CzECcH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF CYBERNETICS

BACHELOR THESIS

Visualisation and Analysis of Artificial
Neural Network Behaviour

Prague, 2012 Pavel Fencl

Declaration

I hereby declare that I have completed this thesis independently and that I have used

only the sources (literature, software, etc.) listed in the enclosed bibliography.

795 7012 FLy O

In Prague on.....50 .50 T

Acknowledgement

I would like to thank everybody who helped me with completing this thesis, mainly
to my supervisor Prof. Assoc. Pavel Nahodil for help and experienced advices through
formally part of my work and to my consultant Ing. Jaroslav Vitku for his time, significant

help and guidance throughout the entire process of development and research.

i

Abstrakt

Moje bakalarska prace zkouméa problém umélych neuronovych siti z hlediska jejich
chovani. Rozviji vice nez trinactilety vyzkum piistupu k umélému zivotu, vedeny Pavlem
Nahodilem na CVUT v Praze, fakulté kybernetiky.

Mym cilem bylo vytvorit nastroj, umoznujici lepsi pochopeni, demonstraci a zkoumani
vnitinich zdkonitosti chovani neuronové sité tieti generace. Vysledkem je aplikace v
jazyce Java vystavény na knihovné vyvinuté univerzitou v Marylandu podporujici kresleni
planarnich grafu. Pro préaci s daty a strukturou grafu jsem vyuzil poznatky ziskané béhem
studia z oblasti grafii, kybernetiky a umélé inteligence.

Program umoznuje uzivateli mnoho moznosti interakce s animaci sité ¢i jejim ro-
zlozenim. Mnou navrzend aplikace je schopna zobrazit sit a umoziiuje vizualizaci jejiho
chovani v case.

Kromé funkéni aplikace naprogramované v jazyce Java je také vysledkem této prace
nékolik navrzenych a implementovanych algoritmu, které jsem odzkousel na ruznych
topologiich neuronovych siti. V praci proto predstavim nejen samotnou aplikaci, ale i
navrzené algoritmy pro navrh rozlozeni sité véetné diskuze uzitecnosti jimi poskytovanych

vysledkii.

1l

Abstract

My thesis explores a problem of neural networks with regard to their behaviour. It
deepens a more than thirteen years old research of approach of artificial life conducted
by Pavel Nahodil on CTU in Prague (Faculty of Cybernetics).

My objective was to develop a tool that would enable better understanding, demon-
stration and research of internal behavioural regularities of a third generation neural
networks. The resulting application is written in Java and supports drawing of planar
graphs. It is based on a library developed by University of Maryland. For manipulation
with data and structure of the graph, I used knowledge acquired when studying the area
of Graphs, Cybernetics and Artificial Inteligence.

Program gives the user various options in interaction with the network animation or
distribution. My application is able to display the network and enables a visualisation of
its behaviour in real time.

Aside from functioning application written in Java, this work also resulted in creation
of several implemented algorithms tested on various topologies of neural networks. Thus,
in my work, I will present not only the application itself, but also the algorithms for

distribution of network and a discussion of usefullness of their results.

v

Ceskeé vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Katedra kybernetiky

ZADANiIi BAKALARSKE PRACE

Student: Pavel Fencl
Studijni program: Kybernetika a robotika (bakalarsky)
Obor: Robotika

Nazev tématu: Vizualizace a analyza chovani umélé neuronové sité

Pokyny pro vypracovani:

_

. Seznamte se se zaklady neuronovych siti tfeti generace a metod vizualizace grafu.

2. Zvazte a navrhnéte vhodné metody vizualizace topologie a chovani téchto umélych
neuronovych siti.

3. Navrhnéte a implementujte aplikaci pro vizualizaci pomoci Vami navrzenych metod.

4. Vyzkousejte navrzené druhy vizualizace pro ruzné priklady neuronovych siti.

Seznam odborné literatury: Doda vedouci prace.

Vedouci bakalarské prace: doc. Ing. Pavel Nahodil, CSc.

Platnost zadani: do konce zimniho semestru 2012/2013

e vy

prof. Ing. Viadimir Maik, DrSc. J_+ _grof. Ing. PAel Ripka, CSc.
vedouci katedry / dékan

V Praze dne 9. 1. 2012

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Pavel Fencl
Study programme: Cybernetics a Robotics
Specialisation: Robotics

Title of Bachelor Project: Visualisation and Analysis of Artificial Neural Network Behaviour

Guidelines:

1. Study the basics of artificial neural networks of 3rd generation and graph visualisation.
2. Design methods suitable for visualisation of topology and behaviour of these Artificial
Neural Networks.

3. Design and implement application for visualisation of your designed methods.
4. Test the designed methods of visualisation for various examples of neural networks.

Bibliography/Sources: Will be provided by the supervisor.

Bachelor Project Supervisor: doc. Ing. Pavel Nahodil, CSc.

Valid unfil: the end of the winter semester of academic year 2012/2013

s

prof. Ing. Viadimir Mafik, DrSc.
Head of Department

(4
g. Pa¥el Ripka, CSc.
ean

prof.

Prague, Januar 9, 2012

vi

Contents

I% FAD] ions

[List of Figures|

(List of Algorithms|

1__Introduction |
(1.1 _Thesis Outhnel.
2T al T ationl
2.1 Artificial Neural Networks
2.2 Graph Theory|.
3__State of the Art |
[3.1 Source library|
[3.1.1 Requiements|.
[3.1.2 Options|
I;i'l';i !:gzllg:lll:ii!zlll

[4 Application Design|
4.1 Objects Structure|
4.2 Data Loading|

[4.2.1 Loading the topology datal .
[4.2.2 Loading the spike train datal

[4.3 Topology Graphics|
[4.3.1
[4.3.2 Dynamics|

[4.4 Spiketrain Graphics/.

Drawing]

vil

1X

xii

ot W

L 0w N I =

[4.4.1 Drawing|
[4.4.2 Dynamics|
[4.5 Graphical User Interface|
[4.5.1 File loading]

[> Algorithms and Experiments |
.1 FEasy Circle]
[5.2 Computed Circle]
[>.3 Basic Weight Algorithm|
[>.4 Advanced Weight Algorithm|
[>.5 Advanced Crossing Algorithm|
[>.6 Signal Flow Algorithm|,

(6.8 Experiments
[>.8.1 Signal Flow on Moderate Network{.

[5.8.2 Power Advanced Algorithm Hieararchical Example]

[5.8.3 Comparison of Active algorithms Small Network{.
[5.8.4 Comparison of Active algorithms Fullbinded Networkl
[b.8.5 XOR tested by algorithms|

6 Thesis Conclision

(Bibliography|

[A_Contents of CDI

(B User Manual and Implementation notes|

viil

27
27
28
32
33
34
35
38
39
39
40
42
44
45

48

51

11
IT
IT

List of Abbreviations

ANN Artificial Neural Network
SNN Spiking Neural Network
P2D Piccolo2D

GUI Graphical User Interface
FPS Frames Per Second

OSL Open Source Library

1X

List of Figures

2.1 Leaky Integrator model[.

[2.2 Integration of Pulses

[2.3 Spiketrain by Maass| oo 0o

4.1 Application Appearance| 9
4.2 Network Basicsl 10
(4.3 Network Examplel 0o 16
4.4 Application Tools|o 17
[4.5 Dynamics| 18
[4.6 Spiketrain Examplelo oo 20
[4.7 Graphical User Interface| 21
(4.8 Files Loading 22
49 Tools Menul o 23
[4.10 Algorithms Menu| oo 25
[>.1 Circle algorithms| oo 29
h.2 Solve Matrixl. 30
(5.3 Multi-neuron Computed Circlef. 32
.4 Feedforward ANN|o o 36
(5.5 Signal Flow special states| 37
(5.6 Signal Flow on Hieararchical Example| 39
[>.7 Power Advanced Algorithm Hieararchical Example| 40
[>.8 Comparison of Active algorithms Small Network{ 42
[5.9 Comparison of Active algorithms Fullbinded Networkl 44
.10 XOR dynamic context| 45
[5.11 XOR tested by weight algorithms| 46
[5.12 XOR tested by power algorithms 47

[B.1 Application Appearance|

[B.2 Topology File|
[B.3 Spiketrain File]

x1

List of Algorithms

(1 Computed Circle Algorithm| 31
[2 Step of Basic Weight Alhorithm|. 33
[3 Step of Advanced Algorithm| 34
(4 Creating of Power Binds| 38

xii

Chapter 1
Introduction

For a long time, researchers of cybernetics dealt with a very complex problem. How to
build the artificial agent that would be able to adapt to the complexity of the real world?
The complexity and observability of the real environment is simply too high to be exactly
desribed by anything less complex than environment itself (ViTKU, J., 2011). Commonly
agents are realizes simplified mathematical form of biological organism. Because of that,
agent must be flexible, adaptive to environment, able to learn from unpredicted situations
and reacts to them.
This thesis conscerns with the agents controlled by artificial neural networks. In depart-
ment of cybernetics agents are developed to be used in diverse environments with high
rate of success. In case of agents controlled by artificial neural networks, we are able
to observe and measure their behaviour by analysis of their responses to various inputs,
calculating the internal variables (e.g. the states of particular neurons) and by observing
their consequent reactions. From these measurments we are able to get a vast amount of
data by which we can describe behaviour of the agent and perceive agent as a black box.
The main problem with use of artificial neural networks is in the fact that in most cases
we are unable to understand the pronciples how it works inside. Therefore we often treat
with the neural networks as a black-boxes.

My goal is to create a tool which enables us to at least partially look inside this black
box and tell us how it probably works.

In order to do this, I implemented an application which places neurons onto a 2D
plane based on some given criteria. By looking at the resulting graph, we should be able

to understand the network more easily.

