
2

Jakob Stig Ravn

A Multi-Agent Approach for

Distribution System

Restoration

Bachelor’s Thesis, July 2008

3

A Multi-Agent Approach for Distribution System Restoration

This report was drawn up by:
Jakob Stig Ravn

Supervisor(s):
Professor Morten Lind
Ph.d. Arshad Saleem

DTU Elektro
Center for Elteknologi (CET)
Danmarks Tekniske Universitet
Elektrovej 325
2800 Kgs. Lyngby
Danmark

www.elektro.dtu.dk/cet
Tlf: (+45) 45 25 35 00
Fax: (+45) 45 88 61 11

Release date:

1st of August, 2008

Category:

1 (offentlig)

Edition:

1st edition

Comments:

This report is part of the requirements to achieve the Bachelor’s
Degree at the Technical University of Denmark.

This report represents 15 ECTS points.

Rights:

© Jakob Stig Ravn, 2008

Abstract

4

ABSTRACT

This report documents the work carried out during the spring semester 2008. The pro-

ject deals with the application of a multi agent system (MAS) for service restoration in

distribution power systems. In this project, the part of the service restoration process

which deals with restoring power to consumers in case of an outage, is considered.

A restoration strategy based on agent technology has been formulated. This strategy

proposes a method for prioritizing certain consumers as part of the restoration process.

A multi agent system has been developed in JADE, a software framework specifically

suited for the development of agent software systems. A simple distribution network has

been used as basis for simulating the operation of the MAS. In order to verify the capa-

bility of the MAS software, it has been tested with two kinds of fault scenarios occur-

ring in the distribution network.

During the project it has also been considered how to connect a MAS developed in

JADE with a model of a physical network. The motivation for this has been the poten-

tial for simulating the interaction between the MAS in JADE and a realistic physical

model of a distribution network. Matlab Simulink has been used to build a model of a

physical network and a communication between Matlab and JADE has been established.

The results of this project have been a demonstration of a multi agent system as an ap-

proach to power service restoration. The MAS has been seen to perform successfully to

different fault scenarios. Thus, it has been demonstrated how FIPA protocols and on-

tologies can be utilized in a multi agent system to add intelligence to the service restora-

tion process.

5

TABLE OF CONTENTS

Abstract ...4

List Of Figures...7

List Of Tables ..9

List of Abbreviations...10

1 Preface ..11

1.1 Background ...11

1.2 Project objectives...11

1.3 Personal motivation ...11

1.4 Method, limitation and background..12

1.5 Related work ...12

1.6 How to read the report ...13

2 Introduction to Distribution System Restoration...15

3 The Agent Paradigm ..17

3.1 Characteristics of an agent ...17

3.2 FIPA Agent Communication Language ...18

3.3 Ontologies ...20

4 The JADE Platform..21

5 The Network Case Study..24

6 MAS Design ..28

6.1 Agent architecture..28

6.2 System architecture..30

6.3 Ontologies ...33

6.4 Protocols ...35

6.5 FeederAgent design ...38

6.6 Restoration strategy ...39

7 Simulation Results..50

7.1 Prioritization scheme ...50

7.2 Fault scenario 1: Single fault..50

7.3 Fault Scenario 2: Multiple faults ..54

Table Of Contents

6

8 Conclusion.. 59

8.1 Results .. 59

8.2 Perspectives .. 59

8.3 Further work ... 60

References ... 63

A Fault Scenario Diagrams .. 65

Fault Scenario 1.. 65

Fault Scenario 2.. 69

B Matlab Simulink Models... 76

C Flowcharts ... 82

D FIPA Communicative Acts ... 85

E User Manual .. 86

F Java and Matlab Script Source Code... 88

Embedded Matlab function code... 88

Java Source Code ... 89

7

LIST OF FIGURES

Figure 4-1: System overview of the main elements in JADE

Figure 4-2: DF yellow pages service

Figure 5-1: Distribution network in normal operation

Figure 6-1: The PRS architecture

Figure 6-2: Layered agent architectures

Figure 6-3: Network diagram with location of agents shown

Figure 6-4: The layered structure of the multi agent system and the control and data

flow between them.

Figure 6-5: Elements of the BusFeederOntology

Figure 6-6: Sequence diagram of the Contract Net Interaction Protocol

Figure 6-7: Sequence diagram of the FIPA Subscribe Protocol

Figure 6-8: Sequence diagram for FIPA Cancel Meta Protocol

Figure 6-9: Finite State Machine diagram of the FSM behavior

Figure 6-10: Flowchart of Finite State Machine Behavior

Figure 6-11: Flowchart for ContractNetInitiator behavior part 1

Figure 6-12: Flowchart for ContractNetInitiator behaviour part 2

Figure 6-13: Flowchart for ContractNetInitiator behavior part 3

Figure 6-14: prepareResponse method of ContractNetReponder

Figure 7-1: Simulation part of fault scenario 1

Figure 7-2: Clearance of fault and subsequent return to normal operation

Figure 7-3: FA1A and FA1C negotiating with FA2A, FA2B and FA2C

Figure 7-4: Simulation result after occurrence of line fault at feeder 2C.

Figure 8-1: An Upper Ontology extended for different power engineering applications

FIPA communicative acts

Figure A - 1: Fault Scenario 1: A line fault on feeder 1A

Figure A - 2: Fault Scenario 1: FeederAgent1A prepared for restoration

Figure A - 3: Fault scenario 1: Feeder 1A fully restored by 1B and 1C

Figure A - 4: Fault Scenario 1: Clearance of fault and subsequently connection of

switch S1

Figure A - 5: Fault Scenario 2: The loss of Source1

Figure A - 6: Fault scenario 2: FA1C has obtained full power from FA2C and FA2B

and connected all its loads

List Of Figures

8

Figure A - 7: Fault scenario 2: FA1A has obtained full power from FA2A and con-

nected all its loads. FA1C has requested its BAs to switch in their sectionalizing

switches.

Figure A - 9: Fault Scenario 2: Line fault at feeder 2C while loss of source 1

Figure A - 10: Fault Scenario 2: FA2C canceling subscription with FA1C

Figure A - 11: Fault Scenario 2: FA1C unable to restore full power and prioritizes its

loads

Figure B - 1: Data transfer between Matlab and JADE

Figure B - 2: Illustration of simple network to test data passing between Matlab and

JADE

Figure B - 3: Simulink model of network with two sources and one load

Figure B - 4: Plot of active and reactive power for SourceB, and SourceC and voltage at

the load

Figure B - 5: Diagram of 6 bus network

Figure B - 6: Simulink model of 6 Bus network

Figure C - 1: handleCancel() method of SubscriptionResponder Behaviour

Figure C - 2: SubscriptionInitiator Behaviour

Figure C - 3: Flowchart for BusAgent Cyclic Behavior

Figure D- 1: FIPA communicative acts

9

LIST OF TABLES

Table 3-1: FIPA Communicative Acts categorized after their usage

Table 5-1: Distance values between the feeders

Table 7-1: Prioritization of buses at a feeder

Table 7-2: Pre-fault load consumption values at each bus for fault scenario 1

Table 7-3: Pre-fault load consumption values at each bus for fault scenario 2

List of Abbreviations

10

LIST OF ABBREVIATIONS

MAS: Multi Agent System

JADE: Java Agent DEvelopment framework

FIPA: Foundation for Intelligent Physical Agents

ACL: Agent Communication Language

DF: Directory Facilitator agent

AMS: Agent Management System

FA: Feeder Agent

BA: Bus Agent

11

1 PREFACE

1.1 Background

During the past years the electric power industry has been seen to move towards more

decentralized generation, changing market operations and more complex distribution

systems. Due to this development, it is increasingly difficult to manage the network

from a central control system. The current centralized SCADA system is not longer suf-

ficient for some control operations [12]. In order to face this development, there is a

need for more a distributed control architecture.

 MAS technology provides a solution for creating such distributed control systems.

The focus of this report is the process of service restoration in a power distribution sys-

tem in particular - that is the restoration of power in a distribution system in case of an

outage. The purpose has been to investigate the potential for applying MAS technology

to solve this restoration problem. The following issues have been addressed in the pro-

ject:

1.2 Project objectives

• What is the potential and challenges for applying multi agent systems in the res-

toration of distribution systems?

• What strategy should the individual agents follow to restore the power and how

can the responsibilities be divided between the agents to accomplish the task?

• How can the interaction between a multi agent system and a model of a distribu-

tion network be simulated?

1.3 Personal motivation

My personal motivation for carrying out this project has been an interest in acquiring

knowledge about agent systems and the application of agent technology in society.

Furthermore, it is interesting to investigate the application of agent technology to a

power industry application as this industry is undergoing many changes these years in

the way power is generated, traded and distributed. This development opens up new

possibilities for employing technologies like MAS in the industry.

Preface

12

1.4 Method, limitation and background

The focus of this project has been to develop a multi agent system for a power distribu-

tion system capable of performing service restoration. The current stage of applying

agent technology in the power industry has been researched. It has been researched

which software tools exists for developing and simulating agent systems. The frame-

work JADE was selected for building the MAS, as this is a software framework suited

specifically for developing agent systems and used by the majority of the agent commu-

nity today. The JADE platform is described in chapter 4.

The capability of the MAS developed in JADE has been demonstrated by observing

the systems response to two different fault scenarios. A simple distribution network has

been used as basis for the tests.

One of the objectives of this project was to simulate the interaction of the multi

agent system and a model of a physical distribution network. I decided to use Matlab

Simulink to build a model of a physical network, as I am already familiar with this envi-

ronment. Besides, a connection between Matlab and JADE had been reported success-

fully in [5]. However, it was not possible to continue the project in this direction, due to

problems encountered with building the Simulink models. This work is described in

appendix C.

Since the purpose of this report is to present a prove of concept of the applicability

of multi agent systems for distribution service restoration, the data used as part of the

case study has been chosed to demonstrate the capabilities of the system. As my back-

ground does not lie within power systems, the data used for the network case study may

not be realistic which may limit the applicability of the results of the project.

1.5 Related work

The focus of this project relates to the work done by Nagata et.al. In [4] they propose a

multi agent system approach for service restoration. The work done in this report ex-

tends some of the ideas presented in [4] by proposing a prioritization scheme for the

restoration strategy. Furthermore, this report also incorporates the use of FIPA protocols

as described in chapter 6 for the interaction between agents in the MAS.

S&C Electric Company is providing a feeder automation system called IntelliTeam,

which is based on agent technology [8]. In this system control of line segments of the

distribution system is governed teams. Each team consist of an agent called a team

coach which is responsible for negotiating with each team coaches in order to perform

power restoration. Peer-to-peer communication between teams is done through radios

and fiber-optics. The IntelliTeam system has been installed successfully in several dis-

tribution networks. However, it should be noted, that this product is not designed ac-

cording to the FIPA specifications, which is recommended to ease interoperability be-

tween multi agent systems.

Preface

13

1.6 How to read the report

This report is divided in eight chapters and four appendices. In Chapter 2 an introduc-

tion to service restoration in distribution systems is given. In Chapter 3 I give an over-

view of the agent paradigm and the specifications layed out by the Foundation for Intel-

ligent Agents (FIPA) to support agent oriented programming. Chapter 4 gives a de-

scription of the key elements of the Java Agent DEvelopment Framework (JADE) - the

software platform used for development of the MAS in this project. In Chapter 5 I

briefly present the distribution network used as a basis for testing the MAS, which is

necessary before explaining the MAS design in the following chapter. In Chapter 6 I

describe the design choices I have made during the development of the multi agent sys-

tem design including the agent architecture, the protocols utilized, as well as a more

detailed description of the software. Chapter 7 presents the fault scenarios used for

testing the operation in the simulations. Chapter 8 presents the results of the tests per-

formed in JADE. In Chapter 9 I summarize what has been carried out during this pro-

ject as well as future directions of this work. Furthermore, I discuss the future perspec-

tives of employing agent technology in the power industry.

Appendix A contains network diagrams for the two fault scenarios depicting the resto-

ration process. Appendix B gives a description of the work done in this project con-

cerning the connection of the MAS in JADE with a physical model in Matlab Simulink.

Appendix C contains flowcharts associated with the MAS software. Appendix D con-

tains FIPA figures for chapter 3. Appendix E contains a user manual for running the

MAS software and the source code for the MAS and Matlab scripts can be seen in Ap-

pendix F.

15

2 INTRODUCTION TO DISTRIBUTION SYSTEM
RESTORATION

Modern power systems are in general considered to be highly reliable. However, with

the restructuring of the electric power industry towards a market based business envi-

ronment, pressure to reduce costs has increased, and as a result power systems are oper-

ated closer and closer to their limits [6]. This development has led to an increasing

number of blackouts [10]. In case of an outage the utility companies perform service

restoration.

Service restoration is the process of detecting the fault, isolating the fault and

restoring the power to those consumers which have experienced an outage. This project

deals with the part of the process which concerns restoration of power to the consumers

- the loads.

The causes of an outage could be many: Transient faults propagating through the

network, the loss of a power source due to a generator fault, or faulty equipment e.g. the

loss of a transmission line. Transient faults mainly occur in transmission systems, and

most of these faults are cleared by protective systems [9]. Still, some faults turn out to

cause a permanent partial or complete blackout of distribution areas.

The primary objective of service restoration is to restore as many unrestored loads as

possible until the fault is cleared. This is achieved by closing or opening a number of

switches in the network, so power can be rerouted or provided by alternative sources if

necessary. This reconfiguration of the network is subject to several constraints:

• Transmission lines in a distribution system can only transmit a limited amount

of power. It might not be possible to recover some loads in the outage area due to

such line constraints.

• There is a constraint on the amount of power which can be provided by alterna-

tive sources. If too many loads are restored, the system might get overloaded result-

ing in a shift in the power balance of the network and a frequency decrease, which is

undesirable.

• Distribution systems are typically radial structured. During reconfiguration it is

usually important to maintain this network structure as much as possible to keep the

network configuration as simple as possible. Interconnecting different subsystems

will create loops, and make the configuration more complicated.

Introduction to Distribution System Restoration

16

Since time is a crucial factor during a service restoration, it is desirable to minimize the

number of switching operations required to restore power, as every switching operation

takes time. This objective will however be neglected in this project for the sake of sim-

plicity.

In addition to dealing with the objective of restoring as many loads as possible dur-

ing an outage, this project will also consider a prioritization of the individual loads.

Due to the above mentioned constraints, it is possible that power to the loads in the

blackout area can not be fully restored. Since it is usually not equally important to main-

tain service for all loads in a distribution network, a utility company would attempt to

restore power to facilities critical for society first. This could for instance be hospitals,

police stations and governmental agencies etc. [15]. Secondly, the utility would attempt

to restore power to businesses and private consumers. Industrial businesses would have

interest in paying to get prioritized in case of an outage, so utilities could benefit com-

mercially by having customers pay to get prioritized.

