
IntLinInc3D package

User manual

Contents:
1. About the package
2. Purpose

3. Structure
4. Properties of visualized sets

5. Notation in figures
6. Recommendations on preparation and analysis of figures

6.1. Tools of preparation and analysis

6.2. How to make a diamond

6.3. Unbounded sets

6.4. Thin (meager), but important

6.5. Empty set and the whole space

6.6. How to test the presence of cavity

7. How to install and operate
8. References

1 About the package

Necessary software is MATLAB R©.
The package implements the boundary intervals method [1].

Author of IntLinInc3D and the boundary intervals method is Irene A. Sharaya
(Institute of Computational Technologies SB RAS, Novosibirsk).

The package IntLinInc3D is free software. Its source codes are open.
Date of the first release is September 1, 2014.

The latest release is available from http://interval.ict.nsc.ru/Programing

and http://interval.ict.nsc.ru/sharaya .

1

http://interval.ict.nsc.ru/Programing
http://interval.ict.nsc.ru/sharaya

2 Purpose

The package IntLinInc3D is intended to visualize various solution sets for

interval and point (i.e., noninterval) systems of relations. These systems and
solution sets are listed below.

Interval systems:

1) the set of formal solutions for the interval inclusion

Cx ⊆ d (1)

in Kaucher arithmetic, where
C = [C,C] ∈ KR

m×3 is an interval matrix with given endpoints C and C;
x ∈ R

3 is a real vector of unknowns;

d = [d, d] ∈ KR
m

is an interval vector with given endpoints d and d;
m ∈ N is a natural (positive integer) number;

KR = {[z, z] | z, z ∈ R} is the set of Kaucher intervals (in contrast to
the set of classical intervals IR = {[z, z] | z, z ∈ R, z ≤ z},

the requirement z ≤ z is absent for Kaucher intervals);

KR = {[z, z] | z, z ∈ R} is the set of Kaucher intervals over the extended

real axis R = R ∪ {−∞,∞};
multiplication C by x is standard for Kaucher arithmetic;

the inclusion “⊆” is defined by inequalities Cx ≥ d and Cx ≤ d, which

are understood componentwise, Cx and Cx are the left and right

endpoints of the interval vector Cx = [Cx,Cx] respectively;

2) all possible AE-solution sets for the interval system of equations

Ax = b, A ∈ IR
m×3, b ∈ IR

m, m ∈ N; (2)

3) all possible quantifier solution sets for the interval system of inequalities

Ax ≥ b, A ∈ IR
m×3, b ∈ IR

m, m ∈ N, (3)

or

Ax ≤ b, A ∈ IR
m×3, b ∈ IR

m, m ∈ N; (4)

2

4) various quantifier solution sets for the interval mixed system of linear
equations and inequalities

Ax σ b, A ∈ IR
m×3, b ∈ IR

m, σ ∈ {=,≥,≤}m, m ∈ N; (5)

specifically, we mean all those solutions for which quantifier description has

AE-order of quantifiers for rows with the relation “=”.

Point systems:

1) the solution set for the system

Ax+ B|x| ≥ c, A, B ∈ R
m×3, c ∈ R

m, m ∈ N; (6)

2) the solution set for the system

|Ax− c| ≤ B|x|+ d, A,B ∈ R
m×3, c, d ∈ R

m, m ∈ N; (7)

3) the solution set for system of linear equations, inequalities and two-sided

inequalities





A(1)x= b(1), A(1) ∈ R
m1×3, b(1) ∈ R

m1, m1 ∈ N ∪ {0},

b(2) ≤A(2)x, A(2) ∈ R
m2×3, b(2) ∈ R

m2, m2 ∈ N ∪ {0},
A(3)x≤ b(3), A(3) ∈ R

m3×3, b(3) ∈ R
m3, m2 ∈ N ∪ {0},

b(4) ≤A(4)x≤ b(5), A(4) ∈ R
m4×3, b(4), b(5) ∈ R

m4, m4 ∈ N ∪ {0},

(8)

with m1 +m2 +m3 +m4 > 0.

In [2], it is shown that each solution set listed above can be represented as the

set of formal solutions to the inclusion (1). Therefore, the visualization of this
set play a key role in the package, which is reflected in the title IntLinInc3D,
i. e. Interval Linear Inclusion. The last letters 3D mean that the dimension of

the unknowns is 3 (x ∈ R
3).

Remark. The package IntLinInc3D is aimed at illustrating simple exam-
ples (in publications, education, etc.), so it works most correctly when the initial

data are integers and lie in the range [−102, 102].