CHAPTER 1. INTRODUCTION 2

1.1 Thesis Outline

Here is a brief description of this thesis outline.

Chapter 1 The first chapter provides an introduction to this work and describes the
main goals of Bachelor Thesis.

Chapter 2 The second chapter introduces the technical aspects of ANN and basic
priniciples of graph theory..

Chapter 3 The third chapter provides information about the present state-of-the-art
tools for visualising ANN and describes relationship of this work to the project of Mr.
Nahodil’s department.

Chapter 4 The fourth chapter describes functions of visualising tool, its internal
functions and provides summary of user interface.

Chapter 5 The fifth chapter describes algorithms which were chosen and imple-
mented.

Chapter 6 The last chapter contains conclusion and compares results with predicted

goal.

Chapter 2
Theoretical Foundation

I dealt only with visualisaion of measured data (representing topology of graph and its
behaviour). Therefore, from the purposes of this work, a deep understanding to artificial
neural networks was not necessary. This part provides only familiarization with studied
problem for better understanding motivation to use these tools, procedures and ideas in

order of creating each part and tool of application.

2.1 Artificial Neural Networks

Artifical neural networks are computational model of biological neural networks repre-
sented for example by human brain. Main advantage of neural networks is posibility of
pararell programing. Therefore, these networks ara able to processing wide array of data
in one moment. Also, the ability to generalize and associate gives the ANNs power to
work with with uncomplete or noisy data.

ANN is compounded of basic computational fragments called neurons. Model of single
neuron can be represented in couple of ways. The neural networkss of 2nd generation
are widely used in these days. Compared to this, the 3rd generation ANNs are more
biologically plausible and communicate with spikes. In this model, neuron is represented
as a leaky integrator with threshold which integrates pulses on input multiplied by weight.
Each pulse improves potencial of neuron and if threshold is exceeded neuron come excited

and send pulse to other synapsed neurons.

CHAPTER 2. THEORETICAL FOUNDATION 4

Figure 2.1: Leaky Integrator model - Leaky integral-and-fire model of inner func-

tion of neuron 3rd generation (GERSTNER AND KISTLER, 2012)

Third generation ANN (also called SNN) is more biologically plausible than the 2nd
generation. Properties of ANN are described in document (ExAMPLE DEPOT, 2012). Sig-
nal is going through networks with delay (signal propagation has finite speed). Potential
of neuron decreases with time when is not receiving a signal (pulses). Leaky integrator
integrates incomming pulses (or input current) on inputs (dendrites). The integrated
value decays with time. If the integrated value (so called inner potential) exceeds the
threshold value, the neuron fires, that is: sends one spike to its output (axon). See .

Networks studied in my work do not have neurons on inputs. Inputs (input "neurons”)

have the shape of neuron but work only as distributors of the input signal.

I

input spikes

Figure 2.2: Response of inner potential of neuron to incomming spikes. Neuron fires

after receiving fifth spike on input.

For purposes of simulations of these neural networks, there is tradeoff between biolog-
ical plausibility and computation cost. We are using Izhikevich Simple model of neuron
which is not so computationally demanding but should a lot of biologically plausible.
The model is composed of two differential equations with four parameters (in our rep-
resentation abed). The parameter changes the behaviour and characteristics of neuron.

Complete description is provided by (EUGENE M. IZHIKEVICH, 2003).

CHAPTER 2. THEORETICAL FOUNDATION 5

Third generation networks are computationally more demanding but they are able to
produce more complex behaviour. It was shown that the second generation networks are
only subset of the third generation.

The behaviour of these networks is often presented in a spiketrain. It represents infor-
mation about spike occurance in time for each neuron. Each single time series provides
information about times when the neuron became excited. More detailed description can

be provided by (Maass, W., 1996).

0 2000

AL T 11

A3 -1 L 1l 1 T

Adl _t T 1. T

ASm mp 18 g smm 1 118 [T N N W TR W]
A6 T T L1 1 M i A

L
B2 1 TR 1 Lime TIE

C1 11 L 1
c2 TENEETTTTTTT T E T 1 I 1u_
Cc3 11 1

C5ld L 1

Cs . S - Ian TH'E N L1 Ll i

DIy i1

D2 u 19 [TEET T NS F T T no1y T TR T
D3 n -
D4 111 1 Il 1

DSlagme s m_ w3 oogew 3y 3ist |1 |

I TR T T R TN Ll 8 A TINETIT T '

E2 il 1 A IRt
E3 11
5] T AT "I L

E6 ITETH T L L L [

Figure 2.3: Representation of spiketrain by Wolfgang Maass

2.2 Graph Theory

In my work, I am working with reccurent neural networks. These networks I visualize as a
graphs in 2D space. The graphs are formed by set of nodes and set of edges (WIKIPEDIA,
2012). Neurons in the network are represented as nodes and connections between them
as edges in our graph. In my work, I call this graph "topology”. It means information
about distribution of nodes in area and connection between nodes.

Developed and studied networks are formed of oriented edges. Each edge have two
parameters: weight and delay which provides information about importance of edge in
network (only weight, algorithms are not working with delay). Absence of some rules cre-

ates any specific kind of edges less common in standard graph representations. Bind can

CHAPTER 2. THEORETICAL FOUNDATION 6

connect one neuron itself. This situation have special representation in my application.

Also, more than one edge can connect two neurons. This case is called multigraph in a

graph theory.

Chapter 3

State of the Art

In this chapter I try to describe and discuss suitability for our purposes of available

libraries designed to visualize and analyze ANNs or drawing logical graphs.

3.1 Source library

I wanted to build a visualisation tool, potentially based on some existing library. My
goal is to create and test an alternative methods how to visualize and analyze the ANN
topologies and behavior. We were looking for similar tool but we did not find any suitable.

In that case, department decided to create a new instrument from the scratch.

3.1.1 Requiements

Me and my consultant Mr. Vitku have formulated few requiements of this Visualisation
Tool.

e capability to display potentially huge networks
e zooming capability
e minimal computational complexity

e ability to draw the network topology (place the neurons into a 2D plane) according

to some selected criterion

e ability to replay recorded behaviour of given ANN from the spiketrain

7

CHAPTER 3. STATE OF THE ART 8

These were the basic criterions I used when studying and choosing library.

3.1.2 Options

Here is an overview of visualization tools found by me, which at least partially meet the
requirements. In the following section I will summarize their main characteristics, I say

which I finally chose the library and why.
1. (PiccoLo2D, 2008a) - OSL supports drawing 2D graphs
2. (NEUROPH, 2012) - OSL supports simulation of neural networks
3. (GUESS, 2012) - OSL based on piccolo2D library with graph analysis methods.
4. (YWORKS, 2012) - OSL supports good graphic representation.
5. (NEUROML, 2012) - OSL supports simulation of neural networks.
6. (GEPHI, 2012) - OSL greatly supports analysis of graphs.
7. (GRAPHVIZ, 2012)- OSL supports drawing of oriented algorithm graphs.
8. (FANN, 2012) - OSL in C supports studying of neural networks.

9. (ENncog, 2012) - OSL supports studying and learning neural networks.

3.1.3 Conclusion

Many libraries are adapted for simulation and development of neural networks. This type
of libraries, such as libraries no.2,5,8 and 9, do not meet my requirements. Library no.3
and 6 were particularly interesting. They (3,6) contain methods and tools for drawing,
analysis and visualisation of graphs. However, after I examined these libraries closer
I found that no.3 uses methods of Piccolo2D library together with methods written in
Python and no.6 is almost finished tool with little change. Libraries no.4,7 were unusable
because they were primarily focused on better display of algorithms.

I chose the piccolo2D no.1. P2D is library developed on (UNIVERSITY OF MARYLAND,
2008). It includes tools for drawing basic objects and spatial manipulation with them.
Furthermore, this library meets the most of my requirements and fully supports my style

of work. I prefer to solve more complex problems using simple tools, methods and objects.

Chapter 4
Application Design

This chapter contains description of my application. The chapter provides inforamtion
and details about object structure, tools for user, ranges of used variables and ways how
my application draws and animates studied data. Also designed methods useful for better

running of application are described.

— —
| £/ Neural Network Visualisating Toal - =) E=ARCE X"
Topology File Speed control
test2.txt [»]%) Speed - usis
Spiketrain File 8 » y o |
~—— - Frames Per Second
test2_train.txt [=]q) 0 —~

100
Quantum (refreshes per ms)

LOAD]

Passive Algorithms

@® Default Topology

© Easy Circle

) Computed Circle

) Signal Flow Algorithm
Type selection

® Weight

©) Power
Animated Algorithms

) Basic Weight Algorithm
) Advanced Weight Algorithm

() Crossing Minimum

START RESET

T [Enable spiketrain neuron tities
00 10 20 30 40 50 60 70 80 9

11000
Sheoting time (us)
—_—— []
Spiketrain zooming
Widht Zooming

100.0
]

Height Zooming

Other Properties

Enable pulses

Enable arrows

[Enable floating outputs
Enable animations

Figure 4.1: Application Appearance - appearance of the visualizationtool displaying

simple testing network.

Application can load the network topology from txt file in a predefined format
4.2.2] after that it loads spiketrain data from another file. The application then draws
both, the topology and the spiketrain. The application visualizes how signal (pulses) is

9

CHAPTER 4. APPLICATION DESIGN 10

going through network in time. Also the user can change many properties of applica-
tion, I designed and implemented, from speed and scales to enabling/disabling of many
functions. To study network is prepared several algorithms which move neurons in space
according to some selected criterion. The application does not do any simulations. It is

used only for visualisating simulated data which are recorded in the spike train file.

