
Quest Users Guide

Peter Braun, Heiko Lötzbeyer, Oscar Slotosch

Version 1.0 of March 7, 2000

Abstract

Within the project Quest several tools have been connected. The central
tool is AUTOFOCUS, the connected tools are VSE, SMV, CTE, and SATO.
Furthermore several parts (a temporal specification language, a selection
tool, a test driver, and an abstraction chooser) have been added to improve
the integration of the tools and to support the development of correct soft-
ware. Furthermore we describe some examples that have been used to test
the quest tools.

Contents

1 Introduction 5

1.1 Conventions used in this manual. . . . . . . . . . . . . . . . . . 7

2 Views and Models ofAUTOFOCUS 8

2.1 Structure of Views in AUTOFOCUS . . . . . . . . . . . . . . . . . 8

2.2 Structure of the Models. . . . . . . . . . . . . . . . . . . . . . . 9

3 The Language QuestF: DTDs and Properties 11

3.1 Type Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

3.3 Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Module Definitions. . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



3.6 Correctness Conditions. . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Integration and Application. . . . . . . . . . . . . . . . . . . . . 18

3.8 Predefined Elements. . . . . . . . . . . . . . . . . . . . . . . . 18

3.8.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.8.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Using the Model Browser 20

4.1 Starting the browser. . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Working with repositories. . . . . . . . . . . . . . . . . . . . . . 20

4.3 Viewing and editing nodes. . . . . . . . . . . . . . . . . . . . . 21

4.4 Creating new nodes. . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Deleting nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Integration 22

5.1 Integration in AUTOFOCUS . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Exporting Projects from AUTOFOCUS . . . . . . . . . . . 22

5.1.2 Importing Projects in AUTOFOCUS . . . . . . . . . . . . 22

5.1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Integration in VSE . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.2 Importing Projects in VSE. . . . . . . . . . . . . . . . . 24

5.2.3 Exporting Projects from VSE. . . . . . . . . . . . . . . 28

5.2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Model Checking with AUTOFOCUS 31

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Counter Examples. . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Connected Checkers. . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.1 Using SMV. . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.2 Using SATO . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Abstraction Chooser 35

2



7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Abstraction Example: Comparator. . . . . . . . . . . . . . . . . 38

7.3 Using the Abstraction Chooser. . . . . . . . . . . . . . . . . . . 40

8 Connection to VSE 45

8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.2 Translation from AUTOFOCUS to VSE . . . . . . . . . . . . . . . 47

8.2.1 SSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2.2 STD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.2.3 DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 Translation from VSE to AUTOFOCUS . . . . . . . . . . . . . . . 71

8.3.1 SSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.3.2 STD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3.3 DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 The Test Environment 73

9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.2 Creating Test Sequences. . . . . . . . . . . . . . . . . . . . . . 74

9.2.1 Test Basis: SSDs. . . . . . . . . . . . . . . . . . . . . . 74

9.2.2 Test Basis: SSD with STDs. . . . . . . . . . . . . . . . 76

9.2.3 Test Basis: Functions. . . . . . . . . . . . . . . . . . . . 77

9.2.4 Deriving sequences from test automata. . . . . . . . . . 77

9.2.5 Test Basis: EETs. . . . . . . . . . . . . . . . . . . . . . 78

9.3 Performing Tests. . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.3.1 The Test Object Interface. . . . . . . . . . . . . . . . . . 78

9.3.2 Running the Test. . . . . . . . . . . . . . . . . . . . . . 78

9.3.3 Interpreting the Results. . . . . . . . . . . . . . . . . . . 79

A Installation 79

A.1 System Requirements. . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3



A.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.4 Uninstallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B Case Studies and Examples 84

B.1 Emergency Closing System of Storm Surge Barrier. . . . . . . . 85

B.1.1 The Original Model. . . . . . . . . . . . . . . . . . . . . 86

B.1.2 An Improved Model . . . . . . . . . . . . . . . . . . . . 87

B.1.3 A Comparator for Sensor Signals. . . . . . . . . . . . . 87

B.2 FM99 Banking System. . . . . . . . . . . . . . . . . . . . . . . 87

B.2.1 Complete Model. . . . . . . . . . . . . . . . . . . . . . 88

B.2.2 Abstract Model. . . . . . . . . . . . . . . . . . . . . . . 88

B.3 Traffic Light Control System. . . . . . . . . . . . . . . . . . . . 88

B.4 Other Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C Correctness of Abstractions 90

C.1 Definition of the Abstraction Function. . . . . . . . . . . . . . . 90

C.2 Homomorphosm Proof Obligation. . . . . . . . . . . . . . . . . 91

C.3 Strengthening Proof Obligation. . . . . . . . . . . . . . . . . . . 93

4



1 Introduction

In this user guide we describe the tools developed within the project Quest. The
goal of the project Quest was to combine graphical software development tools
with tool to ensure the quality of the developed software. There are different
kinds of such tools:

• model checker: can be used to check temporal properties of finite models
automatically.

• theorem prover: support manual verification of arbitrary models and prop-
erties

• test tools: test the developed software

During the analysis phase of the project we selected AUTOFOCUS [HMR+98,
HMS+98] for graphical system specifications, and decided to connect the model
checkers SMV [RSW97] and SATO [Zha97], and the theorem prover VSE II to
AUTOFOCUS. For testing we selected the CTE [GWG95] for the classification
of variables and implemented several methods to generate test cases from AUTO-
FOCUSspecifications. Furthermore a test driver has been implemented to test Java
programs against the test cases.

Figure1 shows the structure of the tools of the project Quest. The boxes represent
the connected tools, and the arrows between them denote the connections that
are designed and implemented within the project Quest. We integrate the tools
by defining interfaces and (sometimes partial) translations between the used con-
cepts. The interfaces use the “QML” (Quest model language) model format, and
can also be used by other tools. All tools are connected to the models of AUTO-
FOCUS. The models are exported from AUTOFOCUS, that is be used to specify
the model using graphical views. The models are represented in a textual format
(QML), and can be managed using the model browser. Furthermore many quest
programs can be started from this model browser.

For the connections of AUTOFOCUSto the other tools two new features have been
integrated into AUTOFOCUS:

• the functional language QuestF, and

• the textual interface (export and import) QML.

The functional language QuestF is used in DTDs, transitions in STDs, and in prop-
erties. It is the logical basis for the translations to the other tools. The interface is
used to import and export projects from AUTOFOCUS to the model browser.

5



Figure 1: Tool Structure of Quest

6



This user manual is a description of the Quest extensions of AUTOFOCUS. We
assume the user to be familiar with AUTOFOCUSmodels and terms like “STD”, or
“type”. This manual describes the features implemented within the project Quest,
and the user interface to use them. There are several publications (available on the
Quest homepage1) that describe more general aspects.

• Quest: Overview over the project Quest [Slo98],

• Process: Enriching the Software Development Process by Formal Methods
[BS99],

• Integration concept: Consistent Integration of Formal Methods [BLSS00],

• Model checking design: The Quest for Correct Systems: Model Checking
of Diagrams and Datatypes [PS99],

This user manual is structured as follows: In Section2 we present the document
and model structures within AUTOFOCUSincluding the extensions like properties,
that are not part of AUTOFOCUS. In Section3 we present the language QuestF by
introducing and explaining examples for types, functions, and properties. Section
4 contains a description of the user interface of the model-Browser, and Section
5 describes how the browser is integrated into AUTOFOCUS and into VSE. The
translation of models to SMV is described in Section6, and Section7 explains
the usage abstractions to extend the applicability of model checking to larger and
infinite systems.

Section 8 describes the connection to the theorem proving environment VSE.
The test environment and the methods to generate specification based test cases
are explained in Section9.

The appendicesA andB conclude the manual with an installation guide and an
overview over the examples shipped with the software.

1.1 Conventions used in this manual

This manual uses different fonts to represent different types of information.

Shell commands appear in a monospaced font. For example:

command [-optional-argument] <filename>
1www4.in.tum.de/proj/quest

7



In this example you have to typecommand in your command-shell and you can
give it an-optional-argument and you have to specify a filename.

Menus also appear in a monospaced font. For example:File

Buttons are presented like this:OK, Cancel

2 Views and Models ofAUTOFOCUS

AUTOFOCUShas a view oriented structure, whereas the extensions of the project
Quest use the model (semantics). The main model of AUTOFOCUS are compo-
nents. Within the model browser there are some additional attributes available,
that cannot be represented graphically within the views of AUTOFOCUS.

Exporting a project from AUTOFOCUS into the QML generates a model for the
views and requires that the views are consistent, for example each component in
a SSD should have a refinement or a behaviour. This can be checked using the
consistency test of AUTOFOCUS(see [HSE97]).

Since the model browser and the browsers of AUTOFOCUS represent the struc-
tures of models and views, we use them to present the structures.

2.1 Structure of Views inAUTOFOCUS

AUTOFOCUShas a view oriented structure (see for example [HMR+98, HMS+98]).
Every document describes a graphical view on the model. The main structure of
the views are the kinds they belong to. There are SSDs, STDs, EETs, and DTDs
in the browser of AUTOFOCUS(see Figure2).

Since the views in AUTOFOCUSare hierarchic, within each document class there
can be substructures. Components in SSDs can be refined with SSDs, states in
STDs can be refined by STDs, and components or boxes in EETs can be refined
using EETs.

DTDs have an inclusion structure, since each DTD can import other DTDs. This
leads to a graph structure instead of a tree structure, however this is not yet imple-
mented within AUTOFOCUS. Copy and paste has to be used to reuse DTDs.

The association that relate views of different kinds cannot be visualized in the
browser of AUTOFOCUSAtomic components cannot be seen in the browser, since
it shows only the available documents. The only visible association in the browser
is the substructure association between views of the same kind. Further associa-
tions, for example the assignment of a STD to a component cannot be seen in the

8



Figure 2: The Browser of AUTOFOCUS

browser of AUTOFOCUS.

2.2 Structure of the Models

QML has a model oriented structure. The main models are components. The
model browser shows more details and attributes of the model than AUTOFOCUS

does, and in addition there are some attributes that are not present in AUTOFOCUS,
for example properties, abstractions, or an implementing code.

Every component can have subcomponents. This reflects the hierarchy in AUTO-
FOCUS SSDs. In contrast to the browser of AUTOFOCUS the STDs assigned to
a component are also displayed (see Fig.3). In the model browser the following
model/structures are displayed:

• Component: with attributes

– Subcomponents

– Ports

– Automaton (STD)

– EET

9



Figure 3: The Model Browser

10



– DTD

– Property

– Abstraction

• Automaton (STD): with an attribute state for the description of the be-
haviour

• State: with attributes

– Substates

– transition segments (parts of transitions)2

• Transition Segment: with attributes

– Precondition

– Input patterns

– Output patterns

– Actions

• EET: with attributes

• DTD: with several modules

• Modules: related types and functions

See Section4 for a description of the features of the model browser.

3 The Language QuestF: DTDs and Properties

In this section we describe the language QuestF. QuestF is a functional language,
extended with some constructs for the description of system properties.

The functional part of QuestF ist similar to ML [Pau91] or Gofer [Jon93], the tem-
poral operations are like those in TLS [Mül98a], a subset of LTL. The operations
for the system descriptions are close to the notations used in the AUTOFOCUS

tool.
2The model supports the concatenation of different transition segments to one transition (Inter

level transitions). In AUTOFOCUS inter level transitions (between documents) require identical
labels/semantics, otherwise they cannot be unified during the simulation or the QML export.

11



In the following subsections we provide syntax for the language QuestF, and ex-
plain it by some examples of a banking system (see AppendixB.2 or http:
//www4.in.tum.de/proj/quest/ for a description of the example). Fur-
thermore we characterize the subsets of QuestF, that can be used for model check-
ing, and for the export to VSE.

3.1 Type Definitions

Type definitions are the central part in the DTDs of AUTOFOCUS/Quest. They
define types and elements of QuestF. For example

data Message = Money(Int) | NoMoney | Balance | MailSent;

defines the typeMessage and theelementsNoMoney, Balance , andMailSent ,
and the functionMoney: Int->Message that constructs an element of type
Message for each argument of typeInt . The elements and functions defined
within thedata construct are calledconstructors, and can be used inpatterns
to define functions or transitions withpattern matching (see Section3.3).

The defined types can be used in SSDs together with the default typesBool,
Int, Float . The defined elements can be used in the transitions of STDs, for
example in

m <= 0 ; x ? Money(m); s ! m, ans ! NoMoney; Msg = Money(m)

This transition reads from the channelx of type Message , and writes to the
channelss of type Int andack of typeMessage . The transition can only be
executed, if the following conditions hold:

• a value is on the channel connected to the portm,

• the value matches the patternMoney(m) , and

• the reconditionm <= 0holds.

For example the transition cannot be executed ifx has no value, orMailSent ,
or Money(100) . In the casex has the valueMoney(0) , the transition can be
executed and sends the value03 to the ports .

Type definitions can also be used to definepolymorphic types, for example
lists, by:

3The transition variablem is instantiated to the value0 during the pattern matching of the
conditions.

12

http://www4.in.tum.de/proj/quest/
http://www4.in.tum.de/proj/quest/


data List(a) = Nil | Cons(first:a,rest:List(a));

In this definition twoselector functions are defined:first: List(a) ->
a andrest:List(a) -> List(a) . Both are partial functions and can only
be applied to list elements constructed withCons. Therefore type definitions
introduce predicates (discriminator functions)is_Nil and is_Cons . The se-
mantics of discriminator and selector functions are (see Section3.3) for function
definitions).

// generated selector functions:
fun first(Cons(x1,x2)) = x1;
fun rest(Cons(x1,x2)) = x2;
// generated discriminator functions:
fun is_Nil(Nil)=True

| is_Nil(x) = False;
fun is_Cons(Cons(x1,x2))=True

| is_Cons(x) = False;

For model checking finite types are required. Therefore the type definitions must
not be recursive, i.e. the defined type must not occur in the definition. For example
the above typeList is not finite. Furthermore polymorphic types cannot be used
for model checking4.

The grammar for data definitions (ddata) is (in BNF-Syntax):

ddata ::= data string tvars? = dconstr dconstrs∗ ;
tvars ::= ( tvar cotvar∗ )
cotvar ::= , tvar
tvar ::= string
dconstrs ::= | dconstr
dconstr ::= string

| id ( karg kargs∗ )
| ( karg infid karg )

kargs ::= , karg
karg ::= type

| id : type

Type definitions can be used in DTDs to define additional functions (see Section
3.3).

4The only exception is the predefined polymorphic typeChannel(m) , see Section3.8.

13



3.2 Terms

In the language QuestF the following terms are allowed:

• atoms (constants, variables), like2, or X

• applications likenot(x) or mult(x,y)

• infix-applications like2+3 or (x ˆ y)

• conditionals likeif x then y else z fi , where the else branch can
be omitted, and

• unnamed functions (“lambda abstractions”) likeparam x y { t } .

Around arbitrary infix operators there are brackets required. Predefined infix oper-
ators (see Section3.8.2) have priorities, that allow to write terms likea+b+c*d .

The important grammar rules for building terms are:

cterm ::= cbase typean?
typean ::= : type
cbase ::= sign? id

| param string+ { cterm }
| ( cterm infid cterm )
| if cterm then cterm elsecterm fi
| if cterm then cterm fi
| unop ( cterm )
| ( cterm )

sign ::= +
| -

Lambda abstraction is not supported for model checking and VSE generation. In
the next section we show how to define functions in QuestF.

3.3 Function Definitions

In the language QuestF functions can be defined by pattern matching (like in func-
tional languages). In the example of the banking system (see AppendixB.2), we
have the following example:

14



data Card = Invalid
| Valid(info:Cardinfo,dayAmount:Int,Date);

const maxAmount=2;
fun maxForToday(day,Valid(ci,amt,lastDay)) =

if (lastDay == day)
then maxAmount-amt
else maxAmount
fi;

It defines a constantmaxAmount and a functionmaxForToday , using the con-
structor functionValid for pattern matching. Since the functionmaxForToday
has no branch for invalid cards, it is undefined for this pattern.

