
Spectrum™ Technology Platform
Version 8.0.0 SP3

Templates Guide

© 2013 Pitney Bowes Software Inc. All rights reserved. MapInfo and Group 1 Software are trademarks of Pitney
Bowes Software Inc. All other marks and trademarks are property of their respective holders.

USPS® Notices

Pitney Bowes Inc. holds a non-exclusive license to publish and sell ZIP + 4® databases on optical and magnetic
media. The following trademarks are owned by the United States Postal Service: CASS, CASS Certified, DPV,
eLOT, FASTforward, First-Class Mail, Intelligent Mail, LACSLink, NCOALink, PAVE, PLANET Code, Postal
Service, POSTNET, Post Office, RDI, SuiteLink , United States Postal Service, Standard Mail, United States
Post Office, USPS, ZIP Code, and ZIP + 4. This list is not exhaustive of the trademarks belonging to the Postal
Service.

Pitney Bowes Inc. is a non-exclusive licensee of USPS® for NCOALink® processing.

Prices for Pitney Bowes Software's products, options, and services are not established, controlled, or approved
by USPS® or United States Government. When utilizing RDI™ data to determine parcel-shipping costs, the
business decision on which parcel delivery company to use is not made by the USPS® or United States
Government.

Centrus Notices

Centrus Data Products contained on this media and used within Centrus applications are protected by various
trademarks and by one or more of the following copyrights:

© Copyright United States Postal Service. All rights reserved.

© 2011 TomTom. All rights reserved. TomTom and the TomTom logo are registered trademarks of TomTom
N.V.

© Copyright NAVTEQ. All rights reserved

© Copyright United States Census Bureau

© Copyright Nova Marketing Group, Inc.

Portions of this program are © Copyright 1993-2007 by Nova Marketing Group Inc. All Rights Reserved

© Copyright Canada Post Corporation

This CD-ROM contains data from a compilation in which Canada Post Corporation is the copyright owner.

© 2007 Claritas, Inc.

ICU Notices

Copyright © 1995-2011 International Business Machines Corporation and others.

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR
ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise
to promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder.

GeoNames Notices

The World Geocoding data set contains data licensed from the GeoNames Project (www.geonames.org)
provided under the Creative Commons Attribution License ("Attribution License") located at
http://creativecommons.org/licenses/by/3.0/legalcode. Your use of the GeoNames data (described in the
Spectrum™ Technology Platform User Manual) is governed by the terms of the Attribution License, and any
conflict between your agreement with Pitney Bowes Software, Inc. and the Attribution License will be resolved
in favor of the Attribution License solely as it relates to your use of the GeoNames data.

Pitney Bowes Software
Documentation Team
pbbidocs@pb.com

July 16, 2013

http://www.geonames.org
http://creativecommons.org/licenses/by/3.0/legalcode

Contents

Chapter 1: Introduction..7
What are Dataflow Templates?...8
Creating a Dataflow Using a Template..9
Running Dataflow Template Jobs..9
Running Dataflow Template Services..9

Chapter 2: Name Data Templates..11
Parsing Personal Names..12

Business Scenario...12
Solution..12

Standardizing Personal Names..13
Business Scenario...13
Solution..13

Identifying Members of a Household..15
Business Scenario...16
Solution..16
Alternate Solution...19

Determining if a Prospect is a Customer..22
Business Scenario...22
Solution..22

Chapter 3: Address Data Templates..27
Parsing Addresses..28

Business Scenario...28
Solution..28

Validating U.S. and Canadian Addresses...30
Business Scenario...30
Solution..31

Validating International Addresses...33
Business Scenario...33
Solution..33

Validating International Addresses with Candidates...34
Business Scenario...35
Solution..35

Chapter 4: Location Data Templates...37
Geocoding U.S. Addresses..38

Business Scenario...38
Solution..38

Determining Insurance Rating Territory..40
Business Scenario...40
Solution..41

Determining Tax Jurisdiction...42
Business Scenario...42
Solution..42

Determining Flood Risk..44
Business Scenario...45
Solution: FloodRiskDetailAnalysis...45
Alternative Solution: FloodRiskAnalysis...48

Chapter 5: Open Parser..49
Parsing Arabic Names..50

Business Scenario...50
Solution..50

Parsing Chinese Names..52
Business Scenario...53
Solution..53

Parsing E-mail Addresses..54
Business Scenario...55
Solution..55

Parsing Spanish and German Names...59
Business Scenario...59
Solution..59

Parsing U.S. Phone Numbers...62
Business Scenario...62
Solution..62

Spectrum™ Technology Platform 8.0.0 SP36

1Introduction

In this section:

• What are Dataflow Templates? .8
• Creating a Dataflow Using a Template9
• Running Dataflow Template Jobs .9
• Running Dataflow Template Services9

What are Dataflow Templates?
Dataflow templates illustrate ways in which you can use Spectrum™ Technology Platform and its modules
to meet your business needs. They show how particular modules solve various requirements, such as
parsing, standardizing, and validating names and addresses, geocoding addresses, and so on.

Dataflow templates are delivered with each module that you license. For instance, if you are licensed
for the Data Normalization Module, you receive the Standardizing Personal Names dataflow template.
If you are licensed for the Universal Addressing Module, you receive the Validating U.S. and Canadian
Addresses dataflow templates.

The supporting documentation for the dataflow templates is broken down into three chapters: Name
Data Quality, Address Data Quality, and Location Data Quality.

The dataflow templates and corresponding documentation are delivered with Spectrum™ Technology
Platform in the following modules and chapters:

Table 1: Dataflow Templates

Dataflow TemplateChapterModule

Parsing Personal NamesName Data QualityUniversal Name Module

Standardizing Personal NamesName Data QualityData Normalization Module

Identifying Members of a HouseholdName Data QualityAdvanced Matching Module

Determining if a Prospect is a CustomerName Data QualityAdvanced Matching Module

Parsing AddressesAddress Data QualityData Normalization Module

Validating U.S. and Canadian AddressesAddress Data QualityUniversal Addressing Module

Validating International AddressesAddress Data QualityAddress Now Module

Geocoding AddressesLocation Data QualityEnterprise Geocoding Module

Determining Tax JurisdictionLocation Data QualityEnterprise Tax Module

Determining Insurance Rating TerritoryLocation Data QualityLocation Intelligence Module

Depending on the purpose of each template, it may be delivered as a job with sample data or it may be
delivered as a service with no sample data. You can use dataflows in their original state and run those
that are delivered as jobs to see how they function. Alternatively, you can manipulate the dataflows by
changing input and output files or by bringing services into your own jobs and adding input and output
files.

Spectrum™ Technology Platform 8.0.0 SP38

What are Dataflow Templates?

These samples are intended as illustrations of various Spectrum™ Technology Platform features.
They are not intended to be complete solutions to your particular business environment.

Note:

Creating a Dataflow Using a Template
Dataflow templates are delivered with each module that you license. To create a dataflow using a
template,

• In Enterprise Designer go to File > New > Dataflow > From Template .
• Or, you can click the New icon and select New Dataflow From Template.

A list of templates available for the modules you have installed is displayed.

Running Dataflow Template Jobs
Follow the steps below to run a dataflow template job.

1. In Enterprise Designer, go to File > New > Dataflow > From Template. Alternatively, click the New
icon and select New Dataflow From Template.

2. Select the dataflow template job you want to work with.
3. If necessary, add to or modify the dataflow template job to include your own input and output files.
4. Click Run > Run Current Flow or click the Run button.

Running Dataflow Template Services
Follow the steps below to run a dataflow template service.

1. In Enterprise Designer, go to File > New > Dataflow > From Template. Alternatively, click the New
icon and select New Dataflow From Template.

2. Select the dataflow template service you want to work with.
3. If necessary, add to or modify the service to include your own input and output files.
4. Expose the service by selecting File > Expose/Unexpose and clicking Save.
5. Access the service in Management Console or Interactive Driver:
6. Open Management Console.
7. Under the Modules node, navigate to the service you exposed.

9Templates Guide

Chapter 1: Introduction

2Name Data Templates

In this section:

• Parsing Personal Names .12
• Standardizing Personal Names .13
• Identifying Members of a Household15
• Determining if a Prospect is a Customer22

Parsing Personal Names
This sample demonstrates how to take personal name data (for example "John P. Smith"), parse it into
first name, middle name, and last name parts, and add gender data.

Template name: ParsePersonalName.df

Sample input file name: CDQ_Core_test.csv

Modules required: Universal Name Module

Business Scenario
You work for an insurance company that wants to send out personalized quotes based on gender to
prospective customers. Your input data include name data as full names and you want to parse the
name data into First, Middle, and Last name fields. You also want to determine the gender of the
individuals in your input data.

Solution
The following dataflow provides a solution to the business scenario:

In this dataflow, data is read from a file and processed through the Name Parser stage. (Name Parser
is part of the Universal Naming Module.) For each name, Name Parser will do the following:

Read from File

This stage identifies the file name, location, and layout of the file that contains the names you want to
parse. The file contains both male and female names.

Name Parser

In this template, the Name Parser stage is named Parse Personal Name. Parse Personal Name stage
examines name fields and compares them to name data stored in the Spectrum™ Technology Platform
name database files. Based on the comparison, it parses the name data into First, Middle, and Last
name fields, assigns an entity type, and a gender to each name. It also uses pattern recognition in
addition to the data.

In this template the Parse Personal Name stage is configured as follows.

Spectrum™ Technology Platform 8.0.0 SP312

Parsing Personal Names

• Parse personal names is selected and Parse business names is cleared. When you select these
options, first names are evaluated for gender, order, and punctuation and no evaluation of business
names is performed.

• Gender Determination Source is set to default. For most cases, Default is the best setting for gender
determination because it covers a wide variety of names. However, if you are processing names from
a specific culture, select that culture. Selecting a specific culture helps ensure that the proper gender
is assigned to the names. For example, if you leave Default selected, then the name Jean will be
identified as a female name. However, if you select French, it will be identified as a male name.

• Order is set to natural. The name fields are ordered by Title, First Name, Middle Name, Last Name,
and Suffix.

• Retain periods is cleared. Any punctuation in the name data is not retained.

Write to File

The template contains one Write to File stage. In addition to the input fields, the output file contains the
FirstName, MiddleName, LastName, EntityType, GenderCode, and GenderDeterminationSource fields.

Standardizing Personal Names
This sample demonstrates how to take personal name data (for example "John P. Smith"), identify
common nicknames of the same name, and create a standard version of the name that can then be
used to consolidate redundant records. It also show how you can add Title of Respect data based on
Gender data.

Template name: StandardizePersonalName.df

Sample input file name: CDQ_Core_test.csv

Modules required: Universal Name Module and Data Normalization Module

Business Scenario
You work for a non-profit organization that wants to send out invitations for a gala event. Your input data
include name data as full names and you want to parse the name data into First, Middle, and Last name
fields and add a Title of Respect field to make your invitations more formal. You also want to replace
any nicknames in your name data to use a more formal variant of the name.

Solution
The following dataflow provides a solution to the business scenario:

13Templates Guide

Chapter 2: Name Data Templates

In this dataflow, data is read from a file and processed through the Name Parser on page 14, Transformer
on page 14, and Standardization on page 15 stages. (Name Parser is part of the Universal Naming
Module.) For each data row in the input file, this data flow will do the following:

Read from File

This stage identifies the file name, location, and layout of the file that contains the names you want to
parse. The file contains both male and female names.

Name Parser

In this template, the Name Parser stage is named Parse Personal Name. Parse Personal Name stage
examines name fields and compares them to name data stored in the Spectrum™ Technology Platform
name database files. Based on the comparison, it parses the name data into First, Middle, and Last
name fields, assigns an entity type, and a gender to each name. It also uses pattern recognition in
addition to the name data.

