
  
  
  
  
  
  
  
  

Providing Metadata 
Services on the World 
Wide Web 

  
  
  
  

  
 Yann Neveu, Youenn Guervilly, 
 Uffe K. Wiil, David L. Hicks 
  

 
  
  
  
  
  
  
  

 
Technical Report CSE-01-01 
 
Dept. of Computer Science and Engineering 
Aalborg University Esbjerg 
Niels Bohrs Vej 8 
6700 Esbjerg 
Denmark 



 2

Address 
 
Dept. of Computer Science and Engineering 
Aalborg University Esbjerg 
Niels Bohrs Vej 8 
6700 Esbjerg 
Denmark 
 
Email:  dept@cs.aue.auc.dk 
Web: www.cs.aue.auc.dk 
 
Phone: +45 7912 7666 
Fax: +45 7545 3643 



 3

Table of Contents 
 
1. Introduction  ............................................................................................................   4 
 
2. Construct  ................................................................................................................   5 
 
3. Analysis  ..................................................................................................................   8 
     3.1 Needs  ................................................................................................................   8 
     3.2 Means  ............................................................................................................... ..8 
 
4. Design  ..................................................................................................................... 13 
     4.1 Description  ........................................................................................................ 13 
     4.2 Class diagram  ................................................................................................... 16 
 
5. User Manual  ............................................................................................................ 20 
     5.1 The Netscape 6 interface  .................................................................................. 20 
     5.2 The standalone application  ............................................................................... 25 
 
6. Conclusion  ............................................................................................................. 28 
 
References  ................................................................................................................. 29 
 



 4

1. Introduction 
 
Yann Neveu and Youenn Guervilly, two Socrates exchange students from the University of 
Bretagne in Brest, France, carried out the work described in this report during a three-month 
practicum at the Department of Computer Science and Engineering, Aalborg University 
Esbjerg, Denmark. Uffe K. Wiil and David L. Hicks supervised the project, which was carried 
out in the context of the Construct research project (www.cs.aue.auc.dk/construct). 
 
The purpose of the project was to provide metadata services on the World Wide Web (WWW). 
We have extended Netscape 6 with additional functionality and made it an application of the 
Construct metadata structural service component. 
 
The sidebar interface on Netscape has been designed with the XUL language, specially 
created in order to create the Netscape 6 user interface. The metadata services interface is 
located in 'My Sidebar' which is a frame located on the left side of the browser. It can be 
consulted at any time within all kinds of web pages. This will allow ordinary WWW users to add 
metadata (data about data) to arbitrary documents on the WWW. The JavaScript language 
combined with the LiveConnect technology permit communication between the XUL interface 
and the Java applet. 
 
Users will also be able to access the metadata using a standalone Java application. This 
program uses the same code as the Java applet, but it has its own interface. In a future 
version, this application could be used with the XPCOM facilities to be linked to Netscape. 
 
Both these solutions use the same wrapper as the Emacs integration with Construct. Thus, it 
will be easier to integrate all the applications in the Construct environment avoiding the 
multiplicity of wrappers. 
 
The report continues with a short introduction to Construct that explains how this metadata 
project fits within the overall research project (Section 2). Sections 3 and 4 provide details 
about the analysis and design of the Netscape 6 integration, while Section 5 provides an 
overview of how to use the Construct metadata service in Netscape 6 and in the standalone 
metadata application. Section 6 concludes the report. 



 5

2. Construct 
 
The Construct research project  (www.cs.aue.auc.dk/construct) is concerned with providing 
different services to help users manage and structure their knowledge. The Construct 
environment consists of different categories of software components. 
 

 

foundation 
service 

foundation 
service 

application application 

structure 
service 

structure 
service 

structure 
service 

infrastructure 
service 

infrastructure 
service 

development 
tool 

development 
tool 

data 
store 

data 
store 

w w 

 

 
• Applications. This category includes desktop applications (e.g., Netscape, MS Word, 

and Emacs) that have been integrated (modified, extended, or wrapped) to be able to 
make use of the Construct structure services. 

 
• Wrapper services. A wrapper is a service that allows a legacy application to be 

integrated with the Construct environment. Natively compliant applications do not need 
wrappers – all other applications do. 