Infix operations can also be defined, for example

fun (Nil # s) = s
| (Cons(x,s) # t) = Cons(x,(s#t));

Defines a concatenation operator# for lists.

The grammar for constants and functions is:

decl ::= constid = cterm ;
| fun cterm fundecls∗ ;

fundecls ::= | cterm

For function definitions the formleft = right is required (see Section3.6). On
the left side only variables and constructors are allowed. All variables used in the
right part of the function definition have to occur in the left part. Every variable
may occur only once within the left part of the equation.

3.4 Module Definitions

The QuestF languages has a modular structure. Every component (see Section2)
has a list of DTDs. A DTD is a module within the QuestF language, the name
of the DTD is the name of the module. Every DTD has a tree of sub-DTDs, that
correspond to imported modules. For each DTD (and the corresponding tree) the
export into QuestF format generates a file with a module structure.

The user can create (imported) sub-DTDs using the “Navigate” menu of the DTD-
Editor (see Figure4), therefore it is not necessary to look at the grammar for
modules in QuestF.

15



Figure 4: Importing a DTD Module

In the DTDs of AUTOFOCUS only tree structures are supported, whereas the
QuestF language supports arbitrary imports.

3.5 Properties

The QuestF language allows to formulate properties. Properties can be defined for
every component (see Section4 for the user interface). Properties are temporal
formulas over components. The following temporal operators are supported:

• [] ( f ) : f is always true

• <>( f ) : f is true sometimes in the future

• ()( f ) : f is true in the next state

Formulas can be connected with the boolean operators for terms (see Section
3.8.2).

Formulas can refer to attributes of the component, and to the operations available
on these model attributes:

• StateName : refers to a state namedStateName , @is the current state.
On states the only operations are

16



– =: equality

– !=: inequality

• PortName : refers to a port namedPortName . On ports the following
operations can be applied:

– p!x portp sends the valuex .

– p?x port p receives the valuex . x can also be a pattern, consisting of
variables and contructor functions. Furthermore all functions available
on the typeChannel (see Section3.8.1) can be applied, for example
to state that a portp is empty byis_NoVal(p) .

• LocVar : refers to a local variableLocVar of this component. All opera-
tions available on the variable can be applied.

• SubName: refers to a subcomponent namedSubName. On subcompo-
nents all attributes can be refered using a. as delimiter.

With the possibility to refer to subcomponents, we have a qualification mechanism
for properties.

Properties are automatically translated into a fully qualified form after they have
been entered.

An example for a property of the componentConnection1 is:

[](Answer?NoMoney => ()(CentralMsg!NoMoney))

It is expanded to the fully quantified property

[](FM99.BankingSystem.Connection1.Answer?NoMoney =>
()(FM99.BankingSystem.Connection1

.CentralMsg!NoMoney))

Since properties are built like usual terms (over temporal operators and model
selectors), there is no additional grammar required for properties.

Note: Since identifiers in QuestF, must not contain blanks, properties must not
contains identifiers with blanks. Since qualified names contain the name of the
project, and the name of all components, these names must not contain blanks as
well, if qualified properties should be stored or loaded.

17



3.6 Correctness Conditions

The most important correctness condition for expressions in QuestF is type cor-
rectness. Furthermore input and output ports must not be confused. An additional
source of errors are reference problems, for example to non-existing attributes of
components, or due to wrong qualified names. Some of these errors are detected
when the model is used, i.e. when the model is exported or translated. This causes
exceptions that point to the invalid references.

3.7 Integration and Application

The QuestF languages cannot be type checked in the AUTOFOCUStool. However
when importing a model into the model browser type checks can be applied.

3.8 Predefined Elements

In this section we describe the predefined elements of QuestF.

3.8.1 Types

The following data types are predefined in QuestF5

• Bool, boolean, Booleanwith True, Falseandtrue, false.

• Int , int with 0, -1, 1, . . .

• Float,float with 0.0, . . .

• a -> b for functions from typea to typeb

• Channel(m) = NoVal | Msg(Val:m);

The typeBool can be translated to VSE and can be used for model checking.
Float and higher order functions (like in ML) are not supported within SMV
and VSE. The typeInt is restricted to a finite domain for model checking, rang-
ing from 0 to MaxInt, a value that can be defined in the model browser. The
polymorphic typeChannel(m) must not be used in AUTOFOCUS. In QuestF it
is used within properties, for example to expressx? by is_NoVal(x) . In the

5Allowing alternative syntactic forms for some types and elements makes it easier to convert
projects with from other languages to QuestF format.

18



translations to SMV, SATO and VSE this type is used for a type correct represen-
tations of channels (see Sections6, and8).

3.8.2 Operations

In this section we describe predefined operations (and their priority), that can be
used to build terms. Priorities range from 1 (low) to 4 (high), and can have an
associativity, for example&& 2l denotes that&&has priority 2 and associates to
the left.

The following operations are allowed on all terms:

• equality:= 1l

• inequality: != 3l

• receive:? 3

• send:! 3

The following operations are allowed on boolean terms:

• negation:not

• implication: => 1r

• biimplication: <=> 1r

• disjunction:|| 1l

• conjunction:&& 2l

The following operations are allowed on numeric (Int andFloat ) terms:

• subtraction:- 2l

• addition:+ 2l

• greater:> 3

• greater or equal:>= 3

• less:< 3

• less or equal:<= 3

19



• multiplication: * 4l

• division: / 4l

Note that multiplication and division cannot be translated to SATO (see [Wim00]).

4 Using the Model Browser

The model browser of the Quest development environment is the starting point for
all verification and testing activities. It enables you to

• load a repository

• view the repository

• edit the repository in a limited way and

• start the verification and testing tasks

4.1 Starting the browser

The browser does automatically come up when you start the Quest development
environment. This is done by typing

startQuest

from a command shell. See SectionA for further details on the installation.

4.2 Working with repositories

With theFiles menu in the menubar you can open, close, save and import the
repository.

20



Open a repository: There are two ways to open a repository. When opening
a repository, an optional type check can be performed. If you want to leave out
the type check useopen repository (fast) to open the repository. After
the repository is loaded the repository name and all projects will be displayed in
the browser. If you load the repository withopen repository (check) all
terms in your model will also be type checked while the repository is loaded. Use
this if you want to type check the model. Type checking the model, especially the
transitions of STDs cannot be performed in AUTOFOCUS.

If you are currently working on a repository and open a new one, the current
repository will be closed before the new one is opened. So be patient and save the
contents of the current repository before opening a new one.

Close repostory: Closes the repository and throws away all changes since last
save.

Save repository: Save the repostitory to the same file where it was loaded
from. In the current version it is not possible to save the repository to another file.
Therefore the repositories should be copied to a new file before they are loaded
into the browser. Beside the repository file you also have to copy all module files
in order to read in the copied repository properly.

Import repository: Import all projects of the specified repository into the
repository that is currently loaded into the browser. This function does not per-
form the type check.

4.3 Viewing and editing nodes

If you want to view the attributes of the selected elements, check the box in
Options->Show Attribute Window . All nodes of the current selection
will be displayed in a separate window. The attributes of some nodes can be
edited in the attributes window (e.g. messages).

4.4 Creating new nodes

With the model browser new subnodes can be created. The current version does
only support the creation of a Code subnode for a component. Future versions

21



will allow the creation of arbitrary nodes. In order to create a new Code subn-
ode first select the associated component node and then pressEdit->Create
Subnode . Then you get a dialog that allows you to create the new subnode.

4.5 Deleting nodes

Nodes can also be deleted within the model browser. Currently this functional-
ity is restricted to the deletion of transition nodes and EET nodes. To delete a
node first select the desired node and then click onEdit->Delete Node . Be
aware that all subnodes (i.e. the subtree of the selected node) will also be deleted
instantaneously.

5 Integration

5.1 Integration in AUTOFOCUS

5.1.1 Exporting Projects from AUTOFOCUS

You can export an AUTOFOCUSproject by simply pressingExport Project
-> Quest Format from theProjects menu in AUTOFOCUSand choosing
a file name. The exporter creates one file for model with the given file name and
for each specified DTD module a special module file. Note that all generated files
have to be in the same directory to read or import the repository.

5.1.2 Importing Projects in AUTOFOCUS

Importing projects to AUTOFOCUSis as easy as exporting them. Just click onIm-
port Project->Quest Format in theProjects menu and enter the file
name that contains the model. Pay attention that the corresponding DTD module
files are located in the same directory as the model file.

5.1.3 Limitations

Due to limitations of the quest data structures and the AUTOFOCUSdata structures
some information gets lost when converting a project from Quest to AUTOFOCUS

or vice versa.

The Quest export can not handle the following items:

22



• refinement of axes in EETs (i.e. sub EETs for axes)

• textual annotations of all objects

• reuse of STDs in several components

• STD documents which are not associated with an SSD document

• combinations of input/output statements that are delimieted with “ , ” can
not be exported (use “ ; ” as delimiter)

Items that cannot be imported in AUTOFOCUS:

• all kinds of test data

• properties

• abstractions

• java code

Therefore, when exporting an AUTOFOCUSprojects to the Quest format and reim-
porting it again in AUTOFOCUS, you will automatically loose the refinement of
axes in EETs.

5.2 Integration in VSE

One part of Quest is the connection to the VSE [Pla97] [KBRS98] tool. In this
section we give a short overview, how VSE is integrated in AUTOFOCUS/Quest.
Then we describe how projects or part of projects are imported to VSE or exported
from VSE. At last some limitations are shown.

5.2.1 Overview

The integration of VSE is loose, which leads to the fact, that the user has to follow
some rules. But the user is guaranteed the greatest flexibility. Figure5 shows
the process from AUTOFOCUS/Quest to VSE II and back. As it can be seen,
there are three programs involved. For the translation of AUTOFOCUS/Quest-
specifications to VSE the Quest-Selector can be used to select some parts of a
project, which should be translated. After this the appropriate generator can be
started to generate a VSE-SL [UBR+99] file which contains all the information.
This file can be imported to VSE. For the retranslation the VSE-specification has
to be exported and the appropriate generator has to be started. The resulting Quest
repository can be imported to AUTOFOCUS/Quest afterwards.

23



AutoFocus/
Quest

Generator
VSE->AutoFocus

Quest-Selector AutoFocus->VSE
Generator

VSE II

Figure 5: Connection AUTOFOCUS-VSE

5.2.2 Importing Projects in VSE

If you want to import an AUTOFOCUS-project to VSE, you have to export it first
from AUTOFOCUS. For further help on exporting a project in the Quest-format
see5.1.1. Now the selector can be used to choose a part of the project, which
should be translated to VSE or the translation can be started on the whole project.

Translation of a whole project To generate a VSE-SL file for the whole project
start the following command in a shell6:

af2vse [-useinclude] [-withoutsubgraphs]
<QML-filename> <VSE-filename> [<PropertyFilename>]

You have to specify the filename of the AUTOFOCUS/Quest repository and the
filename of a VSE-SL file in which the translated code should be saved. Also a
file with properties (in text-format) may be specified which then will be translated
to VSE. There are two other optional arguments which control the structure of the
generated VSE-SL code. The option-useinclude controls if the translation
of an AUTOFOCUS component with its automaton will be inlined or included in
the scheduled component wrapper (see Section8 for further details).

Translation of selected parts To select parts of a specification, which should
be exported to VSE II, the selector7 has to be started.

af2vse -s[elect] [-useinclude] [-withoutsubgraphs]
[<QML-filename> [<VSE-filename> [<PropertyFilename>]]]

6Note: The start ofaf2vse should be possible from the Quest-Browser in later versions.
7Note: This will be possible from the Quest-Browser in a later version.

24



Figure 6: The Selector

Note, when using the selector it is not necessary to specify any filename on the
command line. An AUTOFOCUS/Quest specification filename can be selected in
a file requester later by clicking on the buttonLoad or by selecting theLoad
in theFile menu. If properties are stored in a separate file, they can load with
Add Prop .

The selector is presented in Fig.6. There is a menu bar and a toolbar, where some
actions can be started. All actions, besidesExit , which is only present in the
File menu, are available via the menus and via the toolbar. Below the toolbar
there are two panels8 with tabs in it. On the left side objects, like components,
automata, data types and properties, can be selected on the right side the actual
selection is shown. The right panel is there only to control the current selection,
modifications always have to be done on the left side.

For maximal flexibility and usability there are two main selection modes. The au-
tomatic selection mode tries to select always a complete, consistent model, while
the user has maximal freedom in the manual selection mode. First we describe the
automatic selection mode.

8Panels are “windows”, which are contained in a real window

25



The automatic selection mode can be started by clicking on the toolbar button
AutoSelect or by selecting the corresponding menu entry. If the automatic

selection mode is on, the buttonAutoSelect is enlightened.

Automatic selection mode: The component tree will be folded to the root com-
ponent. If the root component has an automaton, then it will be selected,
otherwise their subcomponents will be unfolded. Again for each subcompo-
nent, which has an automaton it will be selected. Each subcomponent with-
out an behavior will be unfolded and so on. So at the beginning the most
abstract system with a complete behavioral description and the necessary
data type definitions will be selected. After this subtrees can be unfolded to
get a more concrete selection. A left mouse button click, deletes the selec-
tion and starts the selection algorithm from the component, on which was
clicked. A right mouse button click adds the selected component.

Manual selection mode: A left mouse button click deletes the selection and adds
the component, on which the mouse was positioned. A right mouse button
click selects or unselects the current object under the mouse. If a tree was
folded all objects in it will be unselected.

With the Select button the current selection can be activated. So the selected
objects in the left panel will be presented in lists in the right panel. These lists
in the right panel can only be viewed to control the selection, no operation on the
right side is possible.

With the Select All button the whole specification can be selected. The
current selection can be deleted with the buttonDeselect All .

If you want to export only a subtree of the whole project you have to select one
component (left click) and then you have to chooseSet Root . Afterwards
only the selected subtree will be presented. To reset this operation unselect all se-
lected objects, e.g. with right mouse button clicks, and then click onSet Root .

To export the current selection presented in the right panel, chooseExport .
Afterwards a filename for the VSE-SL specification can be chosen and then the
translation to VSE II starts.

Import in VSE After the appropriate VSE-SL file has been generated, it can
be imported to VSE. To start the import use the menuImport Quest in the
File menu of the VSE main window (see Figure7]. Then the following steps
are performed:

26



Figure 7: VSE: Import Quest

1. If the current VSE repository is no new one, i.e. it is already saved in a
.gti file, then the user can choose to create a new empty project.

(a) If Yes is selected, then a new project with the name"‘noname"’
will be created and used.

(b) If No is selected, then the state of the current project will be saved
to /tmp/quest.bck and all changes will be made to the current
project.

2. The AUTOFOCUS/Quest repository can be chosen with the file-browser (de-
fault suffix is.out ).

(a) ChooseOk to import the file.

(b) ChooseCancel to cancel the import operation.

3. The AUTOFOCUS/Quest repository will now be read. All actions, particu-
larly error messages, will be stored in a log-file (Quest.log in the start
directory).

4. If errors occurred during the import and the import is done in an existing
VSE repository, then the user can choose to restore the previous version.

Some notes on VSE internals:

27



Import of new nodes If no node with the representation of a specification exists,
then a new node with the appropriate name/class will be created. The initial node
attributes are set like in a “normal” ASCII-import, in particularChecked = No .

Change of existing nodes If an existing specification will be imported, the sta-
tus information of the node and dependent nodes will be recomputed from the
original state and the kind of the change:

Original state Action

Unchecked the node will be changed without a request
Checked the node will be changed without a re-

quest, the node and dependent nodes become
Unchecked

Invalid the node will be changed without a re-
quest, the node and dependent nodes become
Unchecked

Suspended , Verified the node will be type-checked automatically
and if necessary a warning with the possibil-
ity to cancel the action will be shown. If the
warning is ignored dependent nodes become
Unchecked or Invalid .