3

3 Structure

The main function of the package is Cxind3D. It is designed to visualize the set

of formal solutions for the inclusion (1).

The functions used in the main one are

AddV, ChooseDrawingBox, DrawHedrons,

BoundaryIntervals, ClearRows, Intervals2Path,

ChangeVariables, ClearZeroRows, NonRepeatRows.

The package contains auxiliary functions for the problems equivalent to (1).
The choice of the auxiliary function depends on which of the systems (2)–(7) is

to be processed and, for interval systems, on the solution type. The names of
the auxiliary functions reflect this dependency.

The names of the auxiliary functions for the interval systems

solution type
system

weak tolerable controllable strong quantifier

(2) Ax = b EqnWeak3D EqnTol3D EqnCtl3D EqnStrong3D EqnAEss3D

(3) Ax ≥ b GeqWeak3D GeqTol3D GeqCtl3D GeqStrong3D GeqQtr3D

(4) Ax ≤ b LeqWeak3D LeqTol3D LeqCtl3D LeqStrong3D LeqQtr3D

(5) Ax σ b MixWeak3D MixTol3D MixCtl3D MixStrong3D MixQtr3D

The solution types from the table above, except the quantifier type, are de-
fined in IntLinInc2D User manual. A complete set of definitions is in [2], and
it generalizes the terminology from [3, 4]. Note that the auxiliary functions

EqnAEss3D and MixQtr3D are designed only for such quantifier solutions which
have AE-order of quantifiers in rows with the relation “=”.

For point systems, there are two auxiliary functions: the function Abs13D

is intended for the system (6) with one absolute value operation, the function

Abs23D is designed for the system (7) which contains two such operations.

We shall refer to the main and auxiliary functions of the package as launch

functions. Arguments of the launch functions are described in comments within
their bodies. To see these descriptions in MATLAB command window, use
command help, for example,

>> help EqnWeak3D

4

http://interval.ict.nsc.ru/Programing/MCodes/IntLinInc2D.pdf

4 Properties of visualized sets

Let us denote by H the visualized solution set and by pok (piece in k-th orthant)

the intersection of H with the k-th orthant of R3, k ∈ {1, 2, . . . , 8}.
A non-empty set M ⊆ R

n is said to be bounded, if there exists λ ∈ R such

that, for each point x of the set M , the distance from x to the origin is not
greater than λ. The empty set is considered as bounded. Each set pok, as H

in whole, may be bounded or not depending on the input data of the
corresponding system (1)–(8).

By polyhedron in R
n, we call a subset of Rn that may be represented as a

solution set to a system of linear inequalities

Ax ≥ b, A ∈ R
m×n, x ∈ R

n, b ∈ R
m, m, n ∈ N.

A polytope is a bounded polyhedron, and a polyhedral set is a union of finite
number of polyhedrons. Note that the space R

n is a polyhedron, while the
empty set is a polytope. All the sets pok, k = 1, . . . , 8, are polyhedrons.

The set H is a polyhedral set.
A set M is said to be connected, if any two points from it can be joined

by a path lying in M . A connected component of the set is its connected
subset that is maximal by inclusion. Each pok is connected because it is

convex. The set H may be connected or disconnected and can have
up to 8 connected components. (H has 8 connected components if all pok,

k = 1, . . . , 8, are nonempty and pairwise disjoint.)
Dimension of a nonempty polyhedron is dimension of its affine hull. The

dimension of the empty set is assumed to be −1. We call a polyhedron bodily,

if it has inner points, and thin (or meager) otherwise. The dimension of a
separate piece pok of the set H may be from −1 (for the empty set)

to 3 (for bodily polyhedron).
The set H can have a cavity. The definition and examples of the sets

with cavities are in Section 6.6.
A hyperplane P in R

n is named supporting hyperplane of a closed set M , if

P and M have at least one common point, and M is contained in a closed half-
space bounded by P . By support of a polyhedron M , we call the intersection
of M with any its supporting hyperplane. It is obvious that supports of a

polyhedron are polyhedrons too.

5

Each set pok (as well as every polyhedron in R
3) can have supports

whose dimensions are 0, 1 or 2. The support of the dimension 0 is a vertex,
the support of the dimension 1 is an edge, the support of the dimension 2 is a

face of pok.
We say that a point of R3 is an orientation point (of H), if it is a vertex of

some pok, k ∈ {1, 2, . . . , 8}. The set H is empty if and only if it has no
orientation points.

5 Notation in figures

To work with figures of the set H in R
3, we introduce the following definitions.