 
• Structure services. Integrated applications can make use of different types of structure 

services to organize data located in data stores. Each type of structure service provides 
a different set of structural abstractions (e.g., navigational, spatial, taxonomic, 
argumentation, workflow, and collaboration) that supports different application domains. 

 
• Foundation services. Foundation services provide the very basic services in the 

environment that most other services depend on. Example foundation services are: 
 



 6

o Structure stores. A structure store is a software component that manages 
storage and retrieval of structure. Structure stores can handle different types of 
structural abstractions. 

 
o Multiuser and collaboration services. This category includes services such as 

concurrency control, notification control, and access control. 
 
o Versioning services. Services that allow structural abstractions to be versioned. 

 
• Data stores. A data store could be a file system, a database, a CD-ROM, etc. 
 
• Infrastructure services. This category includes general services that enable the 

individual components of the environment to co-exist. Examples of these services are 
service discovery, naming, and location. 

 
• Development tools. The development tools assist in the development of new services in 

the environment. Currently, three development tools exist: 
 

o UML Tool. This tool allows the developer to specify new services by drawing 
UML diagrams in a graphical user interface. UML Tool translates the UML 
diagrams into IDL specifications. 

 
o Emacs. This well-known editing tool is used to create IDL specifications and Java 

code as well as documentation of various kinds. Emacs is considered a 
development tool of the Construct environment due to its integration with the 
navigational structure service. 

 
o Construct Service Compiler (CSC). The CSC takes IDL specifications as input 

and generates service skeletons in Java. Service skeletons are wrapped in 
components that can automatically run as part of the Construct environment. The 
developer must add some code to the skeletons to define the semantics of the 
generated operations. 

 
Development tools can also be clients of structure services. For example, UML Tool 
and Emacs are clients of the navigational structure service. Thus, it is possible to 
link from classes or fields in the UML diagrams to, for example, design rational 
located in a text file under the control of Emacs. 

 
The specific instance of the Construct environment in which the present WWW metadata 
project has been taking place is depicted below. The darker shaded boxes (green boxes when 
printed in color) indicate the components directly involved in the project. 



 7

structure storefoundation
services

navigational
structure
service

metadata
service

structure
services

Netscape Emacs UML
tool

wrapper wrapper wrapper wrapper

 
 
When the present project began, the Construct metadata service was already in place. It was 
being used by the Emacs editor, through a wrapper service, to provide metadata support for 
Emacs files. Briefly stated, the goal of this project was to integrate Netscape 6 into the 
Construct environment using a similar wrapper and to then use the metadata service to 
provide metadata support for web pages. 



 8

3. Analysis 
 
3.1 Needs 
 
One part of the construct project is to provide metadata on different documents to users, which 
consult them using different software. One type of document is the web page, which is 
consulted via a browser. 
 
The functionality, which has to be added to the browser, is an extension, which must permit the 
consultation of the Construct metadata server. 
 
The Netscape 6 browser has been chosen because of its availability on most platforms. 
Another advantage of this browser is the possibility to get the source code. 
 
The Java language permits to make an extension, which can run on most of platforms. 
Moreover it keeps a certain integrity with the other parts of the Construct project, which are 
Java components. 
 
3.2 Means 
 
3.2.1 How to extend Netscape 6 with Java 
 
The Mozilla Project. Since 1998, the main part of the Netscape development has been done 
in the Mozilla project. The Mozilla project is based on the open source code of the former 
Netscape 5 project. At the end of 2000, the first version of the Communicator suite was issued 
from the Mozilla code (i.e., browser + mail client) and has been distributed; it is called 
Netscape 6. 
 
Netscape 6 status. Netscape 6 is based on the status of Mozilla at the end of 2000. Today, in 
March of 2001, Mozilla's version is 0.8. According to Netscape, the Mozilla code has been 
optimized and then stabilized before being called and distributed as the Netscape 6 product. 
However, when we tested some development possibilities as they are described on the 
Netscape developer web site, we realized that some are not really possible with the current 
version. 
 
3.2.1.1 Blackwood API 
 
The Blackwood Project is a part of the Mozilla Project. It deals with use of the Java language 
with Mozilla and Netscape. The Java facilities of Netscape are based on the Open JVM 
integration facility, which allows different Java engines to be plugged in easily. The advantages 
of this facility alone are obvious, allowing users the freedom to choose whatever Java engine 
they want.  
 