In-Verification the node won’t be changed. This may lead
to inconsistencies, because then parts of a
AUTOFOCUS-specification are imported and
other parts aren’t.

5.2.3 Exporting Projects from VSE

If you want to export a project or parts of a project from VSE and reimport it to
Quest you have to select the appropriate VSE objects, and you must chooseEx-
port from theFile menu of the VSE main window. Note that the retranslation
to AUTOFOCUS/Quest can be started withCall Transformer from the VSE
main window (see9) automatically. After that the resulting specification can be
read from the Quest-tools or from AUTOFOCUS.

Selection Before the export to Quest can be started, the VSE development ob-
jects, which should be exported, have to be selected. To select some nodes you
have to double click on a node and to choose a selection operation. Selected nodes
are displayed inverted. Select operations add nodes to the already selected nodes.

28



Figure 8: VSE: Select Quest

So more than one select operation may be used and the operations to describe the
set of objects to be exported may be mixed. There are two special operations for
the use with Quest. The popup menu ofTheory andTlspec contains a sub-
menuSelect Quest with the operationsRestricted andAll (see Figure
8). With All all objects are selected, withRestricted all objects in the graph
which are referenced from the actual object (including the actual object itself) are
selected. Since it is not always obvious, which nodes are selected you may want
to chooseDeselect All in Actions menu of the VSE main window, before
you begin your selection.

Export After you have chosen all objects you want to reimport to Quest, the the
export can be started withFile only or Call Transformer in the Ex-
port Quest submenu of the VSE main window (see Figure9). With File
only you have to start the VSE to AUTOFOCUS translation yourself, if you

29



Figure 9: VSE: Export Quest

chooseCall Transformer then the retranslation to Quest is started automat-
ically. Before the export itself is started, some heuristic checks are done:

• Type correctness: every selected node is type checked

• Completeness: all nodes used by a selected node are selected too.

• Coherence: only one root node is selected. All other nodes are reachable
from the root node.

If a check fails the user is warned, but may proceed anyway.

The start of the retranslation program can be configured via the environment vari-
ablesVSE2AF_BIN andVSE2AF_PAR. The translation program will be started
as:

$VSE2AF_BIN $VSE2AF_PAR /tmp/vse2af.out

See below and SectionA for further information on the translation program and
how the environment variables should be configured.

30



Retranslation If you have exported VSE objects withFile only or you want
to retranslate an existing VSE-SL file to Quest you can use the command:

vse2af <VSE-filename> <QML-filename>

The filename of a VSE-SL file and the filename to which the translation should be
written have to be specified.

Import After these steps the resulting AUTOFOCUS repository file can be im-
ported to AUTOFOCUSor to the Quest-tools.

5.2.4 Limitations

The retranslation from VSE to Quest is limited to VSE-SL specifications, which
are similar structured like those generated from AUTOFOCUS/Quest specifica-
tions. For more details see Section8.

6 Model Checking with AUTOFOCUS

In this section we describe how to use model checking with the models of AUTO-
FOCUS. The description of properties is in Section3.5. After a general introduc-
tion (Section6.1), we describe how counter examples can be visualized (Section
6.2). In the following (Section6.3.1, and Section6.3.2) we describe how the
the different checkers can be used. The technical details of the translations are
described in other documents. See [PS99] for the SMV connection, and [Wim00]
for the translation to SATO.

6.1 Introduction

In this section we give general information for model checking, such as parameter
selections for model checking and bounded model checking.

For model checking only finite types are allowed. Since many models use integer
values, we decided to provide an ad hoc abstraction for them. We implemented
the checking of QuestF integers within a range from0 to the value ofMaxInt .
This can be used to benchmark different model checkers by changing the value of
MaxInt . This can be done within the “Verify” menu of the model browser. Since

31



Figure 10: ChangingMaxInt

MaxInt is an attribute of projects a project has to be selected. The default value
for MaxInt is 15 . See Figure10 for a changing ofMaxInt .

Model checking (and bounded model checking) can be started for components
and for projects. Be careful with this selection, since it can influence the truth
of properties. Checking a component includes all subcomponents, but not the
surrounding components. Model checking evaluates all properties of the selected
components. Model checking assumes an arbitrary environment, that sends arbi-
trary inputs to the checked component. Therefore there can be counter examples
that are no real counter examples, i.e. that are not possible for the complete sys-
tem. Just think of two components, one generating the constant output true, the
other, an identity component, just passes boolean values. A property of the iden-
tity component is that it does not sent always true, however this is not the case in
this example, where only true arrives from the other component.

This effect can be exploited to reduce the search space of a system, by providing
an “environment model” for a system. This will lead to faster checking results,
even if the number of components if bigger. Experiments however have shown,
that a too detailed environment model increases the transition relation and thus
can make checking more time consuming.

Since model checking (and bounded) model checking are of exponential com-
plexity, it is possible to enter a maximum time bound for the checking time. If

32



this time bound is exceeded, checking is aborted. In addition it is possible to can-
cel the model checking manually. The selection of the time bound is done after
thestart SMV or thestart SATO in the verify menu. The relation from the
passed time and the maximum time is displayed in a progress bar. Of course it is
possible to run several checks in parallel, however not of the same component.

For bounded model checking a search bound is required. This reduces the search
to counter examples of this length. If the search bound is greater than the diameter
of a system, than the result of bounded model checking is equal to model check-
ing, i.e. if no counter examples are found than he checked properties are verified.
The diameter is the maximum of the shortest path to every reachable state.

6.2 Counter Examples

Model checking and bounded model checking produce counter examples. They
are inserted automatically into the model browser in form of a MSC. The name of
the generated MSC corresponds to the property. The attributes like channels and
messages can be inspected using the model browser.

To visualize the counter examples graphically (as EET views of the MSC models),
the repository has to be saved and imported from the AUTOFOCUS tool.

6.3 Connected Checkers

Within the project Quest two checkers have been connected to AUTOFOCUS.
SMV and SATO. In this section we describe some technical details of these con-
nections, that are not relevant to the user of AUTOFOCUS/Quest, but they help to
understand intermediate files that are generated (and not removed) for documenta-
tion. Furthermore it might be interesting for experts to see, and edit the generated
files and to restart model checking.

6.3.1 Using SMV

After the determination of the maximal time, a progress control window appears,
that contains information of the current steps. This window disappears after the
maximal time, or if cancel is pressed. An example for this window is in Figure
11.

For experts: the SMV Translation is done in four automatic steps, with three
intermediate files, that can be inspected:

33



Figure 11: Model Checking Information

34



1. name.names : name mapping from AUTOFOCUS/Quest to SMV

2. name.c : the model with cpp macros (not always generated)

3. name.smv : the model with expanded macros

4. name.counter : the result of SMV (with counter examples)

wherename is the name of the model concatenated with the name of the checked
component.

6.3.2 Using SATO

SATO works completely automatic and does not generate intermediate files.

7 Abstraction Chooser

Model checking is completely automatic, but limited to systems of relatively small
finite state space. Theorem proving, however, is in a sense complementary: it re-
quires user interaction but can deal with systems of arbitrary size. Abstractions
provide conditions that ensure the correctness of such simplifications, and so ab-
straction techniques [CGL92, LGS+95, GL93, Mül98b, Mer97, Kur87, DGG97,
SLW95, Wol86, MN95, HS96] promise to combine the advantages of both ap-
proaches. Within the project Quest we decided to support abstractions related to
certain properties, this gives us a very powerful tool for reducing complex sys-
tems, to their critical core.

First we will propose a customized abstraction methodology for the context of
Quest. Then we describe tool support for defining abstractions (see Section7.3).
In Section 7.2, we present an example and the resulting proof obligations.

7.1 Methodology

The general idea of abstraction is depicted in Fig.12: in a first step, the original
systemC is reduced to a smaller modelA. If C is large or infinite, this step will in
general require interactive proof techniques. In a second step, the smaller system
A is analyzed using automatic tools.

Usually, the smaller systemA is obtained by partitioning the state space ofC
via a functionh between the two state spaces [CGL92]. If h is a homomorphism

35



A

C

h

a

a

aut

wea

mo

mo

Pp

P

tem

ren

Figure 12: Abstraction

(abstraction function), the abstraction is guaranteed to be sound, i.e. if the abstract
system satisfies a property so does the original system.

In the following we sketch how those abstraction techniques could be integrated
into the process model and tool environment of Quest. We propose the follow-
ing methodology, that allows to generate appropriate abstractions incrementally.
It is an instance of the more general methodology for abstractions developed in
[Mül98b].

• Start with a primitive abstraction function for a safety property.

• If model checking fails, the reason may be either that the desired property
is refuted already or that the abstraction is not sophisticated enough. This
question should be answered by testing/simulating the generated counterex-
ample w.r.t. the original automaton.

1. If we feel that the generated counterexample is indeed a counterex-
ample in the concrete system, we have to check this in the concrete
system. Here, we have to consider that the generated counterexam-
ple is given in terms of the abstract system, i.e. in order to run it on
the concrete system we first have to replace the objects in the abstract
system by one of its preimages in the concrete system, i.e. we have to
invert the abstraction function. Since the inversion of the abstraction
function may lead to many preimages the test might require to back-
track among the different alternatives until the error is located within
the concrete model.

2. If no error can be found when simulating the system, the error is (if
all relevant cases have been considered) in the abstraction function. In

36



this case the abstraction should be improved. The simplest possibility
is to come up with a completely new abstraction function that works in
the desired way. However, there are several more refined possibilities
for such an improvement. See [Mül98b] for details.

When repeating this step this results in an incremental process that finally
reaches an appropriate abstraction.

• The correctness of this abstraction function then should be shown by theorem-
proving. In the context of Quest, this should be done by the VSE II tool
component. The criteria for the correctness of the abstraction functionsabs
are

1. if sc is an initial state theabs(sc) is also an initial state, inabs(sc).

2. if tc is a successor ofsc theabs(tc) is a successor ofabs(sc).

See [Mül98b] for the mathematical definitions of the correctness, and Ap-
pendix C.1for an example.

This methodology enables the reuse of simple abstraction functions in order to
come up with a powerful and sufficient abstraction concept and thus decreases the
amount of intuition usually required for abstractions.

The abstraction function relates concrete and abstract components in AUTOFOCUS/Quest.
This requires that the abstraction function relates

• control states,

• local variables,

• input and output ports,

• types with the following informations:

– name of the type,

– constants and functions, and

– a mapping from concrete to abstract values

• the relevant properties.

Therefore abstractions functions consist of several parts, that all have to be de-
fined, and that have to fit together, for example the mapping of the ports has to
respect the mapping of the types.

37



According to our methodology, abstraction functions are an attribute of the con-
crete component, therefore abstraction functions are treated as attributes of the
concrete component in the model browser.

To facilitate the input of abstraction functions Quest provides an “abstraction
chooser” that helps in defining type correct abstractions. First (in Section7.2)
we shortly present a small example for abstractions, and in Section7.3 we ex-
plain how to use the abstraction chooser.

7.2 Abstraction Example: Comparator

The comparator has been modeled as a part of the storm surge barrier case study.
This comparator compares the inner water level with the outer water level, to
determine whether the barrier can be opened. This is the case if the outer water
lever plus a fixed difference is lower that the inner water level. Water levels are
measured by sensors sending integer values to the comparators. For the critical
properties of the system, it suffices to differentiate only a few number of integer
ranges. Therefore we defined the following type for the abstract system model.

data SensorSig = None | SNeg | S00 | S25 | S30;

The structure of both systems is in Figure13. The typeSignal has only one

Concrete

Abstract

IntIWL:Int

IntOWL:Int
OPENDif:Signal

IWL:SensorSig

OWL:SensorSig

OPENOK:Signal

Figure 13: Interfaces of Abstract and Concrete Models

signal element (Present ) to indicate that the comparison is positive.

38



The behaviour of the system is quite simple (see Figure14 for the concrete and
Figure 15 for the abstract model). It consists of an STD with only one state and
one transition, however within the transition there are constants (openDiffer-
ence ), and operations (+, < ) that have to be abstracted as well. Therefore we
defined the following operations on the typeSensorSig :

(owl+openDifference)<iwl:IntIWL?iwl;IntOWL?owl:OPENDif!Present:

Main

Figure 14: Concrete Behaviour

add(owl,S00)<<iwl:IWL?iwl;OWL?owl:OPENOK!Present:

MAIN

Figure 15: Abstract Behaviour

op << : SensorSig -> SensorSig-> Bool;
fun None << x = False

| x << None = False
| x << SNeg = False
| S00 << S00 = False
| S25 << S00 = False
| S25 << S25 = False
| S30 << x = False
| x << y = True;

add : SensorSig -> SensorSig -> SensorSig;
fun add(x,S00) = x

| add(S00,x) = x
| add(x,y) =None;

39



On the concrete system we want to check the property

[]((Val(IntOWL) < Val(IntIWL)) => <>(OPENDif!Present))

In terms of the abstract model this property is

[]((Val(OWL) << Val(IWL)) => <>(OPENOK!Present))

To ensure that the concrete property holds, we have to show that the abstract prop-
erty implies the concrete one, i.e. that is is stronger. The homomorphism property
of the abstraction function (the relation between the concrete and abstract states
and transitions) states that every concrete step (including the idle steps) has a cor-
responding abstract step. We generate one VSE II theory for the definition of
the abstraction (see AppendixC.1), one theory for the homomorphism predicate,
and one for the satisfies relation (see AppendixC.2). Our experience with sim-
ilar proofs in the Isabelle system [Ham98, Mül98b] showed, that the correctness
conditions for the homomorphism predicate can be proved easily mainly using
simplification. With the abstraction chooser of Section7.3 it is very easy to de-
fine correct abstractions.

The homomorphism property allows us to eliminate the temporal operators, and
to concentrate on the correctness of the pure formulas for proving strengthenings.

To show the strengthening, of an implication, we have to strengthen the cor-
rectness conditions for this implication is a strengthening of the right conclusion
OPENOK!Present => OPENDif!Present and a weakening of the condi-
tionsVal(OWL) << Val(IWL) <= Val(IntOWL) < Val(IntIWL) .

For the definition of strengthenings in VSE II (see AppendixC.3) the definition
of the elements mapping from concrete to abstract elements is required. The cor-
rectness conditions are in a separate theory, as well as the satisfies statement (see
Appendix C.3).

Our experiences showed, that proving strengthenings mostly involves simple rea-
soning on data structures, for which the VSE II system is very appropriate. How-
ever, it takes much time to realize that an abstraction is not correct, especially on
the level of theorem provers. Therefore the most important step is to define cor-
rect abstractions. This is done on the modelling level and not within the theorem
prover.

7.3 Using the Abstraction Chooser

To define an abstraction in Quest, the concrete component has to be selected. If
an abstraction already exists it is stored as an attribute of this component, and can

40



be edited. In this section we show how to define a new abstraction. After the con-
crete component is marked, in the “Verify” menu the button “New Abstraction” is
enabled, that starts the abstraction chooser.

In general there are two possibilities to define abstractions:

1. to compute the abstract component from an abstraction function, and

2. to define the abstraction function between a concrete and an abstract model.

In Quest (up to now) only the second way is supported, because designers mostly
have the abstract model (in mind) and want to find a homomorphism between the
concrete and the abstract one. Defining such an abstraction function in general is
more difficult (due to the consistency conditions), and therefore Quest supports
difficult task with the abstraction chooser. The feature of computing abstraction
functions is future work.

To select the abstract component for the abstraction the abstraction chooser shows
all components in the system (see Figure16). This requires that both components
(the concrete and the abstract) are specified within one SSD.

