluation & Tutorial Guide

20 Version 1.1

4 Using Test Suites

In this lesson, you will explore VTOS test suites by using them to diagnose a
simulated problem on the target. You will learn how to run test suites, how to
examine the structure of test suites, how to interpret test suite results, and how
to create your own custom test suites from existing VTOS tests.

4.1 About this lesson
In this lesson, you will learn how to do the following:

 Run groups of VTOS tests together as test suites.
 Determine how many tests in a test suite have passed, failed, or aborted.
 Exercise particular hardware components using predefined VTOS suites.
 Generate test suite reports.
 Examine the structure of test suites.
 Create custom test suites that run only the tests that you specify.

This lesson will take approximately 60 minutes to complete.

4.2 Running test suites
You can exercise hardware components on your evaluation platform using the extensive set of
diagnostic tests included with VTOS. You can run the entire suite of tests with the single
command “test.example.long” or by double clicking “Example Test Suite – long version” under
“All Componnts/Suites” in the Command Tree. Issue the command test.example.long to VTOS
now to see these tests in action.

kozio> test.example.long

While the tests are running, notice that each test displays its title, parameters, progress bar, and
Passed/Failed/Aborted results. When the tests finish, VTOS displays final counts of the number
of tests that have passed, failed, and aborted. You can use these final counts to verify that your
evaluation platform has passed all of the tests.

The individual VTOS tests can be collected into groups of tests called test suites. Test suites
themselves can also be grouped together to form master test suites. (test.example.long is an
example of such a master test suite.) VTOS includes a number of predefined test suites that
group tests together according to the hardware components they test. You can learn more about
these predefined test suites by right-clicking on a Suite in the Command Tree and selecting
“Help.” Later in this lesson, you will learn how you can create custom test suites that group tests
according to your specific needs.

The predefined VTOS test suites are named after the hardware components they test, following
the pattern “test.component”. You can run these test suites by directly issuing their names as

 Kozio VTOS Evaluation & Tutorial Guide

21 Version 1.1

commands to VTOS at the Command Line or by double-clicking the associated Suite in the
Command Tree. So, for example, you can issue the command “test.sdram” or double-click
“SDRAM test suite (comprehensive)” in the Command Tree to run the test suite that tests your
target’s SDRAM components. Try using this test suite to exercise the SDRAM and memory
controller on your evaluation platform. You can generate a results report for the last test run (of
the current session) by issuing the command “report test.sdram” or right-clicking on “SDRAM
test suite (comprehensive)” in the Command Tree and selecting “Report.”

4.3 Dissecting test suites
You can examine the structure of test suites using the command “tree suite-name”. (Replace the
italicized text with the actual name of the test suite of interest.) Try examining the “test.sdram”
test suite now by issuing the command “tree test.sdram” to VTOS at the Command Line or by
right-clicking “SDRAM test suite (comprehensive)” in the Command Tree and selecting “Tree.”

kozio> tree test.sdram
TEST.SDRAM (SDRAM Memory Test Suite - FULL)
 TEST.SDRAM.DATA0
 TEST.SDRAM.DATA1
 TEST.SDRAM.DATA.NOISE
 TEST.SDRAM.ADDRESS
 TEST.SDRAM.BYTE
 TEST.SDRAM.WORD
 TEST.SDRAM.BURST.NOISE
 TEST.SDRAM.BURST
 TEST.SDRAM.SSO

VTOS will display the name of the test suite, its title, and the names of the tests it contains. You
can run each test separately by issuing the test’s name as a command to VTOS at the Command
Line. Try running some individual tests from the test.sdram test suite now. Notice that the test
names share a common prefix: the name of the test suite to which they belong. This naming
convention is followed by all VTOS tests and suites, and can save you many keystrokes when
used together with the VTOS command history editing facility.

The structure of the test.sdram suite is simple because it does not contain other test suites. The
test.example.short suite is more complex because it contains other test suites. Try examining the
test.example.short test suite now by issuing the command “tree test.example.short” to VTOS at
the Command Line or by right-clicking “Example Test Suite - short version” in the Command
Tree and selecting “Tree.”

kozio> tree test.example.short

 Kozio VTOS Evaluation & Tutorial Guide

22 Version 1.1

The actual structure of the “test.example.short” suite will vary across evaluation platforms.

TEST.EXAMPLE.SHORT (VTOS Test Suite Example: short version)
 TEST.UART0 (UART 0 Test Suite)
 TEST.UART0.DATA0
 TEST.UART0.DATA1
 TEST.UART0.INT
 TEST.SDRAM.QUICK (SDRAM Memory Test Suite - Quick)
 TEST.SDRAM.DATA0
 TEST.SDRAM.DATA1
 TEST.SDRAM.DATA.NOISE
 TEST.SDRAM.ADDRESS
 TEST.SDRAM.SSO
 TEST.FLASH.QUICK (Flash Test Suite - quick test of all devices)
 TEST.FLASH0.QUICK (Flash Test Suite - Quick test of Flash
Device 0)
 TEST.FLASH0.WALK0
 TEST.FLASH0.ERASE
 TEST.SLIC.SPI (SLIC Register Access Test Suite)
 TEST.SLIC0.SPI
 TEST.SLIC1.SPI
 TEST.PCI (PCI Test Suite)
 TEST.PCI.CONFIG
 TEST.ENET.PHY.SCAN

Notice that VTOS displays the contents of the test suite using several levels of indentation. These
indentation levels depict an outline of the test suite’s structure. At the first level in the outline,
VTOS lists the items contained in the test suite. Since these items happen to be test suites, they
also contain items, which are displayed at the next level in the outline – and so on. Altogether,
the display resembles a formal outline of the test suite, with test suite names serving as category
headings, and test names serving as subtopics under these categories.