Pluglets or Java plugins. Another possibility given by the Blackwood API is pluglets. These 
are plugins and components that are implemented in Java, giving the advantages of 
Microsoft's ActiveX controls while remaining cross-platform. A plugin is a code module that 
behaves as though it is part of the Netscape browser. We can use the plugin API to create 



 9

plugins that extend Navigator with interactive and multimedia capabilities that handle one or 
more data MIME types. Generally, plugins are developed in the C++ language and for the MS 
Windows platforms. Plugins can use the Netscape Java Runtime Interface (JRI) to access 
Java. Communication with Java, and through Java, with JavaScript, is possible with a 
LiveConnect connection. 
 
The Java plugin is useful when you have to use a singular data type. It could be integrated to 
the web page. 
 
XPCOM. The Blackwood API would permit, when it will be finished to connect standalone Java 
applications and Netscape, using a COM like interface. Netscape 6 should bring a COM-
compatible cross-platform component object model called XPCOM. It follows that Netscape 
components would be scriptable. Component methods may be invoked from any language for 
which there exists a binding to the corresponding XPCOM interface. In Netscape, the primary 
language supported is JavaScript, and the binding to XPCOM components is provided by a 
library called XPConnect. The Java Virtual Machine communicates with Mozilla/Netscape 
through the Object Java Interface. 
 
Applet. An applet would allow the functionality to be easily integrated to a web page situated 
in the Netscape 'My Sidebar' for example. This solution requires a Swing or AWT Java 
interface. It will be easier if necessary, to port this extension to Internet Explorer but it seems to 
be a less integrated solution. 
 
For JavaScript to be able to control a Java applet, the Java applet must provide public 
methods. The methods of an applet are the functions, which are associated with its class. 
Public methods are functions, which are externally visible and can be called by other Java 
classes and by JavaScript. Well-written Java applets will provide public methods to make basic 
properties readable and writeable by other code. This makes it possible to customize and 
reuse existing Java applets without modifying the applet's source code.  
 
3.2.1.2 The better choice at the moment: The applet 
 
The three solutions found have advantages and drawbacks. Integrating a Java plugin is more 
useful when you have to use a specific data format (especially for multimedia and interactive). 
Applet extension is more portable if you need in the future to develop the Construct services 
for another browser. The Java application seems to permit a good integration to the Netscape 
6 navigator. Furthermore, it allows the application to be used without any browser if you just 
have to consult documents' metadata. 
 
The standalone application, which would communicate, with the Netscape 6 application would 
probably be the best solution. The fact that it would be a real application would let the user use 
it without the need to have to launch Netscape 6 to consult metadata. He could consult them 
just by typing a URL in the application. Use of XPCOM would enable future integration with the 
Microsoft Internet Explorer browser, which uses the COM system to communicate with other 
applications. 
 
Netscape 6 limitations and the Mozilla project. There are many subprojects in Mozilla, 
which should improve the Netscape Communicator browser. The Blackwood Project is one of 



 10

those subprojects of the Mozilla Project, which is the open source development part of 
Netscape. Some parts of the API are here but can be used only with very simple examples like 
some tests that are bundled with Mozilla source code.  
 
Unfortunately, the Netscape 6 browser cannot use the XPCOM capability, which should be 
integrated in the next release of the product. 
 
The problem is the same with the pluglet solution, which can run, but the API is not fully 
implemented and there are few possibilities today. 
 
So for the project, the last solution has been chosen, the Java applet solution, which is the only 
one, which is not affected by Netscape 6 limitations. 
 
3.2.2 My Sidebar 
 
Description. My Sidebar is a mini window within Netscape 6 that can contain a Java applet or 
an HTML page. It allows you to get the content of the web sites you choose. It can also offer 
easy access to data from the web sites you want. 
 
My Sidebar tabs can be constantly updated to keep you connected to the information you 
need. My Sidebar tab is a web page formatted to fit in the My Sidebar window. It supports 
languages like HTML 4, JavaScript, XML, CSS, and DOM. It allows tabs to be dynamic, 
customizable, and interactive. Anything that can be done in a standard web page can be done 
in a Sidebar tab. Therefore, it is easy to integrate an interactive Java applet, which could 
display metadata of the Netscape main frame. 
 