Figure 16: Selecting the Abstract Component

41



After the selection of the abstract component all elements (Variables, Ports, Types,
..) that can be related are defined, and the definition window of the abstraction
chooser appears (see Figure17). It suggests an order for the definition of the
abstraction functions, but allows for arbitrary orders as well. Furthermore sugges-
tions are made that consider the previous definitions. In Figure17the abstraction

Figure 17: Definition Window of Abstraction Chooser

chooser suggests to map the concrete stateMain to the abstract stateMAIN. In
this example this is the only possible choice, and pressing “Define” defines the
abstraction function for states. After the definition of the mapping between lo-
cal variables (in the example there is also no choice), the chooser tries to make a
suggestion for the abstraction of types that matches to the abstracted types of the
ports. (see Figure18). If there are inconsistencies, for example if the type of a

Figure 18: Selecting the Abstract Types

function abstraction does not match the type define for local variables, the error

42



is reported, and the inconsistent fields are marked with red colors in the definition
window (see Figure19).

Figure 19: Inconsistencies are marked with red color

The functions that map the values of the concrete type to the abstract (in our case
Int2SensorSig ) are defined in the “Functions” window of the chooser, that
allows to enter a text that defines the abstraction function. Pattern matching for
abstraction functions is not supported in this version.

An important part of the definition of the abstraction functions is the relation of
properties. The correctness of the abstraction function is defined only for the
related properties. For them strengthening proof obligations are generated. In
principle, every concrete property could be abstracted to arbitrary abstract prop-
erties, however a similar temporal structure is recommended, i.e. an[]( ..
=> <>(..)) property should be related to a property with a similar structure,
otherwise the strengthening proof obligation can become very difficult.

The abstraction chooser displays for each property of the concrete component a
choose box with all properties entered to the abstract component (and the value
not related). The abstraction chooser allows to enter a related property for each
concrete, in our example only one property is related (see Figure20). If all parts
of the abstraction function are defined correctly, the “Finish” button is enabled.
Pressing it stores the abstraction to the concrete component. The proof obligations
for the correctness are generated, when the repository is exported to VSE II.

43



Figure 20: Relating the Properties

44



8 Connection to VSE

In this section we describe the translation from AUTOFOCUS to VSE and the
retranslation. We show how the different views of AUTOFOCUS are translated
and how the retranslation works in detail.

8.1 Introduction

In AUTOFOCUS there are four different views on systems. System structure dia-
grams (SSDs) describe the static aspects of a distributed system by a network of
connected components, exchanging data over channels. State transition diagrams
(STDs), which are similar to finite automata, are used to describe the dynamic as-
pects, i.e. the behavior, of the components. Extended event traces (EETs) are used
to describe exemplary runs of a system from a component based view. Datatype
definitions (DTDs) define the types of data processed by a system and are used
in the other views. The used views are hierarchical. For a further description of
AUTOFOCUSand its views see [HS97] and [HMS+98] and [HEea96].

In AUTOFOCUS/Quest we use these views to model systems, which are based on a
synchronous execution model where time is divided into a sequence of intervals.
In each interval, a channel in the system can carry at most one value, and each
component executes a reaction, where input values are read from the component’s
input ports, and output values are written on the component’s output ports. Data
values on ports that are not read by a component are lost. Output written by a
component in one reaction is visible to other components only in the next interval.
If for a component no reaction is explicitly specified, it remains in its current state
and produces no output. This default behavior is referred to as an idle transition.

TLA, which is used in the VSE II system, is based on an asynchronous interleav-
ing semantics. This mismatch between synchronous and interleaving semantics
can be solved by augmenting the system with a scheduling algorithm. In order
to keep the translated specifications as modular as possible we use a hierarchic
scheduling algorithm. The order in which parallel components executes their re-
action is arbitrary. So a well known scheduling algorithm, the barrier synchro-
nization algorithm is used.

The connection to VSE uses only SSDs, STDs and DTDs. The datatype defined
in DTDs are translated directly to VSE and are retranslated in a similar way from
VSE. The (hierarchical) structure of a system will be presented in VSE com-
pletely. Behavior of an AUTOFOCUScomponent will be present in the appropriate
VSE component.

45



Each scheduled component in a group of concurrently executing scheduled com-
ponents perform their reaction in a sequence of phases. It is required that no
scheduled component begin executing its(p+ 1)th phase until all scheduled com-
ponents in its group have completed theirpth phase. Each scheduled component
has a variableschedulePhase , which stores the phase which the scheduled
component would enter. For the synchronization only two different phases are
needed. Internally each interval is split in two phases, the compute phase, where
the input is read and the output is computed, and the copy phase, where the com-
puted output is published to the other components. Each scheduled component
of a system must either finish its compute phase or its copy phase before a com-
ponent can enter the next phase. The activation of this two phases is done by
the barrier. The barrier has an internal variable phase, which stores the current
phase of the system and a counter, which stores the number of components which
have not finished the current phase. The barrier has to methodsBeginSync and
EndSync . The general scheme of the barrier synchronization algorithm is shown
blow9:

PROCESS Component
DATA

schedulePhase : boolean INITIAL true
SPEC

WHILE true DO
Barrier.BeginSync(schedulePhase)
IF schedulePhase = true THEN

Compute
ELSE

Copy
FI
Barrier.EndSync()
schedulePhase := ~schedulePhase

OD
END

PROCESS Barrier
DATA

phase : boolean INITIAL true
compCounter : nat INITIAL N /* number of

synchronized components */
ACTIONS
9We use a pseudo language to shorten the description

46



BeginSync(schedulePhase : boolean) ::=
phase = schedulePhase

EndSync ::=
IF compCounter = 1 THEN

phase := ~phase
AND compCounter := N

ELSE
compCounter := compCounter - 1

FI
END

8.2 Translation from AUTOFOCUS to VSE

In this section the way how AUTOFOCUS/Quest specifications are translated to
VSE is shown. As mentioned above we translate SSDs, STDs and DTDs to VSE10.

8.2.1 SSD

At first we show the translation of SSDs. SSDs are somehow the main part of the
translation, because the components contain or include all other translated parts.
As mentioned above in AUTOFOCUS we use a synchronous execution model,
while VSE is based on an asynchronous interleaving semantics. So we have to
use the barrier synchronization scheduling algorithm, which was described above.

In the following examples we show how this algorithm is used concretely.

The first example shows a simple SSD with two componentsConnection1 and
Central (see Fig.21. This is a clipping of the example presented in Section
B.2. In this example we translated the SSD as if both components had an asso-
ciated automaton. The automaton is not shown in the code example presented
below.

First theBASIC typeAF_Sync 11 is defined.tsync is used for the communica-
tion between the barrier and the schedulers.

After this the global synchronization barrierBankingSystem0_Barrier 12 is
defined. As in its scope there are two components, its internal variablecomp-
Counter is initialized with 2. The globalphase is initialized with T, which

10Properties entered in the Quest-Browser are also translated to VSE
11Note: PrefixesAF_ andAFi_ are used to mark Quest internal objects
12Note, that sometimes numbers are appended to a name, to avoid name clashes.

47



Connection1 Central

inp1:Info

Answer1:Message

C1Ack:Signal

Figure 21: Banking System with two components

means that the compute phase is active. For the communication with the sched-
ulers the shared inout variablessync_Connection1 and sync_Central
and the in variablesphase_Connection1 andphase_Central are used.
The sync variables are set toBSync andESync from the schedulers and are
reset toOk by the barrier. WithBSync andESync a scheduler signals, that it
wants to begin a new synchronization phase or that it wants to end its current
phase. In the barrier this leads to the execution of the appropriate actionBegin-
Sync andEndSync . Note that theBeginSync action is guarded byphase =
ph , which means that the global phase must be the same as the phase which the
scheduled component wants to enter. TheSync and theSyncAll actions are
only abbreviations used to make the code more compact.

BASIC AF_Sync
tsync = BSync |

ESync |
InitSync |
Ok

BASICEND

/*
* AutoFocus Barrier for BankingSystem
*/

TLSPEC BankingSystem0_Barrier

PURPOSE "AutoFocus Barrier for

48



Component BankingSystem0"

USING Boolean; Natural; AF_Sync

DATA
SHARED INOUT sync_Connection1 : tsync
IN phase_Connection1 : bool

SHARED INOUT sync_Central : tsync
IN phase_Central : bool

INTERNAL compCounter : nat
INTERNAL phase : bool

ACTIONS
BeginSync(ph : IN bool) ::=

phase = ph
AND UNCHANGED(compCounter, phase)

EndSync ::=
IF compCounter = 1 THEN

phase’ = ~phase
AND compCounter’ = 2

ELSE
compCounter’ = compCounter - 1
AND UNCHANGED(phase)

FI

Sync(s : OUT tsync, ph : IN bool
, s1 : OUT tsync) ::=

(s = BSync AND BeginSync(ph) AND s’ = Ok
OR s = ESync AND EndSync AND s’ = Ok)

AND UNCHANGED(s1)

SyncAll ::= Sync(sync_Connection1,
phase_Connection1,
sync_Central)

OR Sync(sync_Central,
phase_Central,
sync_Connection1)

49



SPEC
INITIAL

compCounter = 2
AND phase = T /* ComputePhase */
AND sync_Connection1 = InitSync
AND sync_Central = InitSync

TRANSITIONS [ SyncAll ]
{compCounter, phase, sync_Connection1,

sync_Central}
FAIRNESS WF(SyncAll)

{compCounter, phase, sync_Connection1,
sync_Central}

HIDE compCounter, phase

TLSPECEND

Next the scheduler for the componentConnection1 and the component it-
self is shown. In this example there are two separateTLSPECs but these two
could also be merged to one component (see Section5.2.2and the notes on-
useinclude ). In the schedulerConnection1_Scheduler it can be seen,
that the description of the componentConnection1 is included. The scheduler
has an out variableschedulePhase , which presents the value of the current
phase, i.e. T (compute) or F (copy). Also a shared inout variablesync is used
for the communication with the global barrier. The scheduler has three actions,
WaitOk , Copy andCompute . TheWaitOk action waits for anOk signal on
sync , which can only be set from the barrier. TheCopy and theCompute ac-
tion are executed in the appropriate phase. Note, that in the example below the
Compute action is “empty”, because for simplicity reasons no automaton for
Connection1 is included.

Initially the schedulePhase is set toT as the global phase.sync is set to
InitSync , so that there is a defined value. The scheduler then enters an endless
loop, where it tries to enter the next phase by settingsync to BSync . It waits
for a Ok from the barrier and then executes the appropriate action. After this it
signals the end of his phase to the barrier.

In TLSPEC Connection1 the portsAnswer , inp , andCAck of its component
are defined. The type of these ports is derived from the appropriate channel type
(see Section8.2.3). For all out ports an internal port is defined, which is used as
a buffer of length one. TheNextStep action and the coding of the automaton
of Connection1 is missing in the example below (see Section8.2.2). This

50



action uses the internal ports for storing the computed results. TheCopyPorts
action copies these results to the external ports, which can be seen from other
components.

/*
* AutoFocus Scheduler for Component: Connection1
*/

TLSPEC Connection1_Scheduler

PURPOSE "AutoFocus Scheduler for
Component Connection1"

USING
/* ImportDataTheories */

Natural
; Boolean
; AF_Sync
; MAINCHANNEL

INCLUDE
AF_Component = Connection1

DATA
OUT schedulePhase : bool
SHARED INOUT sync : tsync

ACTIONS
WaitOk ::= sync = ok

AND UNCHANGED(schedulePhase, sync)

/* CopyPorts */
Copy ::= AF_Component.CopyPorts

AND schedulePhase’ = T
AND UNCHANGED(sync)

/* Compute */
Compute ::= schedulePhase’ = F AND UNCHANGED(sync)

SPEC
INITIAL BEGIN

51



schedulePhase := T; /*Compute*/
sync := InitSync

END

TRANSITIONS BEGIN
WHILE (TRUE) DO

sync := BSync;
WaitOk;
IF schedulePhase = T THEN

Compute
ELSE

Copy
FI;
sync := ESync;
WaitOk

OD

END {schedulePhase, sync,
AF_Component.AFi_ControlState,
inp, AFi_inp, CAck, AFi_CAck}

TLSPECEND

/*
* AutoFocus Component: Connection1
*/

TLSPEC Connection1

PURPOSE "AutoFocus Component Connection1"

USING
/* ImportDataTheories */

Natural
; MAINCHANNEL

DATA
/* PortDeclarations */

IN Answer : Channel_Message.ChannelBase.Channelm
OUT inp1 : Channel_Info.ChannelBase.Channelm
OUT C1Ack : Channel_Signal.ChannelBase.Channelm

52



Driver1 Database

inp1:Info

Answer1:Message

C1Ack:Signal

T1in:Info

T1out:Message

Figure 22: Central

/* PortDeclarations (internal-ports) */

INTERNAL AFi_inp :
Channel_Info.ChannelBase.Channelm

INTERNAL AFi_CAck :
Channel_Signal.ChannelBase.Channelm

ACTIONS
CopyPorts ::=

inp1’ = AFi_inp1 AND CAck’ = AFi_CAck
AND UNCHANGED(AFi_inp1, AFi_CAck)

/* Automaton definition is missing
for simplicity reasons */

TLSPECEND

The componentCentral is decomposed in two componentsDriver1 and
Database (see Fig. 22). So the componentCentral is a “combination” of
those two components, as the root componentBankingSystem is a combina-
tion of Connection1 and Central_Combine . In components, which are
decomposed, the ports are inlined in theTLSPECof the Combine component.
In theCombine components all “external” variables are connected. Beside the in
and out variables for component ports, likeinp1 andinp 13, the communication
channels between the schedulers and the barriers are connected.

/*
* Combine for AutoFocus Component: Central

13The portinp1 of the componentCentral is connected to the portinp of the subcomponent
Driver1 through the channelinp1 . The names of the ports are not shown in Fig.22

53



*/

TLSPEC Central_Combine

PURPOSE "AutoFocus Combine for Component Central"

USING
/* ImportDataTheories */

Natural
; AF_Sync
; MAINCHANNEL

DATA
INTERNAL sync_Driver1 : tsync
INTERNAL sync_Database : tsync
SHARED INOUT sync : tsync
OUT schedulePhase : bool

/* PortDeclarations */

IN inp1 : Channel_Info.ChannelBase.Channelm
IN C1Ack : Channel_Signal.ChannelBase.Channelm
OUT Answer1 : Channel_Message.ChannelBase.Channelm

COMBINE
Central_Barrier [

Central_Barrier.phase
-> Central_Combine.schedulePhase,

Central_Barrier.phase_Driver1
<- Driver1_Scheduler.schedulePhase,

Central_Barrier.phase_Database
<- Database_Scheduler.schedulePhase

] SHARED [
Central_Barrier.upsync

<- Central_Combine.sync,
Central_Barrier.sync_Driver1

<- Central_Combine.sync_Driver1,
Central_Barrier.sync_Database

<- Central_Combine.sync_Database
]

54



;Driver1_Scheduler [
Driver1_Scheduler.AF_Component.inp

<- Central_Combine.inp1,
Driver1_Scheduler.AF_Component.CAck

<- Central_Combine.C1Ack,
Driver1_Scheduler.AF_Component.Answer

-> Central_Combine.Answer1,
Driver1_Scheduler.AF_Component.Tout

<- Database_Scheduler.AF_Component.T1out ]
SHARED [

Driver1_Scheduler.sync
<- Central_Combine.sync_Driver1 ]

;Database_Scheduler [
Database_Scheduler.AF_Component.T1in

<- Driver1_Scheduler.AF_Component.Tin ]
SHARED [

Database_Scheduler.sync
<- Central_Combine.sync_Database ]

HIDE Central_Combine.sync_Driver1,
Central_Combine.sync_Database

TLSPECEND

/*
* Combine for AutoFocus Component: BankingSystem
*/

TLSPEC BankingSystem0_Combine

PURPOSE "AutoFocus Combine for
Component BankingSystem0"

USING
/* ImportDataTheories */

Natural
; AF_Sync
; MAINCHANNEL

55



DATA
INTERNAL sync_Connection1 : tsync
INTERNAL sync_Central : tsync

COMBINE
BankingSystem0_Barrier [

BankingSystem0_Barrier.phase_Connection1
<- Connection1_Scheduler.schedulePhase,

BankingSystem0_Barrier.phase_Central
<- Central_Combine.schedulePhase

] SHARED [
BankingSystem0_Barrier.sync_Connection1

<- BankingSystem0_Combine.sync_Connection1,
BankingSystem0_Barrier.sync_Central

<- BankingSystem0_Combine.sync_Central
]

;Connection1_Scheduler [
Connection1_Scheduler.AF_Component.Answer

<- Central_Combine.Answer1 ]
SHARED [

Connection1_Scheduler.sync
<- BankingSystem0_Combine.sync_Connection1 ]

;Central_Combine [
Central_Combine.inp1

<- Connection1_Scheduler.AF_Component.inp,
Central_Combine.C1Ack

<- Connection1_Scheduler.AF_Component.CAck ]
SHARED [

Central_Combine.sync
<- BankingSystem0_Combine.sync_Central ]

HIDE BankingSystem0_Combine.sync_Connection1,
BankingSystem0_Combine.sync_Central

TLSPECEND

As we use a hierarchic barrier synchronization algorithm, the componentCen-
tral has its own barrier. This barrier communicates with the global barrier like

56



a normal scheduler. It acts to the local schedulers like the global barrier. But
internally it differs from the global barrier. It has an additional internal variable
endcomp which isT when all of its scheduled components have performed their
step and the barrier itself signals the end of its step to his super-barrier. In contrast
to the root barrier, which only performsSyncAll actions, sub-barriers have to
synchronize with their super-barriers. So they have aTRANSITIONSsection like
schedulers.