Practicing examining test suites using these steps to examine the “test.example.short” suite:

1. Issue the command “tree test.example.short” to VTOS. VTOS will display an
outline of the “test.example.short” suite.

2. Choose a test suite name from those listed at the first level in the outline.

3. Issue the name of your chosen test suite as a command to VTOS. VTOS will run
the tests contained in your chosen test suite.

4. Issue the command “tree suite-name”, replacing the italicized text with the name
of your chosen test suite. VTOS will display an outline of your chosen test suite.

5. Choose a test from those contained in the suite you have chosen. These tests will
be listed below your chosen suite in the outline.

6. Run your chosen test by issuing its name as a command to VTOS. VTOS will run
your chosen test.

 Kozio VTOS Evaluation & Tutorial Guide

23 Version 1.1

4.4 Creating custom test suites
You can create your own custom test suites “on the fly” to suit your specific needs. To create a
custom suite, you only need to supply VTOS with a title for the suite, a command name for the
suite, and a list of tests or suites for the custom suite to run. Your custom suite will automatically
inherit all of the display and report features of the predefined VTOS suites.

\ Comment: Create a group of tests or suites called ‘custom-test-group-name’.
\ Comment: The group contains the n items listed above it.

=> test-name or suite-name
=> test-name or suite-name
=> test-name or suite-name
n TESTS custom-test-group-name

\ Comment: Create a test suite called ‘custom-suite-name’.
\ Comment: The suite contains the items in ‘custom-test-group-name’.

S" Suite Title" => custom-test-group-name SUITE custom-suite-name

Figure 4.1: Custom Suite Template

Use this template as a guide for creating your own custom test suites. Replace the italicized
text with your custom information. The => symbol (EQUALS-GREATER-THAN) is part of the
template, and must be included in your custom file. The space characters after => and s"
also must be included in your custom file. Your test group name and suite name cannot
include space characters.

You can create custom test suites using a plain text editor on your host computer. To create a
custom suite, create a file on your host computer, using the custom suite template in “Figure 4.1:
Custom Suite Template” as a guide. Substitute the italicized text in the template with your
custom information. Finally, send this text file to VTOS via the “DUT/Execute Script” menu
option or simply drag and drop the text file to the Integration Workbench Output Window or
Command Line. You can run your custom suite immediately after submitting it to VTOS by
issuing your chosen test suite name as a command to VTOS.

You can practice creating custom scripts using the following steps to create a custom test suite
called test.custom. This custom suite will run the test “test.flash.erase”, followed by all tests in
the suite “test.sdram”, and then finish with the test “test.flash.walk0”.

1. Using your text editor of choice (Notepad, vi, etc), create a file on your host
computer called custom.ksc. The extension .ksc indicates a Kozio script file;
the .txt extension may also be used.

2. Enter the following content into the text file, using the custom script template as a
guide. Carefully recreate the given text, including all space characters. (Note the
space characters after the symbols S", ", and =>)

 Kozio VTOS Evaluation & Tutorial Guide

24 Version 1.1

=> test.flash.erase
=> test.sdram
=> test.flash.walk0
3 TESTS group.custom

S" My custom suite" => group.custom SUITE test.custom

3. Save the text file to a known location on your host computer.

4. The test script can be easily run by sending the text file to VTOS via the
“DUT/Execute Script” menu option or simply drag and drop the text file to the
Integration Workbench Output Window or Command Line. Once submitted to
VTOS, the new suite is immediately available. You can confirm this by entering
“tree test.custom” at the Command Line.

kozio> tree test.custom
TEST.CUSTOM (My custom suite)
 TEST.FLASH0.ERASE
 TEST.SDRAM (SDRAM Memory Test Suite - FULL)
 TEST.SDRAM.DATA0
 TEST.SDRAM.DATA1
 TEST.SDRAM.DATA.NOISE
 TEST.SDRAM.ADDRESS
 TEST.SDRAM.BYTE
 TEST.SDRAM.WORD
 TEST.SDRAM.BURST.NOISE
 TEST.SDRAM.BURST
 TEST.SDRAM.SSO
 TEST.FLASH0.WALK0

5. Run the custom suite by issuing its name, “test.custom”, as a command to VTOS.

You may be curious about the special symbols contained in the custom suite template. These
symbols are elements of the Kozio scripting language, kScript. In this language, the S" (S-
QUOTE) and " (QUOTE) symbols are used to create strings, character sequences that are stored
together as a unit. The symbol S" (S-QUOTE) marks the start of the character sequence, and the
symbol " (QUOTE) marks the end of the sequence. The characters between S" and " are stored
together to form the string. The symbol => (EQUALS-GREATER-THAN) is used to create a
reference to an item. This reference can then be used to refer to the item without actually
invoking the item. In the template, => is used in front of the test names to refer to the tests
without actually running them.

 Kozio VTOS Evaluation & Tutorial Guide

25 Version 1.1

4.5 Lesson review
1. How can you determine the number of tests in a suite that have passed, failed, or

aborted?

You can determine the number of tests in a suite that have passed, failed or
aborted using the final counts VTOS displays when the suite has finished running.
The final counts show the number of tests that have passed, failed, and aborted.