In this template the Parse Personal Name stage is configured as follows.

• Parse personal names is selected and Parse business names is cleared. When you select these
options, first names are evaluated for gender, order, and punctuation and no evaluation of business
names is performed.

• Gender Determination Source is set to default. For most cases, Default is the best setting for gender
determination because it covers a wide variety of names. However, if you are processing names from
a specific culture, select that culture. Selecting a specific culture helps ensure that the proper gender
is assigned to the names. For example, if you leave Default selected, then the name Jean will be
identified as a female name. However, if you select French, it will be identified as a male name.

• Order is set to natural. The name fields are ordered by Title, First Name, Middle Name, Last Name,
and Suffix.

• Retain periods is cleared. Any punctuation in the name data is not retained.

Transformer

In this template, the Transformer stage is named Assign Titles. Assign Titles stage uses a custom script
to search each row in the data stream output by the Parse Personal Name stage and assign a
TitleOfRespect value based on the GenderCode value.

Spectrum™ Technology Platform 8.0.0 SP314

Solution

The custom script is:
if (row.get('TitleOfRespect') == '')
{
if (row.get('GenderCode') == 'M')
row.set('TitleOfRespect', 'Mr')
if (row.get('GenderCode') == 'F')
row.set('TitleOfRespect', 'Ms')

Every time the Assign Titles stage encounters M in the GenderCode field it sets the value for
TitleOfRespect as Mr. Every time the Assign Titles stages encounters F in the GenderCode field it sets
the value of TitleOfRespect as Ms.

Standardization

In this template, the Standardization stage is named Standardize Nicknames. Standardize Nickname
stage looks up first names in the Nicknames.xml database and replaces any nicknames with the more
regular form of the name. For example, the name Tommy is replaced with Thomas.

Write to File

The template contains one Write to File stage. In addition to the input fields, the output file contains the
TitleOfRespect, FirstName, MiddleName, LastName, EntityType, GenderCode, and
GenderDeterminationSource fields.

Identifying Members of a Household
This sample demonstrates how to identify members of the same household by comparing information in the
Name and AddressLine1 field and creating an output file of household collections.

Template name: HouseholdRelationships.df

Sample input file name: CDQ_Core_test.csv

15Templates Guide

Chapter 2: Name Data Templates

Modules required: Advanced Matching Module, Data Normalization Module, and Universal Name Module

Business Scenario
As data steward for a new internet credit card company and you want to analyze your customer database
and find out which addresses occur multiple times and under what names so that you can minimize that
number of duplicate mailings and credit card offers sent to the same address.

Solution
The following dataflow provides a solution to the business scenario:

In this dataflow, data is read from a file and processed through the Name Parser on page 14, Transformer
on page 14, Standardization on page 15, Match Key Generator on page 17, and Intraflow Match on
page 18 stages. For each data row in the input file, this data flow will do the following:

Read from File

This stage identifies the file name, location, and layout of the file that contains the names you want to
parse. The file contains both male and female names.

Name Parser

In this template, the Name Parser stage is named Parse Personal Name. Parse Personal Name stage
examines name fields and compares them to name data stored in the Spectrum™ Technology Platform
name database files. Based on the comparison, it parses the name data into First, Middle, and Last
name fields, assigns an entity type, and a gender to each name. It also uses pattern recognition in
addition to the name data.

In this template the Parse Personal Name stage is configured as follows.

• Parse personal names is selected and Parse business names is cleared. When you select these
options, first names are evaluated for gender, order, and punctuation and no evaluation of business
names is performed.

• Gender Determination Source is set to default. For most cases, Default is the best setting for gender
determination because it covers a wide variety of names. However, if you are processing names from
a specific culture, select that culture. Selecting a specific culture helps ensure that the proper gender
is assigned to the names. For example, if you leave Default selected, then the name Jean will be
identified as a female name. However, if you select French, it will be identified as a male name.

• Order is set to natural. The name fields are ordered by Title, First Name, Middle Name, Last Name,
and Suffix.

Spectrum™ Technology Platform 8.0.0 SP316

Business Scenario

• Retain periods is cleared. Any punctuation in the name data is not retained.

Transformer

In this template, the Transformer stage is named Assign Titles. Assign Titles stage uses a custom script
to search each row in the data stream output by the Parse Personal Name stage and assign a
TitleOfRespect value based on the GenderCode value.

The custom script is:
if (row.get('TitleOfRespect') == '')
{
if (row.get('GenderCode') == 'M')
row.set('TitleOfRespect', 'Mr')
if (row.get('GenderCode') == 'F')
row.set('TitleOfRespect', 'Ms')

Every time the Assign Titles stage encounters M in the GenderCode field it sets the value for
TitleOfRespect as Mr. Every time the Assign Titles stages encounters F in the GenderCode field it sets
the value of TitleOfRespect as Ms.

Standardization

In this template, the Standardization stage is named Standardize Nicknames. Standardize Nickname
stage looks up first names in the Nicknames.xml database and replaces any nicknames with the more
regular form of the nickname. For example, the name Tommy is replaced with Thomas.

Match Key Generator

The Match Key Generator processes user-defined rules that consist of algorithms and input source fields
to generate the match key field. A match key is a non-unique key shared by like records that identify
records as potential duplicates. The match key is used to facilitate the matching process by only comparing

17Templates Guide

Chapter 2: Name Data Templates

records that contain the same match key. A match key is comprised of input fields. Each input field
specified has a selected algorithm that is performed on it. The result of each field is then concatenated
to create a single match key field.

In this template, two match key fields are defined: SubString (LastName (1:3)) and SubString (PostalCode
(1:5)).

For example, if the incoming address was:

FirstName - Fred

LastName - Mertz

PostalCode - 21114-1687

And the rules specified that:

LengthStart PositionInput Field

31LastName

51PostalCode

Then the key, based on the rules and the input data shown above, would be:

Mer21114

Intraflow Match

The Intraflow Match component locates matches between similar data records within a single input
stream. Matched records can also be qualified by using non-name/non-address information. The matching
engine allows you to create hierarchical rules based on any fields that have been defined or created in
other components.

A stream of records to be matched as well as settings that specify what fields should be compared, how
scores should be computed, and generally what constitutes a successful match.

In this template, you create a custom matching rule that compares LastName and AddressLine1. Select
the Generate data for analysis check box to generate data for the Intraflow Summary Report on page
19.

Here are some guidelines to follow when creating your matching hierarchy:

• A parent node must be given a unique name. It can not be a field.
• The child field must be a Spectrum™ Technology Platform data type field, that is, one available through

one or more components.
• All children under a parent must use the same logical operators. To combine connectors you must

first create intermediate parent nodes.
• Thresholds at the parent node could be higher than the threshold of the children.
• Parent nodes do not have to have a threshold.

Spectrum™ Technology Platform 8.0.0 SP318

Solution

Write to File

The template contains one Write to File stage that creates a text file that shows the addresses as a
collection of households.

Intraflow Summary Report

The template contains the Intraflow Match Summary Report. After you run the job, expand Reports in
the Execution Details window, and then click IntraflowMatchSummary.

The Intraflow Match Summary Report lists the statistics for the records processed and shows a bar chart
that graphically illustrates the record count and overall matching score.

Alternate Solution
Template name: HouseholdRelationshipsAnalysis.df

Sample input file name: CDQ_Core_test.csv

Modules required: Advanced Matching Module and Universal Name Module

The following dataflow provides a solution to the business scenario:

19Templates Guide

Chapter 2: Name Data Templates

In this dataflow, data is read from a file and processed through the Name Parser on page 14, Transformer
on page 14, Standardization on page 15, and Match Key Generator on page 17. Before the data is
sent through a matcher, it is split into two streams using a Broadcaster. Each stream is then sent through
an Intraflow Match stage. Each data stream includes identical copies of the processed data. Each Intraflow
Match stage uses different matching algorithm and generates Match Analysis data that you can use to
compare the lift/drop of various matches.

To use Match Analysis:

1. Run the dataflow template listed above.
2. From the Tools menu, select Match Analysis.
3. From Browse Match Results window, expand HouseholdRelationshipAnalysis, select Household

Match 1 and Household Match 2 from the Source list, and then click Add.
4. Select Household Match 1 in the Match Results List and click Compare. The Summary Results

display.
5. Click the Lift/Drop tab. The Lift/Drop chart displays.

This chart shows the differences between the duplicate and unique records generated for the different
match rules used.

6. Click the Match Rules tab. The match rules comparison displays.

Spectrum™ Technology Platform 8.0.0 SP320

Alternate Solution

From this tab you can see that the algorithm has been changed; Character Frequency is omitted and
Exact Match has been added.

7. Click Details.
8. Select Duplicate Collections from the show list and then click Refresh.
9. Expand each CollectionNumber to view the Suspect and Duplicate records for each duplicate

collection.

21Templates Guide

Chapter 2: Name Data Templates

10. Compare the collections in the Detail view to the output file created.

Determining if a Prospect is a Customer
This sample service demonstrates how to evaluate prospect data in an input file to customer data in a
customer database to determine if a prospect is a customer. In order to use this template, you will need
to follow the steps for creating a database as detailed in Candidate Finder on page 23 and the
Management Console documentation.

Template name: ProspectMatching.df

Sample input file name: N/A (this template is a service)

Modules required: Advanced Matching Module and Universal Name Module

Business Scenario
As a sales executive for an online sales company you want to determine if an online prospect is an
existing customer or a new customer.

Solution
The following dataflow service provides a solution to the business scenario:

In this dataflow, data is read from a file and processed through the Name Parser on page 23, Candidate
Finder on page 23, and Transactional Match on page 25 stages. For each data row in the input file,
this data flow will do the following:

Input

The selected input fields for this template are AddressLine1, City, Name, PostalCode, and StateProvince.
AddressLine1 and Name are the fields that are key to the dataflow processing in this template.

Spectrum™ Technology Platform 8.0.0 SP322

Determining if a Prospect is a Customer

Name Parser

In this template, the Name Parser stage is named Parse Personal Name. Parse Personal Name stage
examines name fields and compares them to name data stored in the Spectrum™ Technology Platform
name database files. Based on the comparison, it parses the name data into First, Middle, and Last
name fields, assigns an entity type, and a gender to each name. It also uses pattern recognition in
addition to the name data.

In this template the Parse Personal Name stage is configured as follows.

• Parse personal names is selected and Parse business names is cleared. When you select these
options, first names are evaluated for gender, order, and punctuation and no evaluation of business
names is performed.

• Gender Determination Source is set to default. For most cases, Default is the best setting for gender
determination because it covers a wide variety of names. However, if you are processing names from
a specific culture, select that culture. Selecting a specific culture helps ensure that the proper gender
is assigned to the names. For example, if you leave Default selected, then the name Jean will be
identified as a female name. However, if you select French, it will be identified as a male name.

• Order is set to natural. The name fields are ordered by Title, First Name, Middle Name, Last Name,
and Suffix.

• Retain periods is cleared. Any punctuation in the name data is not retained.

Candidate Finder

The Candidate Finder component is used in combination with the Transactional Match component.

The Candidate Finder component obtains the candidate records that will form the set of potential matches
that the Transactional Match component will evaluate. In addition, depending on the format of your data,
Candidate Finder may need to parse the name or address of the suspect record, the candidate records,
or both.

As part of configuring Candidate Finder, you select the database connection through which the specified
query will be executed. You can select any connection configured in Management Console. To connect
to a database not listed, configure a connection to that database in Management Console, and then

23Templates Guide

Chapter 2: Name Data Templates

close and reopen CandidateFinder to refresh the connection list. For more information on creating
database connections, see the Management Console documentation.