A prioritization scheme has been incorporated in the restoration strategy for the

MAS developed during this project, which will be described in chapter 6.

In the next chapter the paradigm which forms the basis for multi agent system develop-

ment will be described.

17

3
THE AGENT PARADIGM

3.1 Characteristics of an agent

Agent Oriented Programming (AOP) is a software paradigm which brings together con-

cepts of artificial intelligence with distributed systems. In AOP, an application is mod-

eled as a collection of components called agents [1]. The computer science community

has proposed several different definitions of what exactly an agent is. According to

Wooldridge [7], an agent is defined as follows:

“An agent is a computer system that is situated in some environment, and that is ca-

pable of autonomous action in this environment in order to meet its design objec-

tives”.

Here the environment defines everything external to the agent. In a power system the

environment would be the physical electric network in which the agent is placed.

Wooldridge extends this definition of an agent by the following characteristics:

• Autonomy: An agent is autonomous because it operates without direct interven-

tion from humans or other agents and has control over its actions and internal state.

This implies that, an agent can decide whether or not to perform an action on request

from another agent.

• Reactivity: An agent is reactive by being able to perceive its environment and

respond to changes in this environment according to its design objectives.

• Proactiveness: An agent has the ability to perform goal directed behavior by

taking the initiative without external stimulus, hence it is not only reactive.

• Social ability: An agent has a social ability because it communicates with other

agents to satisfy its design objectives.

.

.

The Agent Paradigm

18

Having a social ability implies more than just agents passing data to each other. Agents

are capable of negotiating and interacting with each other. This ability is facilitated by

an Agent Communication Language (ACL), which will be described in the following

section.

Furthermore, an agent’s interaction with its peers can be cooperative in order to sat-

isfy a common goal or competitive serving their own interests. In the application of this

project, service restoration, the restoration objective of maximizing the number of re-

stored loads will only be fulfilled if agents are cooperating in achieving this common

goal.

3.2 FIPA Agent Communication Language

One of the essential abilities for agents in multi-agent systems is the ability to commu-

nicate. An agent should be able to communicate with the user(s) of the system, system

resources as well as other agents [1]. Communication between agents is based on spe-

cific communication languages, called Agent Communication Languages (ACL).

KQML was the first agent communication language to be developed in the 1990s. Cur-

rently, the most used agent communication language is the FIPA ACL. FIPA, the Foun-

dation for Intelligent Physical Agents, consists of a collection of academic and indus-

trial organizations. It was established in 1996 to develop a set of standards concerning

software agent technology. These standards were intended to make agent technology

usable on a broad range of applications and thereby form the basis for the commercial

deployment of agent technology [1].

Agent communication languages like FIPA ACL are based on speech act theory. Speech

act theory provides a way to separate the content of a message from the intention of the

message. This is achieved by giving each message a specific performative - or act - be-

sides the actual content delivered with the message. This performative denotes what the

sender of the message want the receiver to do with the contents. An act of a message

could for instance be inform, propose, refuse, agree or not understood. Below is an ex-

ample of a FIPA ACL message with a request performative. Here, the intention of the

sender of the message is to request the receiver to book a hotel in the period specified in

the content field.

The Agent Paradigm

19

Table 3-1 gives an overview of all performatives of the FIPA Agent Communication

Language. The acts are classified in terms of their usage. The CONFIRM act is informa-

tion passing, since it is used to inform the receiving agent that something is true. An

agent would for instance use the REQUEST performative to ask another agent to per-

form some action. This agent would then reply with a CONFIRM performative if it suc-

ceeded at performing the action, otherwise it would send a message with a DISCON-

FIRM performative.

Table 3-1: FIPA Communicative Acts categorized after their usage

A full list of the definition of all FIPA communicative acts can be seen in Appendix A.

The Agent Paradigm

20

3.3 Ontologies

For two agents to communicate about a certain knowledge domain, i.e. a certain topic,

they need to agree on a certain terminology to describe this domain. In other words, if

the domain is a bolt for instance, they need a common understanding of what length,

diameter and thickness of this bolt is. For this, they use ontologies. An ontology is a

formal definition of a body of knowledge [7].

In the Java Agent DEvelopment framework (JADE) an ontology can be composed

of three type of elements: Predicates, Concepts and Agent Actions.

Concepts are structures that consist of things that exist in the world. Some examples

could be the concepts Person and Car:

(Person: name: Jens Jensen age: 30 height: 185)

(Car: manufacturer: Audi model: TT hp: 255 price: 800.000)

Predicates say something about the relation between concepts. A predicate can be either

true or false. The following predicate indicates that the person Jens is the owner of the

car specified, if predicate Owns is true:

Owns ((Person: name: Jens Jensen age: 30 height: 185) , (Car: manufacturer: Audi

model: TT hp: 255 price: 800.000))

Agent Actions indicate actions to be performed by agents, for instance:

Buy ((Car: manufacturer: Audi model: TT hp: 255 price: 800.000)

, (Person: name: Jens Jensen age: 30 height: 185))

The agent action Buy could be sent to a certain agent, requesting that agent to buy the

car from Jens Jensen.

The use of ontologies in the MAS developed in this project will be described in

chapter 6.

The next chapter a description of the JADE platform will be given, which to a large

extent is built upon the FIPA specifications presented above.

The JADE Platform

21

4 THE JADE PLATFORM

The Java Agent DEvelopment framework, JADE, is considered to be the leading FIPA-

compliant open source agent framework [1]. It supports all the main FIPA specifications

described in the previous chapter.

The software development of JADE was started in 1998 by Telecom Italia with the pur-

pose of validating the FIPA specifications and subsequently grew to a full middleware

used to create multi agent systems. JADE consists of a runtime environment to host and

execute agents, a library consisting of Java classes used to create agents, and a graphical

user interface to monitor the activity of executing agents.

In JADE each agent has its own thread of control. Message passing is done asynchro-

nously so there is no dependency between the sending and receiving agent [1]. This

makes the receiving agent able to choose if and when to perform a given action re-

quested by the sending agent. It enables the sending agent to control its own thread of

execution, by not being dependent on an answer from the receiving agent. Such a loose

coupling of agents makes agent systems very fault tolerant. One malfunctioning agent

will not make and entire agent system fail.

Due to the autonomy of each agent it is possible to add and remove agents while an

agent system is running [13]. This is very beneficial when a system has to be upgraded

or extended. New functionality can be added to a system by installing new agents while

the system is online.

A JADE platform is composed of one or more containers. A container is the Java proc-

ess that provides the JADE run-time and the services needed for hosting and executing

agents [1]. An agent is attached to a certain container. These containers can be hosted

The JADE Platform

22

on the same machine or distributed on a number of machines, as would be the case for

an implementation of a multi agent system in an electrical distribution network.

Figure 4-1: System overview of the main elements in JADE

Figure 4-1 shows a system composed of three containers, each with a number of agents,

distributed on three machines. Every agent system requires a main container. A main

container differs from normal containers by taking care of the agent lifecycle manage-

ment. It provides each agent with a unique name (an Agent Identifier AID) at run-time

and besides that, it holds two special agents: The AMS (Agent Management System)

and DF (Directory Facilitator) agents.

The AMS provides each agent with a unique name, an Agent Identifier (AID). An

agents AID could for instance be peter@1099-laptop where “peter” is the local name on

platform “1099-laptop”. Furthermore, the AMS is responsible for creating and deleting

agents.

The DF agent provides a yellow pages service to all other agents. By searching the

yellow pages one agent can discover other agents which provide a service it requires to

achieve its goals. An overview is given in figure 4-2.

The JADE Platform

23

Figure 4-2: DF yellow pages service

As illustrated in the figure, agent A4, A5 and A6 use the yellow pages to search for ser-

vices published by agent A1, A2 and A3. Agent A5 could for instance be interested in

buying books, a service offered by agent A1, who would then publish this service on the

yellow pages. If the publishing agent A1 decides - for whatever reason - to stop selling

books, it can deregister its services from the yellow pages.

In the next chapter the distribution network used as a case example will be presented,

before moving on to describing the MAS design in the following chapter.

The Network Case Study

24

5 THE NETWORK CASE STUDY

In this chapter the distribution network under study is presented. This distribution net-

work will be used to test and demonstrate the operation of the developed multi agent

system.

A diagram of the network is shown in Figure 4-1. In the system, power is provided

from two sources, Source1 and Source2, each through a distributed transformer. Each

transformer provides power to three feeders A, B and C, where each feeder includes

four buses each having a load attached. Switches are symbolized with a square symbol

in the diagram, where a black filling denotes that the switch is close while a white fill-

ing symbols an open switch.

All feeders are connected with each other making it possible to reconfigurate the

network in numerous ways. Each feeder is connected with the other feeders fed from the

same source through the switches denoted SAB, SBC and SAC. In addition, all feeders

are connected with feeders from the other source though the tie switches T1 –T9. On

each feeder every bus is separated by a switch, making it possible to isolate one or more

buses of the feeder if necessary. In normal operating conditions of the network all these

sectionalizing switches are closed, as shown in the figure.

Transmission lines impose constraints on how much power can be transmitted. For the

sake of simplicity each feeder has been assigned a maximum allowable MW flowing

through it. This will limit the amount of load which can be connected to the feeder in

addition to its own loads. How much a feeder can provide to another feeder then de-

pends on its current load consumption. A power flow capacity of 500 MW will be used

for all feeders in the subsequent simulations.

As mentioned in chapter 2 it is desirable to keep a radial structure in the network during

restoration. This structure can be enforced whenever possible by assigning distances

between the six feeders. The values used for the simulations can be seen in table 5-2.

Say that feeder 1A can be connected with one of the feeders 1B, 1C and 2A. Feeder 1A

should be connected to the feeder closest to it, which according to table 1A is feeder 1B,

with the distance 1. The feeder least desirable for feeder 1A to interconnected to is

feeder 2C with a distance of 5.

.

The Network Case Study

25

Table 5-1: Distance values between the feeders

 1A 1B 1C 2A 2B 2C

1A X 1 2 3 4 5

1B 1 X 1 4 3 4

1C 2 1 X 5 4 3

2A 3 4 5 X 1 2

2B 4 3 4 1 X 1

2C 5 4 3 2 1 X

The Network Case Study

26

Figure 5-1: Distribution network in normal operation

The Network Case Study

27

MAS Design

28

6 MAS DESIGN

Some of the key benefits of applying MAS technology in power systems applications

are flexibility and extensibility [12]. An agent system is flexible if it is able to respond

correctly to dynamic situations and extensible if it can be expanded, easily added new

functionality and modified.

6.1 Agent architecture

The agent architecture is important when creating flexible and extensible multi agent

systems. Several approaches to agent architectures have been proposed in literature.

1.6.1 The BDI architecture

One of them is the Belief-Desire-Intention (BDI) architecture, wherefrom the Proce-

dural Reasoning System (PRS) is a well known extension. The PRS architecture is

based on four data structures: Beliefs, Desires, Intentions and Plans. An agent’s beliefs

represent the information the agent has about its environment, the desires are the agent’s

goals, and intentions represent desires that the agent has committed to achieving [1]. An

agent’s plans is the actions it will perform to achieve its intentions. As seen in figure 6-1

an interpreter binds the data structures together and is responsible for updating beliefs

based on new sensor input and choosing actions from the plan library based on that.

Many agent systems have been implemented with the use of the BDI architectures [1].

Figure 6-1: The PRS architecture

MAS Design

29

The BDI architecture relies on a symbolic representation of the world using modal

logic. If hardware resources of the system are sparse, a symbolic representation of

knowledge can be too slow to meat certain time-constraints [7]. This has led some re-

search to abandon the symbolic representation approach and propose another type of

architecture, the so called layered architecture.

1.6.2 The layered architecture

A layered architecture consists of a number of layers each representing a behavior of the

agent. An agent designed on the basis of a layered architecture is also called a hybrid

agent since it consists of both reactive and proactive behaviors.

An Agent which is purely reactive is only able to react to any changes in their environ-

ment and thus does not proactively try to achieve a set of goals. The layered designed

agent typically has lower level behaviors as reactive behaviors which propagate changes

to higher level behaviors, which then decide on an action to choose. Figure 5-1 shows

the principle of horizontal and vertical layered architectures.

Figure 6-2: Layered agent architectures

In a horizontal layered architecture each software layer is directly connected to the sen-

sor input and the action output i.e. each behavior take in measurements from the envi-

ronment and decides on some action. A horizontal layer is simple but can lead to com-

plexity as the layers are competing with each other to suggest an action to take. A me-

diator is then needed to decide which layer has the authority to choose an action [7].

The vertical layered architecture overcomes the problem about authority since sen-

sor inputs are passed from the low level layer and up to higher layers which has the au-

thority to decide on some action. On the other hand, this design is more error prone as

information has to pass through every layer causing the system to fail if one layer fails.

Horizontal layered architectures can be distinguished further in one-pass or two-passed

MAS Design

30

architectures. In a one-pass architecture control flow is directed from a measurement

layer up to the decision layer, which generates an action output itself by the activation

of some actuators. In a two-pass architecture it is the same layer which initially take in

sensor input and performs the control action, decided upon some higher level layer. In

this way, the control flow is going up through all layers at back down again.

6.2 System architecture

The multi agent system architecture and the division of responsibilities between the in-

dividual agents, has been built on the work published by Nagata et.al. in [4]. In this pa-

per a distribution system similar to the one used in this project is used as a basis for

demonstration of the MAS. I have decided to design the MAS in a hierarchical way

since such an architecture aligns the most with the structure of the distribution network

in chapter 5. Figure 6-3 shows the distribution of agents in the distribution network. A

BusAgent (BA) is located at each of the 24 buses. A FeederAgent (FA) is governing

each feeder depicted in the figure as FA1A, FA1B etc. In this way, the MAS developed

in this project, resembles the vertical two-pass layered architecture the most.

MAS Design

31

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

Normal

Operation

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1B

FA2A
FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Figure 6-3: Network diagram with location of agents shown

The BusAgent represents a particular bus and is responsible for monitoring one or more

loads attached to this bus. It can control two switches on either side of it in order to iso-

late the bus if necessary, see figure 5-1. The BusAgent reports to the FeederAgent in

MAS Design

32

case of any abnormal system changes, that is if power is not supplied to its load or if

power has been restored. It also receives orders from the FeederAgent to connect or

disconnect its switches or load.