2. How can you exercise particular hardware components using predefined VTOS
test suites?

You can exercise a particular hardware component using the predefined VTOS
test suite that is named after the component. The VTOS test suites follow the
naming convention “test.component”. For instance, you can exercise flash
memory components using the suite “test.flash”.

3. How can you examine the structure of a given test suite?

You can examine the structure of a given test suite using the command “tree suite-
name”. VTOS will display an outline that depicts the test suite’s structure.

4. How can you generate a report of the latest results for a given test suite?

You can generate a report of the latest results for a given test suite by issuing the
command “report suite-name” to VTOS at the Command Line or by right-clicking
on the Test Suite in the Command Tree and selecting “Report.” VTOS will
display an outline of the test suite, with the latest results of its tests displayed next
to their name.

5. How can you create custom test suites that run only the tests you specify?

You can create custom test suites using a plain text editor on your host computer.
Create a file, using the custom suite template in “Figure 4.1: Custom Suite
Template” as a guide. Supply your custom information in the template, and send
the file to VTOS via the “DUT/Execute Script” menu option or simply drag and
drop the text file to the Integration Workbench Output Window or Command Line.

 Kozio VTOS Evaluation & Tutorial Guide

26 Version 1.1

5 Creating Custom Scripts

In this lesson, you will learn about the VTOS scripting language, kScript, by
using it to create a custom test that exercises your evaluation platform’s DMA
hardware. You will familiarize yourself with the basic principles of the VTOS
command interpreter, and learn many essential constructs available through
the scripting language.

5.1 About this lesson
In this lesson, you will learn how to do the following:

 Use the interpreter’s data stack.
 Define new commands for the interpreter.
 Read and write memory locations.
 Create named constants.
 Reserve a memory location to store variable data.
 Control the execution sequence of commands.
 Use local variables to simplify your new command definitions.
 Create custom diagnostic tests.

This lesson will take approximately 60 minutes to complete.

5.2 Seeing it all work
VTOS understands a programming language called kScript. You can use this scripting language
to program VTOS with custom tests that suit your needs. An example script written in kScript is
provided at the end of this lesson.

The example script creates a custom test that exercises your target’s DMA hardware using a
varying data pattern. If your evaluation platform supports DMA, you can upload this script to
VTOS and run the custom test to see it in action. Simply drag and drop the script into Integration
Workbench and run the script on the command line.

The example script will be used throughout this lesson to illustrate key features of kScript.

5.3 Understanding scripts

You can submit text to VTOS either by entering it manually at the command prompt, or by
dragging and dropping the script into Integration Workbench. When you submit text to VTOS,
VTOS interprets your text. VTOS knows how to interpret two kinds of items: command names
and numbers.

VTOS uses white space characters (SPACE, TAB, or NEW-LINE) to mark the boundaries of
(delimit) command names and numbers in your submitted text. (You use a similar rule to delimit

 Kozio VTOS Evaluation & Tutorial Guide

27 Version 1.1

words when you interpret written English text.) VTOS requires only a single white space
character between language items in your scripts. However, you are encouraged to use white
space liberally in your scripts to visually organize them for human readers. Study the example
script now (see excerpt in Figure 5.1), and notice how it uses white space to visually separate and
organize its components.

 \ verify each word in memory range contains pattern
 \
 \ Return TRUE on the stack if the entire memory range was verified.
 \ Return FALSE on the stack if a word didn't match the pattern
 : pattern.verify { pattern address length | result }
 length bytes.to.words -> length
 TRUE -> result

 length 0
 do
 address read
 pattern <> if
 \ value does not match pattern
 FALSE -> result
 leave \ exit loop
 then
 address word+ -> address
 loop

 result \ place result on stack
 ;

Figure 5.1: Excerpt from custom DMA test showing the visual use of white space

Command names are sequences of letters, digits, punctuation characters, or symbols. Command
names, not surprisingly, are used to name commands. Commands are procedures, and command
names are names for these procedures. VTOS interprets command names in your scripts by
running the commands that they name. Some examples of potential command names are
underlined in the following text:

\ pattern.verify pattern | : ; { } -> do loop <> word+

Numbers are sequences of digits. VTOS interprets numbers in your scripts by converting them
into values and placing these values onto the data stack (more about this in a moment). VTOS
has a few special rules for interpreting numbers. Numbers that are prefixed with the – (MINUS)
character are converted into negative values. Numbers that are prefixed with the characters 0x
(ZERO-x) are interpreted as hexadecimal numbers. Some examples of numbers are given in the
following text (hexadecimal numbers are underlined).

 Kozio VTOS Evaluation & Tutorial Guide

28 Version 1.1

12 –5 0x100 0xc2000000 0xABCD –0x1E

VTOS also supports a special format for interpreting IP address values, used with Ethernet
testing. Numbers that are prefixed with the characters IP/ (IP-SLASH) denote an IP address value.
Some examples of IP address values are given in the following text.

IP/192.168.23.2 ip/255.255.255.0 ip/12.64.101.210

VTOS scripts are simply sequences of command names and numbers. When you submit the
name of a command to VTOS at the command prompt, you are actually submitting a very simple
script for VTOS to interpret: a script consisting of a single command name. VTOS interprets this
simple script by running the command that has that name.

5.4 Using comments
You can annotate your scripts using comments. You are encouraged to use comments judiciously
in your scripts to make them easily understood by others (and yourself!).