5

O ID:s
x4
y: 2
a:0,020

b: 0,200

c: -65,000

d: 8,000
treshold: 30,00

rom: 6 to: 1 weight: -0,900 delay: 0,10
from: 7 to: 2 weight: 0,990 delay: 0,010

from: 4 to: 4 weight: 0,440 delay: 0,550
fram: 4 to: 4 weight: -0 440 delay: 0,660

Figure 4.2: Network Basics - Green neurons represent input neurons, black ones
are output meurons and white ones are internal neurons. Input excitation binds are
red and inhibition ones are blue. Other excitation binds are grey and inhibition ones
are black. Width of bind is based on its weight. Input neurons do not have internal
structure (abed treshold) and work only as repeaters of input signal. The input signal

can be analog (represented by current) or digital (represented by pulses).

In this chapter will now follow descriptions of applications where a soon as possible
about the description of the main objects, then provide examples for creating topolo-
gies, visualize the dynamic behavior of the site depending on the simulated data andthe

possibilities of the users in the end .

CHAPTER 4. APPLICATION DESIGN 11

4.1 Objects Structure

In this section I try to briefly describe object structure of application, each class variables

and features in application.
e Package Objects - include basic structure of visualisated information.

— Bind - Formal connection between neurons. Every bind has basic information
about its start neuron (int from), end neuron (int to), delay on the bind in
double and double weight.

Less important is integer parameter. It is used for representation of multiplied

binds between neurons.

— Neuron - Formal interpretation of neuron. Class includes abed and treshold
parameters (each double), number of neuron (unique int ID), integer type of
neuron (internal, output, input), analog/digital parameter (int AD) and list
(ArrayList) of binds started in this neuron. Input neurons are realized only as
repeaters and amplifiers of input signal. They do not have abcd parameters

but they can repeat both analog and digital signal.

— Pulse - Formal interpretation of pulse. The class determines both digital
pulses and analog current. Every pulse has ID of shooting neuron (int from),
ID of shot neuron (int to), delay (lifetime) of pulse in double, double time of
pulse shoot, variable current (if it is different from 0 describes current) and

bind which pulse is going trough.

— Spiketrain - The class include lists (ArrayList) of currents and pulses. For
better use, properties of visualisation class have variable for maximal current

(maxCurrent) in double.

— Topology - Main parameters of each topology is list of neurons (ArrayList),
numbers of neuron types (int 1D field), abed and theta parameters in (double
1D field). For better functions of the application is included boolean for enable

floating outputs. More variables will be described in part algorithms.

e Package Loading Include part for loading spiketrain and topology from text files
in predefined format 4.2.2]

— ReadSpikeTrain - Loading of spiketrain
— ReadTopology - Loading of topology

CHAPTER 4. APPLICATION DESIGN 12

e Package BINN Visualisation The class is used for force first start and inicialize

e Package GUlvisualisation The class which is creating and managing GUI. Vi-

sualisation is divided into 3 single parts - network, spiketrain and GUI (options).

— Body - Extended JFrame manages all accesiores.

— NetworkGUI - The class extends PCanvas. All changes in network part are
realised by this class. The class also has several methods for better reloading

and automatic scaling.

— SpikeTrainGUI - The class extends PCanvas and controls part of GUI where
spiketrain is placed. It contains methods that enable user to change current

time in paused mod by dragging the canvas.

e Package ExternalControl The class is created in order to have option to control
the application by other applications. Control efforts are designed for maximal

avoidance of collision.

e Package edu.umd.cs.piccolo, edu.umd.cs.activities, edu.umd.cs.event,
edu.umd.cs.nodes and edu.umd.cs.util Packages are representations of im-

ported library.

4.2 Data Loading

Application loads data from files ending with ”.txt”. Both documents have predefined
format. This format is described in commentary of application parser_v0.3 created by my
consultant Mr. Vitka. Also, the names of files have some rules that we accepted (me and
Mr. Vitku). Corresponding topology file is named for example [name|.txt and spiketrain
file is named [name]_train[random code].txt. Where [name] is being code name of topology
and random code is random sequence of characters for needs of more spiketrains for same

topology.

4.2.1 Loading the topology data

This section is realized by class ReadTopology from package Loading.
Original formulation is described in parser v_0.3 (VITKU, J., 2012a).

CHAPTER 4. APPLICATION DESIGN 13

Cited data format:
e parameters for Izhikevich neurons: [a b ¢ d theta]
e number of input neurons
e number of output neurons
e total number of neurons (that is without the input ones)
e output neurons: [x,y] [a b ¢ d theta] [to weight delay] ..
e other (hidden) neurons: [x,y] [to weight delay] ...
e input neurons: [x,y] [to weight delay] ..
where:
e xy - are some coordinates of the neuron in the 2D plane
e to - ID (number of neuron numbered from 1)

e weigt - weight of the synapse

delay - delay of the synapse

abcd treshold - pars. are for hidden neurons specified globally

Application gathers information line by line. After each line Object Neuron is created
and added to ArrayList of all neurons. Example on Fig. [B.2]

Special situations can be solved here. When neuron is shooting himself bind’s param-
eter shows linear increase. ANNs developed on department do not have any rules that
would prevent them to create multiplied selfbinds. This parameter is useful in drawing
multiplied selfbinds. Example in Fig [4.2]

4.2.2 Loading the spike train data

This section is realized by class ReadSpikeTrain from package Loading.
Original formulation is described in parser v_0.3 (VITKU, J., 20120).
Citated data format (text reworked):

e number of input neurons

CHAPTER 4. APPLICATION DESIGN 14

number of output neurons

total number of neurons (that is without the input ones)

t1 t2 t3 t4 ...t55000 (list of spike times for neurons 1-total num of neurons)

resolution

e bn efghijklmnopq
where:
e tn is time when neuron shooted
e resolution is time constant of current (time interval of one current value)
e bn is value which indicate if neurons is analog or digital

e cfghij... are times of pulses for digital inputs nad times of current for analog inputs

Example on Fig.
Application gathers information line by line. For each readed pulse time, application

creates n pulses, where n is the number of neuron’s binds. Each neuron has list of binds
where it shoots on. Neuron does not know by whom is he shot.

Also special situations are solved here. If shooting neuron receives an analog input,
pulse is created only for first bind and time calculation is linear based on parameter. If
shooting neuron does not have receiver, pulse is created as selfpointing but with zero
delay.

At the end of algorithm, list of all pulses is sorted by time and divided between list of
currents and list of pulses. Sorting is useful for time managment of visualisation which

will be described in the following text.

4.3 Topology Graphics

Application tries to draw network in a standardized format. It tries to display all neurons
and make them similar for wide range of original positions and numbers of neurons. This
is achieved by resizing positions of neurons and automatic scaling. User also gets good

information about network parts (binds and neurons) after entering or clicking them.

CHAPTER 4. APPLICATION DESIGN 15

Each neuron knows his position in two dimensional space. These positions can be
saved in file topology of which is loaded from or calculated by any algorithm. These
algorithms are described in chapter [5]

4.3.1 Drawing

Graphics is implemented in class networkGUI which extends PCanvas (inbuild class in
P2D). Drawed network is divided into different layers. The layers are useful when creating
listeners for huge amount of same components. The layers are: neuronLayer, edgeLayer,
pulseLayer, identityLayer and analogEdgelLayer. Complete drawing and loading is real-
ized by method reload(). It cleans the layers and draws new network.

Neurons in a network are painted by method drawNeurons(). This method places neu-
rons on their default or calculated positions multiplied by netParameter variable. NetPa-
rameter is approximated by method calculateApproximteNetParameter(). The method
calculates netParameter by setting average lenght of bind to 200 points. I chose this
constant experimentally. I set color of neurons as green inputs, black outputs and white
internals. Each neuron shows its informations after a click.

Binds are painted by drawEdges() and are divided between layer for input binds
and layer for rest of binds. Other binds are all digital and their color is set to black
for inhibition binds and grey for excitation binds. Input binds (binds from inputs) are
colored red for excitation bind and blue for inhibition bind. If arrows are enabled, arrows,
representing the direction of oriented edges (binds), are painted. Each bind has width
based on its weight. Width is also normalized as division by weight of the bind with the
biggest weight. This normalization makes each displayed network with same range of
width < -1,1 > . Each entered bind shows its informations. If more binds overlaid on
one another, application searches through all binds and information panel will contains
informations about every bind between those neurons.

Drawing binds and neurons is inspired by code (P1ccoLo2D, 2008b).

Pulses are graphic representation of signal flow in network between neurons. All pulses
are created as a red circles with height 2 and widht 2. They are made invisible. Library
has problems with dynamic creation and removal of its particles so all pulses are created
in every moment. For better numerical complexity, special access is used.

For each neuron there is an indicator which contains its ID. Information from graph
are set to the same size in any zoom. Maximal unzoom is calculated in method Calcu-

lateMinimumScale(). This method finds neurons located on the extremes of x and y axis

CHAPTER 4. APPLICATION DESIGN 16

and calculates zoom to show the whole graph. Library has default zooming tools. They
are disabled and zooming method is created for mouseWheel manually. Each rotation
difference changes scale by 10%. Analog inputs have second indicator which dynamicly

changes its value in order of current flowing from the input.

8_ .I". from: 3 to: 2 weight: 0,379 delay: 2,859
_"“-——________:%

Figure 4.3: Testing Topology - example of simpler topology drawed by application.

Also is showed how application provides information about binds.

4.3.2 Dynamics

This section provides introduction to displaying internal dynamics of the network. The
refreshing process will first summarized and then each part briefly described.

Application contains few methods which are useful for showing internal states of the
network. These methods change the excitations of neurons, flow of signal in network
and power of current going through the network. Inputs are renewed, depending on the
input signal. For current on inputs, analog refreshing method is used. In other case,
input signal is administered with other pulses in network. Also, tools that show the
information about parts of the network are managed here.