Sidebar's advantages. For developers, it is easy to build, update, and manage the sidebar. 
You can create the Sidebar tab like a web page and integrate a Java applet. You can easily 
analyze the content of the web page in the main frame. There is no need to modify the 
Netscape sources. 
 
For web users, it is convenient, customizable, and dynamic. With My Sidebar tabs, the web 
user can easily customize the metadata services applet. It is very easy to install and use. You 
just have to click on a link that runs a JavaScript function, which installs the package needed 
on your computer. Metadata are easily accessible at any time. My Sidebar tabs can be 
updated automatically. Tab content itself can be personalized to suit an individual's needs. A 
user can interact with the tabs without losing track of what he is browsing in the main window. 
Multi-task is permitted. Because it uses a Java applet, users can separate the program from 
the sidebar and drop it where he prefers on his desktop.  
 
Sidebar's drawbacks. For developers, there are some restrictive rules to respect. Although 
any file format that the Navigator 6 browser can display can appear in My Sidebar, these files 
will have to display well in a window that is smaller than 170 pixels wide by 150 pixels tall. 
When designing the My Sidebar tab, we must be sure that information is presentable in a small 
space and responds well to being resized by the user. The default width of My Sidebar is 170 
pixels wide. The content area is 162 pixels wide (144 pixels wide when a scroll bar is 
included). You can effectively utilize the space within the My Sidebar area by decreasing font 



 11

sizes. The tab title width is approximately 20 variable width western characters or 10 double-
byte characters.  
 
A good integration to Netscape 6. The interface between users and the Construct metadata 
structural service could be implemented in many ways. We have decided to design two 
different interfaces for many reasons. 
 
The first one is made in XUL. This language is used in Netscape 6 to display the browser 
interface. The sidebar gets the same look as the browser, so it is the default interface. 
 
In this case, we have to use a hidden applet located in the sidebar. The URL of the web page 
and metadata will be transmitted to this applet thanks to the LiveConnect protocol. 
 
The second solution is the Swing interface of the Java applet. This interface uses the most 
important part of the sidebar to display metadata. We have discovered two problems with this 
solution. It is not possible to use a Java applet in the sidebar, so we have decided to create a 
frame in the sidebar in order to resolve this bug. Unfortunately, we cannot use a local applet 
for some security reasons that are why the applet is located on a distant web server. 
 
The only data transmitted from the JavaScript to the applet is the URL of the current web page 
because metadata are directly fill and display via the Swing interface. 
 
This kind of interface has been created for two reasons: The applet could be run as a 
standalone application without Netscape 6, so a Swing interface is necessary. It will be easier 
to integrate the applet to Internet Explorer if we want to make it an application of the Construct 
metadata structural service. 
 
3.2.3 Security issues 
 
Java applet security issues. The original security policy of Java 1.0 uses the Sandbox 
model. This model is very simple and restrictive. The "Sandbox" represents a small part of the 
system resources the Java Virtual Machine (JVM) has access to. 
 
Under this model, applets were always assumed to be hostile so they were restricted to use 
"Sandbox" resources and nothing else. Any attempt to leave the "Sandbox" would cause the 
applet to throw a security exception and exit. An applet cannot load libraries or define native 
methods.  
 
An applet cannot ordinarily read or write files on the host that is executing it. An applet cannot 
make network connections except to the host that it came from. An applet cannot start any 
program on the host that is executing it. An applet cannot read certain system properties. 
 
Java 1.1 introduced the concept of signed applets. Signed applets allowed a user to verify the 
origin of the applet and its integrity. 
 
This was done by digitally signing JAR files. This model allowed the user to trust certain 
applets depending on whether they originated from a known trusted source. Certain 



 12

restrictions could be removed with this signing process. However, Java 1.1 provides only two 
levels of security, safe or not safe. 
 
Java 2 security policy. The Java 2 security policy keeps the notion of trusted and un-trusted 
code to a minimum. Instead, code runs at different permission levels.  
 
This system improves the signed applet capabilities of Java 1.1, but this time a specific 
security level must also be supplied for a specific signed applet. We can define, for a specific 
applet, files that it can read or write for example. 
 