You can add comments to your scripts using the command \ (BACKSLASH) or the command //
(SLASH-SLASH). The \ and // commands cause any remaining characters in the text line to be
ignored by VTOS. To add comments to your script, simply follow the \ command with the text
that comprises your comment. VTOS will not attempt to interpret your comment’s text, and will
resume interpreting your script at the beginning of the next text line.

Note that \ and // are a command names, and must be delimited by white space. Observe the
following different text interpretations by VTOS:

kozio> \ My comment
kozio> \My comment
\MY ? - No command with this name is defined!

Study the example script now (see excerpt in Figure 5.2), and notice how it uses comments to
describe important features.

 Kozio VTOS Evaluation & Tutorial Guide

29 Version 1.1

\ SECTION 1: constants and variables ***************************

 0 constant const.dma.channel \ DMA channel
 0xc2000000 constant const.dma.source \ DMA source address
 0xc4000000 constant const.dma.dest \ DMA destination address
 256 value $dma.length \ DMA transfer length (bytes)

\ SECTION 2: pattern fill/verify commands **********************

 \ convert word count on stack to a byte count
 : words.to.bytes 4 * ;

Figure 5.2: Excerpt from custom DMA script showing use of comments

5.5 Using the data stack
VTOS manages an area in memory called the data stack. You can use the data stack as a scratch
area for storing intermediate computations.

VTOS manages items on the data stack using a Last-In-First-Out (LIFO) policy. The data stack
can be compared to a stack of bricks. You build a stack of bricks by placing bricks on top of one
another. When you add the first brick to the stack, it is the top brick in the stack. When you add
another brick to the stack, this brick becomes the top brick in the stack, and the original brick
becomes the second brick from the top. As you continue adding bricks to the stack, the last brick
you add becomes the top brick; the brick that was formerly on top becomes the second brick; the
brick that was formerly the second brick becomes the third – and so on. Now, when you remove
bricks from the stack, you begin by removing the top brick from the stack. The brick that was
second from the top becomes the top brick; the brick that was third from the top becomes the
second brick – and so on. Notice that as you remove bricks from the stack, the last brick placed
on the stack (Last-In) is the first brick removed (First-Out).

You can remove all items from the data stack using the command 0sp (ZERO-sp). Run this
command now to begin with an empty data stack.

kozio> 0sp

Recall that VTOS interprets numbers in your scripts by converting these numbers into values,
and placing the values onto the data stack. So, you can place values onto the stack by simply
giving VTOS numbers to interpret. You can see this in action by trying the following now:

 Kozio VTOS Evaluation & Tutorial Guide

30 Version 1.1

kozio> 1492
kozio> .s
Stack<10> 1492

kozio> 1776
kozio> .s
Stack<10> 1492 1776

kozio> .
1776

kozio> .s
Stack<10> 1492

The .s (PERIOD-S) command displays the stack. Notice that the .s (PERIOD-S) command displays
the bottom of the stack first (left-most), and the top of the stack last (right-most). Notice that the.
(PERIOD) command removes the top value from the stack and displays it.

Generally, you put values on the stack to supply inputs to commands that operate on the values.
And generally, commands put the results of their operations on the stack for use by other
commands. You can use the + (PLUS) command, for instance, to calculate the sum of two values
you have put on the stack. The command removes your values from the stack, calculates their
sum, and puts the sum on the stack. Similarly, you can calculate the product of two values using
the * (ASTERISK) command. Follow the steps below to use these commands to calculate the
expression: 704 (1776 + 1492)

1. Remove all items from the data stack.

kozio> 0sp

2. Calculate the sum in the expression.

kozio> 1776 1492 +

 VTOS interprets the text from left to right. First, VTOS interprets the text 1776,
converting it to its numeric value and placing this value on the stack. Next, VTOS
interprets the number 1492, converting it to a value and placing this value on the
stack. Finally, VTOS interprets the command name + by running its associated
command.

3. Display the stack to see this intermediate result.

kozio> .s
Stack<10> 3268

 Notice that the + command has removed its inputs (1776 and 1492) from the stack,
and has placed their sum on the stack.

 Kozio VTOS Evaluation & Tutorial Guide

31 Version 1.1

4. Calculate the product in the expression.

kozio> 704 *
kozio> .
2300672

First, VTOS interprets the number 704, converting it to a value and placing this value
on the stack. (The stack now has two items. The bottom of the stack holds the result
of the calculation performed in step 3.) Next, VTOS interprets the command name *
by running its associated command. The * command removes its two inputs from the
stack, and places their product on the stack.

You may recognize the notation in step 2 above as postfix notation, a style of notation used by
popular calculators. Postfix is a notation in which operators are placed to the right of their
operands, and operations of higher precedence are listed to the left of operations of lower
precedence. Postfix notation allows expressions to be notated unambiguously without
parentheses. Try translating expression 5 (4 + 3 (1 + 2)) into postfix notation now. Then, submit
your translation to VTOS to verify it.

kozio> 1 2 + 3 * 4 + 5 * .
65

5.6 Defining new commands
You can define new commands that perform the procedures you specify, and run these
commands using the names you have given them.

You can define new commands using the : (COLON) and ; (SEMI-COLON) commands. You use
these commands to mark the beginning and end of a command’s definition.

: new-command-name
 new command’s procedure ...
;

The : and ; commands create a command with the name new-command-name. You can use any
sequence of command names and numbers to define your new command’s procedure. Once you
have defined your new command, you can use its name new-command-name to invoke its
procedure. VTOS will interpret new-command-name by running the procedure you have defined.
You can see this in action by performing the following steps to create new commands called
my.sdram1 and my.sdram2 and my.tests.