A cut box is a box (i.e. rectangular parallelepiped with edges parallel to the

coordinate axes) such that its intersection with the set H is to be visualized by
the package IntLinInc3D. There exist two types of cut boxes depending on the
type of the cut: automatic cut box is calculated by the package IntLinInc3D,

while prescribed cut box is inputted by the user.
Let us denote by p̃ok the intersection of the set pok with the cut box.

A real face is a face of p̃ok lying on the boundary of the set H.
An automatic cut face is a face of p̃ok lying on the boundary of the automatic

cut box.
A prescribed cut face is a face of p̃ok lying on the boundary of the prescribed

cut box.
A face from orthant is a face of p̃ok arising from the intersection of H with

the k-th orthant. A face from orthant lies neither on the boundary of the set

H nor on the boundary of the cut box.

Notation in figures: t is an orientation point,

is a real face,

is an automatic cut face,

is a prescribed cut face.

Faces from orthants are not visible in figures of the set H.

6

6 Recommendations

on preparation and analysis of figures

How to choose and run a launch function according to the system (1)–(8)

and their solution types is explained in IntLinInc2D User manual. This is
why such explanation is omitted here. We mention only that, in the case of
three unknowns, the launch functions have input arguments OrientPoints,

transparency and varargin, but do not have output arguments P1, P2, P3, P4.
The package IntLinInc3D produces the following information about the so-

lution set H for users:
1) messages in command window, in particular the message about the number

of orientation points;
2) the list of orientation points as output argument of the launch functions;

3) a figure of the solution set in a special window.

The number of orientation points and their list are objective geometric char-

acteristics of the solution set. They do not depend on what part of the solution
set is visualized in the figure. We do not explain how to get the list of orien-
tation points because this is standard MATLAB way of accessing the output

arguments.
The situation with figures is much more complicated. In the case of two un-

knowns, the figure produced by the package IntLinInc2D gives full and explicit
information about the geometric structure of the solution set. On the contrary,

in the case of three unknowns, the figure produced by the package IntLinInc3D
is only a rough draft for analysis of the geometric structure of the solution set

and for getting the final figure. If someone wants

• to make the rough draft properly,

• to analyse the structure of the solution set relying on the rough draft
• and to prepare a final figure that gives exact representation of the

geometric structure of the solution set and is suitable for saving as
2D image,

he should use not only standard MATLAB tools, but a special knowledge about
the package IntLinInc3D too. Therefore recommendations on preparation and

analysis of figures in IntLinInc3D package take the greater part of this User
manual. The most important of them are marked with “!”.

7

http://interval.ict.nsc.ru/Programing/MCodes/IntLinInc2D.pdf

6.1 Tools for preparation and analysis of figures

A user of IntLinInc3D package has two toolkits for preparation and analysis

of figures:

• Data Exploration Tools of MATLAB (Zoom, Rotate 3D, Scene Light, etc.);

• view arguments of the launch functions in IntLinInc3D package
which include input arguments OrientPoints and transparency

as well as optional input argument varargin.

The input argument OrientPoints is a parameter that controls drawing of

the orientation points:

if it has the value 0, the program does not plot these points;
if it has the value 1, the orientation points are plotted.

The input argument transparency is a parameter responsible for the trans-

parency of the real faces; its values may be 0 or 1:

0 means the absence of the transparency,
1 means that the real faces are transparent.

The optional input argument varargin allows a user to prescribe the cut box.

This argument is inputted as 6 numbers, denoted as xb, xe, yb, ye, zb, ze.
If such six numbers are present at the list of input arguments of the launch

function, then the cut box is [xb, xe]× [yb, ye]× [zb, ze], otherwise the package
IntLinInc3D itself calculates the cut box.

At the first visualization of the solution set, it is necessary to assign the !

following values to the view arguments of the launch function:

>> OrientPoints = 1;

>> transparency = 1;

the optional input argument varargin is absent. These are the start values of

the view arguments. In the general case, only these values allow to receive full
and explicit information about the geometric structure of the solution set. At
the subsequent calls of the launch functions, you can change view arguments to

get more good-looking figure (arguments OrientPoints, transparency) or to
view its fragment (argument varargin).

8

6.2 How to make a diamond

Here, we describe a typical way of obtaining a good picture of the solution set.

Example 1 (Diamond). We need to obtain a figure of the tolerable solution
set for the system




3.5 [0, 2] [0, 2]
[0, 2] 3.5 [0, 2]
[0, 2] [0, 2] 3.5


 x =



[−1, 1]
[−1, 1]
[−1, 1]


 .

Sequence of actions.