To define the SQL query you can type any valid SQL select statement into the text box on the Candidate
Finder Options view. For example, assume you have a table in your database called Customer_Table
that has the following columns:

Customer_Table

Cust_Name

Cust_Address

Cust_City

Cust_State

Cust_Zip

You can type any valid SQL select, however, Select * is not valid in this control.Note:

To retrieve all the rows from the database, you might construct a query similar to the following:
select Cust_Name, Cust_Address, Cust_City, Cust_State, Cust_Zip from
Customer_Table;

However, it is unlikely that you would want to match your transaction against all the rows in the
database.To return only relevant candidate records, you will want to add a WHERE clause using variable
substitution.Variable substitution refers to a special notation that you will use to cause the Candidate
Selection engine to replace the variable with the actual data from your suspect record.

To use variable substitution, enclose the field name in braces preceded by a dollar sign using the form
${FieldName}. For example, the following query will return only those records that have a value in
Cust_Zip that matches the value in PostalCode on the suspect record.
select Cust_Name, Cust_Address, Cust_City, Cust_State,Cust_Zip
from Customer_Table
where Cust_Zip = ${PostalCode};

Next you need to map database columns to stage fields if the column names in your database do not
match the Component Field names exactly. If they do match they will be automatically mapped to the
corresponding Stage Fields. You will need to use the Selected Fields (columns from the database) to
map to the Stage Fields (field names defined in the dataflow).

Again consider the Customer_Table from the above example:

Customer_Table

Cust_Name

Cust_Address

Spectrum™ Technology Platform 8.0.0 SP324

Solution

Cust_City

Cust_State

Cust_Zip

When you retrieve these records from the database, you need to map the column names to the field
names that will be used by the Transactional Match component and other components in your dataflow.For
example, Cust_Address might be mapped to AddressLine1, and Cust_Zip would be mapped to
PostalCode.

1. Select the drop-down list under Selected Fields in the candidate Finder Options view. Then, select
the database column Cust_Zip.

2. Select the drop-down list under Stage Fields. Then, select the field to which you want to map.

For example, if you want to map Cust_Zip to Postal Code, first select Cust_Zip under Selected fields
and then select PostalCode on the corresponding Stage Field row.

In addition to mapping fields as described above, you can use special notation in your SQL query to
perform the mapping.To do this, you will enter the name of the Stage Field, enclosed in braces, after
the column name in your query.When you do this, the selected fields will be automatically mapped to
the corresponding stage fields.

An example of this using the query from the previous example follows:
select Cust_Name {Name}, Cust_Address {AddressLine1},
Cust_City {City}, Cust_State {StateProvince},
Cust_Zip {PostalCode}
from Customer
where Cust_Zip = ${PostalCode};

Transactional Match

The Transactional Match component is used in combination with the Candidate Finder component.

The Transactional Match component allows you to match suspect records against potential candidate
records that are returned from the Candidate Finder Stage.

Transactional Match uses matching rules to compare the suspect record to all candidate records with
the same candidate group number (assigned in Candidate Finder) to identify duplicates. If the candidate
record is a duplicate, it is assigned a collection number, the match record type is labeled a Duplicate,
and the record is then written out. Any unmatched candidates in the group are assigned a collection
number of 0, labeled as Unique and then written out as well.

In this template, you create a custom matching rule that compares LastName and AddressLine1.

Here are some guidelines to follow when creating your matching hierarchy:

• A parent node must be given a unique name. It can not be a field.
• The child field must be a Spectrum™ Technology Platform data type field, that is, one available through

one or more components.
• All children under a parent must use the same logical operators. To combine connectors you must

first create intermediate parent nodes.

25Templates Guide

Chapter 2: Name Data Templates

• Thresholds at the parent node could be higher than the threshold of the children.
• Parent nodes do not have to have a threshold.

Output

As a service, this template sends all available fields to the output. You can limit the output based on your
needs.

Spectrum™ Technology Platform 8.0.0 SP326

Solution

3Address Data Templates

In this section:

• Parsing Addresses .28
• Validating U.S. and Canadian Addresses30
• Validating International Addresses33
• Validating International Addresses with Candidates . . .34

Parsing Addresses
This template illustrates how to break up a U.S. address into its individual components using a regular
expression. The primary focus of this template is to show how you can use regular expressions in the
Data Normalization Module's Advanced Transformer stage.

This template is intended only to demonstrate how you can use Advanced Transformer to parse
an address. It does not provide address parsing for all types of addresses.

Note:

Template name: ParsingAddresses

Sample input file name: N/A (this template is a service)

Modules required: Data Normalization Module

Business Scenario
You have a list of addresses that have had the spaces removed from the first address line. For example,
the address "12 N MAIN ST" is in the form "12NMAINST." You need to correct the problem by inserting
spaces in the appropriate places.

Solution
To solve this problem, you must first parse the address into its individual components, then reassemble
the parts, adding spaces between them. The following dataflow provides a solution to the business
scenario:

You could also use the Universal Addressing Module to parse addresses. However, using the
Data Normalization Module's Advanced Transformer stage allows you to control the parsing.
This template is designed to show you how regular expressions can be used to parse addresses.

Note:

In this dataflow, the first address line of the address is sent to the Advanced Transformer. The Advanced
Transformer uses a regular expression to parse the elements of the address into individual fields. These
fields are then sent to the Transformer stage which concatenates the fields into a new AddressLine1
field and sends it to the output.

Each stage in this template is described below.

Input

The input is set up to accept only one field: AddressLine1. This is the first line of the address and typically
contains a building number, street name, directionals (for example, N, S, E, and W) and a street suffix.
Note that there are limitations to the types of address data that will work with this template. For more
information, see the description of the Advanced Transformer stage below.

Spectrum™ Technology Platform 8.0.0 SP328

Parsing Addresses

Advanced Transformer

This stage parses the address into the following fields:

• HouseNumber
• Predirectional
• StreetName
• Suffix

To accomplish this, the stage's parsing rules are defined using regular expressions. Regular expressions
are strings that describe the format of a string that you want to parse. To understand this stage, a
knowledge of regular expressions is required. There are several sources on the Internet with information
on regular expressions.

There are two rules used for parsing: Extract from AddressLine1 using Regular Expression ([0-9]+)[
]?((?i)(EAST| and Extract from StreetName using regular Expression (?i)=|AVE|ST|AVENUE|.

The first rule parses the input into HouseNumber, Predirectional, and StreetName fields. The stage
recognizes the following predirectionals:

• EAST
• WEST
• NORTH
• SOUTH
• E
• W
• N
• S
• NW
• SW
• NE
• SW
• No predirectional

The StreetName field produced by the first rule is used by the second rule to identify the street suffix.
The rule recognizes the following suffixes:

• AVE
• ST
• AVENUE
• STREET
• CT
• COURT
• RD
• ROAD
• LN
• LANE
• DR
• DRIVE

29Templates Guide

Chapter 3: Address Data Templates

• No suffix

You can modify the regular expression to include additional suffixes.

Note that if you have an address whose street name happens to end with the same letters as a suffix,
and there is no suffix, this stage will parse the last letters of the street into the suffix field. For example,
the address 123ELOCUST would be parsed as follows:

• HouseNumber—123
• Predirectional—E
• StreetName—LOCU
• Suffix—ST

Transformer

This stage makes all the output fields uppercase for consistency. Since you can specify input addresses
in any case, this field makes the output casing for all records the same.

Output

This stage specifies the fields to return as output from this service. The following fields are returned:

• HouseNumber
• Predirectional
• StreetName
• Suffix

Validating U.S. and Canadian Addresses
This template standardizes U.S. and Canadian addresses. U.S. addresses are standardized to conform
to United States Postal Service (USPS) addressing standards as defined by the USPS Coding Accuracy
Support System (CASS). Addresses that are standardized according to CASS regulations have a greatly
improved deliverability rate and can qualify for postal discounts. Canadian addresses are standardized
according to Canada Post standards.

Template name: ValidateUSAndCanadianAddresses

Sample input file name: CanadianAndUSAddresses.csv

Modules required: Universal Addressing Module

Business Scenario
You work for a financial services firm that sends critical customer communications, such as statements,
privacy notices, and proxy notifications, to customers via the USPS. You want to take advantage of
postal discounts, and as a first step you need to validate that the address for each customer is a
deliverable address and that the address conforms to the conventions required by CASS.

Spectrum™ Technology Platform 8.0.0 SP330

Validating U.S. and Canadian Addresses

The address data is in line sequential format. You need to read the data from this file. Validated addresses
will be written to a line sequential file; addresses that cannot be validated will be written to a separate
file for further research.

Solution
The following dataflow provides a solution to the business scenario:

In this dataflow, data is read from a file and processed through the ValidateAddress stage.
(ValidateAddress is part of the Universal Addressing Module.) For each address, ValidateAddress will
do one of the following:

• Verify that the address is correct.
• Modify the address so that it is correct (for example, adding the ZIP + 4 code if it is missing).
• If the address cannot be validated or modified to be correct, then the address is formatted to the correct

layout and returned as a "failed" address.

A conditional router then sends the address to one of two locations, depending on whether or not
ValidateAddress was able to return a valid address or not. If ValidateAddress was able to either validate
the address or modify it to be a valid address, then the successfully validated address is routed to the
Write Validated stage, which writes the address back to the source database, thus updating the source
database with the standardized and validated address data. If ValidateAddress was not able to return a
valid address, then the "failed" address is routed to the Write Failed stage and written to a file that contains
all the failed address.

Each stage in this template is described in detail below.

Read from File

This stage identifies the file name, location, and layout of the file that contains the addresses you want
to validate. The file contains both U.S. and Canadian addresses.

ValidateAddress

The ValidateAddress stage examines addresses and compares them to address data from the appropriate
postal authority. In the case of U.S. addresses, ValidateAddress uses data from the USPS to validate
the address. It corrects the address if possible so that it contains the correct information, and formats it
according to the standards of the postal authority.

In this template the ValidateAddress stage is configured as follows.

On the Output Data Options tab:

31Templates Guide

Chapter 3: Address Data Templates

• Include matched address elements is selected. When you select this option, each part of the address,
such as house number, street name, street suffix, directionals, and so on, is returned in a separate
field.

• Return normalized data when no match is found is selected. This will cause ValidateAddress to
include failed addresses in the output and apply formatting standards to addresses that it cannot
validate, resulting in addresses that are at least in the correct format even if they could not be validated.
If you do not select this option, ValidateAddress will not return any address data for failed addresses.
Since this template creates a flat file that contains failed addresses, this option must be selected.

• Return street name alias is selected. This option will use a street's alias instead of the "base" street
name. A street alias is an alternate name for a street and typically applies only to a specific range of
addresses on the street. If you do not allow street aliases in the output then the street's "base" name
will appear in the output regardless of whether or not there is an alias for the street. The base name
is the name that applies to the entire street.

On the Default Options tab, all the options are left at their default settings:

On the U.S. Address Options tab, the options are set to a CASS Certified configuration. (This is done
by simply clicking the Enable CASS button, which sets all the options to their appropriate settings.)

Click the Configure CASS 3553 button. The window that appears prompts you for information that is
needed to complete the USPS CASS 3553 form. USPS Form 3553 summarizes a mailing and contains
information about who the mailer is. This form must accompany a mailing when it is dropped off at a
USPS facility. ValidateAddress always produces USPS Form 3553 when it runs in CASS CertifiedÂ™

mode. The information you enter in this window will appear on the USPS CASS 3553 form.

Since this template is intended to process an address list that contains only U.S. addresses, Canadian
address processing and International address processing is disabled.

The U.S. Barcode Options tab contains settings for the Intelligent Mail Barcode. This is a barcode that
can be printed on a mailpiece to facilitate mail tracking and delivery. Since you are not producing a
mailing in this scenario, you do not need to modify any of the options on this tab.