/*
* AutoFocus Barrier for Central
*/

TLSPEC Central_Barrier

PURPOSE "AutoFocus Barrier for Component Central"

USING Boolean; Natural; AF_Sync

DATA

SHARED INOUT sync_Driver1 : tsync
IN phase_Driver1 : bool

SHARED INOUT sync_Database : tsync
IN phase_Database : bool

INTERNAL compCounter : nat
INTERNAL endcomp : bool
OUT phase : bool
SHARED INOUT upsync : tsync

ACTIONS
BeginSync(ph : IN bool) ::=

phase = ph
AND UNCHANGED(compCounter, phase, endcomp, upsync)

EndSync ::=
IF compCounter = 1 THEN

phase’ = ~phase
AND compCounter’ = 2
AND endcomp’ = T
AND UNCHANGED(upsync)

ELSE

57



compCounter’ = compCounter - 1
AND UNCHANGED(phase, endcomp, upsync)

FI

WaitOk ::= upsync = ok AND
endcomp’ = F AND
UNCHANGED(compCounter, phase, upsync,

sync_Driver1, sync_Database)

Sync(s : OUT tsync, ph : IN bool
, s1 : OUT tsync) ::=

(s = BSync AND BeginSync(ph) AND s’ = Ok
OR s = ESync AND EndSync AND s’ = Ok)

AND UNCHANGED(s1)

SyncAll ::= Sync(sync_Driver1, phase_Driver1,
sync_Database)

OR Sync(sync_Database, phase_Database,
sync_Driver1)

SPEC
INITIAL BEGIN

compCounter := 2;
endcomp := F;
phase := T; /* ComputePhase */
sync_Driver1 := InitSync;
sync_Database := InitSync

END

TRANSITIONS BEGIN
WHILE TRUE DO

upsync := BSync;
WaitOk;
WHILE (endcomp = F) DO

SyncAll
OD;
upsync := ESync;
WaitOk

OD
END {compCounter, phase, upsync, endcomp,

sync_Driver1, sync_Database}

58



Figure 23: Development Graph of the Banking System

HIDE compCounter, endcomp

TLSPECEND

The missingTLSPECs for the componentsDriver1 , andDatabase of the
example are similar to theTLSPECs of the componentConnection1 and are
therefore not presented here.

In Fig. 23 the development graph of the whole example like presented in Ap-
pendix B.2 is shown.

8.2.2 STD

In this section we explain the translation of components with automatons to VSE-
SL. As in the example above we use thewithincludes option, so that the
scheduler and the automaton of a component are split into two separateTLSPECs.
This is simpler for understanding and editing the generated specification, but it
may be more unhandy when doing proofs.

In the following example the componentDriver1 is shown. In Fig.22 the SSD
of the componentCentral with the componentDriver1 is shown. In Fig.24
the automaton, which describes the behavior ofDriver1 is presented. Below
the VSE-SL specification of the scheduler and the component itself is shown. The

59



Inp?i:Tin!i:

Inp?i;Tout?m;CAck?:Tin!i;Answer!m:store=m

Inp?i;Tout?;CAck?:Tin!i;Answer!store:Inp?;Tout?;CAck?:Answer!store:

Waiting

Driving

Inp?i;Tout?m:Tin!i:store=m

Inp?;Tout?m::store=m

Inp?i;CAck?Present:Tin!i:

Inp?;CAck?Present::

Figure 24: Automaton of ComponentDriver1

scheduler is similar to the scheduler of componentConnection1 . The compo-
nentDriver1 is included in the scheduler asAF_Component . TheCompute
action calls theNextStep action of the component. This action performs one
step of the automaton or, if no transition is possible, then theIdleStep is taken.
The Copy action calls theCopyPorts action of the component, which copies
the values of the internal buffers to the out variables.

In Driver1_States the states of the automatonWaiting andDriving are
defined. These are used as values for theAFi_ControlState , which stores
the current state of the automaton. As described above, besides the in and out
variables of the component, internal buffer variables for the out variables are de-
fined in the component (for a description of the used channel type see Section
8.2.3). The result of a compute action is stored in their internal buffers, so that
they cannot be seen outside the component. In theCopyPorts action these in-
ternal values are copied to the external out variables. For every transition of the
automaton an action, which describes the transition is generated. The action is
named by the start state and the end state of a transition. For hierarchical automa-
tons the transition segments are merged, so that there is only one transition and so
that the resulting automaton is flat. In a transition first the control state is checked

60



and set appropriate, and after this the precondition, the input-pattern, the outputs,
and the actions are added. An extra transition, theIdleStep is added after the
other transitions. If for a compute phase no transition could be taken, then the
automaton stays in its current state, the local variables are unchanged and the out
variables are set toNoVal . So the condition for anIdleStep is the negotiation
of all preconditions and all input patterns of all transitions. TheNextStep ac-
tion calls one of the transitions or theIdleStep and so performs one reaction
of the automaton. Initially the control state, and the local variables, and the out
variables of the component are set appropriate.

/*
* AutoFocus Scheduler for Component: Driver1
*/

TLSPEC Driver1_Scheduler

PURPOSE "AutoFocus Scheduler for Component Driver1"

USING
Natural
; Boolean
; MAINBankSystem_Module_MESSAGE
; AF_Sync

INCLUDE
AF_Component = Driver1

DATA
OUT schedulePhase : bool
SHARED INOUT sync : tsync

ACTIONS
WaitOk ::= sync = ok AND UNCHANGED(schedulePhase, sync)

/* CopyPorts */
Copy ::= AF_Component.CopyPorts

AND schedulePhase’ = T AND UNCHANGED(sync)

/* Compute */
Compute ::= AF_Component.NextStep

AND schedulePhase’ = F AND UNCHANGED(sync)
SPEC

61



INITIAL BEGIN
schedulePhase := T; /*Compute*/
sync := InitSync

END

TRANSITIONS BEGIN
WHILE (TRUE) DO

sync := BSync;
WaitOk;
IF schedulePhase = T THEN

Compute
ELSE

Copy
FI;
sync := ESync;
WaitOk

OD

END {schedulePhase, sync,
AF_Component.AFi_ControlState,
store, Tin, AFi_Tin, Answer, AFi_Answer}

HIDE AF_Component.AFi_ControlState, store,
AF_Component.AFi_Tin, AF_Component.AFi_Answer

TLSPECEND

BASIC Driver1_States
tDriver1_States = sWaiting | sDriving

BASICEND

/*
* AutoFocus Component: Driver1
*/

TLSPEC Driver1

PURPOSE "AutoFocus Component Driver1"

USING
Natural
; MAINBankSystem_Module_MESSAGE
; Driver1_States

62



DATA

/* PortDeclarations */

IN Tout : Channel_Message.ChannelBase.Channelm
IN Inp : Channel_Info.ChannelBase.Channelm
IN CAck : Channel_Signal.ChannelBase.Channelm
OUT Tin : Channel_Info.ChannelBase.Channelm
OUT Answer : Channel_Message.ChannelBase.Channelm

/* PortDeclarations (internal-ports) */

INTERNAL AFi_Tin : Channel_Info.ChannelBase.Channelm
INTERNAL AFi_Answer : Channel_Message.ChannelBase.Channelm

/* LocVariables */

INTERNAL store : Message

/* ControlState */

INTERNAL AFi_ControlState : tDriver1_States

ACTIONS
CopyPorts ::=

Tin’ = AFi_Tin AND Answer’ = AFi_Answer
AND UNCHANGED(AFi_ControlState, AFi_Tin, AFi_Answer, store)

/* Transitions */

Waiting2Driving ::= AFi_ControlState = sWaiting
AND AFi_ControlState’ = sDriving
AND Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Message.ChannelBase.is_Msg( Tout )
AND ( AFi_Tin’ = Channel_Info.ChannelBase.Msg(

Channel_Info.ChannelBase.Val( Inp )) )
AND AFi_Answer’ = Channel_Message.ChannelBase.NoVal
AND ( store’ = Channel_Message.ChannelBase.Val( Tout ) )

Waiting2Waiting ::= AFi_ControlState = sWaiting

63



AND AFi_ControlState’ = sWaiting
AND Channel_Info.ChannelBase.is_Msg( Inp )
AND ( AFi_Tin’ = Channel_Info.ChannelBase.Msg(

Channel_Info.ChannelBase.Val( Inp )) )
AND AFi_Answer’ = Channel_Message.ChannelBase.NoVal
AND UNCHANGED( store )

Waiting2Driving_1 ::= AFi_ControlState = sWaiting
AND AFi_ControlState’ = sDriving
AND Channel_Info.ChannelBase.is_NoVal( Inp )
AND Channel_Message.ChannelBase.is_Msg( Tout )
AND AFi_Tin’ = Channel_Info.ChannelBase.NoVal
AND AFi_Answer’ = Channel_Message.ChannelBase.NoVal
AND ( store’ = Channel_Message.ChannelBase.Val( Tout ) )

Driving2Driving ::= AFi_ControlState = sDriving
AND AFi_ControlState’ = sDriving
AND Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Message.ChannelBase.is_Msg( Tout )
AND Channel_Signal.ChannelBase.is_NoVal( CAck )
AND ( AFi_Tin’ = Channel_Info.ChannelBase.Msg(

Channel_Info.ChannelBase.Val( Inp )) )
AND ( AFi_Answer’ = Channel_Message.ChannelBase.Msg(

Channel_Message.ChannelBase.Val( Tout )) )
AND ( store’ = Channel_Message.ChannelBase.Val( Tout ) )

Driving2Driving_1 ::= AFi_ControlState = sDriving
AND AFi_ControlState’ = sDriving
AND Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Message.ChannelBase.is_NoVal( Tout )
AND Channel_Signal.ChannelBase.is_NoVal( CAck )
AND ( AFi_Tin’ = Channel_Info.ChannelBase.Msg(

Channel_Info.ChannelBase.Val( Inp )) )
AND ( AFi_Answer’ = Channel_Message.ChannelBase.Msg(store) )
AND UNCHANGED( store )

Driving2Driving_2 ::= AFi_ControlState = sDriving
AND AFi_ControlState’ = sDriving
AND Channel_Info.ChannelBase.is_NoVal( Inp )
AND Channel_Message.ChannelBase.is_NoVal( Tout )
AND Channel_Signal.ChannelBase.is_NoVal( CAck )
AND ( AFi_Answer’ = Channel_Message.ChannelBase.Msg(store) )
AND AFi_Tin’ = Channel_Info.ChannelBase.NoVal

64



AND UNCHANGED( store )

Driving2Waiting ::= AFi_ControlState = sDriving
AND AFi_ControlState’ = sWaiting
AND Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Signal.ChannelBase.is_Msg( CAck )
AND is_Present( Channel_Signal.ChannelBase.Val( CAck ) )
AND ( AFi_Tin’ = Channel_Info.ChannelBase.Msg(

Channel_Info.ChannelBase.Val( Inp )) )
AND AFi_Answer’ = Channel_Message.ChannelBase.NoVal
AND UNCHANGED( store )

Driving2Waiting_1 ::= AFi_ControlState = sDriving
AND AFi_ControlState’ = sWaiting
AND Channel_Info.ChannelBase.is_NoVal( Inp )
AND Channel_Signal.ChannelBase.is_Msg( CAck )
AND is_Present( Channel_Signal.ChannelBase.Val( CAck ) )
AND AFi_Tin’ = Channel_Info.ChannelBase.NoVal
AND AFi_Answer’ = Channel_Message.ChannelBase.NoVal
AND UNCHANGED( store )

IdleStep ::= UNCHANGED(AFi_ControlState, Tin, Answer)
AND NOT(Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Message.ChannelBase.is_Msg( Tout ))
AND NOT(Channel_Info.ChannelBase.is_Msg( Inp ))
AND NOT(Channel_Info.ChannelBase.is_NoVal( Inp )
AND Channel_Message.ChannelBase.is_Msg( Tout ))
AND NOT(Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Message.ChannelBase.is_Msg( Tout )
AND Channel_Signal.ChannelBase.is_NoVal( CAck ))
AND NOT(Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Message.ChannelBase.is_NoVal( Tout )
AND Channel_Signal.ChannelBase.is_NoVal( CAck ))
AND NOT(Channel_Info.ChannelBase.is_NoVal( Inp )
AND Channel_Message.ChannelBase.is_NoVal( Tout )
AND Channel_Signal.ChannelBase.is_NoVal( CAck ))
AND NOT(Channel_Info.ChannelBase.is_Msg( Inp )
AND Channel_Signal.ChannelBase.is_Msg( CAck )
AND is_Present( Channel_Signal.ChannelBase.Val( CAck ) ))
AND NOT(Channel_Info.ChannelBase.is_NoVal( Inp )
AND Channel_Signal.ChannelBase.is_Msg( CAck )
AND is_Present( Channel_Signal.ChannelBase.Val( CAck ) ))

65



/* set output-ports to NoVal */

AND AFi_Tin’ = Channel_Info.ChannelBase.NoVal
AND AFi_Answer’ = Channel_Message.ChannelBase.NoVal

/* local variables stay unchanged */

AND UNCHANGED( store )

NextStep ::= (Waiting2Driving OR Waiting2Waiting
OR Waiting2Driving_1 OR Driving2Driving
OR Driving2Driving_1 OR Driving2Driving_2
OR Driving2Waiting OR Driving2Waiting_1 OR IdleStep)
AND UNCHANGED(Tin, Answer)

SPEC
AFi_ControlState = sWaiting
AND store = NoMoney
AND Tin = Channel_Info.ChannelBase.NoVal
AND AFi_Tin = Channel_Info.ChannelBase.NoVal
AND Answer = Channel_Message.ChannelBase.NoVal
AND AFi_Answer = Channel_Message.ChannelBase.NoVal

TLSPECEND

8.2.3 DTD

In this section we describe the translation of data types and functions from the
Quest language (see Section3) to the VSE II specification language. Furthermore
we describe the translation of properties to VSE.

Since data types and functions are executable within Quest, we translated using
the “executable parts” of VSE II. Some concepts, like pattern matching or pa-
rameterization are different between Quest and VSE, and therefore they cannot
be translated directly. In this section we explain the principle translation scheme,
and the translation the special constructs. We explain the translation algorithms
by means of examples.