1) Inputting the initial data for the system. In this example, we consider the
system of equations (2) in which

A =



3.5 0 0

0 3.5 0
0 0 3.5


 , A =



3.5 2 2

2 3.5 2
2 2 3.5


 , b =



−1

−1
−1


 , b =



1

1
1


 .

We input the data step by step:

>> infA = [3.5 0 0; 0 3.5 0; 0 0 3.5];

>> supA = [3.5 2 2; 2 3.5 2; 2 2 3.5];

>> infb = [-1; -1; -1];

>> supb = [1; 1; 1];

2) Calling the launch function with the start values of the view arguments. To

get a 3D draft picture that adequately represents the geometry of the solution
set, we call the auxiliary function EqnTol3D with the start values of the view
arguments:

>> OrientPoints = 1;

>> transparency = 1;

>> EqnTol3D(infA,supA,infb,supb,OrientPoints,transparency);

We get

Number of orientation points = 27

9

3) Choosing the view arguments. Analyzing the picture, we can conclude that
the solution set is bounded (see Section 6.3), it does not have a cavity (see Sec-
tion 6.6), and every nonempty set pok is a bodily polyhedron. Such solution sets

are better viewed without orientation points, while turning the transparency of
the real faces off is a matter of taste.

Let us run the function EqnTol3D once again,
but without visualizing the orientation points

and without transparency of the real faces:

>> EqnTol3D(infA,supA,infb,supb,0,0);

The new picture looks like this. −→

0.1
0.2

0.3

0

0.1

0.2

0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x3

At the picture, the solution set
resembles a cobblestone.

4) Processing the picture. To make a diamond of the cobblestone, we use the
standard Data Exploration Tools from MATLAB:

we rotate (using tool Rotate 3D), decrease the size (using tool Zoom)

↓ ↓

−0.3

−0.2

−0.1

0

0.1
−0.3

−0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x3 −0.2

0

0.2
−0.2

0
0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x1

x2

x3

and turn on the light (using Scene Light). −→
The obtained picture is suitable for saving as
2D image in eps, pdf, jpeg and such like formats.

Remark. In the text below, all pictures have been processed by MATLAB

Data Exploration Tools after being outputted from IntLinInc3D package.

10

6.3 Unbounded sets

The present subsection is devoted to two tools of the package IntLinInc3D

designed for creating adequate pictures of unbounded sets. These tools are
automatic cut and plotting orientation points.

6.3.1 Automatic cut

A standard trick that should be employed in the course of visualizing unbounded

sets by computer systems is to prescribe the range of coordinates (or, in other
words, axis limits). As the result, we only see a part of the set bounded by the

specified range.
The package IntLinInc3D is also able to visualize a part of the solution

set within a predefined coordinate range. We refer to such a coordinate range
as prescribed cut box. It is defined by an additional argument varargin. In

pictures, the faces that arise from the prescribed cut are transparent and have
yellow color in contrast to real faces of the solution set that have green color
and varied transparency.

The standard trick has two drawbacks:

1) the user himself must carry out a preliminary analysis of the set under
visualization and choose a suitable coordinate range,

2) the picture within a predetermined coordinate range does not allow one
to make definite conclusions on global properties of the set, in particular,

on whether it is bounded or unbounded.

The advantage of the package IntLinInc3D in visualization of unbounded
sets is that one does not need to specify the prescribed cut box. If the pre-
scribed cut box is not inputted, then the package IntLinInc3D itself chooses

the coordinate range for drawing the solution set, and produced picture con-
tains all the essential information about the solution set. We refer to such a

coordinate range as automatic cut box. In case of automatic cut, the package
IntLinInc3D takes the following actions:

• finds the set of all orientation points,
• chooses the cut box wider than the interval hull
of the set of orientation points,

• draws intersection of the solution set with the cut box.

11

At the picture, the faces arising from intersection of unbounded solution set
with the automatic cut box are always transparent and have red color.

Unlike the prescribed cut, the automatic cut does not require a preliminary

work of the user and preserves information about global properties of the solu-
tion set.

Next, we give recommendations that will provide the user with capability

to distinguish between bounded and unbounded solution sets judging on the
picture obtained by automatic cut.

1) First of all, we should note that the problem of recognition whether H is !

(un)bounded can be reduced to the problem of recognition whether the sets pok
are (un)bounded. The set H is bounded if all pok, k = 1, 2, . . . , 8, are bounded.

If at least one of the components pok is unbounded, then H is unbounded too.

2) If the set pok has a red face, then it is unbounded. !