Conditional Router

The output from the ValidateAddress stage will be either a valid, deliverable address or a "failed" address.
To separate the validated addresses from the ones that couldn't be validated, the template contains a
conditional router to route the address to the appropriate output file.

The Conditional Router looks at output fields from the preceding stage and routs records based on the
values in the field. The output field name that is used in the template is called Status. The Status field
contains an "F" if the address was not validated, and is null if it was validated. So, the Conditional Router
stage will need to look at the Status field of each address returned from ValidateAddress and route those
with a status of "F" to the flat file and those that do not have a status of "F" to the database.

To see how this is set up, double-click the Conditional Router stage then click the small button for the
first port in the Condition/Expression column. The first port represents the condition that indicates a
successful match and the second port represents failed records. You can view the condition setup for
each port by clicking the small button the right of each port's setting.

Spectrum™ Technology Platform 8.0.0 SP332

Solution

The Expression Editor window appears. The Field field lists all the output fields from ValidateAddress.

Write to File

The template contains two Write to File stages: one writes validated addresses to a file, the other writes
failed addresses to another file.

Validating International Addresses
This template uses the Address Now Module to validate addresses. You can validate U.S. and international
addresses with the Address Now Module, but the module's strength is international addresses. Likewise,
you can validate international addresses with the Universal Addressing Module, but if you have an
extensive list of international addresses, consider using the Address Now module for enhanced
international address coverage.

• Template dataflow file name: AddressNow_ValidateAddresses
• Sample input file name: N/A (this template is a service)
• Modules required: Address Now Module

Business Scenario
Your company has many customers in Europe and South America. You need to validate these addresses
so that customer communications are delivered quickly and reliably. You want to provide real-time access
to the address validation processing, so you need to set up a Spectrum™ Technology Platform service
to perform the address validation.

Solution
The following dataflow provides a solution to the business scenario:

33Templates Guide

Chapter 3: Address Data Templates

In this dataflow, data is entered through a call to the service and processed through the Validate Global
Address stage. (Validate Global Address is part of the Address Now Module.) For each address, Validate
Global Address will do one of the following:

• Verify that the address is correct.
• Modify the address so that it is correct (for example, adding the postal code if it is missing).
• If the address cannot be validated or modified to be correct, then the address elements are formatted

using the appropriate postal standards and returned as a "failed" address.

Each stage in this template dataflow is described in detail below.

Input

This stage defines the input fields for the service. The input can be up to eight address lines, city,
state/province, postal code, firm name, and country.

Validate Global Address

Validate Global Address provides enhanced address standardization and validation for addresses outside
the U.S. and Canada. Validate Global Address can also validate addresses in the U.S. and Canada but
its strength is validation of addresses in other countries. The Validate Global Address stage examines
addresses and compares them to address data from the appropriate postal authority. It corrects the
address if possible so that it contains the correct information, and formats it according to the standards
of the postal authority.

In this template the Validate Global Address options are set to their default values, with the exception
of Return standardized data when no match is found, which is enabled. This will cause Validate
Global Address to include failed addresses in the output. If you do not select this option, Validate Global
Address will not some address elements for failed addresses.

Output

The Output stage defines which fields the service should return. You can use the output stage to limit
the output to only those fields that are useful to your particular situation. In the template, all the fields
are enabled.

Validating International Addresses with Candidates
This template uses the Address Now Module to validate addresses and return candidate addresses
when there are multiple possible matches for a given input address. You can validate U.S. and international
addresses with the Address Now Module, but the module's strength is international addresses. Likewise,
you can validate international addresses with the Universal Addressing Module, but if you have an
extensive list of international addresses, consider using the Address Now module for enhanced
international address coverage.

• Template dataflow file name: AddressNow_ValidateAddressWithCandidates
• Sample input file name: N/A (this template is a service)
• Modules required: Address Now Module

Spectrum™ Technology Platform 8.0.0 SP334

Validating International Addresses with Candidates

Business Scenario
Your company has many customers in South America and Australia. You need to allow business users
to validate addresses as they are entered into your system. If the business user enters an address that
cannot be positively matched to a single address, you want to provide a list of candidate addresses for
the user to choose from. Since you want to provide real-time access to the address validation processing,
you need to set up a Spectrum™ Technology Platform service to perform the address validation.

Solution
The following dataflow provides a solution to the business scenario:

In this dataflow, data is entered through a call to the service and processed through the Transformer
stage which creates passthrough fields necessary to preserve the original address data as it moves
through the dataflow. The address then moves to the Validate Global Address stage. This stage, which
is part of the Address Now Module, will do one of the following:

• Verify that the address is correct.
• Modify the address so that it is correct (for example, adding the postal code if it is missing).
• If the address cannot be validated or modified to be correct, then the address elements are formatted

using the appropriate postal standards and returned as a "failed" address.

The Conditional Router sends addresses that failed to the Get Global Candidate Addresses stage. This
stage returns a list of candidate addresses which is sent to the Stream Combiner and returned to the
user.

Each stage in this template dataflow is described in detail below.

Input

This stage defines the input fields for the service. The input can be up to eight address lines, city,
state/province, postal code, firm name, and country.

Transformer

This stage copies the input address fields to new passthrough fields. This step is necessary to preserve
the original input address which will be needed to look up candidate addresses in Get Global Candidate
Addresses. This passthrough data is only needed if Validate Global Address cannot validate the address
because multiple candidates are identified.

Validate Global Address

Validate Global Address provides enhanced address standardization and validation for addresses outside
the U.S. and Canada. Validate Global Address can also validate addresses in the U.S. and Canada but

35Templates Guide

Chapter 3: Address Data Templates

its strength is validation of addresses in other countries. The Validate Global Address stage examines
addresses and compares them to address data from the appropriate postal authority. It corrects the
address if possible so that it contains the correct information, and formats it according to the standards
of the postal authority.

In this template the Validate Global Address options are set to their default values, with the exception
of Return standardized data when no match is found, which is enabled. This will cause Validate
Global Address to include failed addresses in the output. If you do not select this option, Validate Global
Address will not return some address elements for failed addresses.

Conditional Router

This stage identifies addresses that failed or that do not have a confidence of 100 and routes them toward
the Get Global Candidate Addresses stage. Addresses that were positively validated are returned to the
user via the Output stage.

Transformer 2

This stage reverts the address back to the original input address using the passthrough fields to overwrite
the output from Validate Global Address. This step is necessary because Get Global Candidate Addresses
needs the original input address to perform the lookup.

Get Global Candidate Addresses

This stage returns a list of candidate addresses for the addresses that Validate Global Address was not
able to validate.

Stream Combiner

This stage allows both validated address and candidate lists to be routed to the output.

Output

The Output stage defines which fields the service should return. You can use the output stage to limit
the output to only those fields that are useful to your particular situation. In the template, all the fields
are enabled except the passthrough fields, which are used internally within the dataflow but are not
useful to the business user.

Spectrum™ Technology Platform 8.0.0 SP336

Solution

4Location Data Templates

In this section:

• Geocoding U.S. Addresses .38
• Determining Insurance Rating Territory40
• Determining Tax Jurisdiction .42
• Determining Flood Risk .44

Geocoding U.S. Addresses
"Geocoding" is the process of determining the geographical coordinates (latitude/longitude) for a location.
Geocoding can be the first step to a more detailed spatial analysis of a given address. Once you know
the coordinates for an address, you can match it against a variety of geographic data to learn about the
location. For example, you can determine what school district the address resides in, whether or not the
address is in a hurricane-prone area, demographic information, and many other characteristics of a
location.

This template illustrates one way of using Spectrum™ Technology Platform for geocoding.

Template name: GeocodeAddress

Sample input file name: USAddresses.csv

Modules required: Enterprise Geocoding Module

Business Scenario
You work for a credit card company that has partnered with certain retailers to provide targeted advertising
on cardholders' monthly statements (both printed and online statements). Part of the targeted message
will include the address of the retailer's closest store.

Your database of cardholder data includes the cardholder's address. The address data has already been
standardized and validated, so you are confident in the quality of the address data. While this address
data is useful for mail delivery, it is not useful for determining a retailer's closest store. For that, you need
to know the coordinates of the address.

In this example, you will use Spectrum™ Technology Platform to enhance your database of cardholder
data to include the latitude/longitude coordinates of the address. This data will then be used by the billing
application to include targeted advertisements in cardholders' statements, including the location of the
closest store.

Solution
The following dataflow provides a solution to the business scenario:

This dataflow reads a file that contains the addresses you want to geocode. The addresses are U.S.
addresses only. The Enterprise Geocoding Module's GeocodeUSAddress component determines the
address' latitude and longitude and writes the successfully geocoded addresses to one file, and the failed
addresses to another file.

Each of the stages is described below.

Spectrum™ Technology Platform 8.0.0 SP338

Geocoding U.S. Addresses

Read from File

The first stage reads the input data from a file. It identifies the file layout and location.

GeocodeUSAddress

GeocodeUSAddress takes an address and assigns the latitude and longitude to the address.

To use GeocodeUSAddress, you must specify a database in the Database field. If you do not
specify a database the dataflow will not run successfully. You set up databases using the Database

Note:

Resources tool in Management Console and give the database a name of your choosing. This
is the name you select in the Database field. For more information, see the Spectrum™

Technology Platform User's Guide.

While GeocodeUSAddress can validate addresses, this template is set up on the assumption that the
incoming address data has already been validated, for example through the Universal Addressing
Module's ValidateAddress component. So, several address validation options disabled.

The other option to note is Match mode. This option controls how closely an input address must match
a valid address in the postal data used to validate addresses. In this template, the match mode is set to
Close since we are fairly confident in the quality of the address data. If we were less confident, we would
use the default setting of Relax.

The other geocoding options are left at their default values.

On the Output Format tab, all options are left at their default values.

On the Output Data tab, the Latitude/Longitude option is selected so that we get the latitude/longitude
in the output. By default, we will also get the address and geocode in the output. We do not specify any
extra output fields because the selected options will return all the fields we need to determine the
latitude/longitude location of the address.

Conditional Router

The output from the GeocodeUSAddress stage will be either a valid address with latitude/longitude
assigned, or a "failed" address for which GeocodeUSAddress could not determine a latitude/longitude.
To separate the geocoded addresses from the ones that couldn't be geocoded, the template contains
a conditional router to route the address to the appropriate output file.

The Conditional Router looks at output fields from the preceding stage and routes records based on the
values in the field. The output field name that is used in the template is called Status. The Status field
contains an "F" if the address was not validated, and is null if it was validated. So, the Conditional Router
stage will need to look at the Status field of each address returned from ValidateAddress and route those
with status of "F'" to the flat file and those with status that is not "F'" to the database.

To see how this is set up, double-click the Conditional Router stage then click the small button for the
first port in the Condition/Expression column. The first port represents the condition that indicates a
successful match and the second port represents failed records. You can view the condition setup for
each port by clicking the small button the right of each port's setting.

39Templates Guide

Chapter 4: Location Data Templates

The Expression Editor window appears. The Field field lists all the output fields from GeocodeUSAddress.

Write Successful

This stage writes the addresses and their newly-assigned latitude/longitude and geocode to a file.

Write Failed

This stage writes the addresses that could not be geocoded to a separate file.

Determining Insurance Rating Territory
Insurance companies are expected to accurately assign the right territory to every policy in order to
calculate the correct premium and avoid market-conduct fines. Territories can be geographically complex
and quite often do not follow ZIP Code boundaries. This frequently leads to territory assignment errors.
Assignment errors mean that incorrect premiums are being quoted or charged, which creates both
customer retention problems (when overcharging occurs), and premium revenue loss (when undercharging
occurs).

This template illustrates one way of using Spectrum™ Technology Platform to improve the accuracy of
rating territory assignment.