Refreshing is realized by methods refreshCurrent(double time), refreshExcitedNeu-
rons(double time) and refreshPulses(double time, boolean full). Work time of application

is sized in miliseconds. Resolution of time is based on variable quantum. Quantum is

CHAPTER 4. APPLICATION DESIGN 17

sized in range from 1000 pulses per milisecond to 0.001 pulse per milisecond. This wide
range allow application to animate in resolution from microseconds per second to seconds
per second.

If ”enable network pulses” is allowed this method refreshes pulses(double time, boolean
full), changes positions of displayed pulses and reveals newly shot pulses. This method
is searching the list of pulses (sorted by time) from down constraint (the oldest pulse)
to first unshooted. When the oldest pulse reaches shot neuron, new the oldest pulse is
found. If boolean full match true, all of the pulses are refreshed. It is useful when time

is changed from different place in program, for example by dragging the spiketrain.

Speed control

Speed -usls
: {1 1 [100
Frames Per Second
[] 100
Quantum (refreshes per ms)
[11000
Shooting time (us)
' [} 1 100
Spiketrain zooming
Widht Zooming
' [1 [100.0
Height Zooming
g 4
Other Properties

Enable pulses

Enable arrows

[_] Enable floating outputs
Enable animations

[] Enable spiketrain neuron titles

SELECT

Figure 4.4: Application Tools - right panels which contains all non-loading and

non-algorithm (choose) tools.

Method refreshExcitedNeurons(double time) searches pulses that are shot at half of
shootTime(lenght of exciting neuron) before or after the real shoot time of pulse. If
neuron is excited, it changes its color to red.

Method refreshCurrent(double time) works same as refreshPulses(double time). It
uses a list of the currents and downAConstrain. When method finds curent in the right

time, it changes the value of analog indicator near the neuron and changes color of binds.

CHAPTER 4. APPLICATION DESIGN 18

Color is mixed from RGB and function is:

Exhibit
cur cur
RGB = (255,100 — 100 255 — 25 X —— 4.1
(255, % maxCur’ % maxCur> (1)
Inhibit
cur cur
RGB = (255 — 255 x ——— . 100 — 100 x ——, 255 4.2
(x maxCur’ % mazxCur’) (4:2)

where cur is value of the current and maxCur is maximal value of the current that is
founded from list of currents. For negative values of current functions are opposite. Green

is mixed for better contrast of the zero current.

Figure 4.5: Dynamics - state of network in animation. Pulses are travelling through
the network, neurons marked red send pulses at the current time step and analog values

and color are changing.

4.4 Spiketrain Graphics

The application can draw spiketrain. The spiketrain appears when pulses were sent from

all neurons (one for each line). the spiketrain has a timeline showing the current position

CHAPTER 4. APPLICATION DESIGN 19

in the simulation time. Additionally, the application displays timewindow, which is used
for two main things at once:

It can set how long neuron in topology to see it shot up

It can set the parameters of algorithms that work with dynamic behavior site, see
below Chapter [5]

Application allows to display spiketrain zoomed in wide range freely in both ways
(heigh and width). Also, user can pause the simulation and change time manually with
corresponding changes in network. Application visualises function of ANN in real time.
User can set speed of animation from microsecond per second to real time (second per
second). Position of spiketrain and time line corresponds with position of pulse in net-

work.

4.4.1 Drawing

Spiketrain graphics is handled in class SpiketrainGUI which extends PCanvas. Spiketrain
is divided between pulseLayer that carries all the pulses and neuronLayer that carries
all the remaining components. Pulses are represented by vertical lines that are set on
positions based on their shoot time and shooting neuron. Analog input current on input
neurons is represented by horizontal lines. Positions are calculated same as vertical ones
but their lenght is based on parameter of spiketrain.

SpiketrainGUI has for drawing variables magnificationX and magnificationY. These
parameters are changed by user and their function is zooming independently in y or x
axis. X axis is scaled for magni ficationX = 1 as ms per second.

Spiketrain is drawed by method drawSpikeTrain(). First, timeWindow and timeLine
are created. Time line on moving spiketrain represents current time. It is useful for
higher width of shootingTime. TimeWindow is rectangle whose width is calculated by
equation:

width = shootTime x magni ficationX (4.3)

Height of canvas for spiketrain is sized to 250 pixels. Height added to every neuron

of topology is calculated by equation:

250 x magni ficationY

heitghtConstant =
clgntonstan numberO f Neurons + 1

(4.4)

This height is resized to integer (number of pixels cannot be divided) and its value

is restricted to minimum of 2 pixel for single neuron. For each neuron there is a drawed

CHAPTER 4. APPLICATION DESIGN 20

line in the lenght of time of latest pulse plus 2 miliseconds per height Constant.

For each pulse there is created a vertical line high 3 x heightConstant. For each
current fragment there is created a horizontal line in height of the current and width of
the spiketrainParameter multiplied by magnificationX.

Method also draws time axis. It is drawed for resolutions of 0.1 miliseconds for
magnificationX bigger than 30 and 0.1 seconds for magnificationX smaller than 30.

For enabled neuron titles there is created PText (text lable suitable for PCanvas) with

names of all neurons and heigh constant is resized for correct displaying of neuron IDs.

|2 |o|o|~|o|n|B|w|p| =~

NE

Figure 4.6: Testing Topology Spiketrain - Spiketrain with time line and time
window. We can see time window contains four pulses - neurons 2,4,5 and 7 will be
displayed with red color (these neurons just fired). Most neuron contains spikes of digital

neurons and bottom line represent analog signal on input neuron 11.

4.4.2 Dynamics

Spiketrain refreshing is realized by method refreshSpiketrain. Method changes position of
timeWindow, timeLine and neuronsNames depending on the time. Spiketrain is displayed
in GUI by PCamera (part of P2D). Method also changes displayed field and if neccesary,
changes the position of neuron titles. Neuron titles are fixed in position less than 200
pixels far from the time line.

If application is paused canvas can be dragged. Canvas cannot be dragged out of the
bounds. Action of dragging starts method passiveRefresh which calculates current time of
displayed window and starts time refreshing sequence of application. It means that when
canvas is being dragged network dynamicly changes according to the calculated time. For
this kind of time change there is a method from networkGUI - refreshPulses() suited for
complete refreshing of all pulses. It avoids any problems with inteligent searching in list

of pulses.

CHAPTER 4. APPLICATION DESIGN 21

4.5 Graphical User Interface

In this section I briefly learn features designed for user interaction with the application.
I will describe how I decided to split all the features and each will explain shortly

GUT allows user to change lot of application properties. User can easily control ev-
erything he needed to use. All these fuctions are clearly placed in three sections divided
between two panels. Left menu contains file loading and command buttons for control
algorithms. Right menu contains controls for changing properties of drawing and running

of animations. All functions were tested to attain best comfort and stability of application

possible.
Topology File Speed control
[1_simple.txt [*]|%] speed-usis
: o lﬁ 100

Spiketrain File _ Frames Per Second
[1_simple_train1.txt [=]5] T

| LOAD | Quantum (refreshes pe&ns}
Passive Algorithms e
(@) Default Topology Shooting time (us)
) Easy Circle ————— I

2 Computed Circle Spiketrain zooming

) Signal Flow Algorithm Widht Zooming
Type selection l¢ 100.0
. Height Zooming
Weight
® Weig |1—
) Power [

i § Other Properties
Animated Algorithms

) Basic Weight Algorithm FELATTEE

Enable arrows
[] Enable floating outputs
() Crossing Minimum Enable animations

| e | v | [] Enable spiketrain neuron titles

i) Advanced Weight Algorithm

Figure 4.7: Graphical User Interface - left panel contains loading part and part
for selection and setting up the parameters of particular algorithms. Right part contains
tools for operations with application parameters and button for selective searching (or

possible X-ray).

4.5.1 File loading

Selection of topology file and spiketrain file is realized by JComboBox. I formulated the
location of spiketrain files to the directory called train in project directory and topologies
saved in directory topology. Topology files cannot contain the sequence ”train”. Incor-

rectly saved files will be ignored or will not get through the second control sequence. It

CHAPTER 4. APPLICATION DESIGN 22

is done as an easy string control of names format. Spiketrain and topology names must
end with .txt and spiketrain name must contain everything except .txt of topology name.

User also has oppourtunity to browse his own computer for directory containing pos-
sibly useful files. For better orientation input mask is set compatible with file format.
When browsing of other directories is finished, user can easily right click on lens button
which selects the default directory back again. This tool is also useful for refreshing
contents of boxes.

Directory search is realized by method directorySearching(String topology, String
spiketrain). This method searches directory topology and finds all the files ended with
7.txt” and in directory train finds all suitable files and fills them into JComboBox for
spiketrains. Method is inspired by code (EXAMPLE DEPOT, 2012).

Load button starts the load sequence. This sequence is realized by method load Topol-
ogySpiketrain() which load topology and spiketrains from selected files. Boot(boolean
full) is called afterwards. Function redraws network and spiketrain. Boolean full is use-

ful for drawing the topology only through class external control (when spiketrain is not

necessary).
Topology File
|test2.txt [« |5
Spiketrain File
[test2_train.txt =[5
| LOAD |

Figure 4.8: GUI for loading files - Offers of files saved in current directory, differ-
ent than defaul directory may be opened by lens button. By right click default directory

will be searched.

4.5.2 Tools menu

The application offers to user wide area of interaction. This provides great freedom and
control over aplication. Each function will be shortly described and effects of changes will
be explained. All tools are placed in the right menu. Right menu is created by method

createRightMenu() and objects are controled from refreshTools().