Example 2. The united solution set for the system of equations


[−1, 1] 0 0

0 [−1, 1] 0
0 0 [−1, 1]


 x =



1

1
1




is unbounded and consists of 8 trihedral angles. To get the picture of this set,
input

infA = [-1 0 0; 0 -1 0; 0 0 -1];

supA = [1 0 0; 0 1 0; 0 0 1];

infb = [1; 1; 1];

supb = [1; 1; 1];

EqnWeak3D(infA,supA,infb,supb,0,1);

12

3) If the set pok is bodily and all its faces have green color, then the set pok
is bounded.

Example 3. The united solution set to the system of equations



[−1, 1] 0 0
0 [−1, 1] 0
0 0 [−1, 1]

1 0 0
0 1 0

0 0 1




x =




1
1
1

[−2, 2]
[−2, 2]

[−2, 2]




is bounded and consists of 8 cubes.
To produce its picture, input the commands

infA = [-1 0 0; 0 -1 0; 0 0 -1; eye(3)];

supA = [1 0 0; 0 1 0; 0 0 1; eye(3)];

infb = [1; 1; 1; -2; -2; -2];

supb = [1; 1; 1; 2; 2; 2];

EqnWeak3D(infA,supA,infb,supb,0,1);

4) Specification of the optional argument varargin often prevents from de-

termining whether the solution set is (un)bounded.
Example 4. If, in Examples 2 and 3, we take the prescribed cut box as

[−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5] and call the package by the command

EqnWeak3D(infA,supA,infb,supb,0,1,-1.5,1.5,-1.5,1.5,-1.5,1.5);

the pictures will be identical:

13

6.3.2 Plotting orientation points

In Examples 2 and 3, we intentionally assigned the value 0 to the argument

OrientPoints in order to show that sometimes (when e.g. all the nonempty
sets pok are bodily) we can do without drawing orientation points. In the

general case, only combination of the automatic cut with plotting orientation
points produces a boundedness criterion for the set pok: The set pok !

is bounded if and only if, at the picture obtained with the automatic cut and

plotting orientation points, either the set pok does not have edges or two vertices
are marked at every its edge.

Example 5. The united solution set to the system of relations



[−1, 1] 0 0
0 [−1, 1] 0

0 0 [−1, 1]
1 0 0

0 1 0
0 0 1




x




=
=

=
=

=
≥







1
1

1
[−1, 2]

[−1, 2]
−2




consists of bounded (a segment, two squares, a cube) and unbounded pieces (a
ray, two half-strips and a semi-infinite square prism). One can get the picture

using the commands

infA = [-eye(3); eye(3)];

supA = [eye(3); eye(3)];

infb = [1; 1; 1; -1; -1; -2];

supb = [1; 1; 1; 2; 2; -2];

relations=[’=’;’=’;’=’;’=’;’=’;’>’];

MixWeak3D(infA,supA,infb,supb,relations,1,1);

To sum up, in order to determine boundedness of the solution set from its
picture, we have to permit the package (i) to choose the cut box automatically

(to achieve this, it is sufficient just not to specify the argument varargin) and
(ii) to draw the orientation points (assign 1 to the argument OrientPoints).

14

6.4 Thin (meager), but important

To ensure that, at the picture created by the package IntLinInc3D, thin polyhe- !

drons pok are shown correctly and unambiguously, the argument OrientPoints
must have the value 1. Otherwise, we will not see isolated points that are sep-

arate connected components of the set H, and, also, we will not be able to
distinguish bounded meager sets pok from unbounded ones (a segment from a
ray or a straight line, a plane angle from a triangle, and so on).

Example 6. The united solution set to the system of equations




[−1, 1] 0 0

0 [−1, 1] 0
0 0 [−1, 1]

1 0 0
0 1 0

0 0 1




x =




1

1
1

[−1, 2]
[−1, 2]

[−1, 2]




is composed of a point, three segments, three squares and a cube. At the left

picture, the point is not visible, and the segments and squares are depicted so
that their boundedness is doubtful. At the right-hand picture, all the compo-

nents of the solution set are depicted correctly and interpreted unequivocally.

OrientPoints = 0 OrientPoints = 1

(Use Example 3 to input the data and to run the package.)

15

6.5 Empty set and whole space

In this section, we consider how one can conclude that the solution set is empty

or it coincides with the whole space R
3 after examination of the pictures and

output produced by IntLinInc3D.

6.5.1 Empty set

Emptiness of the solution setH means that all its intersections pok, k = 1, . . . , 8,

with separate orthants are empty. Every polyhedron pok does not contain
straight lines, therefore its emptiness is equivalent to the absence of vertices.