Template name: DetermineInsuranceRatingTerritory

Sample input file name: LatLong.csv

Modules required: Location Intelligence Module

Business Scenario
You work for an insurance company. A recent audit has revealed that rating territories for homeowner
policies are being incorrectly assigned at an unacceptably high rate. Your company has undertaken an
initiative to analyze existing policies and correct the territory assignments where necessary.

In order to determine the insurance rating territory, you need to have a valid address and the
latitude/longitude coordinates of that address. You have an existing process in place that corrects and
validates addresses and determines the latitude and longitude. You need to take the latitude/longitude
and compare it against your insurance rating territories.

Spectrum™ Technology Platform 8.0.0 SP340

Determining Insurance Rating Territory

Solution
The following dataflow provides a solution to the business scenario:

This dataflow reads file that contains addresses and policy numbers. The Location Intelligence Module's
Point In Polygon stage determines which insurance rating territory each location resides in. Point In
Polygon identifies the insurance rating territory based on a user-defined boundary file that contains the
locations of your company's territories. Finally, the address, latitude/longitude, policy number, and rating
territory information are written to a file.

Each of the stages is described below.

Read from File

The first stage reads the file that contains the addresses you want to match to insurance rating territories.
In addition, the input file contains the policy number associated with each address. This policy number
is assigned to the InputKeyValue field, which is for user-defined data.

Point In Polygon

The Point In Polygon stage is where the insurance rating territory is assigned. In order for Point In Polygon
to identify the insurance rating territory, you must supply a user-defined boundary file. A user-defined
boundary file is a file that describes the location of your territories. This file must be in a specific format.
Once you have created this file, you must define it as a database on your system using the Management
Console. For additional information, see the Spectrum™ Technology Platform User's Guide.

Once you have created and defined your boundary file of territories, you select the file in the Database
field. This indicates which areas you want Point In Polygon to match against.

If you do not select a database in the Database field the dataflow will not run successfully.Note:

Since the latitude/longitude format from GeocodeUSAddress is in decimal format, the Coordinate Format
field is set to Decimal.

Write Territory Assignment

This stage defines the location and layout of the addresses with their geocode, policy number (the
InputKeyValue field), and insurance rating territory information. Note that you will have to specify the
specific fields to include based on your territory data file.

41Templates Guide

Chapter 4: Location Data Templates

Determining Tax Jurisdiction
Identifying which tax jurisdictions apply to a given location can be a time-consuming and complex process.
A location may have multiple tax jurisdictions, including not only federal, state, and municipality
jurisdictions, but also special tax districts, property tax districts, and others.

This template illustrates one way of using Spectrum™ Technology Platform to determine tax jurisdictions
for an address.

Template name: DetermineTaxJurisdictions

Sample input file name: USAddresses.csv

Modules required: Universal Addressing Module, Enterprise Tax Module

Business Scenario
You work for a telecommunications company. Your company needs to ensure that it is including the
correct taxes on customers' bills. This is a very complex problem because there can be multiple tax
jurisdictions that apply to a customer's location. For example, there may be a federal, state, city and
special district tax on the services you provide.

Your database of customer data contains each customer's address. However, the address data is of
questionable quality, so you want to first standardize and validate the address data, since a quality
address is the first step in determining tax jurisdictions.

Your company uses tax software from Taxware® to determine tax rates and you need to interface with
the Taxware system to identify rates.

In this example, you will use Spectrum™ Technology Platform to first standardize and validate your
address data. Then, you will use the validated address data to determine the applicable tax jurisdictions
for the customer. The tax jurisdiction will be represented by a code that you can provide to your Taxware
system to determine the tax rates that apply.

This template is set up assuming that you are using Taxware software to determine the tax rate
based on the jurisdiction returned by Spectrum™ Technology Platform. Assign GeoTAX Info can

Note:

also return the codes necessary to determine tax rates using Vertex® software. Alternatively, you
could use your own company's custom tables to determine tax rates. If you take this approach,
modify this template to return the following fields: StateCode County.Code GNISCode
SPDn.DistrictCode To enable these fields, check the Census check box on the Assign GeoTAX
Info Output Data tab and also select Special Purpose Districts in the Tax district field
on the same tab. For more information on these fields, see the Spectrum™ Technology Platform
User's Guide.

Solution
The following dataflow provides a solution to the business scenario:

Spectrum™ Technology Platform 8.0.0 SP342

Determining Tax Jurisdiction

In this dataflow, the address data is read from a file. The address data is validated through the Universal
Addressing Module's ValidateAddress component. This validation process is critical to ensure accurate
tax jurisdiction assignments. After the address is validated, it is sent to the Enterprise Tax Module's
Assign GeoTAX Info component, where the tax jurisdictions are assigned. Finally, the address, along
with the appropriate tax district information, is sent to the output file.

Each of these stages is described below.

Read from File

The input stage defines the file and fields that the job will take as input. Along with address data, the
input file contains a field called InputKeyValue, which can contain any value you choose, such as an
account number.

ValidateAddress

In this template the ValidateAddress stage is configured as follows.

On the Output Data Options tab:

• Include a standard address is selected. When you select this option, ValidateAddress returns 1 to
4 lines of address data plus city, state, postal code, firm name, and urbanization name information.
Each address line represents an actual line of the address as it would appear on an envelope.If
ValidateAddress could validate the address, the address lines contain the standardized address. When
addresses are standardized, punctuation is removed, directionals are abbreviated, street suffixes are
abbreviated, and address elements are corrected. If ValidateAddress could not validate the address,
the address lines contain the address as it appeared in the input ("pass through" data). Non-validated
addresses are always included as pass through data in the address line fields even if you uncheck
this option.

• Return street name alias is selected. This option will use a street's alias instead of the "base" street
name. A street alias is an alternate name for a street and typically applies only to a specific range of
addresses on the street. If you do not allow street aliases in the output then the street's "base" name
will appear in the output regardless of whether or not there is an alias for the street. The base name
is the name that applies to the entire street.

• Return normalized data when no match is found is selected. This option returns a formatted address
when an address cannot be validated. If this option is not selected, the output address fields are blank
when ValidateAddress cannot validate the address.

On the Default Options tab, the Dual address logic is set to Street Match. This setting will ensure
that addresses that contain both street and PO Box/Rural Route/Highway Contract information. If this
option is not selected, it is possible that ValidateAddress could return an address that consists only of
a PO Box/Rural Route/Highway Contract number and city, state, and ZIP Code. This type of address,
while appropriate for mail delivery, is not the optimal form to use when determining tax jurisdictions.

All other options are left at their default settings:

On the U.S. Address Options tab, U.S. address processing is enabled but none of the processing
options are enabled. This provides basic address validation and the quickest performance.

Since this template is intended to process an address list that contains only U.S. addresses, Canadian
address processing and International address processing is disabled.

43Templates Guide

Chapter 4: Location Data Templates

The U.S. Barcode Options tab contains settings for the Intelligent Mail Barcode. This is a barcode that
can be printed on a mailpiece to facilitate mail tracking and delivery. Since you are not producing a
mailing in this scenario, all of the barcoding options are disabled.

Assign GeoTAX Info

Assign GeoTAX Info takes the validated addresses and determines which tax jurisdictions the address
resides it. This template uses the default options, with the exception of some options on the Output
Data tab. On this tab, Tax Jurisdiction is selected in the Include Data list. This returns the GeoTAXKey
field in the output. This is the key that contains the Taxware code that you will use to look up the actual
tax rate in your Taxware system. The related option GeoTAX key is set to Taxware. This indicates that
Assign GeoTAX Info will use the Taxware key; if you were using Vertex® software to determine tax rates,
you would specify Vertex in this field.

Output

The output stage returns the validated address as well as the GeoTAXKey field, which contains the tax
jurisdiction code to use with Taxware software to determine the tax rate.

Determining Flood Risk
Spectrum™ Technology Platform comes with two templates that illustrate how to determine the relationship
of an address to known flood zones. The two templates are FloodRiskAnalysis and
FloodRiskDetailAnalysis. Both these templates take an address or intersection and determine how prone
the location is to flooding. The difference is in the method of comparison. FloodRiskAnalysis locates all
the nearby flood zones then performs a union operation on those flood zones, which creates a new
geometry that encompasses the flood zones. The address is then compared to this single geometry and
an overlap percentage is returned. FloodRiskDetailAnalysis, however, compares the address to all nearby
flood zones individually, returning separate overlap percentages for each nearby flood zone and allowing
for a more detailed analysis of risk.

Both FloodRiskAnalysis and FloodRiskDetailAnalysis use two other dataflows, which are also provided
as dataflow templates:

• GeoConfidenceSurface—This template, which is exposed as a service, creates the geoconfidence
surface that can be used for further analysis. The geocofidence surface is a buffered point or polygon
that represents the area in the immediate vicinity of the address or intersection. The size of the shape
is configurable. This template uses a buffer distance of 1 mile.

• CreatePointsConvexHull—This is a subflow that is used by the GeoConfidenceSurface template.
You should not need to make any changes to this subflow.

Template names: FloodRiskAnalysis, FloodRiskDetailAnalysis

Sample input file name: None (template is a service dataflow)

Modules required: GeoConfidence Module, Enterprise Geocoding Module, Location Intelligence Module

Spectrum™ Technology Platform 8.0.0 SP344

Determining Flood Risk

Business Scenario
You work for an insurance company as an underwriter for homeowner policies. As part of the underwriting
process you need to know how likely it is that a home will experience flooding, which means you need
to determine how close the home is to a flood zone. You know the address of home and from that you
need to determine the flood risk.

Solution: FloodRiskDetailAnalysis
FloodRiskDetailAnalysis compares the location to each nearby flood zone individually, returning separate
overlap percentages for each nearby flood zone. The following dataflow provides a solution to the
business scenario:

In this dataflow, the input address is first geocoded, meaning the latitude/longitude coordinates of the
address are determined. Then the location is converted to a geoconfidence shape, which represents
the area around the address. Next the nearest flood zones are located. Then the location's shape is
compared to each flood zone shape and the percentage overlap is determined. Finally any records with
a percentage of less than one are discarded, leaving the more significant results to be returned. Using
these percentages you could then determine the degree of flood risk associated with the location.

Each stage is described in detail below.

Input

The input to this dataflow is an address. Since this dataflow is a service, the first stage is an input stage.
Note that there is an ID field which is used to preserve the order of the records in the output. The records
are sorted in ascending order based on the value in the ID field. So for example, the first record could
have an ID of 1, the second and ID of 2, and so forth.

Geocode US Address

This stage determines the latitude/longitude coordinates of the address and returns the information
needed to construct a geoconfidence surface. A geoconfidence surface is a buffered point, line, or
polygon, that encompasses the immediate area around the location. (Note that the Geo Confidence
check box on the Output Data tab must be checked in order for Geocode US Address to return this
information.) The type of shape returned as the geoconfidence surface depends on the precision of the
match:

• Point—If the geocoder was able to match the address using point data, then Geocode US Address
returns a point. A point is also returned if an intersection is entered instead of an address.

45Templates Guide

Chapter 4: Location Data Templates

• Street segment—If the geocoder matched the address to a street segment, then Geocode US Address
returns an array of points representing the street segment. This array of points is converted to a line
later in the dataflow.

• ZIP + 4—If the geocoder matched the address to a ZIP + 4 area, then Geocode US Address returns
an array of points representing all the street segments in the ZIP + 4. This array of points is converted
to a polygon later in the dataflow.

• ZIP + 2—If the geocoder matched the address to a ZIP + 2, then Geocode US Address returns an
array of points representing the centroids of the ZIP + 4 areas contained in the ZIP + 2. (Note that a
ZIP + 2 area is made up of multiple ZIP + 4 areas.) This array of points is converted to a polygon later
in the dataflow.

• 5-digit ZIP Code centroid—If the geocoder matched the address to a 5-digit ZIP Code, then the
centroid (center point) of the area is returned. The ZIP Code polygon is determined later in the dataflow.