1. Speed Control For user there is possible to set speed of simulation vizualization.

It means speed of animation. Because animation has nonzero calculation time

CHAPTER 4. APPLICATION DESIGN 23

Speed control 1
Speed - usis
- L} 1 100
Frames Per Second
L) 100
Quantum (refreshes per ms)
[_11000
Shooting time (us) 2
- . 1 100
Spiketrain zooming 3
Widht Zooming
- . 1 [100.0
Height Zooming
. 1 |1
Other Properties 4

Enable pulses

Enable arrows

[Enable floating outputs
Enable animations

[] Enable spiketrain neuron titles

SELECT

Figure 4.9: GUI for operation with animation and drawing - speed sets real
speed of animation (microseconds per second), Frames per second display computational
speed of application (running visualisation or animated algorithm), currently automat-
ically set quantum, lenght of excitation time, width and height zooming of spiketrain,

other enabling attributes and button for selective choosing or possibly X-ray use

per one refresh automatic correction is requested. This correction is realized by
refreshSpeed(). This method calculates predicted time of one cycle. If predicted
time for current quantum is shorter, quantum is decreased. If predicted time is
ten times longer quantum is increased. From predicted delay and real cycle time is

calculated additional delay which adjusts full delay to be as big as predicted.

Frame speed and quantum show current values to the user. Frame speed indicates
number of cycles calculated by computer in current speed. Speed ranges from 1
microsecond of animation per real second to 1 second of animation per real sec-
ond. Quantum range is sized from 1 refresh (cycle) per second (0.001 of refresh
per milisecond) to 1.000 refreshes per milisecond (1.000.000 refreshes per second).
Thanks to this application, time control is suitable for long range of computers and

networks.

CHAPTER 4. APPLICATION DESIGN 24

2. Shooting Time Shooting time affects how long period of time the application
indicates that the neuron sent spike to its output and based on this parameter
is calculated power bind by method createListOfPowerBinds(). See in Section [5.7]
Range is sized from 1 microsecond to 1 second. Change this parameter immediately

alters the width of the time window.

3. Spiketrain zooming Position of pulses in spiketrain is calculated as a shooting
time (in miliseconds) multiplied by width zooming (in x axis). Range is sized
from 0.001(1 pixel per second) to 100.000 (100.000 pixels per milisecond). Height
zooming is paramter which multiplies calculated height constant. Range is scaled
from 1 to 15. If enableNeuronTitles is changed, range is rescaled according to the

height constant.

4. Other Properties This part is useful for enabling several of application functions.
"Enable pulses” button affects visualisating of pulses. For enabled pulses, method
refreshNeurons(...) is called. ”Enable arrows” affects drawing of the arrows useful
for orientation of binds. ”Enable floating outputs” is useful for algorithms. Enabling
allows algorithms to change positions of outputs. ”Enable animations” adds or
removes short delay between two cycles in animated algorithms (useful for too
small networks or too powerful computers). For normal (for example Dual core
2.2GHz) or slower this opportunity changes are not needed because algorithms will
be animated in both ways. ” Enable neuron titles” shows titles for better orientation

in spiketrain. Also, height zooming can be recalculated.

4.5.3 Algorithms menu

Algorithms place neurons in 2D space by specific criterion. They work with actual posi-
tions of neurons. Results directly depend on the order of running algorithms.

They can work with passive or dynamic kind of binds. Passive are real binds in net-
work and dynamic are based on simulated data from spiketrain (this reflects the behaviour
of network in simulation).

This part of GUI allows user to apply algorithm on topology in its current state.
Each algorithm places or moves neurons by specified criteria. Each single algorithm is
described in chapter [5] Some criterions are based on properties set in section tools menu.

Menu is divided in three parts:

CHAPTER 4. APPLICATION DESIGN 25

e One part offers the selection of which kind of binds we want to study. Weight (pas-
sive) is opinion where application calculates with binds between neurons based on
real binds between them (binds from topology). Power (active) opportunity creates
new list of all binds based on probability of exciting. Bind is more stronger, one
neuron shoot after the other more often. More details are described in algorithms

part.

e Second part contains passive algorithms which are not calculated step by step. This
part includes default distribution (based on positions in file). These algorithms are

generally computationally less demanding than animated.

e Third part contains active algorithms which are calculated steb by step. For an-
imated algorithms method repaintNetwork()is best suited. This method changes
positions of all current objects in network. It is safer than repetitive reloading.
User have also choice to stop animated algorithm from his own will by using stop
button. Action perform interuption of algorithm and network stay in state after

last refresh.

Passive Algorithms

(@ Default Topology

() Easy Circle

_» Computed Circle

» Signal Flow Algorithm

Type selection
@ Weight
' Power

Animated Algorithms
) Alternative Weight Algorithm

_» Advanced Weight Algorithm

) Crossing Minimum

Figure 4.10: GUI for choosing algorithms

Now I will try to briefly describe all the algorithms and their functions. Complete

information is contained in Chapter

e Default topology places neurons to default distribution loaded from file. Positions

are saved in two dimensional field and loaded from it in class Topology.

CHAPTER 4. APPLICATION DESIGN 26

e Easy circle places neurons on circle in dependence of their ID, used for placing

inputs and outputs to stable position and for comparison with computed circle.

e Computed Circle places input and output neuron to stable positions and calculate

possibly best distribution of neurons on circle in order to improve clarity.

e Signal Flow algorithm places input neurons to stable positions and expands

neurons to layers with emphasis to minimal crossing.
e Weight creates list compound of real binds between neurons.

e Power creates list of binds based on shooting probability. This bind is heavier
between two neurons more often is one excited after second in time range based on

shooting time.

e Alternative Weight Algorithm moves with neurons in direction of optimal

lenghts of binds based on their weights.

e Advanced Weight Algorithm tries to find optimal positions for neurons based

on bind weights and distances between neurons.

e Crossing Minimum is trying to change neuron positions to make complete cross-

ing of network minimal.

Chapter 5
Algorithms and Experiments

In this chapter I will introduce chosen algorithms designed for assignment of neurons in
two dimensional space. Algorithms are designed to reflect different criterion, which are
potentially useful for better understanding the network structure or behaviour.

I willl describe each algorithm’s principle, what would tell us about the structure or
behavior of a network, discuss its potential advantages and disadvantages.

For all algorithms the following common: the input network topology (eventually
spiketrain data), containing both neuron positions, some criterion algorithm into account,
and the output are new positions of neurons on the 2D space. Input and output neurons

may or may not have to be fixed on their position.

5.1 Easy Circle

Easy circle is the most basic algorithm I implemented in my application. First objective
is to place output and input neurons to predefined positions. Algorithm places input
and output neurons on predefined positions and internal neurons are drawed into circle.
Internal neurons are placed on circle based on their ID. The algorithm can be used for
comparison of results given by Computed Circle algorithm [5.2]

Easy circle is created by method createCircle(boolean easy). For possitive easy, neu-
rons are arranged according to their ID, if not, they are placed according to the calculated
result (int 1D field). Result contains calculated sequence of internal neurons.

New (static) coordinates of input neurons are computed according to the following

27

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 28

equations [T}

r = 0 (5.1)
(ID—-0—n-1)

y = 300 x

(5.2)

Where o is number of outputs, n is number of internals and 7 is rank of input neuron.
New (static) coordinates of output neurons are computed according to the following

equations:

z = 300 (5.3)
D-1 (5.4)

y = 300 x

Where o is number of outputs.

Finally, hidden neurons are placed as follows:

27 x (ID —
v = 150 — 100 x cos 2 UP=0) (5.5)
n
27 x (ID —
y = 1004100 x sin 2> dP=0) (5.6)
n

Where o is nuber of outputs, n is number of internal neurons and ID is unique iden-

tificator of given neuron.

5.2 Computed Circle

Algorithm tries to place neurons in better order for clearer results. The main idea of the
algorithm is to place strongly (and/or many times) connected neurons closely together.
Algorithm searches through the list of binds and makes connection between neurons when
both bind neurons are not connected to two another neurons.

My algorithm often use representation of network in a data structure called by me
SolveMatrix. It is a two dimensional antidiagonal (elements on diagonal are zero) adja-
cency matrix. The field contains information that two neurons are placed nearby. Each
neuron can be binded, see Fig. to maximum of two another neurons. This rule is
based on a premise that each neuron on circle can have only two neiboughrs. Bind is
represented by number 1 in matrix. It indicates presence of bind between these neurons.

Zero presents absence of bind between these neurons

1Symbol x represents the standard multiplication sign (not a vector or otherwise) in whole text.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 29

Figure 5.1: I took easy topology with distribution of neurons in Fig. [{.3 and on figure
we can see the results. Left network is for "easy circle” and right result is for ”computed
circle”. We see that ”computed circle” algorithm tries to place strong binded neurons
nearby. In finished state, computed circle has less crossings in the midle of circle and

1s clearer.

In its first part solveMatrix is filled from the strongest to the lightest bind in workBinds
list. It means, algorithm gradually takes each bind and summarize solveMatrix row
corresponding with shooting neuron and row corresponding with shot neuron. If both
neurons have less than two neibourghs (are connected to one or zero neurons) ones on
corresponding positions in matrix are set up.

Second part of algorithm solve outright on circle (saved to field result). If algorithm
does not have sequence of neurons it finds first neuron with single binded neuron which

is possibly pheriperal for different sequence.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 30

1D
ooood
ooaan
o010
oooan
ooaoa
_____ oooaq
i T T T oO0aa
000 ™8 0000
000 000® 000
000 oaoaq B0 a
001 0000080
ooo 000000®8| 15
1D 2 & & 10 12 1415

Figure 5.2: Solve Matriz extracted for smaller topology. Diagonal elements have
zero value. Ones in matriz represents the existence of bind between the neurons and
zeros absence of bind. Green color shows the loop in solve matriz and its analogy at the

final outcome.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS

Data: workBinds
Output: result 1D field

for each bind do

n = Z;ZO(SOlveMatrix[]Dt —1—0][i]) // o - outputs, i - internals
m = Z;zo(solveMatTi:E[[Dr —1—0][i]) // n,m - numbers of binds
if n <2 and m <2 then
solveMatriz[ID; — 1 —o|[ID, — 1 — o] =1 // r - shot neuron
solveMatriz[ID, —1 —o][ID; —1—0] =1 // t - shooting neuron
end
end
line =0

for j = 1to1 do
result[j] = line // i is number of internals
chosen[line + o] = true
line = ID, // ID, is number of column of next neuron
if chosenfline] ==true then
for k=1 to ¢ do
n = 1_o(solveMatriz[k][l])
if n==1 then
line =k
k=i
end

end
if single binded neuron not found then

while chosenfline/]==true do
| line = random(0,n)

end

end

end

end

Algorithm 1: Computed Circle Algorithm - Circle is computed as 1D field of

neurons that are painted by method createCircle(boolean easy)

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 32

NS NG

G AR LY 1)
peeecvocesisk .