Overall, the set H is empty if and only if it does not have orientation points.
When applied to the work of the package IntLinInc3D, the above theoretical

statement transforms to the following recommendation on how to recognize
emptiness of the set H.

The solution set is empty if and only if the package produces no picture and !

outputs the message

Number of orientation points = 0

The solution set is empty

The above recommendation does not depend on the specific values of the

view arguments for which the launch function runs, but relies on the fact that
the package correctly “understands” the geometry of the solution set. This is
also true for the other recommendations of the manual.

Example 7. It is obvious that the equation
(
0 0 0

)
x = 1 does not have

solutions x ∈ R
3. To see how the package IntLinInc3D processes it, just type

uC = [0 0 0];

oC = uC;

ud = 1 ;

od = ud;

Cxind3D(uC,oC,ud,od,0,1);

16

6.5.2 Whole space

The solution set coincides with the whole space R
3 if and only if the call of !

the package without the optional argument varargnin results in the output
message

Number of orientation points = 1

and transparent red cube as a picture. For OrientPoints = 1, the origin of

coordinates is marked as an orientation point. The value of the argument
transparency does not affect the picture.

OrientPoints = 0 OrientPoints = 1

Example 8. The united solution set to the interval inequality

(
[−1, 1] [−1, 1] [−1, 1]

)
x ≥ 0

is the whole space. One can obtain its various pictures by inputting

infA = [-1 -1 -1];

supA = [1 1 1];

infb = [0];

supb = [0];

GeqWeak3D(infA,supA,infb,supb,0,0);

and varying the values of the last two arguments of the function GeqWeak3D.

17

6.5.3 And what is it?

There are two pictures that can be mistakenly interpreted as either empty

solution set or a solution set coinciding with the whole space. These are “empty
white box” (coordinate system without any objects) and “empty yellow box”.

What does “empty white box” mean?

First of all, one should bear in mind that the “empty white box” in no way !

means that the solution set is empty or that the solution set coincides with the

whole space.
If, at the picture, you see a coordinate system that does not have visual-

ized objects, then you should pay attention to the arguments varargnin and

OrientPoints. The argument varargnin determines a prescribed cut box for
the solution set. Therefore, when the package is called with the optional ar-

gument varargnin, the picture contains only a part of the solution set within
this box. The arguments OrientPoints helps either displaying or hiding the

orientation points of the solution set. Depending on the specific values of these
arguments, there exist three ways of correct interpretation of the “empty white

box”.

1) If the argument varargnin is present and OrientPoints = 1, then the
“empty white box” means that the completion of the solution set contains the

entire prescribed cut box.
Example 9. In the Diamond example (see Section 5.2, Example 1), let us

specify the prescibed cut box [1, 2]× [1, 2]× [1, 2] and set OrientPoints equal
to 1 in the arguments of the function EqnTol3D:

>> EqnTol3D(infA,supA,infb,supb,1,0,1,2,1,2,1,2);

We get the picture −→

1

1.5

2

1

1.5

2
1

1.2

1.4

1.6

1.8

2

x1x2

x3

18

2) If the argument varargnin is present and OrientPoints = 0, then set
OrientPoints = 1 and rerun the package to make sure that there exit (or do

not exist) isolated points of the solution set in the prescribed cut box.

3) If the argument varargnin is not present, then the “empty white box”

means that the argument OrientPoints = 0 and the solution set consist of
isolated points. For correct visualization of the solution set, one should call the

package with OrientPoints = 1.
Example 10. The united solution set to the equation




[−1, 1] 0 0
0 [−1, 1] 0

0 0 [−1, 1]
1 0 0
0 1 0

0 0 1




x =




1
1

1
[−1, 1]
[−1, 1]

[−1, 1]




is comprised of eight points, but for OrientPoints = 0 it looks like the “empty
white box”:

−1

0

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

OrientPoints = 0

−1

0

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

x1x2

x3

OrientPoints = 1

(Use Example 3 to input the data and to run the package.)

19

What does “empty yellow box” mean?

We emphasize that the “empty yellow box” never means that the solution !

set is empty or that the solution set coincides with the whole space.

The “empty yellow box” at a picture indicates that the package has been
called with the optional argument varargnin, and the prescribed cut box from

this argument lies entirely in the solution set. The origin of coordinates in the
“empty yellow box” may be marked as an orientation point (when it belongs

to the prescribed cut box and OrientPoints = 1).