The translation of identifiers is as directly as possible, i.e. if the translated function
is no VSE keyword, it is used for the translation. For VSE keywords similar names
are generated, however these generated identifiers are retranslated directly. For a

66



round trip engineering the VSE keywords should therefore be avoided.

Translation of Simple Data Types A simple data type in Quest, has no type
arguments (likeList(a) ). An example for a simple data type is:

data Nat = Zero | Succ(pred:Nat);

Simple data types are translated intoBASIC specifications. Since data types in
Quest have canonical discriminatorsis_Zero, is_Succ , these are also gen-
erated. The resulting VSE specification is:

BASIC NatBase
Nat =

Zero WITH is_Zero
| Succ(pred:Nat) WITH is_Succ

BASICEND

For every data definition one basic specification is generated.

Translation of Structured Data Types Structured data types are DTDs that
import other DTDs (see Figure4), or data type definition that use data type def-
initions of the same DTD. For example the DTDTRANSACTIONof Appendix
B.2 contains:

data Action = SendMail | Withdraw(Int) | ViewBallance;
data Info = TA(Action,account:Int);

The translation of this structured specification to VSE II is:

BASIC ActionBase
USING

INTEGER
Action =

SendMail WITH is_SendMail
| Withdraw(WithdrawSel1:Int) WITH is_Withdraw
| ViewBallance WITH is_ViewBallance

BASICEND

BASIC InfoBase
USING

67



ActionBase ;
INTEGER

Info =
TA(TASel1:Action, account:Int) WITH is_TA

BASICEND

This results into a more detailed structure of data types in VSE II compared with
the structures of DTDs in Quest.

Translation of Function Definitions Functions can be defined in Quest using
pattern matching. Pattern matching is expanded using explicit case distinctions
with the generated discriminator and selector functions. This allows us to gen-
erate (executable) algorithms for functions using theFUNCDEFkeyword. Since
functions cannot be defined inBASIC theories, every DTD is translated into a
THEORYthat includes theBASIC theories for the data types. Functions with
result typeBool are translated into predicates. An example from the banking
system (see SectionB.2) is:

module TRANSACTION =
data Action = SendMail | Withdraw(Int) | ViewBallance;
data Info = TA(Action,account:Int);
fun isMoneyRequest(TA(Withdraw(x),acc))=True

| isMoneyRequest(x)=False;
end

It is translated into

THEORY TRANSACTION
USING

BOOLEAN;
INTEGER;
ActionBase ;
InfoBase ;

PREDICATES
isMoneyRequest : Info

VARS
V1isMoneyRequest : Info

AXIOMS
FOR isMoneyRequest :

DEFPRED isMoneyRequest(V1isMoneyRequest) <->

68



IF is_TA( V1isMoneyRequest )
AND is_Withdraw( TASel1( V1isMoneyRequest ) )

THEN TRUE
ELSE FALSE
FI

THEORYEND

The name of this theory is the name of the DTD.

Translation of Polymorphic Data Types Polymorphic data types are types that
have arguments (type variables) likeList(a), Set(a) . Within Quest the
translation of polymorphic data types is supported, even if the concept of pa-
rameterization in VSE II is slightly different. The most important example of
polymorphic data types is

data Channel(m)= NoVal | Msg(Val:m);

It is in the VSE II translation of every AUTOFOCUS/Quest component, since the
channels, and ports of AUTOFOCUS can be empty (represented byNoVal . For
polymorphic data types the are parameter theory generated, that contain all param-
eters of the defined and imported data types. Therefore different parameters have
to be used if they should not be unified. The translation of the typeChannel(m)
are the following VSE II specifications:

THEORY mParam
TYPES m

THEORYEND

BASIC ChannelBase
PARAMS mParam
Channelm =

NoVal WITH is_NoVal
| Msg(Val:m) WITH is_Msg

BASICEND

THEORY CHANNEL
PARAMS mParam
USING

BOOLEAN;
INTEGER;

69



ChannelBase [ m ]
THEORYEND

The type channel is instantiated for every defined data type in the main module of
the translation, that is imported from the translations of the AUTOFOCUS/Quest
components.

THEORY MAINFM99_Module_MESSAGE
USING

MESSAGE;
TRANSACTION;
SIGNAL;
Channel_Bool = CHANNEL [ Bool ];
Channel_Int = CHANNEL [ Int ];
Channel_Message = CHANNEL [ Message ];
Channel_Msg = CHANNEL [ Msg ];
Channel_Action = CHANNEL [ Action ];
Channel_Info = CHANNEL [ Info ];
Channel_Keys = CHANNEL [ Keys ];
Channel_Cardinfo = CHANNEL [ Cardinfo ];
Channel_Card = CHANNEL [ Card ];
Channel_Date = CHANNEL [ Date ];
Channel_Signal = CHANNEL [ Signal ]

THEORYEND

Translation of Properties Properties in AUTOFOCUS/Quest hold at the speci-
fied states. No intermediate states are possible due to the synchronous semantics
of AUTOFOCUS. Due to the differences in the interaction semantics (synchronous,
asynchronous) schedulers are generated for the representation of AUTOFOCUS

models in VSE II (see Section8.1). In VSE II there are intermediate states that
are not reachable in AUTOFOCUS. Therefore AUTOFOCUS/Quest properties hold
only in these states and the properties have to be expanded. This allows also for a
translation of the next state relation.

The example of Section3.5the following property has been given:

[](FM99.BankingSystem.Connection1.Answer?NoMoney =>
()(FM99.BankingSystem.Connection1.CentralMsg!NoMoney))

It is translated into the following VSE II specification:

70



TLSPEC Connection1_Properties
INCLUDE PropertyBase = Connection1_Scheduler
SPEC

[] PropertyBase.schedulePhase = T
AND PropertyBase.schedulePhase’ = F
AND ( ( Channel_Message.ChannelBase.is_Msg(

PropertyBase.AF_Component.Answer )
AND Channel_Message.ChannelBase.Val(

PropertyBase.AF_Component.Answer )
= NoMoney )

-> ( PropertyBase.AF_Component.CentralMsg’
= Channel_Message.ChannelBase.Msg(NoMoney))

)
TLSPECEND

Again the patterns are eliminated, as described for function definitions.

8.3 Translation from VSE to AUTOFOCUS

In this section the retranslation of VSE specifications to AUTOFOCUS/Quest is
discussed. The retranslation of specifications is only suggestive for specification
or parts of specifications which are generated by Quest. This is due the fact, that
AUTOFOCUS/Quest is based on a synchronous execution model, while VSE II
uses an asynchronous interleaving semantic. Up to now there is no useful pre-
sentation of such specifications in AUTOFOCUS/Quest. So it is only possible to
retranslate specifications which are structured like shown in Section8.2.

So usually a specification of a system is started in AUTOFOCUS/Quest and trans-
lated to VSE II later, if some properties have to be shown. In VSE II the specifica-
tion could be modified, but if it or parts of it should be retranslated the structure of
the specification should follow the structure of the generated constructs. Usually
only the behavior of a component will be changed.

8.3.1 SSD

For the retranslation of SSDs only the following parts are recognized:

71



Location Specification part

Combine , Component ,
Scheduler

components and SSDs

Component local variables, i.e. internal variables, except those
beginning withAFi_

Component initial values of local variables
Component , Combine in and out variables, which are retranslated to in

and out ports
Combine channels

The structure of the SSDs will be the same as those used by the translation. All
view informations, e.g. positions of the drawn rectangles and so on, are lost.

It is not checked, if the scheduling algorithms fit to those used by the translation,
i.e. the “internal” specification of the barriers and the schedulers are not checked.
Changes there will be ignored without warnings.

8.3.2 STD

For the retranslation of STDs only the following parts are recognized:

Location Specification part

Component , States States
Component Transitions, with preconditions, input patterns,

output actions, and actions

All retranslated automatons are flat, even if the original automaton was an hierar-
chic one. All view informations, e.g. positions of the drawn ellipsoids, are lost.

8.3.3 DTD

The retranslation of data types is restricted to the subset of the generated con-
structs, and requires that the theories have the structure as described in the gener-
ation in Section8.2.3. Furthermore pattern matching definitions cannot be infered
from the case distinctions. Compared which the large possibilities VSE II offers
to define data types this s quite restricted, however the retranslation can be used to
integrate changes into the Quest data definitions, or as a starting point for further
developments that can be used for round trip engineering.

Due to the semantical differences (synchronous vs. asynchronous) between AUTO-
FOCUS/Quest and VSE II property translation generates very complex terms that
correspond to the properties. Up to now there is no method in VSE II to deal

72



with such “synchronous properties”. Therefore no retranslation of properties is
supported.

9 The Test Environment

9.1 Introduction

The test environment of Quest enables you to perform the following tasks of the
testing process:

• Derivation of test sequences from specifications

• Manual creation of test sequences

• Running the tests on test objects

Although the test environment has a test driver that allows you to perform the
specified test sequences, the test environment focuses more on the creation of
reasonable test sequences than on the execution of given tests. Fig.25 shows an
overview over all testing tasks of the Quest development process. The rectangles
of the diagram are components of the Quest repository and the arrows are testing
tasks that produce new components or alter existing components in the repository.

Komponente
(SSD#+#DTD)

component
D)(SSD +DTD)

Funktionsdef.
(DTD)

function def.
(DTD)(DTD)

Testsequenz
(EET)(EET)

Automat
(SSD#+#STD)

automaton
(SSD + STD) Testautomattestautomaton Testsequenz

(EET)

test sequence

test sequence

(EET)

Code
(Java-Klasse)

code
(java class)

Protokoll
(EET)

protocol
(EET)

test driver

CTE

testsequentialization

Quest repository

TS 2

TS 3

TS 4
TS 1
TS 2
TS 3
TS 4

regression tests

CFTT

Figure 25: Overview about the test activities in Quest

73



9.2 Creating Test Sequences

There are several possibilities to create reasonable test sequences that can be used
for testing the target software (the test object). The choice of the appropriate test
sequence creation method is mainly determined by the type of the given specifi-
cations, i.e. the more detailed the specifications are, the more specific is the test
sequence generation process. The kind of the given specification is called the test
basis. In Quest, we distinguish the following test bases:

• component interfaces (i.e. specifications with SSDs and DTDs)

• components with behavior (i.e. SSDs, STDs and DTDs)

• function definitions (DTDs)

• sequence diagrams (EETs)

In the following sections we discuss the specific test creation methods depending
on the given test basis. The central component is the test automaton. The test au-
tomaton is a temporary automaton that is used in the testing process. It represents
the behavior or at least a part of the behavior of the test object. During the test case
generation process the tester works with the test automaton. Quest’s testing en-
vironments allows you to adapt the test automaton in a systematic way to resolve
the needs for the software testing process. This task is supported by the classifi-
cation tree editor (CTE) from DaimlerChrysler. Finally the tester can derive test
sequences from the test automaton which will be displayed as sequence diagrams.
Depending on the test automaton, the resulting sequence diagrams include the
expected responses or not. If they do not include results, either a reference im-
plementation is needed to produce the results or the tester can complement them
manually.

9.2.1 Test Basis: SSDs

The System Structure Diagrams in particular include the interfaces of the compo-
nents described by the specification. These interfaces are a good starting point for
test case generation. The test case generation from component interfaces works
as follows:

• STEP 1: produce CTA file14 from component interface and data type defi-
nitions

14The cta file contains the information for the classification tree assistant in the cte

74



• STEP 2: start CTE with generated CTA-File and save test cases in CTE-File

• STEP 3: read CTE file and generate test automton for component

All three steps can be done in one guided procedure of the browser. First, mark
the desired component in the browser window. Then click onstartCTE in the
testing -menu (see Fig.26).

Figure 26: Starting the CTE

It is also possible to do the steps one by one. Step 1 is done by clicking on
Classify component interface . This writes out the CTA information
to a file. Then you can start the CTE and write the classification tree and test
cases to an arbitrary CTE file. WithRead Component Classification
you can read back the test cases and generate the test automaton. Note that the
appropriate component must be marked to read back the test cases from the CTE
file.

The generated test automaton consists of a single state with one transition for
each test case. The transitions contain only the input values or the classes of input
values determined by the CTE. Concrete input data can be given in a later step
(see Section9.2.5). Of course it is not possible to derive the desired outputs from
the component’s interface. A reference implementation is needed to determine the
outputs (see Section9.2.5and9.3.2).

75



9.2.2 Test Basis: SSD with STDs

If the specification includes a behavior description, the test case generation should
include the given behavioral aspects in the generated test cases. We will differen-
tiate the following two scenarios:

• one component with associated automaton (unit test)

• several communicating components with associated automata (integration
test)

Unit Test The unit test tests a single component of the system. Test cases are
derived from the behavioral descripton of the component, i.e. the associated STD.
Arbitrary STDs have not only a control state but also a data state. This makes
the test sequence generation more complicated. If the data state of the automaton
influences the change of the control state, i.e. influences the ability of some tran-
sitions to fire, not all transisition sequences are feasible. Such automata should
be transformed to simple automata where all transition sequences are feasible.
Otherwise the test sequentialization produces transition sequences which have no
corresponding trace of input/output values that is executable on the test object and
on the specification.

The Quest development method provides the combined function and trace test
(CFTT) [Sad98, Sad97] strategy for deriving suitable test cases for single compo-
nents. This strategy includes a data partition that transfers a part of the data state
into the control state of the automaton. Actually this task is not supported by the
AUTOFOCUS/Quest tool and has to be done manually, but methodical support is
provided in analysis paper of the quest project ([SK97]).

Integration Test The objective of the integration test is the detection of faults in
the interaction of two or more previously tested components. AUTOFOCUS/Quest
supports the integration test with the channel test. The channel test finds errors
on a specific channel between two components. Possible sources of errors can be
wrongly interconnected components or different implementations of used proto-
cols. Actually AUTOFOCUS/Quest provides methodical support for generating a
test automaton that fits the needs for the channel test. For details see analyisis
paper of quest ([SK97]).

Classifying Transitions One of the core AUTOFOCUS/Quest benefits is the
creation of a classification proposal of the input data space of certain transi-
tions. These proposed classifcations are imported to the CTE-tool. The CTE-tool

76



enables the tester to partition the input data according to the classification tree
method ([GWG95]). As long as the tester sticks to some conventions, the marked
tests can be reimported to the AUTOFOCUS/Quest tool.

Alike the classification of component interface, the classification of transitions
can be either done in one guided procedure or three single steps:

• STEP 1: produce CTA-File from single transition and data type definitions

• STEP 2: start CTE with generated CTA-File and save test cases in CTE-File

• STEP 3: read CTE-File and insert new transitions in automaton

The guided procedure is started withstartCTE in the Testing menu. Note
that a transition node has to be selected becausestartCTE is sensitiv with regard
to the selected node. If a transition node is selected,startCTE will start the pro-
cedure to classify the input data of a transition. If a component node is selected,
startCTE will classify the component interface. If you prefer to do the steps
one by one, step 1 is initiated by pressing onTesting->Classify Tran-
sition and step 3 is done withTesting->Read Transition Classi-
fication . Be aware that the same transition is selected in the browser when
doing step 1 and 3. Otherwise, the test cases cannot be reimported to AUTO-
FOCUS/Quest correctly.

9.2.3 Test Basis: Functions

Function definitions are the third test basis. By selecting a function definition
and executingTesting->Create Component from Function AUTO-
FOCUS/Quest creates a new component in theTestdata folder. The new com-
ponent has the same name and interface as the function definition and its associ-
ated automaton consists of one single state and a loop transition for each defining
equation. The automaton reflects the behavior of the function definition except for
the sequence of the equations resp. transitions. In function definitions the order
is significant whereas the choice fo the transitions in an automaton may be non
deterministic.

9.2.4 Deriving sequences from test automata

For the derivation of suitable test sequences AUTOFOCUS/Quest provides the tran-
sition tour algorithm. The transition tour algorithm computes a path of minimal
length that covers all transitions of the automaton. Note that the automaton must

77



be strongly connected, i.e. all states must be reachable from each state, otherwise
the algorithm fails. In order to start the transition tour algorithm, just mark the
desired automaton and click onTesting->Compute Transition Tour .
If the automaton is strongly connected, the transition tour algorithm produces an
EET that represents a test which covers all transition of the automaton.