Construct Java applet and security. In the Construct extension, the applet needs to 
establish a connection with the metadata structure server. This server could not have a web 
server to supply the Construct applet, but the applet can only establish connection with a host, 
which belong to the same domain that it is from. 
 
The way to allow the applet to communicate with another host is to trust it:  
 
• This can be by signing the applet, so the operation can be transparent for the user who 

would like to use it.  
 
• Another way is to install the applet on the user's local file system. The applet must be 

placed in a CLASSPATH directory. 
 
• The Java 2 security policy tool allows us to choose to trust applets from specific domains. 



 13

4. Design 
 
4.1 Description 
 
4.1.1 Two applications in one 
 
The system can be seen as two different parts, even though there is only one source code. In 
fact, the final code can be launched as an applet, in an HTML or XUL page or as a standalone 
Java application. 
 
4.1.1.1 Applet 
 
The applet is launched as a normal applet, it is called by a XUL or an HTML page between 
<applet></applet> tags. Therefore, the applet has, like others applets, an init() method, which 
calls the jbInit() method. 
 
4.1.1.2 Standalone application 
 
Because we have to load and run Netscape 6 each time we want to test the applet, we have 
decided to make, in parallel with the applet code, a standalone application, which permits us to 
test the main functionality. This standalone application has its own swing Java interface.  
 
Advantages of such a solution. Having a standalone application in addition to the Java 
applet offers other advantages in addition to those for the development phase. 
 
For the moment, until the next release of the browser, the XPCOM capabilities are not 
available for a Netscape external Java application. However, when it is available, this 
standalone program will be linked with Netscape without having to develop another user 
interface.  
 
The user may choose to consult metadata about a specific URL without having to launch the 
Netscape 6 browser, which is a very heavy application, in terms of memory and processor use.  
 
Swing or AWT interface. We had to choose between two types of Java GUI API. In fact, there 
is the old one, AWT, and the layer above it, more recent, the Swing API. The Swing API is 
available only in the more recent releases of the Java runtime environment. 
 
The main goal of the project is to make an extension for the Netscape 6 browser. With this 
browser is bundled the Java 2 runtime environment. 
 
Because this version of Java was available with Version 6 of the browser, we have decided to 
use the Swing API. 
 
4.1.1.3 The same code for the applet and for the application 
 
Using the Inprise Jbuilder integrated development environment, there is an option, during the 
project creation process that provides the opportunity to add a Boolean parameter to the 



 14

skeleton code of the Core class, which is called isStandalone. This attribute will be initialized at 
the Core instance creation. 
 
If the code is launched as an applet, the init() method will be called at the beginning. So in the 
init() method, the isStandalone parameter will be set to false. 
 
However, if it is as a standalone application, the parameter will be set to true, through the 
main() method. 
 
Each method, init() or main() will later call the jbinit() method, which contains the other 
instructions needed by the application. 
 
4.1.2 A wrapper 
 
Emacs wrapper. A metadata extension has already been done for the Emacs software. Due 
to the software implementation language, Emacs' metadata extension has been written in the 
Lisp language. This extension provides the ability to consult metadata for documents, which 
are opened in the text editor. One Emacs buffer is used to edit the text, and, below it, there is 
another buffer to display the metadata. An entry in the main menu has been added to 
manipulate those data. 
 
For communication between Emacs and the data server, TCP/IP has been chosen. A wrapper, 
in Java, links the Emacs extension and the metadata server. The Emacs extension sends, via 
TCP/IP, queries to the wrapper, which use Construct services to manipulate the data in the 
structure storage component. 
 
Reuse of the wrapper. We decided to keep the same wrapper to extend Netscape 6. In fact, 
we have begun to test the first Netscape extension functionality with this wrapper. Later we 
realized that this wrapper would be a good one for the Netscape extension project too. It can 
manage the metadata with simple commands, which are easy to understand and may be 
extended in the future.  
 
For example, when the user wants to get a metadata record for a specific URL, an order like 
this one is transmitted to the wrapper:  
 

Message from Netscape: Get metadata record http://www.google.com 
 
And the wrapper will answer to Netscape, giving it another simple string where tokens can be 
easily found by special character sequences, like #@key: and #@value: 
 

Message to Netscape: Metadata record http://www.google.com #@key: test1 
#@value: test1 #@key: machine #@value: super #@key: truc #@value: muchejuh 
#@key: rtrytrytr #@value: ngjv 

 
A great advantage of the fact that we have chosen the same wrapper is that it will be easier to 
integrate Netscape into the Construct environment. Indeed, there is only one wrapper for two 
applications, and we can suppose that other extensions will be able to use it also. 