Example 11. The solution set of the two-sided inequality −5 ≤ x1 ≤ 5
includes the entire box [−3, 3]× [−3, 3]× [−3, 3]. Let us input the initial data

uC = [1 0 0];

oC = uC;

ud = -5;

od = 5;

and call the function Cxind3D with the prescribed cut box [−3, 3] × [−3, 3] ×

[−3, 3] specified in varargnin. Depending on the values of the argument
OrientPoints, we obtain the pictures

Cxind3D(uC,oC,ud,od,0,0,-3,3,-3,3,-3,3); Cxind3D(uC,oC,ud,od,1,0,-3,3,-3,3,-3,3);

Cxind3D(uC,oC,ud,od,0,1,-3,3,-3,3,-3,3); Cxind3D(uC,oC,ud,od,1,1,-3,3,-3,3,-3,3);

In this example, the “empty yellow box” looks very much like the picture of
the whole space R

3 and differs only in color.

20

6.6 How to test the presence of cavity

We shall speak that the solution set H has a cavity, if the origin of coordi-

nates does not lie in H, while every ray starting from the origin of coordinates
intersects H.

Any cavity is a bounded polyhedral set. It is not necessarily convex, but it
is always star-convex with respect to the origin of coordinates (for every point
x from the set, it also contains the segment [0, 1]x). As a consequence, the

cavity is connected. The origin of coordinates is an interior point of the cavity.
Figuratively speaking, the cavity is a “house” for the origin of coordinates,

its walls built from real faces of the solution set, and there are no doors and
windows. In this section, we discuss how to tune the view arguments to test

the presence of a cavity from the information provided by the picture.

1) Using the automatic cut (i.e., absence of the optional argument
varargin), even for any arbitrary values of the arguments OrientPoints and

transparency, makes it evident whether the cavity is present or not for a
sufficiently wide class of the solution sets.

Example 12 (Whole space without a star). Controllable solution set to the
system of interval equations



[−1, 1] [−2, 2] [−2, 2]
[−2, 2] [−1, 1] [−2, 2]

[−2, 2] [−2, 2] [−1, 1]


 x =



2
2

2




is the whole space R
3 with a star removed.

To obtain its picture,
input the commands

supA = [1 2 2; 2 1 2; 2 2 1];

infA = -supA;

infb = 2*ones(3,1);

supb = infb;

EqnCtl3D(infA,supA,infb,supb,0,0);

21

2) If the automatic cut is supplemented by transparency of the real faces
(i.e., transparency = 1), this substantially extends the class of the solution
sets for which one can determine, from the picture, either presence or absence

of the cavity.

Example 13 (Cube without mirror pyramid). The united solution set to

the system of interval equations



[−1, 1] [−1, 1] [−1, 1]
1 0 0

0 1 0
0 0 1


x =




0.5
[−1, 1]

[−1, 1]
[−1, 1]




is a cube with the “mirror pyramid” deleted. In order to evaluate the influence
of the argument transparency, input the commands

infA = [-ones(1,3); eye(3)];

supA = [ones(1,3); eye(3)];

infb = [.5; -ones(3,1)];

supb = [.5; ones(3,1)];

EqnWeak3D(infA,supA,infb,supb,0,0);

Then change the last argument of the function EqnWeak3D from 0 to 1 and
compare the pictures obtained:

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1x2

x3

transparency = 0 transparency = 1

22

3) Using the start values of all view arguments enables one to uniquely
determine, from the picture, the presence or absence of the cavity for almost
every solution set.

In particular, the following rule may prove helpful: if, for the start values of
the view arguments, the origin of coordinates is marked as an orientation point
at the picture, then the solution set has no cavity.

Example 14 (Mirror pyramid). The tolerable solution set for the interval
equation
(
[−1, 1] [−1, 1] [−1, 1]

)
x =

(
[−1, 1]

)

is a “mirror pyramid”:

infA = [-ones(1,3)];

supA = [ones(1,3)];

infb = -1 ;

supb = 1 ;

EqnTol3D(infA,supA,infb,supb,1,1);

Example 15 (Boundary of mirror pyramid). AE-solution set to the system
(
[−1, 1]∀ [−1, 1]∀ [−1, 1]∀

[−1, 1]∃ [−1, 1]∃ [−1, 1]∃

)
x =

(
[−1, 1]∃

1∃

)

is the boundary of a “mirror pyramid”:

infA = [-ones(2,3)];

supA = [ones(2,3)];

infb = [-1; 1];

supb = [1; 1];

Aq = [’A’ ’A’ ’A’; ’E’ ’E’ ’E’];

bq = [’E’ ; ’E’];

EqnAEss3D(infA,supA,Aq,infb,supb,bq,1,1);

23

4) Finally, we have the optional argument varargin that enables one to
visualize intersection of the solution set H with any desired box.