The FeederAgent represents a feeder and is responsible for initiating power negotia-

tions with others feeders on behalf of its BusAgents in case of a power outage. If the

FeederAgent has succeeded in providing power to its BusAgents from another feeder, it

sends a command to the appropriate BusAgent to connect the two feeders.

The control flow and information flow between these agents is illustrated in figure 6-3.

As mentioned, BusAgents monitor a number of measurement devices. These include

power flow measurement devices situated at the loads, which continuously measures the

power consumed by the loads. Abnormal system changes in the network, like the loss of

voltage, would be detected by these measurement devices. The BusAgent will then no-

tify its FeederAgent about these changes. If power to the load is lost, it will notify the

FeederAgent about this event a long with the pre-fault power consumption of its load.

The FeederAgent will then decide on an action to take based on the information passed

from several BusAgents. These control actions are then passed down to the appropriate

BusAgents, which will perform the requested action, by controlling its switching de-

vices.

Figure 6-4: The layered structure of the multi agent system and the control and data

flow between them.

As seen from the figure, negotiations can only take place at the decision layer, and not

between BusAgents, which only permit a BusAgent to report to one FeederAgent. Peer-

to-peer negotiations between BusAgents could be desirable if BusAgents should have

autonomy to provide or request power from other BusAgents. However, if BusAgents

were capable of negotiating with each other it would lead to a substantial increase in

communication among the agents, which would require additional computational re-

MAS Design

33

sources. By gathering information from several BusAgents at one FeederAgent, com-

munication between agents is reduced to a smaller number of agents.

6.3 Ontologies

As outlined in section 3.2 ontologies provides a way to structure information for several

agents to understand it. In this project, an ontology has been created to structure infor-

mation transferred between BusAgents and FeederAgents. The structure of this ontol-

ogy, called the BusFeederOntology, is shown in figure 6-4. The ontology consists of

number of concepts, predicates and agent actions.

The concepts represent the elements relevant for the BusAgent that is the physical com-

ponents surrounding the BusAgent like load, line section and switches. Besides these

concrete things, a fault is also considered a concept, although being abstract. As de-

picted in the figure each concept can consist of one or more subconcepts. For instance,

the information necessary to describe the status of a load is loadnumber, voltagelevel

and powerlevel.

Predicates offer a way to express the status of the world by indicating the relation be-

tween concepts. One responsibility of the BusAgent is to notify the FeederAgent in case

of fault events. This is done with the predicate onLineSection. If a line fault has oc-

curred at line section number 3, the BusAgent will send the following predicate to the

FeederAgent:

onLineSection((LineSection: sectionnumber 3), (Fault: faulttype linefault))

Information about the location of a fault and the type of fault is important to the Feed-

erAgent in order to make any conclusions about how many of the BusAgents on the

feeder is affected by the fault.

MAS Design

34

Figure 6-5: Elements of the BusFeederOntology

The predicates isConnected and isDisconnected are used by the BusAgent to inform the

FeederAgent, when a certain switch has been connected or disconnected, while the

predicate NeedPower is used to report the pre-fault power consumption at a particular

load, for instance:

NeedPower((Load: loadnumber 4, voltagelevel 0, prefaultpower: 40))

This predicate informs the FeederAgent that 40 MW has to be restored to Load 4.

The ontology consists of two agent actions: SwitchIn and SwitchOut used by the FA

to request a particular BA to connect or disconnect a certain switch e.g.:

 SwitchIn(Switch: switchnumber 4)

MAS Design

35

6.4 Protocols

As mentioned above, when a fault occurs on a feeder, the FeederAgent will initiate a

negotiation with one or more feeders to restore the power to its buses. FIPA has stan-

dardized the way agents interact in several protocols.

Among those the FIPA Contract Net Interaction Protocol and the FIPA Subscribe Pro-

tocol have shown to be to suitable for the MAS developed in this project.

The sequence diagram of the FIPA Contract Net Interaction Protocol is shown in

Figure 5-2. This protocol describes the case of one agent (the initiator), who wishes to

have a task performed by one or more other agents (the participants). The initiator sends

out a Call For Proposal (CFP) message, which specifies the task to be performed, to m

participants. The participants can then choose to submit a proposal to perform the action

or they can refuse. They would typically refuse if they are not able to perform the action

e.g. to provide the amount of power which the initiator requests. The initiator has set up

a deadline for receiving replies and when that is passed, it selects one, more or none of

the proposals received. It might not get any replies at all or only refusals so such situa-

tions should be taken care of. In case it gets one or more proposals, it accepts one or

more of them and rejects the rest. A participant which receives an ACCEPT PRO-

POSAL from the initiator returns an INFORM if the action has been performed success-

fully or a FAILURE if they fail to. The participants, which proposals the initiator

chooses to accept, is from now on called the contractors.

MAS Design

36

Figure 6-6: Sequence diagram of the Contract Net Interaction Protocol

The FIPA Subscribe Protocol can be used when one agent wants to subscribe on getting

certain information from one or more other agents. The sequence diagram for the Sub-

scribe Protocol in shown in figure 6-6.

MAS Design

37

Figure 6-7: Sequence diagram of the FIPA Subscribe Protocol

In the MAS developed in this project the protocol is used after an initiator has suc-

ceeded in finding contractors which can provide power to it. The initiator will then sub-

scribe to get informed by the contractor if any changes occur which affect their agree-

ment. This goes both ways. The subscribing agent, that is the agent which initiated the

Contract Net Interaction Protocol, will cancel the subscription if the fault is cleared in

the network and power has returned. The contractor will likewise cancel the subscrip-

tion if system changes affect its ability to keep providing the power.

While the sequence diagram in figure 5-3 shows the interaction when setting up a sub-

scription figure 5-4 shows the protocol for cancellation. It is recommended by FIPA to

follow such standards to make interactions less error prone as agents can expect what

kind of reply should receive. When an agent performs a cancellation it expects to get a

reply in form of a INFORM or FAILURE message in order to assure that its message

has actually been received by the right agent.

MAS Design

38

Figure 6-8: Sequence diagram for FIPA Cancel Meta Protocol

6.5 FeederAgent design

Each agent is composed of a number of behaviors. A behavior represents a certain task

to perform. For the FeederAgent class the tasks are divided on the following behaviors:

• ContractNetInitiator Behavior: This behavior initiates a power negotiation ac-

cording to the Contract Net Interaction Protocol.

• ContractNetResponder Behavior: This behavior process any messages received

which is part of the Contract Net Interaction Protocol.

• SubscriptionInitiator Behavior: This behavior initiates a subscription with another

FeederAgent according to the FIPA Subscribe Protocol.

• SubscriptionResponder Behavior: This behavior process any message received

with is part of a Subscription Protocol interaction.

• Fininite State Machine (FSM) Behavior: This behavior is controlling the state of

the FeederAgent. During a reconfiguration the agent goes through different states,

so this behavior can be considered the main behavior.

5.6.1 The use of the DF yellow pages

The DF yellow pages described in chapter 4, will be used in this MAS to enable Feed-

erAgents to publih and search for services they require. For this application the ser vice

a FeederAgent will offer is to provide power to other FeederAgents. This is used when

one FeederAgent has experienced at fault on its feeder. It will then search through the

MAS Design

39

yellow pages for other available FeederAgents which it will initiate a negotiation with

according to the protocol outline above. A FeederAgent will only have its power service

registered in the yellow pages if it is able to deliver power to other FeederAgents. When

a FeederAgent experiences a fault on its feeder and loss of power it will start out dereg-

istering its power service from the yellow pages.

The switching between the above is controlled by a round-robin non-preemptive sched-

uler of the agent class itself which is hidden by the programmer. It is often that the

above behaviors will wait for receiving a particular message from another agent. In

order to prevent that one behavior will run all the time until the message it needs has

been received, one can use a special block() method. The block() method blocks that

behavior from running until the particular has been received, allowing other behaviors

to run.

6.6 Restoration strategy

6.6.1 The Finite State Machine Behavior

A state diagram of the FSM behavior of the FeederAgent class is shown in figure 6-8.

Besides this diagram a flowchart in figure 6-9 describes the same behavior but in a more

detailed manner. The following gives a description of the conditions which leads the

FeederAgent through the different states. The FSM behavior has five states as shown in

figure 6-8.

State 1: The FeederAgent (FA) starts in an idle state, state 1, waiting for notification

messages from any of its BusAgents (BAs), see figure 6-8. If a message is received, the

information sent by the BusAgent is evaluated. If power any power loss at the load is

reported, the FA will store the pre-fault power value. In case several loads are left with-

out power, the FA will add these individual pre-fault consumption values and go to next

state, state2, see figure 6-8.

In a the FA receives notifications from its BAs that power has returned it will stay in

the same state, state1, but register its services on the DF yellow pages since power has

returned. Besides if the FA has done any subscriptions with other FAs during the outage

period it will cancel these and send request to the appropriate BAs to disconnect the

interconnecting switches to these feeders.

In this state, the FA also waits for any subscription cancellations form other FAs.

Flowchart 6-9 gives a clearer picture of the action taking when such a cancel message is

received.

MAS Design

40

State2: In state 2 the behavior ContractNetInitiator() is invoked. The flowchart of this

behavior can be seen in figure 6-10 to 6-12. When the ContractNetBehavior has been

invoked, the FeederAgent will move on to state 3.

State3: In state 3 the outcome of running the ContractNetInitiator behavior is evaluated.

If no power has been obtained, the FA will return to the idle state, state 1. If the required

amount of power has been fully obtained, it will go to state 5. If it has only been possi-

ble to restore part of the required power, the FA will attempt to prioritize its loads by

going to state 4 as shown on the figure.

State 4: Based on the amount of power which has been obtained, the FA will decide on

how many of the loads it is possible to restore. It will request each BA to either connect

or disconnect its load. When all BAs have informed the FA that the action has been per-

formed, it will go to state 5, see figure 6-8.

State 5: In this state, the FA will decide on which switch should be connected to get the

power from the contractor. This could be a tie switch or a switch

Depending on from which other FA(s) the power is to be provided, the FA will request

one of its BAs closest to the switch to connect it. When the BAs have informed that the

actions have been performed successfully the reconfiguation is now complete and there-

fore the FA will return to the idle state, state 1.

MAS Design

41

Figure 6-9: Finite State Machine diagram of the FSM behavior

MAS Design

42

Figure 6-10: Flowchart of Finite State Machine Behavior

6.6.2 The ContracNetInitiator behaviour

The flowchart for the ContractNetInitiator behavior can be seen in figure 6-10, 6-11 and

6.12. When this behavior is invoked by the FSM behavior it starts out searching for reg-

MAS Design

43

istered FAs at the DF yellow pages. If any is found it sends out CFP messages to them,

otherwise the behavior terminates, as seen in figure 6-10. If a message is received be-

fore a given deadline it is checked if the message is a proposal, and if this is the case it

is stored in a list. When timeout occurs or all replies has been received, it is checked if

any proposals has been received. If this is the case the next step is to evaluate them,

otherwise the behavior terminates, and the attempt to restore power has been unsuccess-

ful.

Evaluation of the proposals

Figure 6-11 the flowchart for the part of the behavior where proposals are evaluated.

According to the selection criteria based on the distance given in table 5-1, the proposer

which is closest to the initiator is selected. The proposal of this FA is extracted from the

message. If this proposer can deliver the full amount which the initiator requires, the

initiator will accept this and send an ACCEPT PROPOSAL message to the proposer.

Since all power has been obtained the initiator will send an REJECT PROPOSAL mes-

sage to the rest of the proposals from the list, and go to the next step of the negotiation.

On the other hand, if the proposal is less than what is needed, given by a variable called

power_left, it will accept the full amount proposed and update the power_left variable

with this amount. The power left variable indicates the difference between the power

obtained so far and the power required. As long as this variable is not zero the initiator

will go through the list and find a new proposer. If this proposer can provide an amount

of power greater or equal to the amount which is needed, the initiator will only accept

the amount which is needed. Otherwise it will accept the full amount, update the power

amount obtained so far, and go through the list again. The initiator will go through the

list this way until the full amount of power has been obtained or there are no more pro-

posals in the list.

It will then go to the next step to wait for INFORM messages from the proposers it

has send ACCEPT PROPOSAL messages to as shown in figure 6-11.

MAS Design

44

MAS Design

45

Figure 6-11: Flowchart for ContractNetInitiator behavior part 1

Evaluate each proposal

Send ACCEPT

PROPOSAL to best

proposer

Full amount

obtained?

Get list of

proposal

messages

Choose the best proposer

Update power amount

obtained so far

Accept full amount from

best proposer

proposal >=

power left?

Accept only amount

needed

yes
no

no

More power

needed and more

proposals?

Remove

proposal

from list

yes

Send

REJECT_PROPOSALS

to remaining proposers

on the list

no

3

2

Update power amount

obtained so far

Figure 6-12: Flowchart for ContractNetInitiator behaviour part 2

MAS Design

46

3

Reply received?

Got INFORM

message?

SubscriptionInitiator()

yes

Update powertransfer

variable

end

Increment no. of replies

received

Got all replies?

yes

no

no

no

yes

1

Figure 6-13: Flowchart for ContractNetInitiator behavior part 3

MAS Design

47

6.6.3 The ContractNetResponder Behavior

The ConctractNetResponder behavior consists of a set of methods to handle messages

part of a Contract Net Interaction Protocol. Each method handles specific messages as

CFP, INFORM etc. For this application, the method prepareResponse is the most inter-

esting, as it evaluates incoming CFP messages from other FeederAgents.

Figure 6-13 shows the flowchart for the prepareResponce() method of the Con-

tractNetResponder behaviour. This method is invoked whenever the agent receives a

Call For Proposal message. The FA will measure the current power flow on the feeder -

that is the collective power consumption of its loads if it is not interconnected with other

feeders. It will then calculate its excess capacity which is the difference between its

maximum allowable power flow and its current power flow. If it has not reached its

limit, it will evaluate the CFP message received, otherwise it will send a refusal to the

initiator. If the requested power value exceed its excess capacity it will propose only

what is possible, otherwise it will propose the full amount requested by the initiator.

MAS Design

48

ContractNetResponder.prepareResponse()

of FeederAgent

start

Extract power value

requested

Excess capacity >0?

Measure current

power flow on feeder

Send refusal to

initiator

no

yes

Requested value >

excess capacity?

Calculate excess

capacity on feeder

Propose available

excess capacity

Propose amount

requested by initiator

no yes

start

Figure 6-14: prepareResponse method of ContractNetReponder

Flowcharts for the rest of the behaviors which is part of the FeederAgent class can be

seen in Appendix C. Besides the flowchart of the BusAgent class can also be found in

this appendix.