 Kozio VTOS Evaluation & Tutorial Guide

32 Version 1.1

kozio> : my.sdram1 test.sdram.data1 test.sdram.data0 ;
kozio> my.sdram1
kozio> : my.sdram2 test.sdram.byte ;
kozio> my.sdram2
kozio> : my.tests my.sdram1 my.sdram2 ;
kozio> my.tests

Notice how the my.tests command uses the my.sdram1 and my.sdram2 commands in its
definition. You can use your commands to compose new commands, building layers of
commands that perform evermore-sophisticated procedures.

Your commands can take inputs from the data stack, perform computations using these inputs,
and leave the results of these computations on the stack. You can see this in action by following
these steps to create a command called add-four that adds four to the value on the top of the data
stack:

kozio> 0sp
kozio> : add-four 4 + ;
kozio> 1
kozio> .s
Stack<10> 1
kozio> add-four .s
Stack<10> 5
kozio> add-four add-four .s
Stack<10> 13

You should now be able to understand the words.to.bytes and bytes.to.words commands defined
by the example script (see excerpt in Figure 5.3). Study these commands to strengthen your
understanding of commands and the data stack.

 \ convert word count on stack to a byte count
 : words.to.bytes 4 * ;

 \ convert byte count on stack to a word count, rounding up
 : bytes.to.words 3 + 4 / ;

Figure 5.3: Excerpt from custom DMA test showing the definition of some commands that use the data stack

5.7 Using input and output functions
You can read and write addresses in your processor’s virtual address space. You can perform
these operations using different access widths.

 Kozio VTOS Evaluation & Tutorial Guide

33 Version 1.1

You can read from an address using the read (read.halfword,read.byte) command. The read
command reads the word stored at the given address, and places this value on the data stack. The
read command requires an input from the stack – the address of the location to read.

You can write a value to a location using the write (write.halfword, write.byte) command. The
write command requires two inputs from the stack – the address to write and the value to write.
Note that the write command assumes that the address is the top item on the stack, and the value
is the next item on the stack.

You can practice using the read and write commands now by following these steps:

1. Display 8 words starting at address 0xC2000000.

kozio> 0xc2000000 32 dump
0xC2000000 : 00000000 00000000 00000000 00000000
0xC2000010 : 00000000 00000000 00000000 00000000

2. Write a pattern to addresses 0xC2000000 and 0xC4000000.

kozio> 0x55555555 0xc2000000 write
kozio> 0xaaaaaaaa 0xc2000004 write
kozio> 0xc2000000 32 dump
0xC2000000 : 55555555 AAAAAAAA 00000000 00000000
0xC2000010 : 00000000 00000000 00000000 00000000

3. Read the value at address 0xC2000000, and place the value on the stack.

kozio> 0xc2000000 read

4. Display contents of stack in hexadecimal notation.

kozio>.hex
0x55555555

You can see real examples of read and write being used in the definitions of the pattern.fill and
pattern.verify routines of the example script (see excerpt in Figure 5.5). These commands use the
read and write commands in repetitive loops to fill memory ranges with patterns and verify that
memory ranges contain patterns.

5.8 Naming constants
You can give descriptive names to important constants. You can then use these descriptive
names instead of using numbers to specify these constants. This can make your scripts easier to
understand, and easier to maintain.

You can give a name to a constant using the command constant constant-name. Your constant-
name parameter can be any sequence of characters, digits, punctuation, and symbols. The
constant command creates a command with the name constant-name that can be used in place of
a given number in your script.

 Kozio VTOS Evaluation & Tutorial Guide

34 Version 1.1

The constant command requires an input from the data stack – the value that you want to
associate with constant-name. Typically, you supply this value to the constant command directly
by preceding it with a number in your script.

Once you have defined a constant, you can access its value by simply typing the constant’s name.
Observe in the following example that you can use constants just as you numbers in your scripts:
(If you have not uploaded the custom DMA script to VTOS, do so now. The script defines
constants that are used by this procedure.)

1. Place the value of the constant const.dma.source on the stack and display it.

kozio> const.dma.source
kozio> .hex
0xC2000000

2. Use the DMA source constant as part of a dump command.

kozio> const.dma.source 32 dump
0xC2000000 : 55555555 AAAAAAAA 00000000 00000000
0xC2000010 : 00000000 00000000 00000000 00000000

kozio> 0x11111111 const.dma.source write
kozio> const.dma.source 32 dump
0xC2000000 : 11111111 AAAAAAAA 00000000 00000000
0xC2000010 : 00000000 00000000 00000000 00000000

You can see real examples of the constant command in the example script (see excerpt in Figure
5.4). Notice that the script assigns names to DMA source and destination addresses used by the
test: const.dma.source and const.dma.dest. These addresses are then referred to by these names in
the remainder of the script, making the script easier to understand. Notice that you can easily
change the addresses used by the test by simply changing the numbers that assign values to these
names.

\ SECTION 1: constants and variables ***************************

 0 constant const.dma.channel \ DMA channel
 0xc2000000 constant const.dma.source \ DMA source address
 0xc4000000 constant const.dma.dest \ DMA destination address
 256 value $dma.length \ DMA transfer length (bytes)

Figure 5.4: Excerpt from custom DMA test showing use of constants and variables

5.9 Creating variables
You can reserve and name memory locations for storing variable data. You can then refer to
these locations by name.