9.2.5 Test Basis: EETs

All tests are stored as EETs. Therefore it is possible to use manually created EETs
for testing. This is especially useful for the system test. EETs from use cases are a
good source for creating tests for the system test. Beyond that, regression testing
can be realized by using protocolls from former test runs as inputs.

9.3 Performing Tests

In order to perform a test an implementing class-file must be assigned to the com-
ponent. The class-file mus fulfill the conventions determinde in Sect.9.3.1. Then
you can run the test as describen in Sect.9.3.2. Sect.9.3.3gives some hints how
to interpret the results of the test run.

9.3.1 The Test Object Interface

see Reference Manual

9.3.2 Running the Test

Bevore running a test you have to associate a class file with the component under
test. Therefore mark the component and click onEdit->Create Subnode .
Then chooseCode and enter the file name of the class. When determining the file
name, use slashes () as delimiter and omit the ending.class . Example:

/home/QuestUser/ClassesUnderTest/Example

Then you can mark an arbitrary EET that is associated with the component and
start the test withTesting->Run Test . The test driver will now load the class
into the virtual machine and try to execute the I/O sequence that is contained in
the EET. Note that boxes and loops are not yes supported by the test driver. After
the test is finished, a protocoll of the test run will be generated and stored as an
EET of the component under test.

78



9.3.3 Interpreting the Results

There may be three possible types of errors in the protocol EET:

• WRONG_VALUE_ERROR: Message has a wrong value.

• UNEXPECTED_MESSAGE_ERROR: This is an additional message and does
not exist in the original test.

• NOT_RECEIVED_ERROR: The test driver expected this message but did
not receive it.

A Installation

In this section the requirements and the installation for AUTOFOCUS and Quest
are described. While a freely available version from AUTOFOCUS is download-
able from the AUTOFOCUShome-page (http://autofocus.informatik.
tu-muenchen.de ), Quest isn’t public available. Both tools are provided in zip
archives and have a self installable archive included. See the readme file contained
in the archive for latest informations.

A.1 System Requirements

Both AUTOFOCUSand the Quest extensions run under Unix platforms and Win-
dows NT. AUTOFOCUS is a freely available case-tool prototype. Requirements
for AUTOFOCUSare:

• an Unix-like platform or a PC running Windows NT. The operating system
must be capable to run Java 2. AUTOFOCUS is tested with Solaris 2.6,
Solaris 7, Linux (Kernel 2.2) and Windows NT 4.0.

• a run-time version of Java 2. AUTOFOCUS is tested with the Sun version of
Java 2 (JDK 1.2.2).

• GNU RCS (Revision Control System) version 5.0 or higher, as the reposi-
tory server uses RCS to provide access and version control. AUTOFOCUS

is tested with GNU RCS version 5.7.

• an Unix-like rm commando. Of course this is available for all Unix plat-
forms and only needed for Windows NT.

79

 http://autofocus.informatik.tu-muenchen.de
 http://autofocus.informatik.tu-muenchen.de


• an unzip commando to unpack the archive containing AUTOFOCUS.

• to connect the sample multimedia frontends provided with the distribution
(the traffic lights example and the elevator example) to AUTOFOCUS’ simu-
lation environment SIM CENTER, you need a PC running Windows NT and
the multimedia tool "FormulaGraphics".

A self installable version of AUTOFOCUS is available from the AUTOFOCUS

home-page (http://autofocus.informatik.tu-muenchen.de/index-e.
html ). Note that you have to register and to accept our license agreement, which
can be done online, to download AUTOFOCUS. Compiled versions of the GNU
RCS 5.7 and of an Unix-like rm commando for Windows NT are available from
the AUTOFOCUS-download page.

The Quest-extensions are not freely available, so there is no public available
download page. Requirement for the Quest-extensions are:

• preferable an Unix-like platform or with some shortcomings a PC running
Windows NT. The operating system must be capable to run Java 2. The
Quest-extensions are tested with Solaris 2.6, Solaris 7, Linux (Kernel 2.2)
and Windows NT 4.0. For the connection to VSE Solaris 2.5 (or later) is
needed. For the connection to CTE Solaris 2.5 (or later) or Linux (Kernel
2.2) is needed.

• a run-time version of Java 2. The Quest-extensions are tested with the Sun
version of Java 2 (JDK 1.2.2).

• an unzip commando to unpack the archive containing Quest.

Optional requirements are:

• for the connection to the theorem prover: VSE II version 1.02c or later.

• for the connection to the model checkers:

– SMV version 2.5

– SATO version 3.2

• for the testing environment: CTE

80

http://autofocus.informatik.tu-muenchen.de/index-e.html
http://autofocus.informatik.tu-muenchen.de/index-e.html


A.2 Installation

For further notes on installation and configuration of AUTOFOCUSsee the readme
file contained in the zip archive.

For the installation of the Quest tools follow these steps:

1. Unpack the archive quest.zip with your favorite unzipper to a temporary
directory. E.g. on Unix-like platforms:

cd /tmp
unzip quest.zip

This will create a directoryQuest-Install with two files:Readme.txt
andinstall.class .

2. Please readme file for up to date instructions.

3. Change to the directoryQuest-Install and start the installer15:

cd Quest-Install
java install

4. After a while you should see the “Welcome to the Quest Setup program”
(see Fig.27).

5. The steps through the Quest setup should be self explanatory. The main
thing is, that you have to enter a directory in which the Quest tools will be
installed (see Fig.28). That directory is the Quest-Home.

6. After the installation process the Quest tools reside inQuest-Home/bin .
It is recommanded, that you expand your path-settings appropirate.

export PATH=Quest-Home/bin:$PATH

A file named.quest with environmentvariable settings will be created in
the Quest-Home directory and if Quest setup is not started as a user with
root privileges, then it will be copied to the installers home directory. This
configuration file is needed for the Quest tools.

15On Unix systems the installer stores some information in the directory/bin or /usr/bin ,
e.g. an uninstall program.

81



Figure 27: The welcome screen of the installer

82



Figure 28: Choose a destination directory

83



7. If not already done, the other programs like VSE II, SMV, CTE, needed
for the Quest tools, have to be installed now and should be added to your
path-settings.

8. If another user wants to run the Quest tools, she/he should expand her/his
path-settings appropirate and she/he have to copy the file.quest to her/his
home directory.

A.3 Configuration

Normally no further configuration of the Quest tools are needed. All settings are
done by the Quest setup program. All user configurable settings are stored in the
file /.quest .

A.4 Uninstallation

To uninstall the Quest tools on Unix platforms follow those steps:

1. Log in as the user who installed the Quest tools.

2. Start the uninstall program:

juninst Quest-Home/UnInst

3. Follow the suggested steps.

After this you may removejuninst from your /bin directory.

To uninstall the Quest tools on Windows platforms go to the Add/Remove Pro-
grams dialog in the Windows Control Panel and remove the program.

B Case Studies and Examples

In this section we present the examples / case studies that have been modelled and
checked within the project Quest. These examples are part of the distribution and
can be used to test the tool. There are three case studies, each of them has some
examples. Further work on the case studies is mentioned in AppendixB.4. To
run an example the QML representation has to be loaded from theExamples
directory of Quest.

84



1. Storm Surge Barrier: A model of the emergency closing system of storm
surge barrier in the Oostershelde. The presented models have been used
in 1998 to improve the specification of the system, which now has evolved
further.

• StormSurgeBarrier/SSB Version without initialization (close to
original specification)

• StormSurgeBarrier/QSS a version with initialization (like the
running FriscoF simulation)

• StormSurgeBarrier/Comparator two models of a compara-
tor with different types

See AppendixB.1 for a description of this case study.

2. The Banking System (presented at the FM99) with two examples:

• The complete modelFM99/FM99 contains the complete specification

• The abstract modelFM99/BankAbs contains a version with only sin-
gle valued types. This is an ad hoc abstraction of the model and can
be used to model check the complete system.

See AppendixB.2 for a description of this case study.

3. A Traffic Light Control System: The old AUTOFOCUSexample of the traf-
fic light system for a pedestrian crossing over a street [HMS+98] has been
re-modelled using the expressive power of functional data types.

• TrafficLights/QuestTL contains the model.

The case studies are stored within the QuestML format and can be loaded into
AUTOFOCUSand into the model browser. Furthermore there are some properties
available, that can be loaded into the model browser to check something. The files
are located in theExamples -directory (see installationA), and can be loaded
into the model browser as described in Section4.2. Figure29 shows the subdi-
rectories of theExamples directory, each containing a case study:

B.1 Emergency Closing System of Storm Surge Barrier

The emergency closing system of the storm surge barrier in the Oostershelde is
the biggest case study. It has been analyzed with different methods and several
models have been build. In the directoryStormSurgeBarrier there are the
following files:

85



Figure 29: Content of theExamples directory

• SSB: the original model, see SectionB.1.1

• QSS: an improved model, see SectionB.1.2

• Comparator : a comparator for sensor signals, see SectionB.1.3

Section B.4 concludes with references to further work.

Starting point of our activities was an internal paper of the Dutch SIMTECH com-
pany [vdMvdW98] that should be the basis for a public offer for building a new
emergency closing system, because the old system (running on a PDP11) is out-
dated. However, since several flaws have been found, and due to several other
reasons, the emergency closing system is designed in a different way. Therefore
the case study, (in the presented version) can be published (see [vdMC99]).

B.1.1 The Original Model

The original model is contained within the fileSSB. The model correspond to the
original specification from the SIMTECH company in [vdMvdW98]. It contains
the unexpected behaviour, that at the system is started, the output of the channel
notCLOSE is not present. This denotes that the close signal is given and the
barrier closes. With an initialization phase, this unexpected behaviour could be
avoided. This unexpected behaviour was found during simulation of the system.
Furthermore the model contains the ‘famous’ [vdMC99] bug in the statemachine
that can be found using model checking.

86



B.1.2 An Improved Model

The improved model is contained within the fileQSS. In this model we integrated
an initialization phase and fixed the bug of the statemachine using a boolean vari-
ablecloseHappened to store whether a close signal has occured in the system
run. This model has been described very detailed in [Gie99].

B.1.3 A Comparator for Sensor Signals

To illustrate the abstraction mechanisms and the generation of proof obligations
for the correctness of the abstraction functions a comparator for sensor signal has
been modelled. The abstract model of the comparator is identical to the compara-
tor modelled within the above models of the storm surge barrier. Using abstrac-
tions and the verified abstract model we can insure the correctness of the concrete
model. The correctness proofs have not been carried out using VSE, due to lim-
ited resources within the project. However similar proofs have been carried out
using the Isabelle system [Ham99]. The essence of this work has been that it is
much easier to discharge the proof obligations, compared with the finding of cor-
rect (and useful) abstractions. To ease this process we integrated the abstraction
chooser within our framework.

The comparators are described within Section7.2, the generated correctness con-
ditions can be found in AppendixC.

B.2 FM99 Banking System

On the Formal Method World Congress 1999 in Toulouse there was a tool exhibi-
tion with a competition. Every participating tool was invited to model a banking
system with tills and transactions to withdraw money from accounts. Critical
properties had to be formulated and verified. We participated with our tool and
modelled the banking system. Due to the simple modelling language and the rich
possibilities to verify properties our tool AUTOFOCUS with Quest won the first
price.

Descriptions of the requirement document, and a paper describing our solution
can be found underhttp://autofocus.in.tum.de . More information on
the formal method world conference and the competition can be found inhttp:
//www.fmse.cs.reading.ac.uk/fm99/ .

In theExamples directory there is a subdirectory FM99 containing

• FM99 the complete model in QuestML format

87

http://autofocus.in.tum.de
http://www.fmse.cs.reading.ac.uk/fm99/
http://www.fmse.cs.reading.ac.uk/fm99/


• BankAbs an abstract model in QuestML format

Both Files contain some critical properties of the system.

B.2.1 Complete Model

We modeled the banking system with different hierarchic graphical description
techniques for structure and behavior. The model is based on a finite, functional
description of datatypes for example for credit cards and operations likesmax-
ForToday .

The model includes two tills (user interaction, simple checks, communication with
the system), two lossy connections, and a central including drivers (for the lossy
connections) and a database. We did not model the database in detail, but we
used nondeterminism of AUTOFOCUSto decide whether money can be withdrawn
or not. This level of abstraction allowed to prove many interesting properties,
especially on the lossy connections and the drivers.

The model is hierarchic, reuses several state transition diagrams (for example both
tills have the same behaviour), and it is based on a rich set of data definitions
describing the information on credit cards and transactions. This made the model
very complex, such that it could not be model checked completely, but bounded
model checking could be applied. To model check the complete system we built
an abstraction (see SectionB.2.2).

B.2.2 Abstract Model

The fileBankAbs contains an abstraction of the system that has been generated
by replacing all data types of the system by single valued types. For example a
the new typeCard for credit cards contains only the elementAnyCard . Fur-
thermore the file contains two properties of the complete system, stating that the
connection between the tills and the central is working, i.e. if the till sends any
message, sometimes there will be a response. Of course in this model no state-
ments concerning the content of the messages hold, however model checking the
complete system only takes about one minute (and one minute for the generation).

B.3 Traffic Light Control System

The traffic light control system is the smallest case study in theExamples direc-
tory. It contains the following files:

88



• QuestTL : The model in QuestML Format (including the DTD-Files
QuestTL_Module_Signal, QuestTL_Module_Lights,
QuestTL_Module_Keys, QuestTL_Module_TimeConstants

• Timer.prop: a true property of the timer

• System.prop: a true property of the system

The model can be used for demonstrations, because it is very small (fast) and
understandable. The model describes a small traffic light system, similar to the
traffic light system described in [HMS+98]. However, it has more components
(for example a timer) and it uses functional datatypes for the Lights. This reduces
complexity of the state transition diagrams and increases understandability of the
model. The model contains several “unexpected behaviours”, that can be found
out using model checking, for example the timer does not necessarily produce
timeouts, if it has been set. The reason (counter example) is that it can be set
again before it produces the timeout. In this case the timer starts again. In the
complete model however, this situation does not occur, since the timer is used
correctly.

The timer can also be used to benchmark model checking, because there are (in
the FileQuestTL_Module_TimeConstants ) constants that determine the
length of the phases. Setting them to high values and increasing theMaxInt
value in the browser can lead every system to its limit.

B.4 Other Work

In this section we refer to further work (not contained in theExamples directory)
that has been done using the tools and methods of Quest.

• The internal paper “Testgenerierung in Quest” from S. Sadeghipour and T.
Klein describes the test methods of Quest, especially how the communi-
cation test method has been applied to test communication channels of the
storm surge barrier model.

• Within the analysis of the storm surge barrier several models have been
built. The AUTOFOCUS/Quest models have been described within the pre-
vious sections. Another model has been built using a direct encoding into
VSE. The model has been build such that it allows for the specification of
real time properties, and several critical aspects have been verified. The
work is described in the internal paper “Modelling, Specification and Veri-
fication of an Emergency Closing System” by W. Stephan, G. Roch and M.
Brodski.

89



• The Adelard company has verified the design of the storm surge barrier
[vdMC99]. Some parts have been modelled with HOL, other parts have
been encoded directly into the SMV system.

C Correctness of Abstractions

This section contains all proof obligations that are generated for the correctness
of the abstraction defined in Section7.2.