The prescribed cut box, determined by the argument varargin, allows to

see the intersection of the solution set with any separate orthant Ok. To do
this, we

1) put one of the box vertices in the origin of the coordinates,
2) put the opposite vertex of the box into the interior of the orthant Ok at

such a distance that the box contains, with suitable excess, all orientation
points from the orthants Ok (the information about orientation points

of the solution set within an orthant can be extract from the picture
produced for the start values of the view arguments or from the list of

orientation points),
3) assign the chosen box to the optional argument varargin.

If a picture obtained for the start values of the view arguments does not allow !

one to definitely conclude whether there is/is not a cavity in the solution set,

we recommend the following way of actions that will resolve this uncertainty. In
the launch function, set OrientPoints = 1 and vary the value of the optional

argument varargin to look at the intersection of the solution set with each
orthant. The solution set H has a cavity if and only if, for each k = 1, . . . , 8,
at the picture of the intersection of the solution set H with the orthant Ok,

• the origin of coordinates is not marked as an orientation point
• and every coordinate axis contains an orientation point.

Example 16. In Examples 12–15, every column of the matrix is symmetric

with respect to zero (i.e., is a balanced interval vector), therefore, the solution
set is symmetric with respect to every coordinate plane. To check whether such
a set has a cavity or not, it suffices to see its intersection with only one orthant.

For definiteness, we take the positive orthant. In the launch function for each
of Examples 12–15, we set OrientPoints = 1 and specify a suitable prescribed

cut box varargin:

24

Whole space without a star
EqnCtl3D(infA,supA,infb,supb,1,0,0,3,0,3,0,3);

Cube without mirror pyramid
EqnWeak3D(infA,supA,infb,supb,1,1,0,1,0,1,0,1);

Mirror pyramid
EqnTol3D(infA,supA,infb,supb,1,1,0,1,0,1,0,1);

Boundary of mirror pyramid
EqnAEss3D(infA,supA,Aq,infb,supb,bq,1,1,0,1,0,1,0,1);

It is obvious from the pictures that every solution set, except the mirror pyra-

mid, has a cavity.

25

7 How to install and operate the package IntLinInc3D

1. Download the file

http://interval.ict.nsc.ru/Programing/MCodes/IntLinInc3D.zip

2. Unpack it into a separate directory (folder).

3. Set MATLAB paths to this directory.

4. In MATLAB command window, input the initial data for the sys-
tems (1)–(8) and call launch functions according to this manual and to
IntLinInc2D User manual.

8 References

[1] I.A. Sharaya, Boundary interval method and visualization of polyhedral

sets, to appear in Reliable Computing.

[2] I.A. Sharaya, Quantifier-free descriptions for interval-quantifier linear
systems, Trudy Instituta Matematiki i Mekhaniki UrO RAN [Proceedings

of the Institute of Mathematics and Mechanics, Ural Branch of the Russian
Academy of Sciences], 20 (2014), No. 2, pp. 311–323. (In Russian)

http://interval.ict.nsc.ru/sharaya/Papers/trIMM14.pdf

[3] S.P. Shary, A new technique in systems analysis under interval uncer-
tainty and ambiguity, Reliable Computing, 8 (2002), No. 5, pp. 321–418.

http://interval.ict.nsc.ru/shary/Papers/ANewTech.pdf

[4] J. Rohn, Solvability of systems of interval linear equations and
inequalities. In: Linear optimization problems with inexact data,

M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, K. Zimmermann.
New York, Springer, 2006. P. 35–77.

http://interval.ict.nsc.ru/Library/InteBooks/InexactLP.pdf

Irene A. Sharaya September 1, 2014
Institute of Computational Technologies SB RAS

Novosibirsk, Russia

26

http://interval.ict.nsc.ru/Programing/MCodes/IntLinInc3D.zip
http://interval.ict.nsc.ru/Programing/MCodes/IntLinInc2D.pdf
http://interval.ict.nsc.ru/sharaya/Papers/trIMM14.pdf
http://interval.ict.nsc.ru/shary/Papers/ANewTech.pdf
http://interval.ict.nsc.ru/Library/InteBooks/InexactLP.pdf

	About the package
	Purpose
	Structure
	Properties of visualized sets
	Notation in figures
	Recommendations on preparation and analysis of figures
	Tools for preparation and analysis of figures
	How to make a diamond
	Unbounded sets
	Automatic cut
	Plotting orientation points

	Thin (meager), but important
	Empty set and whole space
	Empty set
	Whole space
	And what is it?

	How to test the presence of cavity

	How to install and operate the package IntLinInc3D