 15

Emacs &
 Netscape
Wrapper

Construct
Metadata
Service

Storage

Emacs

Extension

Netscape 6

Extension

TCP/IP

TCP/IP

Other
Application

Extension

TCP/IP

 
 
 
 



 16

4.2 Class diagram 
 

Connection

Core MetadataSwingInterface

ResultTable

NetscapeWrapper

1

1

1

1

0...1

1

1

1

1

0...+

 
 
4.2.1 NetscapeWrapper Class 
 
The NetscapeWrapper class is a simple class with the commands, which can be sent to the 
server as final static parameters. 
 
Here are the final static attributes, which can be used when calling the NetscapeWrapper class 
instance: 
 

GET_RECORD "Get metadata record" 
 
CREATE_RECORD "Create metadata record" 
 
UPDATE_RECORD "Update metadata record" 
 
DELETE_RECORD "Delete metadata record" 
 
GET_KEY "Get metadata key" 
 
ADD_KEY "Add metadata key" 
 
UPDATE_KEY "Update metadata key" 
 
DELETE_KEY ''Update metadata key'' 

 
4.2.2 Connection class 
 
The Connection class is the class, which knows parameters about the metadata server. The 
two main attributes are the hostname and the port number. This is the class that will make the 



 17

connection with the server and which will try to reconnect if there is a problem. Connections 
will be done using TCP/IP; two attributes of the class are socket descriptors. By default, 
connections will be established with the ''localhost'' address and on the port 16000, but there 
are different constructors, which allow to choose the ports at the instantiation instant. 
 
4.2.3 Metadata class 
 
The Metadata class represents metadata handled by the application. Normally it is a character 
string being used as key, associated with another one corresponding to the value of the 
metadata. 
 
We can imagine that in the future other data, like pictures or video sequences, could be used 
instead of characters. Normally, in this case, the metadata class would be the only class to 
change, the other classes deal with the data via the getMetadataValue() method, which will 
return an Object class derived object. 
 
4.2.4 SwingInterface class 
 
The SwingInterface class provides the methods used by the Swing interface – that is, by the 
standalone application. The java code should be usable with two types of interface, a XUL one 
and a Java Swing one. If the user wants to use the standalone application, the Swing interface 
will be used. In applet use situations, the XUL interface in the sidebar will be shown to the 
user. 
 
The SwingInterface class contains all the attributes relating to the design of the interface. It 
implements also the methods necessary to handle the actions of the user on an element of the 
interface, when he presses a button for example. 
 
4.2.5 ResultTable class 
 
The ResultTable class is an AbstractModelTable derived class, which is used by the Interface 
class to display data in a scrollable table. It has some methods, which are called when core 
hash table has been altered.  
 
4.2.6 Core class 
 
The Core class is the central class, the one which will join the interface part of the applet and 
the metadata server. It will control the Connection class, asking it to establish a connection at 
the beginning, giving it a new server address or port. The Core class will also instantiate the 
Connection and the Interface class. 
 
Attributes. After the first query to the server for a URL’s metadata, a hash table will be filled. 
This hash table enhances performance because the client has the results in memory. All the 
methods to consult the data will manipulate firstly the hash table. After that, if modifications 
have to be written on the server, a query will be sent to it. Therefore, in a simple consultation 
mode (read only), only one query will be done. 
 
Methods. Core class' methods can be divided into two parts 



 18

 
• Internal methods: these are private methods, which are used to establish the connection 

and deal with the server. 
 
• Interface methods: these methods, which are public, are presented to the Interface 

instance and to the LiveConnect protocol.  
 
Thanks to these methods, LiveConnect is able to make the applet connected with the browser, 
providing it queries data or document location for example. 
 
4.2.7 Communication between XUL and Java 
 
With Netscape, it is possible to communicate between Java and JavaScript by using 
LiveConnect. It is enabled by default in the browser. For LiveConnect to work, both Java and 
JavaScript must be enabled. This protocol lets us perform the following tasks: 
 
• Use JavaScript to access Java variables, methods, classes, and packages directly. 
 