Figure 5.3: For larger networks results provided by computed circle algorithm became
practically unreadable for human. In order to display bigger networks in some readable

format, I designed and implemented another algorithms, described below.

5.3 Basic Weight Algorithm

This algorithm was proposed by me. The main idea is to place the neurons into the 2D
space in a way that stronger interconencted neurons will be closer to each other than those
less interconnected ones. While this is NP complete task, I designed the following local
optimization algorithm. Unlike Advanced Weight Algorithm it can move two neurons in
one step and is strong enough not to fall to the local static minimum. Algorithm does not
respect any other criteria, so the different positions of non-floating outputs and inputs
can lead to non-optimal and confused results.

In each step algorithm iterates through list of all binds workBinds() which are sorted
by weight. For every bind it calculates ideal positions on line (that connect both neurons)
and move them one small step closer to the ideal position. This is happening until changes
in one cycle are different than in the previous one. Step is calculated in class Topology
calculateStepBasicWeight Algorithm().

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 33

Data: workBinds, lastDistance
Result: new positions

for each bind do
distance = \/((EQ —x1)2+4 (y2—yl)> // x1,yl shooting neuron positions

total Distance+ = distance // x2,y2 shot neuron positions

pref feredDistance = (1 — bind.weight) x 100

—pref feredDistance
distance + 1

if floating outputs enabled or neuron = internal and neuron != input then
xl =zl + (22 — x1) x change x bind.weight

change =

yl =yl 4+ (y2 — yl) x change x bind.weight
end

if floating outputs enabled or neuron = internal and neuron != input then
22 = 22+ (z1 — 22) x change x bind.weight

y2 =y2 + (y1 — y2) x change x bind.weight
end

end

if totalDistance <lastDistance then
| return true

else
| return false

end

Algorithm 2: Step of Basic Weight Alhorithm - calculate small steps to locally

optimal positions in weights criterion of binds

5.4 Advanced Weight Algorithm

Algorithm’s architecture is based on finding better vital function in surroundings of a
neuron. Main criterion depends on bind weight. Vitality is evaluated how much is the
current state of the neuron chart correctly (similar to a fitness function). Vitality is
calculated by following equation:

b c
vital = "(d — (1 —w) x 100) +

n=0 n=0

10
— 5.7

: (57)
where b is number of neuron binds, d is distance between binded neurons, w is weight of
bind and c¢ is number of neurons. Algorithm is trying to set neurons to the best possible
distances that depend on the bind weight and, less importantly, on attempt to maximize

distances between neurons.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 34

I suggested this algorithm because the results of ”basic weight algorithm” were often
confused and ”basic weight algorithm” can not accept more criterions for fixing it. In
addition, "basic weight algorithm worked” with ties gradually and not simultaneously
with the whole state of topology. Due to differences in approach, I can run ”advanced
weight algorithm” with the state of the entire network and work with other criterions

useful for better visibility of network.

Data: topology
Result: new positions

for each neuron do
minVital = getVital(neuron)

minPosition = currentPosition

for surrounding positons do
set neuron on surrounding position

vital = getVital(neuron)

if wital <minVital then
minVital = vital
minPosition = current surrounding position

end

end
set neuron on minPosition

if any neuron changed position then
| return true changed

else
| return false changed

end

end

Algorithm 3: Step of Advanced Algorithm - calculate on step of advanced

algorithm and change change positions of neurons

5.5 Advanced Crossing Algorithm

Main criterion is here the minimization of crossing binds between neurons. This algorithm

should draw the networks where the crossing is minimazed, therefore the resulting picture

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 35

should be more understable (clear) to the human.

The algorithm is based on finding better vital function in surroundings of a neuron.
Main criterion depends on minimal crossing. Method for realization is optimizeCross-
ingsForNeuron(int ID) that changes matrix crossing only for rows and columns of bind
connected to the optimized neuron. Class topology includes crossingMatrix(2Dimensional
double) that brings information about crossings of every two binds. Crossing of two binds
is calculated by method getCrossingValue(bind1, bind2). This method finds intersection
of two lines described by parametrical equations. If all 4 parameters are in range from 0
to 1, intersection lands on both binds and binds are crossing.

Crossing value is calculated as:
crossingV alue = bindl.weight x bind2.weight (5.8)

Vital function is calculated as:
b

vital = Z(d — (1 —w) x 100) + Z Z crossingMatrix[j|[k] (5.9)

n=0 k=0 j=0
where b is number of binds that connect neuron, ¢ is number of internal neurons, w is
weight of bind and d is distance between neurons.

Algorithm uses the structure of advanced algorithm. Function differs in size of the

surrouding place (step) and in function of calculating vital function.

5.6 Signal Flow Algorithm

We are displaying generally recurrent neural netowrks, but even in some of these net-
works could be some main (global) direction of signal flow (from input neurons to output
neurons). This algorithm basically tries to display the network in a similar way how
are feedforward networks commonly represented. The neurons are placed in layers in
direction from input layer towards the ouput neurons. For other choice ouput neuron
can be placed in players like internal neurons. This choice can show how close possibly
ouput neurons are to input neurons. The algorithm is inspired by the Fig.2 in the wiring
diagram of C. Elegans in this document: (L.R. VARSHNEY, B.L. CHEN, E. PANIAGUA,
D.H. HALL AND D.B. CHKLOVSKII, 2012). The algorithm tries to lay the neuron layers
as is the case of normal distribution of neural networks. Result which I am trying to

achieve is that most of the signal (pulses) went in right direction. I assume that the

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 36

Input Hidden Layer Output

Input #1 —=

Input #2 —=

Input #3 —=

Figure 5.4: Schematics of feed forward ANNs.

signal will spread gradually from the input layer and only at a later stage in the network
behavior will reflect the feedback binds.

Graph is created by layers. Neurons from new neuron are expanded in the next layer
by rule of minimal crossing. Position on new Layer is found by the way that by step
is calculated functions for n positions. In neibourghood of minimum local minimum is
found with decreasing step.

Algorithm is handled by method calculateSignalFlow(). At start method places input

neurons according to the following equations:

z = 0 (5.10)
y = 50xi (5.11)

Where 1 is rank of input neuron.

In each cycle neuron from open list is chosen and his unplaced children are placed and
added into open list. If open list is empty and no neurons are placed first unchosen neuron
is placed and added to open list. When negative, ”enable floating outputs” method choose
output neurons last.

Placing of neurons on layer is realized by method flowLandingAlgorithm(Neuron neu-
ron, int layer, int parentY). Method tries to find minimum on vertical line which x position
is:

x = layer x 5 (5.12)

Minimum is searched from Y position -50 to 200 pixels. Vital function is calculated

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 37

by method getVitalFlow(Neuron neuron, int parentY). Vital function is:

n

vital = Z 0.1 x (neuron.y — n(j).y)| +
=0

i
0.1 x |parentY — neuron.y| + Z Z crossingMatriz[j][k] (5.13)
k=0 j=0
where n is number of neurons on same layer, n(j).y is y position of neuron on same layer
and ¢ is number of internal neurons. Before summarization of crossingMatrix, crossing-
Matrix is changed by method optimizeCrossingForNeuron(int ID). Method recalculates
crossing of binds of chosen (placed) neurons.

The first unchosen neuron has not included part with parent.

Figure 5.5: Left (distribution on Fig. topology shows that algorithm is not suited
for small networks but the algorithm returns quite good results. Second (random 50)
show that signal flow is useless fully connected reccurent neural networks, where the

signal flow has no some specific direction.

On Fig. [5.6 we see example of expected result. But this algorithm has also specific
cases which can not be solved by this approach. On Fig. [5.5] we see on right example of

fully connected network where signal has no specific direction.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 38

5.7 Power

Radio button named Power creates list of power binds. These binds reflects how much
together are neurons shooting. It means that neurons which are shooting often together
probably will be sticked. This algorithm can be set up by the parameter shooting time.
The shooting time can be set from GUI and is displayed by the timeWindow. The

wider shooting time, the bigger time window is, and the more neurons are fire together.

Input: spiketrain, shootTime

Data: probability Vector, probabilityMatrix

Result: workBinds list

for each pulse do

make empty vector // second neuron can shoot more than once

time = pulse.time // time of searched pulse

for each pulse2 older than pulse and time + shootTime>pulse2.time do
probabilityVector[pulse2. from — 1] = 1 // pulse2 shot in interval

end

while i<number of neurons do
probability M atrixz[pulse. from|[i|+ = probabilityV ector]i]

if ¢ == pulse.from then
probabilityMatrixz[i][i] + + // matrix[i] [i] has number of shoots
end
1+ +
end

end
for each row of probabilityMatriz i do
for each column of probabilityMatriz j do

if probabilityMatriz[i/[j/<0 then
workBinds.add(from i+1, to j+1,delay 0,parameter 0,
bt probability Matrix[i][j]

probability M atriz|i][i]

weig

end

end

end
sortBy Weight/()

Algorithm /4 : Creating of Power Binds - process how power binds are created.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 39

5.8 Experiments

Algorithms can show different regularities of neural network based on used algorithm and
type of binds. All parameters used in experiments will be described. If any parameter

will not be described his value was not changed from the starting value of the application.