GeoConfidenceSurface

The GeoConfidenceSurface stage creates a shape that represents the area immediately surrounding
the address or intersection. The GeoConfidenceSurface stage is a service. To view it, right-click the
stage and select Edit This Dataflow.

The first stage in this dataflow after input is Centroid. This stage converts the point represented by the
GeoConfidenceLatitude and GeoConfidenceLongitude values to a point geometry. This is necessary
because the operations performed later in the subflow require the point to be represented as a geometry
datatype as opposed latitude/longitude strings.

The RouterGeoConfidence stage then directs each record to the appropriate path based on the type
geoconfidence shape determined by Geocode US Address:

• Street segments and ZIP + 4—Records geocoded to a street segment or ZIP + 4 level (those with a
value of either ADDRESS or POSTAL3 in the GeoConfidenceCode field) are routed to the first port.
This path takes them to a series of stages. The first, CreateStreetLine, converts the array of points
to a line. The lines are then passed to the Union stage which combines the points into a single line
geometry. The Buffer stage then creates a buffer of one mile around the streets. Because the street
segment or ZIP + 4 street network is an array of points, these three stages are wrapped in a Process
List area, which tells the stages to iterate through each set of points in the array. Finally, the Extract
Geometry stage converts the data type to a geometry.

Spectrum™ Technology Platform 8.0.0 SP346

Solution: FloodRiskDetailAnalysis

• ZIP + 2—Records geocoded to a ZIP + 2 level (those with a value of POSTAL2 in the
GeoConfidenceCode field) are routed to the second port. This path sends the records to another
subflow, CreatePointsConvexHull. In this subflow, the CreatePoint stage converts the array of
latitude/longitude points to point geometries. Then the Union stage combines all the points into a
single geometry. The ConvexHull stage then performs a convex hull operation, which is like stretching
a rubber band around the shapes to produce a new shape. Click the Help button in this stage for an
illustration. Finally, the Extract Geometry stage converts the data type to a geometry.

• 5-digit ZIP Code—Records geocoded to a ZIP Code centroid (records with a value of POSTAL1 in
the GeoConfidenceCode field) are routed to the third port. This path takes the record to the ZIP stage,
which looks up the ZIP code's shape in the 5-digit ZIP spatial database. This database is included as
part of the GeoConfidence Module.

To use this dataflow you must first specify a database in the ZIP stage. To do this, install the
database, then define a database resource for the database in the Management Console. For

Note:

instructions, see the Spectrum™ Technology Platform User's Guide. Then select the database
resource in the Spatial database field.

• Point—Records that were geocoded using point data (those with a value of POINT int he
GeoConfidenceCode field) are routed to the fourth port. In this path, the record goes to the POINT
stage which creates a buffer of 1 mile around the point.

• Intersection—Records that were geocoded to intersections (those with a value of (INTERSECTION)
in the GeoConfidenceCode field) are routed to the fifth port. In this path the record goes to the
INTERSECTION stage which creates a buffer of 1 mile around the point.

Find Nearest

The Find Nearest stage locates the closest flood plains to the geoconfidence surface. Before running
this dataflow you must specify a spatial database containing the flood plain data. To do this, first define
the database resource in Management Console, then select the database resource in the Spatial
database field. For instructions on defining a database resource, see the Spectrum™ Technology Platform
User's Guide.

The Find Nearest stage is configured to search up to 1 mile for nearby flood plains, and will return up to
50 flood plains. (You can reduce this if you want to limit the number of nearby flood plains returned.)

Intersection

The intersection stage compares the geoconfidence surface with the flood planes and determines the
percentage of the geoconfidence surface that overlaps with each flood plain. For example if the
geoconfidence surface is the yellow circle and the flood plain is the rectangle, the overlapping area would
be:

47Templates Guide

Chapter 4: Location Data Templates

The percentage returned would be the percentage of the circle represented by the shape shown under
"Output".

Filter Overlap

The Filter Overlap stage removes records where there is an overlap of less than 1%. This can be modified
as needed to filter out those intersections that are not significant enough to warrant your attention.

Output

The Output stage returns a variety of information, including the address, percentage of the geoconfidence
surface that overlaps with each flood plain, the number of nearby flood plains, the latitude/longitude of
the address, and more.

Alternative Solution: FloodRiskAnalysis
FloodRiskAnalysis differs from FloodRiskDetailAnalysis in that a single overlap percentage is determined by
merging all nearby flood zones into a single geometry using a union operation, then comparing the location to
that single geometry.

This dataflow is similar to FloodRiskDetailAnalysis but has some important differences:

• There are two paths in this dataflow, one for determining the geoconfidence shape and one creating a shape
that encompasses all nearby flood plains.

• There is a Flood Union stage that combines all nearby flood zones into a single geometry by performing a
spatial union operation. This is necessary because the dataflow later performs an intersection operation
comparing the address or intersection's geoconfidence surface with a geometry representing all the nearby
flood plains.

• There is a Record Combiner takes the geoconfidence surface and the polygon representing the nearby
flood plains and combines them so that each record now contains the address, a buffered point or polygon
representing the area around the address, and a polygon representing the nearby flood plains.

Spectrum™ Technology Platform 8.0.0 SP348

Alternative Solution: FloodRiskAnalysis

5Open Parser

In this section:

• Parsing Arabic Names .50
• Parsing Chinese Names .52
• Parsing E-mail Addresses .54
• Parsing Spanish and German Names59
• Parsing U.S. Phone Numbers .62

Parsing Arabic Names
This template demonstrates how to parse westernized Arabic names into component parts. The parsing rule
separates each token in the Name field and copies each token to five fields: Kunya, Ism, Laqab, Nasab,
Nisba. These output fields represent the five parts of an Arabic name and are described in the business
scenario.

Template name: ParseArabicNames.df

Sample input file name: ArabicNames.csv

Sample output file name: ParseArabicNames-Output.csv

Modules required: Data Normalization Module

Business Scenario
You work for a bank that wants to better understand the Arabic naming system in an effort to improve
customer service with Arabic-speaking customers. You have had complaints from customers whose
billing information does not list the customer's name accurately. In an effort to improve customer intimacy,
the Marketing group you work in wants to better address Arabic-speaking customers through marketing
campaigns and telephone support.

In order to understand the Arabic naming system, you search for and find these resources on the internet
that explain the Arabic naming system:

• en.wikipedia.org/wiki/Arabic_names
• heraldry.sca.org/laurel/names/arabic-naming2.htm

Arabic names are based on a naming system that includes these name parts: Ism, Kunya, Nasab, Laqab,
and Nisba.

• The ism is the main name, or personal name, of an Arab person.
• Often, a kunya referring to the person's first-born son is used as a substitute for the ism.
• The nasab is a patronymic or series of patronymics. It indicates the person's heritage by the word ibn

or bin, which means son, and bint, which means daughter.
• The laqab is intended as a description of the person. For example, al-Rashid means the righteous or

the rightly-guided and al-Jamil means beautiful.
• The nisba describes a person's occupation, geographic home area, or descent (tribe, family, and so

on). It will follow a family through several generations. The nisba, among the components of the Arabic
name, perhaps most closely resembles the Western surname. For example, al-Filistin means the
Palestinian.

Solution
The following dataflow provides a solution to the business scenario:

Spectrum™ Technology Platform 8.0.0 SP350

Parsing Arabic Names

http://en.wikipedia.org/wiki/Arabic_names
http://heraldry.sca.org/laurel/names/arabic-naming2.htm

In this dataflow, data is read from a file and processed through the Open Parser stage. For each data
row in the input file, this dataflow will do the following:

Read from File

This stage identifies the file name, location, and layout of the file that contains the names you want to
parse. The file contains both male and female names.

Open Parser

This stage defines whether to use a culture-specific domain grammar created in the Domain Editor or
to define a domain-independent grammar. A culture-specific parsing grammar that you create in the
Domain Editor is a validated parsing grammar that is associated with a culture and a domain. A
domain-independent parsing grammar that you create in Open Parser is a validated parsing grammar
that is not associated with a culture and domain. For more information about the two types of parsing
grammars, see the Spectrum™ Technology Platform User's Guide.

In this template, the parsing grammar is defined as a domain-independent grammar.

The Open Parser stage contains a parsing grammar that defines the following commands and expressions:

• %Tokenize is set to the space character (\s). This means that Open Parser will use the space
character to separate the input field into tokens. For example, Abu Mohammed al-Rahim ibn Salamah
contains five tokens: Abu, Mohammed, al-Rahim, ibn and Salamah.

• %InputField is set to parse input data from the Name field.
• %OutputFields is set to copy parsed data into five fields: Kunya, Ism, Laqab, Nasab, and Nisba.
• The <root> expression defines the pattern for Arabic names:
• Zero or one occurrence of Kunya
• Exactly one or two occurrences of Ism
• Zero or one occurrence of Laqab
• Zero or one occurrence of Nasab
• Zero or more occurrences of Nisba

The rule variables that define the domain must use the same names as the output fields defined in the
required OutputFields command.

The parsing grammar uses a combination of regular expressions and expression quantifiers to build a
pattern for Arabic names. The parsing grammar uses these special characters:

• The "?" character means that a regular expression can occur zero or one time.
• The "*" character means that a regular expression can occur zero or more times
• The ";" character means end of a rule.

51Templates Guide

Chapter 5: Open Parser

Use the Commands tab to explore the meaning of the other special symbols you can use in parsing
grammars by hovering the mouse over the description.

By default, quantifiers are greedy. Greedy means that the expression accepts as many tokens as possible,
while still permitting a successful match. You can override this behavior by appending a '?' for reluctant
matching or '+' for possessive matching. Reluctant matching means that the expression accepts as few
tokens as possible, while still permitting a successful match. Possessive matching means that the
expression accepts as many tokens as possible, even if doing so prevents a match.

To test the parsing grammar, click the Preview tab. Type the names shown below in the Name field and
then click Preview.

You can also type other valid and invalid names to see how the input data is parsed.

You can use the Trace feature to see a graphical representation of either the final parsing results or to
step through the parsing events. Click the link in the Trace column to see the Trace Details for the data
row.

Write to File

The template contains one Write to File stage. In addition to the input field, the output file contains the
Kunya, Ism, Laqab, Nasab, and Nisba fields.

For complete information about Open Parser, the Domain Editor, and the parsing grammar reference,
see Open Parser in the Data Normalization Module help or in the Spectrum™ Technology Platform User's
Guide.

Parsing Chinese Names
This template demonstrates how to parse Chinese names into component parts. The parsing rule
separates each token in the Name field and copies each token to two fields: LastName and FirstName.

Template name: ParseChineseNames.df

Sample input file name: ChineseNames.csv

Sample output file name: ParseChineseNames-Output.csv

Modules required: Data Normalization Module

Spectrum™ Technology Platform 8.0.0 SP352

Parsing Chinese Names

Business Scenario
You work for a financial service company that wants to explore if it is feasible to include the Chinese
characters for its Chinese-speaking customers on various correspondence.

In order to understand the Chinese naming system, you search for and find this resource on the internet,
which explains how Chinese names are formed:

en.wikipedia.org/wiki/Chinese_names

Solution
The following dataflow provides a solution to the business scenario:

In this dataflow, data is read from a file and processed through the Open Parser stage. For each data
row in the input file, this data flow will do the following:

Read from File

This stage identifies the file name, location, and layout of the file that contains the names you want to
parse. The file contains both male and female names.

Open Parser

This stage defines whether to use a culture-specific domain grammar created in the Domain Editor or
to define a domain-independent grammar. A culture-specific parsing grammar that you create in the
Domain Editor is a validated parsing grammar that is associated with a culture and a domain. A
domain-independent parsing grammar that you create in Open Parser is a validated parsing grammar
that is not associated with a culture and domain. For more information about the two types of parsing
grammars, see the Spectrum™ Technology Platform User's Guide.