• In JavaScript, a wrapper is an object of the target language data type that encloses an 

object of the source language. On the JavaScript side, a wrapper object is used to access 
methods and fields of the Java object; calling a method or accessing a property on the 
wrapper results in a call on the Java object. When a JavaScript object is sent to Java, the 
runtime engine creates a Java wrapper of type JSObject. There are only two restrictions if 
you want to use a Java method, the applet has to be loaded at the time of calling the Java 
method and this method must be public. We use the NAME attribute of the <applet> tag, for 
example, the format for code is: 

 
document.applets("theAppletName").theMethod(); 

 
This technique is use to transmit the URL of the web page to the applet and the metadata 
when the user has chosen an XUL interface. 
 
Use Java code to access JavaScript methods and properties. On the Java side, JavaScript 
objects are wrapped in an instance of the class Netscape.Javascript.JSObject and passed to 
Java. If we want to include JavaScript objects in Java, we must import this netscape.javascript 
package into our Java file. It contains the additional object model JSObject that can be used 
from within a Java applet to access JavaScript objects in a document. When a JSObject is 
sent from Java to JavaScript, the runtime engine unwraps it to its original JavaScript object 
type. The general format for code is: 
 

JSObject.objectname.method(); 
 
or 
 

JSObject.objectname.property(); 
 



 19

It provides the ability to transmit metadata from the server to the JavaScript document by using 
the Java applet. These metadata could be easily displayed thanks to the XUL interface in the 
sidebar. 
 
4.2.8 Installation procedure, XPI package 
 
A set of UI objects (including the description of its structure, appearance, behavior, and 
localizable strings) is called a package. Sample packages in the Communicator product 
include Navigator, Messenger, Preferences, Bookmarks and Composer. Packages can 
communicate with one another and may share functionality (which can be abstracted into a 
common package). Generally, a package is a Jar archive. 
 

 
 
A package can be added to an existing application, without modifying it in any way. It is also 
possible to use an installation procedure. This kind of package is called an XP Installer 
package (XPI). A JavaScript function provides the ability to trigger it from a web page. 



 20

5. User Manual 
 
The Construct metadata service functionality can be used in two different ways. It can be 
launched in the Netscape 6 sidebar or run as a standalone application. We shall see how to 
use these two interfaces, which are quite similar. 
 
5.1 The Netscape 6 interface 
 
5.1.1 Launch the metadata service 
 
The metadata services on the WWW have been included as a panel in the Netscape 6 'My 
Sidebar'. To view the sidebar, you have to select the 'My Sidebar' item in the 'view' menu. 
Then, it will appear on the left side of your browser. 
 

 
 
If you want to run the Metadata service, you just have to select the 'Metadata service' item in 
the 'Tabs' menu. Then it will automatically display the application interface in the 'My Sidebar'. 
 

 
 
The application will be include in a panel like all the other 'My Sidebar' functionality. 
 
You can see three different tabs (main, enlarged, preferences) on the top of this panel. They 
allow you to choose what kind of operation you want to execute. 



 21

 
5.1.2 The main panel 
 
The main panel is the default panel. It allows you to do all the needed operations on the 
metadata. It is separated into three different parts. 
 

 
 
5.1.2.1 The display section 
 
This section permits you to choose if you want to see new metadata each time you load a new 
web page. If you check the 'auto-update' button, it will be done automatically. Otherwise, you 
will have to use the refresh button to get metadata for the new web page. 
 
5.1.2.2 The metadata section 
 
This section shows you all keys and values of the web page. When there are too many keys, 
you can put your mouse over two scroll buttons at the top and bottom of the list and it will 
automatically show you the other data. 
 



 22

Add a key. If you want to add a key, you enter the name of the new key in the key field and 
press the add button. Then, it will switch to the enlarged panel where you will have to enter the 
value of your key and to confirm your operation. 
 
Update a key. A key can be updated by selecting it or by entering its name in the key field. 
Then, when you press the update button, you will see the value of this key in the enlarged 
panel and it will be possible to modify it. 
 
Delete one or more key(s). You can delete one or more keys by checking their select buttons 
and pressing the delete button. It is also possible to enter the name of the key you want to 
delete in the key field and then press delete. 
 