MAS Design

49

Simulation Results

50

7 SIMULATION RESULTS

In this chapter the fault scenarios used to test the MAS and the results of the tests will

be presented. The system has been tested with two fault scenarios: One single fault sce-

nario and one multiple fault scenario. Illustrations of the network configuration at dif-

ferent stages of reconfiguration process can be found in Appendix B for each of the two

fault scenarios.

7.1 Prioritization scheme

The prioritization assigned to each load on a feeder is shown in table 7-1. This prioriti-

zation will be used by the FeederAgent in case power can not be fully restored. The FA

will then request the BAs to either connect or disconnect their loads depending on how

what priority their loads have and how much power has been obtained.

Table 7-1: Prioritization of buses at a feeder

Bus Loadpriority

1 1

2 2

3 2

4 3

Two different data sets with pre-fault load consumption values have been assigned for

each scenario. Table 7-2 shows the pre-fault load consumption values used for fault

scenario 1, while table 7-3 shows the data set used for fault scenario 2. These values are

considered to be instantaneous and represent the consumption at each load at that par-

ticular time when the fault occurs.

7.2 Fault scenario 1: Single fault

The first fault scenario to be considered is a line fault on feeder 1A as illustrated in fig-

ure A-2 in appendix A. Table 7-2 shows the data used for pre-fault load consumption at

each bus for this scenario.

Simulation Results

51

Table 7-2: Pre-fault load consumption values at each bus for fault scenario 1

Feeder Bus
Load consumption

(MW)
MW on
feeder

1A 1 60

 2 90

 3 50

 4 50 250

1B 5 70

 6 80

 7 60

 8 70 280

1C 9 70

 10 50

 11 80

 12 90 290

2A 13 90

 14 70

 15 60

 16 80 300

2B 17 40

 18 90

 19 40

 20 50 220

2C 21 60

 22 70

 23 90

 24 40 260

2.7.1 Preparing for restoration

Switch S1 will disconnect immediately, when the loss of the line section is detected.

The disconnection of S1 is shown in figure A-3 as the square being white instead of

black. As a result power to all of feeder 1A is now lost, denoted by a blue line. As BA1

is monitoring S1, it will record the system change and notify FA1A about the fault

event. When S1 has disconnected, voltage at all loads on feeder 1A is lost, and the

switches in front of the loads will disconnect too. The BAs on the feeder will disconnect

switches S2, S3 and S4 to prepare for restoration, as shown on figure A-3. As men-

tioned load consumption is measured continuously, so since all BA has lost voltage they

will each notify FA1A about the event and the pre-fault power values at their loads.

Feeder1A is now prepared for restoration. This process is common for all feeders so a

description of this preparation stage will be left out for fault scenario 2 and 3.

Simulation Results

52

2.7.2 Restoration process

When all sectionalizing switches of the feeder are disconnected the feeder has been pre-

pared for restoration. Then FA1A will start in state 1 by receiving notifications from all

its BAs, which is left without power. In this scenario all BAs are affected so the total

power which has to be restored to feeder 1A is 250 MW. When notifications from all

BAs have been received FA1A starts searching for other FAs.

Figure 8-1 shows part of the simulation of the restoration process. As seen from the

figure, FA1A will start searching for registered FAs through the DF yellow pages. Since

feeder 1A is the only feeder having a fault, all other FAs are registered. It then sends

CFP messages out to these FAs requesting 250 MW. Since the current power level at

feeder 1B and 1C is 280 MW and 290 MW respectively, FA1B proposes to deliver 220

MW, while FA1C propose to deliver 210 MW. After evaluating the proposals FA1A

choose to accept the 220 MW from FA1B since feeder 1B is closest to feeder 1A, and

the remaining 30 MW from FA1C. The rest of the proposals are rejected. Since FA1A

has obtained the full amount required, it requests all its BAs to switch in their loads.

In the next step of the process, which is not shown on the figure, FA1A requests

BA1 and BA4 to switch in SAB and SAC respectively in order to connect feeder 1A to

feeder 1B and 1C. The pre-fault power at feeder 1A has now been fully restored, as

shown in figure A-4.

Simulation Results

53

Figure 7-1: Simulation part of fault scenario 1

At some time t after the reconfiguration, the fault at feeder 1A is cleared. Through its

measurement devices BA1 will detect the return of voltage at this line section, and con-

nect switch S1. This situation is shown in Figure A-5. All loads downstream of S1 will

now sense the return of voltage and notify FA1A. Figure 8-2 shows the simulation re-

sult from the time when the fault is cleared.

Simulation Results

54

The BAs of feeder 1A will notify FA1A about the return of voltage. When FA1A

has received notification from all BAs about this event, it will conclude that voltage has

fully returned to the feeder and therefore register its services with the DF as shown in

figure 8-2. Next, FA1A will cancel each subscription made during the reconfiguration

process, in this situation to 1B and 1C. FA1A will also request BA4 and BA1 to discon-

nect switch SAB and SAC respectively. The network has now returned to its normal

configuration.

Figure 7-2: Clearance of fault and subsequent return to normal operation

7.3 Fault Scenario 2: Multiple faults

In the second fault scenario the occurrence of two faults in the network is considered.

First the loss of source 1 occurs. This is illustrated in figure A-6. After this fault a sec-

Simulation Results

55

ond line fault at feeder 2C occurs, which is illustrated in figure A-10. Table 7-3 shows

the data used for pre-fault load consumption at each bus for fault scenario 2.

Table 7-3: Pre-fault load consumption values at each bus for fault scenario 2

Feeder Bus
Load consumption

(MW)
MW on
feeder

1A 1 60

 2 50

 3 80

 4 40 230

1B 5 50

 6 80

 7 40

 8 60 230

1C 9 40

 10 50

 11 100

 12 100 290

2A 13 50

 14 70

 15 60

 16 70 250

2B 17 40

 18 70

 19 40

 20 50 200

2C 21 80

 22 70

 23 90

 24 60 300

3.7.1 Restoration process

As source 1 is lost the feeders 1A, 1B and 1C is left without power. As a consequence

FA1A, FA1B and FA1C start by deregistering their power service from the yellow

pages. Thus, each of the agents FA1A, FA1B and FA1C only initiate negotiations with

FAs which are still registered at the DF - that is agent FA2A, FA2B and FA2C.

As seen from figure 8-5, FA1C is the first FA to initiate a negotiation requesting 290

MW. FA1C accept 200 MW from FA2C and 90 MW from FA2B since these feeders are

closest to feeder 1C.

The next FA which sends out CFP messages is FA1A which requests 230 MW to be

restored, see table 7-3. FA1A gets proposals from FA2A and FA2B but a refusal from

FA2C, since this FA has just made a contract delivering all its excess capacity to FA1C.

FA2A proposes 250 MW since the current power flow at feeder 2A is 250 MW. FA2B

proposes only 210 MW since it has transferred 90 MW to FA1C of its initial 300 MW

excess capacity. FA1A accepts 230 MW from FA2A since this feeder is closest.

Simulation Results

56

The last FA to initiate negotiations is FA1B requesting 230 MW. FA2A and FA2B

submit a proposal of their excess capacity which is 210 MW and 20 MW respectively.

This is what is required by FA1B to restore its loads.

Figure 7-3: FA1A and FA1C negotiating with FA2A, FA2B and FA2C

According to the scenario outlined in the previous chapter, a fault on feeder 1C occurs

after the loss of source 1.

Figure 8-4 shows the result after FA2C has been notified by its BAs that they have

lost power. When FA2C has received the notifications from its BAs it deregisters from

Simulation Results

57

the yellow pages and cancels all its subscriptions, in this case only one made with FA1C

of 200 MW. Afterwards, it searches for available FAs and sends out CFP messages to

the only to FAs registered, FA2A and 2B. As seen from the figure it gets refusals from

both FAs since they both have already reached their power flow limits.

FA1C is in the idle state, state 1, when it gets the cancellation message from FA2C.

It requests the appropriate BA, in this case BA12, to disconnect the tie switch T9. As it

now needs to restore 200 MW of power it goes to state 2 and initiates negotiations with

FA2A and FA2B. As FA2C, it only receives refusals. It only has a contract left with

FA2B on 90 MW and is forced to prioritize its loads. The power values to be restored at

its loads are 40, 50, 100 and a 100 MW for BA1 to BA4 respectively, see table 7-4. Ac-

cording to the prioritization of the four loads in table 7-1 it keeps BA1 and BA2 con-

nected, while it sends out requests to BA3 and BA4 to disconnect their loads, since the

power contract left with FA2B is on only 90 MW.

Simulation Results

58

Figure 7-4: Simulation result after occurrence of line fault at feeder 2C.

The process of returning to the normal configuration when the fault is cleared, in this

case the return of voltage at source 1 and the clearance of the line fault at feeder 1C, is

the same way as in fault scenario 1, so this is not described further.

The restoration process of fault scenario 2 has been illustrated in figure A-6 to A-12

in Appendix A.

In general the simulation results show that the software performs as expected. The tim-

ing in the interaction is nevertheless very important for how the scenario turns out.

Conclusion

59

8
CONCLUSION

8.1 Results

In this report an approach for applying agent technology to service restoration of a dis-

tribution network has been presented. A restoration strategy for prioritizing certain loads

in case of shortage of alternative sources has been proposed.

 A multi agent system has been built using the JADE framework, to verify the restora-

tion strategy. Two fault scenarios have been considered to verify the capability of the

MAS. The test results demonstrates the flexibility of the MAS, in terms of dealing with

different types of network faults occurring one at a time or simultaneously.

This project has incorporated ontologies and FIPA protocols in the multi agent sys-

tem. It has been shown how the FIPA Contract Net Interaction Protocol and the FIPA

Subscribe Protocol can be used by agents to transfer power between feeders during the

restoration process. The Subscribe Protocol has been useful in the agent design, in order

to keep trach of a FeederAgents power contracts with other FeederAgents.

An ontology for exchanging information between BusAgents and FeederAgents has

been proposed. Although being a simple ontology it shows how agents can notify each

other about events in their environment in a more structured manner than sending plain

text strings.

Furthermore, the potential for simulating a multi agent system behaviour linked to a

physical model in Matlab Simulink has been investigated. A connection between an

agent system in JADE and a Matlab Simulink model has been setup, which allows

measurement data to be transferred from Simulink and control commands to be sent

from JADE to Matlab.

8.2 Perspectives

MAS technology has attracted a great deal of attention from the power system commu-

nity since it could solve a number of the challenges faced by the industry today.

As multi agent systems is based on a distributed architecture, where each agent take

decisions based of its local information, multi agent systems can relieve the computa-

tional burden of centralized control systems employed in current power systems. Be-

sides as it can offer systems with a flexible and extensible architecture.

Conclusion

60

Despite the potential of applying MAS technology in the power industry the implemen-

tation of such system in the industry on larger scale has yet to come. Practical experi-

ence in implementing agent systems in the industry is still low, and more experience in

producing industrial agent systems in general as well as specifically for the power in-

dustry is needed.

A significant barrier for a wide spread adoption of agent systems in the power industry

is the lack of standards to enable the interoperability between different multi agent sys-

tems. Such set of standards has been in other areas as the IEC 61850 which promotes

the interoperability between devices within substations [part 2] and the Common Infor-

mation Model (CIM) which standardizes the way energy management systems can in-

terface with each other. In this regard, FIPA would be an appropriate organization to set

standards for agent system interoperability, as the organization has already set standards

for the way agents should interact, through the FIPA interaction protocols.

One important aspect of multi agent design is the ontology design. Currently, when a

multi agent system is developed the ontology is application specific. This prevents in-

teroperability between two different agent systems. To solve this problem Catterson

et.al. [14] propose to create an Upper Ontology, which should contain the basics of the

power engineering domain i.e. concepts common to all applications within the domain.

The Upper Ontology could then be extended by developers of different applications

within the domain, see figure 9-1. Having a standard ontology would ensure that devel-

opers are representing things like transformer and substation the same way.

Figure 8-1: An Upper Ontology extended for different power engineering applications

8.3 Further work

This project could be extended by investigating alternative simulation environments

which is suitable to use in combination with JADE in order to verify the operation of a

MAS. Matlab has some limitations for this purpose but PowerFactory might be more

suitable. Using PowerFactory would enable one to use many existing models of power

Conclusion

61

systems. These have not been readily available as Simulink models, since PowerFactory

traditionally is the environment used by power engineers.

One interesting direction in which this work could be extended is in the application of

agent systems for microgrids. Microgrids are low voltage networks comprising distrib-

uted generation sources (renewable energy sources like wind, solar energy etc.) and

storage devices (flywheels, batteries etc.). Although the control concepts of microgrids

is different from larger feeder distribution systems, the agent systems developed for

microgrids will need capabilities similar to the agent system developed in this project.

Agents will need to represent equipment in the microgrid, for instance a wind turbine,

and monitor the state of the equipment while taking decisions based on the dynamic

changing conditions in the grid. Dimeas et.al. propose a MAS architecture for a micro-

grid where the responsibility of the individual agent includes selling or buying power

from the grid, besides monitoring equipment [16]. Multi agent systems might be the

most beneficial as a technology when different functionality is integrated to create a

system which capable of controlling dynamic environments.

63

REFERENCES

[1] Caire, G., Developing Multi-Agent Systems with JADE, Wiley & Sons, 2007.

[2] Staszesky D. et.al., Feeder Automation is Here, IEEE Power and Energy

Magazine, September/October 2005.

[3] Riedmiller, Reinforcement Learning for Cooperative and Communicating Re-

active Agents in Electrical Power Grids,

[4] Nagata, T. et.al., A Multi-Agent Approach to Distribution System Restoration,

Electrical Engineering in Japan, Vol. 152, No. 3, 2005.

[5] Gualdron, J., A Multi-Agent Approach for a Self-reconfigurable Electric Power

Distribution System, MSc. Thesis, University of Puerto Rico, 2006.

[6] Lin, Z et.al., Power System Restoration in a Restructured Power Industry

[7] Wooldridge, M., An Introduction to MultiAgent Systems, Wiley & Sons, 2002.

[8] http://www.sandc.com/products/intelliteam/default.asp, 27
th
 July 2008.

[9] Webster, J., Power System Restoration, Wiley Encyclopedia of Electrical and

Electronics Engineering, Wiley & Sons, 1999.

[10] R., Feuillet et. al., Analysis and control of a temporary overvoltages for auto-

mated restoration planning, IEEE Trans. Power Delivery, vol. 17, no. 4, Oct.

2002.

[11] Inagaki, J. et.al., A Multi-Objective Service Restoration Method for Power

Distribution Systems, IEEE, 2002.