 Kozio VTOS Evaluation & Tutorial Guide

35 Version 1.1

You can reserve and name a memory location using the command “value variable-name”. Your
variable-name parameter can be any sequence of characters, digits, punctuation, and symbols.
The value command creates a command with the name variable-name that can be used to refer to
the memory location you have reserved.

The value command requires an input from the data stack – the initial value that you want to
store to the memory location you are reserving. Typically, you supply this initial value to the
value command directly by preceding it with a number in your script.

You access the value of a variable by typing the variable’s name directly at the command prompt.
To change the value of a variable, you use the command “->” (DASH-GREATER-THAN). Practice
creating a variable and changing its value now:

1. Create a new variable called $dma.length with an initial value of 256.

kozio> 256 value $dma.length

2. Place the current value of the variable $dma.length on the stack and display it to

the console.

kozio> $dma.length
kozio> .hex
0x100

3. Modify the value of $dma.length and confirm the change.

kozio> 0x80000 -> $dma.length
kozio> $dma.length
kozio> .hex
0x80000

You can see a real example of the value command in the example script (see excerpt in Figure
5.4). Notice that the script assigns the name $dma.length to a memory location that holds the
DMA transfer length used by the test. The script makes this value a variable so that the transfer
length used by the test can be changed by changing the value stored in this location. Notice that
this allows the test behavior to be changed without changing the script. On the other hand,
changing the source and destination addresses used by the test requires changing the script,
because they have been defined as constants.

5.10 Managing control flow
You can control the execution sequence of commands in your commands’ procedures. Your
commands can use loops to accomplish repetitive procedures. Your commands can perform
branches to execute procedures based on conditions.

You can use the “begin” and “again” commands together to mark the beginning and end of
command sequences that you want to repeat endlessly.

 Kozio VTOS Evaluation & Tutorial Guide

36 Version 1.1

begin
repeated command sequence

again

You can see these loop commands in action by issuing the following command to VTOS to
repeat the command test.sdram.data0 endlessly. (You can still interrupt the loop using ESC).

kozio> begin test.sdram.data0 again

You can use the do and loop commands together to mark the beginning and end of command
sequences that you want to repeat a limited number of times.

command sequence
do

repeated command sequence
loop
command sequence

The do command requires two values from the data stack – a loop limit and a loop index. These
values are placed on the stack by the command sequence preceding the do command. (The do
command assumes that the loop index is the top value on the stack.)

If the loop index is less than the loop limit, then the repeated command sequence is executed,
and the loop index is incremented. This process continues until the loop index equals the loop
limit. Then, execution proceeds to the command sequence following the loop command.

You can make use of the loop index in the repeated command sequence to compute values. You
access the loop index using the “I” command. The “I” command places the current value of the
loop index onto the top of the stack. You can see the do, loop, and I command in action by
issuing the following commands to VTOS to compute the first five multiples of the number ten:

kozio> 5 0 do I 1 + 10 * loop
kozio> .s
Stack<10> 10 20 30 40 50

You can see real examples of the do and loop commands being used in the example script (see
excerpt in Figure 5.5).

You can create branches using the “if” and “then” commands. You use these commands together
to mark the beginning and end of a conditional command sequence that executes when a
condition has been met.

command sequence
if

conditional command sequence
then
command sequence

Optionally, you can use the “else” command together with the “if” and “then” commands to
specify an alternate command sequence that executes when the condition has not been met.

 Kozio VTOS Evaluation & Tutorial Guide

37 Version 1.1

command sequence
if

conditional command sequence
else

alternate command sequence
then
command sequence

The “if” command requires an input from the data stack – a value indicating whether a condition
has been met. This value is placed onto the stack by the command sequence preceding the “if”
command. If any bit in this value is non-zero, the conditional command sequence is executed.
Then, execution proceeds to the command sequence following the “then” command. If all bits in
this value are zero, the alternate command sequence is executed. Then, execution proceeds to the
command sequence following the “then” command.

 \ write each word in memory range with pattern
 : pattern.fill { pattern address length }
 length bytes.to.words -> length

 length 0
 do
 pattern address write
 address word+ -> address
 loop
 ;

 \ verify each word in memory range contains pattern
 \
 \ Return TRUE on the stack if the entire memory range was verified.
 \ Return FALSE on the stack if a word didn't match the pattern
 : pattern.verify { pattern address length | result }
 length bytes.to.words -> length
 TRUE -> result

 length 0
 do
 address read
 pattern <> if
 \ value does not match pattern
 FALSE -> result
 leave \ exit loop
 then
 address word+ -> address
 loop

 result \ place result on stack
 ;

Figure 5.5: Excerpt from custom DMA test showing use of control flow commands

 Kozio VTOS Evaluation & Tutorial Guide

38 Version 1.1

You can use the value comparison commands “=” (“is equal to”) or “<>” (“is not equal to”)
together with the “if” and “then” commands to execute command sequences when two values
are equal or not equal. You can see a real example of this usage in the example script (see
excerpt in Figure 5.5). Notice that the pattern.verify command uses the “<>”, “if”, and “then”
commands to detect pattern mismatches.

5.11 Using local variables
You can use local variables in your commands to simplify managing the intermediate values in
your commands’ computations. You use the “{“ (LEFT-CURLY-BRACE), “|” (PIPE), and “}” (RIGHT-
CURLY-BRACE) commands to define local variables for your command.