In this template, the parsing grammar is defined as a domain-independent grammar.

The Open Parser stage contains a parsing grammar that defines the following commands and expressions:

• %Tokenize is set to None. When Tokenize is set to None, the parsing grammar rule must include
any spaces or other token separators within its rule definition.

• %InputField is set to parse input data from the Name field.
• %OutputFields is set to copy parsed data into two fields: LastName and FirstName.

The <root> expression defines the pattern for Chinese names:

• One occurrence of LastName
• One to three occurrences of FirstName

53Templates Guide

Chapter 5: Open Parser

http://en.wikipedia.org/wiki/Chinese_names

The rule variables that define the domain must use the same names as the output fields defined in the
required OutputFields command.

The CJKCharacter rule variable defines the character pattern for Chinese/ Japanese/Korean (CJK).
The character pattern is defined so as to only use characters that are letters.The rule is:
<CJKCharacter> = @RegEx("([\p{InCJKUnifiedIdeographs}&&\p{L}])");

• The regular expression \p{InX} is used to indicate a Unicode block for a certain culture, in which X
is the culture. In this instance the culture is CJKUnifiedIdeographs.

• In regular expressions, a character class is a set of characters that you want to match. For example,
[aeiou] is the character class containing only vowels. Character classes may appear within other
character classes, and may be composed by the union operator (implicit) and the intersection operator
(&&). The union operator denotes a class that contains every character that is in at least one of its
operand classes. The intersection operator denotes a class that contains every character that overlaps
the intersected Unicode blocks.

• The regular expression \p{L} is used to indicate the Unicode block that includes only letters.

To test the parsing grammar, click the Preview tab. Type the names shown below in the Name field and
then click Preview.

You can also type other valid and invalid names to see how the input data is parsed.

You can use the Trace feature to see a graphical representation of either the final parsing results or to
step through the parsing events. Click the link in the Trace column to see the Trace Details for the data
row.

Write to File

The template contains one Write to File stage. In addition to the input field, the output file contains the
LastName, and FirstName fields.

For complete information about Open Parser and the Domain Editor, see Open Parser in the Data
Normalization Module help or in the Spectrum™ Technology Platform User's Guide.

Parsing E-mail Addresses
This template demonstrates how to parse e-mail addresses into component parts. The parsing rule
separates each token in the Email field and copies each token to three fields: Local-Part, DomainName,
and DomainExtension. Local-Part represents the domain name part of the e-mail address, DomainName
represents the domain name of the e-mail address, and DomainExtension represents the domain

Spectrum™ Technology Platform 8.0.0 SP354

Parsing E-mail Addresses

extension of the e-mail address. For example, in pb.com, "pb" is the domain name and "com" is the
domain extension.

The internet is a great source of public domain information that can aid you in your open parsing tasks.
In this example, e-mail formatting information was obtained from various internet resources and was
then imported into Table Management to create a table of domain values. The domain extension task
that you will perform in this template activity demonstrates the usefulness of this method.

This template also demonstrates how to effectively use table data that you load into Table Management
to perform table look-ups as part of your parsing tasks.

Template name: ParseEmail.df

Sample input file name: Email_Test.csv, Email_Domains.txt

Sample output file name: Email_Test_Output.csv

Modules required: Data Normalization Module

Business Scenario
You work for an insurance company that wants to do its first e-mail marketing campaign. Your database
contains e-mail addresses of your customers and you have been asked to find a way to make sure that
those e-mail addresses are in a valid SMTP format.

Solution
Before you create this dataflow, you will need to load a table of valid domain names extensions in Table
Management so that you can look up domain name extensions as part of the validation process.

The following dataflow provides a solution to the business scenario:

In this dataflow, data is read from a file and processed through the Open Parser stage. For each data
row in the input file, this dataflow will do the following:

Create a Domain Extension Table

The first task is to create an Open Parser table in Table Management that you can use to check if the
domain extensions in your e-mail addresses are valid.

1. From the Tools menu, select Table Management.
2. In the Type list, select Open Parser.
3. Click New.
4. In the Add User Defined Table dialog box, type EmailDomains in the Table Name field, make

sure that None is selected in the Copy from list, and then click OK.
5. With EmailDomains displayed in the Name list, click Import.

55Templates Guide

Chapter 5: Open Parser

6. In the Import dialog box, click Browse and locate the source file for the table. The default location
is: <drive>:\Program Files\Pitney
Bowes\Spectrum\server\modules\coretemplates\data\ Email_Domains.txt. Table
Management displays a preview of the terms contained in the import file.

7. Click OK. Table Management imports the source files and displays a list of internet domain extensions.
8. Click Close. The EmailDomains table is created. Now create the dataflow using the ParseEmail

template.

Read from File

This stage identifies the file name, location, and layout of the file that contains the eÂmail addresses
you want to parse.

Open Parser

The Open Parser stage parsing grammar defines the following commands and expressions:

• %Tokenize is set to None. When Tokenize is set to None, the parsing grammar rule must include
any spaces or other token separators within its rule definition.

• %InputField is set to parse input data from the Email_Address field.
• %OutputFields is set to copy parsed data into three fields: Local-Part, DomainName, and

DomainExtension.
• The root expression defines the pattern of tokens being parsed:

<root> = <Local-Part>"@"<DomainName>"."<DomainExtension>;

The rule variables that define the domain must use the same names as the output fields defined in the
required OutputFields command.

• The remainder of the parsing grammar defines each of the rule variables as expressions.

<Local-Part> = (<alphanum> ".")* <alphanum> | (<alphanum> "_")* <alphanum>
;
<DomainName> = (<alphanum> ".")? <alphanum>;
<DomainExtension> = @Table("EmailDomains")* "."? @Table("EmailDomains");
<alphanum>=@RegEx("[A-Za-z0-9]+");

The <Local-Part> variable is defined as a string of text that contains the <alphanum> variable, the
period character, and another <alphanum> variable.

The <alphanum> variable definition is a regular expression that means any string of characters from A
to Z, a to a, and 0-9. The <alphanum> variable is used throughout this parsing grammar and is defined
once on the last line of the parsing grammar.

The parsing grammar uses a combination of regular expressions and literal characters to build a pattern
for e-mail addresses. Any characters in double quotes in this parsing grammar are literal characters, the
name of a table used for lookup, or a regular expression. The parsing grammar uses these special
characters:

• The "+" character means that a regular expression can occur one or more times.
• The "?" character means that a regular expression can occur zero or one time.
• The "|" character means that the variable has an OR condition.
• The ";" character means end of a rule.

Spectrum™ Technology Platform 8.0.0 SP356

Solution

Use the Commands tab to explore the meaning of the other special symbols you can use in parsing
grammars by hovering the mouse over the description.

To test the parsing grammar, click the Preview tab. Type the e-mail addresses shown below in the Email
Address field and then click Preview.

You can also type other e-mail addresses to see how the input data is parsed.

You can also use the Trace feature to see a graphical representation of either the final parsing results
or to step through the parsing events. Click the link in the Trace column to see the Trace Details for the
data row.

Trace Details shows a matching result. Compare the tokens matched for each expression in the parsing
grammar.

57Templates Guide

Chapter 5: Open Parser

You can also use Trace to view non-matching results. The following graphic shows a non- matching
result. Compare the tokens matched for each expression in the parsing grammar. The reason that this
input data (Abc.example.com) did not match is because it did not contain all of the required tokens to
match—there is no @ character separating the Local- Part token and the Domain tokens.

Spectrum™ Technology Platform 8.0.0 SP358

Solution

Write to File

The template contains one Write to File stage. In addition to the input field, the output file contains the
Local-Part, DomainName, DomainExtension, IsParsed, and ParserScore fields.

For complete information about Open Parser, the Domain Editor, and the parsing grammar reference,
see Open Parser in the Data Normalization Module help or in the Spectrum™ Technology Platform User's
Guide.

Parsing Spanish and German Names
This template demonstrates how to parse mixed-culture names, such as Spanish and German names,
into component parts. The parsing rule separates each token in the Name field and copies each token
to the fields defined in the Personal and Business Names parsing grammar. For more information about
this parsing grammar, select Tools > Open Parser Domain Editor and then select the Personal and
Business Names domain and either the German (de) or Spanish (es) cultures.

This template also applies gender codes to personal names in using table data contained in Table
Management. For more information about Table Management, select Tools > Table Management.

Template name: ParseSpanish&GermanNames.df

Sample input file name: MixedNames.csv

Sample output file name: ParseSpanishGermanNames-BusinessNames-Output.csv and
ParseSpanishGermanNames-PersonalNames-Output.csv

Tables: Base and Enhanced

Modules required: Data Normalization Module

Business Scenario
You work for a pharmaceuticals company based in Brussels that has consolidated its Germany and
Spain operations. Your company wants to implement a mixed-culture database containing name data
and it is your job to analyze the variations in names between the two cultures.

Solution
The following dataflow provides a solution to the business scenario:

59Templates Guide

Chapter 5: Open Parser

In this dataflow, data is read from a file and processed through the Open Parser stage. For each data
row in the input file, this data flow will do the following:

Read from File

This stage identifies the file name, location, and layout of the file that contains the names you want to
parse. The file contains both male and female names and includes CultureCode information for each
name. The CultureCode information designates the input names as either German (de) or Spanish (es).

Open Parser

This stage defines whether to use a culture-specific domain grammar created in the Domain Editor or
to define a domain-independent grammar. A culture-specific parsing grammar that you create in the
Domain Editor is a validated parsing grammar that is associated with a culture and a domain. A
domain-independent parsing grammar that you create in Open Parser is a validated parsing grammar
that is not associated with a culture and domain. For more information about the two types of parsing
grammars, see the Spectrum™ Technology Platform User's Guide.

In this template, the option is set to use a culture-specific domain grammar.

The Open Parser option is set to use the Personal and Business Names domain and the default culture
is Spanish. Input data that does not contain a culture code will use the default culture.

To test this culture-specific domain grammar, click the Preview tab and then type the names shown in
the Write to File on page 61 output and then click Preview. You can also type other valid and invalid
names to see how the input data is parsed.

You can also use the Trace feature to see a graphical representation of either the final parsing results
or to step through the parsing events. Click the link in the Trace column to see the Trace Details for the
data row.

Conditional Router

This stage routes the input so that personal names are routed to the Gender Codes stage and business
names are routed to the Business Names stage.

Spectrum™ Technology Platform 8.0.0 SP360

Solution

Table Lookup

Double-click this stage on the canvas and then click Modify to display the table lookup rule options.

The Categorize option uses the Source value as a key and copies the corresponding value from the
table entry into the field selected in the Destination list. In this template, Complete field is selected and
Source is set to use the FirstName field. Table Lookup treats the entire field as one string and flags the
record if the string as a whole can be categorized.

The Destination is set to the GenderCode field and uses the lookup terms contained in the Gender
Codes table to perform the categorization of male and female names. If a term in the input data is not
found, Table Lookup assigns a value of U, which means unknown. To better understand how this works,
select Tools > Table Management and select the Gender Codes table.

Write to File

The template contains one Write to File stage. In addition to the input field, the personal names output
file contains the Name, TitleOfRespect, FirstName, MiddleName, LastName, PaternalLastName,
MaternalLastName, MaturitySuffix, GenderCode, CultureUsed, and ParserScore fields.

The business names output file contains the Name, FirmName, FirmSuffix, CulureUsed, and
ParserScore fields.

The personal names output is as follows:

The business names output is as follows:

For complete information about Open Parser, the Domain Editor, and the parsing grammar reference,
see Open Parser in the Data Normalization Module help or in the Spectrum™ Technology Platform User's
Guide.