[12] McArthur, S. et.al., Multi-Agent Systems for Power Engineering

Applications—Part I: Concepts, Approaches, and Technical Challenges, IEEE

Transactions on Power Systems, Vol. 22, No. 4, November 2007

[13] McArthur, S. et.al., Multi-Agent Systems for Power Engineering Applications

– Part II: Technologies, Standards, and Tools for Building Multi-Agent Sys-

tems, IEEE Transactions on Power Systems, Vol. 22, No. 4, November 2007.

[14] V. M. Catterson, E. M. Davidson, and S. D. J. McArthur, “Issues in integrating

existing multi-agent systems for power engineering applications,” in Proc.

13th Int. Conf. Intelligent Systems Application to Power Systems, 2005.

Conclusion

64

[15] http://www.cwlp.com/electric_division/t_d/power_restore_priority.htm, 1
st
 of

august, 2008

[16] Dimeas, et.al., A Multi-Agent System for Microgrids, National Technical Uni-

versity of Athens, Department of Electrical and Computer Engineering

A FAULT SCENARIO DIAGRAMS

Fault Scenario 1

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

Normal

Operation

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1B

FA2A FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Line

fault

Figure A - 1: Fault Scenario 1: A line fault on feeder 1A

66

Figure A - 2: Fault Scenario 1: FeederAgent1A prepared for restoration

67

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1C

FA2A
FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Figure A - 3: Fault scenario 1: Feeder 1A fully restored by 1B and 1C

68

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1C

FA2A FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Fault

cleared

Figure A - 4: Fault Scenario 1: Clearance of fault and subsequently connection of

switch S1

69

Fault Scenario 2

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

Loss of

Source1

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1B

FA2A
FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Figure A - 5: Fault Scenario 2: The loss of Source1

70

Figure A - 6: Fault scenario 2: FA1C has obtained full power from FA2C and FA2B

and connected all its loads

71

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

Loss of

Source1

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1C

FA2A FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Figure A - 7: Fault scenario 2: FA1A has obtained full power from FA2A and con-

nected all its loads. FA1C has requested its BAs to switch in their sectionalizing

switches.

72

Figure A - 8: Fault Scenario 2: FA1B accepting proposal from FA2B and FA2C.

Feeder 1A, 1B and 1C fully restored

73

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1B

FA2A FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Line

fault

Figure A - 9: Fault Scenario 2: Line fault at feeder 2C while loss of source 1

74

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1B

FA2A
FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Figure A - 10: Fault Scenario 2: FA2C canceling subscription with FA1C

75

Source2

Source1

S2 S6 S10

S3

S4 S8

S7 S11

S12

S1 S9

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

SBC

S13 S17 S21

S14

S15 S19

S18 S23

S24

L

L

L

L

L

L

L

L

L

L

L

L

SAB

SAC

S5

S16 S20 S25

Switch

closed

Switch

open

Load

connected

Load

disconnected

T1 T2 T3 T8T6 T9T4 T7T5

SBC

FA1A FA1B FA1B

FA2A FA2B FA2C

BA1

BA2

BA3

BA5

BA6

BA7

BA8BA4

BA9

BA10

BA11

BA12

BA13

BA14

BA15

BA16

BA17

BA18

BA19

BA20

BA21

BA22

BA23

BA24

Figure A - 11: Fault Scenario 2: FA1C unable to restore full power and prioritizes its

loads

76

B MATLAB SIMULINK MODELS

In this appendix the work carried out during the project concerning the connection of

Matlab and JADE will be described.

In order to pass data from a Simulink model to an external program, an embedded Mat-

lab function is used. Embedded Matlab functions can be connected to any other block in

a Simulink model. They can include normal Matlab code as in regular Matlab function

scripts - although with some restrictions. In this project they were used to take data from

a model in Simulink and send it to JADE. This were done by setting up a TCP IP client-

server socket, where Matlab functions as a client and JADE as a server. This process is

illustrated in figure B-1. Some of the Embedded Matlab function blocks were used only

to take data (measurements) from the Simulink to the MAS in JADE, like the load and

source embedded function blocks. The negotiation takes places between the correspond-

ing agents in JADE as a control action is passed back to a breaker embedded function

block in Simulink, see figure.

Figure B - 1: Data transfer between Matlab and JADE

A simple network was built in Simulink to test the interaction between the MAS in

JADE and this model. An illustration of this network is seen in figure B-2. The network

77

consists of two voltage sources, a load and two breakers. One of voltage sources, source

B, is simulated to fail in the Simulink model. Since data is sent continuously to the

agents in JADE, this event will be detected and the breaker S5 will be switched in to

restore voltage to the load from the secondary source C.

Figure B - 2: Illustration of simple network to test data passing between Matlab and

JADE

The printout of the Simulink model of this network is shown in figure B-3. Embedded

matlab function blocks are highlighted with colours. The blue blocks are the embedded

function blocks measuring the voltage at source C and B and sending these values to

JADE. The purple block measures the power flow at the load and sends this data to the

LoadAgent in JADE.

A timer cuts off power to voltage source B at time t = 0.1. The loss of voltage is

measured by source B embedded function block, which disconnects switch S3. Power to

the load is now cut off. When the LoadAgent in JADE receives power values approach-

ing zero, it starts requesting SourceAgentC to restore its nominal power. SourceAgent C

accepts this and sends a command to the BreakerAgent which in turn pass a value to the

breaker embedded function block, shown in green, to connect the switch S5. Power has

now been restored to the load by source C.

78

Figure B - 3: Simulink model of network with two sources and one load

79

Figure B - 4: Plot of active and reactive power for SourceB, and SourceC and voltage at

the load

Figure C-2 shows voltage plot for the load as well as power plots for source B and

source C. The voltage for the load is shown in the top plot while the power for source C

is shown in middle plot and power for source B in the lowest plot. The yellow line de-

notes real power while the purple line denotes reactive power. The simulation time has a

duration of 0.2 seconds.

At the time t = 0.1 second the power at source B is lost. This is seen by the yellow

line in the bottom plot decreasing towards zero after t = 0.1 s. At the same time voltage

is lost at the load as seen from the top plot.

At t = 0.18 seconds, the embedded function block controlling the switch has re-

ceived data from JADE and the switch is connected source C with the load. It is seen

from the top plot that voltage returns when switch S5 is connected and the power pro-

duced by source C also increases.

After having setup this very simple control of a test circuit in Matlab from JADE, I

moved on to building a bigger Simulink model of a 6 bus network shown in figure B-5.

This network consists of several generators and loads. The purpose of connecting this

model to a MAS in JADE, was the potential of controlling the setpoints of generator

blocks in the Simulink model from the agents in JADE. However, problems encoun-

tered in Matlab when building bigger models based on asynchronous generators pre-

vented further work in that direction. It turned out not to be possible to change the set-

points of the generators while the simulation where running, which was required if any

agents from JADE should be able to reconfigure the network.

80

Figure B - 5: Diagram of 6 bus network

81

Figure B - 6: Simulink model of 6 Bus network

82

C FLOWCHARTS

Figure C - 1: handleCancel() method of SubscriptionResponder Behaviour

83

start

Send subscription

message to the

contractor

Any reply within

timeout?

end

AGREE msg?

Add

subscription

to list

Update the power

transfer variable

SubscriptionInitiatior

Behaviour of FeederAgent

yes

yes

no

no

Figure C - 2: SubscriptionInitiator Behaviour

84

Figure C - 3: Flowchart for BusAgent Cyclic Behavior

85

D FIPA COMMUNICATIVE ACTS

Figure D- 1: FIPA communicative acts

86

E USER MANUAL

This appendix contains a guide on setting up and executing the MAS software in JADE.

The Java class files and Matlab models and scripts are contained on the CD-ROM ac-

companying this report.

The multi agent system was developed using Java Development Kit 6.0, Eclipse 3.3.1.1.

The Matlab Simulink models were developed using Matlab 7.5.0.

Before JADE can be started the system path has be set to point to the folders containing

the appropriate classes. This can be done in several. The simplest is to use a batch file to

specify the path.

On the CD-ROM, the batch file are located at the directory /…/Code/Agents/bin.

1. Go to that directory and open the classpath_jadetext.txt file. Modify this file to cor-

respond to your directory placements. Save the file as a bath file.

2. Start a command prompt. Go to the directory /…/Code/Agents/bin.

3. Fill in setup inputs for one of the two scenarios and press enter.

For fault scenario 1 paste the following text into the prompt:

java jade.Boot -detect-main false -gui BusProxy1B1C:Agents.SocketProxyAgent1

BusProxyBottom:Agents.SocketProxyAgent1

BusProxy1A:Agents.SocketProxyAgent1 BusAgent1:Agents.BusAgent1 Bu-

sAgent2:Agents.BusAgent2 BusAgent3:Agents.BusAgent3 Bu-

sAgent4:Agents.BusAgent4 BusAgent5:Agents.BusAgent5 Bu-

sAgent6:Agents.BusAgent6 BusAgent7:Agents.BusAgent7 Bu-

sAgent8:Agents.BusAgent8 BusAgent9:Agents.BusAgent9 Bu-

sAgent10:Agents.BusAgent10 BusAgent11:Agents.BusAgent11 Bu-

sAgent12:Agents.BusAgent12 BusAgent13:Agents.BusAgent13 Bu-

sAgent14:Agents.BusAgent14 BusAgent15:Agents.BusAgent15 Bu-

sAgent16:Agents.BusAgent16 BusAgent17:Agents.BusAgent17 Bu-

sAgent18:Agents.BusAgent18 BusAgent19:Agents.BusAgent19 Bu-

sAgent20:Agents.BusAgent20 BusAgent21:Agents.BusAgent21 Bu-

sAgent22:Agents.BusAgent22 BusAgent23:Agents.BusAgent23 Bu-

87

sAgent24:Agents.BusAgent24 FeederAgent1A:Agents.FeederAgent1A Feeder-

Agent1B:Agents.FeederAgent1B FeederAgent1C:Agents.FeederAgent1C Feeder-

Agent2A:Agents.FeederAgent2A FeederAgent2B:Agents.FeederAgent2B Feeder-

Agent2C:Agents.FeederAgent2C

For fault scenario 2 paste the following code into the prompt:

java jade.Boot -detect-main false -gui BusProxy2C:Agents.SocketProxyAgent1

BusProxy1B1C:Agents.SocketProxyAgent1 BusProxy1A:Agents.SocketProxyAgent1

BusProxyBottom:Agents.SocketProxyAgent1 BusAgent1:Agents.BusAgent1 Bu-

sAgent2:Agents.BusAgent2 BusAgent3:Agents.BusAgent3 Bu-

sAgent4:Agents.BusAgent4 BusAgent5:Agents.BusAgent5 Bu-

sAgent6:Agents.BusAgent6 BusAgent7:Agents.BusAgent7 Bu-

sAgent8:Agents.BusAgent8 BusAgent9:Agents.BusAgent9 Bu-

sAgent10:Agents.BusAgent10 BusAgent11:Agents.BusAgent11 Bu-

sAgent12:Agents.BusAgent12 BusAgent13:Agents.BusAgent13 Bu-

sAgent14:Agents.BusAgent14 BusAgent15:Agents.BusAgent15 Bu-

sAgent16:Agents.BusAgent16 BusAgent17:Agents.BusAgent17 Bu-

sAgent18:Agents.BusAgent18 BusAgent19:Agents.BusAgent19 Bu-

sAgent20:Agents.BusAgent20 BusAgent21:Agents.BusAgent21 Bu-

sAgent22:Agents.BusAgent22 BusAgent23:Agents.BusAgent23 Bu-

sAgent24:Agents.BusAgent24 FeederAgent1C:Agents.FeederAgent1C Feeder-

Agent2A:Agents.FeederAgent2A FeederAgent2B:Agents.FeederAgent2B Feeder-

Agent2C:Agents.FeederAgent2C

4. JADE should now be started and the JADE GUI should be opened. In the JADE GUI,

open the Sniffer agent GUI.

5. Select the number of agents you want to monitor the communication between (prefera-

bly all the FeederAgents).

6. Place the Matlab script files in your Matlab work directory.

7. Start Matlab and go to this directory.

8. Run one of the FaultScenario scripts. When doing this, the MAS restoration process

should be visible in the Sniffer Agent GUI.

9. Run the corresponding script for normal operation i.g. for fault scenario 1, run the script

NormalOp_FS1. When doing this, the MAS should perform actions to return to normal

in the Sniffer GUI.

88

F JAVA AND MATLAB SCRIPT SOURCE CODE

Embedded Matlab function code

Embedded function for Source C

function y = send2(P,Q,v)

%This function sends measured real power and reactive power to its
agent

if v>0.2 %as long as > than 10e-5%, measure power until loss of volt-
age (and power loss)

P_str=num2str(P);

% Create TCP/IP object 't'. Specify server machine and port number.
t = tcpip('localhost', 1003);

% Set size of receiving buffer, if needed.
% set(t, 'InputBufferSize', 30000)

% Open connection to the server.
fopen(t)

% Transmit data to the server (or a request for data from the server).
fprintf(t,P_str);

% Disconnect and clean up the server connection.
fclose(t);
delete(t);

y=1; %signal that data is being send

else

y=0; %data not send

end

end

89

Java Source Code

FeederAgent class

package Agents;

import java.util.Iterator;
import java.util.Vector;
import java.util.ListIterator;
import java.util.Enumeration;

import jade.content.ContentManager;
import jade.content.Predicate;
import jade.content.lang.Codec;
import jade.content.lang.Codec.CodecException;
import jade.content.lang.sl.SLCodec;
import jade.content.onto.Ontology;
import jade.content.onto.OntologyException;

import jade.core.Agent;
import jade.core.AID;

import jade.core.behaviours.Behaviour;
import jade.core.behaviours.CyclicBehaviour;
import jade.core.behaviours.FSMBehaviour;
import jade.core.behaviours.OneShotBehaviour;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
import jade.proto.ContractNetResponder;
import jade.proto.SubscriptionResponder;
import jade.proto.SubscriptionResponder.Subscription;
import jade.proto.SubscriptionResponder.SubscriptionManager;

import jade.domain.DFService;
import jade.domain.FIPAException;
import jade.domain.FIPANames;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.FailureException;
import jade.domain.FIPAAgentManagement.NotUnderstoodException;
import jade.domain.FIPAAgentManagement.RefuseException;
import jade.domain.FIPAAgentManagement.ServiceDescription;

public class FeederAgent1A extends Agent {

float prefaults[]={0,0,0,0}; //Initially no prefault values
private int distance = -1; //The distance between this feeder and the others
private float current_powerlevel = 260; //Shared for all behaviours
private float power_upperlimit = 500; // MW upper capacity limit for this feeder
private Vector FeederSubscribers = null; //Has to be initialized
private float current_request = 0;
private int busmsg_count = 0;
private Codec codec = new SLCodec();
private Ontology ontology = PowerNegotiationOntology.getInstance();

private long deadline = 0;

private Vector MySubscribers = null; //Has to be initialized
private Vector MySubscriptions = null;//Has to be initialized
private float power_transfer=0;
//Shared variable the power transfered to this as a result of a power negotiation
private boolean loadokay = false;