C.1 Definition of the Abstraction Function

Since the generation of proof obligation involves the application of the abstraction
function, it is not necessary to explicitly define (in terms of VSE II) the abstraction
for all elements of the model (Port, Types etc.), however since the relation between
the states is essential the abstraction function has to be defined for states. In the
example this is:

/* specification of state abstractions */
THEORY OpenBarrier_AbsState_Definition

USING
Concrete_States ;
Abstract_States

FUNCTIONS
AbsStates : tConcrete_States -> tAbstract_States

PREDICATES
AbsInitial : tAbstract_States ;
ConcInitial : tConcrete_States

VARS Abs : tAbstract_States ;
Conc : tConcrete_States

AXIOMS

FOR AbsInitial : DEFPRED AbsInitial(Abs) <->
IF Abs = Abstract_States.sMAIN THEN TRUE
ELSE FALSE FI

FOR ConcInitial : DEFPRED ConcInitial(Conc) <->
IF Conc = Concrete_States.sMain THEN TRUE

90



ELSE FALSE FI
FOR AbsStates : DEFFUNC AbsStates(Conc) =

IF Conc = Concrete_States.sMain
THEN Abstract_States.sMAIN
FI

THEORYEND

C.2 Homomorphosm Proof Obligation

To express the proof obligation that ensures that the abstraction function is an
homomorphosm within VSE II we use the follwoing theory:

/* correctness of the abstraction function */
TLSPEC OpenBarrier_AbsState_Correctness

INCLUDE Conc =Concrete ;
Abs = Abstract

SATISFIES OpenBarrier_AbsState_Property
TLSPECEND

The important proof obligation is in the follwoing theory.

TLSPEC OpenBarrier_AbsState_Property
USING OpenBarrier_AbsState_Definition
INCLUDE Conc =Concrete ;

Abs = Abstract

VARS Conc : tConcrete_States ;
Vl : Int

SPEC
[] ALL Conc :

ConcInitial(Conc) -> AbsInitial(AbsStates(Conc)) ;
/* correctness for transition

((owl + openDifference) < iwl) ;
IntIWL?iwl ;
IntOWL?owl ;
OPENDif!Present; */

[] ALL Vl :
<> (Conc.AFi_ControlState = Conc.Concrete_States.sMain

AND Vl = Conc.l) ->
((Conc.AFi_ControlState = Conc.Concrete_States.sMain AND

91



Channel_Int.ChannelBase.is_Msg( IntIWL ) AND
Channel_Int.ChannelBase.is_Msg( IntOWL ) AND
( ( Channel_Int.ChannelBase.Val( IntOWL ) + openDif-

ference )
< Channel_Int.ChannelBase.Val( IntIWL ) ) AND

Conc.AFi_ControlState’ = Conc.Concrete_States.sMain
) ->

(AbsStates(Conc.AFi_ControlState) =
AbsStates(Conc.Concrete_States.sMain) AND

Channel_SensorSig.ChannelBase.is_Msg( IWL ) AND
Channel_SensorSig.ChannelBase.is_Msg( OWL ) AND
( add( Channel_SensorSig.ChannelBase.Val( OWL ) , S00 )

<< Channel_SensorSig.ChannelBase.Val( IWL ) ) AND
AbsStates(Conc.AFi_ControlState’) =

AbsStates(Conc.Concrete_States.sMain)
)

) ;

/* correctness for idle transition in state Main */
[] ALL Vl :

<> (Conc.AFi_ControlState = Conc.Concrete_States.sMain
AND Vl = Conc.l) ->

((Conc.AFi_ControlState = Conc.Concrete_States.sMain AND
NOT(Channel_Int.ChannelBase.is_Msg( IntIWL ) AND

Channel_Int.ChannelBase.is_Msg( IntOWL ) AND
((Channel_Int.ChannelBase.Val( IntOWL )

+ openDifference )
< Channel_Int.ChannelBase.Val( IntIWL ))

) AND
Conc.AFi_ControlState’ =

Conc.Concrete_States.sMain
) ->

(AbsStates(Conc.AFi_ControlState) =
AbsStates(Conc.Concrete_States.sMain) AND

NOT(Channel_SensorSig.ChannelBase.is_Msg( IWL ) AND
Channel_SensorSig.ChannelBase.is_Msg( OWL ) AND
( add( Channel_SensorSig.ChannelBase.Val( OWL ) , S00 )

<< Channel_SensorSig.ChannelBase.Val( IWL ) )
) AND

AbsStates(Conc.AFi_ControlState’) =
AbsStates(Conc.Concrete_States.sMain)

)
)

92



TLSPECEND

C.3 Strengthening Proof Obligation

The strengthening proof obligation defines the mappings between the concrete
and theabstract types in thefollwoing theory:

THEORY OpenBarrier_Strengthen_Definition
USING OpenBarrier_AbsState_Definition ;

MAINComparator_Module_HWSignal

FUNCTIONS

Int2SensorSig : SensorSig -> SensorSig;
Signal2Signal : Signal -> Signal

VARS
/* variables for function Int2SensorSig */

V1Int2SensorSig : Int;
/* variables for function Signal2Signal */

V1Signal2Signal : Signal;
cInt : Int ;
cSignal : Signal

AXIOMS

/* axiom for the function Int2SensorSig :
fun Int2SensorSig(x) = S00;
*/

FOR Int2SensorSig :
DEFFUNC Int2SensorSig(V1Int2SensorSig) = S00

/* axiom for the function Signal2Signal :
fun Signal2Signal(x) = x;
*/

FOR Signal2Signal :
DEFFUNC Signal2Signal(V1Signal2Signal) =

V1Signal2Signal

THEORYEND

The corectness condition of the abstraction function with respect to the selected
properties (the strengthening) is

93



THEORY OpenBarrier_Strengthen_Property
USING OpenBarrier_Strengthen_Definition
VARS IntIWL : Int ;

IntOWL : Int ;
l : Int

AXIOMS

/* Strengthening for Property:
Concrete:

[](((Val(Comparator.Combine.Concrete.IntOWL)
< Val(Comparator.Combine.Concrete.IntIWL)) =>

<>((Comparator.Combine.Concrete.OPENDif ! Present))))
Abstract:

[](((Val(Comparator.Combine.Abstract.OWL)
<< Val(Comparator.Combine.Abstract.IWL)) =>
<>((Comparator.Combine.Abstract.OPENOK ! Present))))

*/
( ( Int2SensorSig( IntOWL ) << Int2SensorSig( IntIWL ) )

-> ( IntOWL < IntIWL ) )
AND
( ( Signal2Signal( OPENDif ) = Present )

-> ( OPENDif = Present ) )

THEORYEND

again the fact that this condition is true is expresed in a theory with aSATISFIES
section:

THEORY OpenBarrier_Strengthen_Correct
USING OpenBarrier_Strengthen_Definition
SATISFIES

OpenBarrier_Strengthen_Property

THEORYEND

References

[BLSS00] P. Braun, H. Lötzbeyer, B. Schätz, and O. Slotosch. Consistent
Integration of Formal Methods. InTools for the Analysis of Correct
Systems (TACAS), 2000. to appear.

94



[BS99] M. Broy and O. Slotosch. Enriching the Software Development
Process by Formal Methods. InCurrent Trends in Applied Formal
Methods 98, LNCS 1641, 1999.

[CGL92] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstraction. InProc. 19th ACM Symp. Principles of
Programming Languages, pages 343–354. ACM Press, 1992.

[DGG97] Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpre-
tation of reactive systems.ACM Transactions on Programming
Languages and Systems, 19(2):22–43, 1997.

[Gie99] P. Gierl. Casestudy: The Oostershelde NSS, 1999. Fortgeschritte-
nenpraktikum, Technische Universität München.

[GL93] Susanne Graf and Claire Loiseaux. A tool for symbolic pro-
gram verification and abstraction. In C. Courcoubetis, editor,3th
Int. Conf. on Computer Aided Verification, volume 697 ofLecture
Notes in Computer Science, pages 71–84. Springer-Verlag, 1993.

[GWG95] M. Grochtmann, J. Wegner, and K. Grimm. Test Case Design Us-
ing Classification Trees and the Classification-Tree Editor. InPro-
ceedings of 8th International Quality Week, San Francisco, pages
Paper 4–A–4, May 30-June 2 1995.

[Ham98] Tobias Hamberger. Verifikation einer Hub-
schrauberüberwachungskomponente mit Isabelle und STeP,
1998. Student software development project, Technische
Universität München, Germany.

[Ham99] Tobias Hamberger. Kombination von Theorembeweisen und
Model Checking für I/O Automaten. Master’s thesis, Computer
Science Department, Technical University Munich, 1999.

[HEea96] F. Huber, G. Einert, and et al.AutoFocus User’s Manual, 1996.

[HMR+98] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, and
O. Slotosch. Tool supported Specification and Simulation of Dis-
tributed Systems. InInternational Symposium on Software En-
gineering for Parallel and Distributed Systems, pages 155–164,
1998.

95



[HMS+98] F. Huber, S. Molterer, B. Schätz, O. Slotosch, and A. Vilbig. Traf-
fic Lights - An AutoFocus Case Study. In1998 International Con-
ference on Application of Concurrency to System Design, pages
282–294. IEEE Computer Society, 1998.

[HS96] K. Havelund and N. Shankar. Experiments in theorem proving
and model checking for protocol verification. In M. Gaudel and
J. Woodcock, editors,Formal Methods Europe, Lecture Notes in
Computer Science, pages 662–681. Springer-Verlag, 1996.

[HS97] F. Huber and B. Schätz. Rapid Prototyping with AutoFocus. In
A. Wolisz, I. Schieferdecker, and A. Rennoch, editors,Formale
Beschreibungstechniken für verteilte Systeme, GI/ITG Fachge-
spräch 1997, pp. 343-352. GMD Verlag (St. Augustin), 1997.

[HSE97] F. Huber, B. Schätz, and G. Einert. Consistent graphical specifi-
cation of distributed systems. InFME ’97: 4th International Sym-
posium of Formal Methods Europe, LNCS 1313, pages 122 – 141,
1997.

[Jon93] M. P. Jones.An Introduction to Gofer, August 1993.

[KBRS98] Koob, Baur, Reif, and Stephan.VSE II Development Method, 1998.

[Kur87] R.P. Kurshan. Reducibility in analysis of coordination. In
Kurzhanski Varaiya, editor,Discrete Event Systems: Models and
Applications, volume 103 ofLecture Notes in Control and Infor-
mation Science, pages 19–39. Springer-Verlag, 1987.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem.
Property preserving abstractions for the verification of concurrent
systems.Formal Methods in System Design, 6(1):11–44, 1995.

[Mer97] Stephan Merz. Rules for abstraction. In R. K. Shyamasundar
and K. Ueda, editors,Advances in Computing Science—ASIAN’97,
volume 1345 ofLecture Notes in Computer Science, pages 32–45,
Kathmandu, Nepal, December 1997. Springer-Verlag.

[MN95] Olaf Müller and Tobias Nipkow. Combining model checking and
deduction for I/O-automata. InProc. 1st Workshop Tools and Al-
gorithms for the Construction and Analysis of Systems, volume
1019 ofLecture Notes in Computer Science, pages 1–16. Springer-
Verlag, 1995.

96



[Mül98a] Olaf Müller. A Verification Environment for I/O-Automata Based
on Formalized Meta-Theory. PhD thesis, Institut für Informatik,
Techn. Univ. München, 1998.

[Mül98b] Olaf Müller. A Verification Environment for I/O Automata Based
on Formalized Meta-Theory. PhD thesis, Institut für Informatik,
Technische Universität München, 1998.

[Pau91] L.C. Paulson.ML for the Working Programmer. Cambridge Uni-
versity Press, 1991.

[Pla97] T. Plasa.VSE II Benutzerhandbuch Grundsystem, 1997.

[PS99] J. Philipps and O. Slotosch. The Quest for Correct Systems: Model
Checking of Diagramms and Datatypes. InAsia Pacific Software
Engineering Conference 1999, 1999. to appear.

[RSW97] G. Rock, W. Stephan, and A. Wolpers. Tool Support for the
Compositional Development of Distributed Systems. InProc.
Formale Beschreibungstechniken für verteilte Systeme,GI/ITG-
Fachgespräch. GMD-Studien Nr. 315, ISBN: 3-88457-514-2,
1997.

[Sad97] S. Sadeghipour. Teststrategien auf Basis erweiterter, endlicher Au-
tomaten, 1997. Internes Papier.

[Sad98] S. Sadeghipour.Testing Cyclic Software Components of Reactive
Systems on the Basis of Formal Specifications. PhD thesis, Tech-
nische Universität Berlin, Fachbereich Informatik, 1998.

[SK97] S. Sadeghipour and T. Klein. Testmethoden f"ur formale, graphis-
che Spezifikationen, 1997. Internes Papier.

[Slo98] O. Slotosch. Quest: Overview over the Project. In D. Hutter,
W. Stephan, P Traverso, and M. Ullmann, editors,Applied Formal
Methods - FM-Trends 98, pages 346–350. Springer LNCS 1641,
1998.

[SLW95] B. Steffen, K.G. Larsen, and C. Weise. A constraint oriented
proof methodology based on modal transition systems. InProc.
1st Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, volume 1019 ofLecture Notes in Computer
Science, pages 17–40. Springer-Verlag, 1995.

97



[UBR+99] Ullmann, Baur, Reif, Siekmann, Scheer, and Moik.Specification
Language VSE SL Version 2, 1999.

[vdMC99] Meine van der Meulen and Tim Clement. Formal Methods in
the Specification of the Emergency Closing System of the Eastern
Scheld Storm Surge Barrier. InCurrent Trends in Applied Formal
Methods 98, LNCS 1641, 1999.

[vdMvdW98] Meine van der Meulen and K. van de Wetering. Requirements
Specification NSS, October 19th 1998.

[Wim00] G. Wimmel. Using SATO for the Generation of Input Values for
Test Sequences. Master’s thesis, Technische Universität München,
2000.

[Wol86] Pierre Wolper. Expressing interesting properties of programs in
propositional temporal logic. InProc. 13th ACM Symp. Principles
of Programming Languages, pages 184–193. ACM Press, 1986.

[Zha97] H. Zhang. SATO: An efficient propositional prover. In William
McCune, editor,Proceedings of the 14th International Conference
on Automated deduction, volume 1249 ofLNAI, pages 272–275,
Berlin, July 13–17 1997. Springer.

98


	Introduction
	Conventions used in this manual

	Views and Models of AutoFocus
	Structure of Views in AutoFocus
	Structure of the Models

	The Language QuestF: DTDs and Properties
	Type Definitions
	Terms
	Function Definitions
	Module Definitions
	Properties
	Correctness Conditions
	Integration and Application
	Predefined Elements
	Types
	Operations


	Using the Model Browser 
	Starting the browser
	Working with repositories
	Viewing and editing nodes
	Creating new nodes
	Deleting nodes

	Integration
	Integration in AutoFocus
	Exporting Projects from AutoFocus
	Importing Projects in AutoFocus
	Limitations

	Integration in VSE
	Overview
	Importing Projects in VSE
	Exporting Projects from VSE
	Limitations


	Model Checking with AutoFocus
	Introduction
	Counter Examples
	Connected Checkers
	Using SMV
	Using SATO


	Abstraction Chooser
	Methodology
	Abstraction Example: Comparator
	Using the Abstraction Chooser

	Connection to VSE
	Introduction
	Translation from AutoFocusto VSE
	SSD
	STD
	DTD

	Translation from VSE to AutoFocus
	SSD
	STD
	DTD


	The Test Environment 
	Introduction
	Creating Test Sequences
	Test Basis: SSDs
	Test Basis: SSD with STDs
	Test Basis: Functions
	Deriving sequences from test automata
	Test Basis: EETs

	Performing Tests
	The Test Object Interface
	Running the Test
	Interpreting the Results


	Installation
	System Requirements
	Installation
	Configuration
	Uninstallation

	Case Studies and Examples
	Emergency Closing System of Storm Surge Barrier
	The Original Model
	An Improved Model
	A Comparator for Sensor Signals

	FM99 Banking System
	Complete Model
	Abstract Model

	Traffic Light Control System
	Other Work

	Correctness of Abstractions
	Definition of the Abstraction Function
	Homomorphosm Proof Obligation
	Strengthening Proof Obligation