5.8.1 Signal Flow on Moderate Network

62 83 g ®
= =, o Yot o1
.f r e —— =g ¥ =_RLL Y
168 ...r" -| Iﬂ -_'.-:1;-.2'-,._ T L g 2 Yy
) 2 e G e teTe o= o tét n

10010 W.E‘t-. T] 278
el 2 1
m f"' K u“"f‘r

A 178 '-r*'f’
“ ‘-_,-_’ ﬁ

“".u-- 7

S %

Figure 5.6: Signal Flow on Moderate Network - Signal Flow algorithm was
used to network on Fig. [{.5. The outputs were also permitted location anywhere in the

graph.

By this placing of neurons to a 2D space, we learn about the inner structure of the

network. We can see which neurons are important and which are, however, most probably

for nothing.
The result shows that signal from inputs possibly come faster to output neurons 1,2

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 40

than to neuron 3. Neurons past red line are possibly useless for left part of topology.
On closer inspection I find that the red line progressing through binds only to the left
direction. This means that the right part of this network graph is unnecessary. After
deleting these neurons, the output of this network will remain the same. This algorithm

enables us to simplify the unefficient network topologies without changing their behaviour.

5.8.2 Power Advanced Algorithm Hieararchical Example

O
&2

P
LR

EN ARSI O
oy BT *fi?!.x::t,
W LA

4 - AR
”" S M7 ‘?"‘f&"‘-&" A
AR s Nt AL o G N
BN S
B i v e

1 \(! iy ‘w
ZNNGE 1) AT
| =

Figure 5.7: Advanced Power Algorithm - algorithm works with imaginary power
binds. Weight represents the probability of binding force of common shot both neurons
in a defined window size shooting time. The resulting picture shows that the cluster in
the center most likely fires together. The rest of neurons fires asynchronously or does
not fire at all. We can say this because the rest of network has homogenous density of

neurons in the space.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 41

Neurons in oval are the only active part of graph. Other neurons are placed equally into
space. Algorithm tries to maximize distance to other neurons. Because this neurons are
unbinded (they do not shoot) only criteria is the distance maximization. Distances are
calculated only of the neurons closer than 100 pixels. In this case, the centre of the picture
contains those neurons, which are critical for the network function. In the direction from
the centre there are less and less useful neurons.

While the application supports exporting the list of selected neurons, it can be easily
used for removing the unimportant neurons from the network, also called pruning of the
ANN .

Prunning decreases the computation needs of the network and also increases its gen-

eralisation ability.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 42

5.8.3 Comparison of Active algorithms Small Network

Advanced Weight Algorithm Crossing Minimum Algorithm

Figure 5.8: Comparison of active algorithms - All algorithms were used on ”FEasy
Circle” distribution of neurons and algorithms was studying real binds between neurons
(not power). Tested topology has small number of neurons with normal number of binds.

Original distribution on Fig. [{.3

Here I try to comment results I got.

Basic weight algorithm (right top figure) (section accepts only one criterion - bind
weight. Algorithm tries to place binded neurons in distances based on weight. Neurons
6,7 are placed relatively well - aside from other neurons (they are weakly connected to
rest of network). Neurons 4,9,10,11 are placed close together but result looks confused
and unclear. We can see that this neurons are strongly connected together but binds
between them are hardly resolvable.

Advanced weight algorithm (left bottom figure) (section accepts mainly distances

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 43

related to weights and as second criterion tries to maximize distances between neurons.
Compared to the basic algorithm, the situation around neurons 6 and 7, but a bit worse,
however, the situation around the cluster of neurons 4,9,10,11 is greatly improved. Com-
pared with low crossing is seen that the visibility decreases with increasing number of
crossings. This algorithm have the best avoidance to placing binds almost parallel.
Crossing minimum (right bottom figure) (section accepts mainly sum of crossing
matrix and as second criterion distances related to weights. Distribution of neurons in
space looks similar like advanced algorithm results. The results show that the algorithm
placed neurons evenly spontaneously deployed to the area despite the fact that it does
not force any criterion. Confusing situation happens about almost intersecting binds.
As an example can be mentioned bind between neuronS 3 and 4 which is going through

neuron 12.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 44

5.8.4 Comparison of Active algorithms Fullbinded Network

Crossing Minimum Algorithm

Figure 5.9: Comparison of active algorithms - All algorithms were used on ”Fasy
Circle” distribution of neurons and algorithms was studying real binds between neurons
(not power). Tested topology has small number of neurons withalmost fully connected

graph.

Here I try to comment results I got.

Basic weight algorithm (right top figure) (section - bind weight. The results
show that neurons 9,10 are pushed from rest of neurons by inhibition binds. Because
algorithm takes bind from the lightest to the strongest, it is neuron 5 is tightening closer
to input neuron (repeater). Because of the high number of binds with similar weight
distances between rest neurons change only slightly.

Advanced weight algorithm (right bottom figure) (section accepts mainly dis-
tances related to weights and as second criterion tries to maximize distances between
neurons. In comparison with basic algorithm, the algorithm respects better the sum of
weights from binds connected on neuron 5 and this sum hold neuron with rest of internal
neurons. Group of neurons 9,10 is separated from rest neurons too but in comparison

with previous result two groups are not so clearly separated.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 45

Crossing minimum (left bottom figure) (section accepts mainly sum of crossing
matrix and as second criterion distances related to weights. The result show that fully
binded network reveals weakness of the algorithm. The algorithm tends to give bind

parallel. The result has the minimum crossisng but the result is confusing.

5.8.5 XOR tested by algorithms

1
| [L] X107y
L 2 | L e e
L3 0L 111 ETE
| 4 N, L
| 5 1 1 1]
5]
7
g 5 _w:20 3
w:20
~_1
e
“'w:20

Figure 5.10: XOR dynamic context - This network implements binary exclusive-or
(XOR) function. The output of the function is true if and only if the values on inputs
are different. From the fig. X we can see that binary values are coded using the value of
analog current. Binary 0 is represented by OmA and binary 1 is representd by 50mA.
The output is coded by spikes. Logical zero corresponds to no spikes, and logical one

corresponds to reqular firing of output neuron.

On this standard neural network representing XOR I try to explain the dynamic conti-
nuity in the formation of power binds.

On first part of spiketrain (where neuron 6 is at powered and neuron 7 has zero
current) neuron 5 will be binded with neuron 1 and 3. These bind will not be much
strong because neuron 5 got excited much more times than neurons 1 and 3. Neuron
3 and neuron 1 will be binded hard because excitation of neuron 3 cause excitation of

neuron 1.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 46

On second part of spiketrain (where both inputs are powered) will shoot only neuron
4 and 5 because they are powered from input. Between this neurons will be created
moderate bind, because one shoot after another repeatly, even though no bind between
them.

On third part is situation similar like in part one but excitated is bottom side of

network. Binds will be created between neurons 4,2 and 1.

Basic Weight Algorithm

Advanced Weight Algorithm

Figure 5.11: XOR results - results of weight algorithms used on network Fig. [5.10,

Here I try to comment results I got for weight algorithms.

Basic weight algorithm (section shows that binds in network are few times
stronger than binds which connect inputs with rest of network. The algorithm confirms
that weights in network correspond with original shape.

Advanced weight algorithm (section ignores ratio between weight of input binds
and rest of the binds and tries to place rest of the binds to the best shape. The result

also corresponds to the original shape of the distribution.

CHAPTER 5. ALGORITHMS AND EXPERIMENTS 47

Bm

0‘4

o

Advanced Power Algorithm

Figure 5.12: XOR results - results of weight algorithms used on network Fig. [5.10,

Here I try to comment results I got for power algorithms.

Basic power algorithm (section [5.3)) results looks like original shape of network. The
result suggests that the resulting bind strength ratios have similar size as the real links in
the neural network, I mean that behaviour of this network is directly based on its binds.

Advanced power algorithm (section can reveal less important regularities of
spiketrain. Neurons 4,5 are close to each other. It is based on their power bind from
middle part of spiketrain. Also this neurons switch places. This is due to the large
difference in frequency of firing of these neurons and the rest of the network. These binds

are weaker than other, less important power binds.

Chapter 6
Thesis Conclusion

Result of my work is the application able to draw and visualize neural network and its
behavior. The application contains several tools and principles useful for normalisation
of drawed form. In this way, we can study different kinds of ANN by single application
and formulate results generally, for different types of networks.

The application tries to visualisate networks behaviour with the best quantum in every
moment that the visualisation is displayed with the highest frame rate available for given
simulation speed. I tried to access the animation and imaginatively to ensure minimal
computational complexity of the best tools. In result, the application searches only in a
narrow range of loaded data. Numerical complexity of visualisation grows lineary with
increasing number of binds. For example, if all neurons fire at once, the number of pulses
relative to the calculations is exactly equal to the number of binds despite the fact that
all the pulses that travels in the animation are stored in single list.

In order to be able to study the patterns and characteristics of networks I implemented
several methods. Each implemented algorithm respects different rules with different im-
portance but all algorithms do it in order of clarity. The algorithms have their own
numerical complexity. User can easily see this information on the displayed FPS . Pas-
sive algorithms calculate only single cycle of calculations. Their numerical complexity is
for most networks minimal and is directly based on number of neurons. Active algorithms
calculates up to 1000 cycles or can be stopped by user. Numerical complexity can play
important role. It can be calculated as number of calculations.

Basic weight algorithm in each cycle calculates as many calculations as the number
of binds (power or weight). Total number is equal to total number of binds b.

Advanced weight algorithm in each cycle also calculates all binds but also calculates

distances between all neurons. Total number is equal to (b+ n?) - 9. Where n is number

48

CHAPTER 6. THESIS CONCLUSION 49

of neurons. Multiplied by 9 because calculation has to be done for each surrounding
position.