//Flag to indicate if loads voltage and power levels are okay

private int step=0; //shared variable
private int informCnt = 0; // Count the replies from other agents

private String reqID = "FA1A";

//Conversation id for power request conversation, has to be unique!
private String subID = "FA1A";

//Conversation id for power request conversation, has to be unique!
//Load information:
private float localload_priority = 2;//Priority;

//Priorities of loads at this feeder:
private AID BA1 = new AID("BusAgent1", AID.ISLOCALNAME);
private AID BA2 = new AID("BusAgent2", AID.ISLOCALNAME);
private AID BA3 = new AID("BusAgent3", AID.ISLOCALNAME);
private AID BA4 = new AID("BusAgent4", AID.ISLOCALNAME);

private AID FA1A = new AID("FeederAgent1A", AID.ISLOCALNAME);
private AID FA1B = new AID("FeederAgent1B", AID.ISLOCALNAME);
private AID FA1C = new AID("FeederAgent1C", AID.ISLOCALNAME);
private AID FA2A = new AID("FeederAgent2A", AID.ISLOCALNAME);
private AID FA2B = new AID("FeederAgent2B", AID.ISLOCALNAME);
private AID FA2C = new AID("FeederAgent2C", AID.ISLOCALNAME);

private AID[] BAIDs = {new AID("BusAgent1", AID.ISLOCALNAME),
new AID("BusAgent2", AID.ISLOCALNAME),
new AID("BusAgent3", AID.ISLOCALNAME),
new AID("BusAgent4", AID.ISLOCALNAME)};

// State names
private static final String STATE_1 = "1";
private static final String STATE_2 = "2";
private static final String STATE_3 = "3";
private static final String STATE_4 = "4";
private static final String STATE_5 = "5";
private static final String STATE_6 = "6";

protected void setup() {

getContentManager().registerLanguage(codec);
getContentManager().registerOntology(ontology);

//Adding FSM behaviour:
FSMBehaviour fsm = new FSMBehaviour(this) {
public int onEnd() {
System.out.println("FSM behaviour completed.");
myAgent.doDelete();
return super.onEnd();
}
};

// Register states:
fsm.registerFirstState(new State1(), STATE_1);
fsm.registerState(new State2(), STATE_2);
fsm.registerState(new State3(), STATE_3);
fsm.registerState(new State4(), STATE_4);
fsm.registerState(new State5(), STATE_5);
fsm.registerState(new State6(), STATE_6);

// Register the transitions

fsm.registerTransition(STATE_1, STATE_1, 1);
fsm.registerTransition(STATE_1, STATE_2, 2);

fsm.registerTransition(STATE_2, STATE_3, 3);

fsm.registerTransition(STATE_3, STATE_3, 3);
fsm.registerTransition(STATE_3, STATE_4, 4);
fsm.registerTransition(STATE_3, STATE_1, 1);
fsm.registerTransition(STATE_3, STATE_5, 5);

fsm.registerTransition(STATE_4, STATE_4, 4);
fsm.registerTransition(STATE_4, STATE_6, 6);
fsm.registerTransition(STATE_4, STATE_1, 1);

fsm.registerTransition(STATE_5, STATE_6, 6);

fsm.registerTransition(STATE_6, STATE_6, 6);
fsm.registerTransition(STATE_6, STATE_1, 1);

addBehaviour(fsm);

DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAID());
ServiceDescription sd = new ServiceDescription();
sd.setType("PowerGeneration");
sd.setName("FeederAgent1B");
dfd.addServices(sd);

try {
DFService.register(this, dfd);
}
catch (FIPAException fe) {
fe.printStackTrace();
}

//Behaviour to handle subscription cancellations
addBehaviour(new CyclicBehaviour(this) {
public void action(){
MessageTemplate subcancel = MessageTemplate.and
(MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE),
MessageTemplate.MatchPerformative(ACLMessage.CANCEL));

ACLMessage cancelmsg = myAgent.receive(subcancel);

if(cancelmsg!=null){

float power_contract = extractContent(cancelmsg,1);
current_powerlevel = current_powerlevel - power_contract;
System.out.println(myAgent.getLocalName()+ "
CANCEL power_contract "+power_contract);
current_powerlevel = current_powerlevel - power_contract;
System.out.println(myAgent.getLocalName()+
"current_powerlevel after CANCEL "+current_powerlevel);

String cancelConID = cancelmsg.getConversationId();

if(MySubscriptions!=null){

ListIterator list = MySubscriptions.listIterator();
while (list.hasNext()) {
ACLMessage submsg = (ACLMessage) list.next();
String ConID = submsg.getConversationId();

if(ConID.equals(cancelConID)){
MySubscriptions.removeElement(submsg);
System.out.println(myAgent.getLocalName()+" removed sub: "+submsg.toString());

}
}

//Send control action to disconnect switch
ACLMessage command = new ACLMessage(ACLMessage.REQUEST);
command.setContent("disconnect_tie");

AID contractor = cancelmsg.getSender();

if(contractor.equals(FA1B)){

command.addReceiver(BA4); //switch SAB
}
else if(contractor.equals(FA1C)){

command.addReceiver(BA1); //switch SAC
}
else if(contractor.equals(FA2A)){

command.addReceiver(BA4); //switch T2
}
else if(contractor.equals(FA2B)){

command.addReceiver(BA4); //switch T5
}
else if(contractor.equals(FA2C)){

command.addReceiver(BA4); //switch T1
}
else{
System.out.println(myAgent.getLocalName()+" No match..");
}
myAgent.send(command);

//Send reply:
ACLMessage inform = cancelmsg.createReply();
inform.setPerformative(ACLMessage.INFORM);
myAgent.send(inform);

}

}
else{
block();
}

}

});

//Add behaviour to get confirmation that a FeederAgent has canceled a subscription
addBehaviour(new CyclicBehaviour(this) {
public void action(){

MessageTemplate confirm = MessageTemplate.and
(MessageTemplate.MatchConversationId("confirm_cancel"),
MessageTemplate.MatchPerformative(ACLMessage.INFORM));

ACLMessage informmsg = myAgent.receive(confirm);

if(informmsg!=null){

//Update power level
float pwr_contract = extractContent(informmsg,1);
current_powerlevel = current_powerlevel - pwr_contract;
System.out.println(myAgent.getLocalName()+
"current_powerlevel after CANCEL "+current_powerlevel);
}
else{
block();
}

}

});

// Adding SubscribtionResponder behaviour:
System.out.println("Agent "+getLocalName()+" waiting for Subscription...");

MessageTemplate subtemplate = MessageTemplate.and(MessageTemplate.and(
MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE),
MessageTemplate.MatchPerformative(ACLMessage.SUBSCRIBE)),
MessageTemplate.or(
MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE),
MessageTemplate.MatchPerformative(ACLMessage.CANCEL)));

MessageTemplate subtp = MessageTemplate.MatchProtocol
(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE);

final SubscriptionManager subman = null; //Creates the subscription manager which
holds the subscriptions with other agents

addBehaviour(new SubscriptionResponder(this, subtemplate ,subman) {

protected ACLMessage handleSubscription(ACLMessage submsg)
throws NotUnderstoodException, RefuseException {
if(FeederSubscribers==null){
FeederSubscribers = new Vector();
}
FeederSubscribers.addElement(submsg);
//System.out.println(myAgent.getLocalName()+ " BusSubscribers:"+BusSubscribers);
ACLMessage agree = submsg.createReply();
agree.setPerformative(ACLMessage.AGREE);

agree.setContent(submsg.getContent());

return (agree);
}

protected ACLMessage handleCancel(ACLMessage cancel) throws FailureException {
Subscription s = getSubscription(cancel);
//System.out.println(myAgent.getLocalName()+ "in Cancel subscribe section:"+s);

//Update current_powerlevel:
float power_contract = extractContent(cancel,1);
float priority_contract = extractContent(cancel,2);
System.out.println(myAgent.getLocalName()+ " CANCEL power_contract "+power_contract);
current_powerlevel = current_powerlevel - power_contract;
System.out.println(myAgent.getLocalName()+ " CANCEL current_powerlevel "+
current_powerlevel);

if (s != null) {
FeederSubscribers.removeElement(s);
//System.out.println(myAgent.getLocalName()+ " s in Cancel section:"+s);
s.close();
}

//If (when) succesful return INFORM msg to sender:
ACLMessage reply = cancel.createReply();
reply.setPerformative(ACLMessage.INFORM);
reply = fillContent(reply,String.valueOf(power_contract),priority_contract);
return reply;
}
});

// Adding ContractNetResponder behaviour:
MessageTemplate contemplate = MessageTemplate.and(
MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET),
MessageTemplate.MatchPerformative(ACLMessage.CFP));

addBehaviour(new ContractNetResponder(this, contemplate) {

protected ACLMessage prepareResponse(ACLMessage cfp)
throws NotUnderstoodException, RefuseException {

//System.out.println("Agent "+getLocalName()+":
//CFP received from "+cfp.getSender().getName()+". Action is "+cfp.getContent());

//Evaluate the call for proposal:
float power_request = extractContent(cfp,1); //Extracting power value
float priority = extractContent(cfp,2); //Extracting power value

float capacity = power_upperlimit - current_powerlevel;

if(capacity>0){

if(power_request>capacity){ //Only propose what's possible

System.out.println("Agent "+getLocalName()+": Proposing "+capacity);

ACLMessage propose = cfp.createReply();
propose.setPerformative(ACLMessage.PROPOSE);
propose = fillContent(propose,String.valueOf(capacity),priority);
return propose;

}
else{ //Propose the requested amount
System.out.println("Agent "+getLocalName()+": Proposing "+power_request);
ACLMessage propose = cfp.createReply();
propose.setPerformative(ACLMessage.PROPOSE);
propose = fillContent(propose,String.valueOf(power_request),priority);
return propose;

}

}
else{ //Capacity has been reached

System.out.println("Agent "+getLocalName()+": Refuse, no capacity");
throw new RefuseException("evaluation-failed");
}

}

protected ACLMessage prepareResultNotification
(ACLMessage cfp, ACLMessage propose,ACLMessage accept) throws FailureException {

//System.out.println("Agent "+getLocalName()+": Proposal accepted");
if (true) { //Action is always performed successfully

ACLMessage inform = accept.createReply();
inform.setContent(accept.getContent()); //Sending power agreement back
inform.setPerformative(ACLMessage.INFORM);

//Update current power level:
float power_contract = extractContent(accept,1);
current_powerlevel = current_powerlevel + power_contract;
System.out.println(myAgent.getLocalName()+
"preparenotify current_powerlevel "+ current_powerlevel);

return inform;
}
else {
System.out.println("Agent "+getLocalName()+": Action execution failed");
throw new FailureException("unexpected-error");
}
}

protected void handleRejectProposal
(ACLMessage cfp, ACLMessage propose, ACLMessage reject) {
System.out.println("Agent "+getLocalName()+": Proposal rejected");
}

protected void handleOutOfSequence(ACLMessage cfp){
System.out.println(myAgent.getLocalName()+ "In handle out of sequence...");
ACLMessage refuse = cfp.createReply();
refuse = fillContent(refuse,"-1",1);

refuse.setPerformative(ACLMessage.REFUSE);
refuse.setProtocol(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE);
myAgent.send(refuse);
}

});

} //Setup end

// Put agent clean-up operations here
protected void takeDown() {

// Deregister from the yellow pages
try {
DFService.deregister(this);
}
catch (FIPAException fe) {
fe.printStackTrace();
}
// Printout a dismissal message
System.out.println("-agent "+getAID().getName()+" terminating.");
}

private class State1 extends OneShotBehaviour {
private int exitValue;

public void action() {

//Here the messages should be received...

//System.out.println("Executing behaviour "+getBehaviourName());

//Receive only messages from BusAgents:
MessageTemplate template = MessageTemplate.and
(MessageTemplate.MatchConversationId("bus_notification"),
MessageTemplate.MatchPerformative(ACLMessage.INFORM));

MessageTemplate subcancel = MessageTemplate.and
(MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE),
MessageTemplate.MatchPerformative(ACLMessage.CANCEL));

ACLMessage busmsg = myAgent.receive(template);

ACLMessage cancelmsg = myAgent.receive(subcancel);

if (busmsg != null) {

//Registering or deregistering this connection
if(busmsg.getEncoding().equals("voltage_down")){

//System.out.println(myAgent.getLocalName()+"got BA1 encode");

AID BusID = busmsg.getSender();

if(BusID.equals(BA1)){

//BA1_prefault = Float.parseFloat(busmsg.getContent());
prefaults[0] = Float.parseFloat(busmsg.getContent());

}
else if(BusID.equals(BA2)){

//BA2_online = false;
//BA2_prefault = Float.parseFloat(busmsg.getContent());
prefaults[1] = Float.parseFloat(busmsg.getContent());
}
else if(BusID.equals(BA3)){

//BA3_online = false;
//BA3_prefault = Float.parseFloat(busmsg.getContent());
prefaults[2] = Float.parseFloat(busmsg.getContent());
}
else if(BusID.equals(BA4)){

//BA4_online = false;
//BA4_prefault = Float.parseFloat(busmsg.getContent());
prefaults[3] = Float.parseFloat(busmsg.getContent());
}

if(BA1.equals(busmsg.getSender())){

//BA1 informs that switch S1 is disconnected, so no power, then deregister
//The generator is down
try {
DFService.deregister(myAgent);
System.out.println(myAgent.getLocalName()+ " is deregistered");
doWait(1000);
doWake();

}
catch (FIPAException fe) {
fe.printStackTrace();
}
}

busmsg_count++;
//System.out.println("buscount: "+busmsg_count);
float load_power = Float.parseFloat(busmsg.getContent());
current_powerlevel = current_powerlevel - load_power;

current_request = current_request + load_power;

if(busmsg_count == 4){ //only if all four buses are down
exitValue = 2;
}

}

else if(busmsg.getEncoding().equals("voltage_up")){

//The generator is up again, and registers its services

//cancel any subscriptions

System.out.println(myAgent.getLocalName()+"
startup current_powerlevel: "+current_powerlevel);

if(BA1.equals(busmsg.getSender())){

//power is to entire feeder, then register

// Check if this agent is already registered
AID[] PowerGeneratingAgents;
boolean registered = false;
DFAgentDescription tp = new DFAgentDescription();
try {
DFAgentDescription[] result = DFService.search(myAgent, tp);