{ stack-initialized-variables ... | zero-initialized-variables ... }

Stack initialized local variables are assigned values from the data stack – input parameters sent to
your command. Zero initialized local variables are a temporary memory location reserved to hold
a value needed by your command and are automatically initialized to the value zero. You specify
multiple local variables by separating the variable names with spaces. You can define stack-
initialized local variables only, zero-initialized local variables only, or both. If you only need
stack-initialized local variables, the use of the “|” command is optional. However, if you define
only zero-initialized local variables, you must precede the first variable name with the “|”
command.

: new-command-1
{ param-1 param-2 | zero-init-1 zero-init-2 }
 command procedure
;

: new-command-2
{ param-1 param-2 param-3 }
 command procedure
;

: new-command-3
{ | zero-init-1 }
 command procedure
;

You access the value of a local variable by typing the local variable’s name directly in your
script. To change the value of a local variable, you use the command “->” (DASH-GREATER-
THAN). Try the following steps below to see how to use local variables:

1. Define a new command that has one stack-initialized local variable and one zero-
initialized variable. Type the following at the VTOS prompt.

 Kozio VTOS Evaluation & Tutorial Guide

39 Version 1.1

kozio> : sum { n | accum }
1 n + -> n
n 0 do
 accum i +
 -> accum
loop
accum
;

2. Execute the command and display the results.

kozio> 3 sum
kozio> .
6
kozio> 25 sum
kozio> .
325

If your command uses local variables, the “{“ command must be the first command in your new
command’s procedure. You can see further examples of both initialized and uninitialized local
variables in the definitions of the “pattern.fill” and “pattern.verify” routines of the example script
(see excerpt in Figure 5.5). Notice that using local variables enhances the readability of your
scripts.

5.12 Creating custom tests
You can create custom diagnostic tests using commands that manage your tests’ control flow.
Your custom tests will automatically inherit the display characteristics of predefined VTOS tests,
including progress bars and Pass/Fail/Abort indicators.

You use the “test.begin”, “test.while”, and “test.repeat” commands to define your test
procedure.

s" Test-Name-Text"
test-iterations test.begin
 command-sequence-1
 test.while

 command-sequence-2
 test.while

 ...

 command-sequence-N
 test.while
test.repeat

The test procedure is defined as the entire sequence of commands between the “test.begin” and
“test.repeat” commands. The “test.begin” command requires three inputs from the data stack –
a string specifying the name of the test (which occupies two inputs on the data stack) and a value
indicating how many times to run the test procedure.

 Kozio VTOS Evaluation & Tutorial Guide

40 Version 1.1

The “test.while” command conditionally exits the test procedure and requires one input from the
data stack – a value indicating whether the preceding command-sequence was successful. If any
bit in this value is non-zero, execution continues to the next command-sequence (or to the
“test.repeat” command). If all bits in this value are zero, the test is failed and execution
continues following the “test.repeat” command.

When execution reaches the “test.repeat” command (because all intermediate “test.while”
checks within the test procedure passed), if the test loop index is less than the test iterations, then
the test procedure is executed again. This process continues until the test loop index equals the
test iteration count. Then, VTOS displays a PASSED indication and execution proceeds to the
command sequence following the “test.repeat” command.

You can access the current test loop index in the test procedure using the test.loop.count
command. The “test.loop.count” command places the current value of the test loop index onto
the top of the data stack.

You can see a real example of a custom diagnostic test in the example script (see excerpt in
Figure 5.6). As you study this example, notice that the test procedure will run 32 times. Each
pass through the test procedure performs a DMA memory transfer with a new data pattern,
verifying the source and destination memory areas before and after the DMA transfer. You can
see that by relying on previously defined commands, the actual test procedure becomes quite
simple.

\ SECTION 4: Custom DMA Pattern Test ***************************
: test.dma.pattern { | pattern }

 s" VTOS Tutorial Lesson 3: Custom DMA test"
 32 TEST.BEGIN

 1 TEST.LOOP.COUNT lshift -> pattern \ shift bit left

 pattern fill.and.verify.source
 TEST.WHILE pattern invert fill.and.verify.destination
 TEST.WHILE ...dma.transfer...
 TEST.WHILE pattern verify.destination
 TEST.WHILE pattern verify.source
 TEST.WHILE

 TEST.REPEAT
 ;

Figure 5.6: Excerpt from custom DMA test showing use of test procedure commands

Now, run the custom DMA test using the command test.dma.pattern. Observe the differences in
the test execution time as you experiment with changing the value of the variable $dma.length
and rerunning the test.

 Kozio VTOS Evaluation & Tutorial Guide

41 Version 1.1

5.13 Custom DMA script

\ This script creates a test named 'test.dma.pattern' that
\ tests DMA hardware using a varying data pattern.
\
\ The test performs these steps:
\
\ (1) Fill DMA source with pattern
\ (2) Verify DMA source contains pattern
\ (3) Fill DMA destination with inverse of pattern
\ (4) Verify DMA destination contains inverse of pattern
\ (5) Initiate DMA transfer. Wait for transfer to complete
\ (6) Verify DMA destination contains pattern
\ (7) Verify DMA source contains pattern
\
\ The test stops and reports a failure if an error is detected
\ after any of these steps.
\
\ The test iterates 32 times, varying the data pattern on each
\ iteration using a "walking 1" data pattern.
\
\ The DMA source and destination addresses are fixed.
\ The DMA data length is variable, with a default of 256 bytes.
\ You can change the data length like this:
\
\ Example: use 8 KB transfer length
\
\ kozio> 8192 -> $dma.length
\ kozio> test.dma.pattern