Find or enlarge the display of a key value. The main panel displays all the keys and values 
of a web page, so it could be difficult to find a key in the list or to read a value because of the 
size of the cells. If you select a key or enter its name and press the find button, then the key 
and its value will be displayed in the enlarged panel and it will be easy to read the value of this 
key. 
 
5.1.2.3 The current URL section 
 
The field of this section just reminds the user of the URL of the current metadata. If the 'auto-
update' button is checked, this URL will change when a new web page is loaded. 
 



 23

5.1.3 The enlarged panel 
 
The second panel has three parts. It allows you to do the same operations as the main panel. 
You can directly add or update a key if you enter its name and its value in the two fields key 
and value. You are also able to find the value of a key or delete it by giving its name. The URL 
of the key is displayed at the bottom of the interface like in the main panel. However, this URL 
will always be the same because it depends on the key and not on the current URL. 
 

 
 



 24

5.1.4 The preferences panel 
 
The third panel allows you to choose which metadata server you want to use. You just need to 
enter the address and the port number of this server into the two corresponding fields. It is also 
possible to restore the default parameters if you prefer to be connected to the default server. 
 

 
 



 25

5.2 The standalone application 
 
If you do not need to consult any web pages, you can run the Java applet as a standalone 
application. The interface is quite similar as the Netscape 6 metadata service sidebar. It still 
has three panels with the same functionality, but there are also some differences. 
 
5.2.1 The Metadata panel 
 
First of all, you have to enter the URL of the web page for which you want to consult the 
metadata. When you have filled in the field, press the 'update URL' button. Then the metadata 
and their values will appear as a list. 
 
It is possible to select one or more keys by checking their 'Selected' button and to delete them 
by pressing the ‘delete’ button. 
 
You can add a value by giving its name and value and pressing the 'add' button. If you want to 
update a key, it is the same method, a confirm box will just ask you if the update should be 
done. 
 
The value of a key could be found by filling in the name field and pressing the 'find' button. If 
this key is recorded in the database, the value will be displayed in the value field. 
 

 
 



 26

5.2.2 The enlarged data panel 
 
If the value of a key is very large, it is easier to read it in the 'enlarged data' panel. You can 
select the name of the key of your choice in a scroll menu. Then, the value of the selected key 
will automatically be displayed in a large field. This value can be changed and updated by 
pressing the 'update' button. 
 

 
 



 27

5.2.3 The preferences panel 
 
The third panel is exactly the same as the Netscape 6 one. You can choose which metadata 
server to use. You should fill in the address and the port number fields and press the 'apply' 
button. If you want to restore the default parameters in order to be connected to the default 
server, you just have to press the 'default' field. 
 

 



 28

6. Conclusion 
 
The Netscape 6 metadata project has been a success. The Construct metadata services are 
now available on the World Wide Web both as an integral part of Netscape 6 using an applet 
and as a standalone Java application. 
 
The Netscape 6 integration software has been developed in a general way that will allow 
additional Construct structure services to be made available on the World Wide Web in the 
future using the general code base developed in this project. 



 29

References 
 
1. Blackwood Project API. http://mozilla.org/projects/blackwood/java-util/api/index-all.html 
 
2. JavaScript Developer Central. http://developer.netscape.com/tech/javascript/ 
 
3. MySidebar's Developer's Guide. http://developer.netscape.com/docs/manuals/browser/ 

sidebar/index.html#creating 
 
4. Netscape Plugins Developer's guide. http://developer.netscape.com/docs/manuals/ 

communicator/plugin/index.htm 
 
5. XUL Reference. http://www.mozilla.org/xpfe/xulref/XUL_Reference.html 
 
6. XUL tutorial. http://www.xultutorial.com 
 
7. Sun Java Reference. http://java.sun.com 
 
8. JavaScript FAQ. http://developer.irt.org 
 
9. Java developer connection. http://developer.javasoft.com 


	Technical Report CSE-01-01
	Address
	Table of Contents
	1. Introduction
	2. Construct
	3. Analysis

	3.1 Needs
	3.2 Means
	
	3.2.1 How to extend Netscape 6 with Java

	4. Design
	5. User Manual
	
	
	
	The main panel is the default panel. It allows you to do all the needed operations on the metadata. It is separated into three different parts.




	6. Conclusion
	References