PowerGeneratingAgents = new AID[result.length];

for (int i = 0; i < result.length; ++i) {
if(result[i].getName().equals(myAgent.getName())){
System.out.println(myAgent.getName()+"already registered...");
registered = true;
}
}
}
catch (FIPAException fe) {
fe.printStackTrace();
}

if(registered == false){

//Registration
DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAID());
ServiceDescription sd = new ServiceDescription();
sd.setType("PowerGeneration");
sd.setName("FeederAgent1A");
dfd.addServices(sd);

try {
DFService.register(myAgent, dfd);
System.out.println(myAgent.getLocalName()+ " is registered");
}
catch (FIPAException fe) {
fe.printStackTrace();
}
}

//Cancel any
if(MySubscriptions!=null){

ListIterator list = MySubscriptions.listIterator();
while (list.hasNext()) {
ACLMessage submsg = (ACLMessage) list.next();
submsg.setPerformative(ACLMessage.CANCEL);
submsg.setConversationId("powerup_cancel");
myAgent.send(submsg);

//Send control action to disconnect switch
ACLMessage command = new ACLMessage(ACLMessage.REQUEST);
command.setContent("disconnect_tie");

Iterator con = submsg.getAllReceiver();
while(con.hasNext()){
AID contractor = (AID) con.next();

if(contractor.equals(FA1B)){

command.addReceiver(BA4); //switch SAB
}
else if(contractor.equals(FA1C)){

command.addReceiver(BA1); //switch SAC
}
else if(contractor.equals(FA2A)){
command.addReceiver(BA4); //switch T2
}
else if(contractor.equals(FA2B)){

command.addReceiver(BA4); //switch T5
}
else if(contractor.equals(FA2C)){

command.addReceiver(BA4); //switch T1
}
else{
System.out.println(myAgent.getLocalName()+" No match..");
}
}
//Send out command to the appropriate BusAgent to perform the control action
command.setConversationId("command");
myAgent.send(command);

}
MySubscriptions = null; //clearing vector

}

}

} //Registration end

}
else if(cancelmsg !=null){

//handle cancellation from other FAs

float power_contract = extractContent(cancelmsg,1);
current_powerlevel = current_powerlevel - power_contract;
System.out.println(myAgent.getLocalName()+
" CANCEL power_contract "+power_contract);
current_powerlevel = current_powerlevel - power_contract;
System.out.println(myAgent.getLocalName()+
"current_powerlevel after CANCEL "+current_powerlevel);

String cancelConID = cancelmsg.getConversationId();

if(MySubscriptions!=null){

ListIterator list = MySubscriptions.listIterator();
while (list.hasNext()) {
ACLMessage submsg = (ACLMessage) list.next();
String ConID = submsg.getConversationId();

if(ConID.equals(cancelConID)){
MySubscriptions.removeElement(submsg);
System.out.println(myAgent.getLocalName()+" removed sub: "+submsg.toString());

}
}

//Send control action to disconnect switch
ACLMessage command = new ACLMessage(ACLMessage.REQUEST);
command.setContent("disconnect_tie");

AID contractor = cancelmsg.getSender();

if(contractor.equals(FA1B)){

command.addReceiver(BA4); //switch SAB
}
else if(contractor.equals(FA1C)){
command.addReceiver(BA1); //switch SAC
}
else if(contractor.equals(FA2A)){

command.addReceiver(BA4); //switch T2
}
else if(contractor.equals(FA2B)){

command.addReceiver(BA4); //switch T5
}
else if(contractor.equals(FA2C)){
command.addReceiver(BA4); //switch T1
}
else{
System.out.println(myAgent.getLocalName()+" No match..");
}
myAgent.send(command);

//Send reply:
ACLMessage inform = cancelmsg.createReply();
inform.setPerformative(ACLMessage.INFORM);
myAgent.send(inform);
current_request = power_contract;

exitValue = 2;

}

}
else{

exitValue = 1;

}

}

public int onEnd() {
return exitValue;
}

}

private class State2 extends OneShotBehaviour {
private int exitValue;

public void action() {

//In this state a power negotiation is initialized

System.out.println("Executing behaviour "+getBehaviourName());
myAgent.addBehaviour(new RequestPower(current_request));

exitValue = 3; //going to next state

}

public int onEnd() {
return exitValue;
}

}

private class State3 extends OneShotBehaviour {
private int exitValue;

public void action() {

//Waiting for RequestBehavior to finish
//System.out.println("Executing behaviour "+getBehaviourName());
//if negotiation_done == true || no_proposals

if(step == 4){

if(power_transfer>0){ //something has been agreed

if(power_transfer<current_request){

//has not got full amount
//go to prioritazation

exitValue = 4;
}
else{

exitValue = 5; //full amount achieved,
}

}
else{
exitValue = 1; //failed, return to state 1
}

}
else{

exitValue = 3; //Repeat state
}

}
public int onEnd() {
return exitValue;
}
}

private class State4 extends OneShotBehaviour {
private int exitValue;

public void action() {

//Prioritize loads

/* Priorities:
* 2213
*/

//Get power obtained
//Send shed command to lowest prioritized

float sum = 0;
int i=0;

while((sum+prefaults[i]) <= power_transfer){

//increment

sum = sum + prefaults[i];

System.out.println("sum: "+sum);
ACLMessage connectload = new ACLMessage(ACLMessage.REQUEST);

connectload.addReceiver(BAIDs[i]);
connectload.setContent("connect_load");
connectload.setConversationId("load_command");
myAgent.send(connectload);

i++;
}
System.out.println("i before while shed: "+i);
while(i<4){

ACLMessage shedload = new ACLMessage(ACLMessage.REQUEST);
shedload.addReceiver(BAIDs[i++]);
shedload.setContent("disconnect_load");
shedload.setConversationId("load_command");
myAgent.send(shedload);

}

exitValue = 6;

}
public int onEnd() {
return exitValue;
}
}

private class State5 extends OneShotBehaviour {
private int exitValue;

public void action() {

System.out.println(myAgent.getLocalName()+"Executing behaviour
 "+getBehaviourName());
//full amount achieved
//Send out switching command to BusAgents to switch in loads:
int i;
for(i=0;i<4;i++){
ACLMessage connectload = new ACLMessage(ACLMessage.REQUEST);
connectload.addReceiver(BAIDs[i]);
connectload.setContent("connect_load");
connectload.setConversationId("load_command");
myAgent.send(connectload);
}
exitValue = 6;

}
public int onEnd() {
return exitValue;
}
}

private class State6 extends OneShotBehaviour {
private int exitValue;

public void action() {

//System.out.println(myAgent.getLocalName()+"Executing behaviour "+getBehaviourName());

//Send out switching action commands to correct BAs:
if(MySubscriptions !=null){

int size = MySubscriptions.size();

//System.out.println(myAgent.getLocalName()+"subCnt: "+subsCnt);
System.out.println(myAgent.getLocalName()+"size "+size);
System.out.println(myAgent.getLocalName()+"informCnt "+informCnt);
if(size == informCnt){ //not all subs have been added yet
informCnt = 0; //reset variable
ListIterator list = MySubscriptions.listIterator();
ACLMessage command = new ACLMessage(ACLMessage.REQUEST);
command.setContent("connect_tie");

while (list.hasNext()) {
ACLMessage submsg = (ACLMessage) list.next();

System.out.println(myAgent.getLocalName()+submsg.toString());

Iterator con = submsg.getAllReceiver();
while(con.hasNext()){
AID contractor = (AID) con.next();

if(contractor.equals(FA1B)){

command.addReceiver(BA4); //switch SAB
}
else if(contractor.equals(FA1C)){

command.addReceiver(BA1); //switch SAC
}
else if(contractor.equals(FA2A)){

command.addReceiver(BA4); //switch T2
}
else if(contractor.equals(FA2B)){

command.addReceiver(BA4); //switch T5
}
else if(contractor.equals(FA2C)){

command.addReceiver(BA4); //switch T1
}
else{
System.out.println(myAgent.getLocalName()+" No match..");
}

}

}
//Send out command to the appropriate BusAgent to perform the control action
command.setConversationId("command");
System.out.println(myAgent.getLocalName()+command.toString());
myAgent.send(command);

exitValue = 1;//return
}
else{

exitValue = 6;

}

}
else{

exitValue = 6;
}

}
public int onEnd() {
return exitValue;
}
}

private class RequestPower extends Behaviour {

private String powerrequired;

// The best offered price (modified: amount of power offered)
private float proposal_byBest;
private float power_required;
private float total_proposed = 0;
private int count = 0;

private int repliesCnt = 0; // Count the replies from other agents

private MessageTemplate mt; // The template to receive replies
private float power_proposal; //used in two states
private AID[] PowerGeneratingAgents;
private int no_of_proposals=0;
private ACLMessage rejectproposal = new ACLMessage(ACLMessage.REJECT_PROPOSAL);

Vector Proposals = null;

public RequestPower(float power){
this.power_required=power;
step = 0;
}

public void action(){

switch (step) {

case 0:

// Send the cfp to other agents
ACLMessage cfp = new ACLMessage(ACLMessage.CFP);
cfp.setProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET);
//System.out.println(myAgent.getLocalName()+ "In case 0");

// Update the list of power generating agents
DFAgentDescription template = new DFAgentDescription();
ServiceDescription sd = new ServiceDescription();
sd.setType("PowerGeneration");
template.addServices(sd);
try {
DFAgentDescription[] result = DFService.search(myAgent, template);
System.out.println("Found the following power generating agents:");
PowerGeneratingAgents = new AID[result.length];
for (int i = 0; i < result.length; ++i) {
if(result[i].getName().equals(myAgent.getName())){
;
}
else{
PowerGeneratingAgents[i] = result[i].getName();
System.out.println(PowerGeneratingAgents[i].getName());
}
}
}
catch (FIPAException fe) {
fe.printStackTrace();
}

for (int i = 0; i < PowerGeneratingAgents.length; ++i) {
cfp.addReceiver(PowerGeneratingAgents[i]);
}
deadline = System.currentTimeMillis()+2000;
//Taking the current time and specifying deadline

cfp = fillContent(cfp,String.valueOf(power_required),localload_priority);
cfp.setConversationId(reqID);
myAgent.send(cfp);

// Prepare the template to get proposals (PROPOSE as well as REFUSE)
mt = MessageTemplate.and(
MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET),
MessageTemplate.MatchConversationId(reqID));

step = 1;

case 1:
// Receive all proposals/refusals from other agents
//System.out.println(myAgent.getLocalName()+"In case 1");

ACLMessage cfpreply = myAgent.receive(mt);

if (cfpreply != null) {

// Reply received
if (cfpreply.getPerformative() == ACLMessage.PROPOSE) {
// This is an offer
no_of_proposals++;

if(Proposals == null){
Proposals = new Vector();
}
Proposals.addElement(cfpreply); //Adding the proposal msg

//System.out.println("distance: "+Distance);
//System.out.println(myAgent.getLocalName()+" Got proposal");

rejectproposal.addReceiver(cfpreply.getSender());
//System.out.println("in cfpreply"+rejectproposal.toString());
}

repliesCnt++; //Both PROPOSE and REFUSE will be counted
}

long currentTime = System.currentTimeMillis();
if ((repliesCnt >= PowerGeneratingAgents.length) ||
((currentTime >= deadline) && (Proposals != null))) {

if(Proposals!=null){

float power_temp = 0;

boolean powerfound = false;

while(powerfound == false && count <no_of_proposals){

ListIterator iter = Proposals.listIterator();

//float total_proposed = 0;
ACLMessage bestmsg = new ACLMessage(ACLMessage.INFORM); //just initialized
int bestdistance = 10; //The shortest distance from power provider to initiator
int distance = -1; //The distance between this feeder and the others
while (iter.hasNext()) {

ACLMessage promsg = (ACLMessage) iter.next();

//get sender AID:
String proposer = promsg.getSender().getLocalName();

if(proposer.equals("FeederAgent1B")){
distance = 1;
}
else if(proposer.equals("FeederAgent1C")){
distance = 2;
}
else if(proposer.equals("FeederAgent2A")){
distance = 3;
}
else if(proposer.equals("FeederAgent2B")){
distance = 4;
}
else if(proposer.equals("FeederAgent2C")){
distance = 5;
}
else{
System.out.println("error identifying proposer");
distance = 100; //dummy
}

if(distance < bestdistance){

//System.out.println("int distance if...");
bestdistance = distance;
bestmsg = promsg;
//System.out.println("bestmsg "+bestmsg.toString());
proposal_byBest = extractContent(promsg,1);

}

}

float power_left = power_required - power_temp;

//System.out.println("power_temp: "+power_temp);
//System.out.println(myAgent.getLocalName()+bestmsg.toString());
String BestProvider = bestmsg.getSender().getLocalName();

rejectproposal.removeReceiver(new AID(BestProvider, AID.ISLOCALNAME));
ACLMessage order = new ACLMessage(ACLMessage.ACCEPT_PROPOSAL);

if(power_left > 0){ //Still need more power
if(proposal_byBest >= power_left){
//proposal is more than power left we need
powerfound = true;

order = fillContent(order,String.valueOf(power_left),localload_priority);
 //priority is one

}
else{ //accept full amount
power_temp = power_temp + proposal_byBest;
order = fillContent(order,String.valueOf(proposal_byBest),localload_priority);
//priority is one

}

order.setProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET);
order.setConversationId(reqID);
order.addReceiver(new AID(BestProvider, AID.ISLOCALNAME));
myAgent.send(order);

}

Proposals.removeElement(bestmsg);

count++;

}

//System.out.println("out of loop...");

rejectproposal.setConversationId(reqID);
//System.out.println(rejectproposal.toString());
myAgent.send(rejectproposal);
step = 3;
}
else{
step = 4;
System.out.println(myAgent.getLocalName()+" only got refusals, returning to main...");
}
}
else if((currentTime >= deadline)){

step =4; //returning
System.out.println(myAgent.getLocalName()+" got no messages, returning to main...");
}
//System.out.println("currentTime: "+currentTime);
//System.out.println("deadline: "+deadline);
break;
case 2:
System.out.println(myAgent.getLocalName()+"In case 2");

mt = MessageTemplate.and(
MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET),
MessageTemplate.MatchConversationId(reqID));

step = 3;
//break;
case 3:

//System.out.println(myAgent.getLocalName()+"In case 3");
// Receive the power order reply