\ SECTION 1: constants and variables ***************************

 0xc2000000 constant const.dma.source \ DMA source address
 0xc4000000 constant const.dma.dest \ DMA destination address
 256 value $dma.length \ DMA transfer length (bytes)

\ SECTION 2: pattern fill/verify commands **********************

 \ convert word count on stack to a byte count
 : words.to.bytes 4 * ;

 \ convert byte count on stack to a word count, rounding up
 : bytes.to.words 3 + 4 / ;

 \ write each word in memory range with pattern
 : pattern.fill { pattern address length }
 length bytes.to.words -> length

 length 0
 do
 pattern address write
 address word+ -> address
 loop

 Kozio VTOS Evaluation & Tutorial Guide

42 Version 1.1

 ;

 \ verify each word in memory range contains pattern
 \
 \ Return TRUE on the stack if the entire memory range was verified.
 \ Return FALSE on the stack if a word didn't match the pattern
 : pattern.verify { pattern address length | result }
 length bytes.to.words -> length
 TRUE -> result

 length 0
 do
 address read
 pattern <> if
 \ value does not match pattern
 FALSE -> result
 leave \ exit loop
 then
 address word+ -> address
 loop

 result \ place result on stack
 ;

\ SECTION 3: DMA source/destination fill/verify commands *******

 \ verify DMA destination address range contains pattern
 : verify.destination { pattern }
 pattern const.dma.dest $dma.length pattern.verify
 ;

 \ fill DMA destination address range with pattern, and verify
 : fill.and.verify.destination { pattern }
 pattern const.dma.dest $dma.length pattern.fill
 pattern verify.destination
 ;

 \ verify DMA source address range contains pattern
 : verify.source { pattern }
 pattern const.dma.source $dma.length pattern.verify
 ;

 \ fill DMA source address range with pattern, and verify
 : fill.and.verify.source { pattern }
 pattern const.dma.source $dma.length pattern.fill
 pattern verify.source
 ;

 \ start DMA transfer from DMA source to DMA destination,
 \ using VTOS DMA transfer routine to manage the transfer
 \
 \ Return TRUE on the stack indicating if the DMA transfer
 \ completed successfully. Return FALSE on the stack if
 \ the DMA transfer timed out.

 : ...dma.transfer... { | length }

 Kozio VTOS Evaluation & Tutorial Guide

43 Version 1.1

 $dma.length bytes.to.words words.to.bytes -> length
 const.dma.channel const.dma.source const.dma.dest length dma.transfer
 ERRORLEVEL CONST.TEST.PASSED =
 ;

\ SECTION 4: Custom DMA Pattern Test ***************************
 : test.dma.pattern { | pattern }

 s" VTOS Tutorial Lesson 3: Custom DMA test"
 32 TEST.BEGIN

 1 TEST.LOOP.COUNT lshift -> pattern \ shift bit left

 pattern fill.and.verify.source
 TEST.WHILE pattern invert fill.and.verify.destination
 TEST.WHILE ...dma.transfer...
 TEST.WHILE pattern verify.destination
 TEST.WHILE pattern verify.source
 TEST.WHILE

 TEST.REPEAT
 ;

5.14 Lesson review
1. What characters delimit command names and numbers in your scripts?

White space characters (SPACE, TAB, or NEW-LINE) delimit command names and
numbers in your submitted text and scripts.

2. How can you annotate your scripts, making them easier to understand?

You can add comments to your scripts using the command \ (BACKSLASH)
followed by the text that comprises your comment.

3. How can you supply inputs to commands?

You can put values on the data stack to supply inputs to commands that operate
on the values. VTOS manages items on the data stack using a Last-In-First-Out
(LIFO) policy.

4. How can you define new commands?

You can define new commands using the : (COLON) and ; (SEMI-COLON)
commands. These commands mark the beginning and end of a command’s
definition.

5. How can you read and write memory?

You can read from a memory address using the read, read.halfword, and read.byte
commands. You can write a value to memory using the write, write.halfword, and
write.byte commands.

 Kozio VTOS Evaluation & Tutorial Guide

44 Version 1.1

6. How can you give descriptive names to important numbers used in your scripts?

You can give a name to constant numbers using the command constant constant-
name.

7. How can you reserve a memory location to store a value?

You can reserve and name a memory location using the command value variable-
name.

8. How can you repeat the execution of a command sequence?

You can use the begin and again commands together to mark the beginning and
end of a command sequence you want to repeat endlessly. You can use the do and
loop commands together to mark the beginning and end of command sequences
that you want to repeat a limited number of times.

9. How can you conditionally execute command sequences?

You can create branches using the if and then commands. You use these
commands together to mark the beginning and end of a conditional command
sequence that executes when a condition has been met.

10. How can you simplify management of intermediate values needed in your
scripts?

You can use local variables in your commands to simplify managing the
intermediate values in your commands’ computations. You can define both
initialized local variables and uninitialized local variables using the commands
{ (LEFT-CURLY-BRACE), | (PIPE), and } (RIGHT-CURLY-BRACE).

11. How can you create your own custom test procedures?

You can create custom diagnostic tests using the test.begin, test.while, and
test.repeat commands. The test.begin and test.repeat commands mark the
beginning and end of your test procedure. The test.while command conditionally
exits the test procedure