61Templates Guide

Chapter 5: Open Parser

Parsing U.S. Phone Numbers
This template demonstrates how to parse U.S. phone numbers into component parts. The parsing rule
separates each token in the PhoneNumber field and copies each token to four fields: CountryCode,
AreaCode, Exchange, and Number.

Template name: ParseUSPhoneNumbers.df

Sample input file name: PhoneNumbers.csv

Sample output file name: ParsePhoneNumbers-Output.csv

Modules required: Data Normalization Module

Business Scenario
You work for a wireless provider and have been assigned a project to analyze incoming phone number
data for a growing region of your business.

Solution
The following dataflow provides a solution to the business scenario:

In this dataflow, data is read from a file and processed through the Open Parser stage. For each data
row in the input file, this data flow will do the following:

Read from File

This stage identifies the file name, location, and layout of the file that contains the phone numbers you
want to parse.

Open Parser

This stage defines whether to use a culture-specific domain grammar created in the Domain Editor or
to define a domain-independent grammar. A culture-specific parsing grammar that you create in the
Domain Editor is a validated parsing grammar that is associated with a culture and a domain. A
domain-independent parsing grammar that you create in Open Parser is a validated parsing grammar
that is not associated with a culture and domain. For more information about the two types of parsing
grammars, see the Spectrum™ Technology Platform User's Guide.

In this template, the parsing grammar is defined as a domain-independent grammar.

The Open Parser stage contains a parsing grammar that defines the following commands and expressions:

Spectrum™ Technology Platform 8.0.0 SP362

Parsing U.S. Phone Numbers

• %Tokenize is set to None. When Tokenize is set to None, the parsing grammar rule must include
any spaces or other token separators within its rule definition.

• %InputField is set to parse input data from the PhoneNumber field.
• %OutputFields is set to separate parsed data into four fields: CountryCode, AreaCode, Exchange,

and Number.
• The <root> expression defines pattern of tokens being parsed and includes OR statements (|), such

that a valid phone number is:
• CountryCode, AreaCode, Exchange, and Number OR
• AreaCode, Exchange, and Number OR
• Exchange and Number

The parsing grammar uses a combination of regular expressions and literal characters to build a pattern
for phone numbers. Any characters in double quotes in this parsing grammar are literal characters or a
regular expression.

The plus character (+) used in this <root> command is defined as a literal character because it is
encapsulated in quotes. You can use single or double quotes to indicate a literal character. If the plus
character is used without quotes, it means that the expression it follows can occur one or more times.

The phone number domain rules are defined to match the following character patterns:

• Zero or one occurrence of a "+" character.
• The CountryCode rule, which is a single digit between 0-9.
• Zero or one occurrence of an open parentheses or a hyphen or a space character. Two of these

characters occurring in sequence results in a non-match, or in other words, an invalid phone number.
• The AreaCode rule, which is a sequence of exactly three digits between 0-9.
• Zero or one occurrence of an open parentheses or a hyphen or a space character. Two of these

characters occurring in sequence results in a non-match, or in other words, an invalid phone number.
• The Exchange rule, which is a sequence of exactly three digits between 0-9.
• Zero or one occurrence of an open parentheses or a hyphen or a space character. Two of these

characters occurring in sequence results in a non-match, or in other words, an invalid phone number.
• The Number rule, which is a sequence of exactly four digits between 0-9.

The rule variables that define the domain must use the same names as the output fields defined in the
required OutputFields command.

Regular Expressions and Expression Quantifiers

The parsing grammar uses a combination of regular expressions and expression quantifiers to build a
pattern for U.S. phone numbers. The parsing grammar uses these special characters:

• The "?" character means that a regular expression can occur zero or one time.
• The (|) character indicates an OR condition.
• The ";" character means end of a rule.

Use the Commands tab to explore the meaning of the other special symbols you can use in parsing
grammars by hovering the mouse over the description.

Using the Preview Tab

63Templates Guide

Chapter 5: Open Parser

To test the parsing grammar, click the Preview tab. Type the phone numbers shown below in the
PhoneNumber field and then click Preview.

You can also type other valid and invalid phone numbers to see how the input data is parsed.

You can also use the Trace feature to see a graphical representation of either the final parsing results
or to step through the parsing events. Click the link in the Trace column to see the Trace Details for the
data row.

Write to File

The template contains one Write to File stage. In addition to the input field, the output file contains the
CountryCode, AreaCode, Exchange, and Number fields.

For complete information about Open Parser, the Domain Editor, and the parsing grammar reference,
see Open Parser in the Data Normalization Module help or in the Spectrum™ Technology Platform User's
Guide.

Spectrum™ Technology Platform 8.0.0 SP364

Solution

Index

A
Address Now Module 8, 33, 34
Advanced Matching Module 8, 16, 19, 22
Advanced Transformer 29
Assign GeoTAX Info 44

B
business scenarios

Determining if a Prospect is a Customer 22
Determining Insurance Rating Territory 40
Determining Tax Jurisdiction 42
Geocoding Addresses 38
Identifying Members of a Household 16
Parsing Addresses 28
Parsing Arabic Names 50
Parsing Chinese Names 53
Parsing E-mail Addresses 55
Parsing Personal Names 12
Parsing Spanish and German Names 59
Parsing U.S. Phone Numbers 62
Standardizing Personal Names 13
Validating International Addresses 33, 35
Validating U.S. and Canadian Addresses 30

C
Candidate Finder 22, 23
Candidate Finder Options view 24
Candidate Selection

alternate method for defining field mapping 25
defining SQL Select statements 24
mapping columns to field names 24

Census check box 42
Conditional Router 32, 36, 39
Coordinate Format field 41
culture-specific parsing grammars 51, 53, 60, 62

D
Data Normalization Module 8, 13, 16, 28, 50, 52, 55,
59, 62
Database field 39, 41
dataflow templates

defined 8
Determining if a Prospect is a Customer 8
Determining Insurance Rating Territory 8
Determining Tax Jurisdiction 8
Geocoding Addresses 8
Identifying Members of a Household 8
jobs or services 8
list of 8
locating 9
Parsing Addresses 8
Parsing Personal Names 8
running 9
Standardizing Personal Names 8
Validating International Addresses 8
Validating U.S. and Canadian Addresses 8

Default Options tab 32, 43
Determining if a Prospect is a Customer template 8,
22
Determining Insurance Rating Territory template 8, 40
Determining Tax Jurisdiction template 8, 42
domain-independent parsing grammars 51, 53, 60, 62
Dual address logic option 43

E
Enterprise Geocoding Module 8
Enterprise Tax Module 8
Expose/Unexpose command 9

F
From Template command 9

G
Gender Determination Source option 13, 14, 16, 23
GenderCode field 14, 15, 17
Generate data for analysis check box 18
GeocodeUSAddress 39
Geocoding Addresses template 8, 38
GeoTAXKey field 44

I
Identifying Members of a Household template 8, 15,
19
Include a standard address option 43
Include Data list 44
Include matched address elements option 32
Input 22, 28, 35, 43
Interactive Driver 9
Intraflow Match 18
Intraflow Match Summary Report 19
Intraflow Summary Report 18

J
jobs 9

L
Latitude/Longitude option 39
Lift/Drop chart 20
locating dataflow templates 9
Location Intelligence Module 8

M
Management Console 9, 22
mapping database columns to stage fields 24
mapping fields 25
Match Analysis 20
Match Key Generator 18
Match mode option 39
modules

Address Now 8
Advanced Matching 8
Data Normalization 8, 28
Enterprise Geocoding 8
Enterprise Tax 8
Location Intelligence 8
Universal Addressing 8, 30
Universal Name 8

Modules node 9

N
Name Parser 16, 23
New Dataflow From Template command 9

O
Open Parser 51, 53, 60, 62

culture-specific parsing grammars 51, 53, 60, 62
domain-independent parsing grammars 51, 53,
60, 62

Order option 13, 14, 16, 23
Output 26, 30, 34, 36, 44
Output Data Options tab 31, 43
Output Data tab 39, 42, 44
Output Format tab 39

P
Parse business names option 13, 14, 16, 23
Parse personal names option 13, 14, 16, 23
Parsing Addresses template 8, 28
Parsing Arabic Names template 50
Parsing Chinese Names template 52
Parsing E-mail Addresses template 55
Parsing Personal Names template 8, 12
Parsing Spanish and German Names template 59
Parsing U.S. Phone Numbers template 62
Point In Polygon 41

R
Read from File 12, 16, 31, 34, 36, 39, 41, 51, 53, 56,
60, 62
regular expressions 28
Retain periods option 13, 14, 17, 23
Return normalized data when no match is found option
32, 43
Return standardized data when no match is found
option 34, 36
Return street name alias option 32, 43
Run Current Flow command 9
running dataflow templates

jobs 9
services 9

S
SQL Query 24
Standardization 15, 17
Standardizing Personal Names template 8, 13
Status field 39

Spectrum™ Technology Platform 8.0.0 SP366

Stream Combiner 36

T
Tax district field 42
Tax Jurisdiction option 44
templates

Determining if a Prospect is a Customer 22
Determining Insurance Rating Territory 40
Determining Tax Jurisdiction 42
Geocoding Addresses 38
Identifying Members of a Household 15, 19
Parsing Addresses 28
Parsing Arabic Names 50
Parsing Chinese Names 52
Parsing E-mail Addresses 55
Parsing Personal Names 12
Parsing Spanish and German Names 59
Parsing U.S. Phone Numbers 62
Standardizing Personal Names 13
Validating International Addresses 33, 34
Validating U.S. and Canadian Addresses 30

TitleOfRespect field 14, 15, 17
Transactional Match 25
Transformer 14, 17, 30, 35, 36

U
U.S. Address Options tab 32, 43
U.S. Barcode Options tab 32, 44
Universal Addressing Module 8, 30
Universal Name Module 8, 12, 13, 16, 19, 22
user-defined boundary file 41

V
ValidateAddress 31, 43
ValidateGlobalAddress 34, 36
Validating International Addresses template 8, 33, 34
Validating U.S. and Canadian Addresses template 8,
30

W
Write Failed 40
Write Successful 40
Write Territory Assignment 41
Write to File 13, 15, 19, 33, 52, 54, 59, 61, 64

67Templates Guide

Spectrum™ Technology Platform 8.0.0 SP368

	Contents
	Introduction
	What are Dataflow Templates?
	Creating a Dataflow Using a Template
	Running Dataflow Template Jobs
	Running Dataflow Template Services

	Name Data Templates
	Parsing Personal Names
	Business Scenario
	Solution

	Standardizing Personal Names
	Business Scenario
	Solution

	Identifying Members of a Household
	Business Scenario
	Solution
	Alternate Solution

	Determining if a Prospect is a Customer
	Business Scenario
	Solution

	Address Data Templates
	Parsing Addresses
	Business Scenario
	Solution

	Validating U.S. and Canadian Addresses
	Business Scenario
	Solution

	Validating International Addresses
	Business Scenario
	Solution

	Validating International Addresses with Candidates
	Business Scenario
	Solution

	Location Data Templates
	Geocoding U.S. Addresses
	Business Scenario
	Solution

	Determining Insurance Rating Territory
	Business Scenario
	Solution

	Determining Tax Jurisdiction
	Business Scenario
	Solution

	Determining Flood Risk
	Business Scenario
	Solution: FloodRiskDetailAnalysis
	Alternative Solution: FloodRiskAnalysis

	Open Parser
	Parsing Arabic Names
	Business Scenario
	Solution

	Parsing Chinese Names
	Business Scenario
	Solution

	Parsing E-mail Addresses
	Business Scenario
	Solution

	Parsing Spanish and German Names
	Business Scenario
	Solution

	Parsing U.S. Phone Numbers
	Business Scenario
	Solution

	Index