Crossing minimum algorithm in each cycle calculates crossings with other binds for
each bind twice (bind is connected to two neurons). Total number of calculation is 2-9-b2.

Tested networks have number of binds is commonly 1-5 times higher than number
of neurons for common networks. Maximal number of binds is restricted to 4000 (based
on maximal size of memory). For network contained from approximately 100 binds and
approximately 30 neurons, Basic Algorithm has complexity approximately 30 calculations
per cycle, Advanced Algorithm has complexity approximately 9000 calculatiions per cycle
and for Crossing Minimum is complexity per cycle approximately 180.000 times.

For maximal number of binds can grow complexity of Crossing Minimum to tens and
houndreds milions of calculations.

The numbers are approximate (all types of calculations do not take same time) but
show how complexity grows with the size of the network. For Basic Algorithm grows
lineary, for advanced algorithm grows exponentially and multiplied by 9 and for Crossing
Minimum grows faster exponentially (number of bind is commonly higer than number of
neurons) and multiplied by 18.

This work aims to create a visualization tool that helps us somehow illuminate the
internal structure and behavior of recurrent neural networks 3rd generation. This is to
provide algorithms for 2D chart neuron in space where neurons are distributed based on
the selected criterion.

Due to a lot of different properties of possible networks, I showed that different al-
gorithms are suitable for different types of networks. Therefore, I design, implemented,
tested and compared with each other several algorithms that optimize both static and
dynamic properties of the site. I showed how algorithms can help us understand the
internal structure of these networks and how this knowledge can be further exploited.

Finally, I showed which algorithms are suitable for different networks.

Bibliography

ENcoG (2012), Encog Artificial Intelligence Framework for Java|online]. [cit. 2012-05-14],
(hhttp://code.google.com /p/encog-java/).

EUGENE M. IzZHIKEVICH (2003), [EEE Transactions on Neural Networks|online.
[cit. 2012-05-23], (http://www.izhikevich.org/publications/spikes.html).

ExAMPLE DEPOT (2012), Listing the Files or Subdirectories in a Directory|online].
[cit. 2012-02-22], (http://www.exampledepot.com/egs/java.io/GetFiles.html).

FANN (2012), Fast Artificial Neural Network Library [online]. [cit. 2012-05-14],
(http://leenissen.dk /fann/wp/).

GEPHI (2012), The Open Graph Viz Platform[online]. [cit. 2012-05-14],
(http://gephi.org/).

GERSTNER AND KISTLER (2012), 4.1 Integrate-and-fire model[online]. [cit. 2012-05-14],
(http://icwww.epfl.ch/ gerstner/SPNM/node26.html#Fig2-1F).

GRAPHVIZ (2012), Graph Visualization Software[online]. [cit. 2012-05-14],
(http://www.graphviz.org/).

GUESS (2012), The Graph Exploration System [online|. [cit. 2012-05-13],
(http://graphexploration.cond.org/).

L.R. VARSHNEY, B.L. CHEN, E. PaniacuA, D.H. HALL AND D.B. CHKLOVSKII
(2012), Neuronal Connectivity II [online]. [cit. 2012-04-15],

(http://www.wormatlas.org/neuronalwiring.html).

Maass, W. (1996), Networks of Spiking Neurons: The Third Generation of Neural Net-
work Models (1996) , In Journal Neural Networks vol. 10, p. 1659-1671.

20

BIBLIOGRAPHY o1

NEUROML (2012), Current applications|online]. [cit. 2012-05-14],
(http://www.neuroml.org/index.php).

NEUROPH (2012), Java Neural Network Framework[online]. [cit. 2012-05-12],
(http://neuroph.sourceforge.net /).

PiccorLo2D (2008a), A Structured 2D Graphics Framework [online]. [cit. 2012-05-12],
(http://www.piccolo2d.org/).

PiccorLo2D (2008b), Graph Editor[online]. [cit. 2012-02-22],
(http://www.piccolo2d.org/learn/grapheditor.html).

UNIVERSITY OF MARYLAND (2008), Piccolo Toolkit [online]. [cit. 2012-05-14],
(http://www.cs.umd.edu/hcil /piccolo/index.shtml).

VITKU, J. (2011), An Artificial Creature Capable of Learning from Experience in Order to
Fulfill More Complex Tasks, Diploma Thesis, Czech Technical University in Prague,
Faculty of Electrical Engineering.

VITKU, J. (20124), ‘Parser Ver0.3 - readtopology.m[dvd]’.
VITKU, J. (2012b), ‘Parser Ver0.3 - writespiketrain.m[dvd]’.

WIKIPEDIA (2012), Wikipedia - Graph theory[online]. [cit. 2012-05-22],
(http://en.wikipedia.org/wiki/Graph theory).

YWORKS (2012), yEd Graph Editor [online]. [cit. 2012-05-14],
(http://www.yworks.com/en/index.html).

Appendix A

Contents of CD

This Bachelor Thesis includes the compact disc with the following content:

e Electronic version of this document in PDF format.

e Project containing the source code in the Java language implementing visualisation

tool.

e Project containing the source code in the Matlab language implementing parser for

simulation neural networks and exports data in predefined format

Appendix B

User Manual and Implementation

notes

In this chapter I would like to briefly describe how to launch the selected experiment.
The following section will describe the particular window of aplication GUI and its basic

purpose.

B.1 Launching the Experiments

All of parts necessary for launching the experiment are implemented in the Java pro-
gramming language, because of this fact the entire simulation should be totally platform
independent. Launching of the experiments has been tested on the platforms: Windows,

partly on Linux and OS X.

B.2 Manual

1. Box with names of topology which will be loaded.

2. Left click opens file browser where can user choose file. Right click browses default
directory.

3. Box with names of spiketrain which will be loaded

4. Left click opens file browser where can user choose file. Right click browses default

directory.

IT

APPENDIX B. USER MANUAL AND IMPLEMENTATION NOTES

| £/ Neural Network Visualisating Tool

o o 5

Topology File

Spiketrain File

T R

T — v

LOAD

§

Passive Algonithms
(®) Default Topology

) Easy Circle

) Computed Circle

() signal Flow Algorithm
Type selection

@® weight

© Power

222

Quantum (refreshes per ms)
11

Speed control
Speed - usis

100

Frames Per Second
0 100

1000

Shooting time {us)
12—0——— 10 |

Spiketrain zooming
Widnt Zooming

100.0
|

Height Zooming

Other Properties

III

Animated Algorithms .
) Basic Weight Algorithm Y \ 15| Enable pulses
\ 161y] Enable arrows
\ 4 7[] Enable floating outputs
~— \ 18, enable animations
— 19 enable spiketrain neuron tities

24 00 1.0 20 30 4.0 50 60 70 80 9,

() Advanced Weight Algorithm

© Crossing Minimum

= START RESET &

Figure B.1: Application Appearance - appearance of the visualizationtool display-

ing simple testing network.

5. Button which loads selected networks. When application loading all tools are dis-
abled.

Chosen algorithm will be independently applicated on the network in current state.
Button starts the animation. If animation or algorithm is running, can pause both.

Reset network to default distribution and reset the time to zero.

© ® N

Sets speed of animation. Sized in microseconds.

10. Shows FPS of animation or animated algorithm.

11. Shows actually set value of quantum.

12. Sets wide of time window and affects parameter of power algorithms.

13. Sets horizontal zoom of spiketrain. Sized to pixels per milisecond.

14. Sets vertical zoom of spiketrain. Constrain are resized if neuron titles are enabled.
15. Enables animation of pulses.

16. Enables drawing of arrows.

17. Enables floating of outputs in algorithms.

18. Adds additional delay for each cycle of animated algorithms.

19. Enables showing neuron titles in spiketrain and their refreshing.

APPENDIX B. USER MANUAL AND IMPLEMENTATION NOTES

1Y

20. After click network is frozen and user can identify any part of the graph. After

confirm click selected neuron are displayed and saved in text file select.txt in root

of the project.

21. If animation is paused user can change time by dragging spiketrain.

22. If user clicks neuron, it shows its information. If user exits the neuron or information

field, information disappears.

23. If user enters bind, it shows its information. If user exits the neuron or information

field, information disappears.

B.3 Source Data Examples

[T=R R L= S B o VR S R

o
= o

0.02 0.2 -85 8 30

2

3

5

5 SI0.0E 0.2 -65 8 3002 -0.1 1 3 0.2 2
I&.S EI0.0E 0.2 -65 8

5 7 0.02 0.2 -85 8 30

2 6]4 0.44 0.55]4 -0.44 0.86

4 2

b BT R (e, " L I IR TR 1 L i S e R |
12020 ES -0 4 e L 30 ET

30 0.3 39023 F 40044

Figure B.2: Topology F'ile - grey rectangle contains numbers neurons, red one con-

tains abcd treshold parameters, in green one are some xz,y coordinates and blue one
contains information about bind - to(4), weight(0.44) and delay (0.55).

L R R T R

9

(=R T R = BT R X

.105377 [L.095559]
.102855 1.003932
.103404 1.022637
.088551 0.663261
.145523

2.
2.
2

i

217459
008403

.050445

282982

oW oW w

.516828
-146192
-218028
-938163

(SR

071157
. 463129
. 577905
. 639192

wom m -

10] 0.1}
11 0 J75.000 75.000 75.000 75.000 75.000 75.000 75

12| 0 75.000 75.000 75.000 75.000 75.000 75.000 75

.025070
.035446
211789
-392690

.000 75.
000 75.

9.693733
8.001305
8.278000
4

. 207871

000 75.000
000 75.000

Figure B.3: Spiketrain File - grey rectangle contains numbers neurons, red one

contains one time of excitation neuron ID 1, in blue one is analog parameter, black one

indicates that neuron 6 is analog and yellow one contains value of one current step.