ACLMessage reply = myAgent.receive(mt);
if (reply != null) {

// power order reply received
if (reply.getPerformative() == ACLMessage.INFORM){

informCnt++;
//System.out.println(myAgent.getLocalName()+" h
//as received INFORM message from "+reply.getSender());

//Initiate subscription
myAgent.addBehaviour(new SubscriptionInitiator(reply));

//Update power_transfer variable:
float power_agreement = extractContent(reply,1);
power_transfer = power_transfer + power_agreement;
}
else {
System.out.println(myAgent.getLocalName()+"
PowerRequest failed: Requested power not available from."+reply.getSender());
}

if(informCnt==count){ //All inform msg received

step = 4;
}

}

else {
block();
}
break;
}
}

public boolean done() {
if (step == 2 && Proposals == null) {
System.out.println("Attempt failed: "+ power_required + " refused");
}
return ((step == 2 && Proposals == null) || step == 4);
}

}

private class SubscriptionInitiator extends Behaviour {

private int step = 0;
ACLMessage subreply = null;
ACLMessage confirm;
ACLMessage submsg = new ACLMessage(ACLMessage.SUBSCRIBE);

public SubscriptionInitiator(ACLMessage confirmmsg){
confirm = confirmmsg;
}

public void action(){

switch (step) {

case 0:
submsg.setProtocol(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE);
submsg.setConversationId(subID);
AID BestProvider = confirm.getSender();
float power_agree = extractContent(confirm,1);
String poweragree = String.valueOf(power_agree);
submsg = fillContent(submsg,poweragree,localload_priority);
//Sending the power agreement again
//submsg.setContent(confirm.getContent());
//Sending the power agreement again
submsg.addReceiver(BestProvider);
myAgent.send(submsg);
//System.out.println(myAgent.getLocalName()+"
//sending subscription msg"+submsg.toString());
step = 1;
break;

case 1: //Wait for AGREE
MessageTemplate mt = MessageTemplate.MatchProtoco
l(FIPANames.InteractionProtocol.FIPA_SUBSCRIBE);
ACLMessage subreply = myAgent.receive(mt);
if (subreply != null) {
if(subreply.getPerformative() == ACLMessage.AGREE){

//System.out.println(myAgent.getLocalName()+" has received AGREE msg");
if(MySubscriptions==null){ //Create first time
MySubscriptions = new Vector();
}
MySubscriptions.addElement(submsg); //Adding the subscription message
/*
ACLMessage command = new ACLMessage(ACLMessage.REQUEST);

AID contractor = subreply.getSender();
if(contractor.equals(FA1A)){
command.addReceiver(BA8); //switch SAB
}
else if(contractor.equals(FA1C)){
command.addReceiver(BA7); //switch SAC
}
else if(contractor.equals(FA2A)){
command.addReceiver(BA8); //switch T2
}
else if(contractor.equals(FA2B)){
command.addReceiver(BA8); //switch T5
}
else if(contractor.equals(FA2C)){
command.addReceiver(BA8); //switch T1
}
else{
System.out.println(myAgent.getLocalName()+" No match..");
}

//Send out command to the appropriate BusAgent to perform the control action

command.setProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET);
command.setContent("connect_tie");
command.setConversationId("command");
myAgent.send(command);
*/

step = 2;
}
else if(subreply.getPerformative() == ACLMessage.REFUSE){

//Do nothing if subscription is refused
step = 2;
}

}
break;

} //Switch end

}
public boolean done() {

return (step == 2); //stay until reply has been received
}

} //end Subscribe class

private ACLMessage fillContent(ACLMessage msg, String power_value, float prio) {

Float priority = new Float(prio);

try{
ContentManager cm = this.getContentManager();
msg.setLanguage(codec.getName());
msg.setOntology(ontology.getName());

PowerRequest powerreq = new PowerRequest();
powerreq.setPowerValue(power_value); //filling value

powerreq.setPriority(priority); //filling priority

Power power = new Power();
Request req = new Request();
req.setPowerRequest(powerreq);
power.setPowerRequest(powerreq);

cm.fillContent(msg,power); //giving list to content manager
return msg;
}
catch (OntologyException oe) {
oe.printStackTrace();
return null;
}
catch (CodecException ce) {
ce.printStackTrace();
return null;
}

}

private float extractContent(ACLMessage msg, int choose_return) {

try{
ContentManager cm = this.getContentManager();
Predicate pre = (Predicate) cm.extractContent(msg);

Power power = (Power) pre;
PowerRequest powerrequ = power.getPowerRequest();

String powerrequest = powerrequ.getPowerValue();
float power_request = Float.parseFloat(powerrequest);

Float flo = powerrequ.getPriority();
float prio = flo.floatValue();

if(choose_return == 1){
return power_request;
}
else if(choose_return == 2){
return prio;
}
else{
return -1;
}

}
catch (OntologyException oe) {
oe.printStackTrace();
return -1; //Invalid value for power_request and priority
}
catch (CodecException ce) {
ce.printStackTrace();
return -1; //Invalid value for power_request and priority
}
}

} //main Agent end

BusAgent class

package Agents;

import jade.content.ContentManager;
import jade.content.Concept;
import jade.content.Predicate;
import jade.content.lang.Codec;
import jade.content.lang.Codec.CodecException;
import jade.content.lang.sl.SLCodec;
import jade.content.onto.Ontology;
import jade.content.onto.OntologyException;
import jade.core.AID;

import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
import java.util.Date;
import java.util.Enumeration;
import java.util.ListIterator;
import java.util.Vector;

import jade.core.Agent;
import jade.core.behaviours.Behaviour;
import jade.core.behaviours.CyclicBehaviour;
import jade.core.behaviours.FSMBehaviour;
import jade.core.behaviours.OneShotBehaviour;
import jade.domain.DFService;
import jade.domain.FIPAException;
import jade.domain.FIPANames;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.FailureException;
import jade.domain.FIPAAgentManagement.NotUnderstoodException;
import jade.domain.FIPAAgentManagement.RefuseException;
import jade.domain.FIPAAgentManagement.ServiceDescription;

public class BusAgent1 extends Agent {

 private float power_measure = 60;
 private boolean switch_closed = false;

 private Codec codec = new SLCodec();
 private Ontology busfeederontology = BusFeederOntology.getInstance();

 protected void setup() {

 getContentManager().registerLanguage(codec);
 getContentManager().registerOntology(busfeederontology);

 addBehaviour(new CyclicBehaviour(this) {
 public void action(){

 MessageTemplate template = MessageTemplate.and(MessageTemplate.
 MatchConversationId("loadalert"),
 MessageTemplate.MatchPerformative(ACLMessage.INFORM));

 MessageTemplate command = MessageTemplate.and(MessageTemplate.
 MatchConversationId("command"),
 MessageTemplate.MatchPerformative(ACLMessage.REQUEST));

 MessageTemplate loadcmd = MessageTemplate.and(MessageTemplate.

 MatchConversationId("load_command"),
 MessageTemplate.MatchPerformative(ACLMessage.REQUEST));

 ACLMessage loadmsg = myAgent.receive(template);
 ACLMessage cmdmsg = myAgent.receive(command);
 ACLMessage loadcmdmsg = myAgent.receive(loadcmd);

 if(loadmsg!=null){
 //Send notification to FeederAgent, that load is down

 ACLMessage notify = new ACLMessage(ACLMessage.INFORM);
 notify.addReceiver(new AID("FeederAgent1A", AID.ISLOCALNAME));

 float powervalue = Float.parseFloat(loadmsg.getContent());

 if(powervalue == 0){

 notify.setContent(String.valueOf(power_measure));
 //forwarding
 notify.setEncoding("voltage_down");

 }
 else{

 notify.setEncoding("voltage_up");
 notify.setContent("0"); //forwarding
 }

 notify.setConversationId("bus_notification");

 myAgent.send(notify);

 }
 else if(cmdmsg!=null){
 ACLMessage reply = cmdmsg.createReply();

 reply.setConversationId("command_reply");
 switch_closed = true; //Breaker is closed

 //Send CONFIRM
 reply.setPerformative(ACLMessage.CONFIRM);

 myAgent.send(reply);

 }
 else if(loadcmdmsg!=null){
 ACLMessage reply = loadcmdmsg.createReply();

 reply.setConversationId("load_command");

 //Send CONFIRM
 reply.setPerformative(ACLMessage.CONFIRM);

 myAgent.send(reply);

 }
 else{
 block();
 }

 }
 });

 }

 private ACLMessage fillContent(ACLMessage msg,
 String power_value, float prio) {

 try{

 ContentManager cm = this.getContentManager();
 msg.setLanguage(codec.getName());
 msg.setOntology(ontology.getName());

 Switch sw = new Switch();
 Load load = new Load();
 LineSection linesection = new LineSection();

 linesection.setSectionStatus(false);
 linesection.setSectionNumber(1); //Line section 1

 Notification notification = new Notification();
 notification.setLineSection(linesection);

 cm.fillContent(msg,notification); /
 /giving list to content manager

 return msg;
 }
 catch (OntologyException oe) {
 oe.printStackTrace();
 return null;
 }
 catch (CodecException ce) {
 ce.printStackTrace();
 return null;
 }

 }
 */

 private float extractContent(ACLMessage msg, int choose_return) {

 try{
 ContentManager cm = this.getContentManager();
 Predicate pre = (Predicate) cm.extractContent(msg);

 Power power = (Power) pre;
 Notification not = (Notification) pre;
 Switch sw = not.getSwitch();
 boolean switchstatus = sw.getSwitchStatus();
 Float switchnumber = sw.getSwitchNumber();
 float switchno = switchnumber.floatValue();

 LineSection linesection = not.getLineSection();
 boolean sectionstatus = linesection.getSectionStatus();
 Integer linesec = linesection.getSectionNumber();
 //int sectionno = linesec.integerValue();

 Load load = not.getLoad();
 boolean voltagestatus = load.getVoltageStatus();
 String prefaultpower = load.getPower();

 if(choose_return == 1){
 return power_request;
 }
 else if(choose_return == 2){
 return prio;
 }
 else{
 return -1;
 }

 }
 catch (OntologyException oe) {
 oe.printStackTrace();
 return -1; //Invalid value for power_request and priority
 }
 catch (CodecException ce) {
 ce.printStackTrace();
 return -1; //Invalid value for power_request and priority
 }

 }
 */
}

BusFeederOntology class

package Agents;

import jade.content.onto.*;
import jade.content.schema.*;

public class BusFeederOntology extends Ontology {

 // The name identifying this ontology

 public static final String ONTOLOGY_NAME = "BusFeeder-Ontology";

 // VOCABULARY

 public static final String BUSFEEDER = "BusFeeder";
 public static final String LINESECTION = "linesection";
 public static final String SECTIONNUMBER = "sectionnumber";
 public static final String SWITCH = "switch";
 public static final String SWITCHNUMBER = "switchnumber";
 public static final String LOAD = "load";
 public static final String LOADNUMBER = "loadnumber";
 public static final String VOLTAGELEVEL= "voltagelevel";
 public static final String POWERLEVEL = "powerlevel";
 public static final String FAULT = "fault";
 public static final String FAULTTYPE = "faulttype";
 public static final String ONLINESECTION = "onlinesection";
 public static final String CONNECTED = "connected";
 public static final String CONNNECT = "connect";
 public static final String DISCONNNECT = "disconnect";
 public static final String SWITCHIN = "switchin";
 public static final String SWITCHOUT = "switchout";
 public static final String NEEDPOWER = "needpower";

 // The singleton instance of this ontology
 private static Ontology theInstance = new BusFeederOntology();

 // Retrieve the singleton Book-trading ontology instance
 public static Ontology getInstance() {
 return theInstance;
 }
 // Private constructor
 private BusFeederOntology() {

 // The Book-trading ontology extends the basic ontology
 super(ONTOLOGY_NAME, BasicOntology.getInstance());
 try {

 PrimitiveSchema booleanSchema =
 (PrimitiveSchema)getSchema(BasicOntology.BOOLEAN);

 PrimitiveSchema stringSchema =
 (PrimitiveSchema)getSchema(BasicOntology.STRING);
 PrimitiveSchema integerSchema =
 (PrimitiveSchema)getSchema(BasicOntology.INTEGER);
 PrimitiveSchema floatSchema =
 (PrimitiveSchema)getSchema(BasicOntology.FLOAT);

 ConceptSchema SwitchSchema = new ConceptSchema(SWITCH);
 SwitchSchema.add(SWITCHNUMBER,integerSchema);

 ConceptSchema LineSectionSchema = new ConceptSchema(LINESECTION);
 LineSectionSchema.add(SECTIONNUMBER,integerSchema);

 ConceptSchema LoadSchema = new ConceptSchema(LOAD);
 LoadSchema.add(LOADNUMBER,integerSchema);
 LoadSchema.add(VOLTAGELEVEL,integerSchema);
 LoadSchema.add(POWERLEVEL,stringSchema);

 ConceptSchema FaultSchema = new ConceptSchema(FAULT);
 FaultSchema.add(FAULTTYPE,integerSchema);

 PredicateSchema BusFeederSchema = new PredicateSchema(BUSFEEDER);

 PredicateSchema onLineSectionSchema = new PredicateSchema(ONLINESECTION);
 onLineSectionSchema.add(FAULT, FaultSchema);
 onLineSectionSchema.add(LINESECTION, LineSectionSchema);

 PredicateSchema isConnectedSchema = new PredicateSchema(CONNECTED);
 isConnectedSchema.add(SWITCH, SwitchSchema);

 PredicateSchema NeedPowerSchema = new PredicateSchema(NEEDPOWER);
 NeedPowerSchema.add(LOAD,LoadSchema);

 AgentActionSchema switchInSchema = new AgentActionSchema(SWITCHIN);
 switchInSchema.add(SWITCH, SwitchSchema);

 AgentActionSchema switchOutSchema = new AgentActionSchema(SWITCHOUT);
 switchOutSchema.add(SWITCH, SwitchSchema);

 add(SwitchSchema, Switch.class);
 add(LineSectionSchema, LineSection.class);
 add(LoadSchema, Load.class);
 add(FaultSchema, Fault.class);
 add(BusFeederSchema, BusFeeder.class);
 add(onLineSectionSchema, onLineSection.class);
 add(isConnectedSchema, isConnected.class);
 add(switchInSchema, switchIn.class);
 add(NeedPowerSchema, NeedPower.class);

 }
 catch (OntologyException oe) {
 oe.printStackTrace();
 }
 }
 }

www.elektro.dtu.dk

Institut for Elektroteknologi

Danmarks Tekniske Universitet

Ørsteds Plads

Bygning 348

2800 Kgs. Lyngby

Tlf: 45 25 38 00

Fax: 45 93 16 34

E-mail: info@elektro.dtu.dk

